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ABSTRACT

Animal domestication typically affected numerous polygenic quantitative traits, such as behaviour,
development and reproduction. However, uncovering the genetic basis of quantitative trait variation is
challenging, since it is probably caused by small allele-frequency changes. To date, only a few causative
mutations related to domestication processes have been reported, strengthening the hypothesis that small
effect variants have a prominent role. So far, the studies on domestication have been limited to the detection
of the global effect of domestication on deleterious mutations and on strong beneficial variants, ignoring
the importance of variants with small selective effects. In addition, very often, the study of the effects of
selection are conducted on genome sequences that contain a non-negligible fraction of missing data,
especially in non-model organisms. Hence, appropriate methods to account for these positions are needed.
To overcome these difficulties, here we propose to estimate the proportion of beneficial variants using the
asymptotic MacDonald-Kreitman (MK) method based on estimates of variability that summarizes the site
frequency spectrum (SFS) while accounting for missing data and use them to perform an Approximate
Bayesian Computation (ABC) analysis to infer the Distribution of Fitness Effects (DFE) of each population.
We applied this approach to 46 genome sequences of pigs from three different populations, one wild and
two domestics, with very different demographic histories and selective pressures. The obtained results
showed that domestic and wild pig populations do not differ in nonsynonymous fixed mutations. Therefore,
differences in « estimation among breeds are determined by their polymorphisms. The comparison of &
for total and exclusive mutations suggests that the different domestic populations have suffered recent

divergent changes in their functional versus neutral polymorphisms ratio, while the wild population is

compatible with ¢=0. Besides, the DFE inferred with ABC indicates that both wild and domestic pigs
display a large number of deleterious mutations at low frequency and a high number of neutral and/or
nearly-neutral mutations that may have a significant effect on the evolution of domestic and wild
populations. In addition, models not considering beneficial mutations have higher posterior probabilities,
suggesting that beneficial mutations are difficult to detect or are scarce. Indeed, for all three populations,
the median proportion of the strong favourable mutations are very low (< 0.1%) in those models that
includes positive selection, with the average values of weak beneficial mutations around 0.6% for wild boar
and 0.8-1.0% for the domestic pigs. Lastly, the analysis based on exclusive mutations showed that recent
demographic changes may have severely affected the fitness of populations, especially that of the local

Iberian breed.

Keywords: Domestication, Distribution of fitness effects, Proportion of beneficial mutations,
Approximate Bayesian calculation, Polygenic selection, Population genomics
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INTRODUCTION

Domestic animal histories are evolutionary experiments that have often lasted for millennia
resulting in dramatic phenotypic changes to suit human needs. In addition, domestic species can
be structured into subpopulations (breeds) that are partly or completely genetically isolated and
can display a wide catalogue of specific phenotypes. Therefore, they offer a very valuable material
of utmost interest to study the interplay between demography and accelerated adaptation.
However, as their demographic history can be quite complex, many events remain unknown or

poorly documented nowadays.

The pig (Sus scrofa) is a particularly interesting species because of its domestication history and
its relatively well-annotated genome. S. scrofa originated in Southeast Asia ~1-4 MY A and spread
throughout Eurasia ~0.2-1.2 MYA, colonizing all climates except the driest (Frantz et al. 2013,
Zhang et al. 2021). Subsequently, the pig was domesticated from local wild boars (WB)
independently in both Asia and Europe ~9,000 years ago. To complicate the story, modern
European domestic pig breeds were crossed with Asian domestic pigs during the late 17th century
and onwards. In breeds such as Large White (LW), approximately 30% of the genome is estimated
to be of Asian origin (Bosse, Megens, Madsen, et al. 2014). Nevertheless, some local European
breeds, such as the Iberian breed (IB), were spared genetic contact with Asian pigs and no evidence
of genetic introgression has been found in this breed (Alves et al. 2003, Esteve-Codina et al. 2013).
Moreover, domestic breeds have different recent demographic histories. For instance, the IB breed
suffered a dramatic reduction of its effective population size during the last century (Alves et al.
2006), whereas many commercial breeds such as Duroc or LW have been introgressed with Asian

pigs (Bosse, Megens, Frantz, et al. 2014).

Differences in the effective population size, demographic histories and artificial selective pressures
between pig breed or populations could result in differences among their evolutionary rates. In
addition to possible differences in the evolutionary rates between populations, there may be
differences in the evolutionary rate between genes within genomes. For instance, it is known that
the strength of the selection is affected by the position of the genes in the networks in which they
participate. Genes that are more central in a network and are more connected with other genes are
more evolutionarily constrained, while peripheral genes are more prone to be under adaptive

selection (Fraser et al. 2002; Hahn and Kern 2005; Montanucci et al. 2011; Alvarez-Ponce and
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76  Fares 2012). Furthermore, it has been observed that the evolutionary rate, within a metabolic
77  pathway, increases as we move downstream, possibly because upstream genes are more
78  pleiotropic, since they are involved in more functions and hence, these genes are probably more
79  conserved (Rausher, Miller, and Tiffin 1999; Riley, Jin, and Gibson 2003; Livingstone and
80  Anderson 2009; Ramsay, Rieseberg, and Ritland 2009).

81  So far, the nature of the underlying genetic changes caused by domestication and ensuing artificial
82  breeding is still under debate. While the most prevalent view is that regulatory changes have been
83  targeted (Anderson 2013), several other studies underline the influence of protein coding changes
84  (Rubin et al. 2012). Some authors have reported an increase in the rate of deleterious mutations in
85  domestic pigs compared to their wild counterparts (Cruz, Vila, and Webster 2008; Renaut and
86  Rieseberg 2015; Pérez-Enciso et al. 2017; Leno-Colorado et al. 2017). Others, as in Makino et al.
87  (2018) detected a general pattern of reduction of variability in domestic populations in relation to
88  their wild counterpart, and a higher nonsynonymous/synonymous ratio across the frequency
89  spectrum. These patterns were compatible with the effect of strong bottlenecks in domestic
90  populations and the higher accumulation of deleterious mutations. Interestingly, the same authors
91  observed the opposite trend in pigs (e.g., higher variability levels in domestic pigs compared to
92  their wild counterpart). Moreover, most of these previous studies have focused on genes of major
93  effect with clear signals of selective sweeps. In those studies, the hallmarks of positive selection
94  were detected as valleys of reduced variation and/or population differentiation that spans relatively
95  large regions (e.g., Amaral et al. 2011, Rubin et al. 2012, Frantz et al. 2013, Wilkinsonet al. 2013),
96  but also by the presence of haplotype structure and homozygosity blocks (e.g., Fang et al. 2011,
97 Bosseetal. 2012, Li et al. 2013). Some of these studies have detected recent breed specific signals
98  of selection attributed to the domestication process (Li et al. 2014, Kim et al. 2015). Nevertheless,
99  the signals were too scarce to explain the whole picture of the domestication process. Other studies
100  have tried to elucidate the effect that domestication has at the genomic scale and on the fitness of
101  individuals of domestic populations (e.g., Cruz et al. 2008, MacEachern et al. 2009, Kono et al.
102 2016, Perez-Enciso et al. 2016, Makino et al. 2018, Chen et al. 2018, Orlando and Librado 2019).
103  For instance, an excess of deleterious variants has been observed in a number of domestic animal
104  and plants (e.g., contrasting nonsynonymous versus synonymous polymorphism ratios, Chen et al.
105 2018, using the MacDonald framework, MacEachern et al. 2009, contrasting the ancestors with
106  ancient DNA, Orlando and Librado 2019, combining the frequency of polymorphisms with
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107  functional effects and divergence, Kono et al. 2016, Makino et al. 2018). Kono et al. (2016) and
108  Perez-Enciso et al. (2016) found an excess of deleterious variants affecting phenotypes of interest,
109  suggesting, as we previously mention above, that protein sequence may have a stronger influence
110  than regulatory changes in the domestication process. Kono et al. (2016) also showed that null
111  alleles are uncommon in domestic animal species (also reviewed by Anderson 2013), suggesting
112 that phenotypic changes involved in domestication are produced by the accumulation of
113 consecutive mutations that modify the gene functions under selection. Finally, the possible

114  presence of beneficial mutations during the domestication process has also been reported (Perez-

115  Enciso 2016).
116

117  Here, we are interested in determining the proportion and the selective effects of protein-coding
118  variants in wild and domestic pig genomes to understand their role in the domestication process.
119  Particularly, we aimed to test the role of both new and extant mutations in the domestication
120  process and whether the phenotypes associated with domestic breeds are the product of a large
121  number of variants with weak selective effects, as suggested by previous results. To achieve this,
122 we have investigated the differential effects of selection on coding sequences at the different
123 molecular scales (gene, metabolic pathway and whole-genome) in two domestic and one wild pig
124 population using the McDonald-Kreitman framework (McDonald and Kreitman 1991, Eyre-
125  Walker 2006, Fay 2011). We also have performed forward exploratory simulations and inferred
126  the distribution of fitness effects (DFE) while taking into account the effect of different
127  demographic scenarios. Interestingly, the analysis was performed using variability estimators that

128 allow including positions with missing data (Ferretti, Raineri, and Ramos-Onsins 2012).

