
 1 

Pervasive selection pressure in wild and domestic pigs 1 

J. Leno-Colorado1#, S. Guirao-Rico2#, M. Pérez-Enciso134, S. E. Ramos-Onsins1* 2 
1 Centre for Research in Agricultural Genomics (CRAG) Consortium CSIC-IRTA-UAB-UB, Bellaterra, 3 

Spain.  4 
2 Departament de Genètica, Microbiologia i Estadística & Institut de Recerca de la Biodiversitat (IRBio), 5 

Universitat de Barcelona, Barcelona, Spain.  6 
3 Universitat Autònoma de Barcelona, Department of Animal Science, Bellaterra, Spain. 7 
4 Institut Català de Recerca I Estudis Avançats (ICREA), Barcelona, Spain. 8 

 9 
#Equal contribution 10 

*Corresponding author: sebastian.ramos@cragenomica.es 11 

  12 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2022. ; https://doi.org/10.1101/2020.09.09.289439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289439
http://creativecommons.org/licenses/by/4.0/


 2 

ABSTRACT 13 

Animal domestication typically affected numerous polygenic quantitative traits, such as behaviour, 14 

development and reproduction. However, uncovering the genetic basis of quantitative trait variation is 15 

challenging, since it is probably caused by small allele-frequency changes. To date, only a few causative 16 

mutations related to domestication processes have been reported, strengthening the hypothesis that small 17 

effect variants have a prominent role. So far, the studies on domestication have been limited to the detection 18 

of the global effect of domestication on deleterious mutations and on strong beneficial variants, ignoring 19 

the importance of variants with small selective effects. In addition, very often, the study of the effects of 20 

selection are conducted on genome sequences that contain a non-negligible fraction of missing data, 21 

especially in non-model organisms. Hence, appropriate methods to account for these positions are needed. 22 

To overcome these difficulties, here we propose to estimate the proportion of beneficial variants using the 23 

asymptotic MacDonald-Kreitman (MK) method based on estimates of variability that summarizes the site 24 

frequency spectrum (SFS) while accounting for missing data and use them to perform an Approximate 25 

Bayesian Computation (ABC) analysis to infer the Distribution of Fitness Effects (DFE) of each population. 26 

We applied this approach to 46 genome sequences of pigs from three different populations, one wild and 27 

two domestics, with very different demographic histories and selective pressures. The obtained results 28 

showed that domestic and wild pig populations do not differ in nonsynonymous fixed mutations. Therefore, 29 

differences in a estimation among breeds are determined by their polymorphisms. The comparison of a 30 

for total and exclusive mutations suggests that the different domestic populations have suffered recent 31 

divergent changes in their functional versus neutral polymorphisms ratio, while the wild population is 32 

compatible with a=0. Besides, the DFE inferred with ABC indicates that both wild and domestic pigs 33 

display a large number of deleterious mutations at low frequency and a high number of neutral and/or 34 

nearly-neutral mutations that may have a significant effect on the evolution of domestic and wild 35 

populations. In addition, models not considering beneficial mutations have higher posterior probabilities, 36 

suggesting that beneficial mutations are difficult to detect or are scarce. Indeed, for all three populations, 37 

the median proportion of the strong favourable mutations are very low (≤ 0.1%) in those models that 38 

includes positive selection, with the average values of weak beneficial mutations around 0.6% for wild boar 39 

and 0.8-1.0% for the domestic pigs. Lastly, the analysis based on exclusive mutations showed that recent 40 

demographic changes may have severely affected the fitness of populations, especially that of the local 41 

Iberian breed. 42 

 43 

Keywords: Domestication, Distribution of fitness effects, Proportion of beneficial mutations, 44 
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INTRODUCTION 46 

Domestic animal histories are evolutionary experiments that have often lasted for millennia 47 

resulting in dramatic phenotypic changes to suit human needs. In addition, domestic species can 48 

be structured into subpopulations (breeds) that are partly or completely genetically isolated and 49 

can display a wide catalogue of specific phenotypes. Therefore, they offer a very valuable material 50 

of utmost interest to study the interplay between demography and accelerated adaptation. 51 

However, as their demographic history can be quite complex, many events remain unknown or 52 

poorly documented nowadays.  53 

The pig (Sus scrofa) is a particularly interesting species because of its domestication history and 54 

its relatively well-annotated genome. S. scrofa originated in Southeast Asia ~1-4 MYA and spread 55 

throughout Eurasia ~0.2-1.2 MYA, colonizing all climates except the driest (Frantz et al. 2013, 56 

Zhang et al. 2021). Subsequently, the pig was domesticated from local wild boars (WB) 57 

independently in both Asia and Europe ~9,000 years ago. To complicate the story, modern 58 

European domestic pig breeds were crossed with Asian domestic pigs during the late 17th century 59 

and onwards. In breeds such as Large White (LW), approximately 30% of the genome is estimated 60 

to be of Asian origin (Bosse, Megens, Madsen, et al. 2014). Nevertheless, some local European 61 

breeds, such as the Iberian breed (IB), were spared genetic contact with Asian pigs and no evidence 62 

of genetic introgression has been found in this breed (Alves et al. 2003, Esteve-Codina et al. 2013). 63 

Moreover, domestic breeds have different recent demographic histories. For instance, the IB breed 64 

suffered a dramatic reduction of its effective population size during the last century (Alves et al. 65 

2006), whereas many commercial breeds such as Duroc or LW have been introgressed with Asian 66 

pigs (Bosse, Megens, Frantz, et al. 2014).  67 

Differences in the effective population size, demographic histories and artificial selective pressures 68 

between pig breed or populations could result in differences among their evolutionary rates. In 69 

addition to possible differences in the evolutionary rates between populations, there may be 70 

differences in the evolutionary rate between genes within genomes. For instance, it is known that 71 

the strength of the selection is affected by the position of the genes in the networks in which they 72 

participate. Genes that are more central in a network and are more connected with other genes are 73 

more evolutionarily constrained, while peripheral genes are more prone to be under adaptive 74 

selection (Fraser et al. 2002; Hahn and Kern 2005; Montanucci et al. 2011; Alvarez-Ponce and 75 
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Fares 2012). Furthermore, it has been observed that the evolutionary rate, within a metabolic 76 

pathway, increases as we move downstream, possibly because upstream genes are more 77 

pleiotropic, since they are involved in more functions and hence, these genes are probably more 78 

conserved (Rausher, Miller, and Tiffin 1999; Riley, Jin, and Gibson 2003; Livingstone and 79 

Anderson 2009; Ramsay, Rieseberg, and Ritland 2009). 80 

So far, the nature of the underlying genetic changes caused by domestication and ensuing artificial 81 

breeding is still under debate. While the most prevalent view is that regulatory changes have been 82 

targeted (Anderson 2013), several other studies underline the influence of protein coding changes 83 

(Rubin et al. 2012). Some authors have reported an increase in the rate of deleterious mutations in 84 

domestic pigs compared to their wild counterparts (Cruz, Vilà, and Webster 2008; Renaut and 85 

Rieseberg 2015; Pérez-Enciso et al. 2017; Leno-Colorado et al. 2017). Others, as in Makino et al. 86 

(2018) detected a general pattern of reduction of variability in domestic populations in relation to 87 

their wild counterpart, and a higher nonsynonymous/synonymous ratio across the frequency 88 

spectrum. These patterns were compatible with the effect of strong bottlenecks in domestic 89 

populations and the higher accumulation of deleterious mutations. Interestingly, the same authors 90 

observed the opposite trend in pigs (e.g., higher variability levels in domestic pigs compared to 91 

their wild counterpart). Moreover, most of these previous studies have focused on genes of major 92 

effect with clear signals of selective sweeps. In those studies, the hallmarks of positive selection 93 

were detected as valleys of reduced variation and/or population differentiation that spans relatively 94 

large regions (e.g., Amaral et al. 2011, Rubin et al. 2012, Frantz et al. 2013, Wilkinsonet al. 2013), 95 

but also by the presence of haplotype structure and homozygosity blocks (e.g., Fang et al. 2011, 96 

Bosse et al. 2012, Li et al. 2013). Some of these studies have detected recent breed specific signals 97 

of selection attributed to the domestication process (Li et al. 2014, Kim et al. 2015). Nevertheless, 98 

the signals were too scarce to explain the whole picture of the domestication process. Other studies 99 

have tried to elucidate the effect that domestication has at the genomic scale and on the fitness of 100 

individuals of domestic populations (e.g., Cruz et al. 2008, MacEachern et al. 2009, Kono et al. 101 

2016, Perez-Enciso et al. 2016, Makino et al. 2018, Chen et al. 2018, Orlando and Librado 2019). 102 

For instance, an excess of deleterious variants has been observed in a number of domestic animal 103 

and plants (e.g., contrasting nonsynonymous versus synonymous polymorphism ratios, Chen et al. 104 

2018, using the MacDonald framework, MacEachern et al. 2009, contrasting the ancestors with 105 

ancient DNA, Orlando and Librado 2019, combining the frequency of polymorphisms with 106 
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functional effects and divergence, Kono et al. 2016, Makino et al. 2018). Kono et al. (2016) and 107 

Perez-Enciso et al. (2016) found an excess of deleterious variants affecting phenotypes of interest, 108 

suggesting, as we previously mention above, that protein sequence may have a stronger influence 109 

than regulatory changes in the domestication process. Kono et al. (2016) also showed that null 110 

alleles are uncommon in domestic animal species (also reviewed by Anderson 2013), suggesting 111 

that phenotypic changes involved in domestication are produced by the accumulation of 112 

consecutive mutations that modify the gene functions under selection. Finally, the possible 113 

presence of beneficial mutations during the domestication process has also been reported (Perez-114 

Enciso 2016).  115 

 116 

Here, we are interested in determining the proportion and the selective effects of protein-coding 117 

variants in wild and domestic pig genomes to understand their role in the domestication process. 118 

Particularly, we aimed to test the role of both new and extant mutations in the domestication 119 

process and whether the phenotypes associated with domestic breeds are the product of a large 120 

number of variants with weak selective effects, as suggested by previous results. To achieve this, 121 

we have investigated the differential effects of selection on coding sequences at the different 122 

molecular scales (gene, metabolic pathway and whole-genome) in two domestic and one wild pig 123 

population using the McDonald-Kreitman framework (McDonald and Kreitman 1991, Eyre-124 

