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TRANSLATIONAL RELEVANCE 

The liver is the commonest site for metastatic colorectal cancer (mCRC). Alterations in the 

tumor microenvironment (TME) allow metastatic cells to seed the distant liver site and grow. 

Leveraging single-cell RNA sequencing, we discovered a distinct SPP1+ macrophage cell state 

with pro-fibrogenic gene expression and altered metabolism. These SPP1+ macrophages 

communicated with fibroblasts, mutually influencing each other’s gene expression program. 

Using spatial imaging, we confirmed proximal colocalization between macrophages and 

fibroblasts in the mCRC TME, which is required for intercellular communication. These states 

and intercellular communication promoted immunosuppression in the TME, with a lack of 

dysfunctional anti-tumor CD8 T cells and prevalence of regulatory T cells. Increased fibroblasts 

were associated with worst prognosis in an independent patient cohort. Our results identified 

novel TME features that result in reshaping of the metastatic niche that allows progression of 

mCRC. These features can be potential targets for mCRC treatment, which is microsatellite 

stable and resistant to immune checkpoint blockade.  
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ABSTRACT 

Purpose: The liver is the most frequent metastatic site for colorectal cancer (CRC).  Its 

microenvironment is modified to provide a niche that allows CRC cell growth.  This study 

focused on characterizing the cellular changes in the metastatic CRC (mCRC) liver tumor 

microenvironment (TME). 

Experimental Design: We analyzed a series of microsatellite stable (MSS) mCRCs to the liver, 

paired normal liver tissue and peripheral blood mononuclear cells using single cell RNA-seq 

(scRNA-seq).  We validated our findings using multiplexed spatial imaging and bulk gene 

expression with cell deconvolution. 

Results: We identified TME-specific SPP1-expressing macrophages with altered metabolism 

features, foam cell characteristics and increased activity for extracellular matrix (ECM) 

organization.  SPP1+ macrophages and fibroblasts expressed complementary ligand receptor 

pairs with the potential to mutually influence their gene expression programs.  TME lacked 

dysfunctional CD8 T cells and contained regulatory T cells, indicative of immunosuppression. 

Spatial imaging validated these cell states in the TME.  Moreover, TME macrophages and 

fibroblasts had close spatial proximity, a requirement for intercellular communication and 

networking.  In an independent cohort of mCRCs in the liver, we confirmed the presence of 

SPP1+ macrophages and fibroblasts using gene expression data.  An increased proportion of 

TME fibroblasts was associated with worst prognosis in these patients.   

Conclusions: We demonstrated that mCRC in the liver is characterized by transcriptional 

alterations of macrophages in the TME.  Intercellular networking between macrophages and 

fibroblasts supports CRC growth in the immunosuppressed metastatic niche in the liver. These 

features can be used to target these immune checkpoint resistant MSS tumors. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2020.09.01.273672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.273672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1 

INTRODUCTION 

Nearly 50% of all patients with colorectal cancer (CRC) have metastases.  The most common 

site for metastatic colorectal cancer (mCRC) is the liver (1).  Through hematogenous spread, 

colon cancer cells reach the liver and establish themselves in the hepatic parenchyma.  Liver 

metastasis is a major contributor to morbidity and mortality of Stage IV patients.  There are 

specific cellular processes that enable a CRC metastasis to establish itself in the liver.  The 

hepatic microenvironment and its cellular composition are functionally quite different than those 

present within the colon microenvironment encompassing the primary tumor.  The various cells 

in the liver microenvironment must be altered to accommodate foreign colon cancer cells (2).  

Cellular changes specific to the liver facilitate mCRCs growth and play a role in suppressing the 

patient’s immune response (3, 4). 

 

Immune checkpoint blockade targets the TME-based T-cells and their communication with 

tumors cells via PD-1/PD-L1.  Only mCRCs with microsatellite instability (MSI), a hypermutable 

state, respond to immunotherapy.  However, only around 4% of mCRC tumors are of the MSI 

subtype (5).  Majority of mCRCs are microsatellite stable (MSS) and show no response to 

checkpoint blockade.  Furthermore, MSS mCRC tumors generally do not have significant levels 

of T cell infiltration which is a requirement for effective checkpoint blockade (3, 6).  As a result, 

MSS mCRCs have a profoundly immunosuppressed TME and are highly resistant to 

immunotherapy.  To develop effective immune-based therapeutic strategies for mCRC, it is 

essential to characterize the cell states and interactive networking present within the TME in 

sites such as the liver. 

 

Metastatic colorectal cancers in the liver are a complex mixture of many different cell types 

originating from the tumor epithelium, immune system, and hepatic stroma.  Even for a specific 
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cell type, there are different cell “states” reflecting functional variation depending on the local 

cellular context as seen in liver parenchyma.  Several recent studies have used single-cell RNA 

(scRNA-seq) to characterize the various cell types and the functional states in the CRC TME in 

colon.  These studies represent a survey of the primary colon tumor.  There are only a few 

single cell genomic studies of mCRCs in the liver.  These scRNA-seq studies have focused on 

the immune cells isolated from the mCRC TME (4, 7, 8).  However, non-immune cell types such 

as fibroblasts and endothelial cells also contribute to the mCRC TME.  Intercellular signaling 

and networking among the immune and non-immune cells orchestrate metastatic progression 

(9). 

 

We conducted a study to determine the multi-cellular features and interactions for mCRCs in the 

liver.  Our analysis specifically focused on MSS mCRCs.  We used a multi-pronged approach: 

(1) single-cell RNA (scRNA-seq); (2) spatial multiplexed imaging; (3) conventional RNA-seq.  

For the single cell studies, the tumors were analyzed directly without flow sorting – this 

approach preserved the composition of the native cells in the liver metastasis.  We identified a 

unique category of TME-based macrophages that networks with cancer associated fibroblasts 

(CAF).  We examined the spatial organization and proximity of these and other cell types with 

multiplexed imaging.  Our results showed close proximity of macrophages and CAFs compared 

to other TME cell types.  Using an independent set of mCRCs in the liver with RNA-seq data, 

cellular deconvolution identified these different cell types and confirmed our single cell results. 

 

MATERIALS AND METHODS 

Sample collection and processing 
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This study was conducted in compliance with the Helsinki Declaration.  All patients were 

enrolled according to a study protocol approved by the Stanford University School of Medicine 

Institutional Review Board (IRB-11886 and IRB-44036).  Informed consent was obtained from 

all patients. 

 

Tissue samples came from surgical resections or matched normal tissue from sites displaced at 

least several centimeters from the tumor.  Tissues were collected in plain RPMI on ice 

immediately after resection and dissected with iris scissors.  Single-cell suspensions were 

obtained from tissue fragments using enzymatic and mechanical dissociation and from 

peripheral blood using peripheral blood mononuclear cell (PBMC) isolation as described 

previously (10).  Briefly, cells were washed twice in RPMI + 10% FBS, filtered through 70 µm 

(Flowmi, Bel-Art SP Scienceware, Wayne, NJ), followed by 40 µm filter (Flowmi).  Cryofrozen 

cells were rapidly thawed in a bead bath at 37 ºC followed by above washing and filtering steps.  

Live cell counts were obtained on a BioRad TC20 cell counter (Biorad, Hercules, CA) or a 

Countess II FL Automated Cell Counter (ThermoFisher Scientific) using 1:1 trypan blue dilution.  

Cells were concentrated between 500-1500 live cells/µl for scRNA-seq. 

