

1 **“Organ-in-a-column” coupled on-line with liquid chromatography-**
2 **mass spectrometry**

3

4 Stian Kogler^{1,2}, Aleksandra Aizenshtadt¹, Sean Harrison^{1,3}, Frøydis Sved Skottvoll^{1,2}, Henriette
5 Engen Berg², Shadab Abadpour^{1,4}, Hanne Scholz¹, Gareth Sullivan^{3,5}, Bernd Thiede⁶, Elsa
6 Lundanes², Inger Lise Bogen⁷, Stefan Krauss^{1,8}, Hanne Røberg-Larsen², Steven Ray Wilson^{1,2*}

7

8 ¹Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Faculty
9 of Medicine, University of Oslo, Oslo, Norway

10 ²Section for Chemical Life Sciences, Department of Chemistry, University of Oslo, Oslo,
11 Norway

12 ³Department of Pediatric Research, Oslo University Hospital, Oslo, Norway

13 ⁴Department of Transplant Medicine and Institute for Surgical Research, Oslo University
14 Hospital, Rikshospitalet, Oslo, Norway

15 ⁵Institute of Immunology, Oslo University Hospital, Oslo, Norway

16 ⁶Section for Biochemistry and Molecular Biology, Department of Biosciences, University of
17 Oslo, Oslo, Norway

18 ⁷Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University
19 Hospital, Oslo, Norway

20 ⁸Department of Immunology and Transfusion Medicine, Oslo University Hospital,
21 Rikshospitalet, Oslo, Norway

22

23 *Corresponding author: Steven Ray Wilson, stevenw@kjemi.uio.no, +47 97010953. Full
24 address: Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315
25 Oslo, Norway. <https://orcid.org/0000-0002-9755-1188>

26 **Abstract**

27 Organoids, i.e. laboratory-grown organ models developed from stem cells, are emerging
28 tools for studying organ physiology, disease modeling and drug development. On-line
29 analysis of organoids with mass spectrometry would provide analytical versatility and
30 automation. To achieve these features with robust hardware, we have loaded liquid
31 chromatography column housings with induced pluripotent stem cell (iPSC) derived liver
32 organoids and coupled the “organ-in-a-column” units on-line with liquid chromatography-
33 mass spectrometry (LC-MS). Liver organoids were co-loaded with glass beads to achieve an
34 even distribution of organoids throughout the column while preventing clogging. The liver
35 organoids were interrogated “on column” with heroin, followed by on-line monitoring of the
36 drug’s phase 1 metabolism. Enzymatic metabolism of heroin produced in the “organ-in-a-
37 column” units was detected and monitored using a triple quadrupole MS instrument, serving
38 as a proof-of-concept for on-line coupling of liver organoids and mass spectrometry. Taken
39 together, the technology allows direct integration of liver organoids with LC-MS, allowing
40 selective and automated tracking of drug metabolism over time.

41

42 **Keywords:** Heroin; Induced Pluripotent Stem Cells; Liquid Chromatography; Mass
43 Spectrometry; Metabolism; On-line; Liver Organoid

44

45 Drug discovery and development is an extremely costly process, and the number of new
46 drugs reaching the market per billion dollars spent on research and development is
47 consistently low. Moreover, the efficacy/toxicity of drugs can vary significantly in target
48 patients, calling for personalized drug testing [1]. Key bottlenecks of efficient drug
49 development include the limited predictive value of traditional cell cultures and animal
50 models for human drug metabolism, and personalization of the model systems [2]. Hence,
51 novel technologies for predicting personalized drug metabolism are being explored.

52 Organoids, here broadly defined as *in vitro* 3D models that exhibit features of the mature
53 organ in question, are rapidly emerging as powerful tools for drug discovery and
54 personalized testing. Organoids can be readily derived from stem cells and carry the
55 potential for serving as relevant and personalized testing materials [3]. Typically, organoids
56 are 200-500 μm in size, consisting of organ-specific cell types [4]. For example, liver
57 organoids can consist of hepatocytes, hepatic stellate cells, endothelial cells, and
58 cholangiocytes, and can be used as a tool for assessing aspects of drug metabolism and
59 toxicity [5, 6].

60 For measuring small molecules such as drugs and their metabolites, liquid chromatography-
61 mass spectrometry (LC-MS) is a method of choice in analytical chemistry. Mass
62 spectrometric analysis of organoids has been performed indirectly (“off-line”), i.e. samples
63 are collected and handled semi-manually prior to MS [7-10]. Off-line handling can be time
64 consuming and prone to variations, depending on the method, sample size, and analyte
65 stability. Direct on-line MS analysis of organoids would potentially offer the advantage of
66 increased automation and possibly improved throughput. Verpoorte and co-workers have
67 previously combined organs/organ models, chip microfluidics and separation science, for
68 studying metabolism of liver slices [11] and pharmacology in a gut-on-chip [12]. We have
69 recently coupled liver organoids with sample preparation techniques such as
70 electromembrane extraction (EME) [13], which we also found to be compatible with on-line
71 coupling of organoid-containing chips to LC-MS for studying organoid drug metabolism [14].
72 However, EME requires an electrical current driven transfer of metabolites through an oil
73 membrane into an MS-compatible solution which can potentially limit the spectrum of
74 analytes that can be analyzed [14]. Additionally, a key challenge for coupling chips with MS is
75 ensuring practical and robust connections and standardization. Therefore, we have explored

76 placing liver organoids directly into standardized/commercial tubing and connectors of liquid
77 chromatography (LC), perhaps the most applied fluidics platform in analytical chemistry.
78 Specifically, LC column housings were loaded with organoids generated from iPSC-derived
79 hepatocyte-like cells (iHLC organoids) and sandwiched between an upstream drug delivery
80 system and a downstream connector to a traditional LC-MS setup. The system, termed
81 “organ-in-a-column” allowed in-column cultivation of liver organoids for an extended period,
82 “on-line” exposure to drugs and monitoring of drug metabolism using mass spectrometry.