Walker 2006, Fay 2011). We also have performed forward exploratory simulations and inferred 125 

the distribution of fitness effects (DFE) while taking into account the effect of different 126 

demographic scenarios. Interestingly, the analysis was performed using variability estimators that 127 

allow including positions with missing data (Ferretti, Raineri, and Ramos-Onsins 2012).  128 

Our results support the hypothesis that changes in allele frequencies in coding variants with weak 129 

positive selective effect have been relevant for pig domestication, as evidenced by a relatively high 130 

number of nonsynonymous variants segregating at medium and high frequencies and by the 131 

obtained estimates of the DFE in domestic pig populations.  132 

 133 

  134 
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MATERIALS AND METHODS 135 

Biological samples 136 

We analyzed a sample of 46 pig (Sus scrofa) genomes (Table S1). These pigs correspond to 137 

European wild boars (WB, n = 20) and domestic pigs, which are represented by the Iberian 138 

Guadyerbas (IB, n = 6) and Large White (LW, n = 20) breeds. The two domestic breeds were 139 

selected because they have very different interesting features: IB is a local breed that has been 140 

under weak artificial selection intensity and with no documented evidence of Asian introgression. 141 

LW, in contrast, is a commercial breed undergoing strong artificial selection with a deliberate 142 

admixture with Asian pigs (Bosse, Megens, Madsen, et al. 2014; Groenen 2016). To analyze the 143 

divergence between the different breeds, we built the consensus ancestral reference sequence 144 

obtained from combining the genomic information from several Sus species (S. barbatus, S. 145 

cebifrons, S. verrucosus, S. celebensi, approximately 4.2 MYA of divergence) and the African 146 

warthog (Phacochoerus africanus, around ~10 MYA of divergence) and used as an outgroup, as 147 

in Bianco et al. (2015). All sequences (see reference numbers at Table S1) are available in public 148 

databases: those generated in several previous works (Rubin et al. 2012; Ramírez et al. 2014; 149 

Bianco et al. 2015; Frantz et al. 2015; Moon et al. 2015, Esteve-Codina et al. 2013, Leno et al. 150 

2017) and those generated in this work (WBES0231, WBES0252, WBES0288, WBES0291 and 151 

WBES0297, see Table S1). They can be downloaded from the short read archive (SRA, 152 

http://www.ncbi.nlm.nih.gov/sra, see accession numbers in Table S1). 153 

 154 

Mapping and genotyping analysis 155 

For each pig genome, raw reads were mapped against the reference genome assembly 156 

(Sscrofa10.2, Groenen et al. 2012) using BWA mem option (H. Li and Durbin 2009). PCR 157 

duplicates were removed using SAMtools rmdup v. 0.1.19 (H. Li et al. 2009) and mapped reads 158 

were realigned around indels with the GATK IndelRealigner tool (McKenna et al. 2010). Genotype 159 

calling was performed with SAMtools mpileup and bcftools call v. 1.3.0 (H. Li et al. 2009) for each 160 

individual separately. We set a minimum (5x) and a maximum depth (twice the average sample’s 161 

depth plus one) to call a SNP. Base quality was set to 20 (P-value=1e-2). Homozygous blocks 162 

(regions of contiguous positions with the same nucleotide as the reference genome) were also 163 

called, following the same criteria as with the SNPs (i.e., minimum and maximum coverage and 164 
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 7 

base quality) and using samtools depth utility, BEDtools (Quinlan 2014) and custom scripts 165 

(available at https://github.com/miguelperezenciso/NGSpipeline, Pérez-Enciso et al., 2017). This 166 

resulted in a gVCF file per individual with the information about variant calls and non-varying 167 

positions. Next, each gVCF file was converted into a fasta file and all fasta files were subsequently 168 

merged to obtain a multindividual gVCF file (Pérez-Enciso et al. 2017). 169 

 170 

Analysis of the population structure of the samples 171 

A principal component analysis (PCA) was performed using the total number of SNPs to explore 172 

the population structure. First, genotypes were converted to alternative allele frequency, being 0 173 

for the homozygous reference genotype (0/0), 0.5 for the heterozygous genotype (0/1) and 1 for 174 

the homozygous alternative genotype (1/1). For cases of missing genotype (./.), these were 175 

replaced by the average SNP frequency across all individuals. We used the function tcrossprod() 176 

from R v. 3.3.1 (2016) to obtain the matrix of covariates from the matrix of frequencies. Finally, 177 

we obtained the principal components from the Eigen-value decomposition with the R function 178 

eigen(). The software ADMIXTURE (Alexander et al. 2009) was also applied to analyze the 179 

population structure. The more suitable K was estimated using cross-validation procedure 180 

(Alexander et al. 2009) and the Evanno’s method (Evanno et al. 2005). 181 

 182 

Estimation of codon bias 183 

We have used the single reference sequence of S. scrofa to estimate the codon bias at gene and 184 

genome level, assuming that polymorphic variants are not going to strongly modify the proportion 185 

of codons at this species. We have estimated gene and genomic codon usage with the Major Codon 186 

Usage statistic (MCU, the frequency of major codons among all codons in a sequence) and the 187 

Effective number of codons (Ncw), using the python script following Fuglsang (2006). High values 188 

of MCU indicate a strong bias in codon usage, while low values suggest small bias. Instead, high 189 

values of Ncw indicate low codon bias because many codons are used. We have also calculated the 190 

correlation between MCU and a estimates (see below), considering all annotated coding regions 191 

and only coding regions having a values larger than zero.  192 

 193 
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 8 

Estimation of levels and patterns of variability 194 

Genetic diversity and divergence per pig population were estimated using mstatspop software 195 

(Nevado, Ramos-Onsins, and Perez-Enciso 2014; Bianco et al. 2015; Guirao-Rico et al. 2018, 196 

available from the authors, https://github.com/cragenomica/mstatspop). The multi-VCF file was 197 

converted into a tfasta (transposed fasta) file and mstatspop was run on i) the whole genome, ii) 198 

windows of 5-Mb size, and iii) gene coding regions. Note that, given the ubiquitous presence of 199 

missing data, the SFS with highest sample size that contained more coding SNPs, retained only 200 

around 20-25% of total coding variants. As the aim of this work is to detect the presence of (weak) 201 

beneficial selective effects and as not to lose power or bias the results of the analysis, we preferred 202 

to use an alternative method that consider the whole set of SNPs. We used four different estimators 203 

of nucleotide variability that takes into account missing data (Ferretti, Raineri, and Ramos-Onsins 204 

2012): Watterson (Watterson 1975), Tajima (Tajima 1983), Fu&Li (Fu and Li 1993) and 205 

Fay&Wu’s estimators (Fay and Wu 2000). The variability was estimated for total, shared and 206 

exclusive variants, being shared and exclusive nucleotide variability counted regarding to the total 207 

positions (i.e., total = shared + exclusive). 208 

 209 

Filtering for artefactual effects 210 

A preliminary analysis of the variability showed a moderate negative correlation (~ 0.3) between 211 

the levels of variability and divergence and the proportion of missing data for each gene. To 212 

eliminate this artifactual correlation, we plotted the estimators of variability and divergence versus 213 

the ratio of missing data and eliminated those genes that showed a ratio of missing data greater 214 

than 0.3. Since this filtering was not enough to completely remove the bias, we also removed genes 215 

with extreme values of variability and divergence (higher than 99% quantile of the total genes). 216 

The remaining ~13,500 genes (70% of the total annotated genes) showed a low or null correlation 217 

with missing data and were used in the present analysis (Table S2).  218 

 219 

Estimation of the proportion of adaptive of variants 220 

Under the neutral model, the majority of polymorphisms segregating in a population are neutral 221 

and only a small number of selected variants segregates for a short time on their way to loss or 222 
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 9 

fixation. Hence, most of the positive selected variants are only observed as fixed variants. In 223 

addition, functional positions (nonsynonymous positions) are constrained compared to non-224 

functional positions (synonymous positions), and hence, their evolutionary ratios are smaller. In 225 

the neutral scenario, polymorphism and divergence (excluding the adaptive fixed variants) are 226 

proportional to the mutation rate and to the constriction factor in the case of nonsynonymous 227 

positions (McDonald and Kreitman 1991, Eyre-Walker 2006, Fay 2011). That is: 228 

!!
!"
=	 (1 − '))!)"

, 229 

(Equation 1) 230 

where !n is the nonsynonymous variability, !s is the synonymous variability, )n is the 231 

nonsynonymous divergence, )s is the synonymous divergence and α is the proportion of adaptive 232 

variants that have been fixed. To estimate the proportion of nonsynonymous substitutions that are 233 

adaptive (α) the previous expression is reordered (e. g., Eyre-Walker 2006): 234 

' = 1 − )"
)!
!!
!"

 235 

(Equation 2) 236 

A higher ratio of nonsynonymous to synonymous divergence versus polymorphisms suggests that 237 

positive selection has fixed adaptive variants (α > 0) and the opposite case (α < 0) suggests the 238 

presence of deleterious mutations segregating in the population. 239 

If we consider that weak deleterious mutations are segregating in the population, we expect that 240 

their relative proportion will be higher at lower frequency variants and low or zero for fixed 241 

deleterious mutations. Following the same notation as in equation 2: 242 

!#!(1 − +#)
!#"

=	(1 − ' − +$))!)"
, 243 

(Equation 3) 244 

where i refers to the frequency at which the calculation of variability is estimated, +# is the 245 

proportion of weakly deleterious polymorphic mutations at frequency i, +$ 	is the proportion of 246 

weakly deleterious fixed mutations. +$ <	+# was assumed at any frequency. Then, solving for the 247 

proportion of fixed adaptive variants (α): 248 
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' = 1 − +$ − (1 − +#)
)"
)!
!#!
!#"

 249 

(Equation 4) 250 

We see that in case of calculating α without considering the effects of deleterious mutations, this 251 

would be underestimated depending on the frequency at which the estimates of variability are 252 

calculated. If we assume that the deleterious variants would hardly be fixed, a good estimator of α 253 

using equation 2 would be the one that estimates variability based on high frequencies, as it would 254 

hardly contain deleterious mutations. This is in agreement with the asymptotic arguments used in 255 

Messer and Petrov (2013) and implemented in Haller and Messer (2017). 256 

 257 

Similarly, if we also consider that weak positively selected variants are segregating in the 258 

population, we expect that their relative proportion, compared to neutral ones, is higher at higher 259 

frequencies: 260 

!#!(1 − +# −	.#)
!#"

=	 (1 − ' − +$ − .$))!)"
, 261 

(Equation 5) 262 

where .# is the proportion of weakly advantageous polymorphic mutations at frequency i, and .$ 	is 263 

the proportion of weakly advantageous fixed mutations. Again, solving for the proportion of fixed 264 

adaptive variants (α+.$): 265 

' +	.$ = 1 − +$ − (1 − +# −	.#)
	)"
)!