 

Histopathology 

Tissue was fixed in 10% formalin for approximately 24 hours at room temperature. Paraffin 

embedding and hematoxylin and eosin staining was conducted by the Human Pathology 

Histology Services core facility at Stanford University.  We reviewed clinical histopathology 

reports for all patients that examined the expression of HER2, special stains for MLH1, MSH2, 

MSH6 and PMS2 for MSI/MSS status using standard clinical immunohistochemistry (IHC) 

protocols. 
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Single-cell RNA sequencing 

The scRNA-seq libraries were generated from cell suspensions using Chromium Single Cell 3′ 

Library & Gel Bead Kit v2 or Chromium Next GEM Single cell Immune Profiling 5’ v1.1 (for 

P8640) (10X Genomics, Pleasanton, CA, USA) as per manufacturer’s protocol and sequenced 

on Illumina sequencers (Illumina, San Diego, CA).  All libraries from a patient were prepared in 

the same experimental batch.  Ten thousand cells were targeted from tissue dissociation 

suspensions and 3000 for PBMCs with 14 PCR cycles for cDNA and library amplification.  A 1% 

or 2% E-Gel (ThermoFisher Scientific, Waltham, MA, USA) was used for quality control 

evaluation of intermediate products and sequencing libraries.  A Qubit (Thermofisher Scientific) 

or qPCR with Kapa library quantification kit (Kapa Biosystems, Wilmington, MA) was used to 

quantify the libraries as per the manufacturer’s protocol. 

 

Processing scRNA-seq data 

Cell Ranger (10x Genomics) version 3.1.0 ‘mkfastq’ and ‘count’ commands were used with 

default parameters and alignment to GRCh38 to generate matrix of unique molecular identifier 

(UMI) counts per gene and associated cell barcode.  We constructed Seurat objects from each 

dataset using Seurat (version 4.0.1) (11, 12) to apply quality control filters.  We removed cells 

that expressed fewer than 200 genes, had greater than 30% mitochondrial genes or had UMI 

counts greater than 8000 which is an indicator of cell doublets.  We removed genes that were 

detected in less than 3 cells.  We normalized data using ‘SCTransform’ and used first 20 

principal components with a resolution of 0.6 for clustering.  We then removed computationally 

identified doublets from each dataset using DoubletFinder (version 2.0.2) (13).  The ‘pN’ value 
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was set to default value of 0.25 as the proportion of artificial doublets.  The ‘nExP’ was set to 

expected doublet rate according to Chromium Single Cell 3’ v2 reagents kit user guide (10x 

Genomics).  These parameters were used as input to the ‘doubletFinder_v3’ function with 

number of principal components set to 20 to identify doublet cells. 

 

Batch-corrected integrated scRNA-seq analysis 

Individual Seurat objects were merged and normalized using ‘SCTransform’ (11, 12).  To 

eliminate potential batch effects, we integrated all datasets across experimental batches by 

using a soft variant of k-means clustering implemented in the Harmony algorithm (version 0.1.0) 

(14).  The experimental batch metrics were used in the grouping variable in the ‘RunHarmony’ 

function, and this reduction was used in both ‘RunUMAP’ and ‘FindNeighbors’ functions for 

clustering.  The first 20 principal components and a resolution of 1 was used for clustering.  We 

used the Adjusted Rand Index (ARI) to compare similarity between cluster labels and 

experimental batch meta data label for each cell.  A vector of these respective class labels was 

supplied to the ‘adjustedRandIndex’ function in mclust package (v 5.4.7) (15).  The data from 

the ‘RNA’ assay was used for all further downstream analysis with other packages, gene level 

visualization or differential expression analysis.  The data was normalized to the logarithmic 

scale and the effects of variation in sequencing depth were regressed out by including 

‘nCount_RNA’ as a parameter in the ‘ScaleData’ function.  Differential gene expression analysis 

was conducted using the ‘FindAllMarkers’ or ‘FindMarkers’ functions respectively using 

Wilcoxon rank sum test.  Parameters provided for these functions were as follows: genes 

detected in at least 25% cells and differential expression threshold of 0.25 log fold change.  

Significant genes were determined with p < 0.05 following Bonferroni correction.  The 

‘DoHeatmap’, ‘FeaturePlot’, ‘DimPlot’, ‘DotPlot’, ‘VlnPlot’ functions were used for visualization. 
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Cell lineage identification and reclustering of integrated scRNA-seq data 

From the batch-corrected Seurat object, cell lineages were identified based on marker gene 

expression. Red blood cell and platelet clusters were filtered out from the downstream analysis. 

A single proliferative cluster containing both epithelial and T cells was split based on the 

expression of normalized counts for EPCAM > 0 in epithelial cells.  We performed a secondary 

clustering analysis of each lineage with integration across experimental batches using Harmony 

and a cluster resolution of 0.6. Any clusters identified as belonging to another cell lineage were 

united with their lineage counterparts for a second clustering run. This yielded final lineage-

specific re-clustering results. In lymphocyte re-clustering, a single cluster containing naïve CD4 

and CD8 T cells was gated for CD8 T cells based on the expression of normalized counts for 

CD8A or CD8B >0. 

 

Pathway analysis 

Differentially expressed genes in tumor macrophages were used as input to pathway analysis 

using ‘Reactome_2016’ in the package enrichR (v2.1) (16).  We used the ‘AddModuleScore’ 

function in Seurat to calculate the average expression of a custom gene set of interest.  Using 

this function, genes of interest were first binned into 24 bins of expression levels based on their 

average expression.  From each bin, control genes were randomly selected using default 

parameters used in this function.  Finally, average expression score was calculated as the 

difference between average expression of gene set of interest and average expression of 

control genes.  Expression between clusters was compared using t-test.  Gene signatures of 

scar associated macrophages from liver cirrhosis (17) and atherosclerotic foam cells (18) were 

obtained from the original publications.  CD8 cytotoxicity signature (GZMA, GZMB, GZMK, 
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GZMH, GNLY, PRF1, IFNG, NKG7, KLRK1, KLRB1, KLRD1, CTSW, CST7, CCL4, CCL3) was 

compiled from previous publications (19, 20). 

 

Copy number analysis 

InferCNV (version 1.2.3) (21) was used to infer large-scale copy number variations in tumor 

epithelial cells.  As a reference control, we used all myeloid and stromal cells from tumor and 

normal samples.  Count data was used as input.  Filtering, normalization and centering by 

normal gene expression were performed using default parameters.  A cut-off of 0.1 was used for 

the minimum average read counts per gene among reference cells.  An additional denoising 

filter was used with a threshold of 0.2.  Copy number variation was predicted using the default 

six state Hidden Markov Model. 

 

Receptor-ligand communication between cell types 

We obtained the expression matrix from tumor samples using the ‘data’ slot of the ‘RNA’ assay 

following lineage-specific secondary clustering analysis.  We excluded epithelial cells from 

P6198 with neuroendocrine differentiation from this analysis. This expression matrix was used 

as input to CellChat (v0.5.0) (22).  ‘CellChatDB.human’ was used as the receptor-ligand 

interaction database. ‘identifyOverExpressedGenes’ and ‘identifyOverExpressedInteractions’ 

functions were used to identify over-expressed ligands, receptors and interactions in each cell 

group. Number of interactions were calculated using the ‘aggregateNet’ function and visualized 

using ‘netVisual_circle’. 

 

We also predicted receptor-ligand interactions likely to affect specific gene expression changes 

in a target cell lineage using nichenetr (v0.1.0) (23).  This analysis utilizes ligand-target 
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regulatory potential scores calculated from prior information.  We performed this analysis on 

fibroblasts as target cells for genes that overlapped with the matrisome program (identified in 

Supplemental Table 6).  We also examined macrophages as target cells with genes belonging 

to enriched Reactome pathways: 'Metabolism', 'Degradation of the extracellular matrix', 

'Extracellular matrix organization', 'Collagen degradation' (identified in Supplemental Table 5).  

NicheNet’s prior models and networks were obtained from 

https://zenodo.org/record/3260758#.X0WX7BNKhTY. 

 

Ligands predicted to influence expression of genes of interest in target population were 

calculated using the function ‘predict_ligand_activities’ with default parameters that outputs 

activity as Pearson correlation coefficient based on prior modelling.  The weight or inferred 

regulatory score between a target gene and ligand was obtained using 

‘get_weighted_ligand_target_links’ function.  Top 20 ligands and interactions with regulatory 

potential value in the top 60% were used for visualization.  Ligands were assigned to a 

particular cell type as sender if their expression was greater than one standard deviation from 

the average ligand expression.  Target genes and ligands were visualized using the 

‘chordDiagram’ function from the circlize R package (v0.4.11) with transparency scaled to 

respective regulatory potential value. 