83 **Experimental**

84 *Consumables and basic hardware*

85 Stainless steel (SS) unions, reducing unions (1/16" to 1/32"), SS ferrules and nuts (all for
86 1/16" tubing and for 1/32" tubing), SS tubing (1/32" outer diameter (OD), 0.020" inner
87 diameter (ID) and 0.005" ID), perfluoroalkoxy alkane (PFA) tubing (1/16" OD, 0.75 mm ID)
88 and 1/16" SS screens (2 μ m pores) were purchased from VICI Valco (Schenkon, Switzerland).
89 SST Vipers (130 μ m x 650 mm) were purchased from Thermo Fisher Scientific (Waltham, MA,
90 USA). A chromatographic column (1 mm x 5 cm) packed with Kromasil C4 (3.5 μ m particles,
91 100 \AA pore size) was purchased from Teknolab (Ski, Norway). Luer lock syringes (10-20 mL)
92 were purchased from B. Braun Melsungen AG (Hessen, Germany). Acid-washed glass beads
93 (150 – 212 μ m) were purchased from Sigma Aldrich (St. Louis, MO, USA).

94

95 *Reagents and solutions*

96 Formic acid (FA, \geq 98%) was purchased from Merck (Darmstadt, Germany). Water (LC-MS
97 grade) and acetonitrile (ACN, LC-MS grade) were purchased from VWR International (Oslo,
98 Norway). Tough 1500 3D-printer resin was purchased from Formlabs Inc. (Somerville, MA,
99 USA). For liquid chromatography, mobile phase (MP) reservoir A contained 0.1% FA in HPLC
100 water (v/v). MP reservoir B contained ACN/HPLC water/FA (90/10/0.1%, v/v/v).
101 Heroin HCl, 6-acetyl morphine (6-AM) HCl, and morphine were obtained from Lipomed AG
102 (Arlesheim, Switzerland). Heroin-d9, 6-AM-d6, and morphine-d3 (used for heroin stability
103 experiments only) were purchased from Cerilliant (Austin, TX, USA). Fetal bovine serum-free
104 medium (William's E medium, supplemented with 0.1 μ M dexamethasone and 1% insulin-
105 transferrin-selenium mix) and L15 base medium (prepared according to [15]) is hereafter
106 referred to as organoid medium.

107

108 *Organoids*

109 iHLC organoids originating from 3 cell lines (iHLC-1 = WTC-11, iHLC-2 = WTSli013-A, and
110 iHLC-3 = WTSli028-A, Wellcome Trust Sanger Institute) were differentiated toward liver
111 organoids using a modification of the protocol by Lee et al. [16]. iPSC line AG27 was
112 differentiated to form liver organoids containing induced hepatocyte like cells (iHLCs) as
113 described by Harrison et al. [10] and was used in initial experiments (and figures 5 and SI1).
114 Cryopreserved primary human hepatocytes (PHH, Gibco, catalogue no. HMCPMS, lot
115 HU8287) were thawed in the Hepatocytes thaw media (Gibco, catalogue no. CM7500)
116 according to manufacturer's protocol. Uniform PHH spheroids were created by aggregation
117 in house-made agarose microwells as described before [17] and cultured in Williams E
118 medium (Thermo Fisher Scientific, catalogue no. A1217601) supplemented with 0,5 % FBS
119 (Thermo Fisher Scientific, catalogue no. 41400045), 2 mM L-glutamine (Thermo Fisher
120 Scientific, catalogue no. 35050038), 10 µg/ml insulin, 5.5 µ g/ml transferrin, 6.7 ng/ml
121 sodium selenite (Thermo Fisher Scientific, catalogue no. 41400045) and 0.1 µM
122 dexamethasone (Sigma Aldrich, catalogue no. D4902).