!#!
!#"

 266 

(Equation 6) 267 

In this case, the presence of adaptive variants segregating in the population would affect the 268 

estimates of variability based on high frequency variants when using equation 2, which would 269 

result in an underestimation of the proportion of fixed adaptive variants (a). Note that adaptive 270 

variants stabilized at intermediate frequencies, which can be an important source of adaptation 271 

considering the infinitesimal model, are not considered in this approach. 272 

 273 
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If we focus on the effects of polymorphic weakly selected mutations, equation 5 suggests that the 274 

ratio of nonsynonymous to synonymous polymorphisms would increase due to mutations having 275 

both positive and negative effects. It is expected that the number of mutations with negative 276 

selection coefficients would rapidly decrease as we move to intermediate and high frequencies, 277 

while the opposite trend is expected for mutations with positive selection coefficients. Hence, 278 

higher ratios of nonsynonymous to synonymous polymorphisms at higher frequencies may be 279 

explained by the presence of advantageous mutations segregating in the population.  280 

 281 

Furthermore, in cases where two populations are from the same species and there are no fixed 282 

mutations between them (e.g., they have equal divergence ratios versus the outgroup), we can 283 

estimate the possible differential effect of the selection (positive and negative together) at any 284 

frequency between populations from the ratios of synonymous to nonsynonymous polymorphisms 285 

of the two populations (0_+.#): 286 

!#!%(1 − +#% −	.#%)
!#"%

= !#!&(1 − +#& −	.#&)
!#"&

 287 

and 	288 

	(1 − +#% −	.#%)(1 − +#& −	.#&)
= !#"%!#!&
!#!%!#"&

= 0_+.# 289 

(Equation 7) 290 

In addition, a comparison of the 0_+.# values calculated using different variability estimators 291 

(hereafter 0_+.# pattern) can be used to inform about the effects of selection. For example, values 292 

over 1 indicate that the population 2 has a higher ratio of nonsynonymous to synomymous 293 

polymorphisms compared to population 1, either produced by an accumulation of deleterious or 294 

of beneficial polymorphisms. Importantly, different demographic effects (e.g., bottlenecks) 295 

together with the presence of mutations with small selective effects may also disturb the ratios of 296 

variability and hence must be considered when interpreting the results. We include a couple of 297 

possible scenarios that can account for possible patterns: (i) after split of two the two populations, 298 

both populations have the same population size, but population 1 is affected by the action of 299 

positive selection on a quantitative trait (polygenic effect), which causes an increase in the 300 

frequencies of some of its variants without getting fixed. Under this scenario, we expect a R_βγ > 301 
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 12 

1 when this is calculated based on high frequencies. (ii) after split of two the two populations, the 302 

population 2 remains equal population size as before the split and the population 1 suffers a 303 

reduction in its effective population size, which causes that the slightly deleterious mutations 304 

become effectively neutral. Then, R_βγ is expected to be > 1 when it is calculated based on low 305 

frequency variants. 306 

The effect of linkage disequilibrium between selective (deleterious or adaptive) and neutral 307 

variants should not overly affect the expected estimate of the proportion of adaptive variants, as it 308 

would affect both synonymous and nonsynonymous positions in similar proportion. On the 309 

contrary, the interaction of variants with opposite selective effects would possibly reduce the effect 310 

of selection and would have a significant consequence on the estimation of adaptive fixed variants 311 

(Hill and Robertson 1966; Booker and Keightley 2018). 312 

 313 

Bootstrap analysis 314 

Nonparametric bootstrap analysis was performed to estimate the null distribution of the α statistic 315 

for each variability estimator and pig population. In each case, synonymous and nonsynonymous 316 

coding positions were randomly chosen with replacement and the α statistic was calculated as in 317 

equation 1. This process was repeated 100 times. 318 

 319 

Simulations 320 

We carried out forward simulations using the software SLiM (Haller and Messer 2017) in order to 321 

explore the interaction between the different selective effects and demographic factors affecting 322 

the evolution of pig populations during domestication. We explored the expected values of 323 

nucleotide diversity, divergence, α and R_βγ statistics under 63 different scenarios. For each 324 

scenario, we simulated three populations corresponding to wild, domestic and an outgroup species. 325 

We first simulated nine different scenarios that were classified into three main groups: i) standard 326 

neutral model (SNM); ii) a model with negative selection (NS) and iii) a model with positive 327 

selection (PS). For the models with selection, we let that selection operate from the ancestral 328 

species to the present time. Each group of scenarios (SNM, NS and PS) was simulated with a 329 

constant effective population size for the three populations or with a reduction or an expansion of 330 
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the effective population size in the branch leading to domestic pigs. A second group of simulations 331 

was performed under more complex scenarios. In those simulations, we incorporated the combined 332 

effect of negative and positive selective effects (using gamma and exponential distributions for the 333 

selective coefficients, respectively) plus demographic effects such as expansion and reduction of 334 

the effective population size in the domestic simulated populations and with or without migration 335 

from the wild into the domestic populations (in total 54 complex simulated scenarios). Figure S1 336 

shows a general scheme for the simulated populations and Tables S3A-B show the parameter 337 

values used in these simulations. The obtained results were analyzed using mstatspop software 338 

(see above). 339 

 340 

Approximate Bayesian computation (ABC) analysis 341 

We used the ratio of the estimates of nucleotide variability (!2/!4) per nucleotide for 342 

nonsynonymous versus synonymous positions (Fu&Li, Watterson, Tajima and Fay&Wu) and of 343 

divergence (Kn/Ks) as statistics to infer the distribution of fitness effects (DFE) in coding regions. 344 

We compared four evolutionary models that differ in the shape of the DFE using the algorithm 345 

proposed by Tataru et al. (2017), which are the following: (i) model A: a model with a deleterious 346 

gamma DFE with the mean and the shape of the gamma distribution as model parameters, (ii) 347 

model C: a model with a gamma distribution of deleterious variants with two parameters (shape 348 

and mean) and an exponential distribution of beneficial variants with one parameter (mean), and 349 

the additional parameter of the proportion of beneficial versus deleterious variants, (iii) model DN: 350 

a model with a discrete distribution of a priori values of negative selective coefficients with the 351 

proportion of negatively selected mutations for each of the negative selective coefficients as 352 

parameters. and (iii) model D: a model with a discrete distribution of a priori values of possible 353 

selective coefficients (positive and negative) with the proportion of positively and negatively 354 

selected mutations for each selected coefficients as parameters. Some of the additional parameters, 355 

such as demographic or linkage effects, were considered as nuisances. Nuisance parameters mimic 356 

the demographic effects and other parameters such as linkage effect by using the difference 357 

between the observations for the neutral dataset (i.e., synonymous sites) and the expected under 358 

the neutral model. Others, such as errors in the polarity of unfolded mutations, were fixed. 359 
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Table S4 shows the parameters of each model and the prior distributions used in the analysis. We 360 

used polyDFEv2 (Tataru et al 2019) to obtain the expected unfolded site-frequency spectrum 361 

(SFS). The code of polyDFEv2 was slightly modified in order to print the SFS and the parameters 362 

for a large number of conditions, which are needed to perform the ABC analysis using summary 363 

statistics. For each model, one million iterations were run using different parameter conditions and 364 

the resulting SFS for each condition were kept to later calculate the ratios of variability, divergence 365 

and the α statistic. The ABC analysis was performed using the R library abc (Csillery et al. 2012). 366 

We performed a cross validation analysis to evaluate the ability of the approach to distinguish 367 

between models using the cv4postpr() function, as suggested in the abc library documentation. 368 

The confusion matrix indicated that these three models were quite distinguishable with a 369 

probability of true classification from model A versus C/DN/D of 0.69, from model C versus 370 

A/DN/D of 0.65, from model DN versus A/C/D of 0.83 and from model D versus A/C/DN of 0.80, 371 

using a tolerance value of 0.05 (Table S5). Posterior probabilities of each model given the observed 372 

data (i.e., the probability assigned to each model relative to the other models of the analysis), were 373 

obtained using the postpr() function and considering a multinomial logistic and a rejection 374 

approach. Additionally, a goodness of fit analysis, which evaluates whether the prior distribution 375 

for model parameters are realistic, was also performed. The best model was selected based on 376 

posterior probabilities. Once the best model was chosen, the ability to infer the parameters of the 377 

model was assessed using the cv4abc() function. Prediction errors for the parameter inference of 378 

each model are shown in Table S6 and Figure S2. The parameters of the best model were inferred 379 

with the abc() function using a local linear regression and a rejection approach. Posterior predictive 380 

simulations were performed using the α statistic to determine whether the simulated data generated 381 

from the estimated parameter of our best model resembled the observed data (1000 replicates). 382 

Finally, the α values can be simply estimated using equation 10 from Tataru et al. (2017), as the 383 

proportion of positive selective coefficients (s) values in the case of the discrete distribution. 384 

 385 

Gene context and network topology analysis 386 

We downloaded the complete list of pathways and genes of S. scrofa from KEGG v.20170213 387 

(http://www.genome.jp/kegg/, Kanehisa et al. 2008). The list contained 471 pathways and 5,480 388 

genes. The median and mean number of genes per pathway was 26 and 43, respectively, and ranged 389 
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from 1 to 949. We filtered the pathways according to their size, removing pathways with less than 390 