 

EcoTyper analysis for cell state discovery 

Cell state discovery on scRNA-seq expression data was performed using EcoTyper (24) using 

the scripts and vignette provided on https://github.com/digitalcytometry/ecotyper.  The number 

of NMF restarts was set to 50 and maximum number of states per cell type was set to 10. 
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RNA-seq analysis and cell type deconvolution 

Fastq files from RNA sequencing of 93 mCRC FFPE samples were obtained from European 

Genome-Phenome Archive, dataset ID EGAD00001004111 (3).  Information on prognosis sub-

group for each patient was obtained from the contributors of the data.  Data was aligned to 

genome reference GRCh38 using STAR (v2.6.0a) and transcripts per gene were counted using 

htseq-count method from HTSeq (v0.5.4).  Counts were converted to Transcripts Per kilobase 

Million (TPM) to normalize for gene length, and non-protein-coding genes were removed.  Gene 

length used for normalization was the number of bases covered at least once for all exons in 

that gene.  The TPM value was obtained by calculating the reads per kilobase (RPK) for each 

gene, then calculating the scaling factor as sum (RPK)/10E6 and lastly calculating TPM per 

gene as RPK/scaling factor.  In cases with duplicate sequencing runs for the same patient, TPM 

counts were averaged.  

 

From our mCRC samples, we obtained the single-cell expression matrix for each cell type using 

the ‘counts’ slot of the ‘RNA’ assay of the Seurat object with filtering as outlined above.  These 

cell-type gene lists were used as input to CIBERSORTx (25).  The signature matrix was created 

in custom analysis mode using default parameters with minimum expression set to zero and 

was used for cell fraction imputation.  TPM counts from bulk expression dataset was used as 

the mixture file.  Default parameters were used except quantile normalization was disabled, 

permutations for significance analysis were set to 1000 and batch correction was applied in ‘S-

mode’.  Resulting proportions were recalculated as a fraction of only TME lineages by removing 

epithelial cells.  Patients were grouped according to their sub-group for overall survival and 

significant differences in proportion of cell types were assessed by ANOVA with Tukey HSD 

correction. 
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CODEX staining and imaging 

A custom antibody panel was developed and validated (Enable Medicine, Menlo Park, CA, 

USA) for multiplexed imaging with co-detection by indexing (CODEX) (Akoya Biosciences, 

Menlo Park, CA, USA).  This imaging technique utilizes antibodies conjugated to unique DNA 

oligonucleotide barcodes.  The CODEX antibodies were validated on formalin fixed paraffin 

embedded (FFPE) tonsil sections and staining patterns were confirmed via comparison with 

online databases (The Human Protein Atlas, www.proteinatlas.org; Pathology Outlines, 

www.pathologyoutlines.com) and the published literature.  Between 4-6 formalin fixed samples 

were paraffin embedded into the same tissue block, sectioned at 7 μm, and placed on 22x22 

mm glass coverslips (Electron Microscopy Sciences, # 72204-01) pre-coated with poly-L-lysine 

(Sigma, # P8920).  The FFPE tissues on coverslips were stored in a 6-well plate containing 

storage buffer at 4°C until CODEX acquisition. 

 

CODEX imaging was done as per the manufacturer’s protocol (Akoya Biosciences).  Briefly, 

FFPE tissue sections on coverslips were pretreated by heating on a slide warmer for 25 minutes 

at 55 degrees C.  Tissue deparaffinization and hydration were next performed by incubating the 

FFPE tissue sections on coverslips for 5 minutes each following a solvent series (Histochoice 

Clearing Agent, Histochoice Clearing Agent, 100% Ethanol, 100% Ethanol, 90% Ethanol, 70% 

Ethanol, 50% Ethanol, 30% Ethanol, ddH20, ddH20).  Antigen retrieval was performed in 0.01M 

Citrate Buffer at high pressure.  The tissue was washed and equilibrated before staining for 3 

hours at room temperature with the 28-plex CODEX antibody cocktail in a staining buffer 

containing blocking solution (Akoya Biosciences).  After staining, the tissues were washed and 

fixed in 1.6% PFA, followed by an ice-cold methanol incubation.  The final tissue fixation was 

performed with the Fixative reagent (Akoya Biosciences). 
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Stained coverslips were mounted onto the CODEX stage plate version 2 (Akoya) and secured 

onto the stage of a BZ-X810 inverted fluorescence microscope (Keyence).  Reporter plates 

were prepared by adding fluorescently labeled oligonucleotides (Atto550, Cy5, AF750) made up 

in a reporter stock solution of nuclease free water, 10x CODEX buffer, assay reagent and 

nuclear stain to a black Corning 96 well plate (Supplemental Table 1).  Automated image 

acquisition of tissue regions was performed at Enable Medicine using a CFI Plan Apo λ 

20x/0.75 objective (Nikon) and fluidics exchange managed via the CODEX instrument and 

CODEX Instrument Manager software (CIM version 1.29.3.6, Akoya Biosciences), according to 

the manufacturer’s instructions, with slight modifications.  Staining was evaluated for the 

expression of each marker in the panel.  Non-specific staining was observed for EPCAM, SPP1 

and CD163, which were excluded from downstream analysis resulting in a 25-plex panel. 

 

CODEX Image processing 

Raw fluorescent TIFF image files were processed, deconvolved and background subtracted 

utilizing the CODEX Processor Software (Akoya Biosciences), and antibody staining was 

visually assessed for each biomarker and tissue region using the ImageJ software (Fiji, version 

2.0.0).  The TIFF hyper stacks were segmented based on DAPI nuclear stain, pixel intensities 

were quantified, and spatial fluorescence compensation was performed, which generated 

comma-separated value (CSV) and flow cytometry standard (FCS) files for downstream 

analysis. 

 

CODEX image registration  

We excluded areas from neighboring normal liver, to ensure that CODEX analysis was 

performed on cells belonging to the mCRC TME.  A pathologist evaluated images from 

hematoxylin and eosin (H&E) tissue sections, adjacent to the corresponding CODEX-stained 

sections.  We used these annotated histopathology sections to distinguish normal liver 
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parenchyma from tumor tissue regions.  To determine which cells from the CODEX data were 

within normal liver tissue regions, nuclei were aligned between CODEX and H&E images.  This 

was accomplished by aligning the CODEX nuclei segmentation images with the hematoxylin 

channel of corresponding H&E images using the image registration method described in 

HEMnet (26).  Those cells within the annotated normal liver regions were excluded from further 

analysis. 

 

CODEX Context Assisted Cell Type Identification (CACTI) 

A standard clustering procedure involves using cell type specific feature data to identify cell 

types. Due to the sparsity and noisy nature of measured CODEX data, expression of the index 

cell may not accurately represent the innate cell feature.  By harnessing the information 

available about each cell’s local neighborhood to form a richer feature space, we improved the 

clustering of any specific index cell.  We developed a method, Context Assisted Cell Type 

Identification (CACTI), which leverages spatial information during clustering.  

 

For a given cell i, let Xi be its marker expression vector and Yi be its spatial location. For a set of 

cells S, let XS be the matrix that joins each vector 𝑋!:!∈$ row wise. Let YS be defined 

analogously. After normalization, the first step of CACTI is to identify the Delaunay neighbors of 

each index cell. These Delaunay neighbors will be a proxy for a cell’s local neighborhood. 

Letting Si be the set of Delaunay neighbors of index cell i, we define a niche feature to be a 

function f(XSi,YSi). Some examples of f include Mean Expression, Distance weighted mean 

expression and Standard deviation.  After calculating our niche features for each cell, we define 

our niche augmented data to be such that 
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𝑍! = [𝑋! , 𝑓%'𝑋$! , 𝑌$!), …𝑓&'𝑋$! , 𝑌$!)] 

 

where n is the number of niche features calculated. One drawback of Z is that it might focus too 

much on the niche information compared to the underlying expression profile of the index cell. 

To overcome this, we introduce a weight parameter λ to the niche features and focus our 

analysis on  

 

𝑍!' = [𝑋! , 𝜆𝑓%'𝑋$! , 𝑌$!), … 𝜆𝑓&'𝑋$! , 𝑌$!)] 