129 Our results support the hypothesis that changes in allele frequencies in coding variants with weak
130  positive selective effect have been relevant for pig domestication, as evidenced by a relatively high
131  number of nonsynonymous variants segregating at medium and high frequencies and by the

132 obtained estimates of the DFE in domestic pig populations.
133

134
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135 MATERIALS AND METHODS
136  Biological samples

137  We analyzed a sample of 46 pig (Sus scrofa) genomes (Table S1). These pigs correspond to
138  European wild boars (WB, n = 20) and domestic pigs, which are represented by the Iberian
139  Guadyerbas (IB, n = 6) and Large White (LW, n = 20) breeds. The two domestic breeds were
140  selected because they have very different interesting features: IB is a local breed that has been
141  under weak artificial selection intensity and with no documented evidence of Asian introgression.
142 LW, in contrast, is a commercial breed undergoing strong artificial selection with a deliberate
143 admixture with Asian pigs (Bosse, Megens, Madsen, et al. 2014; Groenen 2016). To analyze the
144  divergence between the different breeds, we built the consensus ancestral reference sequence
145  obtained from combining the genomic information from several Sus species (S. barbatus, S.
146  cebifrons, S. verrucosus, S. celebensi, approximately 4.2 MYA of divergence) and the African
147  warthog (Phacochoerus africanus, around ~10 MY A of divergence) and used as an outgroup, as
148  in Bianco et al. (2015). All sequences (see reference numbers at Table S1) are available in public
149  databases: those generated in several previous works (Rubin et al. 2012; Ramirez et al. 2014;
150  Bianco et al. 2015; Frantz et al. 2015; Moon et al. 2015, Esteve-Codina et al. 2013, Leno et al.
151  2017) and those generated in this work (WBES0231, WBES0252, WBES0288, WBES0291 and
152  WBESO0297, see Table S1). They can be downloaded from the short read archive (SRA,

153  http://www.ncbi.nlm.nih.gov/sra, see accession numbers in Table S1).

154
155 Mapping and genotyping analysis

156  For each pig genome, raw reads were mapped against the reference genome assembly
157  (Sscrofal(.2, Groenen et al. 2012) using BWA mem option (H. Li and Durbin 2009). PCR
158  duplicates were removed using SAMtools rmdup v. 0.1.19 (H. Li et al. 2009) and mapped reads
159  were realigned around indels with the GATK IndelRealigner tool (McKenna et al. 2010). Genotype
160 calling was performed with SAMtools mpileup and bcftools call v. 1.3.0 (H. Li et al. 2009) for each
161  individual separately. We set a minimum (5x) and a maximum depth (twice the average sample’s
162  depth plus one) to call a SNP. Base quality was set to 20 (P-value=1e-2). Homozygous blocks
163 (regions of contiguous positions with the same nucleotide as the reference genome) were also

164  called, following the same criteria as with the SNPs (i.e., minimum and maximum coverage and
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165 base quality) and using samtools depth utility, BEDtools (Quinlan 2014) and custom scripts
166  (available at https://github.com/miguelperezenciso/NGSpipeline, Pérez-Enciso et al., 2017). This

167  resulted in a gV'CF file per individual with the information about variant calls and non-varying
168  positions. Next, each gV'CF file was converted into a fasta file and all fasta files were subsequently

169  merged to obtain a multindividual gV'CF file (Pérez-Enciso et al. 2017).
170
171  Analysis of the population structure of the samples

172 A principal component analysis (PCA) was performed using the total number of SNPs to explore
173 the population structure. First, genotypes were converted to alternative allele frequency, being 0
174  for the homozygous reference genotype (0/0), 0.5 for the heterozygous genotype (0/1) and 1 for
175  the homozygous alternative genotype (1/1). For cases of missing genotype (./.), these were
176  replaced by the average SNP frequency across all individuals. We used the function tcrossprod()
177  from R v. 3.3.1 (2016) to obtain the matrix of covariates from the matrix of frequencies. Finally,
178  we obtained the principal components from the Eigen-value decomposition with the R function
179  eigen(). The software ADMIXTURE (Alexander et al. 2009) was also applied to analyze the
180  population structure. The more suitable K was estimated using cross-validation procedure

181  (Alexander et al. 2009) and the Evanno’s method (Evanno et al. 2005).
182
183  Estimation of codon bias

184  We have used the single reference sequence of S. scrofa to estimate the codon bias at gene and
185  genome level, assuming that polymorphic variants are not going to strongly modify the proportion
186  of codons at this species. We have estimated gene and genomic codon usage with the Major Codon
187  Usage statistic (MCU, the frequency of major codons among all codons in a sequence) and the
188  Effective number of codons (N.w), using the python script following Fuglsang (2006). High values
189  of MCU indicate a strong bias in codon usage, while low values suggest small bias. Instead, high
190  wvalues of V., indicate low codon bias because many codons are used. We have also calculated the
191  correlation between MCU and « estimates (see below), considering all annotated coding regions

192 and only coding regions having « values larger than zero.

193
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194  Estimation of levels and patterns of variability

195  Genetic diversity and divergence per pig population were estimated using mstatspop software
196  (Nevado, Ramos-Onsins, and Perez-Enciso 2014; Bianco et al. 2015; Guirao-Rico et al. 2018,

197  available from the authors, https://github.com/cragenomica/mstatspop). The multi-VCF file was

198  converted into a tfasta (transposed fasta) file and mstatspop was run on i) the whole genome, ii)
199  windows of 5-Mb size, and iii) gene coding regions. Note that, given the ubiquitous presence of
200  missing data, the SFS with highest sample size that contained more coding SNPs, retained only
201  around 20-25% of total coding variants. As the aim of this work is to detect the presence of (weak)
202  beneficial selective effects and as not to lose power or bias the results of the analysis, we preferred
203  touse an alternative method that consider the whole set of SNPs. We used four different estimators
204  of nucleotide variability that takes into account missing data (Ferretti, Raineri, and Ramos-Onsins
205  2012): Watterson (Watterson 1975), Tajima (Tajima 1983), Fu&Li (Fu and Li 1993) and
206  Fay&Wu’s estimators (Fay and Wu 2000). The variability was estimated for total, shared and
207  exclusive variants, being shared and exclusive nucleotide variability counted regarding to the total

208  positions (i.e., total = shared + exclusive).
209
210  Filtering for artefactual effects

211 A preliminary analysis of the variability showed a moderate negative correlation (~ 0.3) between
212 the levels of variability and divergence and the proportion of missing data for each gene. To
213  eliminate this artifactual correlation, we plotted the estimators of variability and divergence versus
214  the ratio of missing data and eliminated those genes that showed a ratio of missing data greater
215  than 0.3. Since this filtering was not enough to completely remove the bias, we also removed genes
216  with extreme values of variability and divergence (higher than 99% quantile of the total genes).
217  The remaining ~13,500 genes (70% of the total annotated genes) showed a low or null correlation

218  with missing data and were used in the present analysis (Table S2).
219
220  Estimation of the proportion of adaptive of variants

221  Under the neutral model, the majority of polymorphisms segregating in a population are neutral

222 and only a small number of selected variants segregates for a short time on their way to loss or
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fixation. Hence, most of the positive selected variants are only observed as fixed variants. In
addition, functional positions (nonsynonymous positions) are constrained compared to non-
functional positions (synonymous positions), and hence, their evolutionary ratios are smaller. In
the neutral scenario, polymorphism and divergence (excluding the adaptive fixed variants) are
proportional to the mutation rate and to the constriction factor in the case of nonsynonymous

positions (McDonald and Kreitman 1991, Eyre-Walker 2006, Fay 2011). That is:

0,  (1—-a)k,

95 KS '
(Equation 1)
where 6, is the nonsynonymous variability, s is the synonymous variability, K, is the
nonsynonymous divergence, K is the synonymous divergence and a is the proportion of adaptive

variants that have been fixed. To estimate the proportion of nonsynonymous substitutions that are

adaptive (a) the previous expression is reordered (e. g., Eyre-Walker 2006):

-1 Ks 0,
TR,
(Equation 2)

A higher ratio of nonsynonymous to synonymous divergence versus polymorphisms suggests that
positive selection has fixed adaptive variants (a« > 0) and the opposite case (a < 0) suggests the

presence of deleterious mutations segregating in the population.

If we consider that weak deleterious mutations are segregating in the population, we expect that
their relative proportion will be higher at lower frequency variants and low or zero for fixed
deleterious mutations. Following the same notation as in equation 2:

gin(l - 181) _ (1 —a— IBd)Kn
9is B Ks '

(Equation 3)

where i refers to the frequency at which the calculation of variability is estimated, [5; is the
proportion of weakly deleterious polymorphic mutations at frequency i, 84 is the proportion of
weakly deleterious fixed mutations. §; < f5; was assumed at any frequency. Then, solving for the

proportion of fixed adaptive variants (a):
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Ks ein

249 a=1-Fa—A-PF)y% o
n LS

250 (Equation 4)

251  We see that in case of calculating o without considering the effects of deleterious mutations, this
252  would be underestimated depending on the frequency at which the estimates of variability are
253  calculated. If we assume that the deleterious variants would hardly be fixed, a good estimator of o
254  using equation 2 would be the one that estimates variability based on high frequencies, as it would
255  hardly contain deleterious mutations. This is in agreement with the asymptotic arguments used in

256  Messer and Petrov (2013) and implemented in Haller and Messer (2017).
257

258  Similarly, if we also consider that weak positively selected variants are segregating in the
259  population, we expect that their relative proportion, compared to neutral ones, is higher at higher
260  frequencies:

0m(1—Bi— vi) _ (1-—a—PBs—va)Kn

261 )
9is Ks

262 (Equation 5)

263  where y; is the proportion of weakly advantageous polymorphic mutations at frequency 7, and y; is
264  the proportion of weakly advantageous fixed mutations. Again, solving for the proportion of fixed
265  adaptive variants (a+y,):

Ks Hin

266 atva=1=Ba=(A=Pi= V) g
n LS

267 (Equation 6)

268 In this case, the presence of adaptive variants segregating in the population would affect the
269  estimates of variability based on high frequency variants when using equation 2, which would
270  result in an underestimation of the proportion of fixed adaptive variants (). Note that adaptive
271  variants stabilized at intermediate frequencies, which can be an important source of adaptation

272 considering the infinitesimal model, are not considered in this approach.

