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TRANSLATIONAL RELEVANCE

The liver is the commonest site for metastatic colorectal cancer (mCRC). Alterations in the
tumor microenvironment (TME) allow metastatic cells to seed the distant liver site and grow.
Leveraging single-cell RNA sequencing, we discovered a distinct SPP7+ macrophage cell state
with pro-fibrogenic gene expression and altered metabolism. These SPP1+ macrophages
communicated with fibroblasts, mutually influencing each other’s gene expression program.
Using spatial imaging, we confirmed proximal colocalization between macrophages and
fibroblasts in the mCRC TME, which is required for intercellular communication. These states
and intercellular communication promoted immunosuppression in the TME, with a lack of
dysfunctional anti-tumor CD8 T cells and prevalence of regulatory T cells. Increased fibroblasts
were associated with worst prognosis in an independent patient cohort. Our results identified
novel TME features that result in reshaping of the metastatic niche that allows progression of
MCRC. These features can be potential targets for mCRC treatment, which is microsatellite

stable and resistant to immune checkpoint blockade.
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ABSTRACT

Purpose: The liver is the most frequent metastatic site for colorectal cancer (CRC). lIts
microenvironment is modified to provide a niche that allows CRC cell growth. This study
focused on characterizing the cellular changes in the metastatic CRC (mCRC) liver tumor

microenvironment (TME).

Experimental Design: We analyzed a series of microsatellite stable (MSS) mCRCs to the liver,
paired normal liver tissue and peripheral blood mononuclear cells using single cell RNA-seq
(scRNA-seq). We validated our findings using multiplexed spatial imaging and bulk gene

expression with cell deconvolution.

Results: We identified TME-specific SPP1-expressing macrophages with altered metabolism
features, foam cell characteristics and increased activity for extracellular matrix (ECM)
organization. SPP1+ macrophages and fibroblasts expressed complementary ligand receptor
pairs with the potential to mutually influence their gene expression programs. TME lacked
dysfunctional CD8 T cells and contained regulatory T cells, indicative of immunosuppression.
Spatial imaging validated these cell states in the TME. Moreover, TME macrophages and
fibroblasts had close spatial proximity, a requirement for intercellular communication and
networking. In an independent cohort of MCRCs in the liver, we confirmed the presence of
SPP1* macrophages and fibroblasts using gene expression data. An increased proportion of

TME fibroblasts was associated with worst prognosis in these patients.

Conclusions: We demonstrated that mCRC in the liver is characterized by transcriptional
alterations of macrophages in the TME. Intercellular networking between macrophages and
fibroblasts supports CRC growth in the immunosuppressed metastatic niche in the liver. These

features can be used to target these immune checkpoint resistant MSS tumors.
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INTRODUCTION

Nearly 50% of all patients with colorectal cancer (CRC) have metastases. The most common
site for metastatic colorectal cancer (mCRC) is the liver (1). Through hematogenous spread,
colon cancer cells reach the liver and establish themselves in the hepatic parenchyma. Liver
metastasis is a major contributor to morbidity and mortality of Stage IV patients. There are
specific cellular processes that enable a CRC metastasis to establish itself in the liver. The
hepatic microenvironment and its cellular composition are functionally quite different than those
present within the colon microenvironment encompassing the primary tumor. The various cells
in the liver microenvironment must be altered to accommodate foreign colon cancer cells (2).
Cellular changes specific to the liver facilitate mCRCs growth and play a role in suppressing the

patient’s immune response (3, 4).

Immune checkpoint blockade targets the TME-based T-cells and their communication with
tumors cells via PD-1/PD-L1. Only mCRCs with microsatellite instability (MSI), a hypermutable
state, respond to immunotherapy. However, only around 4% of mCRC tumors are of the MSI
subtype (5). Majority of mMCRCs are microsatellite stable (MSS) and show no response to
checkpoint blockade. Furthermore, MSS mCRC tumors generally do not have significant levels
of T cell infiltration which is a requirement for effective checkpoint blockade (3, 6). As a result,
MSS mCRCs have a profoundly immunosuppressed TME and are highly resistant to
immunotherapy. To develop effective immune-based therapeutic strategies for mCRC, it is
essential to characterize the cell states and interactive networking present within the TME in

sites such as the liver.

Metastatic colorectal cancers in the liver are a complex mixture of many different cell types

originating from the tumor epithelium, immune system, and hepatic stroma. Even for a specific
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cell type, there are different cell “states” reflecting functional variation depending on the local
cellular context as seen in liver parenchyma. Several recent studies have used single-cell RNA
(scRNA-seq) to characterize the various cell types and the functional states in the CRC TME in
colon. These studies represent a survey of the primary colon tumor. There are only a few
single cell genomic studies of MCRCs in the liver. These scRNA-seq studies have focused on
the immune cells isolated from the mCRC TME (4, 7, 8). However, non-immune cell types such
as fibroblasts and endothelial cells also contribute to the mCRC TME. Intercellular signaling

and networking among the immune and non-immune cells orchestrate metastatic progression

(9).

We conducted a study to determine the multi-cellular features and interactions for mCRCs in the
liver. Our analysis specifically focused on MSS mCRCs. We used a multi-pronged approach:
(1) single-cell RNA (scRNA-seq); (2) spatial multiplexed imaging; (3) conventional RNA-seq.
For the single cell studies, the tumors were analyzed directly without flow sorting — this
approach preserved the composition of the native cells in the liver metastasis. We identified a
unique category of TME-based macrophages that networks with cancer associated fibroblasts
(CAF). We examined the spatial organization and proximity of these and other cell types with
multiplexed imaging. Our results showed close proximity of macrophages and CAFs compared
to other TME cell types. Using an independent set of mCRCs in the liver with RNA-seq data,

cellular deconvolution identified these different cell types and confirmed our single cell results.

MATERIALS AND METHODS

Sample collection and processing
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This study was conducted in compliance with the Helsinki Declaration. All patients were
enrolled according to a study protocol approved by the Stanford University School of Medicine
Institutional Review Board (IRB-11886 and IRB-44036). Informed consent was obtained from

all patients.

Tissue samples came from surgical resections or matched normal tissue from sites displaced at
least several centimeters from the tumor. Tissues were collected in plain RPMI on ice
immediately after resection and dissected with iris scissors. Single-cell suspensions were
obtained from tissue fragments using enzymatic and mechanical dissociation and from
peripheral blood using peripheral blood mononuclear cell (PBMC) isolation as described
previously (10). Briefly, cells were washed twice in RPMI + 10% FBS, filtered through 70 um
(Flowmi, Bel-Art SP Scienceware, Wayne, NJ), followed by 40 um filter (Flowmi). Cryofrozen
cells were rapidly thawed in a bead bath at 37 °C followed by above washing and filtering steps.
Live cell counts were obtained on a BioRad TC20 cell counter (Biorad, Hercules, CA) or a
Countess Il FL Automated Cell Counter (ThermoFisher Scientific) using 1:1 trypan blue dilution.

Cells were concentrated between 500-1500 live cells/ul for scRNA-seq.