123

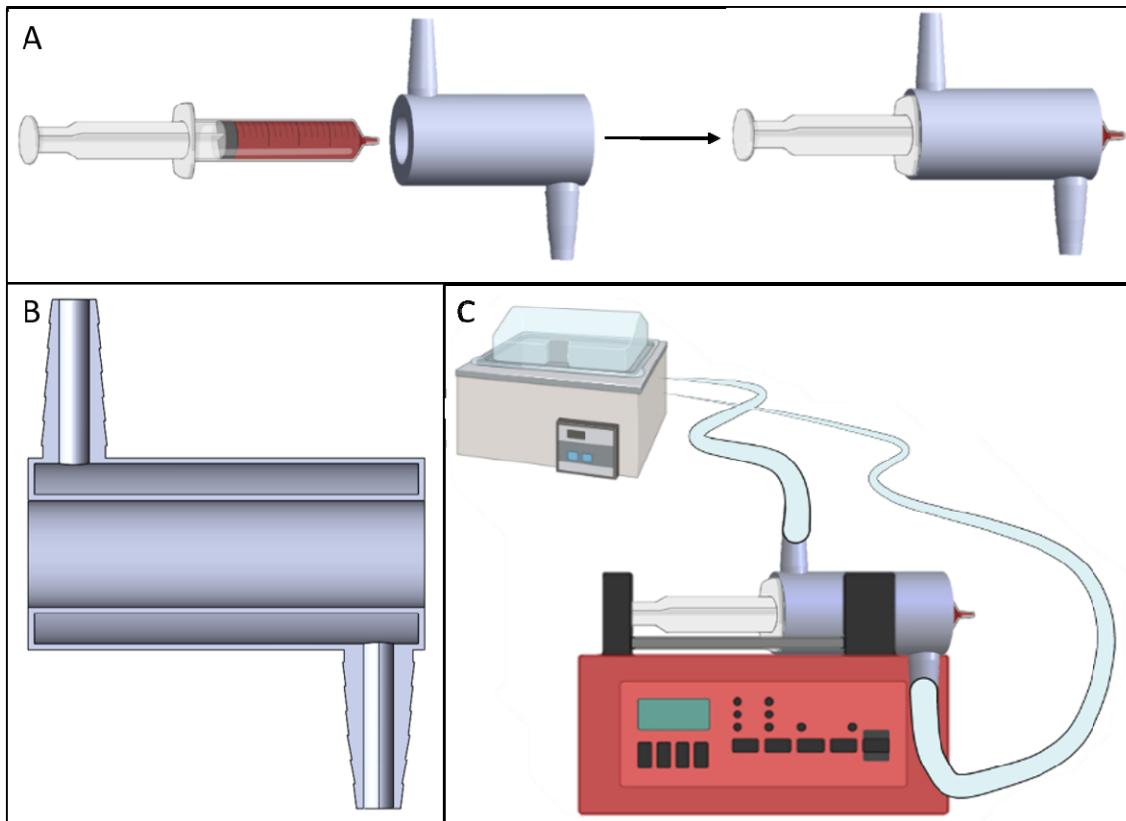
124 *Instruments and advanced hardware*

125 The Dionex UltiMate 3000 UHPLC system and the TSQ Vantage MS with the HESI-II ion
126 source were purchased from Thermo Fisher Scientific. The syringe pump (AL-1000) was
127 bought from World Precision Instruments (Sarasota, FL, USA). A 2-position 10-port valve (for
128 1/32", C82X-6670ED) was purchased from VICI Valco. A SUB Aqua 5 Plus water bath was
129 purchased from Grant Instruments (Cambridge, UK). The Form 3B 3D-printer and wash and
130 cure station were purchased from Formlabs Inc (Somerville, MA, USA). A PST-BPH-15 column
131 heater was purchased from MS Wil (Aarle-Rixtel, the Netherlands). The refrigerated
132 circulating water bath was purchased from Haake (Berlin, Germany).

133

134 *Heroin stability testing*

135 Stability testing of heroin was performed by incubating solutions of L15 base medium,
136 serum-free organoid medium, and type 1 water. The incubation was performed at 4 °C and
137 37 °C. For each solution, 100 µL freshly made 1 mM heroin (in 0.9 % NaCl) or 0.9 % NaCl
138 (control) and 900 µL organoid medium were mixed. At 0, 24, 48, and 120 hours, 100 µL

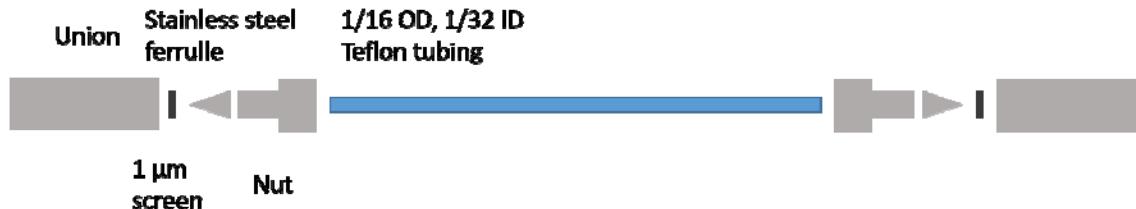

139 samples were collected from all solutions. To precipitate proteins, 10 μ L of 1.1 M FA was
140 added to each sample, followed by vortexing and 2 min centrifugation at 14500 g. 50 μ L of
141 the resulting supernatant was transferred to a new vial and diluted to 1 mL with type 1
142 water. Samples were stored at -80 °C prior to analysis. For these experiments, the
143 determination of heroin, 6-AM, and morphine were performed using UHPLC-MS as
144 previously described by Skottvoll *et al.* [13].

145

146 *3D printed syringe cooler*

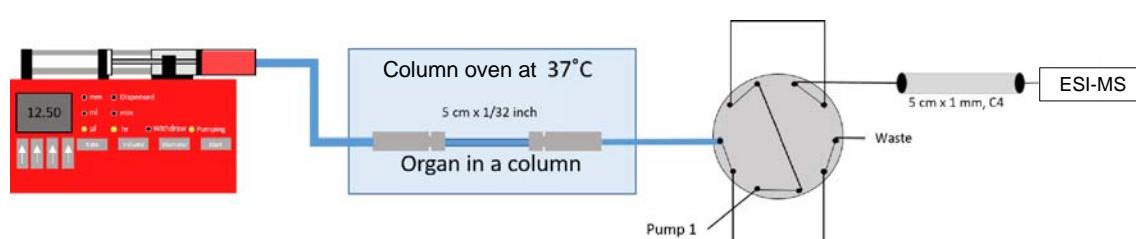
147 A 3D-printed double-wall syringe cooler was printed and fitted directly to the syringe
148 cylinder (**Figure 1A**). 3D-printed syringe coolers were designed using SOLIDWORKS CAD-
149 software (3DS, Paris, France). Syringe coolers were printed in Tough 1500 resin with the
150 Form 3B 3D-printer. A cross-section of the double-walled design is shown in **Figure 1B**. Wall
151 thickness in the main body was 1 mm. The flow through part of the body was 5 mm thick,
152 and the inner diameter was adapted to fit the individual syringe. Note that dimensions of e.
153 g. a 3 mL syringe varies greatly between different manufacturers. Cold water (4 °C) was
154 pumped through the cooler with a refrigerated circulating water bath (**Figure 1C**). To ensure
155 a cold stable temperature from the start, the water bath, organoid medium, and heroin
156 solutions were cooled prior to the start of an experiment. Due to the low flow rate (15 μ L/h),
157 and a small ID of the tubing (0.75 mm), the medium is quickly heated to physiological
158 temperature upon introduction to the “organ-in-a-column” which is kept at 37 °C in a
159 column heater.

160


162 **Fig 1.** A: The 3D-printed syringe cooler was tailored to fit the syringe cylinder, ensuring a snug fit. 10 mL Luer
163 lock syringes from B. Braun Omnifix were used. B: Cross section of the syringe cooler's double-walled design.
164 Wall thickness was 1 mm. The water chamber was 5 mm thick. C: The syringe cooler was connected to a
165 refrigerated circulation bath from Haake.

166

167 *“Organ-in-a-column”*


168 For fabrication of the column housing, a 10 cm long piece of PTFE/PFA tubing (1/16" OD,
169 0.75 mm ID) was cut and assembled with nuts and SS ferrules. To one end of the tube, a
170 union with a 1 μ m SS screen (VICI Valco) was connected. Organoid medium containing
171 approximately 50 iHLC organoids (size range 100 μ m - 200 μ m) was then transferred to a 3
172 mL Luer lock syringe. Two spatulas of acid washed glass beads, containing approximately 45
173 mg of beads, were subsequently added. Through gentle shaking, beads and organoids were
174 mixed in the syringe. The syringe was then connected to the open end of the column. By
175 pressing the contents of the syringe through the empty column housing, the organoid
176 column was finalized. Once the entire contents of the syringe were passed through the
177 column, the inlet was fitted with a SS screen and a union. A schematic of an “organ-in-a-
178 column” is shown in **Figure 2**. For idle conditions, a new syringe was filled with fresh
179 organoid medium, connected to the “organ-in-a-column”, and placed in a syringe pump. The

180 pump was set to 15.0 $\mu\text{L}/\text{h}$. After filling, the “organ-in-a-column” was kept in the column
181 heater at 37 °C.
182

183
184 **Figure 2.** Column housing for “organ-in-a-column”.