Let Zλ be the matrix that joins the individual 𝑍!' row wise. To determine λ, we perform low-

resolution clustering. Individual Seurat objects were constructed from cell-feature matrices and 

spatial co-ordinates from each sample using the ‘Spatial’ Assay in Seurat.  All objects were 

merged, and data was scaled using the ‘ScaleData’ function.  Batch-correction was performed 

during clustering using the Harmony algorithm as outlined above.  We used the first 10 principal 

components and a resolution of 0.2 for clustering.   Let L be the low-resolution cluster 

assignment of X. Although CODEX data is noisy, we expect L to be a reasonable approximation 

of the major cell types present in our sample. For another cluster assignment of the same cells 

A such that |A| > |L|, we define E(A, L) to be the minimum classification error of A with respect to 

the low resolution clustering L. We recommend that A and L be generated by the same 

clustering algorithm (e.g. K-means, Louvain, etc.). 

 

If our niche features contain perfect information pertaining to the true cell types, then given a 

clustering of Zλ, C(Zλ), we expect E(C(Zλ), L) to be small for all values of λ. On the other hand, 

if our niche features are independent of the true cell types, then E(C(Zλ), L) should be large for 

even moderate values of λ. Therefore, when choosing λ, we should choose one such that 
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E(C(Zλ), L) is less than some level α. Mathematically, to find a suitable λ, we attempt to solve 

the following optimization problem: 

Maximize λ 

Subject to E(C(Zλ), L) < α 

If E(C(Zλ), L) is monotone in λ we can use a bisection algorithm to get the optimal λ within some 

desired degree of error. 

 

Following low-resolution clustering and CACTI, clusters were annotated for cell types using 

lineage marker genes.  We identified tumor epithelial cells (PanCK i.e., Pan Cytokeratin), CAFs 

(COL4A1, ACTA2), macrophages (CD68), endothelial cells (PECAM1), CD4 T cells (CD4), CD8 

T cells (CD8) and Tregs (FOXP3).  Cells co-expressing epithelial, or immune or stromal markers 

were filtered as artifacts (7.345% of total cells). A mixed cluster of macrophages and epithelial 

cells (11.81% of analyzed cells) was gated for macrophages expressing CD68>0 and PanCK 

<0.5 using the scaled data, with remainder cells classified as epithelial.  A mixed cluster of 

epithelial cells, fibroblasts, and lymphocytes (2.92% of analyzed cells) was gated using scaled 

data for epithelial cells (PanCK > 0, CD45 <0) followed by lymphocytes (CD45 >0, COL4A1 <0) 

with the remainder cells classified as fibroblasts. 

 

Cellular proximity analysis 

Let the total number of cells in our sample be 𝑁. Let 𝐺 be a graph indexed by 𝑁 nodes such that 

the weight of an edge between nodes 𝑖 and 𝑗 is the similarity between cells 𝑖 and 𝑗. Now let 𝐶%, 

𝐶(, and 𝐶) be three sets of cells. The hypothesis test for proximity analysis can be formulated 

as: 

H0 : 𝐶% and 𝐶( are on average equally similar to 𝐶). 
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HA : 𝐶% is on average more similar to 𝐶) than 𝐶( is. 

This hypothesis can be tested with a permutation test where we permute the labeling of 

members within sets 𝐶% and 𝐶( and calculate our test statistic 

𝑇 =
1
|𝐶%|

5 5 𝐺*,,
,∈-"*.-#

 

We reject the test when 𝑇 is very large relative to the permutated test statistics. We wanted to 

examine whether fibroblasts are more spatially proximal to macrophages than other cells on 

average. This corresponds to letting 𝐶% be the set of macrophages, 𝐶) be the set of fibroblasts 

and 𝐶( be all other cells. To model spatial proximity, we let the similarity between cells 𝑖 and 𝑗 

be the Jaccard index between the K nearest neighbor sets of the two cells based on their spatial 

coordinates.  

 

Additional computational analysis  

We used R packages tidyverse (v1.2.1), ggplot2 (v3.3.3), ggpubr (v0.40), broom (v0.5.2), viridis 

(0.5.1), pheatmap (v1.0.12), ComplexHeatmap (v2.9.3) (27), and stats (v4.0.5) in R v4.1.0 for 

additional analysis or visualization.  Figures were additionally edited in Adobe Illustrator CS6 

(v16.0.0). 

 

RESULTS 

Properties of the cellular TME of CRC metastases to the liver 

Our study relied on three different approaches to characterize the CRC metastatic TME (Fig. 

1A).  We performed scRNA-seq analysis of mCRC tissue from surgical resections – these 

samples included patient matched normal liver and PBMCs (Table 1).  The cohort consisted of 

14 samples from seven patients.  All tumors had adenocarcinoma histopathology.  The only 
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exception was P6198’s tumor which had mixed neuroendocrine adenocarcinoma (MANEC) 

histology.  In addition, all tumors underwent clinical testing for microsatellite instability (MSI) via 

immunohistochemistry (IHC) for DNA mismatch repair proteins.  All tumors were microsatellite 

stable (MSS).  We examined the spatial organization of these cell states with CODEX on 15 

MSS mCRCs found in the liver.  Finally, we confirmed the presence of these cell states and 

interactions using an independent gene expression dataset of 93 mCRCs to the liver (3).  With 

this RNA-seq data and a cell deconvolution method, we determined the association of cell 

states and specific clinical outcomes. 

 

Single-cell RNA analysis of CRC metastases in the liver 

We sequenced a total of 44,522 single cells from these metastases.  The data included 22,718 

cells from normal liver, 14,848 cells from liver mCRCs, and 6,970 PBMCs (Supplemental Table 

2).  The total number of cells per sample ranged from 281 to 8,706 with the variation directly 

attributable to the size of the resected tissue sample.  We filtered out poor quality data, 

eliminating cells with high mitochondrial genes indicative of cell death and computationally 

identified doublets (13, 28).  This quality control step removed 12.2% of the total number of 

cells. 

 

To identify the different cell types, we aggregated the data across all samples (Methods).  We 

normalized the data, carried out steps to remove technical variation in sequencing depth and 

performed principal component analysis (11, 12).  Data sets from different experimental batches 

were integrated with a k-means clustering method implemented in the Harmony program (14).  

We used Uniform Manifold Approximation and Projection (UMAP) (29) to visualize the resulting 

clusters.  Most cell clusters had contributions from different samples (Fig. 1B), indicating that 

there were no obvious batch effects during clustering.  We confirmed this computationally by 
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examining a similarity metric called the Adjusted Rand Index (ARI) (30).  Comparison of cluster 

assignments with experimental batch had an ARI of 0.06, a low value indicating near-random 

assignment.  In summary, we confirmed that cluster assignments were not the result of 

experimental batch effects. 

 

Clusters were annotated with major cell types according to the expression of established marker 

genes for specific cell types (17, 31, 32) (Fig. 1C, 1D).  From this data, we identified normal 

hepatocytes (ALB, HAMP, PCK1, TTR), cholangiocytes (DEFB1), tumor epithelial cells (TFF3, 

EPCAM), endothelial cells (VWF, PLVAP, PECAM1) and fibroblasts (DCN, LUM, COL1A1).  

Representing the immune cell types, we detected myeloid lineage cells (CD14, FCGR3A, CD68, 

HLA-DRA) that included macrophages and dendritic cells, T lymphocytes (CD3D, IL7R, CD8A, 

NKG7), NK cells (GNLY, NKG7) and B cells (CD79A, MS4A1). 

 

Depending on the size of the tissue sample, the absolute number of cells, their types and their 

proportions varied (Fig. 1E, Supplemental Table 3).  Subsequently, we performed secondary 

clustering analysis with batch-correction for each cell lineage to determine their gene expression 

properties and extrapolate more granular details about their cell state. 