Histopathology

Tissue was fixed in 10% formalin for approximately 24 hours at room temperature. Paraffin
embedding and hematoxylin and eosin staining was conducted by the Human Pathology
Histology Services core facility at Stanford University. We reviewed clinical histopathology
reports for all patients that examined the expression of HER2, special stains for MLH1, MSH2,
MSH6 and PMS2 for MSI/MSS status using standard clinical immunohistochemistry (IHC)

protocols.
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Single-cell RNA sequencing

The scRNA-seq libraries were generated from cell suspensions using Chromium Single Cell 3'
Library & Gel Bead Kit v2 or Chromium Next GEM Single cell Immune Profiling 5" v1.1 (for
P8640) (10X Genomics, Pleasanton, CA, USA) as per manufacturer’s protocol and sequenced
on lllumina sequencers (lllumina, San Diego, CA). All libraries from a patient were prepared in
the same experimental batch. Ten thousand cells were targeted from tissue dissociation
suspensions and 3000 for PBMCs with 14 PCR cycles for cDNA and library amplification. A 1%
or 2% E-Gel (ThermoFisher Scientific, Waltham, MA, USA) was used for quality control
evaluation of intermediate products and sequencing libraries. A Qubit (Thermofisher Scientific)
or gPCR with Kapa library quantification kit (Kapa Biosystems, Wilmington, MA) was used to

quantify the libraries as per the manufacturer’s protocol.

Processing scRNA-seq data

Cell Ranger (10x Genomics) version 3.1.0 ‘mkfastq’ and ‘count’ commands were used with
default parameters and alignment to GRCh38 to generate matrix of unique molecular identifier
(UMI) counts per gene and associated cell barcode. We constructed Seurat objects from each
dataset using Seurat (version 4.0.1) (11, 12) to apply quality control filters. We removed cells
that expressed fewer than 200 genes, had greater than 30% mitochondrial genes or had UMI
counts greater than 8000 which is an indicator of cell doublets. We removed genes that were
detected in less than 3 cells. We normalized data using ‘SCTransform’ and used first 20
principal components with a resolution of 0.6 for clustering. We then removed computationally

identified doublets from each dataset using DoubletFinder (version 2.0.2) (13). The ‘pN’ value
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was set to default value of 0.25 as the proportion of artificial doublets. The ‘nExP’ was set to
expected doublet rate according to Chromium Single Cell 3’ v2 reagents kit user guide (10x
Genomics). These parameters were used as input to the ‘doubletFinder_v3’ function with

number of principal components set to 20 to identify doublet cells.

Batch-corrected integrated scRNA-seq analysis

Individual Seurat objects were merged and normalized using ‘SCTransform’ (11, 12). To
eliminate potential batch effects, we integrated all datasets across experimental batches by
using a soft variant of k-means clustering implemented in the Harmony algorithm (version 0.1.0)
(14). The experimental batch metrics were used in the grouping variable in the ‘RunHarmony’
function, and this reduction was used in both ‘RunUMAP’ and ‘FindNeighbors’ functions for
clustering. The first 20 principal components and a resolution of 1 was used for clustering. We
used the Adjusted Rand Index (ARI) to compare similarity between cluster labels and
experimental batch meta data label for each cell. A vector of these respective class labels was
supplied to the ‘adjustedRandIndex’ function in mclust package (v 5.4.7) (15). The data from
the ‘RNA’ assay was used for all further downstream analysis with other packages, gene level
visualization or differential expression analysis. The data was normalized to the logarithmic
scale and the effects of variation in sequencing depth were regressed out by including
‘nCount_RNA’ as a parameter in the ‘ScaleData’ function. Differential gene expression analysis
was conducted using the ‘FindAlIMarkers’ or ‘FindMarkers’ functions respectively using
Wilcoxon rank sum test. Parameters provided for these functions were as follows: genes
detected in at least 25% cells and differential expression threshold of 0.25 log fold change.
Significant genes were determined with p < 0.05 following Bonferroni correction. The

‘DoHeatmap’, ‘FeaturePlot’, ‘DimPlot’, ‘DotPlot’, ‘VInPlot’ functions were used for visualization.
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Cell lineage identification and reclustering of integrated scRNA-seq data

From the batch-corrected Seurat object, cell lineages were identified based on marker gene
expression. Red blood cell and platelet clusters were filtered out from the downstream analysis.
A single proliferative cluster containing both epithelial and T cells was split based on the
expression of normalized counts for EPCAM > 0 in epithelial cells. We performed a secondary
clustering analysis of each lineage with integration across experimental batches using Harmony
and a cluster resolution of 0.6. Any clusters identified as belonging to another cell lineage were
united with their lineage counterparts for a second clustering run. This yielded final lineage-
specific re-clustering results. In lymphocyte re-clustering, a single cluster containing naive CD4
and CD8 T cells was gated for CD8 T cells based on the expression of normalized counts for

CD8A or CD8B >0.

Pathway analysis

Differentially expressed genes in tumor macrophages were used as input to pathway analysis
using ‘Reactome_2016’ in the package enrichR (v2.1) (16). We used the ‘AddModuleScore’
function in Seurat to calculate the average expression of a custom gene set of interest. Using
this function, genes of interest were first binned into 24 bins of expression levels based on their
average expression. From each bin, control genes were randomly selected using default
parameters used in this function. Finally, average expression score was calculated as the
difference between average expression of gene set of interest and average expression of
control genes. Expression between clusters was compared using t-test. Gene signatures of
scar associated macrophages from liver cirrhosis (17) and atherosclerotic foam cells (18) were

obtained from the original publications. CD8 cytotoxicity signature (GZMA, GZMB, GZMK,
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GZMH, GNLY, PRF1, IFNG, NKG7, KLRK1, KLRB1, KLRD1, CTSW, CST7, CCL4, CCL3) was

compiled from previous publications (19, 20).

Copy number analysis

InferCNV (version 1.2.3) (21) was used to infer large-scale copy number variations in tumor
epithelial cells. As a reference control, we used all myeloid and stromal cells from tumor and
normal samples. Count data was used as input. Filtering, normalization and centering by
normal gene expression were performed using default parameters. A cut-off of 0.1 was used for
the minimum average read counts per gene among reference cells. An additional denoising
filter was used with a threshold of 0.2. Copy number variation was predicted using the default

six state Hidden Markov Model.

Receptor-ligand communication between cell types

We obtained the expression matrix from tumor samples using the ‘data’ slot of the ‘RNA’ assay
following lineage-specific secondary clustering analysis. We excluded epithelial cells from
P6198 with neuroendocrine differentiation from this analysis. This expression matrix was used
as input to CellChat (v0.5.0) (22). ‘CellChatDB.human’ was used as the receptor-ligand
interaction database. ‘identifyOverExpressedGenes’ and ‘identifyOverExpressedinteractions’
functions were used to identify over-expressed ligands, receptors and interactions in each cell
group. Number of interactions were calculated using the ‘aggregateNet’ function and visualized

using ‘netVisual_circle’.

We also predicted receptor-ligand interactions likely to affect specific gene expression changes

in a target cell lineage using nichenetr (v0.1.0) (23). This analysis utilizes ligand-target
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regulatory potential scores calculated from prior information. We performed this analysis on
fibroblasts as target cells for genes that overlapped with the matrisome program (identified in
Supplemental Table 6). We also examined macrophages as target cells with genes belonging
to enriched Reactome pathways: 'Metabolism', 'Degradation of the extracellular matrix',
'‘Extracellular matrix organization', 'Collagen degradation' (identified in Supplemental Table 5).
NicheNet's prior models and networks were obtained from

https://zenodo.org/record/3260758#. X0WX7BNKhTY.

Ligands predicted to influence expression of genes of interest in target population were
calculated using the function ‘predict_ligand_activities’ with default parameters that outputs
activity as Pearson correlation coefficient based on prior modelling. The weight or inferred
regulatory score between a target gene and ligand was obtained using
‘get_weighted_ligand_target_links’ function. Top 20 ligands and interactions with regulatory
potential value in the top 60% were used for visualization. Ligands were assigned to a
particular cell type as sender if their expression was greater than one standard deviation from
the average ligand expression. Target genes and ligands were visualized using the
‘chordDiagram’ function from the circlize R package (v0.4.11) with transparency scaled to

respective regulatory potential value.

