

1 **Riluzole suppresses growth and enhances response to endocrine therapy in ER+ breast cancer**

2
3 ¹Ayodeji O. Olukoya, ¹Hillary Stires, ¹Shaymaa Bahnassy, ¹Sonali Persaud, ¹Yanira Guerra, ²Suman Ranjit,
4 ³Shihong Ma, ¹M. Idalia Cruz, ¹Carlos Benitez, ¹Aaron M. Rozeboom, ¹Hannah Ceuleers, ¹Deborah L. Berry,
5 ⁴Britta M. Jacobsen, ³Ganesh V. Raj, and ^{*1}Rebecca B. Riggins

6
7 ¹Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC.

8 ²Department of Biochemistry, Georgetown University, Washington, DC.

9 ³Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas,
10 Dallas, TX

11 ⁴Department of Pathology, University of Colorado Anschutz Medical Campus, Denver, CO

12
13 [^]Current affiliation: Friends of Cancer Research, Washington, DC

14
15 *To whom correspondence should be addressed: rbr7@georgetown.edu, ORCID iD 0000-0002-1555-4431

16
17 Conflicts of Interest: RBR is an Associated Editor for the Journal of the Endocrine Society. All other authors
18 have nothing to disclose related to this Work.

19

20

21 **Abstract**

22 **Background.** Resistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer remains a
23 significant clinical problem. Riluzole is FDA-approved for the treatment of amyotrophic lateral sclerosis. A
24 benzothiazole-based glutamate release inhibitor with several context-dependent mechanism(s) of action,
25 Riluzole has shown anti-tumor activity in multiple malignancies, including melanoma, glioblastoma, and breast
26 cancer. We previously reported that the acquisition of Tamoxifen resistance in a cellular model of invasive
27 lobular breast cancer is accompanied by the upregulation of GRM mRNA expression and growth inhibition by
28 Riluzole.

29 **Methods.** We tested the ability of Riluzole to reduce cell growth, alone and in combination with endocrine
30 therapy, in a diverse set of ER+ invasive ductal and lobular breast cancer-derived cell lines, primary breast
31 tumor explant cultures, and the estrogen-independent, *ESR1*-mutated invasive lobular breast cancer patient-
32 derived xenograft model HCl-013EI.

33 **Results.** Single-agent Riluzole suppressed the growth of ER+ invasive ductal and lobular breast cancer cell
34 lines *in vitro*, inducing a histologic subtype-associated cell cycle arrest (G0-G1 for ductal, G2-M for lobular).
35 Riluzole induced apoptosis and ferroptosis and reduced phosphorylation of multiple pro-survival signaling
36 molecules, including Akt/mTOR, CREB, and Src/Fak family kinases. Riluzole, in combination with either
37 Fulvestrant or 4-hydroxytamoxifen, additively suppressed ER+ breast cancer cell growth *in vitro*. Single-agent
38 Riluzole significantly inhibited HCl-013EI patient-derived xenograft growth *in vivo*, and the combination of
39 Riluzole plus Fulvestrant significantly reduced proliferation in primary breast tumor explant cultures.

40 **Conclusions.** Riluzole, alone or combined with endocrine therapy, may offer therapeutic benefits in diverse
41 ER+ breast cancers, including lobular breast cancer.

42 **Keywords**

43 Estrogen receptor; Riluzole; invasive lobular breast cancer; Fulvestrant

44 **Running Title**

45 Riluzole in ER+ Breast Cancer

46
47
48
49

50 **Background**

51
52 Estrogen receptor-positive (ER+) breast cancer is the most commonly diagnosed cancer among women in the
53 United States [1]. Endocrine therapies ranging from selective estrogen receptor modulators and
54 downregulators (SERMs, SERDs) to aromatase inhibitors are the backbone of our current standard of care for
55 the clinical management of ER+ breast cancers [2]. Although these treatments have significantly improved
56 disease-free and overall survival for individuals with ER+ breast cancer, endocrine resistance remains a
57 persistent, multifactorial problem [3]. Current efforts aim to address this problem through treatment with
58 endocrine agents combined with other molecularly targeted therapies.

59 To further complicate these efforts, ER+ breast cancer is not a single disease. Invasive lobular breast
60 cancer (ILC) is a distinct histologic subtype of breast cancer that is overwhelmingly ER+ yet has distinct
61 genomic, transcriptomic, and proteomic features [4–6]. These distinctions have important implications for
62 endocrine therapy response. Also, when compared to the more common invasive ductal breast cancer (IDC,
63 invasive mammary carcinoma of no special type), ILC carries a greater risk for late recurrence (evident > 6
64 years after initial diagnosis) [7,8] and responds less to the SERM Tamoxifen [9,10] and potentially the steroidal
65 aromatase inhibitor exemestane [11]. Additionally, models of ILC are less responsive to the second-generation
66 SERD AZD9496 than Fulvestrant, while these drugs are equipotent in preclinical models of IDC [12].

67 Our group [13,14] and others [12,15–20] have identified a number of potential mechanisms that
68 contribute to endocrine therapy resistance in ILC. We recently identified the upregulation of multiple
69 metabotropic glutamate receptors (mGluRs, GRMs) in Tamoxifen-resistant ILC cells [14]. This, coupled with
70 other studies that directly or indirectly implicate altered amino acid metabolism and signaling in ILC pre-clinical
71 models [21] and clinical disease [22,23], led us to consider whether glutamate signaling is functionally relevant
72 to endocrine resistance in endocrine-resistant ILC. Initially reported in melanoma [24,25] and now other
73 malignancies (e.g.[26]), pro-tumorigenic signaling through GRMs can be inhibited by Riluzole, an oral
74 benzothiazole-based glutamate release inhibitor that is FDA-approved for the treatment of amyotrophic lateral
75 sclerosis (ALS). Riluzole's proposed mechanism of action within the central nervous system in ALS and in
76 melanoma is that blocking glutamate release into the extracellular space starves GRMs of their glutamate
77 ligand, thus functionally inhibiting them. This inhibition of the GRMs ultimately reduces glutamate excitotoxicity
78 and inhibits tumor cell growth. In triple-negative breast cancer (TNBC), Riluzole's action may not depend on
79 GRMs [27,28], although Riluzole exerts anti-tumor effects [29–31]. Despite the potential of repurposing
80 Riluzole in ER+ breast cancer, especially ILC, this approach has not been a major focus to date. Therefore,
81 this study aims to more broadly test the efficacy of Riluzole, alone and in combination with multiple endocrine
82 therapies, in a diverse set of ER+ *in vitro* and *in vivo* models enriched for ILC.

83 **Methods**

85 **Cell Culture and Reagents.** Several cell lines were cultured, maintained, and used in this study. These cell
86 line models include; ER+ ILC cell lines (SUM44, LCCTam, MDA-MB-134VI (MM134) and MDA-MB-134VI long-
87 term estrogen-deprived (LTED; MM134 LTED), and BCK4), ER+ IDC cell lines (MCF7 and LCC9), and the ER-
88 negative (ER-) non-transformed mammary epithelial cell line MCF10A as a control. MCF7 and LCC9; SUM44
89 and LCCTam; MM134 and MM134 LTED all represent pairs of parental and resistant cell lines, respectively.
90 SUM44 and LCCTam cells were maintained under serum-free conditions in improved minimal essential media
91 (IMEM, #A1048901, ThermoFisher, Grand Island, NY) supplemented with insulin, hydrocortisone, and other
92 supplements as previously described [13], with the addition of 500 nM 4-hydroxytamoxifen (#H7904, Sigma
93 Aldrich, St. Louis, MO) to LCCTam cells. For selected experiments, SUM44 and LCCTam cells were
94 maintained under serum-free conditions in a base media of Ham's F12 (#11765062, ThermoFisher)
95 supplemented as above. MM134 cells and MM134 LTED) were maintained in IMEM supplemented with 10%
96 fetal bovine serum (FBS) and phenol red-free IMEM (#A1048801, ThermoFisher) supplemented with 10%
97 charcoal-cleared serum (CCS), respectively. BCK4 cells were maintained in IMEM supplemented with 10%
98 FBS, insulin, and nonessential amino acids, as previously described [32]. MCF7 and LCC9 cells were
99 maintained in IMEM supplemented with 5% FBS and phenol red-free IMEM supplemented with 5% CCS,
100 respectively. MM134 and MCF7 cells were short-term hormone-deprived for selected experiments by culturing
101 in phenol red-free IMEM supplemented with 5% CCS for 72 hours. The immortalized mammary epithelial cell
102 line MCF10A was maintained as previously described [33]. All cell lines were authenticated by short tandem
103 repeat (STR) profiling and regularly tested to ensure they remained free of *Mycoplasma spp.* contamination.
104 Unless otherwise noted, general cell culture supplements and reagents were purchased from either
105 ThermoFisher or Sigma Aldrich. Fulvestrant and Riluzole were purchased from Sigma Aldrich, Tocris Bio-
106 Techne (Minneapolis, MN), or Selleckchem (Houston, TX). Ferrostatin-1 was purchased from Selleckchem.
107

108 **Cell Proliferation Assays.** On Day 0, cells were seeded in 96-well plates at the following densities: 1,000
109 cells/well (MCF7); 2,000 cells/well (LCC9, MCF10A); 10,000 cells/well (SUM44, LCCTam, MM134, MM134
110 LTED); 15,000 cells/well (BCK4). Forty-eight hours later, on Day 2, cells were treated with the indicated
111 concentration of compound(s) or solvent control (DMSO) for an additional 7 or 8 days, with
112 media/compound(s) replaced on Day 5 or 6. Plates were then stained with crystal violet, dried, rehydrated, and
113 read as previously described in [14]. Data are presented as mean \pm standard error of the mean (SEM, Riluzole
114 growth curves), or median with upper/lower quartiles (effect of 10 μ M Riluzole on cell line pairs) of % growth
115 (vehicle = 100%) for 5-6 technical replicates and are representative of 2-4 independent biological assays. For
116 assays of Riluzole in combination with Fulvestrant or Tamoxifen for all cell lines except BCK4, data are
117 processed as the mean % growth for 5-6 technical replicates and represent 2-4 independent biological assays.
118 A representative single technical replicate's mean % growth data was then used to create a combination matrix
119 used in SynergyFinder, and the results were presented as 2D surface plots. SynergyFinder uses predictive
120 models such as highest single agent (HSA), Bliss, and Zero interaction potency (ZIP) to quantify the degree of
121 combination synergy or antagonism and outputs a synergy score. When interpreting SynergyFinder scoring, a
122 synergy score less than -10 shows antagonistic drug interaction, a score between -10 and 10 shows an
123 additive drug interaction and a score greater than 10 shows a synergistic drug interaction. For the assay of
124 Riluzole in combination with Fulvestrant in BCK4 cells, data are presented as median with upper/lower
125 quartiles of % growth for 5-6 technical replicates and represent 2-4 independent biological assays.

126 **Cell Cycle Assays.** On Day 0, cells were seeded in 6-well plates at the following densities: 150,000 cells/well
127 (MCF7, LCC9); 300,000 cells/well (SUM44, LCCTam, MM134, MM134 LTED, BCK4, MCF10A). Forty-eight
128 hours later, on Day 2, cells were treated with 10 μ M Riluzole or DMSO control for the additional indicated times
129 before collection, fixation, staining, and cell cycle analysis by flow cytometry as described in [34]. Data are
130 presented as mean \pm standard deviation (SD) for 3-4 independent biological assays.
131

132

133 **Annexin V Apoptosis Assays.** On Day 0, cells were seeded in a 6-well plate at 300,000 cells/well (SUM44, LCCTam). Forty-eight hours later, on Day 2, cells were treated with either 10 μ M Riluzole or DMSO solvent as a control for another 48 hours. On Day 4, cells were collected and stained with 4 μ L of propidium iodide (PI) and 4 μ L of annexin V conjugated with fluorescein isothiocyanate (FITC) in 100 μ L of 1X binding buffer. Control cells were either left unstained or stained with either PI or annexin V dye conjugated with FITC, as described in [35]. Live (PI $^-$, annexin V $^-$), early apoptotic (PI $^-$, annexin V $^+$), late apoptotic(PI $^+$, annexin V $^+$), and necrotic cells (PI $^+$, annexin V $^-$) were quantified by flow cytometry. The PI/Annexin V-FITC apoptosis detection kit was purchased from BioLegend (#640914, San Diego, CA, USA). Data are presented as mean \pm SD for 3 (SUM44) or 4 (LCCTam) independent biological assays.

142

143 **Human Phospho-Kinase Proteome ProfilerTM Array.** On Day 0, cells were seeded in a 6-well plate at 500,000 cells/well (SUM44, LCCTam). Forty-eight hours later, on Day 2, cells were treated with either 10 μ M Riluzole or DMSO solvent as a control for 48 hours. On Day 4, cells were collected in 100 μ L lysis buffer/well before determining total protein concentration by bicinchoninic acid (BCA) assay (#23225, ThermoFisher). According to the manufacturer's instructions, five hundred micrograms of whole cell lysate were then assayed using the Human Phospho-Kinase Proteome ProfilerTM Array (#ARY003B, Bio-Techne). Array membranes were visualized using chemiluminescence detected by HyBlot CL autoradiography film (#E3018, Thomas Scientific, Swedesboro, NJ), then films were scanned and analyzed using FIJI [36]. A ratio of background-corrected intensity values for targets (phospho-kinase spots) to references (control spots) was created for each condition (DMSO and Riluzole) within each cell line. Data are presented as the mean of the Riluzole: DMSO ratio for two technical replicates from a single experiment for each cell line. Gene symbols corresponding to the kinases showing decreased phosphorylation in response to Riluzole in LCCTam cells were analyzed using SRPlot (<http://www.bioinformatics.com.cn/srplot>) to identify top functional enrichments.

156

157 **Western blot.** SUM44 and LCCTam cells were seeded in 6-well plastic tissue culture plates at 250,000 cells/well (FAK and YES blots) or 300,000–600,000 cells/well (4-HNE and MDA blots) 48 h before treatment. The cells were treated for the times indicated in the figure legend. For the FAK and YES blots, the cells were treated with the control (DMSO) or drug (10 μ M Riluzole). In the case of the MDA and 4-HNE blots, the cells were treated with control (DMSO), Riluzole (10 μ M), or a combination of Riluzole and Ferrostatin-1(10 μ M). After treatment, cells were lysed in radioimmunoprecipitation assay buffer (RIPA - 150 mm NaCl, 50 mm Tris pH 7.5, 1% Igepal CA-630, and 0.5% sodium deoxycholate) supplemented with PierceTM protease and Phosphatase inhibitor mini-tablets (Thermo Scientific). Protein lysates, extracted following centrifugation of the lysed cells, were mixed in a 3:1 with sample buffer (NuPAGETM LDS Sample Buffer (4X) + 2-Mercaptoethanol in 2:1) and loaded onto a precast Gel (NuPAGETM 4-12% Bis-Tris Gel, Invitrogen). Proteins were transferred to nitrocellulose membranes, blocked in 5% nonfat dry milk in Tris Buffered Saline and Tween-20 [TBST; 10 mm Tris HCl, 150 mm NaCl, and 0.05% Tween-20 (pH 8.0)] at room temperature for one hour, then probed overnight with the following primary antibodies (diluted in TBST): phospho-FAK (1:1000), total FAK (1:1000) from Cell Signaling (Danvers, MA); phospho-YES (1:1000); total-YES (1:500–1:1000); 4-HNE (1:700) from Abcam (Waltham, MA); and MDA clone -1F83 (1:200) from VWR (Radnor, PA). Nitrocellulose membranes were then incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies from Cell Signaling (Danvers, MA) (1:2000) at room temperature for one hour, followed by incubation in enhanced chemiluminescence from Advansta (San Jose, CA) and imaged in the Amersham imager 600 (GE Healthcare). Membranes were reprobed for beta-actin (Cell Signaling, 1:1000) for \geq 1 h at room temperature as a loading control.

