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Abstract 21 

Background. Resistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer remains a 22 

significant clinical problem. Riluzole is FDA-approved for the treatment of amyotrophic lateral sclerosis. A 23 

benzothiazole-based glutamate release inhibitor with several context-dependent mechanism(s) of action, 24 

Riluzole has shown anti-tumor activity in multiple malignancies, including melanoma, glioblastoma, and breast 25 

cancer. We previously reported that the acquisition of Tamoxifen resistance in a cellular model of invasive 26 

lobular breast cancer is accompanied by the upregulation of GRM mRNA expression and growth inhibition by 27 

Riluzole. 28 

Methods. We tested the ability of Riluzole to reduce cell growth, alone and in combination with endocrine 29 

therapy, in a diverse set of ER+ invasive ductal and lobular breast cancer-derived cell lines, primary breast 30 

tumor explant cultures, and the estrogen-independent, ESR1-mutated invasive lobular breast cancer patient-31 

derived xenograft model HCI-013EI. 32 

Results. Single-agent Riluzole suppressed the growth of ER+ invasive ductal and lobular breast cancer cell 33 

lines in vitro, inducing a histologic subtype-associated cell cycle arrest (G0-G1 for ductal, G2-M for lobular). 34 

Riluzole induced apoptosis and ferroptosis and reduced phosphorylation of multiple pro-survival signaling 35 

molecules, including Akt/mTOR, CREB, and Src/Fak family kinases. Riluzole, in combination with either 36 

Fulvestrant or 4-hydroxytamoxifen, additively suppressed ER+ breast cancer cell growth in vitro. Single-agent 37 

Riluzole significantly inhibited HCI-013EI patient-derived xenograft growth in vivo, and the combination of 38 

Riluzole plus Fulvestrant significantly reduced proliferation in primary breast tumor explant cultures.  39 

Conclusions. Riluzole, alone or combined with endocrine therapy, may offer therapeutic benefits in diverse 40 

ER+ breast cancers, including lobular breast cancer.   41 
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Background 50 

 51 

Estrogen receptor-positive (ER+) breast cancer is the most commonly diagnosed cancer among women in the 52 

United States [1]. Endocrine therapies ranging from selective estrogen receptor modulators and 53 

downregulators (SERMs, SERDs) to aromatase inhibitors are the backbone of our current standard of care for 54 

the clinical management of ER+ breast cancers [2]. Although these treatments have significantly improved 55 

disease-free and overall survival for individuals with ER+ breast cancer, endocrine resistance remains a 56 

persistent, multifactorial problem [3]. Current efforts aim to address this problem through treatment with 57 

endocrine agents combined with other molecularly targeted therapies.  58 

To further complicate these efforts, ER+ breast cancer is not a single disease. Invasive lobular breast 59 

cancer (ILC) is a distinct histologic subtype of breast cancer that is overwhelmingly ER+ yet has distinct 60 

genomic, transcriptomic, and proteomic features [4–6]. These distinctions have important implications for 61 

endocrine therapy response. Also, when compared to the more common invasive ductal breast cancer (IDC, 62 

invasive mammary carcinoma of no special type), ILC carries a greater risk for late recurrence (evident > 6 63 

years after initial diagnosis) [7,8] and responds less to the SERM Tamoxifen [9,10] and potentially the steroidal 64 

aromatase inhibitor exemestane [11]. Additionally, models of ILC are less responsive to the second-generation 65 

SERD AZD9496 than Fulvestrant, while these drugs are equipotent in preclinical models of IDC [12]. 66 

 Our group [13,14] and others [12,15–20] have identified a number of potential mechanisms that 67 

contribute to endocrine therapy resistance in ILC. We recently identified the upregulation of multiple 68 

metabotropic glutamate receptors (mGluRs, GRMs) in Tamoxifen-resistant ILC cells [14]. This, coupled with 69 

other studies that directly or indirectly implicate altered amino acid metabolism and signaling in ILC pre-clinical 70 

models [21] and clinical disease [22,23], led us to consider whether glutamate signaling is functionally relevant 71 

to endocrine resistance in endocrine-resistant ILC. Initially reported in melanoma [24,25] and now other 72 

malignancies (e.g.[26]), pro-tumorigenic signaling through GRMs can be inhibited by Riluzole, an oral 73 

benzothiazole-based glutamate release inhibitor that is FDA-approved for the treatment of amyotrophic lateral 74 

sclerosis (ALS). Riluzole’s proposed mechanism of action within the central nervous system in ALS and in 75 

melanoma is that blocking glutamate release into the extracellular space starves GRMs of their glutamate 76 

ligand, thus functionally inhibiting them. This inhibition of the GRMs ultimately reduces glutamate excitotoxicity 77 

and inhibits tumor cell growth. In triple-negative breast cancer (TNBC), Riluzole’s action may not depend on 78 

GRMs [27,28], although Riluzole exerts anti-tumor effects [29–31]. Despite the potential of repurposing 79 

Riluzole in ER+ breast cancer, especially ILC, this approach has not been a major focus to date. Therefore, 80 

this study aims to more broadly test the efficacy of Riluzole, alone and in combination with multiple endocrine 81 

therapies, in a diverse set of ER+ in vitro and in vivo models enriched for ILC.  82 
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Methods  83 

 84 

Cell Culture and Reagents. Several cell lines were cultured, maintained, and used in this study. These cell 85 

line models include; ER+ ILC cell lines (SUM44, LCCTam, MDA-MB-134VI (MM134) and MDA-MB-134VI long-86 

term estrogen-deprived (LTED; MM134 LTED), and BCK4), ER+ IDC cell lines (MCF7 and LCC9), and the ER-87 

negative (ER-) non-transformed mammary epithelial cell line MCF10A as a control.  MCF7 and LCC9; SUM44 88 

and LCCTam; MM134 and MM134 LTED all represent pairs of parental and resistant cell lines, respectively. 89 

SUM44 and LCCTam cells were maintained under serum-free conditions in improved minimal essential media 90 

(IMEM, #A1048901, ThermoFisher, Grand Island, NY) supplemented with insulin, hydrocortisone, and other 91 

supplements as previously described [13], with the addition of 500 nM 4-hydroxytamoxifen (#H7904, Sigma 92 

Aldrich, St. Louis, MO) to LCCTam cells. For selected experiments, SUM44 and LCCTam cells were 93 

maintained under serum-free conditions in a base media of Ham’s F12 (#11765062, ThermoFisher) 94 

supplemented as above. MM134 cells and MM134 LTED) were maintained in IMEM supplemented with 10% 95 

fetal bovine serum (FBS) and phenol red-free IMEM (#A1048801, ThermoFisher) supplemented with 10% 96 

charcoal-cleared serum (CCS), respectively. BCK4 cells were maintained in IMEM supplemented with 10% 97 

FBS, insulin, and nonessential amino acids, as previously described [32]. MCF7 and LCC9 cells were 98 

maintained in IMEM supplemented with 5% FBS and phenol red-free IMEM supplemented with 5% CCS, 99 

respectively. MM134 and MCF7 cells were short-term hormone-deprived for selected experiments by culturing 100 

in phenol red-free IMEM supplemented with 5% CCS for 72 hours. The immortalized mammary epithelial cell 101 

line MCF10A was maintained as previously described [33]. All cell lines were authenticated by short tandem 102 

repeat (STR) profiling and regularly tested to ensure they remained free of Mycoplasma spp. contamination. 103 

Unless otherwise noted, general cell culture supplements and reagents were purchased from either 104 

ThermoFisher or Sigma Aldrich. Fulvestrant and Riluzole were purchased from Sigma Aldrich, Tocris Bio-105 

Techne (Minneapolis, MN), or Selleckchem (Houston, TX). Ferrostatin-1 was purchased from Selleckchem.  106 

 107 

Cell Proliferation Assays. On Day 0, cells were seeded in 96-well plates at the following densities: 1,000 108 

cells/well (MCF7); 2,000 cells/well (LCC9, MCF10A); 10,000 cells/well (SUM44, LCCTam, MM134, MM134 109 

LTED); 15,000 cells/well (BCK4). Forty-eight hours later, on Day 2, cells were treated with the indicated 110 

concentration of compound(s) or solvent control (DMSO) for an additional 7 or 8 days, with 111 

media/compound(s) replaced on Day 5 or 6. Plates were then stained with crystal violet, dried, rehydrated, and 112 

read as previously described in [14]. Data are presented as mean ± standard error of the mean (SEM, Riluzole 113 

growth curves), or median with upper/lower quartiles (effect of 10 μM Riluzole on cell line pairs) of % growth 114 

(vehicle = 100%) for 5-6 technical replicates and are representative of 2-4 independent biological assays. For 115 

assays of Riluzole in combination with Fulvestrant or Tamoxifen for all cell lines except BCK4, data are  116 

processed as the mean % growth for 5-6 technical replicates and represent 2-4 independent biological assays. 117 

A representative single technical replicate's mean % growth data was then used to create a combination matrix 118 

used in SynergyFinder, and the results were presented as 2D surface plots. SynergyFinder uses predictive 119 

models such as highest single agent (HSA), Bliss, and Zero interaction potency (ZIP) to quantify the degree of 120 

combination synergy or antagonism and outputs a synergy score. When interpreting SynergyFinder scoring, a 121 

synergy score less than -10 shows antagonistic drug interaction, a score between -10 and 10 shows an 122 

additive drug interaction and a score greater than 10 shows a synergistic drug interaction. For the assay of 123 