EcoTyper analysis for cell state discovery

Cell state discovery on scRNA-seq expression data was performed using EcoTyper (24) using

the scripts and vignette provided on https://github.com/digitalcytometry/ecotyper. The number

of NMF restarts was set to 50 and maximum number of states per cell type was set to 10.
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RNA-seq analysis and cell type deconvolution

Fastq files from RNA sequencing of 93 mCRC FFPE samples were obtained from European
Genome-Phenome Archive, dataset ID EGAD00001004111 (3). Information on prognosis sub-
group for each patient was obtained from the contributors of the data. Data was aligned to
genome reference GRCh38 using STAR (v2.6.0a) and transcripts per gene were counted using
htseq-count method from HTSeq (v0.5.4). Counts were converted to Transcripts Per kilobase
Million (TPM) to normalize for gene length, and non-protein-coding genes were removed. Gene
length used for normalization was the number of bases covered at least once for all exons in
that gene. The TPM value was obtained by calculating the reads per kilobase (RPK) for each
gene, then calculating the scaling factor as sum (RPK)/10E6 and lastly calculating TPM per
gene as RPK/scaling factor. In cases with duplicate sequencing runs for the same patient, TPM

counts were averaged.

From our mCRC samples, we obtained the single-cell expression matrix for each cell type using
the ‘counts’ slot of the ‘RNA’ assay of the Seurat object with filtering as outlined above. These
cell-type gene lists were used as input to CIBERSORTX (25). The signature matrix was created
in custom analysis mode using default parameters with minimum expression set to zero and
was used for cell fraction imputation. TPM counts from bulk expression dataset was used as
the mixture file. Default parameters were used except quantile normalization was disabled,
permutations for significance analysis were set to 1000 and batch correction was applied in ‘S-
mode’. Resulting proportions were recalculated as a fraction of only TME lineages by removing
epithelial cells. Patients were grouped according to their sub-group for overall survival and
significant differences in proportion of cell types were assessed by ANOVA with Tukey HSD

correction.
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CODEX staining and imaging

A custom antibody panel was developed and validated (Enable Medicine, Menlo Park, CA,
USA) for multiplexed imaging with co-detection by indexing (CODEX) (Akoya Biosciences,
Menlo Park, CA, USA). This imaging technique utilizes antibodies conjugated to unique DNA
oligonucleotide barcodes. The CODEX antibodies were validated on formalin fixed paraffin
embedded (FFPE) tonsil sections and staining patterns were confirmed via comparison with

online databases (The Human Protein Atlas, www.proteinatlas.org; Pathology Outlines,

www.pathologyoutlines.com) and the published literature. Between 4-6 formalin fixed samples

were paraffin embedded into the same tissue block, sectioned at 7 um, and placed on 22x22
mm glass coverslips (Electron Microscopy Sciences, # 72204-01) pre-coated with poly-L-lysine
(Sigma, # P8920). The FFPE tissues on coverslips were stored in a 6-well plate containing

storage buffer at 4°C until CODEX acquisition.

CODEX imaging was done as per the manufacturer’s protocol (Akoya Biosciences). Briefly,
FFPE tissue sections on coverslips were pretreated by heating on a slide warmer for 25 minutes
at 55 degrees C. Tissue deparaffinization and hydration were next performed by incubating the
FFPE tissue sections on coverslips for 5 minutes each following a solvent series (Histochoice
Clearing Agent, Histochoice Clearing Agent, 100% Ethanol, 100% Ethanol, 90% Ethanol, 70%
Ethanol, 50% Ethanol, 30% Ethanol, ddH20, ddH20). Antigen retrieval was performed in 0.01M
Citrate Buffer at high pressure. The tissue was washed and equilibrated before staining for 3
hours at room temperature with the 28-plex CODEX antibody cocktail in a staining buffer
containing blocking solution (Akoya Biosciences). After staining, the tissues were washed and
fixed in 1.6% PFA, followed by an ice-cold methanol incubation. The final tissue fixation was

performed with the Fixative reagent (Akoya Biosciences).

10
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Stained coverslips were mounted onto the CODEX stage plate version 2 (Akoya) and secured
onto the stage of a BZ-X810 inverted fluorescence microscope (Keyence). Reporter plates
were prepared by adding fluorescently labeled oligonucleotides (Atto550, Cy5, AF750) made up
in a reporter stock solution of nuclease free water, 10x CODEX buffer, assay reagent and
nuclear stain to a black Corning 96 well plate (Supplemental Table 1). Automated image
acquisition of tissue regions was performed at Enable Medicine using a CFI Plan Apo A
20x/0.75 objective (Nikon) and fluidics exchange managed via the CODEX instrument and
CODEX Instrument Manager software (CIM version 1.29.3.6, Akoya Biosciences), according to
the manufacturer’s instructions, with slight modifications. Staining was evaluated for the
expression of each marker in the panel. Non-specific staining was observed for EPCAM, SPP1

and CD163, which were excluded from downstream analysis resulting in a 25-plex panel.

CODEX Image processing

Raw fluorescent TIFF image files were processed, deconvolved and background subtracted
utilizing the CODEX Processor Software (Akoya Biosciences), and antibody staining was
visually assessed for each biomarker and tissue region using the Imaged software (Fiji, version
2.0.0). The TIFF hyper stacks were segmented based on DAPI nuclear stain, pixel intensities
were quantified, and spatial fluorescence compensation was performed, which generated
comma-separated value (CSV) and flow cytometry standard (FCS) files for downstream

analysis.

CODEX image registration

We excluded areas from neighboring normal liver, to ensure that CODEX analysis was
performed on cells belonging to the mCRC TME. A pathologist evaluated images from
hematoxylin and eosin (H&E) tissue sections, adjacent to the corresponding CODEX-stained

sections. We used these annotated histopathology sections to distinguish normal liver

11
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parenchyma from tumor tissue regions. To determine which cells from the CODEX data were
within normal liver tissue regions, nuclei were aligned between CODEX and H&E images. This
was accomplished by aligning the CODEX nuclei segmentation images with the hematoxylin
channel of corresponding H&E images using the image registration method described in
HEMnet (26). Those cells within the annotated normal liver regions were excluded from further

analysis.

CODEX Context Assisted Cell Type Identification (CACTI)

A standard clustering procedure involves using cell type specific feature data to identify cell
types. Due to the sparsity and noisy nature of measured CODEX data, expression of the index
cell may not accurately represent the innate cell feature. By harnessing the information
available about each cell’s local neighborhood to form a richer feature space, we improved the
clustering of any specific index cell. We developed a method, Context Assisted Cell Type

Identification (CACTI), which leverages spatial information during clustering.