 

Gene expression properties of metastatic tumor epithelium 

The CRC epithelial cells formed patient-specific clusters among the different mCRCs, reflecting 

the genomic diversity of these cancers (Supplemental Fig. 1A).  We determined differential 

gene expression among mCRCs from the different patients.  Each tumor had its own set of 

differentially expressed genes including FABP1, OLFM4, KRT20, CEACAM5 and CEACAM6: 

these genes have been previously associated with CRC (31) (Supplemental Fig. 1B).  We also 

detected high expression levels of TSPAN8 and HES1 which are indicators of a cancer-related 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2020.09.01.273672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.273672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

stem cell state and properties of invasion (33, 34).  Elevated ERBB2 expression was detected in 

P5784’s and P6593’s tumor epithelial cells - this result was corroborated by IHC results that 

also confirmed ERBB2 overexpression (Table 1).  In addition to marker genes associated with 

colorectal adenocarcinoma, P6198’s MANEC metastasis had significantly increased expression 

of DEFA5 and DEFA6 genes.  The high expression of these genes occurs in small intestinal 

neuroendocrine tumors (35). 

 

Tumor epithelial cell aneuploidy and chromosomal imbalances 

We evaluated the extent of chromosomal scale copy number variations (CNVs) among the 

tumor epithelial cells.  Large copy number alterations that extend up to entire chromosome arms 

are also referred to as allelic imbalances.  This analysis relied on the InferCNV program which 

processes each cell’s gene expression across a given chromosome, compares the results with 

reference diploid cells and provides somatic CNV changes (21). 

 

The tumor epithelial cells in all mCRCs had significant levels of chromosome scale CNVs and 

allelic imbalances extending across the chromosome p or q arms (Supplemental Fig. 1C).  

These large-scale chromosomal events are indicators of aneuploidy and have been associated 

with mCRC (36).  There was no discernible copy number variation from the other normal cell 

types.  This result confirmed the identity of the cancer epithelial cells and indicated that the 

mCRCs belonged to the molecular subtype associated with chromosomal instability (CIN) (37).  

Notably, all tumors had undergone IHC for DNA mismatch repair proteins and were confirmed to 

be MSS, which is consistent with these mCRCs being CIN. 

 

Citing some frequent copy number alterations, we observed chromosome allelic imbalance 

across chromosome arm 7p across all tumors.  A deletion involving the chromosome 8p arm 
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was observed among five out of seven mCRCs.  There was a series of other frequent allelic 

imbalances involving CNV gains.  Two tumors (P6648, P6335) had amplifications in 

chromosome 13.  Three tumors (P6648, P6593, P6198) had chromosome 19 allelic imbalances.  

Four tumors (P6648, P6335, P5915, P5784) had imbalances in chromosome 20.  All these 

chromosomal alterations have previously been identified as markers for increased risk of 

metastasis in CRC (38).  The mCRC (P6198) with MANEC histopathology had genomic 

instability events including loss of chromosome 8 that is a frequent event among colorectal 

adenocarcinomas (39). 

 

Myeloid lineages in mCRC, normal liver and PBMCs 

We examined the myeloid cell populations among the different samples following a secondary 

clustering analysis (Fig. 2A, B).  The myeloid cell populations had clusters associated with the 

tissue source.  The matched liver tissue had normal myeloid cells present in multiple distinct 

clusters.  The matched peripheral blood had normal monocytes that cluster separately without 

overlap from other macrophage types.  The macrophages from the mCRC samples distinctly 

separated from the macrophages in the matched normal liver tissues and peripheral monocytes.  

Specifically, mCRCs macrophages were represented among Clusters 1 and 3 (Fig. 2A, B). 

 

Next, we determined which genes defined the specific myeloid clusters.  The PBMC monocytes 

expressing either CD14 or FCGR3A (CD16) highly expressed S100A family genes (Figure 2C).  

Dendritic cells expressed the HLA genes, CD1C, CLEC9A and IDO1 among others.  

Intrahepatic macrophages included normal Kupffer cells that expressed CD5L, MARCO, LIPA, 

MAF, VCAM1 etc. (17, 40). 
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There was a population of tumor-associated macrophages with high expression levels of SPP1.  

These macrophages were present in Clusters 1 and 3.  The macrophages in Cluster 1 also 

expressed APOC1, APOE, RNASE1 and others.  The macrophages in Cluster 3 expressed 

chemokines genes such as CXCL8, IL1B, CCL20 and others.  The elevated expression of SPP1 

has been identified among tumor-associated macrophages across several cancers including 

primary CRC (41).  SPP1 encodes for an integrin binding glyco-phosphoprotein. SPP1 

overexpression is observed in cancer and is associated with a poor prognosis (42).  We refer to 

this specific cell type as SPP1+ tumor associated macrophages. 

 

Reprogrammed tumor associated macrophages have inflammatory fibrosis and lipid 

metabolism features 

Macrophages display a high degree of plasticity, which is related to assuming different 

functional properties.  These changes in the cell states are generally referred to as 

reprogramming.  Our analysis discovered that SPP1+ tumor associated macrophages had gene 

expression signatures reflecting two reprogrammed functional states: 1) scar associated 

macrophages present in fibrotic cirrhotic livers; 2) foamy macrophages that have engulfed high 

levels of low-density lipoprotein. 

 

We compared the gene expression signature of the metastatic TME macrophages to the other 

macrophage types present in normal liver tissue (Fig. 2D, Supplemental Table 4).  The SPP1+ 

tumor-associated macrophages had elevated expression levels of APOC1, APOE, TREM2, 

FN1, LGALS3, FTL, CD9, CTSB, etc. (p value < e-72).  These genes are notable for defining 

specific cell properties.  Namely, macrophages with increased SPP1, TREM2, FN1 and 

LGALS3 expression occur in fibrotic diseases such as pulmonary fibrosis and cirrhosis (43, 44).  

From studies of primary CRCs in the colon, macrophages expressing SPP1 and CTSB were 
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associated with construction of a collagenous ECM (45).  LGALS3 encodes for a member of the 

galectin family of carbohydrate binding proteins.  It plays a role in macrophage polarization and 

fibrosis in inflammatory diseases (46). TREM2 functions as a molecular regulator of the foam 

cell phenotype in macrophages (47). Elevated TREM2 expression was also identified in 

macrophages in liver cirrhosis, indicating a pro-fibrotic function (44). Meanwhile, high 

expression of APOE and APOC1, encoding for lipoproteins, indicated higher levels of 

cholesterol metabolism.  Similar expression features are observed in foam cell macrophages 

located in atherosclerotic plaques, an obstructive lesion of arterial vessels (18).  In summary, 

TME macrophages in the liver had gene expression signatures observed in inflammatory 

fibrosis and lipid metabolism. 

 

We applied different expression analysis methods to confirm the functional states of these 

reprogrammed TME macrophages.  Using the enrichR program (16), we performed a pathway 

analysis on the differentially expressed genes in TME macrophages to identify the biologically 

relevant processes regulated by them.  We detected significant enrichment of terms relating to 

both extracellular matrix (ECM) organization and metabolism.  Different metabolic pathways 

were enriched including glycosphingolipid metabolism, glucose metabolism and HDL-mediated 

lipid transport (Fig. 2E, Supplemental Table 5).  Next, we quantified the expression signature 

from foamy macrophages (18) and cirrhotic scar associated macrophages (44) (Supplemental 

Table 6).  Compared to normal hepatic macrophages, mCRC macrophages had significant 

enrichment of both these gene signatures (Fig. 2F).  These results overlap with the results of 

the differential gene expression analysis. 

 

As an alternative approach for evaluating the macrophage properties, we used the EcoTyper 

program.  It employs a non-negative matrix factorization (NMF) on gene expression data such 
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as scRNA-seq to identify cell states (24).  EcoTyper does not rely on single cell clustering.  The 

NMF analysis of the mCRC data identified a distinct expression signature enriched for tumor 

macrophages (Supplemental Fig. 2).  This tumor macrophage signature included SPP1, 

GPNMB, APOC1, APOE, TREM2, CTSB, LGALS3, FTL, etc.  These genes overlapped with the 

results from the differential expression between tumor-associated and normal macrophages 

(Fig. 2B, Supplemental Table 4).  Overall, this result confirmed the identification of a distinct 

macrophage cell state in the mCRC TME with fibrogenic properties and altered metabolism. 