273

10
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274  If we focus on the effects of polymorphic weakly selected mutations, equation 5 suggests that the
275  ratio of nonsynonymous to synonymous polymorphisms would increase due to mutations having
276  both positive and negative effects. It is expected that the number of mutations with negative
277  selection coefficients would rapidly decrease as we move to intermediate and high frequencies,
278  while the opposite trend is expected for mutations with positive selection coefficients. Hence,
279  higher ratios of nonsynonymous to synonymous polymorphisms at higher frequencies may be

280  explained by the presence of advantageous mutations segregating in the population.
281

282  Furthermore, in cases where two populations are from the same species and there are no fixed
283  mutations between them (e.g., they have equal divergence ratios versus the outgroup), we can
284  estimate the possible differential effect of the selection (positive and negative together) at any
285  frequency between populations from the ratios of synonymous to nonsynonymous polymorphisms

286  of the two populations (R_fy;):

Oin1 (1 — Bir — Yi1) _ Oin2(1 — Biz — Vi2)

27 bt 01

288 and

289 (1 =B — vin) _ 0i510in2 — R By,
1=Biz= Vi2) Oimbis2

290 (Equation 7)

291 In addition, a comparison of the R_Sy; values calculated using different variability estimators
292 (hereafter R_fy; pattern) can be used to inform about the effects of selection. For example, values
293  over 1 indicate that the population 2 has a higher ratio of nonsynonymous to synomymous
294  polymorphisms compared to population 1, either produced by an accumulation of deleterious or
295  of beneficial polymorphisms. Importantly, different demographic effects (e.g., bottlenecks)
296  together with the presence of mutations with small selective effects may also disturb the ratios of
297  variability and hence must be considered when interpreting the results. We include a couple of
298  possible scenarios that can account for possible patterns: (i) after split of two the two populations,
299  both populations have the same population size, but population 1 is affected by the action of
300 positive selection on a quantitative trait (polygenic effect), which causes an increase in the

301  frequencies of some of its variants without getting fixed. Under this scenario, we expect a R_By >

11
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302 1 when this is calculated based on high frequencies. (ii) after split of two the two populations, the
303  population 2 remains equal population size as before the split and the population 1 suffers a
304  reduction in its effective population size, which causes that the slightly deleterious mutations
305  become effectively neutral. Then, R By is expected to be > 1 when it is calculated based on low

306  frequency variants.

307 The effect of linkage disequilibrium between selective (deleterious or adaptive) and neutral
308  variants should not overly affect the expected estimate of the proportion of adaptive variants, as it
309  would affect both synonymous and nonsynonymous positions in similar proportion. On the
310  contrary, the interaction of variants with opposite selective effects would possibly reduce the effect
311  of selection and would have a significant consequence on the estimation of adaptive fixed variants

312 (Hill and Robertson 1966; Booker and Keightley 2018).
313
314  Bootstrap analysis

315  Nonparametric bootstrap analysis was performed to estimate the null distribution of the a statistic
316  for each variability estimator and pig population. In each case, synonymous and nonsynonymous
317  coding positions were randomly chosen with replacement and the a statistic was calculated as in

318  equation 1. This process was repeated 100 times.
319
320  Simulations

321  We carried out forward simulations using the software SLiM (Haller and Messer 2017) in order to
322 explore the interaction between the different selective effects and demographic factors affecting
323  the evolution of pig populations during domestication. We explored the expected values of
324  nucleotide diversity, divergence, a and R _pfy statistics under 63 different scenarios. For each
325  scenario, we simulated three populations corresponding to wild, domestic and an outgroup species.
326  We first simulated nine different scenarios that were classified into three main groups: 1) standard
327  neutral model (SNM); ii) a model with negative selection (NS) and iii) a model with positive
328  selection (PS). For the models with selection, we let that selection operate from the ancestral
329  species to the present time. Each group of scenarios (SNM, NS and PS) was simulated with a

330  constant effective population size for the three populations or with a reduction or an expansion of
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331  the effective population size in the branch leading to domestic pigs. A second group of simulations
332  was performed under more complex scenarios. In those simulations, we incorporated the combined
333  effect of negative and positive selective effects (using gamma and exponential distributions for the
334  selective coefficients, respectively) plus demographic effects such as expansion and reduction of
335  the effective population size in the domestic simulated populations and with or without migration
336  from the wild into the domestic populations (in total 54 complex simulated scenarios). Figure S1
337  shows a general scheme for the simulated populations and Tables S3A-B show the parameter
338  values used in these simulations. The obtained results were analyzed using mstatspop software

339  (see above).
340
341  Approximate Bayesian computation (ABC) analysis

342 We used the ratio of the estimates of nucleotide variability (6n/6s) per nucleotide for
343  nonsynonymous versus synonymous positions (Fu&Li, Watterson, Tajima and Fay&Wu) and of
344  divergence (Kn/Ks) as statistics to infer the distribution of fitness effects (DFE) in coding regions.
345  We compared four evolutionary models that differ in the shape of the DFE using the algorithm
346  proposed by Tataru et al. (2017), which are the following: (i) model A: a model with a deleterious
347 gamma DFE with the mean and the shape of the gamma distribution as model parameters, (ii)
348 model C: a model with a gamma distribution of deleterious variants with two parameters (shape
349  and mean) and an exponential distribution of beneficial variants with one parameter (mean), and
350 the additional parameter of the proportion of beneficial versus deleterious variants, (iii) model DN:
351 amodel with a discrete distribution of a priori values of negative selective coefficients with the
352  proportion of negatively selected mutations for each of the negative selective coefficients as
353  parameters. and (iii) model D: a model with a discrete distribution of a priori values of possible
354  selective coefficients (positive and negative) with the proportion of positively and negatively
355  selected mutations for each selected coefficients as parameters. Some of the additional parameters,
356  such as demographic or linkage effects, were considered as nuisances. Nuisance parameters mimic
357  the demographic effects and other parameters such as linkage effect by using the difference
358  between the observations for the neutral dataset (i.e., synonymous sites) and the expected under

359  the neutral model. Others, such as errors in the polarity of unfolded mutations, were fixed.
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360  Table S4 shows the parameters of each model and the prior distributions used in the analysis. We
361 used polyDFEv2 (Tataru et al 2019) to obtain the expected unfolded site-frequency spectrum
362  (SFS). The code of polyDFEv2 was slightly modified in order to print the SFS and the parameters
363  for a large number of conditions, which are needed to perform the ABC analysis using summary
364  statistics. For each model, one million iterations were run using different parameter conditions and
365  theresulting SFS for each condition were kept to later calculate the ratios of variability, divergence
366  and the a statistic. The ABC analysis was performed using the R library abc (Csillery et al. 2012).
367 We performed a cross validation analysis to evaluate the ability of the approach to distinguish
368  between models using the cv4postpr() function, as suggested in the abc library documentation.
369  The confusion matrix indicated that these three models were quite distinguishable with a
370  probability of true classification from model A versus C/DN/D of 0.69, from model C versus
371  A/DN/D of 0.65, from model DN versus A/C/D of 0.83 and from model D versus A/C/DN of 0.80,
372  using atolerance value of 0.05 (Table S5). Posterior probabilities of each model given the observed
373  data (i.e., the probability assigned to each model relative to the other models of the analysis), were
374  obtained using the postpr() function and considering a multinomial logistic and a rejection
375  approach. Additionally, a goodness of fit analysis, which evaluates whether the prior distribution
376  for model parameters are realistic, was also performed. The best model was selected based on
377  posterior probabilities. Once the best model was chosen, the ability to infer the parameters of the
378  model was assessed using the cv4abc() function. Prediction errors for the parameter inference of
379  each model are shown in Table S6 and Figure S2. The parameters of the best model were inferred
380  with the abc() function using a local linear regression and a rejection approach. Posterior predictive
381  simulations were performed using the o statistic to determine whether the simulated data generated
382  from the estimated parameter of our best model resembled the observed data (1000 replicates).
383  Finally, the a values can be simply estimated using equation 10 from Tataru et al. (2017), as the

384  proportion of positive selective coefficients (s) values in the case of the discrete distribution.
385
386  Gene context and network topology analysis

387  We downloaded the complete list of pathways and genes of S. scrofa from KEGG v.20170213
388  (http://www.genome.jp/kegg/, Kanehisa et al. 2008). The list contained 471 pathways and 5,480

389  genes. The median and mean number of genes per pathway was 26 and 43, respectively, and ranged
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390  from 1 to 949. We filtered the pathways according to their size, removing pathways with less than
391 10 and more than 150 genes in order to discard pathways that were not informative or too generic

392  and complex. The final list contained 171 pathways and 3,449 genes.