185
186 “Organ-in-a-column” coupled with liquid chromatography-mass spectrometry
187 The pump/syringe system described above was connected to LC-MS instrumentation. Eluate
188 from the “organ-in-a-column” was transported to a valve system for fractionation. The valve
189 system contained two sample loops (5 μL), which were filled sequentially. As one loop was
190 being filled, the content of the other loop was pumped to a 5 cm x 1 mm C4 LC column for
191 separation prior to MS detection. The 5 μL loops were overfilled with an additional 2.5 μL to
192 ensure that any LC solvent left in the loop was flushed off and to accommodate possible
193 small fluctuations of syringe pump flow rate. See **Figure 3** for a schematic of the setup. For
194 studying heroin metabolism, a fresh stock solution of 1 mM heroin HCl in 0.9% NaCl was
195 prepared prior to each experiment and diluted with organoid medium to 10 μM . The
196 organoid medium/heroin-solutions were pumped at 15.0 $\mu\text{L}/\text{h}$, with fractionation every 30
197 minutes. This allowed for 5 μL injections onto the LC-MS system, with an overfilling of a
198 factor 1.5 (= 7.5 μL , delivered in 30 minutes at the 15 $\mu\text{L}/\text{h}$ flow rate) to ensure proper loop
199 filling. See Table 1-3 for LC-MS conditions (C4 1 mm ID separation column, flow rate 50
200 $\mu\text{L}/\text{min}$).
201

202
203 **Figure 3.** Illustration of “organ-in-a-column” coupled on-line with liquid chromatography-mass spectrometry.
204 See the experimental section for more details.
205

206

207 **Table 1.** LC-gradient for on-line studies of “organ-in-a-column” metabolism of heroin.

Time, min	Flow, $\mu\text{L}/\text{min}$	Mobile phase, %B	Purpose
0-2	50	3	Separation
2-10	50	3-20	
10-20	50	80	Wash
20-30	50	3	Re-equilibration

208

209 **Table 2.** Multiple reaction monitoring (MRM) parameters used for the detection of heroin and its phase 1
210 metabolites.

Analyte	Parent ion, m/z	Product ion, m/z	Collision energy, eV	S-lens value
Heroin	370.15	286.04	42	104
		210.96	59	104
6-AM	328.13	210.96	6	72
		180.97	37	72
Morphine	286.14	200.99	5	88
		184.91	48	88

211

212 **Table 3.** General MS parameters for detection of heroin, 6-AM and morphine.

Parameter	Value
Capillary temperature	300.0 °C
Vaporizer temperature	200.0 °C
Sheath gas pressure	20.0
Ion Sweep gas pressure	0.0
Auxillary air flow	5.0
Spray voltage	Pos: 3000.0 V Neg: 0.0 V
Collision gas pressure	1.0 mTorr

213

214 *Proteomic analysis of iHLCs and PHHs using liquid chromatography-tandem mass
215 spectrometry*

216 Heroin treated (harvested after 24 hours) iHLC organoids generated from 3 cell lines (iHLC-1
217 = WTC-11 (WiCell), iHLC-2 = WTSI013-A, and iHLC-3 = WTSI028-A, Wellcome Trust Sanger
218 Institute) and 3D spheroids generated from cryopreserved primary human hepatocytes
219 (PHHs, Gibco, lot HU8287) were prepared in 2 replicates in addition to controls (untreated
220 iHLCs and PHHs, n=1). Pelleted iHLC organoids and PHH spheroids were prepared by Easy
221 Extraction and Digestion (SPEED) [18], using dithiothreitol (DTT) and iodoacetamide (IAM)
222 for reduction and alkylation, respectively, and 6 μg trypsin for digestion (overnight at 37 °C).
223 Sample clean-up (after concentrating and reconstitution of samples in 100 μL LC-MS grade

224 water containing 0.25% (v/v) heptafluorobutyric acid) was performed using 100 μ L Bond Elut
225 C18 solid-phase extraction pipet tips (Agilent, Santa Clara, US) following the protocol of the
226 manufacturer. The eluate was concentrated to dryness and dissolved in 4 μ L LC-MS grade
227 water containing 0.1% (v/v) FA.