Riluzole in combination with Fulvestrant in BCK4 cells, data are presented as median with upper/lower 124 

quartiles of % growth for 5-6 technical replicates and represent 2-4 independent biological assays. 125 

 126 

Cell Cycle Assays. On Day 0, cells were seeded in 6-well plates at the following densities: 150,000 cells/well 127 

(MCF7, LCC9); 300,000 cells/well (SUM44, LCCTam, MM134, MM134 LTED, BCK4, MCF10A). Forty-eight 128 

hours later, on Day 2, cells were treated with 10 μM Riluzole or DMSO control for the additional indicated times 129 

before collection, fixation, staining, and cell cycle analysis by flow cytometry as described in [34]. Data are 130 

presented as mean ± standard deviation (SD) for 3-4 independent biological assays. 131 
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 132 

Annexin V Apoptosis Assays. On Day 0, cells were seeded in a 6-well plate at 300,000 cells/well (SUM44, 133 

LCCTam). Forty-eight hours later, on Day 2, cells were treated with either 10 μM Riluzole or DMSO solvent as 134 

a control for another 48 hours. On Day 4, cells were collected and stained with 4µL of propidium iodide (PI) 135 

and 4µL of annexin V conjugated with fluorescein isothiocyanate (FITC) in 100µL of 1X binding buffer. Control 136 

cells were either left unstained or stained with either PI or annexin V dye conjugated with FITC, as described in 137 

[35]. Live (PI-, annexin V-), early apoptotic (PI-, annexin V+), late apoptotic(PI+, annexin V+), and necrotic cells 138 

(PI+, annexin V-) were quantified by flow cytometry. The PI/Annexin V-FITC apoptosis detection kit was 139 

purchased from BioLegend (#640914, San Diego, CA, USA). Data are presented as mean ± SD for 3 (SUM44) 140 

or 4 (LCCTam) independent biological assays.  141 

 142 

Human Phospho-Kinase Proteome ProfilerTM Array. On Day 0, cells were seeded in a 6-well plate at 143 

500,000 cells/well (SUM44, LCCTam). Forty-eight hours later, on Day 2, cells were treated with either 10 μM 144 

Riluzole or DMSO solvent as a control for 48 hours. On Day 4, cells were collected in 100 μL lysis buffer/well 145 

before determining total protein concentration by bicinchoninic acid (BCA) assay (#23225, ThermoFisher). 146 

According to the manufacturer's instructions, five hundred micrograms of whole cell lysate were then assayed 147 

using the Human Phospho-Kinase Proteome ProfilerTM Array (#ARY003B, Bio-Techne). Array membranes 148 

were visualized using chemiluminescence detected by HyBlot CL autoradiography film (#E3018, Thomas 149 

Scientific, Swedesboro, NJ), then films were scanned and analyzed using FIJI [36]. A ratio of background-150 

corrected intensity values for targets (phospho-kinase spots) to references (control spots) was created for each 151 

condition (DMSO and Riluzole) within each cell line. Data are presented as the mean of the Riluzole: DMSO 152 

ratio for two technical replicates from a single experiment for each cell line. Gene symbols corresponding to the 153 

kinases showing decreased phosphorylation in response to Riluzole in LCCTam cells were analyzed using 154 

SRPlot (http://www.bioinformatics.com.cn/srplot) to identify top functional enrichments. 155 

 156 

Western blot.  SUM44 and LCCTam cells were seeded in 6-well plastic tissue culture plates at 157 

250,000 cells/well (FAK and YES blots) or 300,000-600,000 cells/well (4-HNE and MDA blots) 48 h before 158 

treatment. The cells were treated for the times indicated in the figure legend. For the FAK and YES blots, the 159 

cells were treated with the control (DMSO) or drug (10µM Riluzole). In the case of the MDA and 4-HNE blots, 160 

the cells were treated with control (DMSO), Riluzole (10 µM), or a combination of Riluzole and Ferrostatin-1(10 161 

µM). After treatment, cells were lysed in radioimmunoprecipitation assay buffer (RIPA - 150 mM NaCl, 50 162 

mM Tris pH 7.5, 1% Igepal CA-630, and 0.5% sodium deoxycholate) supplemented with PierceTM protease and 163 

Phosphatase inhibitor mini-tablets (Thermo Scientific). Protein lysates, extracted following centrifugation of the 164 

lysed cells, were mixed in a 3:1 with sample buffer (NuPAGE™ LDS Sample Buffer (4X) + 2-Mercaptoethanol 165 

in 2:1) and loaded onto a precast Gel (NuPAGETM 4-12% Bis-Tris Gel, Invitrogen). Proteins were transferred to 166 

nitrocellulose membranes, blocked in 5% nonfat dry milk in Tris Buffered Saline and Tween-20 [TBST; 10 mm 167 

Tris HCl, 150 mm NaCl, and 0.05% Tween-20 (pH 8.0)] at room temperature for one hour, then probed 168 

overnight with the following primary antibodies (diluted in TBST): phospho-FAK (1:1000), total FAK (1:1000) 169 

from Cell Signaling (Danvers, MA); phospho-YES (1:1000); total-YES (1:500–1:1000); 4-HNE (1:700)  from 170 

Abcam (Waltham, MA); and MDA clone -1F83 (1:200) from  VWR (Radnor, PA). Nitrocellulose membranes 171 

were then incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies from Cell 172 

Signaling (Danvers, MA) (1:2000) at room temperature for one hour, followed by incubation in enhanced 173 

chemiluminescence from Advansta (San Jose, CA) and imaged in the Amersham imager 600 (GE Healthcare). 174 

Membranes were reprobed for beta-actin (Cell Signaling, 1:1000) for ≥1 h at room temperature as a loading 175 

control. 176 

 177 

Cell Viability Assays. On Day 0, 300,000 – 400,000 cells of SUM44 and LCCTam were seeded in 6-well 178 

plates. Twenty-four hours later, on Day 1, cells were treated with control (DMSO), or Riluzole (10 μM), or a 179 

combination of Riluzole and Ferrostatin-1 (10 uM). On day 2, the cells were collected after a 24hr treatment 180 
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period. The collected cells were stained with trypan blue and counted using the Countess II automated cell 181 

counter (Thermofisher). Data are analyzed using Prism 9 and presented as mean ± standard deviation (SD) of 182 

the ratio of the cell number of the treatment groups relative to the control for 3-4 independent biological assays. 183 

 184 

HCI-013 and HCI-013EI Patient Derived Xenograft (PDX) Experiments. All animal studies were ethically 185 

conducted in accordance with our approved Institutional Animal Care and Use Committee (IACUC) protocols 186 

#2018-0005 and #2018-0006. For the comparison of time to tumor formation between HCI-013 and HCI-013EI 187 

in the presence vs. absence of supplemental estrogen pellets, 5-6 week-old intact (non-ovariectomized) female 188 

non-obese diabetic, severe combined immunodeficient mice (NOD.CB17-Prkdcscid/NCrCrl, purchased from 189 

Charles River, Wilmington, MA) were orthotopically implanted into the right 4th mammary gland with a single 1-190 

3 mm3 PDX fragment per mouse as follows: HCI-013EI (n=6); HCI-013EI+E2 (n=6); HCI-013 (n=6); HCI-191 

013+E2 (n=6). “+E2” denotes co-implantation of a 1 mg estrogen pellet under the skin on the back between the 192 

shoulder blades. Mice were followed until measurable tumor development (by calipers), and data are 193 

presented as a survival plot with n=6 mice per group.  194 

 195 

For the treatment study of HCI-013EI tumors, 5–6-week old intact (non-ovariectomized) female mice were 196 

orthotopically implanted into the right 4th mammary gland with a single 1-3 mm3 HCI-013EI PDX fragment per 197 

mouse without estrogen supplementation, then followed until tumors reached ~100 mm3 before enrollment to 198 

one of the four (4) treatment arms: Control (n=5); 25mg/kg Fulvestrant in castor oil SQ (once per week, n=5); 199 

10 mg/kg Riluzole PO in corn oil (5 days per week, n=5); or the combination (n=5) for eight weeks. Mice were 200 

monitored for tumor growth (measured by calipers) and body weight twice per week. Tumor volumes were 201 

calculated by the modified ellipsoid formula V=1/2(XY2), where X is the longest axis, and Y is the longest 202 

perpendicular axis. Tumor volume data are presented as mean ± SEM for the number of mice per treatment 203 

group. The baseline measurement represents the measurement at the point of enrollment to a treatment group 204 

based on the a priori tumor volume as calculated above. The subsequent measurements are those taken while 205 

the mice are on treatment at the twice per week frequency. At the study’s conclusion, mice were humanely 206 

euthanized by approved AVMA guidelines. Tumors from the treatment study were resected, weighed, formalin-207 

fixed, and paraffin-embedded. 208 

 209 

Standard Immunohistochemistry (IHC) Staining. Sections from formalin-fixed, paraffin-embedded tissues 210 

were deparaffinized with xylenes and rehydrated through a graded alcohol series. Heat-induced epitope 211 

retrieval (HIER) was performed by immersing the tissue sections at 98oC for 20 minutes in LowFlex (Dako 212 