393  To analyze the selection pressure of each gene according to its position in the pathway, we obtained
394  different topological parameters. For that, we first downloaded the XML file of each pathway from
395 KEGG v.20170213. These files were analyzed with the iGraph R package (Csardi G. and Nepusz
396  T.2006) to obtain the topological descriptors of each gene in each pathway. For each gene, three
397  different measures were computed: betweenness (number of shortest paths going through a vertex),
398  in-degree (number of in-going edges) and out-degree (number of out-going edges). These
399  parameters are measures of the importance of a gene within a pathway: betweenness is a centrality
400 feature, in-degree suggests the facility of a protein to be regulated and out-degree reflects the
401  regulatory role of a protein. We tested whether negatively and positively selected genes differed
402  in any of these statistics using a nonparametric Wilcoxon rank test, due to the extreme leptokurtic

403  distributions involved.
404
405  Genomic context patterns

406 We have additionally tested whether there is a significant correlation between a and

407  recombination, gene density, missing rate, %GC and CpG islands across genomes.
408

409  Testing the differences in the estimates of a using whole-genome data versus the mean of

410  gene estimates.

411  We have studied the behaviour of the o statistic when it is estimated considering a single large
412  dataset (i.e., genome) or when it is estimated using the mean of many subsets (i.e., genes). To do
413 that, we made an R script (check ratios vs meanratios.R) in which we simulated a hypothetical
414  number of polymorphisms and substitutions per gene, following a Poisson distribution (we
415  considered ~10x more substitutions than polymorphisms, 2x more nonsynonymous positions than
416  synonymous and 10x more functional constraint at nonsynonymous versus synonymous). We

417  estimated a per window and per total. The distribution of a per gene can be strongly skewed to

15


https://doi.org/10.1101/2020.09.09.289439
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.09.289439; this version posted April 14, 2022. The copyright holder for this preprint (which

418
419

420

421
422

423

424

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

negative values when the windows become smaller, thus dragging the mean to negative values as

well.

All the scripts used are available at Zenodo database

(https://zenodo.org/record/6124306#.Y1cVSy8RqLc).
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425 RESULTS

426  Predominance of shared variants and global similar selective effects of mutations in

427  genomic sequences of pig populations

428  We found a total of 6,684,142 SNPs in autosomes, with 149,440 SNPs located in coding regions.
429  12.5% of the SNPs in the coding regions are shared among the three populations, 32.2% are shared
430  between at least two populations, 31.2% are exclusive to Large White (LW), 2.2% are exclusive
431  to Iberian (IB) and 34.4% are exclusive to Wild boar (WB) (Table 1 and Table S7). The proportion
432 of exclusive SNPs in each population is in accordance with its specific demographic history
433  (Esteve-Codina et al. 2013, Bosse, Megens, Madsen, et al. 2014). Based on the PCA analysis and
434 using the total number of SNPs, we found that the individuals of each breed cluster together and
435  are well separated from other breeds (Figure S3A). The results from the ADMIXTURE analysis
436  (Figure S3B) suggest that, K=2 is the most likely number of populations, where WB and IB are
437  considered a single population. Under a K=2 scenario, only two LW and one WB individual show
438  a significant percentage of admixture among groups. Nevertheless, for larger values of K, new
439  groups emerge, being the IB one of these separated groups (Figure S3B). However, additional
440  subgroups within WB and LW phenotypes appear and disappear when increasing the K value,
441  making those subgroups apparently unreliable. Therefore, we decided to analyze separately the
442  three breeds, LW, IB and WB, following the main patterns of population structure (Figure S3A)
443 and the phenotypic features of the animals, which essentially separate domestic (commercial and

444  local breed, separately) from wild animals.

445
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Table 1. Number of synonymous and nonsynonymous SNPs according to its allelic status in each pig population. A:

Ancestral allele, F: Fixed allele, P: Polymorphic allele. IB: Iberian; LW: Large White; WB: Wild boar. SNPs that are

missing in any of the populations are not considered.

IB LW WB Synonymous Non-synonymous

F F F 20297 9342

P P P 11712 7597

A A F 0 0

A F A 0 0

F A A 3 5

A A P 30314 20988

A P A 26027 15035

P A A 1833 1588

A F F 0 0

F A F 1 0

F F A 1 0

A P P 10128 7930

P A P 1676 1254

P P A 700 363

A F P 11 1

A P F 0 2

F A P 30 30

P A F 0 0

F P A 8 4

P F A 1 1

F P P 4924 2378

P F P 242 139

P P F 81 52

F F P 1140 489

F P F 4911 2073

P F F 38 22
114078 69293

For each breed, coding positions were classified as polymorphic, fixed (i.e., different allele from

the outgroup) or ancestral allele (i.e., same allele as in the outgroup), with the aim of identifying

those variants that appeared previously or posteriorly to the domestication process (Table 1).
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455  Surprisingly, we found very few fixed mutations between populations, indicating that the
456  phenotypic traits of each population are not associated with fixed coding variants. Similarly, we
457  found very few fixed coding variants in domestic (IB or LW) versus wild (WB). There are few
458  variants fixed in the domestic breeds that are polymorphic in the wild population, suggesting that
459  these variants were previously present in wild breeds or, alternatively, were introgressed into WB
460  from domestic breeds. Most of the variants that are exclusive of a single breed are polymorphic,
461  which is in agreement with the recent origin of these variants. We found a large number of fixed
462  variants in the IB that are polymorphic in LW and WB, likely due to a reduction of the effective
463  population size of the IB breed. The ratio of nonsynonymous to synonymous polymorphism was
464  always lower than one and showed similar values for the three populations regardless of the
465  variability estimator used (Table S9). This result suggests that, on average, there are no differential
466  effects of selection between domestic and wild populations, although this might not be the case

467  when individual genes are considered.
468
469  Low codon bias at whole-genome scale

470  We estimated the level of codon bias at genome scale using MCU and N, statistics to control for
471  the possible effect of selection on synonymous positions. Non-neutral synonymous mutations can
472  have a large impact on the inference of the proportion of beneficial selection, and on the estimation
473  of the Distribution of Fitness Effects (DFE). Indeed, the effect of bias in codon usage causes an
474  overestimation of the beneficial proportion of variants that become fixed by increasing the ratio of
475  synonymous polymorphisms versus synonymous fixations (Akashi, 1995, Matsumoto et al. 2016).
476  For this species, we observed a low and large values of MCU and N, respectively, indicating low
477  levels of codon bias at genome scale (mean MCU=0.485, Figure S5). However, it should be
478  mentioned that positive selection could be acting on synonymous positions of some specific genes.
479  We therefore have assessed whether there was a correlation between MCU and a, considering all
480  coding regions or only coding regions showing positive a values. We observed no correlation
481  between MCU and a values when considering only genes with positive a values (Figure S5) and
482  slightly negative correlation when considering all genes regarding their respective a values (data

483  not shown).

484
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485  Limited influence of genomic context and the network topology on selective patterns

486  The heterogeneity in the recombination rate, the gene density, the %GC and the distribution of
487  CpG islands across the genome can affect the local levels of variability. A previous study on the
488 IB breed detected a strong correlation between recombination and variability, although no
489  correlation was observed between variability and gene density or GC content (Esteve-Codina et
490 al. 2013). However, the effect of these factors on the estimation of the proportion of adaptive
491  nonsynonymous mutations (&) has not been previously studied. When we assess whether there is
492  a correlation between the estimated o and the above-mentioned factors, we found that there is no
493  correlation between the estimated o and recombination, gene density, %GC and CpG in any of the

494  three breeds (P-values > 0.01).
495

496  Next, we investigated the effect of gene network topology on the selective patterns. It has been
497  claimed that topology limits the ‘evolvability’ of genes and that highly connected genes are more
498  constrained and, consequently, less likely to be targets of positive selection. We compared the
499  network topology features (betweenness, out-degree and in-degree) of genes within pathways
500 regarding the estimates of a, grouping genes with positive versus negative a values. We found that
501  genes with negative a values show significant large values of the betweenness statistic in the three
502  pig breeds compared to genes with positive o values (P-value < 0.01; Figure S4). LW and WB
503  showed significant values (P-values < 0.01) of the in-degree statistic for genes with negative o
504  values compared to genes with positive a values. However, we did not observe significant
505  differences in the out-degree values between genes with negative and positive a values in any of
506 the three breeds (Figure S4). These results suggest that, in the three breeds, genes that are more
507  central in a pathway are more evolutionary constrained compared to peripheral genes. In addition,
508 in LW and WB, the genes that are more constrained tended to have a higher number of upstream
509  genes that regulated them, which is also in agreement with the central position of these genes in
510  the pathway. We did not observe significant differences in in-degree statistic in the IB breed
511 between genes with negative and positive a values, likely because of a relaxation of functional

512 constraints as a consequence of the reduction of its effective population size.