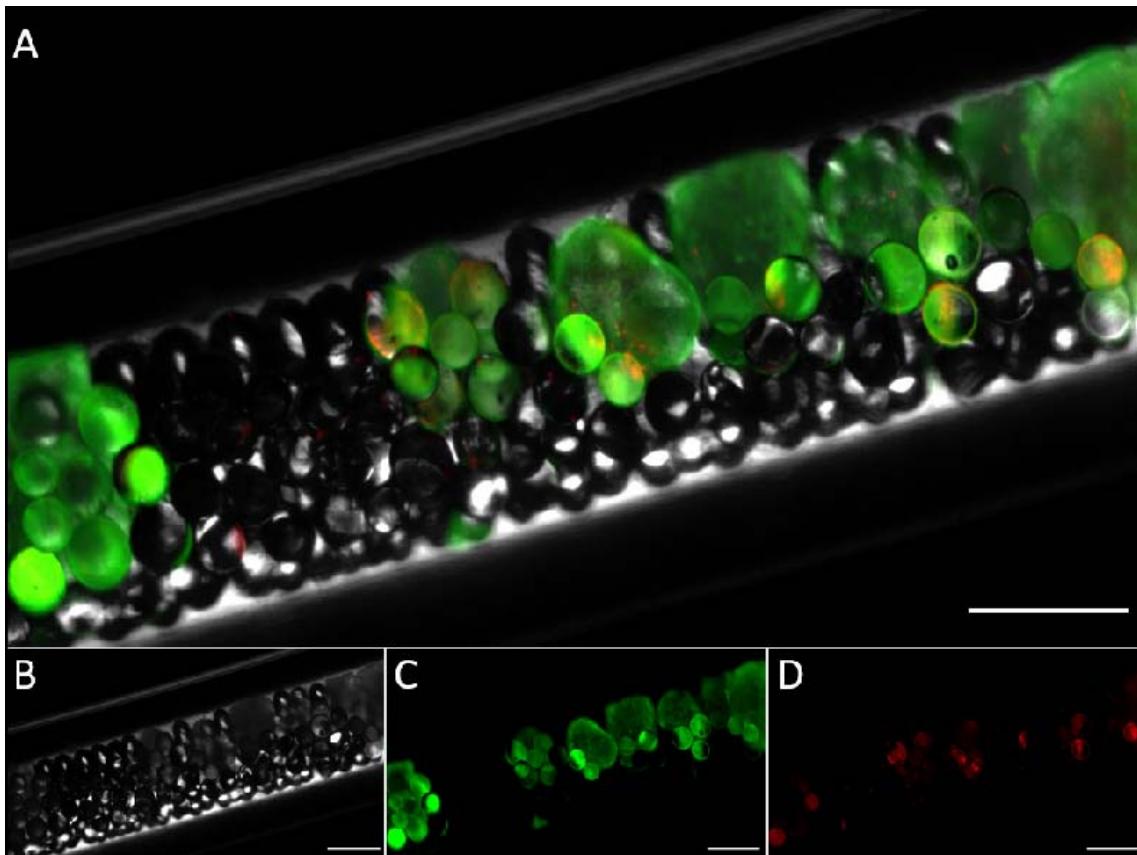
228 LC-MS analysis was performed using a timsTOF Pro (Bruker Daltonics, Bremen, Germany)
229 coupled to a nano Elute nanoflow LC system (Bruker Daltonics). Separation was performed
230 with a 25 cm x 75 μ m, 1.6 μ m, C18, Ion Optics (Fitzroy, Australia) column operated at 50 °C.
231 Mobile phase A and B reservoirs contained LC-MS grade water and acetonitrile, respectively,
232 both containing 0.1% (v/v) formic acid. A linear gradient from 0 - 35% B (54 min) was
233 employed (300 nL/min flow rate). MS acquisition was performed in data-dependent
234 acquisition parallel accumulation-serial fragmentation mode, and an injection volume of 2 μ L
235 was employed. Data were searched against the human UniProt database (20,431 entries),
236 with PEAKS X+ software version 10.5 (Bioinformatics Solutions), allowing 1 missed cleavage
237 and a false discovery rate of 1%.

238

239 *Measurement of enzyme expression in iHLC organoids and PHH spheroids*
240 RNA was isolated using TRIzol reagent (Thermo Fisher Scientific) according to the
241 manufacturer's protocol. RNA concentration and purity were analyzed using NanoDrop ND-
242 1000 spectrophotometer (Thermo Fisher Scientific). cDNA was synthesized using High-
243 Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific, catalogue no. 4368814).
244 Gene expression analysis was performed using a TaqMan Universal mix on a TaqMan ViA7
245 Real Time PCR System. PPIA was used as endogenous control. Level of expression of genes of
246 interest were quantified by ddCt with normalization to control (vehicle-treated organoids).

247 **Results and Discussion**

248 Liver organoids were generated from four induced pluripotent stem cell (iPSC) cell lines and
249 benchmarked to primary human hepatocytes, grown as spheroids. In support of expected
250 liver functionality, enzymes related to the metabolism of heroin (CES1 and CES2) were
251 analyzed and identified by rtPCR and proteomic analysis in iHLC1-3 liver organoids (see
252 **Supporting Information, SI4-SI5**).


253 *Liver organoid charging of an LC-column structure*

254 LC column fittings are specifically designed for leakage-free and simple packing, and come in
255 a variety of diameters and lengths, with readily available fittings. Hence, we aimed to
256 investigate whether LC columns could be directly loaded with liver organoids, and whether
257 the liver organoids can be grown for an extended period in the columns without losing
258 viability. LC columns have previously been demonstrated as useful housings for studying
259 biological interactions, e.g. Wiedmer and co-workers' studies of drug interactions with in-
260 column liposomes [19]. Liver organoids were used for packing LC column housings: iHLC
261 organoids from four different iPSC cell lines.

262

263 For liquid chromatography column housings, a micro LC format was chosen (0.75 mm ID and
264 10 cm length). Both PFA-tubing and PTFE-tubing have been used instead of regular steel
265 column housings as their optical properties allow for visual inspection of organoids *in situ*
266 (see **Figure 4** of stained organoids in the column). To prevent clogging, organoid medium
267 containing liver organoids was supplemented with glass beads (45 mg beads per 10 cm
268 column/50 organoids) prior to packing. After gently mixing the organoid/glass bead
269 containing organoid medium solution, columns were filled manually with a syringe into an
270 open LC column housing. Post-filling, the column was coupled to the upstream and
271 downstream hardware. The addition of the beads kept the liver organoids well-spaced
272 throughout the column, significantly reducing clogging and increasing the robustness of the
273 system.