10 and more than 150 genes in order to discard pathways that were not informative or too generic 391 

and complex. The final list contained 171 pathways and 3,449 genes. 392 

To analyze the selection pressure of each gene according to its position in the pathway, we obtained 393 

different topological parameters. For that, we first downloaded the XML file of each pathway from 394 

KEGG v.20170213. These files were analyzed with the iGraph R package (Csardi G. and Nepusz 395 

T. 2006) to obtain the topological descriptors of each gene in each pathway. For each gene, three 396 

different measures were computed: betweenness (number of shortest paths going through a vertex), 397 

in-degree (number of in-going edges) and out-degree (number of out-going edges). These 398 

parameters are measures of the importance of a gene within a pathway: betweenness is a centrality 399 

feature, in-degree suggests the facility of a protein to be regulated and out-degree reflects the 400 

regulatory role of a protein. We tested whether negatively and positively selected genes differed 401 

in any of these statistics using a nonparametric Wilcoxon rank test, due to the extreme leptokurtic 402 

distributions involved. 403 

 404 

Genomic context patterns 405 

We have additionally tested whether there is a significant correlation between α and 406 

recombination, gene density, missing rate, %GC and CpG islands across genomes. 407 

 408 

Testing the differences in the estimates of α using whole-genome data versus the mean of 409 

gene estimates.  410 

We have studied the behaviour of the α statistic when it is estimated considering a single large 411 

dataset (i.e., genome) or when it is estimated using the mean of many subsets (i.e., genes). To do 412 

that, we made an R script (check_ratios_vs_meanratios.R) in which we simulated a hypothetical 413 

number of polymorphisms and substitutions per gene, following a Poisson distribution (we 414 

considered ~10x more substitutions than polymorphisms, 2x more nonsynonymous positions than 415 

synonymous and 10x more functional constraint at nonsynonymous versus synonymous). We 416 

estimated α per window and per total. The distribution of α per gene can be strongly skewed to 417 
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negative values when the windows become smaller, thus dragging the mean to negative values as 418 

well. 419 

 420 

All the scripts used are available at Zenodo database  421 

(https://zenodo.org/record/6124306#.YlcVSy8RqLc). 422 

 423 

424 
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RESULTS 425 

Predominance of shared variants and global similar selective effects of mutations in 426 

genomic sequences of pig populations 427 

We found a total of 6,684,142 SNPs in autosomes, with 149,440 SNPs located in coding regions. 428 

12.5% of the SNPs in the coding regions are shared among the three populations, 32.2% are shared 429 

between at least two populations, 31.2% are exclusive to Large White (LW), 2.2% are exclusive 430 

to Iberian (IB) and 34.4% are exclusive to Wild boar (WB) (Table 1 and Table S7). The proportion 431 

of exclusive SNPs in each population is in accordance with its specific demographic history 432 

(Esteve-Codina et al. 2013, Bosse, Megens, Madsen, et al. 2014). Based on the PCA analysis and 433 

using the total number of SNPs, we found that the individuals of each breed cluster together and 434 

are well separated from other breeds (Figure S3A). The results from the ADMIXTURE analysis 435 

(Figure S3B) suggest that, K=2 is the most likely number of populations, where WB and IB are 436 

considered a single population. Under a K=2 scenario, only two LW and one WB individual show 437 

a significant percentage of admixture among groups. Nevertheless, for larger values of K, new 438 

groups emerge, being the IB one of these separated groups (Figure S3B). However, additional 439 

subgroups within WB and LW phenotypes appear and disappear when increasing the K value, 440 

making those subgroups apparently unreliable. Therefore, we decided to analyze separately the 441 

three breeds, LW, IB and WB, following the main patterns of population structure (Figure S3A) 442 

and the phenotypic features of the animals, which essentially separate domestic (commercial and 443 

local breed, separately) from wild animals.  444 

  445 
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 446 

Table 1. Number of synonymous and nonsynonymous SNPs according to its allelic status in each pig population. A: 447 

Ancestral allele, F: Fixed allele, P: Polymorphic allele. IB: Iberian; LW: Large White; WB: Wild boar. SNPs that are 448 

missing in any of the populations are not considered. 449 

 450 

 451 

For each breed, coding positions were classified as polymorphic, fixed (i.e., different allele from 452 

the outgroup) or ancestral allele (i.e., same allele as in the outgroup), with the aim of identifying 453 

those variants that appeared previously or posteriorly to the domestication process (Table 1). 454 

IB LW WB Synonymous Non-synonymous
F F F 20297 9342
P P P 11712 7597
A A F 0 0
A F A 0 0
F A A 3 5
A A P 30314 20988
A P A 26027 15035
P A A 1833 1588
A F F 0 0
F A F 1 0
F F A 1 0
A P P 10128 7930
P A P 1676 1254
P P A 700 363
A F P 11 1
A P F 0 2
F A P 30 30
P A F 0 0
F P A 8 4
P F A 1 1
F P P 4924 2378
P F P 242 139
P P F 81 52
F F P 1140 489
F P F 4911 2073
P F F 38 22

114078 69293

F: position with a fixed derived variant. P: Polymorphic position. A: position with the ancestral variant

Table 1. Number of synonymous and nonsynonymous SNPs for different combinations of the allelic 
status. SNPs that are missing in any of the populations are not considered in this table.
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Surprisingly, we found very few fixed mutations between populations, indicating that the 455 

phenotypic traits of each population are not associated with fixed coding variants. Similarly, we 456 

found very few fixed coding variants in domestic (IB or LW) versus wild (WB). There are few 457 

variants fixed in the domestic breeds that are polymorphic in the wild population, suggesting that 458 

these variants were previously present in wild breeds or, alternatively, were introgressed into WB 459 

from domestic breeds. Most of the variants that are exclusive of a single breed are polymorphic, 460 

which is in agreement with the recent origin of these variants. We found a large number of fixed 461 

variants in the IB that are polymorphic in LW and WB, likely due to a reduction of the effective 462 

population size of the IB breed. The ratio of nonsynonymous to synonymous polymorphism was 463 

always lower than one and showed similar values for the three populations regardless of the 464 

variability estimator used (Table S9). This result suggests that, on average, there are no differential 465 

effects of selection between domestic and wild populations, although this might not be the case 466 

when individual genes are considered. 467 

 468 

Low codon bias at whole-genome scale  469 

We estimated the level of codon bias at genome scale using MCU and Ncw statistics to control for 470 

the possible effect of selection on synonymous positions. Non-neutral synonymous mutations can 471 

have a large impact on the inference of the proportion of beneficial selection, and on the estimation 472 

of the Distribution of Fitness Effects (DFE). Indeed, the effect of bias in codon usage causes an 473 

overestimation of the beneficial proportion of variants that become fixed by increasing the ratio of 474 

synonymous polymorphisms versus synonymous fixations (Akashi, 1995, Matsumoto et al. 2016). 475 

For this species, we observed a low and large values of MCU and Ncw, respectively, indicating low 476 

levels of codon bias at genome scale (mean MCU=0.485, Figure S5). However, it should be 477 

mentioned that positive selection could be acting on synonymous positions of some specific genes. 478 

We therefore have assessed whether there was a correlation between MCU and a, considering all 479 

coding regions or only coding regions showing positive a values. We observed no correlation 480 

between MCU and a values when considering only genes with positive a values (Figure S5) and 481 

slightly negative correlation when considering all genes regarding their respective α values (data 482 

not shown). 483 

 484 
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Limited influence of genomic context and the network topology on selective patterns 485 

The heterogeneity in the recombination rate, the gene density, the %GC and the distribution of 486 

CpG islands across the genome can affect the local levels of variability. A previous study on the 487 

IB breed detected a strong correlation between recombination and variability, although no 488 

correlation was observed between variability and gene density or GC content (Esteve-Codina et 489 

al. 2013). However, the effect of these factors on the estimation of the proportion of adaptive 490 

nonsynonymous mutations (α) has not been previously studied. When we assess whether there is 491 

a correlation between the estimated α and the above-mentioned factors, we found that there is no 492 

correlation between the estimated α and recombination, gene density, %GC and CpG in any of the 493 

three breeds (P-values > 0.01). 494 

 495 

Next, we investigated the effect of gene network topology on the selective patterns. It has been 496 

claimed that topology limits the ‘evolvability’ of genes and that highly connected genes are more 497 

constrained and, consequently, less likely to be targets of positive selection. We compared the 498 

network topology features (betweenness, out-degree and in-degree) of genes within pathways 499 

regarding the estimates of α, grouping genes with positive versus negative α values. We found that 500 

genes with negative α values show significant large values of the betweenness statistic in the three 501 

pig breeds compared to genes with positive α values (P-value < 0.01; Figure S4). LW and WB 502 

showed significant values (P-values < 0.01) of the in-degree statistic for genes with negative α 503 

values compared to genes with positive a values. However, we did not observe significant 504 

differences in the out-degree values between genes with negative and positive a values in any of 505 

the three breeds (Figure S4). These results suggest that, in the three breeds, genes that are more 506 

central in a pathway are more evolutionary constrained compared to peripheral genes. In addition, 507 

in LW and WB, the genes that are more constrained tended to have a higher number of upstream 508 

genes that regulated them, which is also in agreement with the central position of these genes in 509 

the pathway. We did not observe significant differences in in-degree statistic in the IB breed 510 

between genes with negative and positive a values, likely because of a relaxation of functional 511 

constraints as a consequence of the reduction of its effective population size.  512 

 513 
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Levels of nucleotide variation at protein coding regions are compatible with the history of 514 

the surveyed pig populations and with the presence of positive selection  515 

To assess the selective effect of domestication, we first studied the pattern of variation at 516 

synonymous and nonsynonymous positions using four estimators of variability that differentially 517 

weight the SNP frequencies (See Material and Methods). Ideally, it would be more informative to 518 

analyze the whole genome Site Frequency Spectrum (SFS). Unfortunately, the relatively high 519 

number of positions with missing data discourages their use. A possible alternative would be to 520 

obtain the SFS from a reduced number of samples, and therefore use only a partial number of SNPs 521 

for subsequent analysis. However, by using this alternative we can either lose power or introduce 522 

some sort of bias, hence, we preferred to analyze the whole set of SNPs using those estimates of 523 

variability based on different frequencies of the spectrum that account for missing data. 524 