513
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514  Levels of nucleotide variation at protein coding regions are compatible with the history of

515  the surveyed pig populations and with the presence of positive selection

516  To assess the selective effect of domestication, we first studied the pattern of variation at
517  synonymous and nonsynonymous positions using four estimators of variability that differentially
518  weight the SNP frequencies (See Material and Methods). Ideally, it would be more informative to
519  analyze the whole genome Site Frequency Spectrum (SFS). Unfortunately, the relatively high
520  number of positions with missing data discourages their use. A possible alternative would be to
521  obtain the SFS from a reduced number of samples, and therefore use only a partial number of SNPs
522  for subsequent analysis. However, by using this alternative we can either lose power or introduce
523  some sort of bias, hence, we preferred to analyze the whole set of SNPs using those estimates of
524  variability based on different frequencies of the spectrum that account for missing data.
525  Nevertheless, in order to clarify the patterns of the SFS for these populations, we estimated the
526  SFS for a subset of SNPs (around 25-30% of the available coding variants, depending on the breed)
527  for a projection of variants on 38 haploid samples in both LW, WB and on 10 haploid samples in
528 IB (Figure S6). The SFS profile for both synonymous and nonsynonymous showed a rapid
529  decrease in the number of variants from lower to higher frequencies. We observed a slight increase
530 in the number of polymorphisms at the highest frequencies at both synonymous and
531 nonsynonymous sites and no apparent signals of admixture (i.e., no sudden peaks at specific ranges
532 of frequencies). Estimates of whole-genome variability levels per nucleotide using different
533  estimators are shown in Figure 1 and detailed in Table S8. We have considered the synonymous
534  positions as neutral reference since no strong bias in codon usage has been detected (Figure S5).
535  We expect that, under the Standard Neutral Model (SNM), the values for the different estimates
536  of variability should be similar whereas differences among them may indicate demographic and/or
537  selective effects. We observed that 1) the levels of variability are different for each estimator within
538  breeds and ii) the levels of variability are different for the same estimator for different breeds.
539  However, for each breed, we observed a similar ratio of nonsynonymous to synonymous
540  polymorphisms regardless of the used estimator, suggesting that demographic effects are
541 responsible for the differences in the levels of variability (Figure 1). The less variable population
542 is the IB breed, which shows far fewer singletons compared to WB and LW, probably as a
543  consequence of the known reduction of its population size. Note than in all the three populations,

544  high-frequency variants are proportionally more abundant than those at intermediate frequencies,
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552

which would be compatible with the accepted demographic history of the surveyed populations

(i.e., introgression in LW, bottleneck in IB and some population reduction and introgression in

WB) but also with the presence of pervasive positive selection in all three populations.
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Figure 1. Estimates of the levels of variation at synonymous (A) and nonsynonymous (B) sites for each variability

estimators and pig population and where variants were classified as shared and exclusive variants. WB; Wild boar;

IB, Iberian; LW, Large White.
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553  a’s values and R _fy ratios based on all SNPs might reflect a differential effect of selection

554  due to domestication

555  The differential effect of selection in the domestic and wild populations can be studied by
556  comparing their respective o values. Figure 2A and Table S9 show the genome-wide o values
557  calculated using the four variability estimators for each population. As expected, the o values are
558  negative when a is calculated using the estimate of variability based on low-frequency variants
559  (aru&Li), probably reflecting the relatively high proportion of deleterious versus neutral mutations
560 that are segregating at low frequencies. We observed a similar value of arusri in all populations,
561  suggesting a similar proportion of segregating deleterious mutations, irrespective of the
562  domestication process or other demographic events (Figure 2A). Moreover, we observed milder
563  negative values of o, or even positive for LW when a is calculated based on variants at high
564  frequencies (Figure 2A), according to expectations, which point to a progressive elimination of
565  deleterious mutations as we move towards higher frequencies. Nevertheless, the pattern of a (i.e.,
566  the comparative a value calculated using the four different variability estimators within each
567  population) is very different in each population. WB and LW show positive or null a values when
568 itis calculated based on high frequencies (Table S9). Instead, IB show very low negative a values
569  for all estimators of variability. We found a compatible pattern when using the reduced subset of
570  SNPs for the SFS estimation (Figure S6-A), where it can be observed that the estimates of a in all
571  three populations are very similar among them (a ~ -0.05), although their confidence intervals are

572  quite wide.
573

574  The differences in the ratio of synonymous to nonsynonymous variability between the two
575  different breeds is summarized by the R_fy ratio (Figure 3). We observed that the largest deviations
576  from R fy = 1 are observed when the ratio was calculated based on high-frequency variants
577  (aFraygawu). Although the ratio of the two populations is difficult to interpret because of their
578  different underlying demographic histories, some trends can be observed. WB shows an excess of
579  nonsynonymous variants segregating at intermediate frequencies (WB-IB, WB-LW), which might
580  be explained by a past bottleneck that increased deleterious mutations at intermediate frequencies.

581 In addition, the R_fy ratio in IB-LW shows an incremental pattern of this ratio from low to high
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582  frequencies, which is compatible with an increase of nonsynonymous beneficial variants on their

583  way to fixation in LW.

Alpha(WB) Alpha(iB) Alpha(LW)
All SNPs All SNPs All SNPs
o o - Q - -
g g g
; . 3 - 3
o o o
? T T
Watterson Tajima Fay&Wu Watterson Tajima Fay&Wu Watterson Tajma Fay&Wu
Alpha(WB) Alpha(iB) Alpha(LW)
Exclusive SNPs Exclusive SNPs Exclusive SNPs
i
? 7 7
< < @
3 3 3
7 ? 7
= = <
T T T
Fugdi Watterson Tajima Fay&Wu FusLi Watterson Tajima Fay&Wu FusLi Watterson Tajima Fay&Wu
Alpha(WB) Alpha(iB) Alpha(LW)
Shared SNPs Shared SNPs Shared SNPs
C : : :
3 2 2
s $ S
| 8 8
? $ g
Fay&Wu Fay&Wu Watterson Fay&Wu
Alpha(iB) Alpha(LW)
(Shared IB-LW SNPs) (Shared |s-|.w SNPs)
3 3
S S
s —— —— E ——
o o
s 3
< <
3 3
FusLi Watterson Tajima Fay&Wu FusLi Fay&Wu

586 Figure 2. Estimates of « for each pig population based on different variability estimators. Total variants (A), exclusive
587 variants (B), shared variants (C) and shared variants between IB and LW (D). Bootstrap intervals at 95% are indicated
588 by aline at each bar. WB; Wild boar; IB, Iberian; LW, Large White.

589

590 a’s and R_py ratios based on exclusive and shared polymorphisms might reflect changes in

591  selective patterns before and after domestication

592  We observed a high ratio of nonsynonymous to synonymous singletons (aru&ii, Figure 2B) when
593  the analysis was performed based on exclusive polymorphisms, suggesting that they have

594  deleterious effects in all populations. Nevertheless, the values of a calculated based on
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595  intermediate frequency variants (oTajima) in the WB and IB populations are lower than to those
596  based on low-frequency variants, which point to a change in the selective pressure, maintaining
597  nonsynonymous variants at relatively high frequencies. Nevertheless, the arayswu values (-0.075,
598  -0.971 and 0.083 for WB, IB and LW, respectively, Table S9) show a similar trend in relation to
599  that based of Total SNPs, that is, close to 0 or positive for WB and LW, but strongly negative for
600 IB. Concordant estimates are observed in the analysis of the SFS based on a reduced number of
601  SNPs (0.155,-0.913 and 0.277 for WB, IB and LW, respectively, Figure 6B), with the difference
602  that a clear positive and not 0 o values is observed in WB. The Ry statistic shows the same
603  pattern as that calculated using all SNPs but with all over one (Figure 3). That indicates that WB
604  has a higher proportion of nonsynonymous polymorphisms compared to IB, in contrast to what is
605  observed when the analysis is performed based on all SNPs. This would suggest a recent change
606 in the constraint of nonsynonymous positions likely at IB breed, as this ratio in IB-LW is also
607  affected. This is also in agreement with the low a value in IB breed at exclusive variants regarding

608  to Total SNPs.
609

610  On the other hand, the a values based on shared variants are in general more moderate (closer to
611  zero) than those based on exclusive variants (Figure 2C), likely because shared nonsynonymous
612  polymorphisms are older and hence, expected to be more functionally constrained than the
613  exclusive ones. Additionally, the values of a based on singletons (arusLi) are less negative than
614  those based on intermediate-frequency variants. The a estimates based on shared variants in the
615  analysis of the reduced subset of SNPs are very similar to Total SNPs and very close to zero (Figure
616  6C). The R _py statistic for shared variants shows similar patterns than those observed for all
617  variants but with values much closer to 1, indicating a small or moderate selective effect on the

618  shared variants compared to all variants (Figure 3).
619

620  When we calculated the a values from shared variants only between the two domestic breeds, we
621  found an inverse pattern regarding to that calculated from all SNPs in each population, with high
622  positive values of a based on low frequencies and very negative values when a is calculated based
623  on high-frequency variants (Figure 2D). This could be due to i) the active elimination of new

624  nonsynonymous variants to preserve differences among domestic breeds (aru&ii) and ii) the
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presence of nonsynonymous variants targeted by the process of domestication that shifts them
toward high frequencies (arays&wu). Nevertheless, we cannot discard that this excess of
nonsynonymous variants at high frequencies and the lack of nonsynonymous singletons at low

frequency could be due to a more complex and not previously explored demographic scenario.

R_bg R_bg R_bg
All SNPs Exclusive SNPs Shared SNPs

e ——

e o —

Figure 3. Estimates of R_fy for all (left), exclusive (centre) and shared (right) variants. WB; Wild boar; IB, Iberian;
LW, Large White.