For a given cell i, let X; be its marker expression vector and Y; be its spatial location. For a set of
cells S, let Xs be the matrix that joins each vector X;.;cs row wise. Let Ys be defined
analogously. After normalization, the first step of CACTI is to identify the Delaunay neighbors of
each index cell. These Delaunay neighbors will be a proxy for a cell’s local neighborhood.
Letting Si be the set of Delaunay neighbors of index cell i, we define a niche feature to be a
function f(Xs;,Ysi). Some examples of f include Mean Expression, Distance weighted mean
expression and Standard deviation. After calculating our niche features for each cell, we define

our niche augmented data to be such that
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Zi = [Xi'fl(XSil YS{)' "'fn(XSirYSi)]

where n is the number of niche features calculated. One drawback of Z is that it might focus too
much on the niche information compared to the underlying expression profile of the index cell.
To overcome this, we introduce a weight parameter A to the niche features and focus our

analysis on

Zl/‘L = [Xi'/‘lfl(Xsi’ YS,:); ---Afn(XSi’ )/SL)]

Let ZA be the matrix that joins the individual Z# row wise. To determine A, we perform low-
resolution clustering. Individual Seurat objects were constructed from cell-feature matrices and
spatial co-ordinates from each sample using the ‘Spatial’ Assay in Seurat. All objects were
merged, and data was scaled using the ‘ScaleData’ function. Batch-correction was performed
during clustering using the Harmony algorithm as outlined above. We used the first 10 principal
components and a resolution of 0.2 for clustering. Let L be the low-resolution cluster
assignment of X. Although CODEX data is noisy, we expect L to be a reasonable approximation
of the major cell types present in our sample. For another cluster assignment of the same cells
A such that |A] > |L|, we define E(A, L) to be the minimum classification error of A with respect to
the low resolution clustering L. We recommend that A and L be generated by the same

clustering algorithm (e.g. K-means, Louvain, etc.).

If our niche features contain perfect information pertaining to the true cell types, then given a
clustering of ZA, C(ZA), we expect E(C(ZA), L) to be small for all values of A. On the other hand,
if our niche features are independent of the true cell types, then E(C(ZA), L) should be large for

even moderate values of A. Therefore, when choosing A, we should choose one such that
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E(C(ZA), L) is less than some level a. Mathematically, to find a suitable A, we attempt to solve

the following optimization problem:
Maximize A
Subject to E(C(ZY), L) < a

If E(C(Z"), L) is monotone in A we can use a bisection algorithm to get the optimal A within some

desired degree of error.

Following low-resolution clustering and CACTI, clusters were annotated for cell types using
lineage marker genes. We identified tumor epithelial cells (PanCK i.e., Pan Cytokeratin), CAFs
(COL4A1, ACTA2), macrophages (CD68), endothelial cells (PECAM1), CD4 T cells (CD4), CD8
T cells (CD8) and Tregs (FOXP3). Cells co-expressing epithelial, or immune or stromal markers
were filtered as artifacts (7.345% of total cells). A mixed cluster of macrophages and epithelial
cells (11.81% of analyzed cells) was gated for macrophages expressing CD68>0 and PanCK
<0.5 using the scaled data, with remainder cells classified as epithelial. A mixed cluster of
epithelial cells, fibroblasts, and lymphocytes (2.92% of analyzed cells) was gated using scaled
data for epithelial cells (PanCK > 0, CD45 <0) followed by lymphocytes (CD45 >0, COL4A1 <0)

with the remainder cells classified as fibroblasts.

Cellular proximity analysis

Let the total number of cells in our sample be N. Let G be a graph indexed by N nodes such that
the weight of an edge between nodes i and j is the similarity between cells i and j. Now let C;,
C,, and C; be three sets of cells. The hypothesis test for proximity analysis can be formulated

as:

HO : ¢, and C, are on average equally similar to C5.
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HA : C; is on average more similar to C; than C, is.

This hypothesis can be tested with a permutation test where we permute the labeling of
members within sets C; and C, and calculate our test statistic

T=— ZZG
_|C1| Tk

jeCq k€EC3

We reject the test when T is very large relative to the permutated test statistics. We wanted to
examine whether fibroblasts are more spatially proximal to macrophages than other cells on
average. This corresponds to letting C; be the set of macrophages, C; be the set of fibroblasts
and C, be all other cells. To model spatial proximity, we let the similarity between cells i and j
be the Jaccard index between the K nearest neighbor sets of the two cells based on their spatial

coordinates.

Additional computational analysis

We used R packages tidyverse (v1.2.1), ggplot2 (v3.3.3), ggpubr (v0.40), broom (v0.5.2), viridis
(0.5.1), pheatmap (v1.0.12), ComplexHeatmap (v2.9.3) (27), and stats (v4.0.5) in R v4.1.0 for
additional analysis or visualization. Figures were additionally edited in Adobe lllustrator CS6

(v16.0.0).

RESULTS
Properties of the cellular TME of CRC metastases to the liver

Our study relied on three different approaches to characterize the CRC metastatic TME (Fig.
1A). We performed scRNA-seq analysis of mMCRC tissue from surgical resections — these
samples included patient matched normal liver and PBMCs (Table 1). The cohort consisted of

14 samples from seven patients. All tumors had adenocarcinoma histopathology. The only

15


https://doi.org/10.1101/2020.09.01.273672
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.273672; this version posted June 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

exception was P6198’s tumor which had mixed neuroendocrine adenocarcinoma (MANEC)
histology. In addition, all tumors underwent clinical testing for microsatellite instability (MSI) via
immunohistochemistry (IHC) for DNA mismatch repair proteins. All tumors were microsatellite
stable (MSS). We examined the spatial organization of these cell states with CODEX on 15
MSS mCRCs found in the liver. Finally, we confirmed the presence of these cell states and
interactions using an independent gene expression dataset of 93 mCRCs to the liver (3). With
this RNA-seq data and a cell deconvolution method, we determined the association of cell

states and specific clinical outcomes.

Single-cell RNA analysis of CRC metastases in the liver

We sequenced a total of 44,522 single cells from these metastases. The data included 22,718
cells from normal liver, 14,848 cells from liver mCRCs, and 6,970 PBMCs (Supplemental Table
2). The total number of cells per sample ranged from 281 to 8,706 with the variation directly
attributable to the size of the resected tissue sample. We filtered out poor quality data,
eliminating cells with high mitochondrial genes indicative of cell death and computationally
identified doublets (13, 28). This quality control step removed 12.2% of the total number of

cells.

To identify the different cell types, we aggregated the data across all samples (Methods). We
normalized the data, carried out steps to remove technical variation in sequencing depth and
performed principal component analysis (11, 12). Data sets from different experimental batches
were integrated with a k-means clustering method implemented in the Harmony program (14).
We used Uniform Manifold Approximation and Projection (UMAP) (29) to visualize the resulting
clusters. Most cell clusters had contributions from different samples (Fig. 1B), indicating that

there were no obvious batch effects during clustering. We confirmed this computationally by
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examining a similarity metric called the Adjusted Rand Index (ARI) (30). Comparison of cluster
assignments with experimental batch had an ARI of 0.06, a low value indicating near-random
assignment. In summary, we confirmed that cluster assignments were not the result of

experimental batch effects.

Clusters were annotated with major cell types according to the expression of established marker
genes for specific cell types (17, 31, 32) (Fig. 1C, 1D). From this data, we identified normal
hepatocytes (ALB, HAMP, PCK1, TTR), cholangiocytes (DEFB1), tumor epithelial cells (TFF3,
EPCAM), endothelial cells (VWF, PLVAP, PECAM1) and fibroblasts (DCN, LUM, COL1A1).
Representing the immune cell types, we detected myeloid lineage cells (CD14, FCGR3A, CD68,
HLA-DRA) that included macrophages and dendritic cells, T lymphocytes (CD3D, IL7R, CD8A,

NKG?7), NK cells (GNLY, NKG7) and B cells (CD79A, MS4A1).

Depending on the size of the tissue sample, the absolute number of cells, their types and their
proportions varied (Fig. 1E, Supplemental Table 3). Subsequently, we performed secondary
clustering analysis with batch-correction for each cell lineage to determine their gene expression

properties and extrapolate more granular details about their cell state.