#K8005). Staining was performed following the epitope retrieval process using VectaStain Kit from Vector Labs 213 

for cleaved Caspase-3 and horseradish peroxidase-labeled polymer from Dako (K4001) for PCNA. Slides were 214 

treated with 3% hydrogen peroxide and 10% normal goat serum for 10 minutes each and exposed to primary  215 

antibodies- 1/120 for Caspase-3 and 1/1000 for PCNA Santa Cruz #sc56- for one hour at room temperature. 216 

Slides were then exposed to appropriate biotin-conjugated secondary antibodies, Vectastain ABC reagent, and 217 

DAB chromagen (Dako) for cleaved Caspase-3 and HRP labeled polymer and DAB chromagen (Dako) for 218 

PCNA. Slides were counterstained with Hematoxylin (Fisher, Harris Modified Hematoxylin), blued in 1% 219 

ammonium hydroxide, dehydrated, and mounted with Acrymount. 220 

 221 

IHC Imaging and Analysis. Slides were scanned at 40X magnification using the Aperio GT 450, an 222 

automated digital pathology slide scanner. The whole slide scans were viewed and analyzed with QuPath-223 

0.3.0, open-source software used for bioimage analysis [37].  The images from the Caspase-3 and PCNA 224 

slides were separated into respective project groups, and a representative image from each group was 225 

analyzed. The corresponding analysis setting was then applied to the group to ensure uniformity across all the 226 

images. First, the default stain vector was selected to deconvolute the hematoxylin and DAB stains. Next, a 227 

region of interest (ROI) for analysis was selected; in this study, the entire tumor area was established as the 228 

region of interest for this analysis. Finally, the  ROI was analyzed for positive stain detection, and the results 229 
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(number positive per mm squared) were exported as a CSV file for statistical analysis using GraphPad Prism 230 

9. Data for both PCNA and cleaved Caspase-3 are presented as the individual and median positive cells per 231 

mm2 for each treatment group.  232 

 233 

Multiplex Immunohistochemistry (mIHC) Staining. HCI-013+E2 (n=5) and HCI-013EI (n=4) tumors from 234 

mice in our PDX maintenance colony - independent from experimental animals described above - were 235 

resected, formalin-fixed, paraffin-embedded, then sectioned for staining on the Vectra3 multispectral imaging 236 

platform (Akoya Biosciences, Marlborough, MA) using OPAL chemistry. The slides were baked at 60°C, 237 

deparaffinized in xylene, rehydrated, washed in tap water, and incubated with 10% neutral buffered formalin for 238 

20 minutes to increase tissue-slide retention.  Epitope retrieval/microwave treatment (MWT) for all antibodies 239 

was performed by boiling slides in Antigen Retrieval buffer 6 (AR6 pH6; Akoya, AR6001KT).  Protein blocking 240 

was performed using antibody diluent/blocking buffer (Akoya, ARD1001EA) for 10 minutes at room 241 

temperature. Primary antibody/OPAL dye pairings and incubation conditions for ER, PR, HER2, Ki67, and pan-242 

cytokeratin staining are detailed in Table 1. MWT was performed to remove the primary and secondary 243 

antibodies between rounds of multiplex IHC. Multiplex IHC was finished with MWT, counterstained with 244 

spectral DAPI (Akoya FP1490) for 5 min, and mounted with ProLong Diamond Antifade (ThermoFisher, 245 

P36961). The order of antibody staining and the antibody/OPAL pairing was predetermined using general 246 

guidelines and the particular biology of the panel.  General guidelines include spectrally separating co-247 

localizing markers and separating spectrally adjacent dyes.  Multiplex IHC was optimized by first performing 248 

singleplex IHC with the chosen antibody/OPAL dye pair to optimize signal intensity values and proper cellular 249 

expression, followed by optimizing the entire multiplex assay.  250 

 251 

mIHC Imaging and Analysis. Slides were scanned at 10X magnification using the Vectra 3.0 Automated 252 

Quantitative Pathology Imaging System (PerkinElmer/Akoya).  Whole slide scans were viewed with 253 

Phenochart (Perkin Elmer/Akoya), which allows for selecting high-powered images at 20X (resolution of 0.5m 254 

per pixel) for multispectral image capture.  Multispectral images of each xenograft tissue specimen were 255 

captured in their entirety.  Multispectral images were unmixed using spectral libraries built from images of 256 

single stained tissues for each reagent using the inForm Advanced Image Analysis software (inForm 2.4.6; 257 

PerkinElmer/Akoya).   A selection of 10-15 representative multispectral images spanning all nine tissue 258 

sections was used to train the inForm software (tissue segmentation, cell segmentation, and phenotyping 259 

tools).  All the settings applied to the training images were saved within an algorithm to allow the batch analysis 260 

of all the multispectral images particular to each panel. Data are presented as the overall mean ± SD of % 261 

marker positivity for all tumors.     262 

 263 

Fluorescence Lifetime Imaging (FLIM) Instrumentation. A modified Olympus FVMPERS (Waltham, MA) 264 

microscope equipped with a Spectra-Physics Insight X3 (Milpitas, CA) laser and FastFLIM (ISS, Champaign, 265 

IL) acquisition card were used to image the cancer samples. The samples were excited by two-photon 266 

excitation at 740 nm using a 20X air objective (LUCPLFLN 0.45NA, Olympus), and the emitted fluorescence 267 

was collected using the DIVER (Deep Imaging Via Enhanced Recovery) detector assembly equipped with a 268 

FastFLIM card for lifetime imaging. The pixel dwell time was fixed at 20 µs, and the field of view was 318.8 µm 269 

(Zoom =2X) at 256X256 pixels. 16 frames were integrated to increase signal-to-noise. The data from each 270 

pixel were recorded and analyzed using the SimFCS software (available from the Laboratory for Fluorescence 271 

Dynamics, University of California, Irvine, CA). The raster scanning was done using the Olympus software, and 272 

the images were collected using the FLIMBox/FastFLIM system in passive mode [38].  273 

The samples (5 µm thick) were imaged using the homebuilt DIVER (Deep Imaging via Enhanced Recovery) 274 

microscope [39], a homebuilt modified detector based on an upright configuration. The details of this 275 

microscope have been described elsewhere [40,41]. Briefly, this microscope uses a forward detection scheme 276 

and a large area photon counting detector (R7600P-300, Hamamatsu), having a higher photon collection 277 

efficiency due to the large cone angle of detection. A combination of filters capable of separating the blue 278 
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wavelength (400 – 500 nm) fluorescence was used for FLIM imaging of NADH [42]. The phasor plot is 279 

calibrated using Rhodamine 110 in water which has a mono-exponential lifetime of 4.0 ns. 280 

 281 

FLIM Phasor Analysis [38,43,44].The fluorescence intensity decays collected at each pixel of the image were 282 

transformed to the Fourier space, and the phasor coordinates were calculated using the following relations: 283 

𝑔𝑖,𝑗(𝜔) = ∫ 𝐼(𝑡) ∙ 𝐶𝑜𝑠(𝑛𝜔𝑡)𝑑𝑡
∞

0 ∫ 𝐼(𝑡)𝑑𝑡 
∞

0
⁄         1 284 

𝑠𝑖,𝑗(𝜔) = ∫ 𝐼(𝑡) ∙ 𝑆𝑖𝑛(𝑛𝜔𝑡)𝑑𝑡
∞

0 ∫ 𝐼(𝑡)𝑑𝑡 
∞

0
⁄         2 285 

where gi,j(ω) and si,j(ω) are the X and Y coordinates of the phasor plot, respectively, and n and ω are the 286 

harmonic numbers and the angular frequency of excitation, respectively. The transformed data were then 287 

plotted in the phasor plot so that the data from each pixel is transformed to a point in the phasor plot [45–47].  288 

The fractional intensity distribution between free and protein-bound NADH was calculated based on a two-289 

component analysis of the phasor plot [38,48] and then converted to concentration ratio based on the quantum 290 

yield of the two species [49]. The higher free/bound NADH ratio is representative of increased glycolysis [43].  291 

 292 

Primary Breast Tumor Explant Cultures. Patient-derived explants (PDEs) from five (5) ER+ primary breast 293 

tumors were processed and cultured as described in [50]. PDEs were treated with 100 nM Fulvestrant, 10 μM 294 

Riluzole, the combination, or solvent control (DMSO) for 48 hours before formalin fixation, paraffin embedding, 295 

sectioning, and staining for PCNA (1:1000, #sc-56, SCBT, Santa Cruz, CA), cleaved caspase 3 (1:300, #9661, 296 

Cell Signaling Technology, Danvers, MA), and Ki67 (1:500, #ab16667, Abcam, Cambridge, MA). Stained 297 

sections were then visualized and scored as described in [50]. Data are presented as change relative to 298 

vehicle (set to 0) for each PDE. 299 

 300 

Statistical Analysis. Statistical analyses were performed using GraphPad Prism 9.0 (San Diego, CA) at 301 

α≤0.05, except for Riluzole/Fulvestrant and Riluzole/4-hydroxytamoxifen combination experiments, which were 302 

analyzed by SynergyFinder [51]. Single-agent Riluzole experiments were analyzed by nonlinear regression 303 

([inhibitor] vs. normalized response), and response to 10 μM Riluzole in endocrine therapy sensitive/resistant 304 

cell line pairs (SUM44 vs. LCCTam and MCF7 vs. LCC9) was compared by Mann-Whitney test. 305 