177

178 **Cell Viability Assays.** On Day 0, 300,000 – 400,000 cells of SUM44 and LCCTam were seeded in 6-well plates. Twenty-four hours later, on Day 1, cells were treated with control (DMSO), or Riluzole (10 μ M), or a combination of Riluzole and Ferrostatin-1 (10 μ M). On day 2, the cells were collected after a 24hr treatment

180

181 period. The collected cells were stained with trypan blue and counted using the Countess II automated cell
182 counter (Thermofisher). Data are analyzed using Prism 9 and presented as mean \pm standard deviation (SD) of
183 the ratio of the cell number of the treatment groups relative to the control for 3-4 independent biological assays.
184

185 **HCI-013 and HCI-013EI Patient Derived Xenograft (PDX) Experiments.** All animal studies were ethically
186 conducted in accordance with our approved Institutional Animal Care and Use Committee (IACUC) protocols
187 #2018-0005 and #2018-0006. For the comparison of time to tumor formation between HCI-013 and HCI-013EI
188 in the presence vs. absence of supplemental estrogen pellets, 5-6 week-old intact (non-ovariectomized) female
189 non-obese diabetic, severe combined immunodeficient mice (NOD.CB17-Prkdcscid/NCrCrl, purchased from
190 Charles River, Wilmington, MA) were orthotopically implanted into the right 4th mammary gland with a single 1-
191 3 mm³ PDX fragment per mouse as follows: HCI-013EI (n=6); HCI-013EI+E2 (n=6); HCI-013 (n=6); HCI-
192 013+E2 (n=6). “+E2” denotes co-implantation of a 1 mg estrogen pellet under the skin on the back between the
193 shoulder blades. Mice were followed until measurable tumor development (by calipers), and data are
194 presented as a survival plot with n=6 mice per group.
195

196 For the treatment study of HCI-013EI tumors, 5-6-week old intact (non-ovariectomized) female mice were
197 orthotopically implanted into the right 4th mammary gland with a single 1-3 mm³ HCI-013EI PDX fragment per
198 mouse without estrogen supplementation, then followed until tumors reached \sim 100 mm³ before enrollment to
199 one of the four (4) treatment arms: Control (n=5); 25mg/kg Fulvestrant in castor oil SQ (once per week, n=5);
200 10 mg/kg Riluzole PO in corn oil (5 days per week, n=5); or the combination (n=5) for eight weeks. Mice were
201 monitored for tumor growth (measured by calipers) and body weight twice per week. Tumor volumes were
202 calculated by the modified ellipsoid formula $V=1/2(XY^2)$, where X is the longest axis, and Y is the longest
203 perpendicular axis. Tumor volume data are presented as mean \pm SEM for the number of mice per treatment
204 group. The baseline measurement represents the measurement at the point of enrollment to a treatment group
205 based on the *a priori* tumor volume as calculated above. The subsequent measurements are those taken while
206 the mice are on treatment at the twice per week frequency. At the study’s conclusion, mice were humanely
207 euthanized by approved AVMA guidelines. Tumors from the treatment study were resected, weighed, formalin-
208 fixed, and paraffin-embedded.
209

210 **Standard Immunohistochemistry (IHC) Staining.** Sections from formalin-fixed, paraffin-embedded tissues
211 were deparaffinized with xylenes and rehydrated through a graded alcohol series. Heat-induced epitope
212 retrieval (HIER) was performed by immersing the tissue sections at 98°C for 20 minutes in LowFlex (Dako
213 #K8005). Staining was performed following the epitope retrieval process using VectaStain Kit from Vector Labs
214 for cleaved Caspase-3 and horseradish peroxidase-labeled polymer from Dako (K4001) for PCNA. Slides were
215 treated with 3% hydrogen peroxide and 10% normal goat serum for 10 minutes each and exposed to primary
216 antibodies- 1/120 for Caspase-3 and 1/1000 for PCNA Santa Cruz #sc56- for one hour at room temperature.
217 Slides were then exposed to appropriate biotin-conjugated secondary antibodies, Vectastain ABC reagent, and
218 DAB chromagen (Dako) for cleaved Caspase-3 and HRP labeled polymer and DAB chromagen (Dako) for
219 PCNA. Slides were counterstained with Hematoxylin (Fisher, Harris Modified Hematoxylin), blued in 1%
220 ammonium hydroxide, dehydrated, and mounted with Acrymount.
221

222 **IHC Imaging and Analysis.** Slides were scanned at 40X magnification using the Aperio GT 450, an
223 automated digital pathology slide scanner. The whole slide scans were viewed and analyzed with QuPath-
224 0.3.0, open-source software used for bioimage analysis [37]. The images from the Caspase-3 and PCNA
225 slides were separated into respective project groups, and a representative image from each group was
226 analyzed. The corresponding analysis setting was then applied to the group to ensure uniformity across all the
227 images. First, the default stain vector was selected to deconvolute the hematoxylin and DAB stains. Next, a
228 region of interest (ROI) for analysis was selected; in this study, the entire tumor area was established as the
229 region of interest for this analysis. Finally, the ROI was analyzed for positive stain detection, and the results

230 (number positive per mm squared) were exported as a CSV file for statistical analysis using GraphPad Prism
231 9. Data for both PCNA and cleaved Caspase-3 are presented as the individual and median positive cells per
232 mm² for each treatment group.

233
234 **Multiplex Immunohistochemistry (mIHC) Staining.** HCl-013+E2 (n=5) and HCl-013EI (n=4) tumors from
235 mice in our PDX maintenance colony - independent from experimental animals described above - were
236 resected, formalin-fixed, paraffin-embedded, then sectioned for staining on the Vectra3 multispectral imaging
237 platform (Akoya Biosciences, Marlborough, MA) using OPAL chemistry. The slides were baked at 60°C,
238 deparaffinized in xylene, rehydrated, washed in tap water, and incubated with 10% neutral buffered formalin for
239 20 minutes to increase tissue-slide retention. Epitope retrieval/microwave treatment (MWT) for all antibodies
240 was performed by boiling slides in Antigen Retrieval buffer 6 (AR6 pH6; Akoya, AR6001KT). Protein blocking
241 was performed using antibody diluent/blocking buffer (Akoya, ARD1001EA) for 10 minutes at room
242 temperature. Primary antibody/OPAL dye pairings and incubation conditions for ER, PR, HER2, Ki67, and pan-
243 cytokeratin staining are detailed in **Table 1**. MWT was performed to remove the primary and secondary
244 antibodies between rounds of multiplex IHC. Multiplex IHC was finished with MWT, counterstained with
245 spectral DAPI (Akoya FP1490) for 5 min, and mounted with ProLong Diamond Antifade (ThermoFisher,
246 P36961). The order of antibody staining and the antibody/OPAL pairing was predetermined using general
247 guidelines and the particular biology of the panel. General guidelines include spectrally separating co-
248 localizing markers and separating spectrally adjacent dyes. Multiplex IHC was optimized by first performing
249 singleplex IHC with the chosen antibody/OPAL dye pair to optimize signal intensity values and proper cellular
250 expression, followed by optimizing the entire multiplex assay.

251
252 **mIHC Imaging and Analysis.** Slides were scanned at 10X magnification using the Vectra 3.0 Automated
253 Quantitative Pathology Imaging System (PerkinElmer/Akoya). Whole slide scans were viewed with
254 Phenochart (Perkin Elmer/Akoya), which allows for selecting high-powered images at 20X (resolution of 0.5m
255 per pixel) for multispectral image capture. Multispectral images of each xenograft tissue specimen were
256 captured in their entirety. Multispectral images were unmixed using spectral libraries built from images of
257 single stained tissues for each reagent using the inForm Advanced Image Analysis software (inForm 2.4.6;
258 PerkinElmer/Akoya). A selection of 10-15 representative multispectral images spanning all nine tissue
259 sections was used to train the inForm software (tissue segmentation, cell segmentation, and phenotyping
260 tools). All the settings applied to the training images were saved within an algorithm to allow the batch analysis
261 of all the multispectral images particular to each panel. Data are presented as the overall mean ± SD of %
262 marker positivity for all tumors.

263
264 **Fluorescence Lifetime Imaging (FLIM) Instrumentation.** A modified Olympus FVMPERS (Waltham, MA)
265 microscope equipped with a Spectra-Physics Insight X3 (Milpitas, CA) laser and FastFLIM (ISS, Champaign,
266 IL) acquisition card were used to image the cancer samples. The samples were excited by two-photon
267 excitation at 740 nm using a 20X air objective (LUCPLFLN 0.45NA, Olympus), and the emitted fluorescence
268 was collected using the DIVER (Deep Imaging Via Enhanced Recovery) detector assembly equipped with a
269 FastFLIM card for lifetime imaging. The pixel dwell time was fixed at 20 µs, and the field of view was 318.8 µm
270 (Zoom =2X) at 256X256 pixels. 16 frames were integrated to increase signal-to-noise. The data from each
271 pixel were recorded and analyzed using the SimFCS software (available from the Laboratory for Fluorescence
272 Dynamics, University of California, Irvine, CA). The raster scanning was done using the Olympus software, and
273 the images were collected using the FLIMBox/FastFLIM system in passive mode [38].
274 The samples (5 µm thick) were imaged using the homebuilt DIVER (Deep Imaging via Enhanced Recovery)
275 microscope [39], a homebuilt modified detector based on an upright configuration. The details of this
276 microscope have been described elsewhere [40,41]. Briefly, this microscope uses a forward detection scheme
277 and a large area photon counting detector (R7600P-300, Hamamatsu), having a higher photon collection
278 efficiency due to the large cone angle of detection. A combination of filters capable of separating the blue

279 wavelength (400 – 500 nm) fluorescence was used for FLIM imaging of NADH [42]. The phasor plot is
280 calibrated using Rhodamine 110 in water which has a mono-exponential lifetime of 4.0 ns.
281

282 **FLIM Phasor Analysis** [38,43,44]. The fluorescence intensity decays collected at each pixel of the image were
283 transformed to the Fourier space, and the phasor coordinates were calculated using the following relations:
284

$$g_{i,j}(\omega) = \int_0^{\infty} I(t) \cdot \cos(n\omega t) dt / \int_0^{\infty} I(t) dt \quad 1$$

$$s_{i,j}(\omega) = \int_0^{\infty} I(t) \cdot \sin(n\omega t) dt / \int_0^{\infty} I(t) dt \quad 2$$

285 where $g_{i,j}(\omega)$ and $s_{i,j}(\omega)$ are the X and Y coordinates of the phasor plot, respectively, and n and ω are the
286 harmonic numbers and the angular frequency of excitation, respectively. The transformed data were then
287 plotted in the phasor plot so that the data from each pixel is transformed to a point in the phasor plot [45–47].
288 The fractional intensity distribution between free and protein-bound NADH was calculated based on a two-
289 component analysis of the phasor plot [38,48] and then converted to concentration ratio based on the quantum
290 yield of the two species [49]. The higher free/bound NADH ratio is representative of increased glycolysis [43].
291

292 **Primary Breast Tumor Explant Cultures.** Patient-derived explants (PDEs) from five (5) ER+ primary breast
293 tumors were processed and cultured as described in [50]. PDEs were treated with 100 nM Fulvestrant, 10 μ M
294 Riluzole, the combination, or solvent control (DMSO) for 48 hours before formalin fixation, paraffin embedding,
295 sectioning, and staining for PCNA (1:1000, #sc-56, SCBT, Santa Cruz, CA), cleaved caspase 3 (1:300, #9661,
296 Cell Signaling Technology, Danvers, MA), and Ki67 (1:500, #ab16667, Abcam, Cambridge, MA). Stained
297 sections were then visualized and scored as described in [50]. Data are presented as change relative to
298 vehicle (set to 0) for each PDE.
299

300 **Statistical Analysis.** Statistical analyses were performed using GraphPad Prism 9.0 (San Diego, CA) at
301 $\alpha \leq 0.05$, except for Riluzole/Fulvestrant and Riluzole/4-hydroxytamoxifen combination experiments, which were
302 analyzed by SynergyFinder [51]. Single-agent Riluzole experiments were analyzed by nonlinear regression
303 ([inhibitor] vs. normalized response), and response to 10 μ M Riluzole in endocrine therapy sensitive/resistant
304 cell line pairs (SUM44 vs. LCCTam and MCF7 vs. LCC9) was compared by Mann-Whitney test.
305 Riluzole/Fulvestrant and Riluzole/4-hydroxytamoxifen combination experiments were analyzed using the Bliss,
306 zero interaction potency (ZIP), and highest single agent (HSA) methods [52] in SynergyFinder. Cell cycle and
307 Annexin V apoptosis assays were analyzed by two-way Analysis of Variance (ANOVA) followed by Sidak's
308 multiple comparisons tests. Cell viability assays for Riluzole Ferrostatin-1 were analyzed by two-way ANOVA
309 followed by Tukey's multiple comparisons test. Staining for each marker in primary breast tumor explant
310 cultures was analyzed by one-sample t-test vs. 0 (vehicle). In the xenograft experiment comparing time to
311 tumor formation between HCl-013 and HCl-013EI in the presence vs. absence of supplemental estrogen
312 pellets, data were analyzed by log-rank (Mantel-Cox) test. In the xenograft experiment testing Fulvestrant,
313 Riluzole, the combination, or control in HCl-013EI, tumor volume, and mouse body weight data were analyzed
314 by mixed-effects analysis followed by Dunnett's multiple comparisons tests at each time point vs. control.
315 Tumor weight at the endpoint and PCNA and cleaved caspase-3 were analyzed by Browne-Forsyth and Welch
316 ANOVA, followed by Dunnett's T3 multiple comparison tests. Partial response (PR), stable disease (SD), and
317 progressive disease (PD) were calculated using RECIST 1.1 criteria [53]. mIHC data were analyzed by the
318 Mann-Whitney test.
319

320
321

322

Results

323

Riluzole has shown anti-tumor activity in preclinical models of multiple cancers, including melanoma, glioblastoma, and breast cancer [25–31]. In several (but not all) of these reports, Riluzole-mediated growth inhibition is attributed to increased expression of metabotropic glutamate receptors (mGluRs, GRMs). We previously reported that acquisition of Tamoxifen resistance in a cellular model of invasive lobular breast cancer (ILC, [13]) is accompanied by the upregulation of GRM mRNA expression and growth inhibition by Riluzole [14]. Here, our goal was to test the efficacy of Riluzole more broadly, alone and in combination with multiple endocrine therapies, in a diverse set of ER+ *in vitro* and *in vivo* models enriched for ILC.

331

332 Riluzole suppresses growth in ER+ breast cancer cell lines.

333

We performed dose-response assays of Riluzole (33 nM to 100 μ M) in four ILC- and two IDC-derived cell lines and the ER- non-transformed breast epithelial cell line MCF10A, using crystal violet staining as a proxy for total cell number [14] (**Figure 1A**). Nonlinear regression analysis calculated the Riluzole IC₅₀ for all six cell lines to be ~10-100 μ M, consistent with published studies in other malignancies. Direct comparison of growth inhibition by 10 μ M Riluzole in three endocrine-responsive and -resistant cell line pairs (**Figure 1B**) confirmed [14] that the Tamoxifen-resistant ILC cell line LCCTam, and the MM134 LTED cells were significantly more responsive to Riluzole than their parental counterparts SUM44 and MM134 (Mann-Whitney test, **p= 0.002 & 0.0043 respectively). This was not the case for the MCF7/LCC9 IDC cell line pair [54], in which MCF7 cells showed greater Riluzole-mediated growth inhibition (*p=0.024) than Fulvestrant-resistant/Tamoxifen-cross-resistant LCC9 cells. However, MCF10A non-transformed cells were not growth inhibited by 10 μ M Riluzole vs. DMSO control.

344

The presence vs. absence of steroid hormones and estrogenic compounds in growth media (e.g., phenol red, serum) can influence the response of ER+ cell lines to growth inhibition by small molecules. The SUM44/LCCTam cell line pair is cultured in serum-free media, but a phenol red-containing base (IMEM, 10 mg/L), while MCF7 and MM134 cells are cultured in phenol red-containing, IMEM supplemented with 5%FBS. LCC9 cells and MM134 LTED are maintained in hormone-replete conditions. As such, experiments presented in Figure 1 performed under hormone-replete conditions were repeated under hormone-deprived conditions (**Figure S1** [55]). While individual differences within cell lines were observed, hormone deprivation - reduced phenol red media for SUM44/LCCTam (Ham's F12, 1.2 mg/L) or phenol red-free IMEM supplemented with 5% CCS for MCF7 and MM134 - did not consistently enhance or impair Riluzole-mediated growth inhibition.

353

354 Riluzole induces a histologic subtype-associated cell cycle arrest.

355

To corroborate the cell proliferation assay results, we tested Riluzole's effect on cell cycle progression (**Figure 2**). All ILC cell lines (including BCK4, a third model of ER+ ILC [32], **Figure S2** [55]) showed a significant accumulation of cells in the G2-M phase (two-way ANOVA followed by Sidak's multiple comparisons test, see figure legends). However, both IDC-derived cell lines showed a significant accumulation of cells in the G0-G1 phase, while non-transformed MCF10A cells showed no significant cell cycle arrest in response to Riluzole. Together with the results presented in Figures 1 and S1, these data suggest that while all ER+ breast cell lines tested are growth inhibited by Riluzole, ILC cells preferentially undergo G2-M arrest while IDC cells arrest in G0-G1.

363

364 Riluzole inhibits phosphorylation of pro-survival signaling molecules and induces apoptosis and 365 ferroptosis.

366

To identify molecular signaling events accompanying Riluzole-mediated growth inhibition in the SUM44/LCCTam cell line pair, we used the Human Phospho-Kinase Proteome Profiler™ Array to detect changes in 43 phosphorylation sites across 40 different kinases or substrates (**Figure 3A**). In SUM44 cells, Riluzole reduced phosphorylation of mutant p53 [56] (S92 and S392), and Akt T308. In LCCTam cells, Riluzole reduced phosphorylation of markedly more sites in kinases and substrates with several significantly enriched

370

ontology clusters, including Signaling by Receptor Tyrosine Kinases and Cytokine Signaling in Immune System (Figure S3A [55]). In addition, notable inhibition of Akt/mTOR (Akt S437, TOR S2448, PRAS40 T246), CREB (Msk S376/360, CREB S133) and Src/Fak (Lyn Y397, Yes Y426, Fak Y397) signaling pathways were observed specifically in LCCTam cells. Prior studies in melanoma and glioblastoma have shown that Riluzole inhibits Akt phosphorylation and that Riluzole combined with mTOR inhibition can synergistically decrease xenograft growth [26,57]. However, to our knowledge, inhibition of Src/Fak family kinases by Riluzole has not been previously reported. Therefore, to further validate the inhibition of selected Src/Fak kinases observed from the Human Phospho-Kinase Proteome Profiler™ Array, we performed a western blot analysis on SUM44/LCCTam cell line treated with Riluzole for several time points (6,12, 24, and 48 hours). The results show markedly higher baseline Fak Y397 phosphorylation and confirmed reduced expression and phosphorylation of Fak Y397 in the LCCTam cells versus no change to a slight increase in Fak phosphorylation in SUM44 cells (Figure 3B, 3C). However, we could not validate a change in Yes expression or phosphorylation at Y426 (Figure S3B [55]).