Nevertheless, in order to clarify the patterns of the SFS for these populations, we estimated the 525 

SFS for a subset of SNPs (around 25-30% of the available coding variants, depending on the breed) 526 

for a projection of variants on 38 haploid samples in both LW, WB and on 10 haploid samples in 527 

IB (Figure S6). The SFS profile for both synonymous and nonsynonymous showed a rapid 528 

decrease in the number of variants from lower to higher frequencies. We observed a slight increase 529 

in the number of polymorphisms at the highest frequencies at both synonymous and 530 

nonsynonymous sites and no apparent signals of admixture (i.e., no sudden peaks at specific ranges 531 

of frequencies). Estimates of whole-genome variability levels per nucleotide using different 532 

estimators are shown in Figure 1 and detailed in Table S8. We have considered the synonymous 533 

positions as neutral reference since no strong bias in codon usage has been detected (Figure S5). 534 

We expect that, under the Standard Neutral Model (SNM), the values for the different estimates 535 

of variability should be similar whereas differences among them may indicate demographic and/or 536 

selective effects. We observed that i) the levels of variability are different for each estimator within 537 

breeds and ii) the levels of variability are different for the same estimator for different breeds. 538 

However, for each breed, we observed a similar ratio of nonsynonymous to synonymous 539 

polymorphisms regardless of the used estimator, suggesting that demographic effects are 540 

responsible for the differences in the levels of variability (Figure 1). The less variable population 541 

is the IB breed, which shows far fewer singletons compared to WB and LW, probably as a 542 

consequence of the known reduction of its population size. Note than in all the three populations, 543 

high-frequency variants are proportionally more abundant than those at intermediate frequencies, 544 
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which would be compatible with the accepted demographic history of the surveyed populations 545 

(i.e., introgression in LW, bottleneck in IB and some population reduction and introgression in 546 

WB) but also with the presence of pervasive positive selection in all three populations. 547 

 548 

Figure 1. Estimates of the levels of variation at synonymous (A) and nonsynonymous (B) sites for each variability 549 

estimators and pig population and where variants were classified as shared and exclusive variants. WB; Wild boar; 550 

IB, Iberian; LW, Large White. 551 

 552 
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α’s values and R_βγ ratios based on all SNPs might reflect a differential effect of selection 553 

due to domestication 554 

The differential effect of selection in the domestic and wild populations can be studied by 555 

comparing their respective α values. Figure 2A and Table S9 show the genome-wide α values 556 

calculated using the four variability estimators for each population. As expected, the α values are 557 

negative when α is calculated using the estimate of variability based on low-frequency variants 558 

(αFu&Li), probably reflecting the relatively high proportion of deleterious versus neutral mutations 559 

that are segregating at low frequencies. We observed a similar value of αFu&Li in all populations, 560 

suggesting a similar proportion of segregating deleterious mutations, irrespective of the 561 

domestication process or other demographic events (Figure 2A). Moreover, we observed milder 562 

negative values of α, or even positive for LW when α is calculated based on variants at high 563 

frequencies (Figure 2A), according to expectations, which point to a progressive elimination of 564 

deleterious mutations as we move towards higher frequencies. Nevertheless, the pattern of α (i.e., 565 

the comparative a value calculated using the four different variability estimators within each 566 

population) is very different in each population. WB and LW show positive or null α values when 567 

it is calculated based on high frequencies (Table S9). Instead, IB show very low negative α values 568 

for all estimators of variability. We found a compatible pattern when using the reduced subset of 569 

SNPs for the SFS estimation (Figure S6-A), where it can be observed that the estimates of a in all 570 

three populations are very similar among them (a ~ -0.05), although their confidence intervals are 571 

quite wide. 572 

 573 

The differences in the ratio of synonymous to nonsynonymous variability between the two 574 

different breeds is summarized by the R_βγ ratio (Figure 3). We observed that the largest deviations 575 

from R_βγ = 1 are observed when the ratio was calculated based on high-frequency variants 576 

(αFay&Wu). Although the ratio of the two populations is difficult to interpret because of their 577 

different underlying demographic histories, some trends can be observed. WB shows an excess of 578 

nonsynonymous variants segregating at intermediate frequencies (WB-IB, WB-LW), which might 579 

be explained by a past bottleneck that increased deleterious mutations at intermediate frequencies. 580 

In addition, the R_βγ ratio in IB-LW shows an incremental pattern of this ratio from low to high 581 
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frequencies, which is compatible with an increase of nonsynonymous beneficial variants on their 582 

way to fixation in LW. 583 

 584 

 585 

Figure 2. Estimates of α for each pig population based on different variability estimators. Total variants (A), exclusive 586 

variants (B), shared variants (C) and shared variants between IB and LW (D). Bootstrap intervals at 95% are indicated 587 

by a line at each bar. WB; Wild boar; IB, Iberian; LW, Large White. 588 

 589 

α’s and R_βγ ratios based on exclusive and shared polymorphisms might reflect changes in 590 

selective patterns before and after domestication  591 

We observed a high ratio of nonsynonymous to synonymous singletons (αFu&Li, Figure 2B) when 592 

the analysis was performed based on exclusive polymorphisms, suggesting that they have 593 

deleterious effects in all populations. Nevertheless, the values of α calculated based on 594 
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intermediate frequency variants (αTajima) in the WB and IB populations are lower than to those 595 

based on low-frequency variants, which point to a change in the selective pressure, maintaining 596 

nonsynonymous variants at relatively high frequencies. Nevertheless, the αFay&Wu values (-0.075, 597 

-0.971 and 0.083 for WB, IB and LW, respectively, Table S9) show a similar trend in relation to 598 

that based of Total SNPs, that is, close to 0 or positive for WB and LW, but strongly negative for 599 

IB. Concordant estimates are observed in the analysis of the SFS based on a reduced number of 600 

SNPs (0.155, -0.913 and 0.277 for WB, IB and LW, respectively, Figure 6B), with the difference 601 

that a clear positive and not 0 α values is observed in WB. The R_βγ statistic shows the same 602 

pattern as that calculated using all SNPs but with all over one (Figure 3). That indicates that WB 603 

has a higher proportion of nonsynonymous polymorphisms compared to IB, in contrast to what is 604 

observed when the analysis is performed based on all SNPs. This would suggest a recent change 605 

in the constraint of nonsynonymous positions likely at IB breed, as this ratio in IB-LW is also 606 

affected. This is also in agreement with the low α value in IB breed at exclusive variants regarding 607 

to Total SNPs. 608 

 609 

On the other hand, the α values based on shared variants are in general more moderate (closer to 610 

zero) than those based on exclusive variants (Figure 2C), likely because shared nonsynonymous 611 

polymorphisms are older and hence, expected to be more functionally constrained than the 612 

exclusive ones. Additionally, the values of α based on singletons (αFu&Li) are less negative than 613 

those based on intermediate-frequency variants. The α estimates based on shared variants in the 614 

analysis of the reduced subset of SNPs are very similar to Total SNPs and very close to zero (Figure 615 

6C). The R_βγ statistic for shared variants shows similar patterns than those observed for all 616 

variants but with values much closer to 1, indicating a small or moderate selective effect on the 617 

shared variants compared to all variants (Figure 3). 618 

 619 

When we calculated the α values from shared variants only between the two domestic breeds, we 620 

found an inverse pattern regarding to that calculated from all SNPs in each population, with high 621 

positive values of α based on low frequencies and very negative values when α is calculated based 622 

on high-frequency variants (Figure 2D). This could be due to i) the active elimination of new 623 

nonsynonymous variants to preserve differences among domestic breeds (αFu&Li) and ii) the 624 
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presence of nonsynonymous variants targeted by the process of domestication that shifts them 625 

toward high frequencies (αFay&wu). Nevertheless, we cannot discard that this excess of 626 

nonsynonymous variants at high frequencies and the lack of nonsynonymous singletons at low 627 

frequency could be due to a more complex and not previously explored demographic scenario. 628 

 629 

 630 

Figure 3. Estimates of R_βγ for all (left), exclusive (centre) and shared (right) variants. WB; Wild boar; IB, Iberian; 631 

LW, Large White. 632 

 633 

Values of α are dependent of the molecular scale but the patterns of the estimated α’s are 634 

similar across the different molecular scales 635 

In addition to the genome-wide analysis, α was calculated using three additional molecular scale 636 

levels: i) gene level, ii) genes within windows of 5 Mb, and iii) genes within the same pathway. 637 

Figure 4 shows the median of the distributions of the α values for each scale level. When the 638 

analysis was performed based on all SNPs, the pattern of α values estimated at the genome-wide 639 

level are concordant with those estimated at the gene level, genes within windows and genes within 640 

pathways for each breed. However, differences in the value of α within each breed are notorious 641 

depending on the scale level examined. The median estimates of α are generally lower at the gene 642 

scale level and most of them are very negative, while at the genome-wide scale, the α values are 643 

closer to zero. However, the distribution of α values can have a large variance at the gene scale 644 

since few variants are used for its estimation. We identified the regions and pathways that showed 645 

extreme α values (Table S10 and S11). We found a large number of genes showing α = 1 (highest 646 

value) because the number of polymorphic nonsynonymous variants per gene was zero. We also 647 

found a moderately high correlation of α values between breeds (rho ~ 0.7, Pearson correlation 648 
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when considering pathways) suggesting that in general, these breeds are under similar selective 649 

effects. When considering shared and exclusive variants, we generally observed the same pattern, 650 

from genes to whole-genome, that is, larger α values at the gene level and closer to zero α values 651 

at the larger scale. The differences in α values could be explained because of the distribution of 652 

this ratio statistic (i.e., skewed distribution to negative values) and the uneven distribution of the 653 

functional variants, in which the mean can be displaced to more negative values (see Materials and 654 