Values of a are dependent of the molecular scale but the patterns of the estimated a’s are

similar across the different molecular scales

In addition to the genome-wide analysis, o was calculated using three additional molecular scale
levels: 1) gene level, ii) genes within windows of 5 Mb, and iii) genes within the same pathway.
Figure 4 shows the median of the distributions of the a values for each scale level. When the
analysis was performed based on all SNPs, the pattern of a values estimated at the genome-wide
level are concordant with those estimated at the gene level, genes within windows and genes within
pathways for each breed. However, differences in the value of a within each breed are notorious
depending on the scale level examined. The median estimates of a are generally lower at the gene
scale level and most of them are very negative, while at the genome-wide scale, the a values are
closer to zero. However, the distribution of a values can have a large variance at the gene scale
since few variants are used for its estimation. We identified the regions and pathways that showed
extreme a values (Table S10 and S11). We found a large number of genes showing a = 1 (highest
value) because the number of polymorphic nonsynonymous variants per gene was zero. We also

found a moderately high correlation of a values between breeds (rtho ~ 0.7, Pearson correlation
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649  when considering pathways) suggesting that in general, these breeds are under similar selective
650  effects. When considering shared and exclusive variants, we generally observed the same pattern,
651  from genes to whole-genome, that is, larger a values at the gene level and closer to zero o values
652  at the larger scale. The differences in a values could be explained because of the distribution of
653  this ratio statistic (i.e., skewed distribution to negative values) and the uneven distribution of the
654  functional variants, in which the mean can be displaced to more negative values (see Materials and

655  Methods).
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658 Figure 4. Estimates of the median values of a based on different variability estimators and for each pig population at
659 different molecular scales and for all, exclusive and shared variants. Within each population, the order of different a’s

660 is: Fu&Li, Watterson, Tajima and Fay&Wu. WB; wild boar; IB, Iberian; LW, Large White.

661

662  Simulated data under different scenarios that include the joint effect of demography and

663 selective events were more concordant to the observed data

664  We used computer simulations to study how the different demographic and selective events
665  occurred during domestication process shaped nucleotide variation present in these populations.
666  We simulated populations mimicking the process of domestication using SLiM software (Haller

667  and Messer 2017), coupled with several demographic events, including changes of the population
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668  size and/or migration. We analyzed the genome-wide patterns of a and the R_py statistic produced
669 by 63 simulated scenarios that included different demographic events and selective forces acting
670  separately (simple scenarios) or jointly (complex scenarios). The results of the simulation study
671  are summarized in Figures S7-S48. The observed patterns of o based on all variants in the surveyed
672  populations are not compatible with simple scenarios that only consider demographic or positive
673  selection forces (Figure S7). Rather, o patterns from simulated data (irrespective of the magnitude
674  of a) fit a scenario with a predominant effect of negative selection (Figure S7). However, the R_fy
675  statistic do not fit any of the simulated simple scenarios (Figure S8). When more complex scenarios
676  were considered (i.e., including a bottleneck, positive/negative selection and/or migration, Figures
677  S9-S14), the general a patterns generated by those scenarios that include both negative and positive
678  selection resembled those observed in WB and LW (with negative a’s at low frequency values to
679  slightly positive o values at high frequency). The scenarios that also include some migration events
680  are the ones that showed more concordance for these two breeds (Figures S12, S14). On the other
681  hand, the IB population is more compatible with a scenario without positive selection and with a
682  recent population size reduction (Figure S13). The trends in the R_py statistic are, in broad strokes,
683  concordant with the conclusions extracted from the comparison between the observed and

684  simulated patterns of a (Figures S15-S20).
685

686  The observed patterns of a values based on exclusive variants are similar to those based on total
687  variants but only for the LW population (Figure S21). These patterns cannot be fully explained by
688  any of the complex simulated scenarios that are concordant when considering all variants, although
689  surprisingly, they would be more compatible with those including a population size reduction
690  (Figures S24-S28). The observed R_fy’s are compatible with the scenarios that combine both types
691  of selection and a population size reduction (WB-IB) or with scenarios that include migration
692  (WB-LW; Figures S29-S34). Finally, the observed patterns of a and RSy statistics calculated from
693  shared variants are also compatible with scenarios which includes both types of selection (Figures
694  S35-S48), and being quite compatible with those including expansion demographic events.
695  Overall, the simulations data showed that complex scenarios, including demography, migration,

696  and positive and negative selection, may be necessary to explain the observed data.

697
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698

699 Table 2. Posterior Probabilities for each ABC model (multinomial logistic method with tolerance 0.01)

700 and for each pig population for Total variants, Exclusive variants. and Shared variants.

Posterior probabilities for model comparison (multinomial logistic method)

TOTAL modelA modelC modelDN modelD
WB 0.000 0.039 0.623 0.338
IB 0.000 0.031 0.968 0.001
LW 0.000 0.195 0.526 0.279
EXCLUSIVE modelA modelC modelDN modelD
WB 0.007 0.011 0.512 0.470
IB 0.004 0.001 0.995 0.000
LW 0.001 0.111 0.113 0.775
SHARED modelA modelC modelDN modelD
WB 0.001 0.334 0.405 0.260
IB 0.000 0.413 0.576 0.011
LW 0.001 0.447 0.462 0.090

701

702  Models that assume a discrete distribution of beneficial and deleterious mutations would fit

703  better the observed data

704  We used an approximate Bayesian computation (ABC) analysis to infer the DFE separately for
705  each population using the ratios of nonsynonymous to synonymous variants (i.e., polymorphism
706  and divergence) obtained from the whole-genome analysis (see Materials and Methods). Four
707  different models implemented in polyDFE2 software (Tataru et al. 2019) were tested. These
708  models overcome the inference of the demographic parameters (and others such as linkage effects)
709 by the inclusion of nuisance parameters (see Material and Methods). The four models were: model
710 A, which assumes a gamma distribution of deleterious mutations; model C, which assumes a
711  gamma distribution for deleterious mutations and an exponential distribution for beneficial
712 mutations; model DN, that assumes a discrete distribution of only deleterious and neutral
713 mutations, and model D, that assumes a discrete distribution of deleterious, neutral and beneficial,
714 mutations. Goodness of fit (GoF) analysis revealed that the simulated data under the different
715 models fits differentially to the observed data, although the used range of parameters for priors are
716  compatible with the observed data for all the four models (Table S12). Posterior probabilities

717  showed that the DN is the most likely model for all three populations when using total number of
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718  variants (Table 2). The posterior probability for this model is especially high for the IB breed
719 (0.97). Nevertheless, note that the model D is just below the DN model by less than half of the
720  probability in the case of WB and LW. Finally, the posterior predictive analysis indicated that the
721  observed a values for the three populations are within the range determined by the minimum and
722  maximum simulated a values (i.e., Q1-1.5*IQR, Q3+1.5*IQR, respectively, being IQR the
723 Interquantile Range Q3-Q1) under both models DN and D, although not always inside the Q1 and
724 Q3 quantiles (Figure 5). The mean parameters of the DFE inferred for each population are shown
725  in Table 3 (see also Table S13). The obtained results indicated that the DFE is quite similar among
726  all three populations, which is not entirely surprising because they share a long-term history.
727  According to model DN, and despite there is a lot of uncertainty in the inferred estimates (Table
728  S13), the obtained results show that the DFE contains a large fraction of very deleterious variants,
729  with approximately 75% of the variants being strongly deleterious (S =-2000), and with
730  approximately 12% of the variants being neutral or slightly deleterious (approx. 4%). The model
731 D infers a higher proportion of weak deleterious mutations compared to the neutral ones, although
732 the sum of both is similar to model DN. Finally, the inferred contribution of positive selection is

733 relatively low (around 0.7-1.1%).

734
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Figure 5. Posterior distributions of the a values for total variants based on different variability estimators (Fu&Li,

Watterson, Tajima and Fay&Wu). Box plots indicate simulated distributions of a values. Red lines indicate observed

o values.
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740  The differential patterns of DFE based on exclusive versus shared variants may indicate

741  selective differences after the split of the populations

742  We are aware that the inference of the SFS is going to be highly distorted by choosing only a
743  subsection of the variants (e.g., exclusive variants are mostly very recent and have no time to reach
744  high frequencies and shared variants show no or few singletons per populations). However, the
745  nuisance parameters incorporated in polyDFE should account for this effect (Tataru et al. 2017).
746  The classification of polymorphisms in exclusive or shared are dependent of the relationship
747  between two populations, and are a priori not related to the selective effect of these polymorphisms
748  across their frequencies, although shared (mostly older) and exclusive (mostly recent) variants are
749  chronologically related to the selection of variants. Then, we considered that the inference of DFE
750  from exclusive and shared polymorphisms can give some clues about recent and past events related
751  to the domestication processes. The models with higher posterior probabilities in the case of WB
752  and IB breeds based on exclusive variants are the same than those for total variants (Table 2).
753  However, for LW and based on exclusive variants, the model D has higher posterior probabilities,
754  in contrast to what was obtained based on total variants (Table 2). The posterior predictive
755  simulations showed that the models DN and D yielded similar estimated a values to those from
756  the observed data, with the IB breed exhibiting the posterior distributions of a values more distant
757  to the observed data (Figure 6). The estimates of the parameters of the models indicate that, for all
758  populations, the exclusive segregating variants exhibit less strongly deleterious effects compared
759  to those based on total and shared variants (Table 3). Indeed, the IB breed shows significantly
760  lower proportions of strong deleterious mutations, according to its assumed recent population
761  decline. As in the analysis based on total variants, posterior predictive analysis based on exclusive
762  variants showed that models DN and D are those generating a values more similar to the observed
763  ones, but in this case, the observed a values for the IB breed were slightly closer to the simulated
764  a’s, compared to those based on total variants (Figure 6).The results obtained based on shared
765  variants also show that the DN is the most likely model for all populations, although the model C
766  shows closer probabilities (Table 2), especially in the case of LW, which might suggest that shared
767  variants may have played a significant role as a substrate for adaptive process. However, posterior
768  predictive distribution of a values for this breed under this model resembled less the observed data

769  compared to those for the most likely models (Figure 7).
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observed o values.