We then performed Annexin V assays to measure the effect of Riluzole on apoptosis in the SUM44/LCCTam cell line pair. LCCTam cells showed a significant increase in the percent of cells in early apoptosis when treated with Riluzole (Figure 3D and S3C [55], two-way ANOVA followed by Sidak's multiple comparisons tests, **p<0.001). However, there was a less robust increase in early apoptotic SUM44 cells (two-way ANOVA followed by Sidak's multiple comparisons test, *p<0.0211). These data are consistent with those presented in Figure 1B, where LCCTam cells were significantly more growth-inhibited by Riluzole than SUM44 cells.

In addition to apoptosis, the iron-dependent cell death mechanism of ferroptosis could be relevant to Riluzole action in these cells. For example, inhibition of the PI3K-Akt-mTOR pathway has been previously implicated in this form of cell death [58]. Furthermore, Fak signaling downstream of the glutamate/cystine antiporter SLC7A11 or X_c^- , which can be inhibited by Riluzole, has also been implicated in ferroptosis [59]. To explore the possibility of ferroptotic cell death, we performed a viability assay after treating Sum44 and LCCTam cells with Vehicle (DMSO), or Riluzole or a combination of Riluzole and Ferrostatin-1 (inhibitor of Ferroptosis). The results showed that Riluzole reduces cell viability in both SUM44 and LCCTam, and the addition of Ferrostatin-1 reverses the observed reduction (Figure 3E). To substantiate this observation, we performed a western blot analysis on the SUM44/LCCTam cell line pair treated with vehicle (DMSO) or Riluzole, or a combination of Riluzole and Ferrostatin for 48hrs, then probed for Malondialdehyde (MDA) and 4-Hydroxyneononal (4-HNE) – which are both by-products of ferroptosis. MDA levels were increased in LCCTam cells treated for 48 hr with Riluzole. Conversely, ferrostatin-1 decreased the Riluzole-induced MDA (Figure 3F). On the other hand, Riluzole slightly increased the levels of 4-HNE in LCCTam cells, whereas the combined treatment of Riluzole and Ferrostatin-1 reduced the levels of Riluzole-induced 4-HNE (Figure S3D [55]). Altogether, the Riluzole induction of lipid peroxidation products suggests Riluzole-induced ferroptosis in LCCTam.

407 408 **Riluzole, in combination with endocrine therapies, leads to additive suppression of ER+ breast cancer 409 cell line growth.**

410 Endocrine therapies ranging from SERMs and SERDs to aromatase inhibitors represent the standard of care
411 for the clinical management of ER+ breast cancers [2]. Therefore, we tested Riluzole's activity in combination
412 with the SERD Fulvestrant or SERM Tamoxifen (4-hydroxytamoxifen) in ILC- and IDC-derived ER+ breast
413 cancer cell lines and the ER- non-transformed breast epithelial cell line MCF10A as a negative control. These
414 experiments were conducted under hormone-replete conditions. To determine the possible relational effect of
415 the drug combinations, we used SynergyFinder, a web-based tool for interactive analysis and visualization of
416 multi-drug and multi-dose response data [51]. Based on the synergy finder scoring, the combination of
417 Fulvestrant and Riluzole showed additive benefits in nearly all tested cell lines (Figure 4 and S4A [55]). The
418 representative synergy map of the bliss model highlights the synergistic and antagonistic dose regions in red
419 and green, respectively, and the overall synergy score indicated at the top (Figure 4A, >10 = synergy, 10 to -

420 10 = additive, <-10 = antagonistic). Examination of the other synergy models provided similar synergy scores
421 to the bliss model in Figure 4A, which supports the notion that the combination of Fulvestrant and Riluzole is
422 additive (**Figure 4B**). The synergy analysis of the combination of Riluzole and Tamoxifen resulted in scores
423 that indicated an additive interaction in all the cell lines except for MM134 LTED and MCF10A (**Figure 4B**).
424 MM134 LTED cells were only inhibited by the lowest concentration of 4HT and not by the higher
425 concentrations (**Figure S4B** [55]). On the other hand, Riluzole significantly inhibited growth, therefore, the
426 drugs' opposing effects likely account for the combination's antagonistic effect. Despite these exceptions, these
427 data suggest that the combination of endocrine therapy and Riluzole, in most cases, can additively suppress
428 the growth of a variety of ER+ breast cancer cell line models.
429

430 **Single-agent Riluzole inhibits tumor growth *in vivo*, but the combination with Fulvestrant is not better**
431 **than Fulvestrant alone in the HCI-013EI ILC PDX model.** PDXs are an important, clinically relevant
432 alternative to 2D culture models for pre-clinical testing of combination therapies. The HCI-013 PDX model was
433 established from a 53-year-old woman with metastatic, multi-therapy-resistant ER+/PR+/HER2- ILC by serial
434 passage through intact female NOD scid gamma (NSG) mice supplemented with a 1 mg estrogen (E2, 17 β -
435 estradiol) pellet [15]. The HCI-013EI (estrogen-independent) variant was established by two weeks of *in vitro*
436 culture of cells from HCI-013 tumors under hormone-deprived conditions, then reimplanted into intact female
437 NSG mice without estrogen supplementation [60]. Both models harbor the clinically relevant *ESR1* activating
438 mutation Y537S, with the HCI-013EI variant reported as having a more abundant variant allele fraction of
439 Y537S.

440 To directly compare the responsiveness to, and dependency on, supplemental estrogen of HCI-013 vs.
441 HCI-013EI, six (6) 5-6 week-old intact severe combined immunodeficient (SCID) female mice per group were
442 orthotopically implanted with a single 1-3 mm³ PDX fragment, then tumor growth and development was
443 monitored (**Figure 5A**). In the presence of supplemental estrogen pellets, HCI-013 and HCI-013EI exhibited a
444 100% tumor take rate, with a median time to tumor formation of 23.5 and 26.5 days, respectively. However, in
445 the absence of supplemental estrogen pellets, HCI-013 PDX fragments were unable to form tumors out to 113
446 days post-implantation, and HCI-013EI PDX fragments exhibited a 50% tumor take rate, with a median time to
447 tumor formation of 39 days (log-rank Mantel-Cox test, ***p=0.0007). These data suggest that supplemental
448 estrogen is necessary for HCI-013 tumor formation and beneficial but not necessary for HCI-013EI tumor
449 formation in SCID mice.

450 We characterized an independent set of HCI-013+E2 (estrogen supplemented, n=5) and HCI-013EI
451 (not estrogen supplemented, n=4) tumors with respect to hormone receptor (ER and PR), HER2, and
452 proliferative marker Ki67 expression using Opal chemistries on the Vectra3 multispectral imaging platform
453 (**Figures 5B and 5C**). This approach captured heterogeneity in marker expression between and within tumors.
454 Overall, percent ER positivity (% ER+) was significantly lower in HCI-013EI vs. HCI-013+E2 tumors (Mann-
455 Whitney test, *p=0.032), consistent with a prior report that Y537S mutant ER protein expression can be lower
456 than wild type ER [61]. However, overall percent PR and Ki67 positivity were not significantly different between
457 these PDX variants. No HER2 staining was detected (data not shown).

458 An important feature of endocrine-resistant breast cancer is dysregulated metabolism, with published
459 studies showing increased dependency on glutamine [62] and other amino acids [63]. Advanced imaging
460 techniques like fluorescence lifetime imaging (FLIM) take advantage of the natural autofluorescence of
461 biomolecules, including the reduced form of nicotinamide adenine dinucleotide (NADH, a key output of cellular
462 metabolism). FLIM coupled with phasor analysis permits resolution of bound vs. free NADH, which correlates
463 with oxidative phosphorylation vs. glycolytic metabolism, respectively [38,64]. Using FLIM, we examined the
464 cellular metabolism of HCI-013+E2 and HCI-013EI tumors. We observed that cells were mainly glycolytic at
465 the edge of both HCI-013+E2 and HCI-013EI tumors. However, cells at the core of HCI-013EI tumors were
466 preferentially in an oxidative phosphorylated state as opposed to a more glycolytic state observed in cells
467 within the core of the HCI-013+E2 tumors (**Figures 5D and 5E**, one-way ANOVA (p < 0.0001) followed by
468 Tukey's multiple comparisons test (p=0.0516).

We selected the HCl-013EI (not estrogen-supplemented) PDX variant to test the anti-tumor activity of Fulvestrant, Riluzole, or the combination relative to vehicle control. Forty-eight (48) 5-6 week-old intact SCID female mice were orthotopically implanted with a single 1-3 mm³ HCl-013EI PDX fragment without E2 supplementation, then followed until tumors reached ~100 mm³ before enrollment to one of four (4) treatment arms: control (n=5), Fulvestrant (n=5), Riluzole (n=5), or the combination (n=5) (**Figures 6A and S5A** [55]). Relative to control, single-agent Riluzole, Fulvestrant, and the combination significantly slowed the tumor volume. However, the level of tumor growth inhibition relative to control varied among the three groups. The Riluzole group showed about 50% inhibition, whereas similar effects but greater inhibition (~90%) were observed in the Fulvestrant and combination groups. (**Figure 6A**, mixed effect analysis followed by Tukey's multiple comparisons tests). Analysis of tumor weight at the endpoint for the treatment groups further supported the observed difference in tumor volume. The mean weights of the Fulvestrant, Riluzole, and Combination groups were lower than the control group. However, only the Fulvestrant and combination groups showed statistically significant differences (**Figure 6B**, Browne-Forsyth and Welch ANOVA followed by Dunnett's T3 multiple comparisons tests) and were not different from each other. Analysis of relative tumor size at endpoint according to RECIST 1.1 criteria [53] shows that 2 of 5 tumors in the Fulvestrant group and 3 of 5 in the combination group achieved partial response (PR) (**Figure 6C**). We then performed immunohistochemistry to stain for proliferating cell nuclear antigen (PCNA) and Caspase-3 as a proxy for proliferation and apoptosis, respectively. Although not significant, the mean positive cells per mm³ of Caspase-3 for the Fulvestrant, Riluzole, and combination group were each higher than the control group (**Figure 6D**). For the PCNA staining, expectedly, the Fulvestrant and combination group had lower mean positive cells per mm³. However, surprisingly, the mean positive stained cells per mm³ for the Riluzole group was higher than the control group (**Figure 6E**). Finally, analysis of mouse body weights between the treatment groups showed no significant differences. As seen in **Figure S5B** [55] the slope of the graphs for each treatment group is close to zero. Altogether, these data show that single-agent Riluzole has a significant inhibitory effect on HCl-013EI tumor volume, and with Fulvestrant already highly effective against this PDX model, combination treatment does not provide additional benefit.

Riluzole plus Fulvestrant significantly inhibits proliferation in primary breast tumor explant cultures. Patient-derived explants (PDEs) provide another pre-clinical strategy to test combination therapies. These short-term cultures of surgical samples maintain the local tumor microenvironment and capture inter-person heterogeneity [50]. We tested the efficacy of Fulvestrant, Riluzole, or the combination vs. solvent control (DMSO) in five (5) PDEs from ER+/PR+/HER2-negative primary tumors (**Figure 7A**). Using PCNA staining as a proxy for cell proliferation, the combination of Riluzole plus Fulvestrant significantly reduced PCNA (**Figures 7B and 7C**, one-sample t-test vs. 0 (Vehicle), *p=0.013 Vehicle vs. Combination), with 4 of 5 PDEs showing better growth inhibition by the combination than either drug alone and the greatest effect seen in the ILC PDE. Staining for cleaved caspase 3 suggested a modest induction of apoptosis by either drug alone or the combination in some of the PDEs (**Figure S4A** [55]), but this was not statistically significant. Together with the results presented in Figures 5, 6, and accompanying supplementary figures, these data suggest that combining Fulvestrant and Riluzole may offer improved therapeutic benefits in some ER+ breast cancers.

509

Discussion

510

511 We tested the efficacy of Riluzole, alone and in combination with multiple endocrine therapies, in a diverse set
512 of ER+ *in vitro* and *in vivo* models enriched for ILC. Single-agent Riluzole suppressed the growth of ER+ ILC
513 and IDC cell lines *in vitro*, by inducing a histologic subtype-associated cell cycle arrest (G0-G1 for IDC, G2-M
514 for ILC). In the Tamoxifen-resistant ILC-derived LCCTam model, Riluzole induced apoptosis and reduced
515 phosphorylation of multiple pro-survival signaling molecules, including Akt/mTOR, CREB, and Src/Fak family
516 kinases. Furthermore, in combination with either Fulvestrant or 4-hydroxytamoxifen, Riluzole additively
517 suppressed ER+ breast cancer cell growth *in vitro*. In addition, single-agent Riluzole inhibited HCl-013EI ILC
518 PDX growth *in vivo*, and the combination of Riluzole plus Fulvestrant significantly reduced proliferation in
519 primary breast tumor explant cultures.

520

521 The increased combinatorial efficacy of Riluzole and Fulvestrant we observe across diverse cell line
522 models of ER+ breast cancer *in vitro* is recapitulated *ex vivo* using PDEs. In the HCl-013EI PDX experiment,
523 tumor volume after ~7 weeks of treatment was not significantly different in combination- vs. Fulvestrant-
524 treatment groups, although single-agent Riluzole had significant activity. We attribute this partly to the very
525 strong response of this PDX to single-agent Fulvestrant as seen in this experiment (~90% inhibition) and
526 reported by others [45,46]. In the PDE experiment, the combination of Riluzole and Fulvestrant was highly
527 effective, with 80% of primary tumor explants (4/5) showing significant growth inhibition by the combination as
528 measured by a reduction in PCNA (Figure 7). Improved combinatorial efficacy in the PDEs may also be due to
529 the lower concentration of Fulvestrant used in these studies (100 nM). Additionally, Riluzole bioavailability is
530 variable, leading to mixed efficacy in preclinical and clinical studies. For example, in preclinical studies of triple-
531 negative breast cancer [30] and glioblastoma [26], single-agent Riluzole does not have significant anti-tumor
532 activity *in vivo*, whereas in our study and preclinical studies of melanoma [24,25,65] it does. However, in Figure
533 6B-C, two of five Riluzole-treated tumors showed no reduction in tumor weight or relative tumor size versus
534 control-treated tumors, which could be due to inconsistent bioavailability. Serum levels of the drug vary widely
535 in ALS patients receiving the drug, and in a phase II trial for advanced melanoma, circulating Riluzole
536 concentrations had marked inter-patient variability [66]. The Riluzole pro-drug troriluzole [67] appears to offer
537 better bioavailability by reducing first-pass metabolism by CYP1A2, leading to sustained ~0.3-1.8 μ M plasma
538 concentrations of active drug in a recent phase Ib study that combined troriluzole (BHV-4157) with nivolumab
539 in advanced solid tumors [68]. These and other Riluzole analogs will be important to explore alone and in
540 combination with endocrine therapy in ER+ breast cancer.

541

542 In the Tamoxifen-resistant ILC-derived LCCTam model, Riluzole induces apoptosis and ferroptosis
543 concomitant with reduced phosphorylation of multiple pro-survival signaling molecules. That these include
544 components of the Akt/mTOR signaling pathway (Akt S437, TOR S2448, PRAS40 T246) is not surprising since
545 Riluzole has been shown to inhibit Akt phosphorylation and synergize with mTOR inhibition in melanoma and
546 glioblastoma models [26,57]. However, Src/Fak kinase family members (e.g., Yes and Fak) have not, to our
547 knowledge, been previously implicated in Riluzole action. In vehicle-treated LCCTam cells, baseline
548 phosphorylation of Fak Y397 is markedly increased compared to vehicle-treated SUM44 cells (Figure 3B). At
549 the same time, Riluzole treatment reduced total and phosphorylated protein levels of Fak in only the LCCTam
550 cells (Figure 3B-C). Multiple Src/Fak kinase family members play critical roles in cell survival, invasion, and
551 migration. Additionally, Fak has been previously implicated in endocrine therapy resistance [69,70]. Being
552 functionally E-cadherin-negative, ILC is highly resistant to anoikis (a form of cell death induced by extracellular
553 matrix detachment) [71] and dependent upon a rewired actin cytoskeleton and constitutive actomyosin
554 contractility (reviewed in [72]). Consistent with this, expression of activated Src and Fak – both of which can
555 drive resistance to anoikis [73] – are significantly higher in ILC vs. atypical lobular hyperplasia [74]. In parallel,
556 ILC may exhibit increased sensitivity to ferroptosis inducers. Ferroptosis is cell density-dependent, with cells
557 cultured in low-density conditions with fewer cell-cell contacts (a defining feature of ILC) being highly
558 vulnerable to ferroptosis caused by inhibition of glutathione peroxidase 4 (GPX4, [75]). On the other hand, E-
559 cadherin-mediated intercellular interactions can suppress ferroptosis via activation of neurofibromin 2 (NF2,

558 [76]). The specific contribution of Fak to Riluzole-mediated growth inhibition, apoptosis, and ferroptosis in ILC
559 remains to be explored and will be a component of future studies, as will its role in the additive or synergistic
560 growth suppression achieved by the combination of Riluzole and endocrine therapy. Nevertheless, it is
561 tempting to speculate that agents (like Riluzole) that broadly target rewired cytoskeletal regulatory pathways
562 and induce ferroptosis may be particularly effective against ILC.