Gene expression properties of metastatic tumor epithelium

The CRC epithelial cells formed patient-specific clusters among the different mCRCs, reflecting
the genomic diversity of these cancers (Supplemental Fig. 1A). We determined differential
gene expression among mMCRCs from the different patients. Each tumor had its own set of
differentially expressed genes including FABP1, OLFM4, KRT20, CEACAMS5 and CEACAME:
these genes have been previously associated with CRC (31) (Supplemental Fig. 1B). We also

detected high expression levels of TSPAN8 and HES1 which are indicators of a cancer-related
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stem cell state and properties of invasion (33, 34). Elevated ERBB2 expression was detected in
P5784’s and P6593’s tumor epithelial cells - this result was corroborated by IHC results that
also confirmed ERBB2 overexpression (Table 1). In addition to marker genes associated with
colorectal adenocarcinoma, P6198’s MANEC metastasis had significantly increased expression
of DEFA5 and DEFAG6 genes. The high expression of these genes occurs in small intestinal

neuroendocrine tumors (35).

Tumor epithelial cell aneuploidy and chromosomal imbalances

We evaluated the extent of chromosomal scale copy nhumber variations (CNVs) among the
tumor epithelial cells. Large copy number alterations that extend up to entire chromosome arms
are also referred to as allelic imbalances. This analysis relied on the InferCNV program which
processes each cell’s gene expression across a given chromosome, compares the results with

reference diploid cells and provides somatic CNV changes (21).

The tumor epithelial cells in all mMCRCs had significant levels of chromosome scale CNVs and
allelic imbalances extending across the chromosome p or q arms (Supplemental Fig. 1C).
These large-scale chromosomal events are indicators of aneuploidy and have been associated
with mCRC (36). There was no discernible copy number variation from the other normal cell
types. This result confirmed the identity of the cancer epithelial cells and indicated that the
mMCRCs belonged to the molecular subtype associated with chromosomal instability (CIN) (37).
Notably, all tumors had undergone IHC for DNA mismatch repair proteins and were confirmed to

be MSS, which is consistent with these mCRCs being CIN.

Citing some frequent copy number alterations, we observed chromosome allelic imbalance

across chromosome arm 7p across all tumors. A deletion involving the chromosome 8p arm
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was observed among five out of seven mCRCs. There was a series of other frequent allelic
imbalances involving CNV gains. Two tumors (P6648, P6335) had amplifications in
chromosome 13. Three tumors (P6648, P6593, P6198) had chromosome 19 allelic imbalances.
Four tumors (P6648, P6335, P5915, P5784) had imbalances in chromosome 20. All these
chromosomal alterations have previously been identified as markers for increased risk of
metastasis in CRC (38). The mCRC (P6198) with MANEC histopathology had genomic
instability events including loss of chromosome 8 that is a frequent event among colorectal

adenocarcinomas (39).

Myeloid lineages in mCRC, normal liver and PBMCs

We examined the myeloid cell populations among the different samples following a secondary
clustering analysis (Fig. 2A, B). The myeloid cell populations had clusters associated with the
tissue source. The matched liver tissue had normal myeloid cells present in multiple distinct
clusters. The matched peripheral blood had normal monocytes that cluster separately without
overlap from other macrophage types. The macrophages from the mCRC samples distinctly
separated from the macrophages in the matched normal liver tissues and peripheral monocytes.

Specifically, mMCRCs macrophages were represented among Clusters 1 and 3 (Fig. 2A, B).

Next, we determined which genes defined the specific myeloid clusters. The PBMC monocytes
expressing either CD14 or FCGR3A (CD16) highly expressed S100A family genes (Figure 2C).
Dendritic cells expressed the HLA genes, CD1C, CLEC9A and IDO1 among others.
Intrahepatic macrophages included normal Kupffer cells that expressed CD5L, MARCO, LIPA,

MAF, VCAM1 etc. (17, 40).
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There was a population of tumor-associated macrophages with high expression levels of SPP1.
These macrophages were present in Clusters 1 and 3. The macrophages in Cluster 1 also
expressed APOC1, APOE, RNASE1 and others. The macrophages in Cluster 3 expressed
chemokines genes such as CXCLS8, IL1B, CCL20 and others. The elevated expression of SPP1
has been identified among tumor-associated macrophages across several cancers including
primary CRC (41). SPP1 encodes for an integrin binding glyco-phosphoprotein. SPP1
overexpression is observed in cancer and is associated with a poor prognosis (42). We refer to

this specific cell type as SPP1+ tumor associated macrophages.

Reprogrammed tumor associated macrophages have inflammatory fibrosis and lipid

metabolism features

Macrophages display a high degree of plasticity, which is related to assuming different
functional properties. These changes in the cell states are generally referred to as
reprogramming. Our analysis discovered that SPP1+ tumor associated macrophages had gene
expression signatures reflecting two reprogrammed functional states: 1) scar associated
macrophages present in fibrotic cirrhotic livers; 2) foamy macrophages that have engulfed high

levels of low-density lipoprotein.

We compared the gene expression signature of the metastatic TME macrophages to the other
macrophage types present in normal liver tissue (Fig. 2D, Supplemental Table 4). The SPP1+
tumor-associated macrophages had elevated expression levels of APOC1, APOE, TREM?2,
FN1, LGALSS3, FTL, CD9, CTSB, etc. (p value < e-72). These genes are notable for defining
specific cell properties. Namely, macrophages with increased SPP1, TREM2, FN1 and
LGALSS3 expression occur in fibrotic diseases such as pulmonary fibrosis and cirrhosis (43, 44).

From studies of primary CRCs in the colon, macrophages expressing SPP1 and CTSB were
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associated with construction of a collagenous ECM (45). LGALS3 encodes for a member of the
galectin family of carbohydrate binding proteins. It plays a role in macrophage polarization and
fibrosis in inflammatory diseases (46). TREM2 functions as a molecular regulator of the foam
cell phenotype in macrophages (47). Elevated TREM2 expression was also identified in
macrophages in liver cirrhosis, indicating a pro-fibrotic function (44). Meanwhile, high
expression of APOE and APOC1, encoding for lipoproteins, indicated higher levels of
cholesterol metabolism. Similar expression features are observed in foam cell macrophages
located in atherosclerotic plaques, an obstructive lesion of arterial vessels (18). In summary,
TME macrophages in the liver had gene expression signatures observed in inflammatory

fibrosis and lipid metabolism.

We applied different expression analysis methods to confirm the functional states of these
reprogrammed TME macrophages. Using the enrichR program (16), we performed a pathway
analysis on the differentially expressed genes in TME macrophages to identify the biologically
relevant processes regulated by them. We detected significant enrichment of terms relating to
both extracellular matrix (ECM) organization and metabolism. Different metabolic pathways
were enriched including glycosphingolipid metabolism, glucose metabolism and HDL-mediated
lipid transport (Fig. 2E, Supplemental Table 5). Next, we quantified the expression signature
from foamy macrophages (18) and cirrhotic scar associated macrophages (44) (Supplemental
Table 6). Compared to normal hepatic macrophages, mCRC macrophages had significant
enrichment of both these gene signatures (Fig. 2F). These results overlap with the results of

the differential gene expression analysis.

As an alternative approach for evaluating the macrophage properties, we used the EcoTyper

program. It employs a non-negative matrix factorization (NMF) on gene expression data such
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as scRNA-seq to identify cell states (24). EcoTyper does not rely on single cell clustering. The
NMF analysis of the mCRC data identified a distinct expression signature enriched for tumor
macrophages (Supplemental Fig. 2). This tumor macrophage signature included SPP1,
GPNMB, APOC1, APOE, TREM2, CTSB, LGALSS3, FTL, etc. These genes overlapped with the
results from the differential expression between tumor-associated and normal macrophages
(Fig. 2B, Supplemental Table 4). Overall, this result confirmed the identification of a distinct

macrophage cell state in the mCRC TME with fibrogenic properties and altered metabolism.