Methods).  655 

 656 

 657 

Figure 4. Estimates of the median values of α based on different variability estimators and for each pig population at 658 

different molecular scales and for all, exclusive and shared variants. Within each population, the order of different α’s 659 

is: Fu&Li, Watterson, Tajima and Fay&Wu. WB; wild boar; IB, Iberian; LW, Large White. 660 

 661 

Simulated data under different scenarios that include the joint effect of demography and 662 

selective events were more concordant to the observed data 663 

We used computer simulations to study how the different demographic and selective events 664 

occurred during domestication process shaped nucleotide variation present in these populations. 665 

We simulated populations mimicking the process of domestication using SLiM software (Haller 666 

and Messer 2017), coupled with several demographic events, including changes of the population 667 
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size and/or migration. We analyzed the genome-wide patterns of α and the R_βγ statistic produced 668 

by 63 simulated scenarios that included different demographic events and selective forces acting 669 

separately (simple scenarios) or jointly (complex scenarios). The results of the simulation study 670 

are summarized in Figures S7-S48. The observed patterns of α based on all variants in the surveyed 671 

populations are not compatible with simple scenarios that only consider demographic or positive 672 

selection forces (Figure S7). Rather, α patterns from simulated data (irrespective of the magnitude 673 

of α) fit a scenario with a predominant effect of negative selection (Figure S7). However, the R_βγ 674 

statistic do not fit any of the simulated simple scenarios (Figure S8). When more complex scenarios 675 

were considered (i.e., including a bottleneck, positive/negative selection and/or migration, Figures 676 

S9-S14), the general α patterns generated by those scenarios that include both negative and positive 677 

selection resembled those observed in WB and LW (with negative α’s at low frequency values to 678 

slightly positive α values at high frequency). The scenarios that also include some migration events 679 

are the ones that showed more concordance for these two breeds (Figures S12, S14). On the other 680 

hand, the IB population is more compatible with a scenario without positive selection and with a 681 

recent population size reduction (Figure S13). The trends in the R_βγ statistic are, in broad strokes, 682 

concordant with the conclusions extracted from the comparison between the observed and 683 

simulated patterns of α (Figures S15-S20).  684 

 685 

The observed patterns of α values based on exclusive variants are similar to those based on total 686 

variants but only for the LW population (Figure S21). These patterns cannot be fully explained by 687 

any of the complex simulated scenarios that are concordant when considering all variants, although 688 

surprisingly, they would be more compatible with those including a population size reduction 689 

(Figures S24-S28). The observed R_βγ’s are compatible with the scenarios that combine both types 690 

of selection and a population size reduction (WB-IB) or with scenarios that include migration 691 

(WB-LW; Figures S29-S34). Finally, the observed patterns of α and R_βγ statistics calculated from 692 

shared variants are also compatible with scenarios which includes both types of selection (Figures 693 

S35-S48), and being quite compatible with those including expansion demographic events. 694 

Overall, the simulations data showed that complex scenarios, including demography, migration, 695 

and positive and negative selection, may be necessary to explain the observed data. 696 

  697 
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 698 

Table 2. Posterior Probabilities for each ABC model (multinomial logistic method with tolerance 0.01) 699 

and for each pig population for Total variants, Exclusive variants. and Shared variants.  700 

 701 

Models that assume a discrete distribution of beneficial and deleterious mutations would fit 702 

better the observed data 703 

We used an approximate Bayesian computation (ABC) analysis to infer the DFE separately for 704 

each population using the ratios of nonsynonymous to synonymous variants (i.e., polymorphism 705 

and divergence) obtained from the whole-genome analysis (see Materials and Methods). Four 706 

different models implemented in polyDFE2 software (Tataru et al. 2019) were tested. These 707 

models overcome the inference of the demographic parameters (and others such as linkage effects) 708 

by the inclusion of nuisance parameters (see Material and Methods). The four models were: model 709 

A, which assumes a gamma distribution of deleterious mutations; model C, which assumes a 710 

gamma distribution for deleterious mutations and an exponential distribution for beneficial 711 

mutations; model DN, that assumes a discrete distribution of only deleterious and neutral 712 

mutations, and model D, that assumes a discrete distribution of deleterious, neutral and beneficial, 713 

mutations. Goodness of fit (GoF) analysis revealed that the simulated data under the different 714 

models fits differentially to the observed data, although the used range of parameters for priors are 715 

compatible with the observed data for all the four models (Table S12). Posterior probabilities 716 

showed that the DN is the most likely model for all three populations when using total number of 717 

Posterior probabilities for model comparison  (multinomial logistic method)
TOTAL modelA modelC modelDN modelD
WB 0.000 0.039 0.623 0.338
IB 0.000 0.031 0.968 0.001
LW 0.000 0.195 0.526 0.279

EXCLUSIVE modelA modelC modelDN modelD
WB 0.007 0.011 0.512 0.470
IB 0.004 0.001 0.995 0.000
LW 0.001 0.111 0.113 0.775

SHARED modelA modelC modelDN modelD
WB 0.001 0.334 0.405 0.260
IB 0.000 0.413 0.576 0.011
LW 0.001 0.447 0.462 0.090

 

Table 2. Posterior Probabilities (multinomial logistic method with tolerance 
0.01) for each ABC model and for each pig population for Total variants, 

Exclusive variants.and Shared variants. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2022. ; https://doi.org/10.1101/2020.09.09.289439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289439
http://creativecommons.org/licenses/by/4.0/


 30 

variants (Table 2). The posterior probability for this model is especially high for the IB breed 718 

(0.97). Nevertheless, note that the model D is just below the DN model by less than half of the 719 

probability in the case of WB and LW. Finally, the posterior predictive analysis indicated that the 720 

observed α values for the three populations are within the range determined by the minimum and 721 

maximum simulated α values (i.e., Q1-1.5*IQR, Q3+1.5*IQR, respectively, being IQR the 722 

Interquantile Range Q3-Q1) under both models DN and D, although not always inside the Q1 and 723 

Q3 quantiles (Figure 5). The mean parameters of the DFE inferred for each population are shown 724 

in Table 3 (see also Table S13). The obtained results indicated that the DFE is quite similar among 725 

all three populations, which is not entirely surprising because they share a long-term history. 726 

According to model DN, and despite there is a lot of uncertainty in the inferred estimates (Table 727 

S13), the obtained results show that the DFE contains a large fraction of very deleterious variants, 728 

with approximately 75% of the variants being strongly deleterious (S =−2000), and with 729 

approximately 12% of the variants being neutral or slightly deleterious (approx. 4%). The model 730 

D infers a higher proportion of weak deleterious mutations compared to the neutral ones, although 731 

the sum of both is similar to model DN. Finally, the inferred contribution of positive selection is 732 

relatively low (around 0.7-1.1%). 733 

 734 
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 735 

Figure 5. Posterior distributions of the α values for total variants based on different variability estimators (Fu&Li, 736 

Watterson, Tajima and Fay&Wu). Box plots indicate simulated distributions of α values. Red lines indicate observed 737 

α values.  738 

 739 

Figure 5. Posterior distribution of the α values for total variants for each ABC model and pig 
population. Four different estimators of alpha (Fu&Li, Watterson, Tajima and Fay&Wu, see 
Materials and Methods) are used. Box plots indicate simulated distributions of α values. Red line 
indicates observed α values. For models A and C we used the local regression method and 
tolerance=0.0005. For models DN and D we used lower tolerance (0.0001) but the rejection 
method, to limit the parameter estimates proportions between 0 and 1.
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The differential patterns of DFE based on exclusive versus shared variants may indicate 740 

selective differences after the split of the populations 741 

We are aware that the inference of the SFS is going to be highly distorted by choosing only a 742 

subsection of the variants (e.g., exclusive variants are mostly very recent and have no time to reach 743 

high frequencies and shared variants show no or few singletons per populations). However, the 744 

nuisance parameters incorporated in polyDFE should account for this effect (Tataru et al. 2017). 745 

The classification of polymorphisms in exclusive or shared are dependent of the relationship 746 

between two populations, and are a priori not related to the selective effect of these polymorphisms 747 

across their frequencies, although shared (mostly older) and exclusive (mostly recent) variants are 748 

chronologically related to the selection of variants. Then, we considered that the inference of DFE 749 

from exclusive and shared polymorphisms can give some clues about recent and past events related 750 

to the domestication processes. The models with higher posterior probabilities in the case of WB 751 

and IB breeds based on exclusive variants are the same than those for total variants (Table 2). 752 

However, for LW and based on exclusive variants, the model D has higher posterior probabilities, 753 

in contrast to what was obtained based on total variants (Table 2). The posterior predictive 754 

simulations showed that the models DN and D yielded similar estimated a values to those from 755 

the observed data, with the IB breed exhibiting the posterior distributions of a values more distant 756 

to the observed data (Figure 6). The estimates of the parameters of the models indicate that, for all 757 

populations, the exclusive segregating variants exhibit less strongly deleterious effects compared 758 

to those based on total and shared variants (Table 3). Indeed, the IB breed shows significantly 759 

lower proportions of strong deleterious mutations, according to its assumed recent population 760 

decline. As in the analysis based on total variants, posterior predictive analysis based on exclusive 761 

variants showed that models DN and D are those generating a values more similar to the observed 762 

ones, but in this case, the observed a values for the IB breed were slightly closer to the simulated 763 

a’s, compared to those based on total variants (Figure 6).The results obtained based on shared 764 

variants also show that the DN is the most likely model for all populations, although the model C 765 

shows closer probabilities (Table 2), especially in the case of LW, which might suggest that shared 766 

variants may have played a significant role as a substrate for adaptive process.  However, posterior 767 

predictive distribution of a values for this breed under this model resembled less the observed data 768 

compared to those for the most likely models (Figure 7). 769 
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 770 

Figure 6. Posterior distribution of the α values for exclusive variants based on different variability estimators (Fu&Li, 771 

Watterson, Tajima and Fay&Wu). Box plots indicate the simulated distributions of α values. Red lines indicate 772 

observed α values. 773 

 774 

Figure 6. Posterior distribution of the α values for Exclusive polymorphisms for each ABC model 
and pig population. Four different estimators of alpha (Fu&Li, Watterson, Tajima and Fay&Wu, see 
Materials and Methods) are used. Box plots indicate simulated distributions of α values. Red line 
indicates observed α values. For models A and C we used the local regression method and 
tolerance=0.0005. For models DN and D we used lower tolerance (0.0001) but the rejection 
method, to limit the parameter estimates proportions between 0 and 1.
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 775 

Figure 7. Posterior distribution of the α values for shared variants based on different variability estimators (Fu&Li, 776 

Watterson, Tajima and Fay&Wu). Box plots indicate the simulated distributions of α values. Red lines indicate 777 

observed α values. .778 

Figure 7. Posterior distribution of the α values for Shared polymorphisms for each ABC model 
and pig population. Four different estimators of alpha (Fu&Li, Watterson, Tajima and Fay&Wu, see 
Materials and Methods) are used. Box plots indicate simulated distributions of α values. Red line 
indicates observed α values. For models A and C we used the local regression method and 
tolerance=0.0005. For models DN and D we used lower tolerance (0.0001) but the rejection 
method, to limit the parameter estimates proportions between 0 and 1.