 

Stromal cell components in the metastatic microenvironment in the liver 

We characterized the different stromal cells present in the mCRC microenvironment in the liver 

using reclustering with batch correction.  The clustering analysis showed that the stromal cells 

from the mCRCs separated from those in the normal liver (Fig. 3A).  Among the different 

clusters there were three major cell types which included fibroblasts, endothelium and hepatic 

stellate cells (HSCs) (Fig. 3B). 

 

Fibroblasts associated with mCRC were present in Clusters 1 and 4 (Fig. 3B, 3C).  Cluster 1 

only contained fibroblasts from mCRC and was distinctly separated from the fibroblasts of 

normal hepatic tissue.  These cells were characterized by elevated expression of ECM-related 

genes such as those involved in collagen synthesis, POSTN, FN1, MGP, etc. (Fig. 3C).  

Therefore, Cluster 1 had the attributes of cancer-associated fibroblasts (CAF). 

 

The fibroblasts in Cluster 4 had high expression of ACTA2 (Cluster 4).  These cells overlapped 

with HSCs from normal liver.  Additional genes with differential expression included TAGLN, 

MYL9 and IGFBP7 – these genes are expressed in activated HSCs (17).  HSCs are quiescent 
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fibroblasts, occupying a specific cellular niche in the liver.  Inflammatory processes activate 

these stellate cells, allowing them to proliferate and migrate.  Our analysis also identified 

endothelial cell subsets (Clusters 0, 2, 3, 6 and 8) which were present in normal liver. 

 

Fibroblasts in the metastatic TME have a tumor-promoting ECM expression signature 

Next, we compared the set of CAF differentially expressed genes with the components of the 

‘matrisome’, a term that refers to the core ECM components.  The matrisome includes 

fibronectins, collagens, laminins, proteoglycans, etc. which are associated with the ECM 

structure and its secretion (Fig. 3E, Supplemental Table 7) (48).  The CAFs had a matrisome 

program based on the differential expression of several collagen genes (COL1A1, COL3A1, 

COL5A1, etc.), a variety of ECM glycoproteins (FN1, POSTN, SPARC, THBS1, etc.) and 

proteoglycans (BGN, VCAN, etc.).  These cells also highly expressed ECM regulator genes 

including MMP11, MMP14, TIMP1, LOXL1 and LOXL2.  These genes are involved in ECM 

remodeling.  The ECM composition influences physical properties such as stiffness and 

contributes to tumor growth and drug resistance (49). 

 

The CAFs were also denoted by the expression of secreted growth factors including VEGFA, 

PDGFA and PDGFC.  These genes promote tumor growth and enable immune evasion (50).  

For example, VEGFA is involved in supporting the migration of cancer cells and facilitates 

metastasis. 

 

The metastatic TME has an immunosuppressed T cell milieu 

For all mCRCs, there was a lack of tumor-reactive CD8 T cells in the TME of the liver.  

Moreover, we detected regulatory T cells (Tregs) in the TME.  These cell features are the 
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hallmarks of an ineffective anti-tumor response.  We analyzed all lymphocytes from mCRCs, 

PBMCs and normal tissue.  Based on marker gene expression, we detected CD8 T cells, CD4 T 

cells, NK/NK-like cells (gamma delta T, NK-T, MAIT atypical, Tregs, plasma and B cells 

(Supplemental Fig. 3A, 3B).  The T and NK cells in PBMCs clustered separately from the 

same cell types in the liver, indicative of tissue-specific transcriptional differences, which we 

have also observed in gastric tissue (Supplemental Fig. 3C). 

 

CD8 T cells from tumors co-clustered with those from normal liver, indicating their gene 

expression signatures were similar.  These cells expressed markers of previously described 

tissue resident cells in the liver (17) including GZMK, CCL5, CCL4L2 and CD69.  Notably 

absent were CD8 T cells with features of tumor-reactivity such as expression of ITGAE, 

ENTPD1 and CXCL13 (Supplemental Fig. 3B) (51).  We confirmed the transcriptional similarity 

between tumor and normal liver CD8 T cells using the NMF-based, non-clustering EcoTyper 

algorithm previously described (Supplemental Fig. 3D).  Cell states of CD8 T cells in the TME 

overlapped with those of normal liver CD8 T cells.  This result supports the conclusion that CD8 

T cells in the TME are quiescent bystanders.  We evaluated the expression of a cytotoxic gene 

signature among these CD8 T cells.  The cytotoxicity signature among the tumor CD8 T cells 

was significantly lower than those in normal liver CD8 T cells (P = 1.23E-11, Supplemental Fig. 

3E).  In summary, for all the mCRCs, the results from the CD8 T cells and the presence of 

Tregs indicated an immunosuppressed TME lacking anti-tumor activity. 

 

TME fibroblasts and macrophages influence the T cells in the mCRC 

Using the single cell RNA-seq data, we characterized the receptor-ligand networks present in 

the liver TME.  We discovered intercellular interactions among non-immune and immune cell 

types that facilitate T cell exclusion and exhaustion.  For this analysis, we used the program 
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CellChat to identify cell-type specific receptor-ligand interactions and construct a mCRC TME 

interactome (22).  This algorithm identities the differentially over-expressed ligand genes and 

their complementary receptors for each cell type, quantifies each interaction with a probability 

value and delineates the significant interactions by randomly permuting the cell type labels. 

 

Macrophages and CAFs were noted to have expression of specific ligands that contribute to T 

cell exclusion and exhaustion.  Specific interactions identified within these pathways included 

the fibroblast-lymphocyte CXCL12-CXCR4 receptor ligand pair (Supplemental Fig. 4A).  

CXCL12 ligand and its co-receptor CXCR4 regulate the mobilization of immune cells into 

tissues (52).  We also identified expression of NECTIN2 from fibroblasts and endothelial cells.  

This ligand binds to immune checkpoint TIGIT present in T cells. 

 

As described previously, we found that the TME macrophages expressed SPP1 – this ligand 

suppresses T cell activation via interaction with CD44 (53).  This ligand also interacts with the 

integrin receptor family, thus cross networking with CAFs (54).  Macrophages expressed the 

CD86 ligand that maintains the regulatory phenotype and survival of Tregs via interaction with 

CTLA4 (55).  CAFs and macrophages expressed VEGFA and VEGFB that can mediate 

angiogenesis (56). 

 

We visualized these interactions as lines between different cell types, with their width scaled by 

the number of interactions mediated by the sender cell.  CAFs were the most prolific 

communicators in the TME, dominating the top 10% of all cell-to-cell interactions 

(Supplemental Fig. 4B). 
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Networking of macrophages and CAFs mutually influence their cell states 

We discovered that macrophages and CAFs affect each other’s gene expression programs via 

specific receptor-ligand interactions.  Our analysis used the NicheNet algorithm that can predict 

ligands from a sender cell type that regulate target gene expression in a receiver cell type via 

ligand-receptor interactions (23).  This analysis can thus identify intercellular communication 

that influences the transcriptional phenotype of a target cell.  We visualized these interactions 

as a Circos plot with ligands from sender cells that affect downstream target gene expression in 

a receiver cell. 

 

We first identified ligands from cells in the TME that can result in expression of matrisome 

genes in mCRC CAFs (Fig. 4A).  One of the highest ranked genes was the established ECM 

regulator gene TGFB1, which was derived from NK cells, validating this approach (57).  Several 

ligands were derived from macrophages including SPP1, IL1B, TNF, MMP9 and CCL2.  These 

ligands have the potential to regulate target gene expression of several core matrisome genes 

including the collagen family.  Other CAF matrisome target genes for macrophage ligands 

included MMP2 and VEGFA.  This result further supports our finding that the reprogrammed 

SPP1+ macrophage cell state promotes fibrosis in the mCRC TME.  Additionally, several 

ligands were expressed by CAFs themselves, indicating autocrine signaling.  These ligands 

included AGT, TGFB3, CTGF, CCL2, FGF1, HGF, CXCL12 and CSF1. 

 

Next, we examined which ligands can lead to the reprogrammed macrophage cell state with 

features indicative of inflammatory fibrosis and lipid metabolism.  The top ranked ligands 

included FGF1, CSF1, PGF, TGFB3 and TIMP1; all were derived from CAFs. (Fig. 4B).  These 

ligands can target macrophages and regulate the expression of SPP1, FN1 and APOE.  Hence, 

ligands from CAFs have the potential to reprogram the mCRC macrophages via ligand-receptor 
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interactions. Overall, these results pointed towards the presence of a signaling network between 

TME macrophages and CAFs.  This intercellular communication influences the transcriptional 

phenotype of both cell types. 