Riluzole/Fulvestrant and  Riluzole/4-hydroxytamoxifen combination experiments were analyzed using the Bliss, 306 

zero interaction potency (ZIP), and highest single agent (HSA) methods [52] in SynergyFinder. Cell cycle and 307 

Annexin V apoptosis assays were analyzed by two-way Analysis of Variance (ANOVA) followed by Sidak’s 308 

multiple comparisons tests. Cell viability assays for Riluzole Ferrostatin-1 were analyzed by two-way ANOVA 309 

followed by Tukey’s multiple comparisons test. Staining for each marker in primary breast tumor explant 310 

cultures was analyzed by one-sample t-test vs. 0 (vehicle). In the xenograft experiment comparing time to 311 

tumor formation between HCI-013 and HCI-013EI in the presence vs. absence of supplemental estrogen 312 

pellets, data were analyzed by log-rank (Mantel-Cox) test. In the xenograft experiment testing Fulvestrant, 313 

Riluzole, the combination, or control in HCI-013EI, tumor volume, and mouse body weight data were analyzed 314 

by mixed-effects analysis followed by Dunnett’s multiple comparisons tests at each time point vs. control. 315 

Tumor weight at the endpoint and PCNA and cleaved caspase-3 were analyzed by Browne-Forsyth and Welch 316 

ANOVA, followed by Dunnett’s T3 multiple comparison tests. Partial response (PR), stable disease (SD), and 317 

progressive disease (PD) were calculated using RECIST 1.1 criteria [53]. mIHC data were analyzed by the 318 

Mann-Whitney test.  319 

 320 

  321 
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Results 322 

 323 

Riluzole has shown anti-tumor activity in preclinical models of multiple cancers, including melanoma, 324 

glioblastoma, and breast cancer [25–31]. In several (but not all) of these reports, Riluzole-mediated growth 325 

inhibition is attributed to increased expression of metabotropic glutamate receptors (mGluRs, GRMs). We 326 

previously reported that acquisition of Tamoxifen resistance in a cellular model of invasive lobular breast 327 

cancer (ILC, [13]) is accompanied by the upregulation of GRM mRNA expression and growth inhibition by 328 

Riluzole [14]. Here, our goal was to test the efficacy of Riluzole more broadly, alone and in combination with 329 

multiple endocrine therapies, in a diverse set of ER+ in vitro and in vivo models enriched for ILC.   330 

 331 

Riluzole suppresses growth in ER+ breast cancer cell lines. 332 

We performed dose-response assays of Riluzole (33 nM to 100 μM) in four ILC- and two IDC-derived cell lines 333 

and the ER- non-transformed breast epithelial cell line MCF10A, using crystal violet staining as a proxy for total 334 

cell number [14] (Figure 1A). Nonlinear regression analysis calculated the Riluzole IC50 for all six cell lines to 335 

be ~10-100 μM, consistent with published studies in other malignancies. Direct comparison of growth inhibition 336 

by 10 μM Riluzole in three endocrine-responsive and -resistant cell line pairs (Figure 1B) confirmed [14] that 337 

the Tamoxifen-resistant ILC cell line LCCTam, and the MM134 LTED cells were significantly more responsive 338 

to Riluzole than their parental counterparts SUM44 and MM134 (Mann-Whitney test, **p= 0.002 & 0.0043 339 

respectively). This was not the case for the MCF7/LCC9 IDC cell line pair [54], in which MCF7 cells showed 340 

greater Riluzole-mediated growth inhibition (*p=0.024) than Fulvestrant-resistant/Tamoxifen-cross-resistant 341 

LCC9 cells. However, MCF10A non-transformed cells were not growth inhibited by 10 μM Riluzole vs. DMSO 342 

control. 343 

 The presence vs. absence of steroid hormones and estrogenic compounds in growth media (e.g., 344 

phenol red, serum) can influence the response of ER+ cell lines to growth inhibition by small molecules. The 345 

SUM44/LCCTam cell line pair is cultured in serum-free media, but a phenol red-containing base (IMEM, 10 346 

mg/L), while MCF7 and MM134 cells are cultured in phenol red-containing, IMEM supplemented with 5%FBS. 347 

LCC9 cells and MM134 LTED are maintained in hormone-replete conditions. As such, experiments presented 348 

in Figure 1  performed under hormone-replete conditions were repeated under hormone-deprived conditions 349 

(Figure S1 [55]). While individual differences within cell lines were observed, hormone deprivation - reduced 350 

phenol red media for SUM44/LCCTam (Ham’s F12, 1.2 mg/L) or phenol red-free IMEM supplemented with 5% 351 

CCS for MCF7 and MM134 - did not consistently enhance or impair Riluzole-mediated growth inhibition. 352 

 353 

Riluzole induces a histologic subtype-associated cell cycle arrest.  354 

To corroborate the cell proliferation assay results, we tested Riluzole's effect on cell cycle progression (Figure 355 

2). All ILC cell lines (including BCK4, a third model of ER+ ILC [32], Figure S2 [55]) showed a significant 356 

accumulation of cells in the G2-M phase (two-way ANOVA followed by Sidak’s multiple comparisons test, see 357 

figure legends). However, both IDC-derived cell lines showed a significant accumulation of cells in the G0-G1 358 

phase, while non-transformed MCF10A cells showed no significant cell cycle arrest in response to Riluzole. 359 

Together with the results presented in Figures 1 and S1, these data suggest that while all ER+ breast cell lines 360 

tested are growth inhibited by Riluzole, ILC cells preferentially undergo G2-M arrest while IDC cells arrest in 361 

G0-G1. 362 

 363 

Riluzole inhibits phosphorylation of pro-survival signaling molecules and induces apoptosis and 364 

ferroptosis.  365 

To identify molecular signaling events accompanying Riluzole-mediated growth inhibition in the 366 

SUM44/LCCTam cell line pair, we used the Human Phospho-Kinase Proteome ProfilerTM Array to detect 367 

changes in 43 phosphorylation sites across 40 different kinases or substrates (Figure 3A). In SUM44 cells, 368 

Riluzole reduced phosphorylation of mutant p53 [56] (S92 and S392), and Akt T308. In LCCTam cells, Riluzole 369 

reduced phosphorylation of markedly more sites in kinases and substrates with several significantly enriched 370 
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ontology clusters, including Signaling by Receptor Tyrosine Kinases and Cytokine Signaling in Immune System  371 

(Figure S3A [55]). In addition, notable inhibition of Akt/mTOR (Akt S437, TOR S2448, PRAS40 T246), CREB 372 

(Msk S376/360, CREB S133) and Src/Fak (Lyn Y397, Yes Y426, Fak Y397) signaling pathways were 373 

observed specifically in LCCTam cells. Prior studies in melanoma and glioblastoma have shown that Riluzole 374 

inhibits Akt phosphorylation and that Riluzole combined with mTOR inhibition can synergistically decrease 375 

xenograft growth [26,57]. However, to our knowledge, inhibition of Src/Fak family kinases by Riluzole has not 376 

been previously reported. Therefore, to further validate the inhibition of selected Src/Fak kinases observed 377 

from the Human Phospho-Kinase Proteome ProfilerTM Array, we performed a western blot analysis on 378 

SUM44/LCCTam cell line treated with Riluzole for several time points (6,12, 24, and 48 hours). The results 379 

show markedly higher baseline Fak Y397 phosphorylation and confirmed reduced expression and 380 

phosphorylation of Fak Y397 in the LCCTam cells versus no change to a slight increase in Fak 381 

phosphorylation in SUM44 cells (Figure 3B, 3C). However, we could not validate a change in Yes expression 382 

or phosphorylation at Y426 (Figure S3B [55]). 383 

 We then performed Annexin V assays to measure the effect of Riluzole on apoptosis in the 384 

SUM44/LCCTam cell line pair. LCCTam cells showed a significant increase in the percent of cells in early 385 

apoptosis when treated with Riluzole (Figure 3D and S3C [55], two-way ANOVA followed by Sidak’s multiple 386 

comparisons tests, **p<0.001). However, there was a less robust increase in early apoptotic SUM44 cells (two-387 

way ANOVA followed by Sidak’s multiple comparisons test, *p<0.0211). These data are consistent with those 388 

presented in Figure 1B, where LCCTam cells were significantly more growth-inhibited by Riluzole than SUM44 389 

cells.  390 

In addition to apoptosis, the iron-dependent cell death mechanism of ferroptosis could be relevant to 391 

Riluzole action in these cells. For example, inhibition of the PI3K-Akt-mTOR pathway has been previously 392 

implicated in this form of cell death [58]. Furthermore, Fak signaling downstream of the glutamate/cystine 393 

antiporter SLC7A11 or Xc
-
, which can be inhibited by Riluzole, has also been implicated in ferroptosis [59]. To 394 

explore the possibility of ferroptotic cell death, we performed a viability assay after treating Sum44 and 395 

LCCTam cells with Vehicle (DMSO), or Riluzole or a combination of Riluzole and Ferrostatin-1 (inhibitor of 396 

Ferroptosis). The results showed that Riluzole reduces cell viability in both SUM44 and LCCTam, and the 397 

addition of Ferrostatin-1 reverses the observed reduction (Figure 3E). To substantiate this observation, we 398 

performed a western blot analysis on the SUM44/LCCTam cell line pair treated with vehicle (DMSO) or 399 

Riluzole, or a combination of Riluzole and Ferrostatin for 48hrs, then probed for Malondialdehyde (MDA) and 400 