WB LWIB

model A  
(Γ distribution 

only deleterious)

model C  
(Γ distribution 

deleterious plus 
exponential 

distr. beneficial)

model D  
(deleterious plus 

beneficial, discrete 
distribution)

model DN  
(deleterious discrete 

distribution)

 POSTERIOR 
α: SHARED

alfa.fuli alfa.watt alfa.taji alfa.fayw

−1
.4

−1
.2

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

Posterior Dist (alpha) modelA Shared: Wildboar

alfa.fuli alfa.watt alfa.taji alfa.fayw

−1
.5

−1
.0

−0
.5

0.
0

Posterior Dist (alpha) modelA Shared: Iberian

alfa.fuli alfa.watt alfa.taji alfa.fayw

−1
.0

−0
.5

0.
0

Posterior Dist (alpha) modelA Shared: LargeWhite

alfa.fuli alfa.watt alfa.taji alfa.fayw

−0
.3

−0
.2

−0
.1

0.
0

0.
1

Posterior Dist (alpha) modelC Shared: Wildboar

alfa.fuli alfa.watt alfa.taji alfa.fayw

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

0.
15

Posterior Dist (alpha) modelC Shared: Iberian

alfa.fuli alfa.watt alfa.taji alfa.fayw

−0
.3

−0
.2

−0
.1

0.
0

0.
1

Posterior Dist (alpha) modelC  Shared: Largewhite

alfa.fuli alfa.watt alfa.taji alfa.fayw

−0
.4

−0
.3

−0
.2

−0
.1

0.
0

Posterior Dist (alpha) modelDnoP Shared: Wildboar

alfa.fuli alfa.watt alfa.taji alfa.fayw

−0
.4

−0
.3

−0
.2

−0
.1

0.
0

Posterior Dist (alpha) modelDnoP Shared: Iberian

alfa.fuli alfa.watt alfa.taji alfa.fayw

−0
.4

−0
.3

−0
.2

−0
.1

0.
0

Posterior Dist (alpha) modelDnoP Shared: LargeWhite

alfa.fuli alfa.watt alfa.taji alfa.fayw

−0
.6

−0
.4

−0
.2

0.
0

0.
2

Posterior Dist (alpha) modelD Shared: Wildboar

alfa.fuli alfa.watt alfa.taji alfa.fayw

−0
.6

−0
.4

−0
.2

0.
0

0.
2

Posterior Dist (alpha) modelD Shared: Iberian

alfa.fuli alfa.watt alfa.taji alfa.fayw

−0
.6

−0
.4

−0
.2

0.
0

0.
2

Posterior Dist (alpha) modelD Shared: LargeWhite

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2022. ; https://doi.org/10.1101/2020.09.09.289439doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.289439
http://creativecommons.org/licenses/by/4.0/


 35 

 779 

Table 3. Inferred selective parameters (weighted mean) for each ABC model and pig population. (A) Total variants. (B) Exclusive polymorphisms. (C) Shared 780 
polymorphisms. Note that for model DN and D, the proportion of each discrete S value is relative to the total S values, considering negative inferred values as zero. 781 

 782 

Sd: 4Ns mean value for mutations with negative effects. b: shape of the gamma distribution for mutations with negative effect. pb: proportion of beneficial 783 
mutations. Sb: 4Ns mean value for mutations with positive effects. p1 (S=-2000): proportion of functional variants having 4Ns=-2000, p2 (S=-200): proportion of 784 
functional variants having 4Ns=-200, p3 (S=-20): proportion of functional variants having 4Ns=-20, p4 (S=-2): proportion of functional variants having 4Ns=-2, 785 
p5 (S=0): proportion of functional variants having 4Ns=0 (neutral), p6 (S=+2): proportion of functional variants having 4Ns=+2, p7 (S=+20): proportion of 786 
functional variants having 4Ns=+20. Nuisance parameters are not shown. 787 

Mean model A model C model DN model D
TOTAL Sd b Sd b pb Sb p1 (S=-2000) p2 (S=-200) p3 (S=-20) p4 (S=-2) p5 (S=0) p1 (S=-2000) p2 (S=-200) p3 (S=-20) p4 (S=-2) p5 (S=0) p6 (S=2) p7 (S=20)
WB 24634.19 0.179 4724.54 2.514 0.145 0.009 0.736 0.070 0.024 0.045 0.125 0.741 0.057 0.023 0.098 0.074 0.006 0.001
IB 27016.47 0.180 6625.76 3.064 0.144 0.011 0.767 0.049 0.016 0.045 0.123 0.757 0.057 0.018 0.061 0.098 0.008 0.001
LW 20351.15 0.189 6563.28 1.940 0.137 0.017 0.772 0.058 0.019 0.027 0.125 0.771 0.050 0.019 0.076 0.073 0.010 0.001

Mean model A model C model DN model D
EXCLUSIVE Sd b Sd b pb Sb p1 (S=-2000) p2 (S=-200) p3 (S=-20) p4 (S=-2) p5 (S=0) p1 (S=-2000) p2 (S=-200) p3 (S=-20) p4 (S=-2) p5 (S=0) p6 (S=2) p7 (S=20)
WB 33447.89 0.170 3694.78 0.821 0.153 0.002 0.723 0.055 0.018 0.091 0.113 0.709 0.064 0.020 0.135 0.065 0.006 0.001
IB 1834.41 0.216 253.88 44.58 0.151 0.038 0.584 0.091 0.027 0.223 0.074 0.599 0.101 0.028 0.142 0.119 0.009 0.001
LW 22064.47 0.187 8311.62 1.046 0.133 0.027 0.751 0.077 0.025 0.025 0.123 0.762 0.058 0.020 0.091 0.058 0.010 0.001

Mean model A model C model DN model D
SHARED Sd b Sd b pb Sb p1 (S=-2000) p2 (S=-200) p3 (S=-20) p4 (S=-2) p5 (S=0) p1 (S=-2000) p2 (S=-200) p3 (S=-20) p4 (S=-2) p5 (S=0) p6 (S=2) p7 (S=20)
WB 25128.11 0.182 5223.06 5.852 0.146 0.016 0.790 0.042 0.013 0.021 0.133 0.773 0.052 0.017 0.061 0.085 0.012 0.001
IB 29540.82 0.182 9042.17 11.758 0.147 0.005 0.804 0.035 0.010 0.020 0.131 0.783 0.051 0.016 0.045 0.089 0.014 0.001
LW 24929.43 0.185 5169.65 5.573 0.137 0.020 0.798 0.038 0.014 0.022 0.129 0.777 0.052 0.017 0.059 0.084 0.011 0.001

Table 3. Mean Inference of parameters for each of the four analyzed models
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 788 
DISCUSSION 789 

The study of the genetic effects produced by domestication can be challenged for many reasons. 790 

First, the current domesticated species have been severely manipulated by humans, which means 791 

that most of individuals were not crossed randomly, and consequently, different complex 792 

domestication scenarios can be found such as a high degree of structuration, a fast creation of new 793 

lineages from highly inbreeding crosses, a forced introgression between far related populations or 794 

from close species and a very divergent selective events across time and space, among others (e.g., 795 

Mignon-Grasteau et al. 2005, Ross-Ibarra et al. 2007, Ramos-Onsins et al. 2014, Gaut et al. 2018). 796 

Moreover, in animals, the polygenic nature of the domestication traits often precludes identifying 797 

their underlying genes since the domestic phenotypes might be probably caused by subtle allele-798 

frequency changes of variants distributed throughout the genome, and hence, very difficult to be 799 

detect. In addition, the study of the effects of selection using genome sequences that contain a 800 

nonnegligible fraction of missing data, such as those from non-model organisms, is challenging 801 

and needs the use of appropriate methods to account for these positions. Statistics that exploit the 802 

frequency of the variants while accounting for missing data are particularly appropriate for such 803 

analyses (Ferretti, Raineri, and Ramos-Onsins 2012). Despite all this inconvenience, domestic 804 

populations are an excellent model to study the effect of strong and recent selection (e.g., Doebley, 805 

Gaut and Smith 2006, Groenen 2016). 806 

 807 

One of the main goals of this work is to provide a novel approach that combines the use of different 808 

estimators of variability that account for missing data with the asymptotic approach proposed by 809 

Messer and Petrov (2013) and Uricchio et al. (2019) in order to take into account some of these 810 

issues. This approach is designed to be used as an alternative in case of the estimation of the full 811 

SFS is compromised by large amounts of missing data. Although it can be less precise (we used 812 

only four statistics to capture the entire trend of α’s across the SFS), it allows analyzing a larger 813 

number of positions, helps to reduce the variance (by summarizing the SFS into few statistics) and 814 

facilitates the visual interpretation. To illustrate the utility of the proposed approach, we used this 815 

methodology to perform an exhaustive comparative study of the observed patterns of functional 816 

versus neutral diversity and divergence in domestic pigs and wild boars. In addition, and to delve 817 

deeper into the domestication process of this species, we also performed a forward simulation 818 
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study, including several diverse evolutionary scenarios and the inference of DFE parameters given 819 

different selective models. Note that the DFE was inferred using Bayesian calculations (ABC) 820 

instead of exact Bayesian or Likelihood methods since despite ABC requires additional steps and 821 

validation analysis and is in general less precise, it allows contrasting models and inferring 822 

parameters from complex datasets or data containing missing information (Beaumont et al. 2002). 823 