274

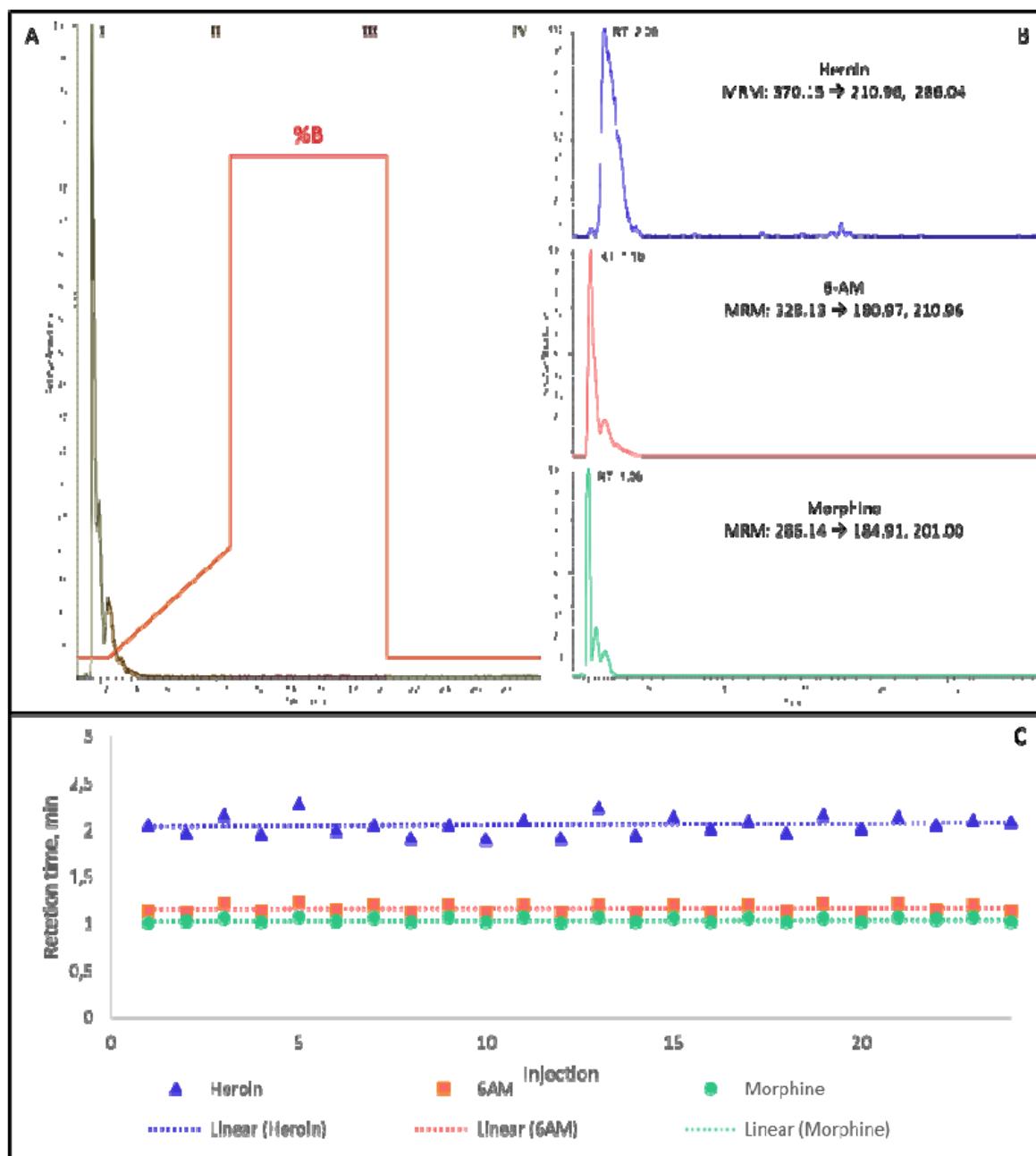
275

276 **Figure 4.** Fluorescence microscopy image of iHLC organoids loaded with glass beads in an “organ-in-a-column”.
277 Viable cells were stained with green fluorescent calcein-AM. Dead cells were stained with propidium iodide
278 (red). Brightfield (B), green (C), and red (D) channels are shown below the merge (A). Scale bar is 600 μ m.

279

280 After on-line culture and measurements (see below), liver organoids could be readily flushed
281 from the column by removing one of the columns unions and applying mild pressure with a
282 hand-held syringe. Pre-loading and post-flushing inspection of the organoids by microscopy
283 revealed that >80 % of the organoids showed substantial amounts of live staining after 7
284 days within the perfused column in both the absence and presence of heroin exposure (see
285 **Supporting Information, SI1** for examples).

286


287 *Coupling of the liver organoid loaded “organ-in-a-column” to an LC-MS system*

288 The “organ-in-a-column” containing iHLCs was coupled to high-pressure LC through a
289 fractionation valve set-up. LC-MS is generally operated at high pressures e.g. 50-400 bars,
290 which is incompatible with organoid culture. A 2-position 10-port stainless steel valve was
291 used to collect and pump liquid fractions to the LC-MS system, not unlike that used for two-

292 dimensional LC separations [20]. The valve system set-up efficiently isolated the organoids
293 from non-biocompatible solvents and high-pressure of the analysis system (see **Figure 3**).
294