563 This study has limitations that are important to consider. First, hormone-responsive ER+ models,
564 particularly of ILC, are limited. In this study, we used three of the four well-established ER+, hormone-
565 responsive ILC lines [71], the ILC-derived HCI-013EI PDX model [15,60], and one of the five PDEs originated
566 from ILC. In all ILC models we tested except for the HCI-013EI PDX, Riluzole plus Fulvestrant provided greater
567 growth inhibition than single-agent Fulvestrant. Expansion of the PDE approach is an important strategy for
568 rapidly diversifying the repertoire of preclinical ILC models [77] to test this and other novel endocrine therapy
569 combinations, essential for a breast cancer subtype that has a significantly greater risk of late recurrence, and
570 worse response to Tamoxifen and the second-generation SERD AZD9496 [12]. Second, Riluzole's multiple
571 proposed or confirmed mechanisms of action - from inhibition of signaling through GRMs [24] and glutamate
572 release via the glutamate/cystine antiporter SLC7A11 or X_c^- [78], to blockade of voltage-gated sodium channels
573 [79], inhibition of internal ribosome entry site (IRES)-mediated protein synthesis [26], attenuation of RNA
574 polymerase III complex assembly [80], and inhibition of Wnt/ β -catenin signaling [81] – present a challenge to
575 readily identifying patients who would benefit most from the drug. Some of this variability is cancer type-
576 specific, with Riluzole action tightly coupled to GRM expression in melanoma [24] and, to some extent,
577 glioblastoma [26], but not in triple-negative breast cancer [27]. While reasonably well-defined in the central
578 nervous system, the interconnected pathways of glutamate release, uptake, and signaling remain understudied
579 in epithelial cells and their pathologies. We posit that future preclinical studies of Riluzole in this context
580 (epithelial tumors generally, and ER+ ILC more specifically) should address these limitations.

581
582

583
584
585
586
587
588
589

Conclusions

Our data suggest that Riluzole, alone or together with endocrine therapy, may offer therapeutic benefit in some ER+ breast cancers, including ILC, and support optimization and further investigation of Riluzole and its combinations in this setting.

590 **List of Abbreviations**

- 591
592 ER+: estrogen receptor-positive
593 SERM: selective estrogen receptor modulator
594 SERD: selective estrogen receptor downregulator
595 ILC: invasive lobular breast cancer
596 IDC: invasive ductal breast cancer
597 mGluR, GRM: metabotropic glutamate receptor
598 ALS: amyotrophic lateral sclerosis
599 IMEM: improved minimal essential media
600 FBS: fetal bovine serum
601 CCS: charcoal-cleared serum
602 STR: short tandem repeat
603 DMSO: dimethylsulfoxide
604 SEM: standard error of the mean
605 SD: standard deviation
606 PI: propidium iodide
607 FITC: fluorescein isothiocyanate
608 BCA: bicinchoninic acid
609 PDE: patient-derived explant
610 PCNA: proliferating cell nuclear antigen
611 IACUC: institutional animal care and use committee
612 PDX: patient-derived xenograft
613 E2: estradiol
614 SQ: subcutaneous
615 PO: per os, by mouth
616 mIHC: multiplex immunohistochemistry
617 MWT: microwave treatment
618 AR6: antigen retrieval buffer 6
619 DAPI: 4',6-diamidino-2-phenylindole
620 MDA: malondialdehyde
621 4-HNE: 4-hydroxynonenal
622 HSA: highest single agent
623 ZIP: zero interaction potency
624 ANOVA: analysis of variance
625 MM134: MDA-MB-134VI cell line
626 2D: two-dimensional
627 NSG: NOD scid gamma
628 SCID: severe combined immunodeficiency
629 GPX4: glutathione peroxidase 4
630 IRES: internal ribosome entry site
631
632
633

634

Declarations

635

636 Ethics approval and consent to participate. All animal studies were ethically conducted in accordance with our
637 approved Institutional Animal Care and Use Committee (IACUC) protocols #2018-0005 and #2018-0006. For
638 explant experiments, tissues were collected from discarded surgical samples from UT Southwestern Medical
639 Center (UTSW, Dallas, TX) patients for research purposes after obtaining written informed consent and in
640 accordance with institutional review board–approved protocol (STU-032011–187).

641

642 Consent for publication. Not applicable.

643

644 Availability of data and materials. All data generated or analyzed during this study are included in this
645 published article and its supplementary information files (published in the Zenodo repository,
646 10.5281/zenodo.7600717).

647

648 Competing interests. The authors declare that they have no competing interests.

649

650 Funding. These studies were supported by the Department of Defense (DoD) Breast Cancer Research
651 Program award W81XWH-17-1-0615 to RBR. Fellowship support for HS was provided by the Tumor Biology
652 Training Grant T32 CA009686 (principal investigator (PI): Dr. Anna T. Riegel). SP received a Georgetown
653 Undergraduate Research Opportunities Program (GUROP) Summer Fellowship. Technical services were
654 provided by the GUMC Animal Models, Flow Cytometry and Cell Sorting, Histopathology and Tissue, and
655 Tissue Culture Shared Resources, which are supported, in part, by NIH/NCI Cancer Center Support Grant P30
656 CA051008 (PI: Dr. Louis M. Weiner). The content of this article is the sole responsibility of the authors and
657 does not represent the official views of the DoD or NIH.

658

659 Authors' contributions. AOO and HS contributed to the study design, performed and analyzed experiments,
660 and played a key role in writing the manuscript. SB, SR, and SM contributed to the study design and performed
661 and analyzed experiments. SP performed and analyzed experiments and played a key role in writing the
662 manuscript. YG, MIC, and CB performed and analyzed experiments. AR, HC, and DLB contributed to the study
663 design and performed and analyzed experiments. BMJ and GVR contributed to the study design. RBR
664 contributed to the study design, performed and analyzed experiments, and played a key role in writing the
665 manuscript. All authors read and approved the final manuscript.

666

667 Acknowledgments. The authors would like to thank members of the Riggins laboratory, Drs. Karen Creswell,
668 Michael Johnson, Marc Lippman, Dan Xun (Lombardi Comprehensive Cancer Center, Georgetown University),
669 and Drs. David Lum and Alana Welm (Huntsman Cancer Institute, University of Utah) for sharing reagents,
670 scientific insights, technical assistance, and/or editorial comments on the manuscript.

671

672

673

- 674 **References**
- 675 1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.
- 676 2. Burstein HJ, Lacchetti C, Anderson H, Buchholz TA, Davidson NE, Gelmon KA, et al. Adjuvant Endocrine
677 Therapy for Women With Hormone Receptor-Positive Breast Cancer: ASCO Clinical Practice Guideline
678 Focused Update. J Clin Oncol. 2019;37:423–38.
- 679 3. Hanks AB, Sudhan DR, Arteaga CL. Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell.
680 2020;37:496–513.
- 681 4. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhee SK, Pastore A, et al. Comprehensive Molecular
682 Portraits of Invasive Lobular Breast Cancer. Cell. 2015;163:506–19.
- 683 5. Desmedt C, Zoppoli G, Gundem G, Pruneri G, Larsimont D, Fornili M, et al. Genomic Characterization of
684 Primary Invasive Lobular Breast Cancer. J Clin Oncol. 2016;34:1872–81.
- 685 6. Michaut M, Chin SF, Majewski I, Severson TM, Bismeyer T, de Koning L, et al. Integration of genomic,
686 transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer.
687 Sci Rep. 2016;6:18517.
- 688 7. Pestalozzi BC, Zahrieh D, Mallon E, Gusterson BA, Price KN, Gelber RD, et al. Distinct clinical and
689 prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 International Breast
690 Cancer Study Group clinical trials. J Clin Oncol. 2008;26:3006–14.
- 691 8. Adachi Y, Ishiguro J, Kotani H, Hisada T, Ichikawa M, Gondo N, et al. Comparison of clinical outcomes
692 between luminal invasive ductal carcinoma and luminal invasive lobular carcinoma. BMC Cancer. 2016;16:248.
- 693 9. Metzger Filho O, Giobbie-Hurder A, Mallon E, Gusterson B, Viale G, Winer EP, et al. Relative Effectiveness
694 of Letrozole Compared With Tamoxifen for Patients With Lobular Carcinoma in the BIG 1-98 Trial. J Clin
695 Oncol. 2015;33:2772–9.
- 696 10. Knauer M, Gruber C, Dietze O, Greil R, Stoger H, Rudas M, et al. Abstract S2-06: Survival advantage of
697 anastrozole compared to tamoxifen for lobular breast cancer in the ABCSG-8 study. Cancer Res; 2015. p.
698 Abstract numer S2-06.
- 699 11. Strasser-Weippl K, Sudan G, Ramjee Singh R, Shepherd L, et al. Outcomes of invasive ductal (ID) or
700 invasive lobular (IL) early stage breast cancer in women treated with anastrozole or exemestane in the
701 Canadian cancer trials Group MA.27. J Clin Oncol; 2016. p. suppl; abstr 521.
- 702 12. Sreekumar S, Levine KM, Sikora MJ, Chen J, Tasdemir N, Carter D, et al. Differential regulation and
703 targeting of estrogen receptor α turnover in invasive lobular breast carcinoma. Endocrinology. 2020;
- 704 13. Riggins RB, Lan JP, Zhu Y, Klimach U, Zwart A, Cavalli LR, et al. ERRgamma Mediates Tamoxifen
705 Resistance in Novel Models of Invasive Lobular Breast Cancer. Cancer Res. 2008;68:8908–17.
- 706 14. Stires H, Heckler MM, Fu X, Li Z, Grasso CS, Quist MJ, et al. Integrated molecular analysis of Tamoxifen-
707 resistant invasive lobular breast cancer cells identifies MAPK and GRM/mGluR signaling as therapeutic
708 vulnerabilities. Mol Cell Endocrinol. 2017/09/25 ed. 2018;471:105–17.
- 709 15. Sikora MJ, Cooper KL, Bahreini A, Luthra S, Wang G, Chandran UR, et al. Invasive lobular carcinoma cell
710 lines are characterized by unique estrogen-mediated gene expression patterns and altered tamoxifen
711 response. Cancer Res. 2014/01/14 ed. 2014;74:1463–74.
- 712 16. Sikora MJ, Jacobsen BM, Levine K, Chen J, Davidson NE, Lee AV, et al. WNT4 mediates estrogen
713 receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines. Breast Cancer Res.
714 2016;18:92.

- 715 17. Sokol ES, Feng YX, Jin DX, Basudan A, Lee AV, Atkinson JM, et al. Loss of function of NF1 is a
716 mechanism of acquired resistance to endocrine therapy in lobular breast cancer. *Ann Oncol*. 2019;30:115–23.
- 717 18. Bossart EA, Tasdemir N, Sikora MJ, Bahreini A, Levine KM, Chen J, et al. SNAIL is induced by tamoxifen
718 and leads to growth inhibition in invasive lobular breast carcinoma. *Breast Cancer Res Treat*. 2019;175:327–
719 37.
- 720 19. Levine KM, Priedigkeit N, Basudan A, Tasdemir N, Sikora MJ, Sokol ES, et al. FGFR4 overexpression and
721 hotspot mutations in metastatic ER+ breast cancer are enriched in the lobular subtype. *NPJ Breast Cancer*.
722 2019;5:19.
- 723 20. Du T, Sikora MJ, Levine KM, Tasdemir N, Riggins RB, Wendell SG, et al. Key regulators of lipid
724 metabolism drive endocrine resistance in invasive lobular breast cancer. *Breast Cancer Res*. 2018;20:106.
- 725 21. Du T, Zhu L, Levine KM, Tasdemir N, Lee AV, Vignali DAA, et al. Invasive lobular and ductal breast
726 carcinoma differ in immune response, protein translation efficiency and metabolism. *Sci Rep*. 2018;8:7205.
- 727 22. Ulaner GA, Goldman DA, Gönen M, Pham H, Castillo R, Lyashchenko SK, et al. Initial Results of a
728 Prospective Clinical Trial of 18F-Fluciclovine PET/CT in Newly Diagnosed Invasive Ductal and Invasive
729 Lobular Breast Cancers. *J Nucl Med*. 2016;57:1350–6.
- 730 23. Ulaner GA, Goldman DA, Corben A, Lyashchenko SK, Gönen M, Lewis JS, et al. Prospective Clinical Trial
731 of 18F-Fluciclovine PET/CT for Determining the Response to Neoadjuvant Therapy in Invasive Ductal and
732 Invasive Lobular Breast Cancers. *J Nucl Med*. 2017;58:1037–42.
- 733 24. Namkoong J, Shin S-S, Lee HJ, Marín YE, Wall BA, Goydos JS, et al. Metabotropic glutamate receptor 1
734 and glutamate signaling in human melanoma. *Cancer Res*. 2007;67:2298–305.
- 735 25. Khan AJ, Wall B, Ahlawat S, Green C, Schiff D, Mehnert JM, et al. Riluzole enhances ionizing radiation-
736 induced cytotoxicity in human melanoma cells that ectopically express metabotropic glutamate receptor 1 in
737 vitro and in vivo. *Clin Cancer Res*. 2011;17:1807–14.
- 738 26. Benavides-Serrato A, Saunders JT, Holmes B, Nishimura RN, Lichtenstein A, Gera J. Repurposing
739 Potential of Riluzole as an ITAF Inhibitor in mTOR Therapy Resistant Glioblastoma. *Int J Mol Sci*. 2020;21.
- 740 27. Speyer CL, Nassar MA, Hachem AH, Bukhsh MA, Jafry WS, Khansa RM, et al. Riluzole mediates anti-
741 tumor properties in breast cancer cells independent of metabotropic glutamate receptor-1. *Breast Cancer Res
742 Treat*. 2016;157:217–28.
- 743 28. Dolfi SC, Medina DJ, Karedula A, Paratala B, Rose A, Dhami J, et al. Riluzole exerts distinct antitumor
744 effects from a metabotropic glutamate receptor 1-specific inhibitor on breast cancer cells. *Oncotarget*.
745 2017;8:44639–53.
- 746 29. Banda M, Speyer CL, Semma SN, Osuala KO, Kounalakis N, Torres Torres KE, et al. Metabotropic
747 glutamate receptor-1 contributes to progression in triple negative breast cancer. *PLoS One*. 2014;9:e81126.
- 748 30. Speyer CL, Bukhsh MA, Jafry WS, Sexton RE, Bandyopadhyay S, Gorski DH. Riluzole synergizes with
749 paclitaxel to inhibit cell growth and induce apoptosis in triple-negative breast cancer. *Breast Cancer Res Treat*.
750 2017;166:407–19.
- 751 31. Teh JL, Shah R, La Cava S, Dolfi SC, Mehta MS, Kongara S, et al. Metabotropic glutamate receptor 1
752 disrupts mammary acinar architecture and initiates malignant transformation of mammary epithelial cells.
753 *Breast Cancer Res Treat*. 2015/04/10 ed. 2015;151:57–73.
- 754 32. Jambal P, Badtke MM, Harrell JC, Borges VF, Post MD, Sollender GE, et al. Estrogen switches pure
755 mucinous breast cancer to invasive lobular carcinoma with mucinous features. *Breast Cancer Res Treat*.
756 2013;137:431–48.

- 757 33. Heckler MM, Zeleke TZ, Divekar SD, Fernandez AI, Tieck DM, Woodruck J, et al. Antimitotic activity of
758 DY131 and the estrogen-related receptor beta 2 (ERR β 2) splice variant in breast cancer. *Oncotarget*.
759 2016;7:47201–20.
- 760 34. Tieck DM, Khatib SA, Trepicchio CJ, Heckler MM, Divekar SD, Sarkaria JN, et al. Estrogen-related receptor
761 β activation and isoform shifting by cdc2-like kinase inhibition restricts migration and intracranial tumor growth
762 in glioblastoma. *FASEB J*. 2019;33:13476–91.
- 763 35. Heckler MM, Riggins RB. ERR β splice variants differentially regulate cell cycle progression. *Cell Cycle*.
764 2015;14:31–45.
- 765 36. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source
766 platform for biological-image analysis. *Nature Methods*. Nature Publishing Group; 2012;9:676–82.
- 767 37. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: Open
768 source software for digital pathology image analysis. *Sci Rep*. Nature Publishing Group; 2017;7:16878.
- 769 38. Ranjit S, Malacrida L, Jameson DM, Gratton E. Fit-free analysis of fluorescence lifetime imaging data using
770 the phasor approach. *Nat Protoc*. 2018/09/08 ed. 2018;13:1979–2004.
- 771 39. Dvornikov A, Malacrida L, Gratton E. The DIVER Microscope for Imaging in Scattering Media. *Methods*
772 *Protoc* [Internet]. 2019/06/27 ed. 2019;2. Available from: <https://www.ncbi.nlm.nih.gov/pubmed/31234383>
- 773 40. Ranjit S, Lanzano L, Gratton E. Mapping diffusion in a living cell via the phasor approach. *Biophys J*.
774 2014;107:2775–85.
- 775 41. Ranjit S, Dvornikov A, Dobrinskikh E, Wang X, Luo Y, Levi M, et al. Measuring the effect of a Western diet
776 on liver tissue architecture by FLIM autofluorescence and harmonic generation microscopy. *Biomed Opt*
777 *Express*. 2017;8:3143–54.
- 778 42. Hedde PN, Ranjit S, Gratton E. 3D fluorescence anisotropy imaging using selective plane illumination
779 microscopy. *Opt Express*. 2015;23:22308–17.
- 780 43. Malacrida L, Ranjit S, Jameson DM, Gratton E. The Phasor Plot: A Universal Circle to Advance
781 Fluorescence Lifetime Analysis and Interpretation. *Annu Rev Biophys*. 2021;50:575–93.
- 782 44. Digman MA, Caiolfa VR, Zamai M, Gratton E. The phasor approach to fluorescence lifetime imaging
783 analysis. *Biophys J*. 2008;94:L14–16.
- 784 45. Clayton AHA, Hanley QS, Verveer PJ. Graphical representation and multicomponent analysis of single-
785 frequency fluorescence lifetime imaging microscopy data. *J Microsc*. 2004;213:1–5.
- 786 46. Redford GI, Clegg RM. Polar plot representation for frequency-domain analysis of fluorescence lifetimes. *J*
787 *Fluoresc*. 2005;15:805–15.
- 788 47. Stringari C, Edwards RA, Pate KT, Waterman ML, Donovan PJ, Gratton E. Metabolic trajectory of cellular
789 differentiation in small intestine by Phasor Fluorescence Lifetime Microscopy of NADH. *Sci Rep*. 2012;2:568.
- 790 48. Ranjit S, Malacrida L, Stakic M, Gratton E. Determination of the metabolic index using the fluorescence
791 lifetime of free and bound nicotinamide adenine dinucleotide using the phasor approach. *J Biophotonics*.
792 2019;12:e201900156.
- 793 49. Liggett JR, Kang J, Ranjit S, Rodriguez O, Loh K, Patil D, et al. Oral N-acetylcysteine decreases IFN- γ
794 production and ameliorates ischemia-reperfusion injury in steatotic livers. *Front Immunol*. 2022;13:898799.
- 795 50. Centenera MM, Hickey TE, Jindal S, Ryan NK, Ravindranathan P, Mohammed H, et al. A patient-derived
796 explant (PDE) model of hormone-dependent cancer. *Mol Oncol*. 2018/08/18 ed. 2018;12:1608–22.