Stromal cell components in the metastatic microenvironment in the liver

We characterized the different stromal cells present in the mCRC microenvironment in the liver
using reclustering with batch correction. The clustering analysis showed that the stromal cells
from the mCRCs separated from those in the normal liver (Fig. 3A). Among the different
clusters there were three major cell types which included fibroblasts, endothelium and hepatic

stellate cells (HSCs) (Fig. 3B).

Fibroblasts associated with mCRC were present in Clusters 1 and 4 (Fig. 3B, 3C). Cluster 1
only contained fibroblasts from mCRC and was distinctly separated from the fibroblasts of
normal hepatic tissue. These cells were characterized by elevated expression of ECM-related
genes such as those involved in collagen synthesis, POSTN, FN1, MGP, etc. (Fig. 3C).

Therefore, Cluster 1 had the attributes of cancer-associated fibroblasts (CAF).

The fibroblasts in Cluster 4 had high expression of ACTAZ2 (Cluster 4). These cells overlapped
with HSCs from normal liver. Additional genes with differential expression included TAGLN,

MYL9 and IGFBP7 — these genes are expressed in activated HSCs (17). HSCs are quiescent
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fibroblasts, occupying a specific cellular niche in the liver. Inflammatory processes activate
these stellate cells, allowing them to proliferate and migrate. Our analysis also identified

endothelial cell subsets (Clusters 0, 2, 3, 6 and 8) which were present in normal liver.

Fibroblasts in the metastatic TME have a tumor-promoting ECM expression signature

Next, we compared the set of CAF differentially expressed genes with the components of the
‘matrisome’, a term that refers to the core ECM components. The matrisome includes
fibronectins, collagens, laminins, proteoglycans, etc. which are associated with the ECM
structure and its secretion (Fig. 3E, Supplemental Table 7) (48). The CAFs had a matrisome
program based on the differential expression of several collagen genes (COL1A1, COL3A1,
COL5A1, etc.), a variety of ECM glycoproteins (FN1, POSTN, SPARC, THBS1, etc.) and
proteoglycans (BGN, VCAN, etc.). These cells also highly expressed ECM regulator genes
including MMP11, MMP14, TIMP1, LOXL1 and LOXL2. These genes are involved in ECM
remodeling. The ECM composition influences physical properties such as stiffness and

contributes to tumor growth and drug resistance (49).

The CAFs were also denoted by the expression of secreted growth factors including VEGFA,
PDGFA and PDGFC. These genes promote tumor growth and enable immune evasion (50).
For example, VEGFA is involved in supporting the migration of cancer cells and facilitates

metastasis.

The metastatic TME has an immunosuppressed T cell milieu
For all mCRCs, there was a lack of tumor-reactive CD8 T cells in the TME of the liver.

Moreover, we detected regulatory T cells (Tregs) in the TME. These cell features are the
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hallmarks of an ineffective anti-tumor response. We analyzed all lymphocytes from mCRCs,
PBMCs and normal tissue. Based on marker gene expression, we detected CD8 T cells, CD4 T
cells, NK/NK-like cells (gamma delta T, NK-T, MAIT atypical, Tregs, plasma and B cells
(Supplemental Fig. 3A, 3B). The T and NK cells in PBMCs clustered separately from the
same cell types in the liver, indicative of tissue-specific transcriptional differences, which we

have also observed in gastric tissue (Supplemental Fig. 3C).

CD8 T cells from tumors co-clustered with those from normal liver, indicating their gene
expression signatures were similar. These cells expressed markers of previously described
tissue resident cells in the liver (17) including GZMK, CCL5, CCL4L2 and CD69. Notably
absent were CD8 T cells with features of tumor-reactivity such as expression of ITGAE,
ENTPD1 and CXCL13 (Supplemental Fig. 3B) (51). We confirmed the transcriptional similarity
between tumor and normal liver CD8 T cells using the NMF-based, non-clustering EcoTyper
algorithm previously described (Supplemental Fig. 3D). Cell states of CD8 T cells in the TME
overlapped with those of normal liver CD8 T cells. This result supports the conclusion that CD8
T cells in the TME are quiescent bystanders. We evaluated the expression of a cytotoxic gene
signature among these CD8 T cells. The cytotoxicity signature among the tumor CD8 T cells
was significantly lower than those in normal liver CD8 T cells (P = 1.23E-11, Supplemental Fig.
3E). In summary, for all the mCRCs, the results from the CD8 T cells and the presence of

Tregs indicated an immunosuppressed TME lacking anti-tumor activity.

TME fibroblasts and macrophages influence the T cells in the mCRC

Using the single cell RNA-seq data, we characterized the receptor-ligand networks present in
the liver TME. We discovered intercellular interactions among non-immune and immune cell

types that facilitate T cell exclusion and exhaustion. For this analysis, we used the program
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CellChat to identify cell-type specific receptor-ligand interactions and construct a mCRC TME
interactome (22). This algorithm identities the differentially over-expressed ligand genes and
their complementary receptors for each cell type, quantifies each interaction with a probability

value and delineates the significant interactions by randomly permuting the cell type labels.

Macrophages and CAFs were noted to have expression of specific ligands that contribute to T
cell exclusion and exhaustion. Specific interactions identified within these pathways included
the fibroblast-lymphocyte CXCL12-CXCR4 receptor ligand pair (Supplemental Fig. 4A).
CXCL12 ligand and its co-receptor CXCR4 regulate the mobilization of immune cells into
tissues (52). We also identified expression of NECTINZ2 from fibroblasts and endothelial cells.

This ligand binds to immune checkpoint TIGIT presentin T cells.

As described previously, we found that the TME macrophages expressed SPP1 — this ligand
suppresses T cell activation via interaction with CD44 (53). This ligand also interacts with the
integrin receptor family, thus cross networking with CAFs (54). Macrophages expressed the
CD86 ligand that maintains the regulatory phenotype and survival of Tregs via interaction with
CTLA4 (55). CAFs and macrophages expressed VEGFA and VEGFB that can mediate

angiogenesis (56).

We visualized these interactions as lines between different cell types, with their width scaled by
the number of interactions mediated by the sender cell. CAFs were the most prolific
communicators in the TME, dominating the top 10% of all cell-to-cell interactions

(Supplemental Fig. 4B).
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Networking of macrophages and CAFs mutually influence their cell states

We discovered that macrophages and CAFs affect each other’s gene expression programs via
specific receptor-ligand interactions. Our analysis used the NicheNet algorithm that can predict
ligands from a sender cell type that regulate target gene expression in a receiver cell type via
ligand-receptor interactions (23). This analysis can thus identify intercellular communication
that influences the transcriptional phenotype of a target cell. We visualized these interactions
as a Circos plot with ligands from sender cells that affect downstream target gene expression in

a receiver cell.

We first identified ligands from cells in the TME that can result in expression of matrisome
genes in mCRC CAFs (Fig. 4A). One of the highest ranked genes was the established ECM
regulator gene TGFB1, which was derived from NK cells, validating this approach (57). Several
ligands were derived from macrophages including SPP1, IL1B, TNF, MMP9 and CCL2. These
ligands have the potential to regulate target gene expression of several core matrisome genes
including the collagen family. Other CAF matrisome target genes for macrophage ligands
included MMP2 and VEGFA. This result further supports our finding that the reprogrammed
SPP1+ macrophage cell state promotes fibrosis in the mCRC TME. Additionally, several
ligands were expressed by CAFs themselves, indicating autocrine signaling. These ligands

included AGT, TGFB3, CTGF, CCL2, FGF1, HGF, CXCL12 and CSF1.