Finally, we have also analysed exclusive and shared polymorphisms separately to extract 824 

information about the new and the past domestication events of the demographic history of these 825 

populations, but also about the role of population admixture.  826 

 827 

General selection pressures on pigs and the process of domestication 828 

Like us, others have been already performed several analyses to shed light on the process of 829 

domestication using the MacDonald and Kreitman extension methods or using other estimates 830 

such as variability or divergence at functional or synonymous positions (MacEachern et al. 2009, 831 

Kono et al. 2016, Makino et al. 2018). As in Makino et al. (2018), we do not observe an increase 832 

in functional diversity in domestic versus wild populations. This may be explained by several 833 

recent events occurring in these populations: (i) differences in the recent history our local and 834 

commercial domesticated populations (i.e., high inbreeding degree in Iberian local pigs and recent 835 

gene flow from Asian pigs into the commercial pigs); (ii) demographic effects in the wild boar 836 

population that may have reduced their diversity (Groenen et al 2016) or have increased the 837 

confidence intervals  of the patterns of a’s (Figures S5-S46); (iii) differential adaptive forces in 838 

local (IB) versus commercial pigs (LW), with a recent high selective pressure in this last 839 

population. 840 

Accordingly, with their recent history, the IB breed shows the lowest levels of synonymous and 841 

nonsynonymous variation among the breeds studied. Note that the two domestic breeds analyzed 842 

here have very different recent histories: the IB is a local Spanish breed (Guadyerbas) that suffered 843 

a strong bottleneck during the 1970s (Esteve-Codina et al. 2013) and with no evidence of 844 

introgression whereas the LW breed was admixed with pigs of Asian origin (Bosse, Megens, 845 

Madsen, et al. 2014). Therefore, our observations are perfectly compatible with the small effective 846 

population size and the close relatedness of the individuals expected for this population. However, 847 

for the other two breeds, the obtained results do not seem to conform to what was expected. since 848 
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we detected very similar levels of variability between LW and WB, even though we expected to 849 

find higher levels of variation in the first due to the documented introgression of Asian germplasm 850 

into LW (approximately 20–35% of the genome has been estimated to be of Asian origin; Groenen 851 

et al. 2012, Bosse et al. 2012, Bosse, Megens, Madsen, et al. 2014, Frantz et al. 2015, Bianco et 852 

al. 2015, Ai et al. 2015). Interestingly, the high levels of variability were observed for variants that 853 

belonged to different frequency ranges in these two populations: singletons in WB and in high-854 

frequency derived alleles in LW. Although these differences may be mainly due to the effects of 855 

gene flow in LW, we cannot discard an important effect of the selective programs applied to this 856 

commercial breed. 857 

 858 

Domestication hallmarks at pig coding regions 859 

Another main goal of this work was finding the hallmarks of positive selection produced as a 860 

consequence of the domestication since this process implies a process of positive (human 861 

mediated) selection for traits that benefit both humans and the species of interest. The paucity of 862 

fixed variants found at coding positions in the three breeds indicates that the observed heritable 863 

phenotypic differences among the breeds are either due to: i) very few selective sweeps, ii) positive 864 

selection at noncoding functional regions that were not analyzed in here, iii) changes in the 865 

frequencies of nonsynonymous variants without being fixed. If the first hypothesis is true, we 866 

expect that domestication process should fix the adaptive variants for those genes underlaying the 867 

phenotypes of interest. However, we found no fixed variants between domestic breeds and wild 868 

pigs. Although this might be a consequence of some genetic exchange among populations, we 869 

found that the individuals were classified in groups by their location and according to their 870 

respective phenotype (Figure S3A), which suggest that the domestication features of the different 871 

breeds, even if admixed, are maintained. When we checked the α values for those genes that were 872 

previously reported to show signals of positive selection using other approaches (Groenen 2016), 873 

we found that these genes show little or no nonsynonymous polymorphisms or fixed variants 874 

(Table S14). This absence of variability is typical from regions under selective sweeps, although 875 

not necessarily implicating that these genes are the targets of domestication since there are no 876 

variants fixed or close to fixation at their coding regions. We only found significant values of α 877 

over zero at the gene KIT in the IB breed, the genes IGF2R and JMJD1C in the LW breed and the 878 
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gene LRRTM3 in the WB population. This low number of genes with positive α values would 879 

make the first hypothesis unlikely. The second hypothesis implies that the functional regions 880 

implicated in domestication would be out of coding regions (promotors, enhancers, and others. 881 

(e.g., Li et al 2018, Rubin et al 2012, Anderson 2012). However, although being a promising 882 

hypothesis, we did not analyze those regions because it requires a very accurate analysis of 883 

homology and their associated functionality, which is very complicated at the genome level, 884 

especially for non-model species with a high proportion of missing data. The third hypothesis 885 

suggests that the domesticated phenotype is caused by a moderate change in the frequency of a 886 

relatively large number of variants with small selective effects. In this case, depending on the size 887 

of the selective effect there would only be changes in the frequencies of the variants without 888 

reaching fixation. In the last case, the functional variants involved in domestication should be 889 

segregating in the analyzed populations. These positively selected variants segregating at high 890 

frequencies, together with the presence of deleterious mutations also segregating at low 891 

frequencies, would be reflected as an excess of non-neutral polymorphism compared to divergence 892 

(i.e., negative ! statistic at high frequencies). Hence, in cases where there is a significant 893 

proportion of positive selection variants that have not yet being fixed, we expect to observe a trend 894 

in the α slope showing more negative α values at intermediate-high frequencies. However, we did 895 

not observe this pattern in any of the three populations examined when the analysis was performed 896 

based on all coding positions, although it was observed for α values estimated based on exclusive 897 

and shared mutations, which suggest that different types of variants (total, shared and exclusive) 898 

could be capturing different aspects of the domestication process (demography versus selection).  899 

The estimation of the DFE from the ABC analysis showed that the most likely evolutionary model 900 

for all three populations based on total variants was that consisting in a discrete DFE without 901 

significant positive selection effect (model DN; Table 2), showing a clear genome-wide effect of 902 

the action of purifying selection. We also observed a reduced effect of purifying selection in IB 903 

and in less extend in WB when the analysis was performed based on exclusive variants, which 904 

suggest a reduction of the population size of these two populations. However, for LW and when 905 

the analysis was performed based on exclusive positions, the most likely model was that with a 906 

discrete distribution that includes the effect of positive selection (model D; Table 2), which may 907 

reflect the increase of new Asian variants which increased in frequency by artificial selection.. 908 

Nevertheless, the differences between models including or excluding beneficial variants were 909 
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relatively small, suggesting that, in general, a few proportion of beneficial mutations contributed 910 

to the domestication process. In fact, under model D, the estimated global proportion of beneficial 911 

mutations (weak and strong) was relatively small and slightly higher when the analysis is based 912 

on shared variants (0.1% based on total and exclusive SNPs and 1.4% based on shared SNPs; 913 

Table 3) and similar in wild and domestic populations. Nevertheless, this proportion of mutations 914 

may be substantial in absolute numbers (i.e., several thousand mutations).  915 

Although an excess of nonsynonymous shared variants compared to the synonymous ones can be 916 

explained by some demographic scenarios such as bottlenecks, they may also reflect biological 917 

constraints at the species level. For instance, the phenotypic variation in a polygenic selective 918 

scenario could be caused by subtle changes in the frequencies of many genes (in an infinitesimal 919 

scenario) which would result in the observed phenotypic differences among the breeds. On the 920 

other hand, exclusive variants may reflect recent and breed-specific selective hallmarks and hence, 921 

would be responsible for the observed differences between domesticated and wild breeds. In both 922 

cases, shared and exclusive polymorphisms are contributing to the differences in the SFS between 923 

functional and non-functional positions. Nevertheless, the differences of the DFE when the 924 

analysis was performed based on total or shared variants is very small, suggesting that exclusive 925 

variants would be more informative to detect the effects of the change of selective effects.  926 

In addition, our simulated domestication scenarios indicate that the effect of positive selection 927 

irrespective of being either strong and affecting a small percentage of variants or weak and 928 

affecting a large percentage of variants is not reflected as marked changes in the estimated patterns 929 

of α. This could be due to the short time since the change in the fitness effects of variants occurred 930 

but also by the interaction of positive and negative selection and demographic processes in the 931 

case of the complex scenarios, which are the most compatible with the observed data. In fact, the 932 

observed α patterns are compatible with the simulated demographic effects (population size 933 

reduction in WB and IB and gene flow in LW) but also, as in the ABC analysis results, with the 934 

effect of positive selection in LW when the analysis was based on exclusive variants.  935 

We are aware that the evolutionary models used here are very simple and contain few parameters 936 

and the real observations contain high heterogeneity that could not be fitted to these models. The 937 

reasons for this heterogeneity may be technical (e.g., not adequate filtering of raw sequences), 938 

conceptual (undetected correlations that distort model assumptions) or biological (too simplistic 939 
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models to explain the real data). In any case, the model that assumes a discrete distribution of 940 

deleterious mutations (model DN) seems to generally explain better the observed data, together 941 

with the model D (model DN but including the effect of beneficial selection) in a minor degree 942 

and also that exclusive variants seemed to be more informative to detect the changes of the 943 

selective effects.  944 

 945 

Final remarks 946 

The observed patterns of variability are compatible with the presence of deleterious mutations 947 

segregating in all three breeds but also with weak signals of positive selection. In addition, when 948 

the variants are split into shared and exclusive, we observed patterns that are in line with the 949 

simulated data under different demographic scenarios with the joint action of positive and negative 950 

selection. We found a clear effect of deleterious mutations at low-frequency variants and a possible 951 

mild effect of positive selection at higher frequencies. However, additional analyses contrasting 952 

evolutionary models that consider the effects of standing variation, whose effect change under the 953 

domestication process, may shed more light and will help to understand the patterns of variation 954 

shaped by the domestication process. 955 
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