- 797 51. Ianevski A, Giri AK, Aittokallio T. SynergyFinder 2.0: visual analytics of multi-drug combination synergies.
798 Nucleic Acids Res. 2020;
- 799 52. Yadav B, Wennerberg K, Aittokallio T, Tang J. Searching for Drug Synergy in Complex Dose-Response
800 Landscapes Using an Interaction Potency Model. Comput Struct Biotechnol J. 2015;13:504–13.
- 801 53. RECIST 1.1-Update and clarification: From the RECIST committee - PubMed [Internet]. [cited 2023 Jan
802 12]. Available from: <https://pubmed.ncbi.nlm.nih.gov/27189322/>
- 803 54. Brünner N, Boysen B, Jirus S, Skaar TC, Holst-Hansen C, Lippman J, et al. MCF7/LCC9: an antiestrogen
804 resistant MCF-7 variant in which acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early
805 crossresistance to the non-steroidal antiestrogen tamoxifen. Cancer Research. 1997;57:3486–93.
- 806 55. Olukoya AO. Data from: Riluzole suppresses growth and enhances response to endocrine therapy in ER+
807 breast cancer [Internet]. 2023. Available from: 10.5281/zenodo.7600717
- 808 56. Wasielewski M, Elstrodt F, Klijn JG, Berns EM, Schutte M. Thirteen new p53 gene mutants identified
809 among 41 human breast cancer cell lines. Breast Cancer Res Treat. 2006;99:97–101.
- 810 57. Rosenberg SA, Niglio SA, Salehomoum N, Chan JL-K, Jeong B-S, Wen Y, et al. Targeting Glutamatergic
811 Signaling and the PI3 Kinase Pathway to Halt Melanoma Progression. Transl Oncol. 2015;8:1–9.
- 812 58. Yi J, Zhu J, Wu J, Thompson CB, Jiang X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses
813 ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci U S A. 2020;117:31189–97.
- 814 59. Liu S, Shi J, Wang L, Huang Y, Zhao B, Ding H, et al. Loss of EMP1 promotes the metastasis of human
815 bladder cancer cells by promoting migration and conferring resistance to ferroptosis through activation of
816 PPAR gamma signaling. Free Radical Biology and Medicine. 2022;189:42–57.
- 817 60. Scherer SD, Riggio AI, Haroun F, DeRose YS, Ekiz HA, Fujita M, et al. An immune-humanized patient-
818 derived xenograft model of estrogen-independent, hormone receptor positive metastatic breast cancer. Breast
819 Cancer Res. 2021;23:100.
- 820 61. Bahreini A, Li Z, Wang P, Levine KM, Tasdemir N, Cao L, et al. Mutation site and context dependent
821 effects of ESR1 mutation in genome-edited breast cancer cell models. Breast Cancer Research. 2017;19:60.
- 822 62. Demas DM, Demo S, Fallah Y, Clarke R, Nephew KP, Althouse S, et al. Glutamine Metabolism Drives
823 Growth in Advanced Hormone Receptor Positive Breast Cancer. Front Oncol. 2019;9:686.
- 824 63. Bacci M, Lorito N, Ippolito L, Ramazzotti M, Luti S, Romagnoli S, et al. Reprogramming of Amino Acid
825 Transporters to Support Aspartate and Glutamate Dependency Sustains Endocrine Resistance in Breast
826 Cancer. Cell Rep. 2019/07/04 ed. 2019;28:104–118 e8.
- 827 64. Ranjit S, Datta R, Dvornikov A, Gratton E. Multicomponent Analysis of Phasor Plot in a Single Pixel to
828 Calculate Changes of Metabolic Trajectory in Biological Systems. J Phys Chem A. 2019/10/23 ed.
829 2019;123:9865–73.
- 830 65. Shah R, Singh SJ, Eddy K, Philipp FV, Chen S. Concurrent Targeting of Glutaminolysis and Metabotropic
831 Glutamate Receptor 1 (GRM1) Reduces Glutamate Bioavailability in GRM1+ Melanoma. Cancer Res.
832 American Association for Cancer Research; 2019;79:1799–809.
- 833 66. Mehnert JM, Silk AW, Lee JH, Dudek L, Jeong B-S, Li J, et al. A phase II trial of riluzole, an antagonist of
834 metabotropic glutamate receptor 1 (GRM1) signaling, in patients with advanced melanoma. Pigment Cell
835 Melanoma Res. 2018;31:534–40.
- 836 67. Pelletier JC, Chen S, Bian H, Shah R, Smith GR, Wrobel JE, et al. Dipeptide Prodrugs of the Glutamate
837 Modulator Riluzole. ACS Med Chem Lett. 2018;9:752–6.

- 838 68. Silk AW, Saraiya B, Groisberg R, Chan N, Spencer K, Girda E, et al. A phase Ib dose-escalation study of
839 troriluzole (BHV-4157), an oral glutamatergic signaling modulator, in combination with nivolumab in patients
840 with advanced solid tumors. *Eur J Med Res.* 2022;27:107.
- 841 69. Hiscox S, Barnfather P, Hayes E, Bramble P, Christensen J, Nicholson RI, et al. Inhibition of focal adhesion
842 kinase suppresses the adverse phenotype of endocrine-resistant breast cancer cells and improves endocrine
843 response in endocrine-sensitive cells. *Breast Cancer Res Treat.* 2011;125:659–69.
- 844 70. Schwarz LJ, Fox EM, Balko JM, Garrett JT, Kuba MG, Estrada MV, et al. LYN-activating mutations mediate
845 antiestrogen resistance in estrogen receptor-positive breast cancer. *J Clin Invest.* 2014;124:5490–502.
- 846 71. Tasdemir N, Bossart EA, Li Z, Zhu L, Sikora MJ, Levine KM, et al. Comprehensive Phenotypic
847 Characterization of Human Invasive Lobular Carcinoma Cell Lines in 2D and 3D Cultures. *Cancer Res.*
848 2018;78:6209–22.
- 849 72. Bruner HC, DerkSEN PWB. Loss of E-Cadherin-Dependent Cell-Cell Adhesion and the Development and
850 Progression of Cancer. *Cold Spring Harb Perspect Biol.* 2018;10.
- 851 73. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. *Biochimica
852 et Biophysica Acta (BBA) - Molecular Cell Research.* 2013;1833:3481–98.
- 853 74. Zou D, Yoon H-S, Anjomshoaa A, Perez D, Fukuzawa R, Guilford P, et al. Increased levels of active c-Src
854 distinguish invasive from in situ lobular lesions. *Breast Cancer Res.* 2009;11:R45.
- 855 75. Panzilius E, Holstein F, Dehairs J, Planque M, von Toerne C, Koenig A-C, et al. Cell density-dependent
856 ferroptosis in breast cancer is induced by accumulation of polyunsaturated fatty acid-enriched triacylglycerides.
857 *bioRxiv.* 2019;417949.
- 858 76. Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, et al. Intercellular interaction dictates cancer cell
859 ferroptosis via NF2-YAP signalling. *Nature.* 2019/07/26 ed. 2019;572:402–6.
- 860 77. Bahnassy S, Sikora MJ, Riggins RB. Unlocking the Mysteries of Lobular Breast Cancer Biology Needs the
861 Right Combination of Preclinical Models. *Mol Cancer Res.* 2022;20:837–40.
- 862 78. Shin S-S, Jeong B-S, Wall BA, Li J, Shan NL, Wen Y, et al. Participation of xCT in melanoma cell
863 proliferation in vitro and tumorigenesis in vivo. *Oncogenesis.* 2018;7:86.
- 864 79. Djamgoz MBA, Onkal R. Persistent current blockers of voltage-gated sodium channels: a clinical
865 opportunity for controlling metastatic disease. *Recent Pat Anticancer Drug Discov.* 2013;8:66–84.
- 866 80. Pinard M, Dastpeyman S, Poitras C, Bernard G, Gauthier M-S, Coulombe B. Riluzole partially restores
867 RNA polymerase III complex assembly in cells expressing the leukodystrophy-causative variant POLR3B
868 R103H. *Mol Brain.* 2022;15:98.
- 869 81. Roy SK, Ma Y, Lam BQ, Shrivastava A, Srivastav S, Shankar S, et al. Riluzole regulates pancreatic cancer
870 cell metabolism by suppressing the Wnt-β-catenin pathway. *Sci Rep.* 2022;12:11062.

872 Figure Legends

873
874 **Figure 1. Growth suppression of ER+ breast cancer cell lines by Riluzole.** **A**, Cells seeded in 96-well
875 plates were treated with the indicated concentrations of Riluzole (RIL, 33 nM to 100 μ M) or DMSO control for
876 7-8 days prior to staining with crystal violet. Data are presented as mean % growth \pm standard error of the
877 mean (SEM) of % growth (vehicle = 100%) for 5-6 technical replicates and represent 2-4 independent
878 biological assays. The dotted line box indicates data re-graphed in panel B. Data were analyzed by nonlinear
879 regression ([inhibitor] vs. normalized response), yielding the following IC₅₀ [M] estimates: SUM44, 1.27e-4;
880 LCCTam, 2.13e-5; MM134, 2.73e-5; MM134 LTED, 1.209e-5; MCF7, 1.09e-5; LCC9, 2.23e-5; MCF10A,
881 4.33e-5. **B**, Relative response to 10 μ M RIL re-graphed from panel A (dotted line box). Data are presented as
882 median % growth with upper/lower quartiles of % growth (vehicle = 100%) for 5-6 technical replicates and
883 represent 2-4 independent biological assays. For the SUM44/LCCTam, MM134/MM134 LTED, and
884 MCF7/LCC9 cell line pairs, data were compared by the Mann-Whitney test. **p=0.002, **p = 0.0043, and
885 *p=0.024 respectively. Dashed lines denote 50% (panels A and B) and 100% growth inhibition (panel B).

886
887 **Figure 2. Riluzole induces a histologic subtype-associated cell cycle arrest.** Cells seeded in 6-well plates
888 were treated with 10 μ M Riluzole or DMSO control (vehicle, Veh) for the indicated times prior to collection,
889 fixation, staining, and cell cycle analysis. Data are presented as mean % cells \pm SD for 3-4 independent
890 biological assays and analyzed by two-way ANOVA followed by either Sidak's (single time point) or Dunnett's
891 (multiple time points) multiple comparisons tests. SUM44: *p = 0.018. LCCTam: ****p < 0.0001. MM134: *p =
892 0.011. MM134 LTED: *p = 0.05. MCF7: ****p < 0.0001. LCC9: *p = 0.015. MCF10A: not significant.

893
894 **Figure 3. Riluzole inhibits phosphorylation of pro-survival signaling molecules and induces apoptosis**
895 **and ferroptosis.**

896 **A**, Cells seeded in 6-well plates were treated with 10 μ M Riluzole or DMSO control (vehicle, Veh) for 2 days
897 prior to collection, lysis, and processing, then assayed using the Human Phospho-Kinase Proteome ProfilerTM
898 Array. A ratio of background-corrected intensity values for targets (phospho-kinase spots) to references
899 (control spots) was created for each condition (DMSO and Riluzole) within each cell line. Data are presented
900 as the geometric mean of the Riluzole: DMSO ratio for 2 technical replicates from a single experiment. **B**,
901 Sum44, and LCCTam cells seeded in 6-well plates were treated with 10 μ M Riluzole or DMSO control for
902 several time points (6,12, 24, and 48 hours). After which, cells were collected, lysed, and western blot analysis
903 was performed to test for expression and phosphorylation of Fak Y397 phosphorylation. The data are
904 presented as images showing expression levels. **C**, Quantification analysis of Fak and p-Fak protein band
905 density from western blot in Figure 3B. **D**, Cells seeded in 6-well plates were treated with 10 μ M Riluzole or
906 DMSO control (vehicle, Veh) for 2 days prior to staining with Annexin V and PI. The percent of live cells (PI⁻,
907 annexin V⁻) and early apoptotic (PI⁻, annexin V⁺) cells are shown. Data are presented as mean % cells \pm SD for
908 3 (SUM44) or 4 (LCCTam) independent biological assays and analyzed by two-way ANOVA followed by
909 Sidak's multiple comparisons test (*p =0.021, **p = 0.04 (live) and **p= 0.011). **E**, Cells of SUM44 and
910 LCCTam were seeded in 6-well plates. Twenty-four hours later, cells were treated with control (DMSO),
911 Riluzole (10 μ M), or a combination of Riluzole and Ferrostatin-1 (10 μ M). 24h after treatment, the cells were
912 collected, stained with trypan blue, and counted. Data are presented as mean \pm standard deviation (SD) of the
913 ratio of the cell number of the treatment groups relative to the control for 3-4 independent biological assays and
914 analyzed by two-way ANOVA followed by Tukey's multiple comparison test (Sum44 – (**p = 0.005, *p = 0.016),
915 LCCTam – (**p = 0.002, *p = 0.043)). **F**, Sum44, and LCCTam cells seeded in 6-well plates were treated with
916 control (DMSO), Riluzole (10 μ M), or a combination of Riluzole and Ferrostatin-1(10 μ M) for 48hr. Post-
917 treatment, cells were collected, lysed, and western blot analysis was performed to test for expression of
918 Malondialdehyde (MDA). The data are presented as images showing expression levels.

Figure 4. Additive suppression of ER+ breast cancer cell line growth by Riluzole in combination with endocrine therapies. **A**, Cells seeded in 96-well plates were treated with 1 μ M Fulvestrant, 10 μ M Riluzole (RIL), the combination, or DMSO control (vehicle, Veh) for 7-8 days prior to staining with crystal violet. Data are processed as the mean % growth for 5-6 technical replicates and represent 2-4 independent biological assays. The mean % growth data of a representative single technical replicate was then used to create a combination matrix used in SynergyFinder, and the results were presented as 2D surface plots. The SynergyFinder scores are shown at the top of the plots, highlighting the level of synergy. **B** and **C**, Graphical representation of the synergy scores from the Riluzole – Fulvestrant (**B**) and Riluzole – 4HT (**C**) combination using 3 models – Bliss, HSA, and ZIP.

Figure 5. Characterization of tumor growth, hormone receptor expression, and metabolic state for HCI-013 vs. HCI-013EI ILC PDX models. **A**, Tumor latency for HCI-013 and HCI-013EI patient-derived xenografts (PDXs) with or without estrogen (E2) supplementation. Six (6) mice per group were orthotopically implanted with a 1-3 mm³ PDX fragment, then followed until measurable tumor development (by calipers). Data are presented as percent tumor free and were analyzed by log-rank (Mantel-Cox) test. ***p=0.0007. **B**, Representative images of ER, PR, and Ki67 staining from HCI-013+E2 and HCI-013EI tumors. **C**, Semi-quantitative analysis of multiplex IHC (mIHC) staining for ER, PR, and Ki67 from HCI-013+E2 (n=5) and HCI-013EI (n=4) tumors from mice independent of those for whom tumor latency is shown in panel A. Data are presented as overall mean \pm SD of % marker positivity for 5-13 fields per tumor. **D**, Representative schematic of fluorescence lifetime imaging microscopy (FLIM) analysis of cellular metabolism at the tumor core and edge. Images are pseudo-colored based on the phasor plot (below) where more protein bound and more free NADH phasor positions are indicated by red and cyan circles, respectively, and the color scheme chosen reflects more bound NADH in purple and more free NADH in cyan. **E**, Quantification of FLIM in HCI-013+E2 vs. HCI-013EI tumor cores and edges. Tumor edges were strongly glycolytic in both HCI-013+E2 and HCI-013EI, but tumor cores were preferentially in an oxidative phosphorylated state in HCI-013EI. The data were analyzed by one-way ANOVA (p < 0.0001) followed by Tukey's multiple comparisons test. Each symbol indicates the mean $C_{\text{free NADH}}/C_{\text{bound NADH}}$ for 16 fields of view of the tumor edge or core in an individual tumor (n=5 tumors per PDX line).

Figure 6. Single-agent Riluzole inhibits tumor growth in vivo, but the combination with Fulvestrant is not better than Fulvestrant alone in the HCI-013EI ILC PDX model. **A**, Forty-eight (48) mice were orthotopically implanted with a 1-3 mm³ HCI-013EI PDX fragment without E2 supplementation, then followed until tumors reached ~100 mm³ before enrollment to one of four (4) treatment arms: control (n=5), Fulvestrant (n=5), Riluzole (n=5), or the combination (n=5). Mice were monitored for tumor growth (measured by calipers) and body weight twice per week. Data are presented as mean tumor volume \pm SEM, and were analyzed by mixed-effects analysis followed by Dunnett's multiple comparisons tests at each timepoint vs. control. **B**, At the end of the study, tumors were collected and weighed. The graph illustrates the summary of the collected data, which were analyzed using Browne-Forsyth and Welch ANOVA followed by Dunnett's T3 multiple comparisons tests. **C**, Graph showing relative tumor size at endpoint according to RECIST 1.1 criteria. It shows that 2 of 5 tumors in the Fulvestrant group and 3 of 5 in the combination group achieved partial response (PR). **D** and **E**, The tumors collected from each treatment group were formalin-fixed, paraffin-embedded, sectioned, and stained with proliferating cell nuclear antigen (PCNA) and Caspase-3 by IHC. These antibodies served as a proxy for proliferation and apoptosis, respectively. The stained samples were analyzed, and the data were presented graphically in **D** for PCNA, and **E** for Caspase-3.