Next, we examined which ligands can lead to the reprogrammed macrophage cell state with
features indicative of inflammatory fibrosis and lipid metabolism. The top ranked ligands
included FGF1, CSF1, PGF, TGFB3 and TIMP1; all were derived from CAFs. (Fig. 4B). These
ligands can target macrophages and regulate the expression of SPP1, FN1 and APOE. Hence,

ligands from CAFs have the potential to reprogram the mCRC macrophages via ligand-receptor
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interactions. Overall, these results pointed towards the presence of a signaling network between
TME macrophages and CAFs. This intercellular communication influences the transcriptional

phenotype of both cell types.

Spatial characterization of the mCRC TME in the liver

To determine the spatial cellular characteristics of the mCRCs, we used CODEX multiplexed
imaging. This approach uses antibody multiplexing on tissue sections, enabling cell type
identification at a single-cell resolution (Fig. 5A) (58). This spatial imaging allowed us to ask

specific questions about cell types and cellular proximity in the liver mCRC TME.

We used a 25-plex antibody panel (Supplemental Table 1). This panel included lineage
markers to identify specific cell types including tumor epithelial cells (PanCK i.e. Pan
Cytokeratin), CAFs (COL4A1, ACTA2), macrophages (CD68), endothelial cells (PECAM1), CD4
T cells (CD4), CD8 T cells (CD8) and Tregs (FOXP3). A subset of antibodies were specific for
proteins expressed in different cell states identified in our scRNA-seq analysis. These
antibodies included one which recognizes LGALS3, a marker of the inflammatory fibrosis
phenotype seen in the SPP1+ tumor associated macrophages. We also examined the
expression of immune checkpoints PDCD1 (PD-1) and ICOS; and co-stimulatory molecule
TNFRSF4 (OX40) that characterize dysfunctional CD8 T cells as well as Tregs. Further, we

examined the expression of the cytotoxic effector molecule GZMB.

We analyzed both the CODEX and hematoxylin and eosin (H&E) images for each tumor. The
mCRC tissues underwent pathology review from an adjacent H&E section. The annotation

outlined the boundaries between the tumor and adjacent normal liver parenchyma. Next, we
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processed the CODEX image data to excluded adjacent normal liver. For this step, the analysis
used the HEMnet program which processes both the H&E and CODEX images to map the
nuclei from CODEX to H&E images with corresponding pathological annotation (26). This
enabled the exclusion of images covering the normal liver parenchyma from downstream

analysis. Hence, our analysis could be restricted to tumor cells and the surrounding TME.

After image processing, there were a total of 330,893 single cells from 15 mCRCs (Table 1).
We first clustered these cells using low resolution batch corrected clustering implemented in the
Harmony algorithm (14). Cell clusters had contributions from different tumors. This result
indicates an adequate removal of batch effects (Fig. 5B). Due to the sparsity and noisy nature
of measured CODEX data, feature expression may be inadequate to resolve cell types based
on clustering. We leveraged the spatial information of each index cell during the clustering
process. This method, Context Assisted Cell Type Identification (CACTI) (Methods), improved

the cell assignments per cluster following batch corrected clustering.

Based on the antibody staining patterns, we identified tumor epithelial cells, CAFs,
macrophages, endothelial cells, CD4 T cells, CD8 T cells and Tregs. We verified cell type
assignments by comparing corresponding H&E images (Fig. 5C, D, Supplemental Fig. 5). The
different cell types had varying proportions across the mCRCs (Fig. 5E). Five samples had
both scRNA-seq and CODEX results from different parts of the tumor. Proportions of cell
lineages identified in these samples using the two methods demonstrated a moderate

correlation (Pearson correlation coefficient 0.39, p = 0.02) (Supplemental Fig. 6A).

Validation of cell states in the mCRC TME
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Having identified cell types, we examined the expression of specific markers characterizing
distinct cell states. These markers were identified from the scRNA-seq results. TME
macrophages had high expression of LGALS3, compared to other cell types (Fig. 5F, G).
Macrophages across all patients had high correlation (Pearson correlation coefficient 0.76, p =
0.00099) between the expression of LGALS3 and lineage marker CD68 (Supplemental Fig.
6B). This result independently confirmed the LGALS3 high SPP1+ macrophages we identified in

the scRNA-seq data.

CAFs had high expression of COL4A1, compared to other cell types (Fig. 5F). High co-
expression of COL4A1 and ACTA2 was noted across CAFs from all patients (Pearson
correlation coefficient 0.76, p = 0.001) (Supplemental Fig. 6C). This result supports the

identification of the matrisome program identified in our scRNA-seq analysis of CAFs.

Among the lymphocytes, CD4 T cells had high protein expression levels of GZMB and
TNFRSF4 (OX40). Tregs highly expressed immune checkpoints PDCD1 (PD-1) and ICOS. The
CD8 T cells did not express these markers. These results support our finding that the mCRC
TME lacks anti-tumor dysfunctional CD8 T cells expressing cytotoxic effectors, checkpoints, or
costimulatory molecules. We detected Tregs in all samples (Fig. 5E, Supplemental Fig. 5).
This result supports the immunosuppressed T cell milieu of the mCRCs observed in the single

cell analysis.

Spatial proximity between macrophages and fibroblasts in the metastatic TME

In our scRNA-seq analysis, we determined that SPP1+ tumor associated macrophages had a

fibrogenic gene expression program. Moreover, we identified intercellular communication
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between macrophages and CAFs. We hypothesized that these two cell types are in physical
proximity in the local cellular neighborhood of the TME. This proximity would facilitate any
paracrine interactions. We examined the spatial proximity between macrophages and CAFs in

the CODEX dataset.

We used this analysis on twelve samples which had the highest tissue integrity and minimal
areas of necrosis (Supplemental Fig. 5). The latter feature lowers the quality of the image and
acts as a confounding factor for the analysis. For each sample, we tested the hypothesis if
CAFs were more spatially proximal to macrophages than any other group of cells on average.
To test this hypothesis, we used a permutation test to permute cell labels from all macrophages,
lymphocytes, epithelial and endothelial cells. We then examined if CAFs and each cell label
was a mutual nearest neighbor based on their spatial co-ordinates. Hence, we could test if

CAFs were significantly closer to macrophages than any other cell.

We detected significant spatial proximity between CAFs and macrophages in nine mCRC
samples, compared to proximity between CAFs and all other cell types (permutation test p <
2.2E-16) (Supplemental Table 8). Hence, macrophages and CAFs are located spatially close
to one another in the mCRC TME. This can enable paracrine interactions that influence their
cell states. Overall, this result provides additional support for our scRNA-seq analysis that

identified intercellular communication between macrophages and CAFs.

Impact of CAFs on clinical outcomes in an independent mCRC dataset

To validate our findings from our single cell discoveries, we analyzed gene expression data from

93 mCRCs resected from the liver (3). These tumors had undergone conventional RNA
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sequencing (RNA-seq). Notably, 96.6% of these tumors were MSS. Thus, the tumors had the

same liver-based TME features as the cohort used for scRNA-seq.

We utilized a deconvolution method, CIBERSORTX, to infer cell lineage fractions in this dataset
(25). Using this method, one can generate cellular fractions in a bulk gene expression dataset
using single-cell profiles. We generated a gene signature matrix per cell lineage derived from
cells specific to tumor samples, while excluding normal liver tissue and PBMCs (Fig. 6A). This
analysis included tumor epithelial cells and TME-specific CAFs, SPP1+ macrophages, DCs,
endothelial cells, CD8 T, CD4 T, Treg, NK, B and plasma cells. Applying this signature matrix to
bulk gene expression datasets resulted in quantification of cellular fractions of each lineage per
sample. We successfully obtained cellular fractions for all lineages (deconvolution p < 2.2E-16
with 1000 permutations). Hence, tumor-specific single-cell signatures could successfully be

deconvoluted in an independent mMCRC gene expression dataset.