4-Hydroxynonenal (4-HNE) – which are both by-products of ferroptosis. MDA levels were increased in 401 

LCCTam cells treated for 48 hr with Riluzole. Conversely, ferrosatin-1 decreased the Riluzole-induced MDA 402 

(Figure 3F). On the other hand, Riluzole slightly increased the levels of 4-HNE in LCCTam cells, whereas the 403 

combined treatment of Riluzole and Ferrostatin-1 reduced the levels of Riluzole-induced 4-HNE (Figure S3D 404 

[55]). Altogether, the Riluzole induction of lipid peroxidation products suggests Riluzole-induced ferroptosis in 405 

LCCTam.  406 

 407 

Riluzole, in combination with endocrine therapies, leads to additive suppression of ER+ breast cancer 408 

cell line growth.  409 

Endocrine therapies ranging from SERMs and  SERDs to aromatase inhibitors represent the standard of care 410 

for the clinical management of ER+ breast cancers [2]. Therefore, we tested Riluzole's activity in combination 411 

with the SERD Fulvestrant or SERM Tamoxifen (4-hydroxytamoxifen) in ILC- and IDC-derived ER+ breast 412 

cancer cell lines and the ER- non-transformed breast epithelial cell line MCF10A as a negative control. These 413 

experiments were conducted under hormone-replete conditions. To determine the possible relational effect of 414 

the drug combinations, we used SynergyFinder, a web-based tool for interactive analysis and visualization of 415 

multi-drug and multi-dose response data [51]. Based on the synergy finder scoring, the combination of 416 

Fulvestrant and Riluzole showed additive benefits in nearly all tested cell lines (Figure 4 and S4A [55]). The 417 

representative synergy map of the bliss model highlights the synergistic and antagonistic dose regions in red 418 

and green, respectively, and the overall synergy score indicated at the top (Figure 4A, >10 = synergy, 10 to -419 
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10 = additive, <-10 = antagonistic). Examination of the other synergy models provided similar synergy scores 420 

to the bliss model in Figure 4A, which supports the notion that the combination of Fulvestrant and Riluzole is 421 

additive (Figure 4B). The synergy analysis of the combination of Riluzole and Tamoxifen resulted in scores 422 

that indicated an additive interaction in all the cell lines except for MM134 LTED and MCF10A (Figure 4B). 423 

MM134 LTED cells were only inhibited by the lowest concentration of 4HT and not by the higher 424 

concentrations (Figure S4B [55]). On the other hand, Riluzole significantly inhibited growth, therefore, the 425 

drugs' opposing effects likely account for the combination's antagonistic effect. Despite these exceptions, these 426 

data suggest that the combination of endocrine therapy and Riluzole, in most cases, can additively suppress 427 

the growth of a variety of ER+ breast cancer cell line models.  428 

 429 

Single-agent Riluzole inhibits tumor growth in vivo, but the combination with Fulvestrant is not better 430 

than Fulvestrant alone in the HCI-013EI ILC PDX model. PDXs are an important, clinically relevant 431 

alternative to 2D culture models for pre-clinical testing of combination therapies. The HCI-013 PDX model was 432 

established from a 53-year-old woman with metastatic, multi-therapy-resistant ER+/PR+/HER2- ILC by serial 433 

passage through intact female NOD scid gamma (NSG) mice supplemented with a 1 mg estrogen (E2, 17β-434 

estradiol) pellet [15]. The HCI-013EI (estrogen-independent) variant was established by two weeks of in vitro 435 

culture of cells from HCI-013 tumors under hormone-deprived conditions, then reimplanted into intact female 436 

NSG mice without estrogen supplementation [60].  Both models harbor the clinically relevant ESR1 activating 437 

mutation Y537S, with the HCI-013EI variant reported as having a more abundant variant allele fraction of 438 

Y537S.  439 

To directly compare the responsiveness to, and dependency on, supplemental estrogen of HCI-013 vs. 440 

HCI-013EI , six (6) 5-6 week-old intact severe combined immunodeficient (SCID) female mice per group were 441 

orthotopically implanted with a single 1-3 mm3 PDX fragment, then  tumor growth and development was 442 

monitored (Figure 5A). In the presence of supplemental estrogen pellets, HCI-013 and HCI-013EI exhibited a 443 

100% tumor take rate, with a median time to tumor formation of 23.5 and 26.5 days, respectively. However, in 444 

the absence of supplemental estrogen pellets, HCI-013 PDX fragments were unable to form tumors out to 113 445 

days post-implantation, and HCI-013EI PDX fragments exhibited a 50% tumor take rate, with a median time to 446 

tumor formation of 39 days (log-rank Mantel-Cox test, ***p=0.0007). These data suggest that supplemental 447 

estrogen is necessary for HCI-013 tumor formation and beneficial but not necessary for HCI-013EI tumor 448 

formation in SCID mice. 449 

We characterized an independent set of HCI-013+E2 (estrogen supplemented, n=5) and HCI-013EI 450 

(not estrogen supplemented, n=4) tumors with respect to hormone receptor (ER and PR), HER2, and 451 

proliferative marker Ki67 expression using Opal chemistries on the Vectra3 multispectral imaging platform 452 

(Figures 5B and 5C). This approach captured heterogeneity in marker expression between and within tumors. 453 

Overall, percent ER positivity (% ER+) was significantly lower in HCI-013EI vs. HCI-013+E2 tumors (Mann-454 

Whitney test, *p=0.032), consistent with a prior report that Y537S mutant ER protein expression can be lower 455 

than wild type ER [61]. However, overall percent PR and Ki67 positivity were not significantly different between 456 

these PDX variants. No HER2 staining was detected (data not shown).  457 

An important feature of endocrine-resistant breast cancer is dysregulated metabolism, with published 458 

studies showing increased dependency on glutamine [62] and other amino acids [63]. Advanced imaging 459 

techniques like fluorescence lifetime imaging (FLIM) take advantage of the natural autofluorescence of 460 

biomolecules, including the reduced form of nicotinamide adenine dinucleotide (NADH, a key output of cellular 461 

metabolism). FLIM coupled with phasor analysis permits resolution of bound vs. free NADH, which correlates 462 

with oxidative phosphorylation vs. glycolytic metabolism, respectively [38,64]. Using FLIM, we examined the 463 

cellular metabolism of HCI-013+E2 and HCI-013EI tumors. We observed that  cells were mainly glycolytic at 464 

the  edge of both HCI-013+E2 and HCI-013EI tumors. However, cells at the core of HCI-013EI tumors were 465 

preferentially in an oxidative phosphorylated state as opposed to a more glycolytic state observed in cells 466 

within the core of the HCI-013+E2 tumors (Figures 5D and 5E, one-way ANOVA (p < 0.0001) followed by 467 

Tukey’s multiple comparisons test (p=0.0516). 468 
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We selected the HCI-013EI (not estrogen-supplemented) PDX variant to test the anti-tumor activity of 469 

Fulvestrant, Riluzole, or the combination relative to vehicle control. Forty-eight (48) 5-6 week-old intact SCID 470 

female mice were orthotopically implanted with a single 1-3 mm3 HCI-013EI PDX fragment without E2 471 

supplementation, then followed until tumors reached ~100 mm3 before enrollment to one of four (4) treatment 472 

arms: control (n=5), Fulvestrant (n=5), Riluzole (n=5), or the combination (n=5) (Figures 6A and S5A [55]). 473 

Relative to control, single-agent Riluzole, Fulvestrant, and the combination significantly slowed the tumor 474 

volume. However, the level of tumor growth inhibition relative to control varied among the three groups. The 475 

Riluzole group showed about 50% inhibition, whereas similar effects but greater inhibition (~90%) were 476 

observed in the Fulvestrant and combination groups. (Figure 6A, mixed effect analysis followed by Tukey’s 477 

multiple comparisons tests). Analysis of tumor weight at the endpoint for the treatment groups further 478 

supported the observed difference in tumor volume. The mean weights of the Fulvestrant, Riluzole, and 479 

Combination groups were lower than the control group. However, only the Fulvestrant and combination groups 480 

showed statistically significant differences (Figure 6B, Browne-Forsyth and Welch ANOVA followed by 481 

Dunnett’s T3 multiple comparisons tests) and were not different from each other. Analysis of relative tumor size 482 

at endpoint according to RECIST 1.1 criteria [53] shows that 2 of 5 tumors in the Fulvestrant group and 3 of 5 483 

in the combination group achieved partial response (PR) (Figure 6C).  We then performed 484 

immunohistochemistry to stain for proliferating cell nuclear antigen (PCNA) and Caspase-3 as a proxy for 485 

proliferation and apoptosis, respectively. Although not significant, the mean positive cells per mm3 of Caspase-486 

3 for the Fulvestrant, Riluzole, and combination group were each higher than the control group (Figure 6D). 487 

For the PCNA staining, expectedly, the Fulvestrant and combination group had lower mean positive cells per 488 

mm3. However, surprisingly, the mean positive stained cells per mm3 for the Riluzole group was higher than 489 

the control group (Figure 6E). Finally, analysis of mouse body weights between the treatment groups showed 490 

no significant differences. As seen in Figure S5B [55] the slope of the graphs for each treatment group is close 491 

to zero. Altogether, these data show that single-agent Riluzole has a significant inhibitory effect on HCI-013EI 492 

tumor volume, and with Fulvestrant already highly effective against this PDX model, combination treatment 493 

does not provide additional benefit. 494 

 495 

Riluzole plus Fulvestrant significantly inhibits proliferation in primary breast tumor explant cultures. 496 