Figure 7. Riluzole plus Fulvestrant significantly inhibits proliferation in primary breast tumor explant cultures. **A**, Pathologic data for five (5) patient-derived explants (PDEs). ER, PR, and Ki67% are from the initial surgical specimen, and NOS = not otherwise specified. *denotes the PDE for which representative images are shown in panel C. **B**, PDEs were treated with 100 nM Fulvestrant, 10 μ M Riluzole, the

969 combination, or DMSO control (vehicle) for 2 days prior to formalin fixation, paraffin embedding, sectioning,
970 and staining for PCNA by IHC. Data are presented as change relative to vehicle (set to 0) for each explant and
971 analyzed by one-sample t-test vs. 0 (vehicle). *p=0.013 Vehicle vs. Combination. *denotes the PDE for which
972 representative images are shown in panel C. **C**, Representative images of PCNA and Caspase-3 staining from
973 PDE #1055 (ILC).
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
000
001
002
003
004
005
006
007
008
009
010
011
012
013

014

Table 1: Primary Antibody/OPAL Dye Pairings and Incubation Conditions

015

	Antibody 1	Antibody 2	Antibody 3	Antibody 4	Antibody 5
Antigen	PR	Ki67	HER2	ER alpha	panCK
Company	Agilent	Agilent	Agilent	Santa Cruz	Agilent
Cat#	M3569	M7240	A0485	sc-8002	M3515
Species	Mouse	Mouse	Rabbit	Mouse	Mouse
Dilution	1/50	1/50	1/200	1/50	1/300
Incubation Time	1 hr	overnight	1 hr	overnight	1 hr
Incubation Temp.	RT	4°C	RT	4°C	RT
Control Tissue	Breast Cancer	Tonsil	Breast Cancer	Breast Cancer	Breast Cancer
OPAL Fluor.	650	520	620	570	690
OPAL Conc.	1/140	1/30	1/160	1/125	1/30
Antigen Retrieval	AR6	AR6	AR6	AR6	AR6

016

017

018

019

020

021

022

023

024

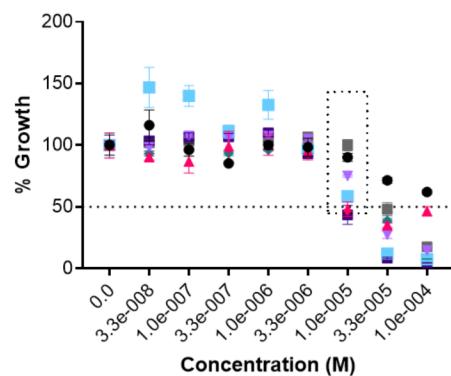
025

026

027

028

029


030

031

Figure 1

A.

Riluzole (RIL) Dose Response

B.

Growth Inhibition by 10 μ M RIL

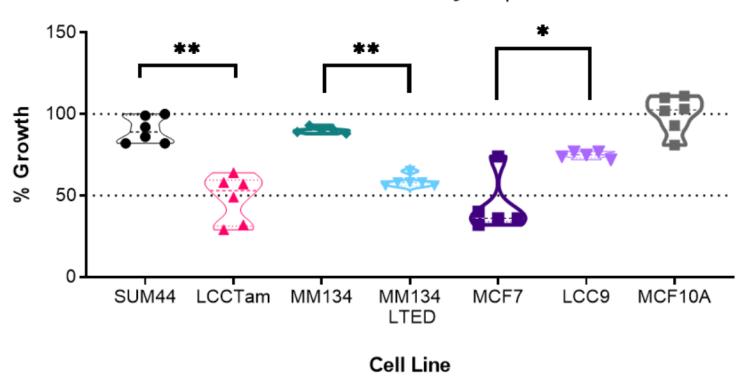
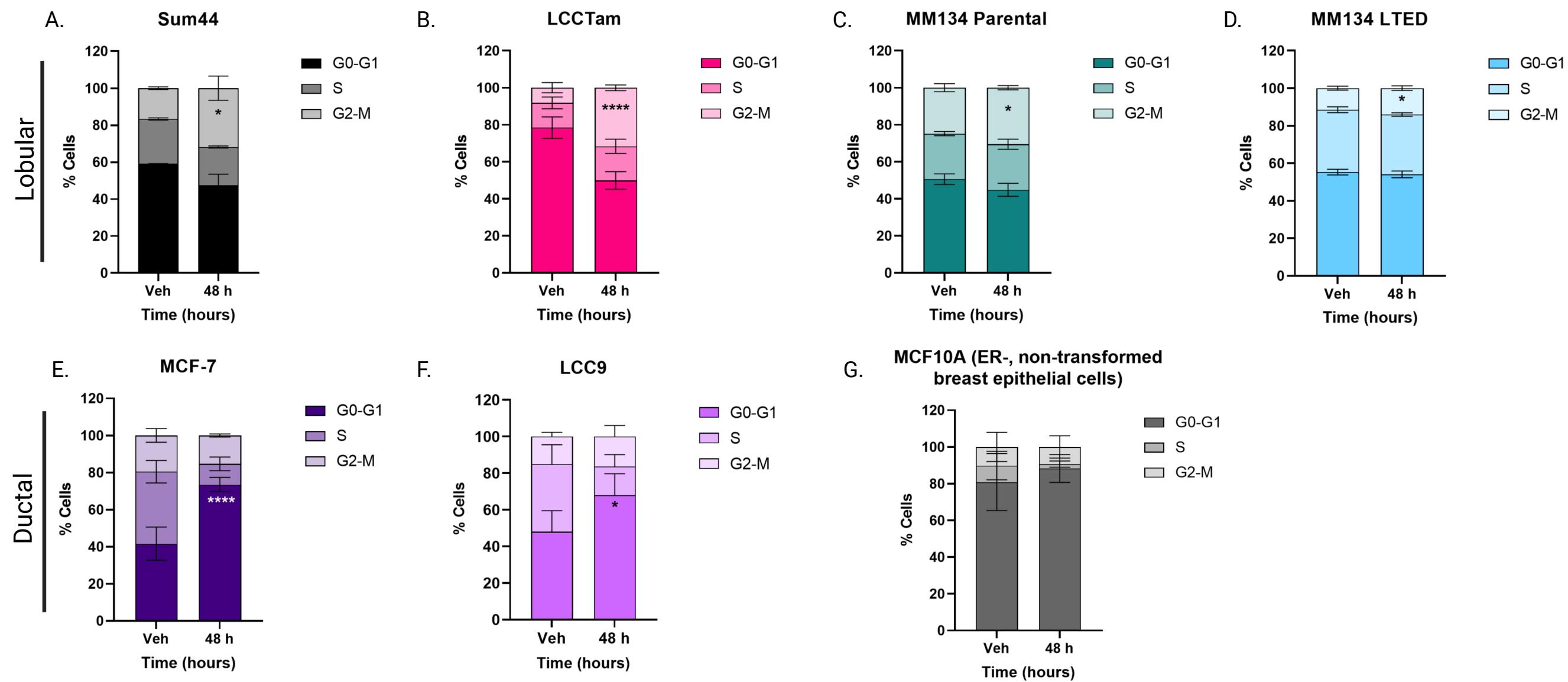
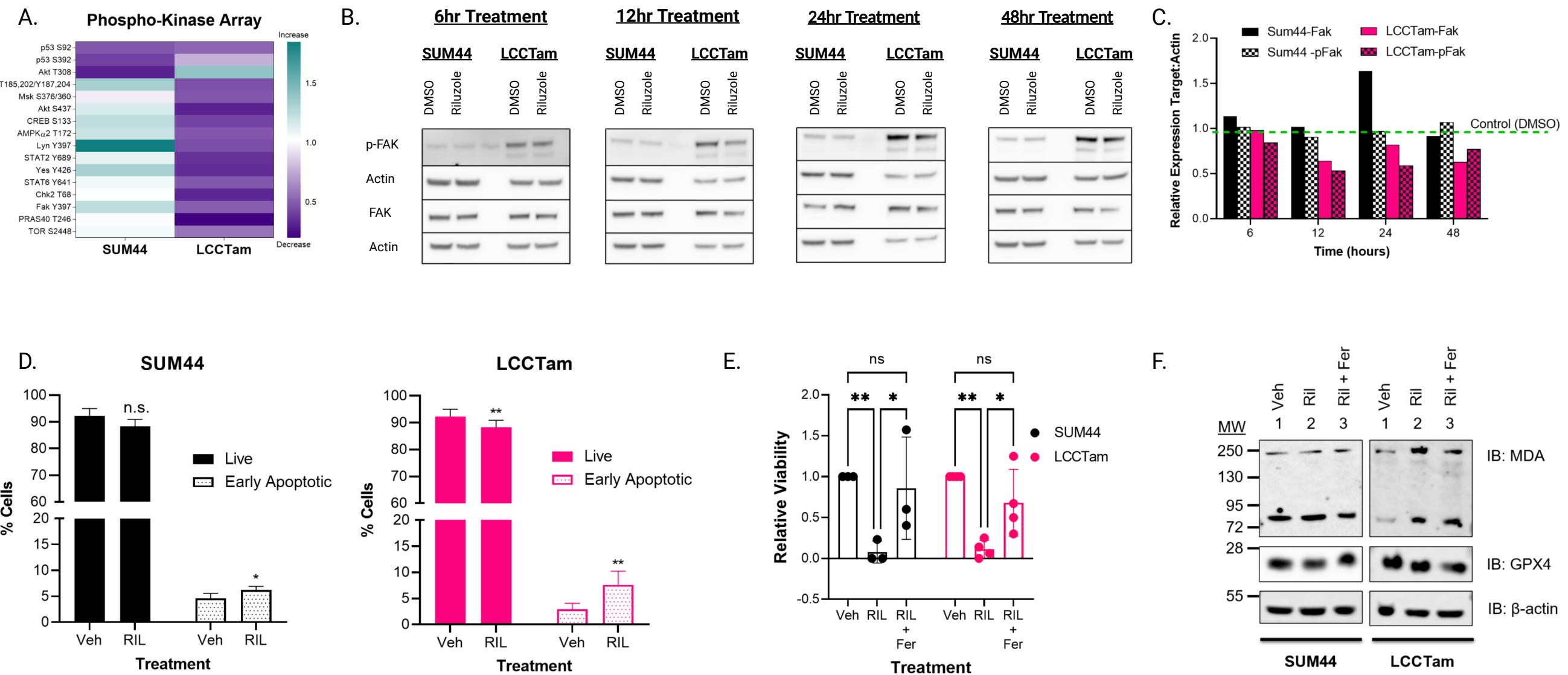
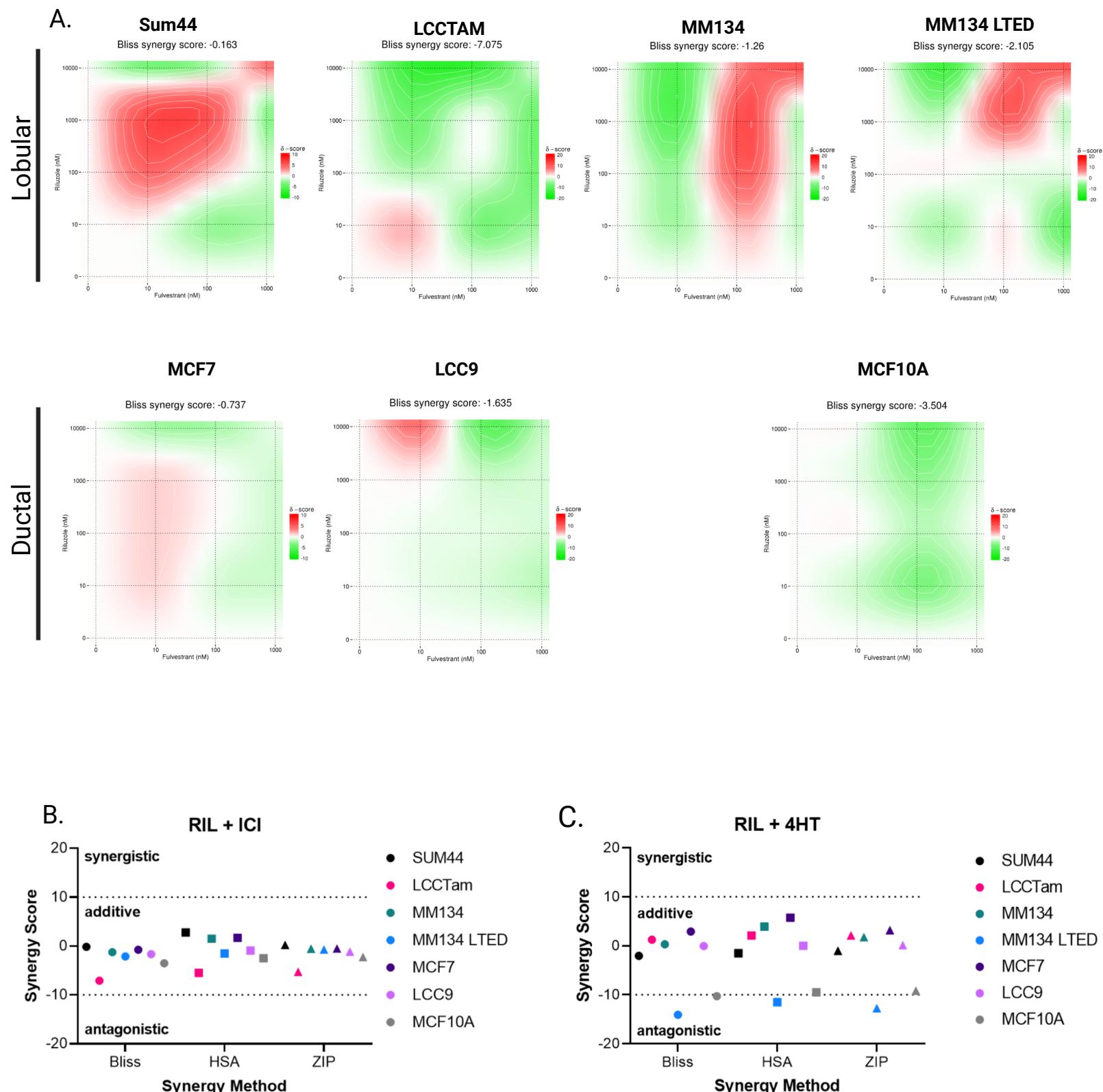