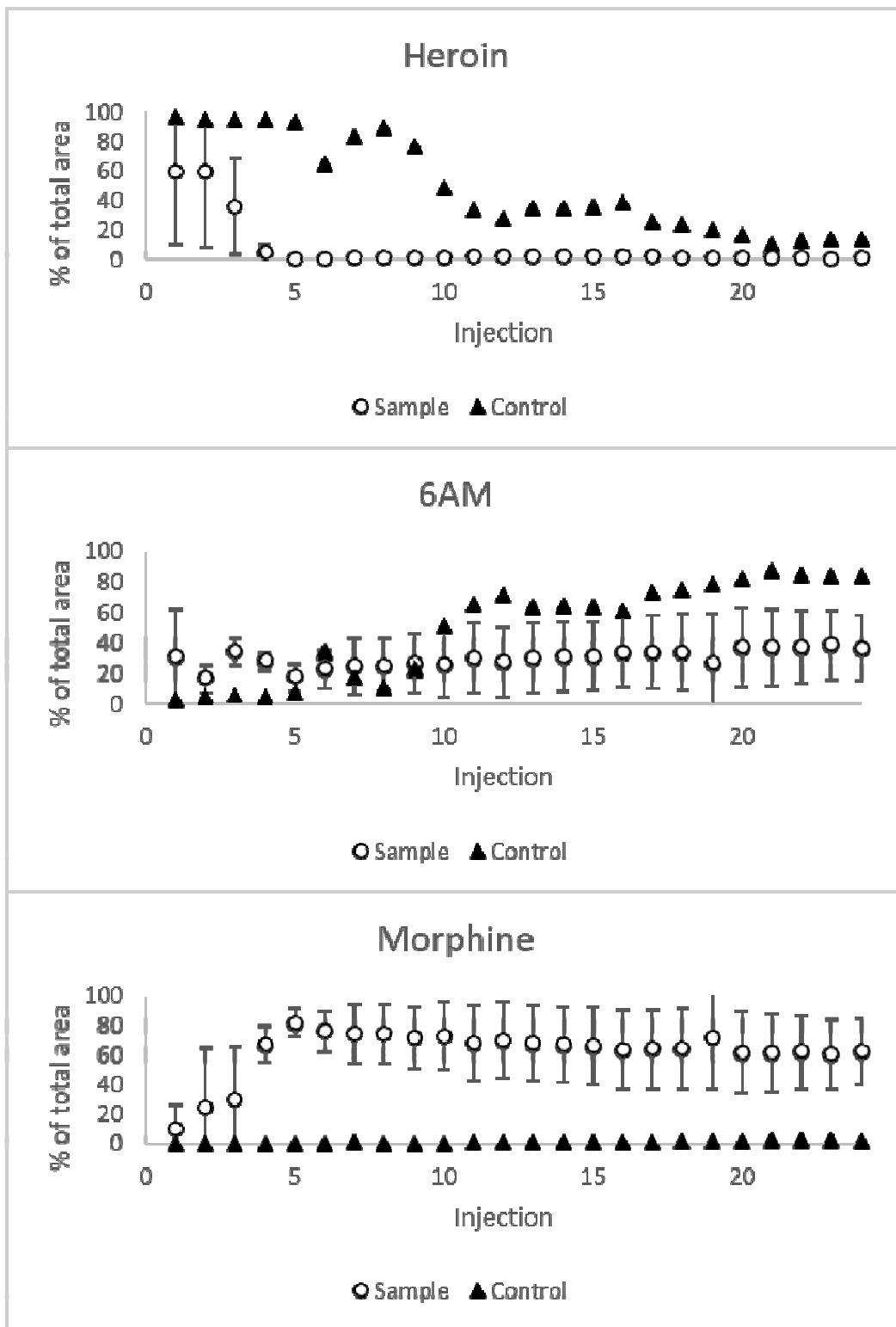
295 Organoid medium is complex and can contain considerable amounts of proteins such as
296 albumin. Sample complexity and the presence of proteins can cause unpredictable
297 chromatographic performance. A short-chained butyl (C4) stationary phase (considered
298 relatively compatible with proteins) allowed for repeatable chromatography of organoid
299 medium spiked with model substance heroin/metabolites at this stage of the project (see
300 **Figure 5A**). Mass spectrometric detection was performed in multiple reaction monitoring
301 (MRM) mode, which allowed highly selective and sensitive detection of small molecules such
302 as heroin and its metabolites 6-AM and morphine (**Figure 5B**, from initial experiments with
303 AG27-derived organoids). The mobile phase composition was also a key parameter regarding
304 robustness; methanol as an organic modifier was associated with column clogging and poor
305 performance when chromatographing the organoid medium, while acetonitrile provided
306 significantly improved performance. See **Figure 5C** for illustration of the retention time
307 repeatability for the system.

308

309
310 **Figure 5. A:** LC-MS chromatogram of heroin and metabolites derived from an “organ-in-a-column” system
311 exposed to heroin coupled on-line with liquid chromatography-mass spectrometry. The gradient program as a
312 function of organic mobile phase modifier (%B) is shown in red. The four stages of the gradient program are (I)
313 isocratic elution, (II) gradient elution, (III) wash and (IV) re-equilibration. **B:** Extracted ion chromatograms for
314 heroin and metabolites are shown with MRM-transitions that were used. The chromatograms were extracted
315 from the same run that is shown in figure 5A. **C:** Retention time variability of heroin and metabolites over an
316 entire exposure experiment (24 injections/12 hours).

317
318 *Temperature controlled drug delivery ensures improved robustness*

319 Heroin can spontaneously decompose into its metabolite 6-AM. However, we found that
320 heroin could also be converted to morphine non-enzymatically. At 37 °C, approximately 5%


321 conversion of heroin to morphine was observed after 24 hours and 20% over 120 hours (see
322 **Supporting Information, SI2**). Hence, at physiological temperatures required for metabolic
323 functional cells, heroin can decompose to 6-
324 AM and morphine in the absence of liver organoids. However, when cooled to 4 °C, less than
325 1% morphine was formed in the absence of liver organoids (see **Supporting Information,**
326 **SI2**). To avoid formation of morphine prior to organoid exposure, a 3D-printed syringe cooler
327 was designed and implemented in the system (**Figure 1**).
328

329 *“Organ-in-a-column”-LC-MS drug metabolism studies on iHLC*

330 Our next step was to evaluate the system’s functionality for tracking drugs and metabolites
331 over time, with cooled organoid medium supplemented with 10 µM heroin and iHLC
332 organoids co-loaded with glass beads. **Figure 6** shows the degradation of heroin and the
333 corresponding generation of metabolites 6-AM and morphine for individual “organ-in-a-
334 column” units, as documented by three experiments performed with iHLC organoids
335 generated from the WTC-11 cell line, on different days and columns.

336 Controls (i.e. columns loaded with beads but not loaded with organoids) generated non-
337 detectable amounts of morphine during the 12-hour experiment, establishing that the pre-
338 column cooling system efficiently prevented non-enzymatic degradation. As expected, a
339 gradual conversion of heroin to 6-AM was detected in columns without organoids. In
340 contrast, in organoid-loaded columns heroin levels decreased more rapidly, while morphine
341 levels increased over time. The data presented in Figure 6 were generated over 12 hours of
342 continuous and fully automated/unsupervised analysis, suggesting that on-line coupling of
343 organoids and MS via commercial LC hardware is feasible.

344 Next, heroin metabolism was compared in columns using iHLC organoids independently
345 differentiated from three iPSCs. As expected, the biological variation in these experiments
346 resulted in larger standard deviation, but still identified significant levels of morphine when
347 compared to the control (n=3) (see **Supporting Information, SI3**).

348

349

350

351

352

353

354

Figure 6: On-line enzymatic and non-enzymatic conversion of heroin (10 μ M) to 6-AM and morphine in columns containing approximately 50 iHLC organoids (sample) and columns containing no organoids (control). Graphs show average areas of heroin and metabolites normalized to the average total area of heroin, 6-AM and morphine (area-% of avg. total area of heroin, 6-AM, and morphine). The average total areas of heroin, 6-AM and morphine are based on three runs performed on different days (12 h experiments) and columns with organoids from the WTC-11 cell line (error bars: standard deviation, n=3).