 

Spatial characterization of the mCRC TME in the liver 

To determine the spatial cellular characteristics of the mCRCs, we used CODEX multiplexed 

imaging.  This approach uses antibody multiplexing on tissue sections, enabling cell type 

identification at a single-cell resolution (Fig. 5A) (58).  This spatial imaging allowed us to ask 

specific questions about cell types and cellular proximity in the liver mCRC TME. 

 

We used a 25-plex antibody panel (Supplemental Table 1). This panel included lineage 

markers to identify specific cell types including tumor epithelial cells (PanCK i.e. Pan 

Cytokeratin), CAFs (COL4A1, ACTA2), macrophages (CD68), endothelial cells (PECAM1), CD4 

T cells (CD4), CD8 T cells (CD8) and Tregs (FOXP3).  A subset of antibodies were specific for 

proteins expressed in different cell states identified in our scRNA-seq analysis.  These 

antibodies included one which recognizes LGALS3, a marker of the inflammatory fibrosis 

phenotype seen in the SPP1+ tumor associated macrophages.  We also examined the 

expression of immune checkpoints PDCD1 (PD-1) and ICOS; and co-stimulatory molecule 

TNFRSF4 (OX40) that characterize dysfunctional CD8 T cells as well as Tregs.  Further, we 

examined the expression of the cytotoxic effector molecule GZMB. 

 

We analyzed both the CODEX and hematoxylin and eosin (H&E) images for each tumor.  The 

mCRC tissues underwent pathology review from an adjacent H&E section.  The annotation 

outlined the boundaries between the tumor and adjacent normal liver parenchyma.  Next, we 
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processed the CODEX image data to excluded adjacent normal liver.  For this step, the analysis 

used the HEMnet program which processes both the H&E and CODEX images to map the 

nuclei from CODEX to H&E images with corresponding pathological annotation (26).  This 

enabled the exclusion of images covering the normal liver parenchyma from downstream 

analysis.  Hence, our analysis could be restricted to tumor cells and the surrounding TME. 

 

After image processing, there were a total of 330,893 single cells from 15 mCRCs (Table 1).  

We first clustered these cells using low resolution batch corrected clustering implemented in the 

Harmony algorithm (14).  Cell clusters had contributions from different tumors.  This result 

indicates an adequate removal of batch effects (Fig. 5B).  Due to the sparsity and noisy nature 

of measured CODEX data, feature expression may be inadequate to resolve cell types based 

on clustering.  We leveraged the spatial information of each index cell during the clustering 

process.  This method, Context Assisted Cell Type Identification (CACTI) (Methods), improved 

the cell assignments per cluster following batch corrected clustering. 

 

Based on the antibody staining patterns, we identified tumor epithelial cells, CAFs, 

macrophages, endothelial cells, CD4 T cells, CD8 T cells and Tregs.  We verified cell type 

assignments by comparing corresponding H&E images (Fig. 5C, D, Supplemental Fig. 5).  The 

different cell types had varying proportions across the mCRCs (Fig. 5E).  Five samples had 

both scRNA-seq and CODEX results from different parts of the tumor.  Proportions of cell 

lineages identified in these samples using the two methods demonstrated a moderate 

correlation (Pearson correlation coefficient 0.39, p = 0.02) (Supplemental Fig. 6A). 

 

Validation of cell states in the mCRC TME 
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Having identified cell types, we examined the expression of specific markers characterizing 

distinct cell states.  These markers were identified from the scRNA-seq results.  TME 

macrophages had high expression of LGALS3, compared to other cell types (Fig. 5F, G).  

Macrophages across all patients had high correlation (Pearson correlation coefficient 0.76, p = 

0.00099) between the expression of LGALS3 and lineage marker CD68 (Supplemental Fig. 

6B). This result independently confirmed the LGALS3 high SPP1+ macrophages we identified in 

the scRNA-seq data. 

 

CAFs had high expression of COL4A1, compared to other cell types (Fig. 5F).  High co-

expression of COL4A1 and ACTA2 was noted across CAFs from all patients (Pearson 

correlation coefficient 0.76, p = 0.001) (Supplemental Fig. 6C). This result supports the 

identification of the matrisome program identified in our scRNA-seq analysis of CAFs. 

 

Among the lymphocytes, CD4 T cells had high protein expression levels of GZMB and 

TNFRSF4 (OX40).  Tregs highly expressed immune checkpoints PDCD1 (PD-1) and ICOS. The 

CD8 T cells did not express these markers.  These results support our finding that the mCRC 

TME lacks anti-tumor dysfunctional CD8 T cells expressing cytotoxic effectors, checkpoints, or 

costimulatory molecules.  We detected Tregs in all samples (Fig. 5E, Supplemental Fig. 5).  

This result supports the immunosuppressed T cell milieu of the mCRCs observed in the single 

cell analysis. 

 

Spatial proximity between macrophages and fibroblasts in the metastatic TME 

In our scRNA-seq analysis, we determined that SPP1+ tumor associated macrophages had a 

fibrogenic gene expression program.  Moreover, we identified intercellular communication 
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between macrophages and CAFs.  We hypothesized that these two cell types are in physical 

proximity in the local cellular neighborhood of the TME.  This proximity would facilitate any 

paracrine interactions.  We examined the spatial proximity between macrophages and CAFs in 

the CODEX dataset. 

 

We used this analysis on twelve samples which had the highest tissue integrity and minimal 

areas of necrosis (Supplemental Fig. 5).  The latter feature lowers the quality of the image and 

acts as a confounding factor for the analysis. For each sample, we tested the hypothesis if 

CAFs were more spatially proximal to macrophages than any other group of cells on average.  

To test this hypothesis, we used a permutation test to permute cell labels from all macrophages, 

lymphocytes, epithelial and endothelial cells.  We then examined if CAFs and each cell label 

was a mutual nearest neighbor based on their spatial co-ordinates.  Hence, we could test if 

CAFs were significantly closer to macrophages than any other cell. 

 

We detected significant spatial proximity between CAFs and macrophages in nine mCRC 

samples, compared to proximity between CAFs and all other cell types (permutation test p < 

2.2E-16) (Supplemental Table 8).  Hence, macrophages and CAFs are located spatially close 

to one another in the mCRC TME.  This can enable paracrine interactions that influence their 

cell states.  Overall, this result provides additional support for our scRNA-seq analysis that 

identified intercellular communication between macrophages and CAFs. 

 

Impact of CAFs on clinical outcomes in an independent mCRC dataset 

To validate our findings from our single cell discoveries, we analyzed gene expression data from 

93 mCRCs resected from the liver (3).  These tumors had undergone conventional RNA 
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sequencing (RNA-seq).  Notably, 96.6% of these tumors were MSS.  Thus, the tumors had the 

same liver-based TME features as the cohort used for scRNA-seq. 

 

We utilized a deconvolution method, CIBERSORTx, to infer cell lineage fractions in this dataset 

(25).  Using this method, one can generate cellular fractions in a bulk gene expression dataset 

using single-cell profiles. We generated a gene signature matrix per cell lineage derived from 

cells specific to tumor samples, while excluding normal liver tissue and PBMCs (Fig. 6A). This 

analysis included tumor epithelial cells and TME-specific CAFs, SPP1+ macrophages, DCs, 

endothelial cells, CD8 T, CD4 T, Treg, NK, B and plasma cells. Applying this signature matrix to 

bulk gene expression datasets resulted in quantification of cellular fractions of each lineage per 

sample.  We successfully obtained cellular fractions for all lineages (deconvolution p < 2.2E-16 

with 1000 permutations).  Hence, tumor-specific single-cell signatures could successfully be 

deconvoluted in an independent mCRC gene expression dataset.  