Figure 2

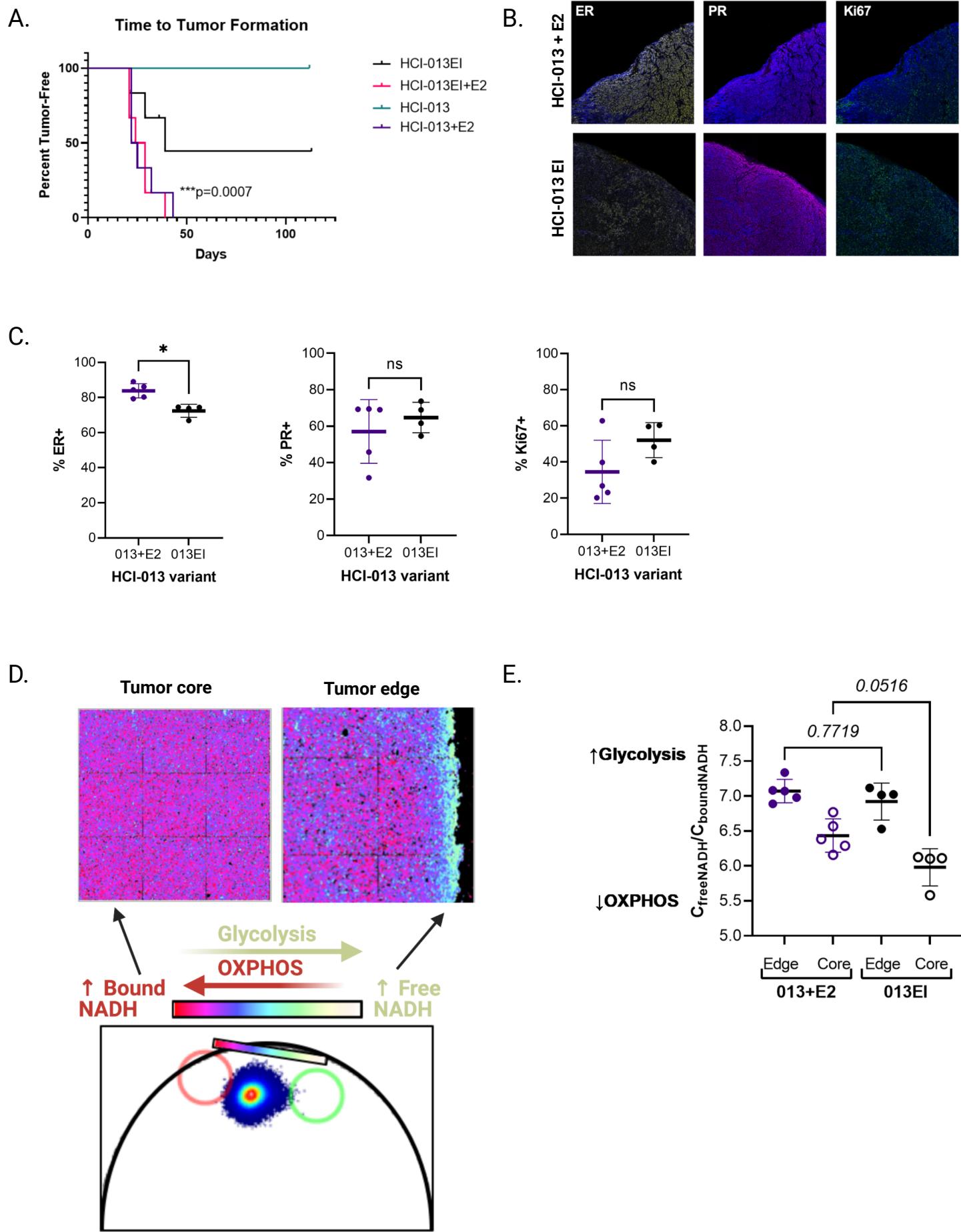

Figure 3

Figure 4

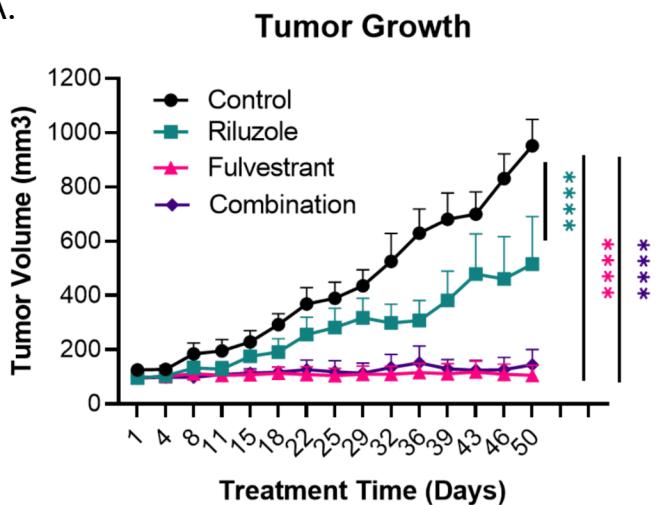


Figure 5

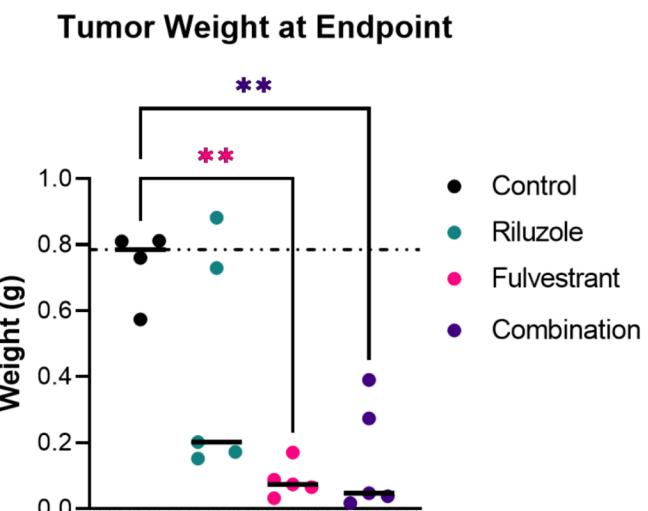
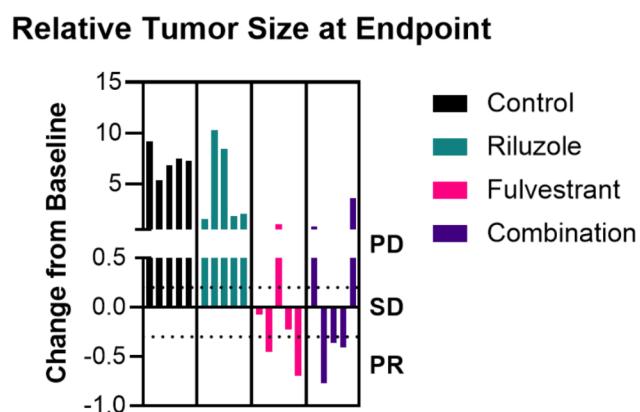
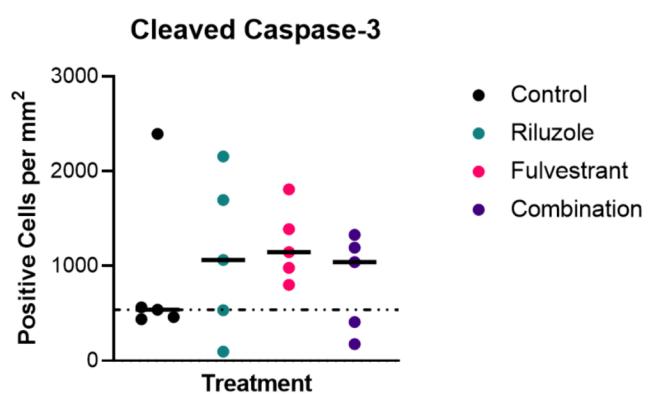
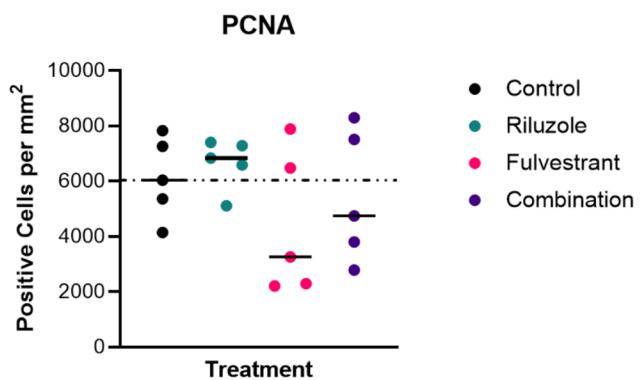


Figure 6


A.


B.


C.

D.

E.

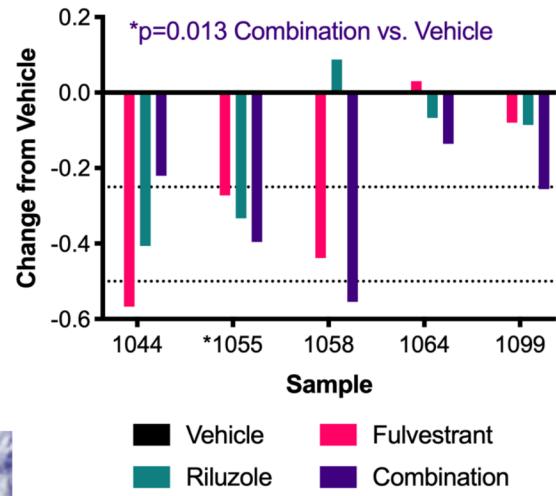
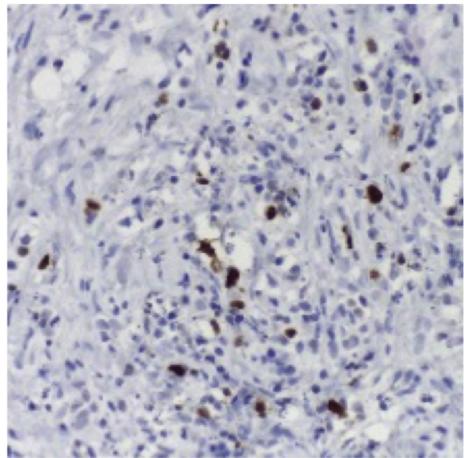
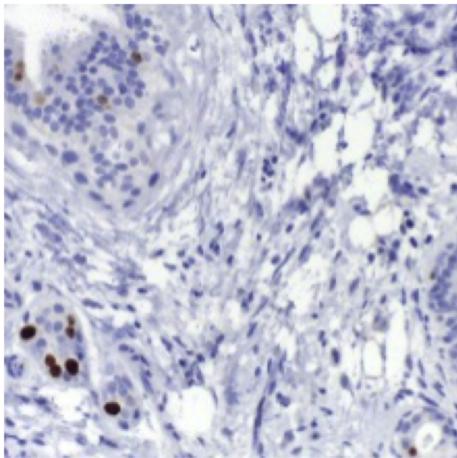


Figure 7

A. Patient-Derived Explants


Sample ID	ER%	PR%	HER2	Histology	Neoadjuvant Chemo
1044	95	95	Negative	Ductal	No
*1055	90-95	90	Negative	Lobular	No
1058	85	70	Negative	Ductal	No
1064	100	100	Negative	Ductal	No
1099	100	100	Negative	NOS	Yes

B. PCNA



C.

PCNA

Vehicle

Combination

Supplementary Figure Legends, Olukoya et al 2023 (<https://doi.org/10.1101/2020.07.30.227561>)

Figure S1. Growth suppression of ER+ breast cancer cell lines by Riluzole in hormone-deprived vs. hormone-replete conditions. In these panels, data already presented in Figure 1A (hormone-replete conditions, filled symbols) were directly compared to hormone-reduced (SUM44 and LCCTam F12 cells, open symbols) or hormone-deprived conditions (MM134 CCS and MCF7 CCS cells, open symbols) as detailed in the Methods section. Cells seeded in 96-well plates were treated with the indicated concentrations of Riluzole (RIL, 33 nM to 100 μ M) or DMSO control for 7-8 days prior to staining with crystal violet. Data are presented as mean % growth \pm standard error of the mean (SEM) of % growth (vehicle = 100%) for 5-6 technical replicates and represent 2-4 independent biological assays. The dotted line box indicates 10 μ M RIL, the concentration used for subsequent *in vitro* assays. Data were analyzed by nonlinear regression ([inhibitor] vs. normalized response), yielding the following IC₅₀ [M] estimates: SUM44, 1.27e-4 hormone-replete vs. 5.5e-5 hormone-reduced; LCCTam, 2.13e-5 hormone-replete vs. 3.96e-5 hormone-reduced; MM134, 2.73e-5 hormone-replete vs. 1.16e-4 hormone-deprived; MCF7, 1.09e-5 hormone-replete vs. 7.69e-6 hormone-deprived.

Figure S2. Cell cycle analysis of Riluzole-treated BCK4 cells. Cells seeded in 6-well plates were treated with 10 μ M Riluzole or DMSO control (vehicle, Veh) for the indicated times prior to collection, fixation, staining, and cell cycle analysis. Data are presented as mean % cells \pm SD for 3-4 independent biological assays and analyzed by two-way ANOVA followed by either Sidak's (single time point) or Dunnett's (multiple time points) multiple comparisons tests BCK4: *p=0.044.

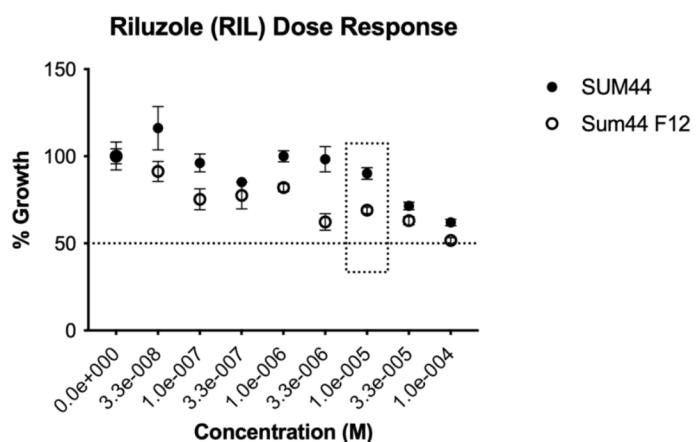

Figure S3. Effect of Riluzole on kinase phosphorylation, cell death, and expression of ferroptosis marker 4-HNE. **A**, SRPlot analysis of gene symbols corresponding to the dephosphorylated kinases and substrates in Riluzole-treated LCCTam cells shown in Figure 3A. False discovery rate (FDR) corrected p values are rank-ordered in -log(10) scale. **B**, Sum44, and LCCTam cells seeded in 6-well plates were treated with 10 μ M Riluzole or DMSO control at several time points (6, 12, 24, and 48 hours). After which, cells were collected, lysed, and western blot analysis was performed to test for expression and phosphorylation of Yes Y426 phosphorylation. The data are presented as images showing expression levels. **C**, Cells seeded in 6-well plates were treated with 10 μ M Riluzole or DMSO control (vehicle, Veh) for 2 days prior to staining with Annexin V and PI. The percent of cells that are live (PI⁻, annexin V⁻), early apoptotic (PI⁻, annexin V⁺), late apoptotic (PI⁺, annexin V⁺), and necrotic (PI⁺, annexin V⁻) are shown. Data are presented as mean % cells \pm SD for 3 (SUM44) or 4 (LCCTam) independent biological assays, and analyzed by two-way ANOVA followed by Sidak's multiple comparisons test. **D**, Sum44, and LCCTam cells seeded in 6-well plates were treated with control (DMSO), Riluzole (10 μ M), or a combination of Riluzole and Ferrostatin-1 (10 μ M) for 48hr. Post-treatment, cells were collected, lysed, and western blot analysis was performed to test for expression of 4-Hydroxyneonenal (4HNE). The data are presented as images showing expression levels.

Figure S4. Cell growth assays in BCK4 and MM134 LTED cells. **A**, Cells seeded in 96-well plates were treated with 1 μ M Fulvestrant, 10 μ M Riluzole (RIL), the combination, or DMSO control (vehicle, Veh) for 7-8 days prior to staining with crystal violet. Data are presented as median with upper/lower quartiles of % growth for 5-6 technical replicates and represent 2-4 independent biological assays. Data were analyzed by the Kruskal-Wallis test, followed by Dunn's multiple comparison test. **B**, Cells seeded in 96-well plates were treated with 1 μ M Fulvestrant, 10 μ M Riluzole (RIL), the combination, or DMSO control (vehicle, Veh) for 7-8 days prior to staining with crystal violet. Data are processed as the mean % growth for 5-6 technical replicates and represent 2-4 independent biological assays. The % growth data of a representative single technical replicate is presented in the graph showing the effecting of different concentrations of fulvestrant on MM134 LTED.

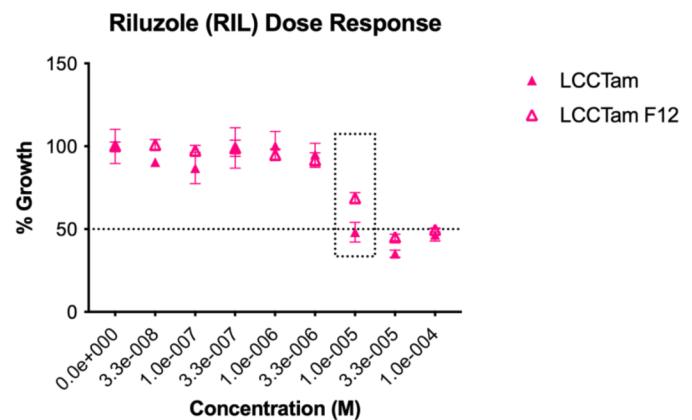
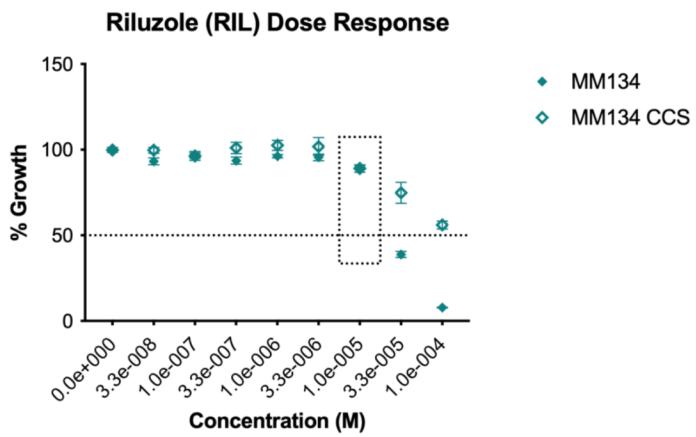
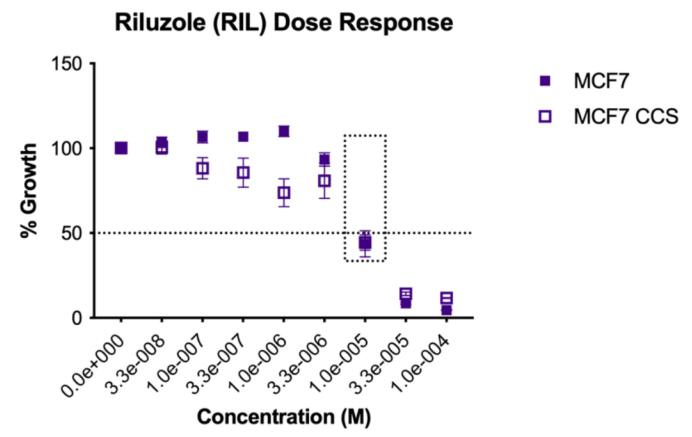
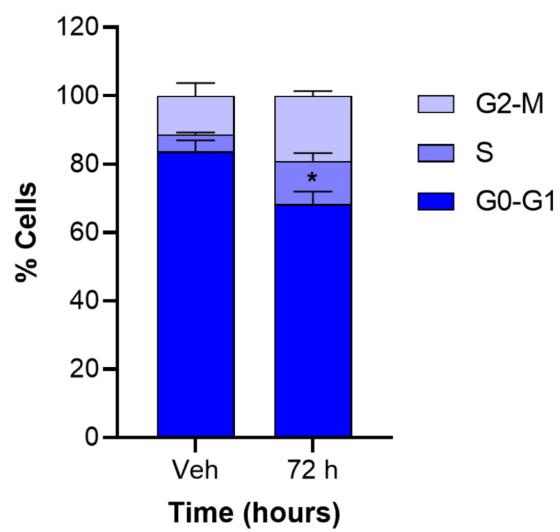

Figure S5. Effect of Riluzole plus Fulvestrant on individual HCI-013EI tumor growth and mouse body weight. **A**, Data already presented in Figure 6A as mean tumor volume \pm SEM are re-graphed to show the growth of each individual tumor. **B**, Mouse weights of experimental animals for whom tumor volume measurements are shown in panel A and Figure 6A are presented as mean weight \pm SEM for each treatment group. **C**, Representative image of tumor presented in Figure S5A, which were formalin-fixed, paraffin-embedded, sectioned, and stained with proliferating cell nuclear antigen (PCNA) and Caspase-3 by IHC.