355 **Concluding remarks**

356 In this proof-of-concept study, liver organoids have been loaded in liquid chromatography
357 column housings (“organ-in-a-column”) and coupled on-line with mass spectrometry for
358 direct analysis of drug metabolism. Features of the here described setting include a
359 substantial degree of automation compared to our previous manual efforts [10], selective
360 measurements through multiple reaction monitoring, and an increased degree of robustness
361 through the use of standard LC parts and fittings, compared to non-commercial chips
362 previously employed [14]. The setup could be used for directly identifying liver organoid-
363 induced drug metabolism, and subsequent hour-scale monitoring of metabolism. Future
364 qualitative identifications of metabolites will include further standardization of column
365 packing, and inclusion of internal standards to reduce ESI-MS signal variations.

366 The system will be further explored for additional drugs and configurations (a next step will
367 be to include an autosampler for multi-drug analysis. This encourages next steps to include
368 expanded drug metabolism studies for mapping enzyme activity (e.g. drugs such as
369 phenacetin, tolbutamide and fluoxetine, metabolized by CYP2D6, CYP2C9 and CYP1A2,
370 respectively), which can have clear benefits in e.g. personalized drug development when
371 assessing organoids grown from individual patients/patient groups.

372 **Supporting Information**

373 Additional experimental details, materials, and methods, regarding live/dead staining (S1),
374 heroin stability tests (S2), proteomics (S3) and mRNA studies (S4).

375 **Acknowledgments**

376 This work was supported by the Research Council of Norway through its Centre of Excellence
377 scheme, project number 262613, and project number: 295910 (National Network of
378 Advanced Proteomics Infrastructure). Support was also provided by UiO:Life Science and the
379 Olav Thon Foundation.

380

381 **References**

- 382 1. Olson, H., et al., *Concordance of the toxicity of pharmaceuticals in humans and in*
383 *animals*. *Regulatory Toxicology and Pharmacology*, 2000. **32**(1): p. 56-67.

384 2. Skardal, A., T. Shupe, and A. Atala, *Organoid-on-a-chip and body-on-a-chip systems*
385 *for drug screening and disease modeling*. Drug Discovery Today, 2016. **21**(9): p. 1399-
386 1411.

387 3. Bhatia, S.N. and D.E. Ingber, *Microfluidic organs-on-chips*. Nature Biotechnology, 2014. **32**(8): p. 760-772.

389 4. Lancaster, M.A. and J.A. Knoblich, *Organogenesis in a dish: modeling development*
390 *and disease using organoid technologies*. Science, 2014. **345**(6194): p. 1247125.

391 5. Shinozawa, T., et al., *High-fidelity drug-induced liver injury screen using human*
392 *pluripotent stem cell-derived organoids*. Gastroenterology, 2021. **160**(3): p. 831-846.
393 e10.

394 6. Qosa, H., et al., *Characterization of a commercially available line of iPSC hepatocytes*
395 *as models of hepatocyte function and toxicity for regulatory purposes*. Journal of
396 pharmacological and toxicological methods, 2021. **110**: p. 107083.

397 7. Dorrell, C., et al., *The organoid-initiating cells in mouse pancreas and liver are*
398 *phenotypically and functionally similar*. Stem Cell Research, 2014. **13**(2): p. 275-283.

399 8. Tauro, B.J., et al., *Two distinct populations of exosomes are released from LIM1863*
400 *colon carcinoma cell-derived organoids*. Molecular & Cellular Proteomics, 2013.
401 **12**(3): p. 587-598.

402 9. Boj, S.F., et al., *Organoid models of human and mouse ductal pancreatic cancer*. Cell, 2015. **160**(1-2): p. 324-338.

404 10. Harrison, S.P., et al., *Scalable production of tissue-like vascularised liver organoids*
405 *from human PSCs*. bioRxiv, 2020.

406 11. van Midwoud, P.M., et al., *On-line HPLC analysis system for metabolism and*
407 *inhibition studies in precision-cut liver slices*. Analytical chemistry, 2010. **83**(1): p. 84-
408 91.

409 12. De Haan, P., et al., *A versatile, compartmentalised gut-on-a-chip system for*
410 *pharmacological and toxicological analyses*. Scientific reports, 2021. **11**(1): p. 1-13.

411 13. Skottvoll, F.S., et al., *Electromembrane extraction and mass spectrometry for liver*
412 *organoid drug metabolism studies*. Analytical chemistry, 2021. **93**(7): p. 3576-3585.

413 14. Skottvoll, F.S., et al., *Direct Electromembrane Extraction based Mass Spectrometry: A*
414 *Tool for Studying Drug Metabolism Properties of Liver Organoids*. Analysis & Sensing,
415 2021.

416 15. Mathapati, S., et al., *Small-molecule-directed hepatocyte-like cell differentiation of*
417 *human pluripotent stem cells*. Current Protocols in Stem Cell Biology, 2016. **38**(1): p.
418 1G. 6.1-1G. 6.18.

419 16. Ang, L.T., et al., *A roadmap for human liver differentiation from pluripotent stem*
420 *cells*. Cell reports, 2018. **22**(8): p. 2190-2205.

421 17. Bell, C.C., et al., *Characterization of primary human hepatocyte spheroids as a model*
422 *system for drug-induced liver injury, liver function and disease*. Scientific reports, 2016. **6**(1): p. 1-13.

424 18. Doellinger, J., et al., *Sample Preparation by Easy Extraction and Digestion (SPEED) - A*
425 *Universal, Rapid, and Detergent-free Protocol for Proteomics Based on Acid*
426 *Extraction**. Molecular & Cellular Proteomics, 2020. **19**(1): p. 209-222.

427 19. Moravcová, D., J. Planeta, and S.K. Wiedmer, *Silica-based monolithic capillary*
428 *columns modified by liposomes for characterization of analyte-liposome interactions*
429 *by capillary liquid chromatography*. Journal of Chromatography A, 2013. **1317**: p.
430 159-166.

431 20. Stoll, D.R. and P.W. Carr, *Two-dimensional liquid chromatography: a state of the art*
432 *tutorial*. 2017, ACS Publications.
433
434