Patient-derived explants (PDEs) provide another pre-clinical strategy  to test combination therapies. These 497 

short-term cultures of surgical samples maintain the local tumor microenvironment and capture inter-person 498 

heterogeneity [50]. We tested the efficacy of Fulvestrant, Riluzole, or the combination vs. solvent control 499 

(DMSO) in five (5) PDEs from ER+/PR+/HER2-negative primary tumors (Figure 7A). Using PCNA staining as 500 

a proxy for cell proliferation, the combination of Riluzole plus Fulvestrant significantly reduced PCNA (Figures 501 

7B and 7C, one-sample t-test vs. 0 (Vehicle), *p=0.013 Vehicle vs. Combination), with 4 of 5 PDEs showing 502 

better growth inhibition by the combination than either drug alone and the greatest effect seen in the ILC PDE. 503 

Staining for cleaved caspase 3 suggested a modest induction of apoptosis by either drug alone or the 504 

combination in some of the PDEs (Figure S4A [55]), but this was not statistically significant.  Together with the 505 

results presented in Figures 5, 6, and accompanying supplementary figures, these data suggest that 506 

combining Fulvestrant and Riluzole may offer improved therapeutic benefits in some ER+ breast cancers.     507 

  508 
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Discussion 509 

 510 

We tested the efficacy of Riluzole, alone and in combination with multiple endocrine therapies, in a diverse set 511 

of ER+ in vitro and in vivo models enriched for ILC. Single-agent Riluzole suppressed the growth of ER+ ILC 512 

and IDC cell lines in vitro, by inducing a histologic subtype-associated cell cycle arrest (G0-G1 for IDC, G2-M 513 

for ILC). In the Tamoxifen-resistant ILC-derived LCCTam model, Riluzole induced apoptosis and reduced 514 

phosphorylation of multiple pro-survival signaling molecules, including Akt/mTOR, CREB, and Src/Fak family 515 

kinases. Furthermore, in combination with either Fulvestrant or 4-hydroxytamoxifen, Riluzole additively 516 

suppressed ER+ breast cancer cell growth in vitro. In addition, single-agent Riluzole inhibited HCI-013EI ILC 517 

PDX growth in vivo, and the combination of Riluzole plus Fulvestrant significantly reduced proliferation in 518 

primary breast tumor explant cultures. 519 

 The increased combinatorial efficacy of Riluzole and Fulvestrant we observe across diverse cell line 520 

models of ER+ breast cancer in vitro is recapitulated ex vivo using PDEs. In the HCI-013EI PDX experiment, 521 

tumor volume after ~7 weeks of treatment was not significantly different in combination- vs. Fulvestrant-522 

treatment groups, although single-agent Riluzole had significant activity. We attribute this partly to the very 523 

strong response of this PDX to single-agent Fulvestrant as seen in this experiment (~90% inhibition) and 524 

reported by others [45,46].  In the PDE experiment, the combination of Riluzole and Fulvestrant was highly 525 

effective, with 80% of primary tumor explants (4/5) showing significant growth inhibition by the combination as 526 

measured by a reduction in PCNA (Figure 7). Improved combinatorial efficacy in the PDEs may also be due to 527 

the lower concentration of Fulvestrant used in these studies (100 nM). Additionally, Riluzole bioavailability is 528 

variable, leading to mixed efficacy in preclinical and clinical studies. For example, in preclinical studies of triple-529 

negative breast cancer [30] and glioblastoma [26], single-agent Riluzole does not have significant anti-tumor 530 

activity in vivo, whereas in our study and preclinical studies of melanoma [24,25,65] it does. However, in Figure 531 

6B-C, two of five Riluzole-treated tumors showed no reduction in tumor weight or relative tumor size versus 532 

control-treated tumors, which could be due to inconsistent bioavailability. Serum levels of the drug vary widely 533 

in ALS patients receiving the drug, and in a phase II trial for advanced melanoma, circulating Riluzole 534 

concentrations had marked inter-patient variability [66]. The Riluzole pro-drug troriluzole [67] appears to offer 535 

better bioavailability by reducing first-pass metabolism by CYP1A2, leading to sustained ~0.3-1.8 μM plasma 536 

concentrations of active drug in a recent phase Ib study that combined troriluzole (BHV-4157) with nivolumab 537 

in advanced solid tumors [68]. These and other Riluzole analogs will be important to explore alone and in 538 

combination with endocrine therapy in ER+ breast cancer. 539 

 In the Tamoxifen-resistant ILC-derived LCCTam model, Riluzole induces apoptosis and ferroptosis 540 

concomitant with reduced phosphorylation of multiple pro-survival signaling molecules. That these include 541 

components of the Akt/mTOR signaling pathway (Akt S437, TOR S2448, PRAS40 T246) is not surprising since 542 

Riluzole has been shown to inhibit Akt phosphorylation and synergize with mTOR inhibition in melanoma and 543 

glioblastoma models [26,57].  However, Src/Fak kinase family members (e.g., Yes and Fak) have not, to our 544 

knowledge, been previously implicated in Riluzole action. In vehicle-treated LCCTam cells, baseline 545 

phosphorylation of Fak Y397 is markedly increased compared to vehicle-treated SUM44 cells (Figure 3B). At 546 

the same time, Riluzole treatment reduced total and phosphorylated protein levels of Fak in only the LCCTam 547 

cells (Figure 3B-C). Multiple Src/Fak kinase family members play critical roles in cell survival, invasion, and 548 

migration. Additionally, Fak has been previously implicated in endocrine therapy resistance [69,70]. Being 549 

functionally E-cadherin-negative, ILC is highly resistant to anoikis (a form of cell death induced by extracellular 550 

matrix detachment) [71] and dependent upon a rewired actin cytoskeleton and constitutive actomyosin 551 

contractility (reviewed in [72]).  Consistent with this, expression of activated Src and Fak – both of which can 552 

drive resistance to anoikis [73] – are significantly higher in ILC vs. atypical lobular hyperplasia [74]. In parallel, 553 

ILC may exhibit increased sensitivity to ferroptosis inducers. Ferroptosis is cell density-dependent, with cells 554 

cultured in low-density conditions with fewer cell-cell contacts (a defining feature of ILC) being highly 555 

vulnerable to ferroptosis caused by inhibition of glutathione peroxidase 4 (GPX4, [75]). On the other hand, E-556 

cadherin-mediated intercellular interactions can suppress ferroptosis via activation of neurofibromin 2 (NF2, 557 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2023. ; https://doi.org/10.1101/2020.07.30.227561doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?yxwcom
https://doi.org/10.1101/2020.07.30.227561
http://creativecommons.org/licenses/by/4.0/


[76]). The specific contribution of Fak to Riluzole-mediated growth inhibition, apoptosis, and ferroptosis in ILC 558 

remains to be explored and will be a component of future studies, as will its role in the additive or synergistic 559 

growth suppression achieved by the combination of Riluzole and endocrine therapy. Nevertheless, it is 560 

tempting to speculate that agents (like Riluzole) that broadly target rewired cytoskeletal regulatory pathways 561 

and induce ferroptosis may be particularly effective against ILC.    562 

 This study has limitations that are important to consider. First, hormone-responsive ER+ models, 563 

particularly of ILC, are limited. In this study, we used three of the four well-established ER+, hormone-564 

responsive ILC lines [71], the ILC-derived HCI-013EI PDX model [15,60], and one of the five PDEs originated 565 

from ILC. In all ILC models we tested except for the HCI-013EI PDX, Riluzole plus Fulvestrant provided greater 566 

growth inhibition than single-agent Fulvestrant. Expansion of the PDE approach is an important strategy for 567 

rapidly diversifying the repertoire of preclinical ILC models [77] to test this and other novel endocrine therapy 568 

combinations, essential for a breast cancer subtype that has a significantly greater risk of late recurrence, and 569 

worse response to Tamoxifen and the second-generation SERD AZD9496 [12]. Second, Riluzole’s multiple 570 

proposed or confirmed mechanisms of action - from inhibition of signaling through GRMs [24] and glutamate 571 

release via the glutamate/cystine antiporter SLC7A11 or Xc
-
 [78], to blockade of voltage-gated sodium channels 572 

[79], inhibition of internal ribosome entry site (IRES)-mediated protein synthesis [26], attenuation of RNA 573 

polymerase III complex assembly [80], and inhibition of Wnt/-catenin signaling [81] – present a challenge to 574 

readily identifying patients who would benefit most from the drug. Some of this variability is cancer type-575 

specific, with Riluzole action tightly coupled to GRM expression in melanoma [24] and, to some extent, 576 

glioblastoma [26], but not in triple-negative breast cancer [27]. While reasonably well-defined in the central 577 

nervous system, the interconnected pathways of glutamate release, uptake, and signaling remain understudied 578 

in epithelial cells and their pathologies. We posit that future preclinical studies of Riluzole in this context 579 

(epithelial tumors generally, and ER+ ILC more specifically) should address these limitations.     580 
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Conclusions 583 

 584 

Our data suggest that Riluzole, alone or together with endocrine therapy, may offer therapeutic benefit in some 585 