33

simulated distributions of a values. Red lines indicate



https://doi.org/10.1101/2020.09.09.289439
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.09.289439; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

775

776
777
778

POSTERIOR
a: SHARED

model A
(I" distribution
only deleterious)

model C
(I" distribution
deleterious plus
exponential
distr. beneficial)

model DN

leleterious discrete
distribution)

model D
(deleterious plus
oeneficial, discrete
distribution)

Figure 7. Posterior distribution of the a values for shared variants based on different variability estimators (Fu&Li,

Watterson, Tajima and Fay&Wu). Box plots indicate the simulated distributions of a values. Red lines indicate

observed o values. .

available under aCC-BY 4.0 International license.

WB

Posterior Dist (alpha) modelA Shared: Wildboar

Posterior Dist (alpha) modelA Shared: Iberian

LW

Posterior Dist (alpha) modelA Shared: LargeWhite

- | —e 3 -1 < f——
= = N
? . .
8 2 ° e H
o ; v ——
T T T T T T T T T T T T T
alfafui alfavatt alfataj altafayw alfafui artawatt altataji altafayw aftafui ataatt altataj altafayw
Posterior Dist (alpha) modelC Shared: Wildboar Posterior Dist (alpha) modelC Shared: Iberian Posterior Dist (alpha) modelC Shared: Largewhite
8 s ] o
° 5 ]
54 o 8 B i J— o |
— : - | ° 8 B ! E
i — + ! : E =B B 2 + i
] ; ' H §
3 ° g i : S B .
B 1 ; ; 8
1 —— ° ; — ¢
0 o i
° § g —f— 7
o 5 ° g
o i S 3
L - ° °
g o .
T T T v T T T T T T T T T
altafui atavatt alfatej altafayw alfafui aftawatt altataji altafayw aftafui afaatt alfataj altafayw
Posterior Dist (alpha) modelDnoP Shared: Wildboar Posterior Dist (alpha) modelDnoP Shared: Iberian Posterior Dist (alpha) modelDnoP Shared: LargeWhite
o ° — —
. il —— s B — | A _ B3
s e — B
7 ! 3 ; o | — &
7 : 5 ;
o o
° < ° © g
3 ° 2
71 i i ‘ 3
T T T T T T T T T T T T
alfatul afawatt afata alfafayw alfafuli alfa.watt alfataf alfafayw alfatul afawatt alfatafi alfafayw
Posterior Dist (alpha) modelD Shared: Wildboar Posterior Dist (alpha) modelD Shared: Iberian Posterior Dist (alpha) modelD Shared: LargeWhite
. ; . : i B 3 = _ @ S
1 i ; £ 3 °
; : o ? i o
; i 8
8 i
< | i ° 24 s
T 97
T T T T T T T T T
alfafi alfavatt alfatii alfafayw alfaful alfawatt alfataji alfafayw alfafuli afawatt alfatali alfafayw

34



https://doi.org/10.1101/2020.09.09.289439
http://creativecommons.org/licenses/by/4.0/

779

780
781

782

783
784
785
786
787

Table 3. Inferred selective parameters (weighted mean) for each ABC model and pig population. (A) Total variants. (B) Exclusive polymorphisms. (C) Shared

polymorphisms. Note that for model DN and D, the proportion of each discrete S value is relative to the total S values, considering negative inferred values as zero.

Table 3. Mean Inference of parameters for each of the four analyzed models

Mean model A model C model DN model D

TOTAL Sd b Sd b pb  Sb pl (S=-2000) p2 (S=-200) p3 (S=-20) p4 (S=-2) p5(S=0) pl (S=-2000) p2 (S=-200) p3 (S=-20) p4 (S=-2) p5 (S=0) p6 (S=2) p7 (5=20)
WwB 24634.19 0.179 472454 2.514 0.145 0.009 0.736 0.070 0.024 0.045 0.125 0.741 0.057 0.023 0.098 0.074 0.006 0.001
1B 27016.47 0.180 6625.76  3.064 0.144 0.011 0.767 0.049 0.016 0.045 0.123 0.757 0.057 0.018 0.061 0.098 0.008 0.001
Lw 20351.15 0.189 6563.28 1.940 0.137 0.017 0.772 0.058 0.019 0.027 0.125 0.771 0.050 0.019 0.076 0.073 0.010 0.001
Mean model A model C model DN model D

EXCLUSIVE Sd b Sd b pb  Sb pl (S=-2000) p2 (S=-200) p3 (S=-20) p4 (S=-2) p5(S=0) p1 (S=-2000) p2 (S=-200) p3 (S=-20) p4 (S=-2) p5 (S=0) p6 (S=2) p7 (S=20)
wB 33447.89 0.170 3694.78 0.821 0.153 0.002 0.723 0.055 0.018 0.091 0.113 0.709 0.064 0.020 0.135 0.065  0.006 0.001
1B 1834.41 0.216 253.88 44.58 0.151 0.038 0.584 0.091 0.027 0.223 0.074 0.599 0.101 0.028 0.142 0.119 0.009 0.001
Lw 22064.47 0.187 8311.62 1.046 0.133 0.027 0.751 0.077 0.025 0.025 0.123 0.762 0.058 0.020 0.091 0.058 0.010 0.001
Mean model A model C model DN model D

SHARED Sd b Sd b pb  Sb pl (S=-2000) p2 (S=-200) p3 (S=-20) p4 (S=-2) p5(S=0)  p1 (S=-2000) p2 (S=-200) p3 (S=-20) p4 (S=-2) p5 (S=0) p6 (S=2) p7 (S=20)
wB 25128.11 0.182 5223.06 5.852 0.146 0.016 0.790 0.042 0.013 0.021 0.133 0.773 0.052 0.017 0.061 0.085  0.012 0.001
1B 29540.82 0.182 9042.17 11.758 0.147 0.005 0.804 0.035 0.010 0.020 0.131 0.783 0.051 0.016 0.045 0.089 0.014 0.001
Lw 2492943 0.185 5169.65 5.573 0.137 0.020 0.798 0.038 0.014 0.022 0.129 0.777 0.052 0.017 0.059 0.084 0.011 0.001

Sd: 4Ns mean value for mutations with negative

effects. b: shape of the gamma distribution for mutations with negative effect. pb: proportion of beneficial

mutations. Sb: 4Ns mean value for mutations with positive effects. p1 (S=-2000): proportion of functional variants having 4Ns=-2000, p2 (S=-200): proportion of

functional variants having 4Ns=-200, p3 (S=-20): proportion of functional variants having 4Ns=-20, p4 (S=-2): proportion of functional variants having 4Ns=-2,

pS (S=0): proportion of functional variants having 4Ns=0 (neutral), p6 (S=+2): proportion of functional variants having 4Ns=+2, p7 (S=+20): proportion of

functional variants having 4Ns=+20. Nuisance parameters are not shown.
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788

789  DISCUSSION

790  The study of the genetic effects produced by domestication can be challenged for many reasons.
791  First, the current domesticated species have been severely manipulated by humans, which means
792  that most of individuals were not crossed randomly, and consequently, different complex
793  domestication scenarios can be found such as a high degree of structuration, a fast creation of new
794  lineages from highly inbreeding crosses, a forced introgression between far related populations or
795  from close species and a very divergent selective events across time and space, among others (e.g.,
796  Mignon-Grasteau et al. 2005, Ross-Ibarra et al. 2007, Ramos-Onsins et al. 2014, Gaut et al. 2018).
797  Moreover, in animals, the polygenic nature of the domestication traits often precludes identifying
798  their underlying genes since the domestic phenotypes might be probably caused by subtle allele-
799  frequency changes of variants distributed throughout the genome, and hence, very difficult to be
800  detect. In addition, the study of the effects of selection using genome sequences that contain a
801  nonnegligible fraction of missing data, such as those from non-model organisms, is challenging
802  and needs the use of appropriate methods to account for these positions. Statistics that exploit the
803  frequency of the variants while accounting for missing data are particularly appropriate for such
804  analyses (Ferretti, Raineri, and Ramos-Onsins 2012). Despite all this inconvenience, domestic
805  populations are an excellent model to study the effect of strong and recent selection (e.g., Doebley,

806  Gaut and Smith 2006, Groenen 2016).
807

808  One of the main goals of this work is to provide a novel approach that combines the use of different
809  estimators of variability that account for missing data with the asymptotic approach proposed by
810  Messer and Petrov (2013) and Uricchio et al. (2019) in order to take into account some of these
811 issues. This approach is designed to be used as an alternative in case of the estimation of the full
812  SFS is compromised by large amounts of missing data. Although it can be less precise (we used
813  only four statistics to capture the entire trend of o’s across the SFS), it allows analyzing a larger
814  number of positions, helps to reduce the variance (by summarizing the SFS into few statistics) and
815 facilitates the visual interpretation. To illustrate the utility of the proposed approach, we used this
816  methodology to perform an exhaustive comparative study of the observed patterns of functional
817  versus neutral diversity and divergence in domestic pigs and wild boars. In addition, and to delve

818  deeper into the domestication process of this species, we also performed a forward simulation
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819  study, including several diverse evolutionary scenarios and the inference of DFE parameters given
820  different selective models. Note that the DFE was inferred using Bayesian calculations (ABC)
821 instead of exact Bayesian or Likelihood methods since despite ABC requires additional steps and
822  validation analysis and is in general less precise, it allows contrasting models and inferring
823  parameters from complex datasets or data containing missing information (Beaumont et al. 2002).
824  Finally, we have also analysed exclusive and shared polymorphisms separately to extract
825  information about the new and the past domestication events of the demographic history of these

826  populations, but also about the role of population admixture.
827

828  General selection pressures on pigs and the process of domestication

829  Like us, others have been already performed several analyses to shed light on the process of
830  domestication using the MacDonald and Kreitman extension methods or using other estimates
831  such as variability or divergence at functional or synonymous positions (MacEachern et al. 2009,
832  Kono et al. 2016, Makino et al. 2018). As in Makino et al. (2018), we do not observe an increase
833  in functional diversity in domestic versus wild populations. This may be explained by several
834  recent events occurring in these populations: (i) differences in the recent history our local and
835  commercial domesticated populations (i.e., high inbreeding degree in Iberian local pigs and recent
836  gene flow from Asian pigs into the commercial pigs); (ii) demographic effects in the wild boar
837  population that may have reduced their diversity (Groenen et al 2016) or have increased the
838  confidence intervals of the patterns of a’s (Figures S5-S46); (iii) differential adaptive forces in
839 local (IB) versus commercial pigs (LW), with a recent high selective pressure in this last

840  population.