 

We also assessed the impact of CAF abundance on prognosis. This external dataset from liver 

mCRCs identified three sub-groups with favorable, intermediate, and unfavorable overall 

survival (OS) (3). The sub-group with unfavorable OS had significantly higher proportion of 

CAFs (ANOVA FDR p < 0.002) (Fig. 6B).  Hence, a TME phenotype characterized by high 

number of CAFs is associated with a poorer clinical outcome. 

 

DISCUSSION 

Our study revealed novel networking between macrophages and fibroblasts in the mCRC TME.  

Using scRNA-seq we identified distinct communication programs between these cells with the 

potential to mutually influence their cell states.  The potential for macrophage-fibroblast 
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interactions is further supported by spatial analysis using multiplexed immunofluorescence that 

showed significant proximity between these cells.  This interactome has the potential for 

modulating the metastatic niche, which represents the “soil” component of the metastatic 

cascade that allows tumor seeding. 

 

We determined that TME macrophages had a gene expression signature that included SPP1, 

APOE, TREM2, CD9 – these genes are part of pathways involved in ECM reorganization.  This 

expression signature has similarities to recently described studies in liver cirrhosis and 

pulmonary fibrosis where it was demonstrated to be a pro-fibrogenic phenotype (44, 59).  SPP1-

expressing macrophages have been demonstrated to play a role in promoting primary CRC.  

They have the potential to influence CD8 function by their role as an immune checkpoint ligand 

(60-62).  This fibrogenic phenotype was accompanied by changes in genes controlling various 

metabolic pathways including glycolysis, lipid transport and sphingolipid synthesis resembling 

atherosclerotic foam cells (18).  Macrophage metabolism influences their functional phenotype 

(63).  Our findings provide metabolic targets that can be perturbed to further understand their 

biology in the context of the TME.  The mCRC macrophages with alterations in lipid metabolism 

have been demonstrated to be associated with poor prognosis in cancer, including in mCRC (4, 

24).  

 

Fibroblasts and macrophages play a critical role in supporting the immunosuppressive TME, 

including the phenotype of T cell exclusion (64).  We discovered fibroblasts specific to the TME 

with the potential to regulate ECM properties that can in turn promote tumor growth.  

Importantly, using an independent mCRC dataset we demonstrated that this fibroblast gene 

signature is linked to a worse clinical outcome and accompanied by reduced number of 

lymphocytes. This result is supported by recent studies in primary CRC, which identified positive 
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correlation between fibroblasts and SPP1+ macrophages. Their presence was associated with 

poor survival and accompanied by reduced lymphocyte infiltration (65, 66). 

 

The majority of mCRC tumors are MSS and unresponsive to T cell based immune checkpoint 

blockade. Hence, the gene expression programs and macrophage-fibroblast interactome 

represents potentially targetable elements in the TME of these patients.  These targets are of 

interest also in other cancers to enable the modulation of the immunosuppressive stroma and 

improve immunotherapy response (64).  In mouse models of cancer, TREM2 blockade resulted 

in TAM reprogramming and increased response to PD-1 immunotherapy (67).  The CXCL12-

CXCR4 interaction is also being investigated in clinical trials (52). 

 

The gene expression programs we have discovered can potentially be influenced by tissue 

dissociation processes.  We used the same dissociation protocol for matched normal liver to 

enable a controlled comparison between tumor and normal microenvironment lineages.  This is 

reflected in the low number of hepatocytes we recovered (Fig. 1B), since adequate dissociation 

of normal liver requires specially developed dissociation protocols (17). 

 

Data Availability Statement 

Sequencing data has been released under dbGAP identifier phs001818.v3.p1. Cellranger 

matrices will be available on https://dna-discovery.stanford.edu/research/datasets/. 

 

Code Availability Statement 

Custom code used for CACTI and spatial proximity analysis is available at 

https://github.com/Kmason23/CACTI_Proximity_Test 
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Table 1.  Metastatic colorectal cancers in the liver. 

Patient 
ID 

Primary 
tumor site 

Microsatellite 
status 

HER2 
expression Single cell RNA-seq CODEX 

analysis 

5784 Sigmoid 
colon MSS positive liver metastasis, normal liver, PBMCs + 

5915 Rectosigmoid 
colon MSS negative liver metastasis, normal liver  - 

6198 Transverse 
colon MSS equivocal liver metastasis, normal liver + 

6335 Descending 
colon MSS negative liver metastasis, normal liver,  

PBMCs + 

6593 Rectum MSS positive liver metastasis + 

6648 Sigmoid 
colon MSS negative liver metastasis, normal liver -  

8640 Rectum MSS equivocal liver metastasis + 

5994 Sigmoid 
colon MSS negative - + 

6209 Sigmoid 
colon MSS negative - + 

6461 Caecum MSS NA - + 

6596 Sigmoid 
colon MSS negative - + 

6873 Rectum MSS negative - + 

6874 Rectum MSS negative - + 

7060 Sigmoid 
colon MSS negative - + 

8479 Sigmoid 
colon MSS negative - + 

8489 Rectum MSS negative - + 

8593 Sigmoid 
colon MSS negative - + 

MSS = microsatellite stable, scRNA-seq = single-cell 
RNA sequencing, PBMCs = peripheral mononuclear 
cells, NA = Not applicable , CODEX = Co-detection by 
indexing 
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FIGURE LEGENDS 

Figure 1. (A) Schematic representation of study design. (B-C) UMAP representation of 

dimensionally reduced data following batch-corrected graph-based clustering of all datasets 

colored by (B) samples and (C) cell type. (D) Dot plot depicting average expression levels of 

specific lineage-based marker genes together with the percentage of cells expressing the 

marker. (E) Proportion of cell types detected from each sample. 

 

Figure 2. (A-B) UMAP representation of dimensionally reduced data following batch-corrected 

graph-based clustering of all myeloid lineage cells annotated by (A) condition and (B) cluster 

numbers. (C) Heatmap depicting expression of five highest significantly expressed genes 

(adjusted p-value < 0.05) per cluster. (D) Heatmap depicting the expression of highest top 15 

significantly expressed genes in normal and tumor macrophages (adjusted p-value < 0.05). (E) 

Selected differentially enriched reactome pathways in tumor macrophages. (F) Violin plots 

depicting the expression of gene signatures of foam cells or scar associated macrophages in 

normal and tumor macrophages with T-test p-value. 

 

Figure 3. (A-C) UMAP representation of dimensionally reduced data following batch-corrected 

graph-based clustering of all stromal lineage cells annotated by (A) condition, (B) cell types and 

(C) cluster numbers. (D) Heatmap depicting expression of five highest significantly expressed 

genes (adjusted p-value < 0.05) per stromal cell cluster. (E) Violin plots depicting the expression 

of selected matrisome components in differentially expressed genes in CAFs. 
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Figure 4.  (A-B) Predicted ligands that regulate respective target genes in (A) CAFs and (B) 

macrophages. Ligands are annotated by the cell type that expresses them. General ligands 

indicate ligands expressed by more than one cell type. Edges are scaled by the inferred 

regulatory potential of the interaction. 

 

Figure 5. (A) Schematic representation of CODEX analysis. (B) UMAP representation of 

dimensionally reduced CODEX data following batch-corrected graph-based clustering of all 

datasets colored by samples. (C) Dot plot depicting average expression levels of specific 

lineage-based marker proteins together with the percentage of cells expressing the marker. (D) 

Example of P7060 tumor with adjacent H&E section (left panel), CODEX staining of selected 

cell lineage markers (middle panel) and graphical representation of identified cell types in image 

data (right panel). Scale bar = 1.07 mm. (E) Proportion of cell types detected from each sample. 

(F) Heatmap depicting average expression of selected proteins across all samples in respective 

cell types. (G) Example of P7060 tumor with CODEX staining of selected markers. Scale bar = 

90 µm. 

 

Figure 6. (A) Schematic representation of deconvolution of cellular fractions from external bulk 

RNA-seq dataset.  (B) Violin plot depicting abundance of CAFs per patient with patients 

grouped according to overall survival sub-group. Comparisons were made by ANOVA with 

Tukey HSD. 
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SUPPLEMENTAL DATA 

Supplemental Figures S1 – S6.  Format: PDF 

Supplemental Tables S1 – S8.  Format: XLSX 
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