ER+ breast cancers, including ILC, and support optimization and further investigation of Riluzole and its 586 

combinations in this setting. 587 
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ER+: estrogen receptor-positive 592 

SERM: selective estrogen receptor modulator 593 
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ILC: invasive lobular breast cancer 595 

IDC: invasive ductal breast cancer 596 

mGluR, GRM: metabotropic glutamate receptor 597 
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DMSO: dimethylsulfoxide 603 
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PDE: patient-derived explant 609 
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PDX: patient-derived xenograft 612 
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SQ: subcutaneous 614 
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ZIP: zero interaction potency 623 

ANOVA: analysis of variance 624 

MM134: MDA-MB-134VI cell line 625 

2D: two-dimensional 626 

NSG: NOD scid gamma 627 

SCID: severe combined immunodeficiency 628 

GPX4: glutathione peroxidase 4 629 
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Figure Legends 872 

 873 

Figure 1. Growth suppression of ER+ breast cancer cell lines by Riluzole. A, Cells seeded in 96-well 874 

plates were treated with the indicated concentrations of Riluzole (RIL, 33 nM to 100 μM) or DMSO control for 875 

7-8 days prior to staining with crystal violet. Data are presented as mean % growth ± standard error of the 876 

mean (SEM) of % growth (vehicle = 100%) for 5-6 technical replicates and represent 2-4 independent 877 

biological assays. The dotted line box indicates data re-graphed in panel B. Data were analyzed by nonlinear 878 

regression ([inhibitor] vs. normalized response), yielding the following IC50 [M] estimates: SUM44, 1.27e-4; 879 

LCCTam, 2.13e-5; MM134, 2.73e-5; MM134 LTED, 1.209e-5;  MCF7, 1.09e-5; LCC9, 2.23e-5; MCF10A, 880 

4.33e-5. B, Relative response to 10 μM RIL re-graphed from panel A (dotted line box). Data are presented as 881 

median % growth with upper/lower quartiles of % growth (vehicle = 100%) for 5-6 technical replicates and 882 

represent 2-4 independent biological assays. For the SUM44/LCCTam, MM134/MM134 LTED, and 883 

MCF7/LCC9 cell line pairs, data were compared by the Mann-Whitney test. **p=0.002, **p = 0.0043, and 884 

*p=0.024 respectively. Dashed lines denote 50% (panels A and B) and 100% growth inhibition (panel B). 885 

 886 

Figure 2. Riluzole induces a histologic subtype-associated cell cycle arrest. Cells seeded in 6-well plates 887 

were treated with 10 μM Riluzole or DMSO control (vehicle, Veh) for the indicated times prior to collection, 888 

fixation, staining, and cell cycle analysis. Data are presented as mean % cells ± SD for 3-4 independent 889 

biological assays and analyzed by two-way ANOVA followed by either Sidak’s (single time point) or Dunnett’s 890 

(multiple time points) multiple comparisons tests. SUM44: *p = 0.018. LCCTam: ****p < 0.0001. MM134: *p = 891 

0.011. MM134 LTED: *p = 0.05. MCF7: ****p < 0.0001. LCC9: *p = 0.015. MCF10A: not significant.  892 

 893 

Figure 3. Riluzole inhibits phosphorylation of pro-survival signaling molecules and induces apoptosis 894 

and ferroptosis.  895 

A, Cells seeded in 6-well plates were treated with 10 μM Riluzole or DMSO control (vehicle, Veh) for 2 days 896 

prior to collection, lysis, and processing, then assayed using the Human Phospho-Kinase Proteome ProfilerTM 897 

Array. A ratio of background-corrected intensity values for targets (phospho-kinase spots) to references 898 

(control spots) was created for each condition (DMSO and Riluzole) within each cell line. Data are presented 899 

as the geometric mean of the Riluzole: DMSO ratio for 2 technical replicates from a single experiment. B, 900 

Sum44, and LCCTam cells seeded in 6-well plates were treated with 10 μM Riluzole or DMSO control for 901 

several time points (6,12, 24, and 48 hours). After which, cells were collected, lysed, and western blot analysis 902 

was performed to test for expression and phosphorylation of Fak Y397 phosphorylation. The data are 903 

presented as images showing expression levels. C, Quantification analysis of Fak and p-Fak protein band 904 

density from western blot in Figure 3B. D, Cells seeded in 6-well plates were treated with 10 μM Riluzole or 905 

DMSO control (vehicle, Veh) for 2 days prior to staining with Annexin V and PI. The percent of live cells (PI-, 906 

annexin V-) and early apoptotic (PI-, annexin V+) cells are shown. Data are presented as mean % cells ± SD for 907 

3 (SUM44) or 4 (LCCTam) independent biological assays and analyzed by two-way ANOVA followed by 908 

Sidak’s multiple comparisons test (*p =0.021, **p = 0.04 (live) and **p= 0.011). E, Cells of SUM44 and 909 

LCCTam were seeded in 6-well plates. Twenty-four hours later, cells were treated with control (DMSO), 910 

Riluzole (10 μM), or a combination of Riluzole and Ferrostatin-1 (10 uM). 24h after treatment,  the cells were 911 

collected, stained with trypan blue, and counted. Data are presented as mean ± standard deviation (SD) of the 912 

ratio of the cell number of the treatment groups relative to the control for 3-4 independent biological assays and 913 

analyzed by two-way ANOVA followed by Tukey’s multiple comparison test (Sum44 – (**p = 0.005, *p = 0.016), 914 

LCCTam – ( **p = 0.002, *p = 0.043)). F, Sum44, and LCCTam cells seeded in 6-well plates were treated with 915 

control (DMSO), Riluzole (10 µM), or a combination of Riluzole and Ferrostatin-1(10 µM) for 48hr. Post-916 

treatment, cells were collected, lysed, and western blot analysis was performed to test for expression of 917 

Malondialdehyde (MDA). The data are presented as images showing expression levels. 918 

 919 
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Figure 4. Additive suppression of ER+ breast cancer cell line growth by Riluzole in combination with 920 

endocrine therapies. A, Cells seeded in 96-well plates were treated with 1 μM Fulvestrant, 10 μM Riluzole 921 

(RIL), the combination, or DMSO control (vehicle, Veh) for 7-8 days prior to staining with crystal violet. Data 922 

are processed as the mean % growth for 5-6 technical replicates and represent 2-4 independent biological 923 

assays. The mean % growth data of a representative single technical replicate was then used to create a 924 

combination matrix used in SynergyFinder, and the results were presented as 2D surface plots. The 925 

SynergyFinder scores are shown at the top of the plots, highlighting the level of synergy. B and C, Graphical 926 

representation of the synergy scores from the Riluzole – Fulvestrant (B) and Riluzole – 4HT (C) combination 927 

using  3 models – Bliss, HSA, and ZIP.   928 

 929 

Figure 5. Characterization of tumor growth, hormone receptor expression, and metabolic state for HCI-930 

013 vs. HCI-013EI ILC PDX models.  A, Tumor latency for HCI-013 and HCI-013EI patient-derived xenografts 931 

(PDXs) with or without estrogen (E2) supplementation. Six (6) mice per group were orthotopically implanted 932 

with a 1-3 mm3 PDX fragment, then followed until measurable tumor development (by calipers). Data are 933 

presented as percent tumor free and were analyzed by log-rank (Mantel-Cox) test. ***p=0.0007. B, 934 

Representative images of ER, PR, and Ki67 staining from HCI-013+E2 and HCI-013EI tumors. C, Semi-935 

quantitative analysis of multiplex IHC (mIHC) staining for ER, PR, and Ki67 from HCI-013+E2 (n=5) and HCI-936 

013EI (n=4) tumors from mice independent of those for whom tumor latency is shown in panel A. Data are 937 

presented as overall mean ± SD of % marker positivity for 5-13 fields per tumor. D, Representative schematic 938 

of fluorescence lifetime imaging microscopy (FLIM) analysis of cellular metabolism at the tumor core and edge. 939 

Images are pseudo-colored based on the phasor plot (below) where more protein bound and more free NADH 940 

phasor positions are indicated by red and cyan circles, respectively, and the color scheme chosen reflects 941 

more bound NADH in purple and more free NADH in cyan.  E, Quantification of FLIM in HCI-013+E2 vs. HCI-942 

013EI tumor cores and edges. Tumor edges were strongly glycolytic in both HCI-013+E2 and HCI-013EI, but 943 

tumor cores were preferentially in an oxidative phosphorylated state in HCI-013EI.The data were analyzed by 944 

one-way ANOVA (p < 0.0001) followed by Tukey’s multiple comparisons test. Each symbol indicates the mean 945 

Cfree NADH/Cbound NADH for 16 fields of view of the tumor edge or core in an individual tumor (n=5 tumors per PDX 946 

line). 947 

 948 

Figure 6. Single-agent Riluzole inhibits tumor growth in vivo, but the combination with Fulvestrant is 949 

not better than Fulvestrant alone in the HCI-013EI ILC PDX model. A, Forty-eight (48) mice were 950 

orthotopically implanted with a 1-3 mm3 HCI-013EI PDX fragment without E2 supplementation, then followed 951 

until tumors reached ~100 mm3 before enrollment to one of four (4) treatment arms: control (n=5), Fulvestrant 952 