841  Accordingly, with their recent history, the IB breed shows the lowest levels of synonymous and
842  nonsynonymous variation among the breeds studied. Note that the two domestic breeds analyzed
843  here have very different recent histories: the IB is a local Spanish breed (Guadyerbas) that suffered
844  a strong bottleneck during the 1970s (Esteve-Codina et al. 2013) and with no evidence of
845  introgression whereas the LW breed was admixed with pigs of Asian origin (Bosse, Megens,
846  Madsen, et al. 2014). Therefore, our observations are perfectly compatible with the small effective
847  population size and the close relatedness of the individuals expected for this population. However,

848  for the other two breeds, the obtained results do not seem to conform to what was expected. since
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849  we detected very similar levels of variability between LW and WB, even though we expected to
850  find higher levels of variation in the first due to the documented introgression of Asian germplasm
851  into LW (approximately 20-35% of the genome has been estimated to be of Asian origin; Groenen
852 etal. 2012, Bosse et al. 2012, Bosse, Megens, Madsen, et al. 2014, Frantz et al. 2015, Bianco et
853  al. 2015, Aietal. 2015). Interestingly, the high levels of variability were observed for variants that
854  belonged to different frequency ranges in these two populations: singletons in WB and in high-
855  frequency derived alleles in LW. Although these differences may be mainly due to the effects of
856  gene flow in LW, we cannot discard an important effect of the selective programs applied to this

857  commercial breed.
858
859  Domestication hallmarks at pig coding regions

860  Another main goal of this work was finding the hallmarks of positive selection produced as a
861  consequence of the domestication since this process implies a process of positive (human
862  mediated) selection for traits that benefit both humans and the species of interest. The paucity of
863  fixed variants found at coding positions in the three breeds indicates that the observed heritable
864  phenotypic differences among the breeds are either due to: 1) very few selective sweeps, ii) positive
865  selection at noncoding functional regions that were not analyzed in here, iii) changes in the
866  frequencies of nonsynonymous variants without being fixed. If the first hypothesis is true, we
867  expect that domestication process should fix the adaptive variants for those genes underlaying the
868  phenotypes of interest. However, we found no fixed variants between domestic breeds and wild
869  pigs. Although this might be a consequence of some genetic exchange among populations, we
870  found that the individuals were classified in groups by their location and according to their
871  respective phenotype (Figure S3A), which suggest that the domestication features of the different
872  breeds, even if admixed, are maintained. When we checked the a values for those genes that were
873  previously reported to show signals of positive selection using other approaches (Groenen 2016),
874  we found that these genes show little or no nonsynonymous polymorphisms or fixed variants
875  (Table S14). This absence of variability is typical from regions under selective sweeps, although
876  not necessarily implicating that these genes are the targets of domestication since there are no
877  variants fixed or close to fixation at their coding regions. We only found significant values of a

878  over zero at the gene KIT in the IB breed, the genes IGF2R and JMJDI1C in the LW breed and the
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879  gene LRRTM3 in the WB population. This low number of genes with positive a values would
880  make the first hypothesis unlikely. The second hypothesis implies that the functional regions
881 implicated in domestication would be out of coding regions (promotors, enhancers, and others.
882  (e.g., Li et al 2018, Rubin et al 2012, Anderson 2012). However, although being a promising
883  hypothesis, we did not analyze those regions because it requires a very accurate analysis of
884  homology and their associated functionality, which is very complicated at the genome level,
885  especially for non-model species with a high proportion of missing data. The third hypothesis
886  suggests that the domesticated phenotype is caused by a moderate change in the frequency of a
887 relatively large number of variants with small selective effects. In this case, depending on the size
888  of the selective effect there would only be changes in the frequencies of the variants without
889  reaching fixation. In the last case, the functional variants involved in domestication should be
890  segregating in the analyzed populations. These positively selected variants segregating at high
891  frequencies, together with the presence of deleterious mutations also segregating at low
892  frequencies, would be reflected as an excess of non-neutral polymorphism compared to divergence
893  (i.e., negative a statistic at high frequencies). Hence, in cases where there is a significant
894  proportion of positive selection variants that have not yet being fixed, we expect to observe a trend
895  in the a slope showing more negative o values at intermediate-high frequencies. However, we did
896  not observe this pattern in any of the three populations examined when the analysis was performed
897  based on all coding positions, although it was observed for o values estimated based on exclusive
898  and shared mutations, which suggest that different types of variants (total, shared and exclusive)

899  could be capturing different aspects of the domestication process (demography versus selection).

900  The estimation of the DFE from the ABC analysis showed that the most likely evolutionary model
901  for all three populations based on total variants was that consisting in a discrete DFE without
902  significant positive selection effect (model DN; Table 2), showing a clear genome-wide effect of
903  the action of purifying selection. We also observed a reduced effect of purifying selection in 1B
904 and in less extend in WB when the analysis was performed based on exclusive variants, which
905  suggest a reduction of the population size of these two populations. However, for LW and when
906  the analysis was performed based on exclusive positions, the most likely model was that with a
907  discrete distribution that includes the effect of positive selection (model D; Table 2), which may
908 reflect the increase of new Asian variants which increased in frequency by artificial selection..

909  Nevertheless, the differences between models including or excluding beneficial variants were
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910 relatively small, suggesting that, in general, a few proportion of beneficial mutations contributed
911  to the domestication process. In fact, under model D, the estimated global proportion of beneficial
912  mutations (weak and strong) was relatively small and slightly higher when the analysis is based
913  on shared variants (0.1% based on total and exclusive SNPs and 1.4% based on shared SNPs;
914  Table 3) and similar in wild and domestic populations. Nevertheless, this proportion of mutations

915  may be substantial in absolute numbers (i.e., several thousand mutations).

916  Although an excess of nonsynonymous shared variants compared to the synonymous ones can be
917  explained by some demographic scenarios such as bottlenecks, they may also reflect biological
918 constraints at the species level. For instance, the phenotypic variation in a polygenic selective
919  scenario could be caused by subtle changes in the frequencies of many genes (in an infinitesimal
920  scenario) which would result in the observed phenotypic differences among the breeds. On the
921  other hand, exclusive variants may reflect recent and breed-specific selective hallmarks and hence,
922 would be responsible for the observed differences between domesticated and wild breeds. In both
923 cases, shared and exclusive polymorphisms are contributing to the differences in the SFS between
924  functional and non-functional positions. Nevertheless, the differences of the DFE when the
925  analysis was performed based on total or shared variants is very small, suggesting that exclusive

926  variants would be more informative to detect the effects of the change of selective effects.

927  In addition, our simulated domestication scenarios indicate that the effect of positive selection
928 irrespective of being either strong and affecting a small percentage of variants or weak and
929  affecting a large percentage of variants is not reflected as marked changes in the estimated patterns
930  of a. This could be due to the short time since the change in the fitness effects of variants occurred
931  but also by the interaction of positive and negative selection and demographic processes in the
932  case of the complex scenarios, which are the most compatible with the observed data. In fact, the
933  observed a patterns are compatible with the simulated demographic effects (population size
934  reduction in WB and IB and gene flow in LW) but also, as in the ABC analysis results, with the

935  effect of positive selection in LW when the analysis was based on exclusive variants.

936  We are aware that the evolutionary models used here are very simple and contain few parameters
937  and the real observations contain high heterogeneity that could not be fitted to these models. The
938 reasons for this heterogeneity may be technical (e.g., not adequate filtering of raw sequences),

939  conceptual (undetected correlations that distort model assumptions) or biological (too simplistic
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940  models to explain the real data). In any case, the model that assumes a discrete distribution of
941  deleterious mutations (model DN) seems to generally explain better the observed data, together
942  with the model D (model DN but including the effect of beneficial selection) in a minor degree
943  and also that exclusive variants seemed to be more informative to detect the changes of the

944  selective effects.
945
946  Final remarks

947  The observed patterns of variability are compatible with the presence of deleterious mutations
948  segregating in all three breeds but also with weak signals of positive selection. In addition, when
949  the variants are split into shared and exclusive, we observed patterns that are in line with the
950  simulated data under different demographic scenarios with the joint action of positive and negative
951  selection. We found a clear effect of deleterious mutations at low-frequency variants and a possible
952 mild effect of positive selection at higher frequencies. However, additional analyses contrasting
953  evolutionary models that consider the effects of standing variation, whose effect change under the
954  domestication process, may shed more light and will help to understand the patterns of variation

955  shaped by the domestication process.
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