Figure S6. Effect of Riluzole plus Fulvestrant on apoptosis in patient-derived explants (PDEs). PDEs were treated with 100 nM Fulvestrant, 10 μ M Riluzole, the combination, or DMSO control (vehicle) for 2 days prior to formalin fixation, paraffin embedding, sectioning, and staining for cleaved caspase 3 by IHC. Data are presented as change relative to vehicle (set to 0) for each explant and analyzed by one-sample t-test vs. 0 (vehicle).

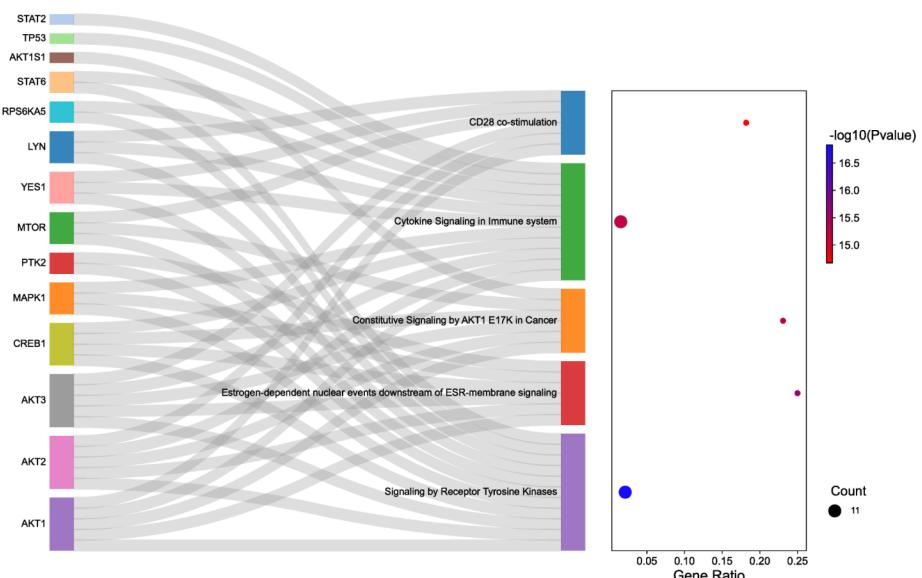

A.


B.

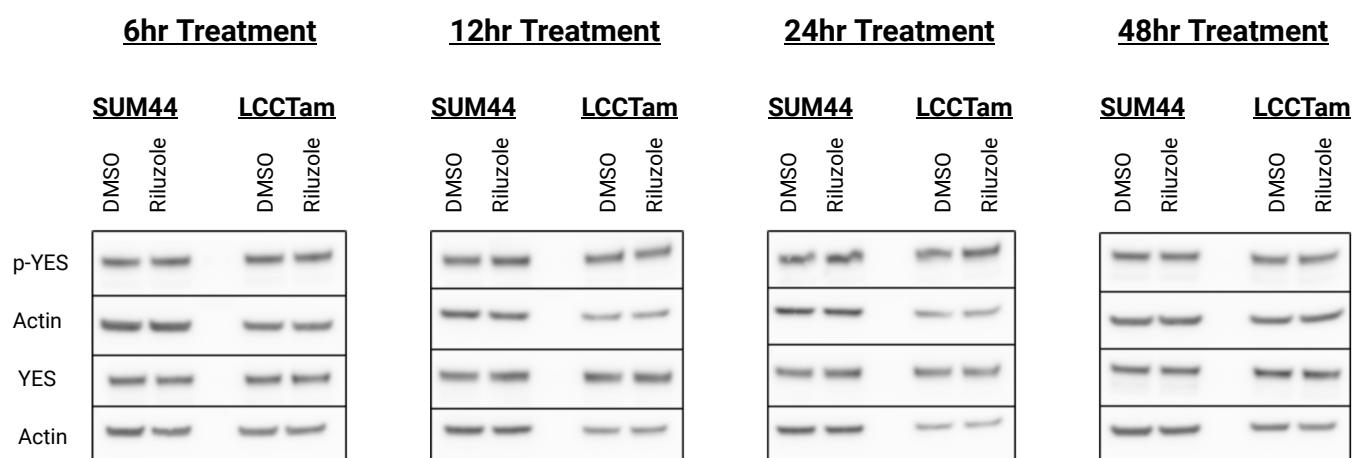
C.



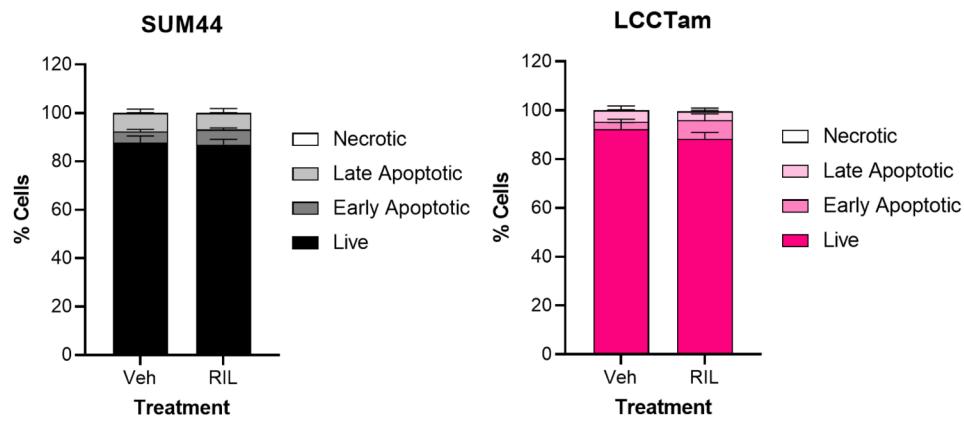
D.

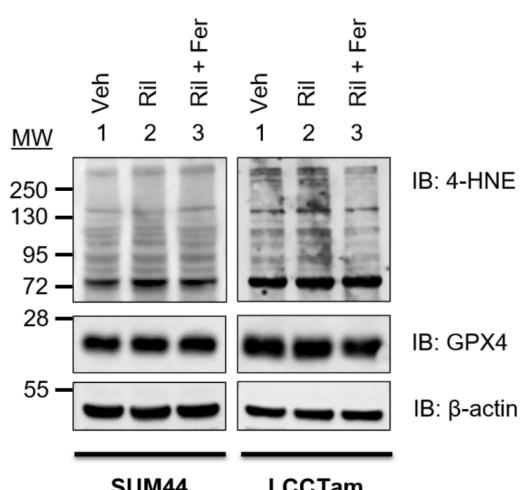

Supplemental Figure 2

BCK4

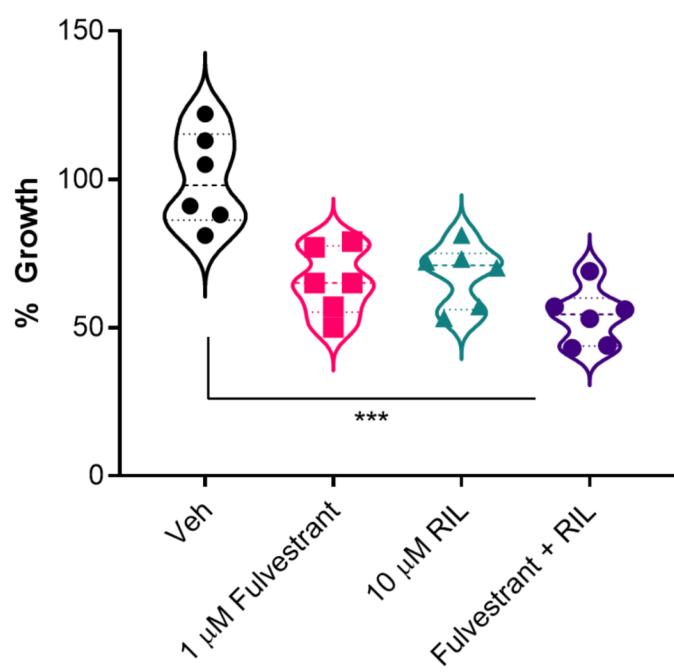


Supplemental Figure 3

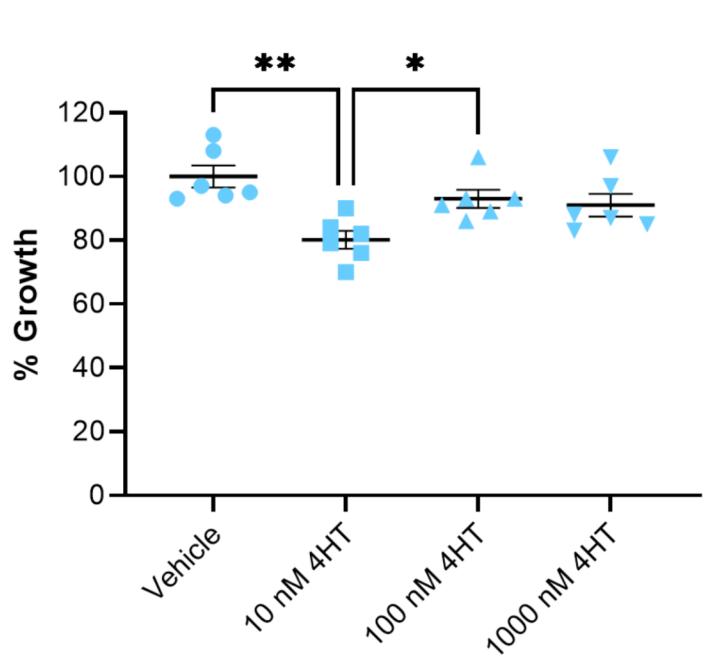

A.


B.

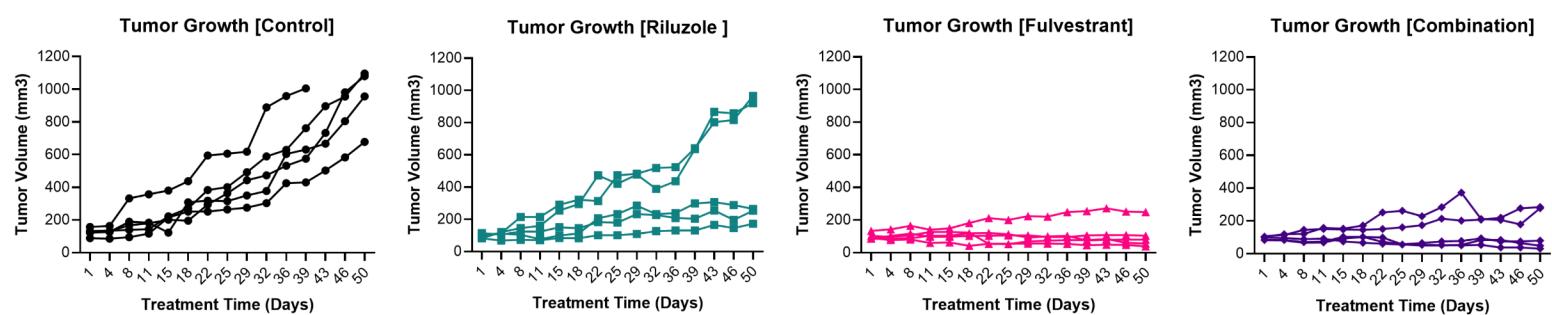
C.


D.

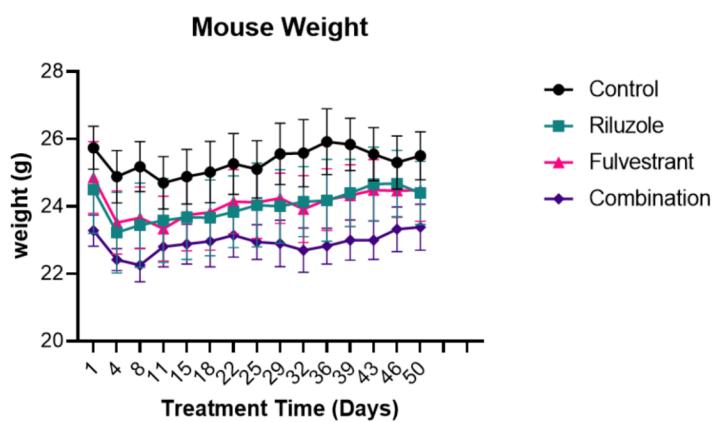
Supplemental Figure 4


A.

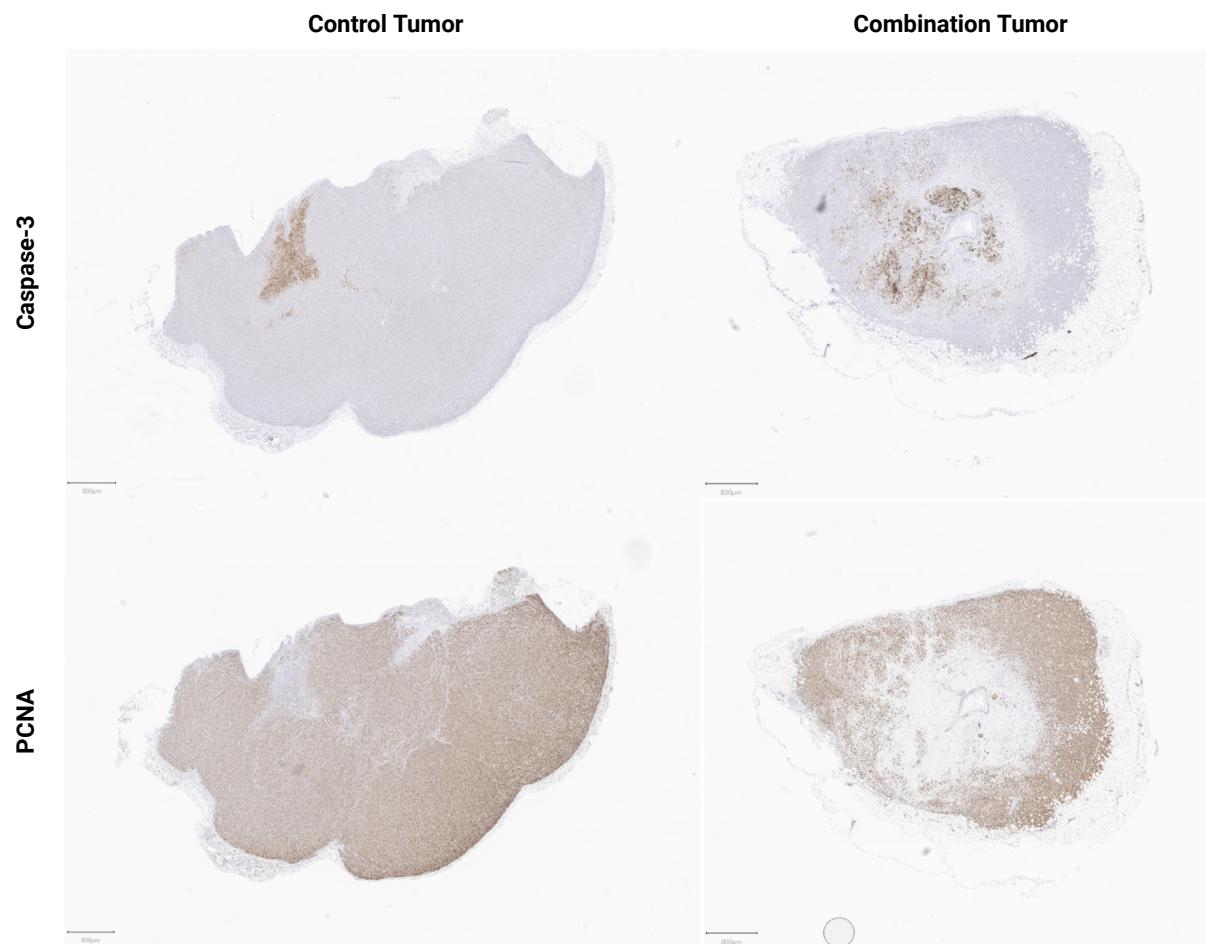
BCK4


B.

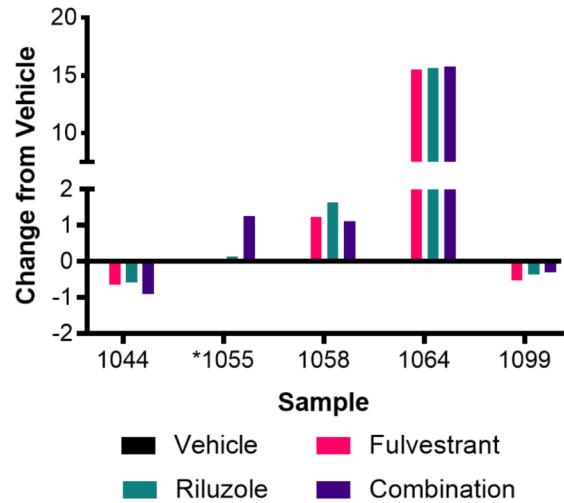
MM134 LTED



Supplemental Figure 5


A.

B.



C.

Supplemental Figure 6

Cleaved Caspase 3