(n=5), Riluzole (n=5), or the combination (n=5). Mice were monitored for tumor growth (measured by calipers) 953 

and body weight twice per week. Data are presented as mean tumor volume ± SEM, and were analyzed by 954 

mixed-effects analysis followed by Dunnett’s multiple comparisons tests at each timepoint vs. control. B, At the 955 

end of the study, tumors were collected and weighed. The graph illustrates the summary of the collected data, 956 

which were analyzed using Browne-Forsyth and Welch ANOVA followed by Dunnett’s T3 multiple comparisons 957 

tests. C, Graph showing relative tumor size at endpoint according to RECIST 1.1 criteria. It shows that 2 of 5 958 

tumors in the Fulvestrant group and 3 of 5 in the combination group achieved partial response (PR). D and E,  959 

The tumors collected from each treatment group were formalin-fixed, paraffin-embedded, sectioned, and 960 

stained with proliferating cell nuclear antigen (PCNA) and Caspase-3 by IHC. These antibodies served as a 961 

proxy for proliferation and apoptosis, respectively. The stained samples were analyzed, and the data were 962 

presented graphically in D for PCNA, and E for Caspase-3.  963 

 964 

Figure 7. Riluzole plus Fulvestrant significantly inhibits proliferation in primary breast tumor explant 965 

cultures. A, Pathologic data for five (5) patient-derived explants (PDEs). ER, PR, and Ki67% are from the 966 

initial surgical specimen, and NOS = not otherwise specified. *denotes the PDE for which representative 967 

images are shown in panel C.  B, PDEs were treated with 100 nM Fulvestrant, 10 μM Riluzole, the 968 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2023. ; https://doi.org/10.1101/2020.07.30.227561doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.227561
http://creativecommons.org/licenses/by/4.0/


combination, or DMSO control (vehicle) for 2 days prior to formalin fixation, paraffin embedding, sectioning, 969 

and staining for PCNA by IHC. Data are presented as change relative to vehicle (set to 0) for each explant and 970 

analyzed by one-sample t-test vs. 0 (vehicle). *p=0.013 Vehicle vs. Combination. *denotes the PDE for which 971 

representative images are shown in panel C. C, Representative images of PCNA and Caspase-3 staining from 972 

PDE #1055 (ILC). 973 
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Table 1: Primary Antibody/OPAL Dye Pairings and Incubation Conditions 1014 

 1015 

  Antibody 1 Antibody 2 Antibody 3 Antibody 4 Antibody 5 

Antigen PR Ki67 HER2 ER alpha panCK 

Company Agilent Agilent Agilent Santa Cruz Agilent 

Cat# M3569 M7240 A0485 sc-8002 M3515 

Species Mouse Mouse Rabbit Mouse Mouse 

Dilution                   1/50 1/50 1/200 1/50 1/300 

Incubation Time 1 hr overnight 1 hr overnight 1 hr 

Incubation 

Temp. RT 4°C RT 4°C RT 

Control Tissue 

Breast 

Cancer Tonsil 

Breast 

Cancer 

Breast 

Cancer 

Breast 

Cancer 

OPAL Fluor. 650 520 620 570 690 

OPAL Conc.              1/140 1/30 1/160 1/125 1/30 

Antigen Retrieval AR6 AR6 AR6 AR6 AR6 
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Figure 2

A. B. 

This figure will have panels A through G: SUM44 (A), LCCTam (B), MM134 (C), LTED-D (D), MCF7 (E), LCC9 (F), MCF10A (G). These are the 48h only cell 
cycle data for vehicle vs RIL, the stacked bar charts. You should follow the guidelines in the comment bubbles on Figure 1 to get those individual 
stacked bar chart images exported from Prism and sized appropriately here. 

Try to get A-D on the top row and E-G on the bottom row so that you can highlight Lobular and Ductal as I have done here to the left. These labels are 
in 16 point Roboto font. 
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Supplementary Figure Legends, Olukoya et al 2023 (https://doi.org/10.1101/2020.07.30.227561)

Figure S1. Growth suppression of ER+ breast cancer cell lines by Riluzole in hormone-deprived vs. 

hormone-replete conditions. In these panels, data already presented in Figure 1A (hormone-replete 

conditions, filled symbols) were directly compared to hormone-reduced (SUM44 and LCCTam F12 cells, open 

symbols) or hormone-deprived conditions (MM134 CCS and MCF7 CCS cells, open symbols) as detailed in 

the Methods section. Cells seeded in 96-well plates were treated with the indicated concentrations of Riluzole 

(RIL, 33 nM to 100 μM) or DMSO control for 7-8 days prior to staining with crystal violet. Data are presented as 

mean % growth ± standard error of the mean (SEM) of % growth (vehicle = 100%) for 5-6 technical replicates 

and represent 2-4 independent biological assays. The dotted line box indicates 10 μM RIL, the concentration 

used for subsequent in vitro assays. Data were analyzed by nonlinear regression ([inhibitor] vs. normalized 

response), yielding the following IC50 [M] estimates: SUM44, 1.27e-4 hormone-replete vs. 5.5e-5 hormone-

reduced; LCCTam, 2.13e-5 hormone-replete vs. 3.96e-5 hormone-reduced; MM134, 2.73e-5 hormone-replete 

vs. 1.16e-4 hormone-deprived; MCF7, 1.09e-5 hormone-replete vs. 7.69e-6 hormone-deprived. 

Figure S2. Cell cycle analysis of Riluzole-treated BCK4 cells. Cells seeded in 6-well plates were treated 

with 10 μM Riluzole or DMSO control (vehicle, Veh) for the indicated times prior to collection, fixation, staining, 

and cell cycle analysis. Data are presented as mean % cells ± SD for 3-4 independent biological assays and 

analyzed by two-way ANOVA followed by either Sidak’s (single time point) or Dunnett’s (multiple time points) 

multiple comparisons tests BCK4: *p=0.044.  

Figure S3. Effect of Riluzole on kinase phosphorylation, cell death, and expression of ferroptosis 

marker 4-HNE. A, SRPlot analysis of gene symbols corresponding to the dephosphorylated kinases and 

substrates in Riluzole-treated LCCTam cells shown in Figure 3A. False discovery rate (FDR) corrected p 

values are rank-ordered in -log(10) scale. B, Sum44, and LCCTam cells seeded in 6-well plates were treated 

with 10 μM Riluzole or DMSO control at several time points (6,12, 24, and 48 hours). After which, cells were 

collected, lysed, and western blot analysis was performed to test for expression and phosphorylation of Yes 

Y426 phosphorylation. The data are presented as images showing expression levels. C, Cells seeded in 6-well 

plates were treated with 10 μM Riluzole or DMSO control (vehicle, Veh) for 2 days prior to staining with 

Annexin V and PI. The percent of cells that are live (PI-, annexin V-), early apoptotic (PI-, annexin V+), late 

apoptotic ( PI+, annexin V+), and necrotic (PI+, annexin V-) are shown. Data are presented as mean % cells ± 

SD for 3 (SUM44) or 4 (LCCTam) independent biological assays, and analyzed by two-way ANOVA followed 

by Sidak’s multiple comparisons test. D, Sum44, and LCCTam cells seeded in 6-well plates were treated with 

control (DMSO), Riluzole (10 µM), or a combination of Riluzole and Ferrostatin-1(10 µM) for 48hr. Post-

treatment, cells were collected, lysed, and western blot analysis was performed to test for expression of 4-

Hydroxynonenal (4HNE). The data are presented as images showing expression levels. 

Figure S4. Cell growth assays in BCK4 and MM134 LTED cells. A, Cells seeded in 96-well plates were 

treated with 1 μM Fulvestrant, 10 μM Riluzole (RIL), the combination, or DMSO control (vehicle, Veh) for 7-8 

days prior to staining with crystal violet. Data are presented as median with upper/lower quartiles of % growth 

for 5-6 technical replicates and represent 2-4 independent biological assays. Data were analyzed by the 

Kruskal-Wallis test, followed by Dunn’s multiple comparison test. B, Cells seeded in 96-well plates were 

treated with 1 μM Fulvestrant, 10 μM Riluzole (RIL), the combination, or DMSO control (vehicle, Veh) for 7-8 

days prior to staining with crystal violet. Data are processed as the mean % growth for 5-6 technical replicates 

and represent 2-4 independent biological assays. The % growth data of a representative single technical 

replicate is presented in the graph showing the effecting of different concentrations of fulvestrant on MM134 

LTED. 
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Figure S5. Effect of Riluzole plus Fulvestrant on individual HCI-013EI tumor growth and mouse body 

weight. A, Data already presented in Figure 6A as mean tumor volume ± SEM are re-graphed to show the 

growth of each individual tumor. B, Mouse weights of experimental animals for whom tumor volume 

measurements are shown in panel A and Figure 6A are presented as mean weight ± SEM for each treatment 

group. C, Representative image of tumor presented in Figure S5A, which were formalin-fixed, paraffin-

embedded, sectioned, and stained with proliferating cell nuclear antigen (PCNA) and Caspase-3 by IHC. 

 

Figure S6. Effect of Riluzole plus Fulvestrant on apoptosis in patient-derived explants (PDEs). PDEs 

were treated with 100 nM Fulvestrant, 10 μM Riluzole, the combination, or DMSO control (vehicle) for 2 days 

prior to formalin fixation, paraffin embedding, sectioning, and staining for cleaved caspase 3 by IHC. Data are 

presented as change relative to vehicle (set to 0) for each explant and analyzed by one-sample t-test vs. 0 

(vehicle). 
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