We also assessed the impact of CAF abundance on prognosis. This external dataset from liver
mCRCs identified three sub-groups with favorable, intermediate, and unfavorable overall
survival (OS) (3). The sub-group with unfavorable OS had significantly higher proportion of
CAFs (ANOVA FDR p < 0.002) (Fig. 6B). Hence, a TME phenotype characterized by high

number of CAFs is associated with a poorer clinical outcome.

DISCUSSION

Our study revealed novel networking between macrophages and fibroblasts in the mCRC TME.
Using scRNA-seq we identified distinct communication programs between these cells with the

potential to mutually influence their cell states. The potential for macrophage-fibroblast
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interactions is further supported by spatial analysis using multiplexed immunofluorescence that
showed significant proximity between these cells. This interactome has the potential for
modulating the metastatic niche, which represents the “soil” component of the metastatic

cascade that allows tumor seeding.

We determined that TME macrophages had a gene expression signature that included SPP1,
APOE, TREM2, CD9 - these genes are part of pathways involved in ECM reorganization. This
expression signature has similarities to recently described studies in liver cirrhosis and
pulmonary fibrosis where it was demonstrated to be a pro-fibrogenic phenotype (44, 59). SPP1-
expressing macrophages have been demonstrated to play a role in promoting primary CRC.
They have the potential to influence CD8 function by their role as an immune checkpoint ligand
(60-62). This fibrogenic phenotype was accompanied by changes in genes controlling various
metabolic pathways including glycolysis, lipid transport and sphingolipid synthesis resembling
atherosclerotic foam cells (18). Macrophage metabolism influences their functional phenotype
(63). Our findings provide metabolic targets that can be perturbed to further understand their
biology in the context of the TME. The mCRC macrophages with alterations in lipid metabolism
have been demonstrated to be associated with poor prognosis in cancer, including in mCRC (4,

24),

Fibroblasts and macrophages play a critical role in supporting the immunosuppressive TME,
including the phenotype of T cell exclusion (64). We discovered fibroblasts specific to the TME
with the potential to regulate ECM properties that can in turn promote tumor growth.
Importantly, using an independent mCRC dataset we demonstrated that this fibroblast gene
signature is linked to a worse clinical outcome and accompanied by reduced number of

lymphocytes. This result is supported by recent studies in primary CRC, which identified positive
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correlation between fibroblasts and SPP1* macrophages. Their presence was associated with

poor survival and accompanied by reduced lymphocyte infiltration (65, 66).

The majority of mMCRC tumors are MSS and unresponsive to T cell based immune checkpoint
blockade. Hence, the gene expression programs and macrophage-fibroblast interactome
represents potentially targetable elements in the TME of these patients. These targets are of
interest also in other cancers to enable the modulation of the immunosuppressive stroma and
improve immunotherapy response (64). In mouse models of cancer, TREM2 blockade resulted
in TAM reprogramming and increased response to PD-1 immunotherapy (67). The CXCL12-

CXCR4 interaction is also being investigated in clinical trials (52).

The gene expression programs we have discovered can potentially be influenced by tissue
dissociation processes. We used the same dissociation protocol for matched normal liver to
enable a controlled comparison between tumor and normal microenvironment lineages. This is
reflected in the low number of hepatocytes we recovered (Fig. 1B), since adequate dissociation

of normal liver requires specially developed dissociation protocols (17).
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Table 1. Metastatic colorectal cancers in the liver.

Patient Primary Microsatellite HER2 . CODEX
: . Single cell RNA-seq -
ID tumor site status expression analysis
5784 Sé%rgc:d MSS positive liver metastasis, normal liver, PBMCs +
5915 ReCt;)sllc?r:nOId MSS negative liver metastasis, normal liver -
6198 Trag;\éirse MSS equivocal liver metastasis, normal liver +
Descending . liver metastasis, normal liver,
6335 colon MSS negative PBMCs +
6593 Rectum MSS positive liver metastasis +
6648 Sé%rgc:d MSS negative liver metastasis, normal liver -
8640 Rectum MSS equivocal liver metastasis +
5994 Sigmoid MSS negative - +
colon
6209 Sigmoid MSS negative - +
colon
6461 Caecum MSS NA - +
Sigmoid .
6596 colon MSS negative - +
6873 Rectum MSS negative - +
6874 Rectum MSS negative - +
Sigmoid .
7060 colon MSS negative - +
Sigmoid .
8479 colon MSS negative - +
8489 Rectum MSS negative - +
8593 Sigmoid MSS negative - +
colon

MSS = microsatellite stable, scRNA-seq = single-cell
RNA sequencing, PBMCs = peripheral mononuclear
cells, NA = Not applicable , CODEX = Co-detection by
indexing
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FIGURE LEGENDS

Figure 1. (A) Schematic representation of study design. (B-C) UMAP representation of
dimensionally reduced data following batch-corrected graph-based clustering of all datasets
colored by (B) samples and (C) cell type. (D) Dot plot depicting average expression levels of
specific lineage-based marker genes together with the percentage of cells expressing the

marker. (E) Proportion of cell types detected from each sample.

Figure 2. (A-B) UMAP representation of dimensionally reduced data following batch-corrected
graph-based clustering of all myeloid lineage cells annotated by (A) condition and (B) cluster
numbers. (C) Heatmap depicting expression of five highest significantly expressed genes
(adjusted p-value < 0.05) per cluster. (D) Heatmap depicting the expression of highest top 15
significantly expressed genes in normal and tumor macrophages (adjusted p-value < 0.05). (E)
Selected differentially enriched reactome pathways in tumor macrophages. (F) Violin plots
depicting the expression of gene signatures of foam cells or scar associated macrophages in

normal and tumor macrophages with T-test p-value.

Figure 3. (A-C) UMAP representation of dimensionally reduced data following batch-corrected
graph-based clustering of all stromal lineage cells annotated by (A) condition, (B) cell types and
(C) cluster numbers. (D) Heatmap depicting expression of five highest significantly expressed
genes (adjusted p-value < 0.05) per stromal cell cluster. (E) Violin plots depicting the expression

of selected matrisome components in differentially expressed genes in CAFs.
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Figure 4. (A-B) Predicted ligands that regulate respective target genes in (A) CAFs and (B)
macrophages. Ligands are annotated by the cell type that expresses them. General ligands
indicate ligands expressed by more than one cell type. Edges are scaled by the inferred

regulatory potential of the interaction.

Figure 5. (A) Schematic representation of CODEX analysis. (B) UMAP representation of
dimensionally reduced CODEX data following batch-corrected graph-based clustering of all
datasets colored by samples. (C) Dot plot depicting average expression levels of specific
lineage-based marker proteins together with the percentage of cells expressing the marker. (D)
Example of P7060 tumor with adjacent H&E section (left panel), CODEX staining of selected
cell lineage markers (middle panel) and graphical representation of identified cell types in image
data (right panel). Scale bar = 1.07 mm. (E) Proportion of cell types detected from each sample.
(F) Heatmap depicting average expression of selected proteins across all samples in respective
cell types. (G) Example of P7060 tumor with CODEX staining of selected markers. Scale bar =

90 um.

Figure 6. (A) Schematic representation of deconvolution of cellular fractions from external bulk
RNA-seq dataset. (B) Violin plot depicting abundance of CAFs per patient with patients
grouped according to overall survival sub-group. Comparisons were made by ANOVA with

Tukey HSD.
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