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Abstract

Background. Resistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer remains a
significant clinical problem. Riluzole is FDA-approved for the treatment of amyotrophic lateral sclerosis. A
benzothiazole-based glutamate release inhibitor with several context-dependent mechanism(s) of action,
Riluzole has shown anti-tumor activity in multiple malignancies, including melanoma, glioblastoma, and breast
cancer. We previously reported that the acquisition of Tamoxifen resistance in a cellular model of invasive
lobular breast cancer is accompanied by the upregulation of GRM mRNA expression and growth inhibition by
Riluzole.

Methods. We tested the ability of Riluzole to reduce cell growth, alone and in combination with endocrine
therapy, in a diverse set of ER+ invasive ductal and lobular breast cancer-derived cell lines, primary breast
tumor explant cultures, and the estrogen-independent, ESR1-mutated invasive lobular breast cancer patient-
derived xenograft model HCI-013ElI.

Results. Single-agent Riluzole suppressed the growth of ER+ invasive ductal and lobular breast cancer cell
lines in vitro, inducing a histologic subtype-associated cell cycle arrest (GO-G1 for ductal, G2-M for lobular).
Riluzole induced apoptosis and ferroptosis and reduced phosphorylation of multiple pro-survival signaling
molecules, including Ak/mTOR, CREB, and Src/Fak family kinases. Riluzole, in combination with either
Fulvestrant or 4-hydroxytamoxifen, additively suppressed ER+ breast cancer cell growth in vitro. Single-agent
Riluzole significantly inhibited HCI-013EI patient-derived xenograft growth in vivo, and the combination of
Riluzole plus Fulvestrant significantly reduced proliferation in primary breast tumor explant cultures.
Conclusions. Riluzole, alone or combined with endocrine therapy, may offer therapeutic benefits in diverse
ER+ breast cancers, including lobular breast cancer.
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Background

Estrogen receptor-positive (ER+) breast cancer is the most commonly diagnosed cancer among women in the
United States [1]. Endocrine therapies ranging from selective estrogen receptor modulators and
downregulators (SERMs, SERDSs) to aromatase inhibitors are the backbone of our current standard of care for
the clinical management of ER+ breast cancers [2]. Although these treatments have significantly improved
disease-free and overall survival for individuals with ER+ breast cancer, endocrine resistance remains a
persistent, multifactorial problem [3]. Current efforts aim to address this problem through treatment with
endocrine agents combined with other molecularly targeted therapies.

To further complicate these efforts, ER+ breast cancer is not a single disease. Invasive lobular breast
cancer (ILC) is a distinct histologic subtype of breast cancer that is overwhelmingly ER+ yet has distinct
genomic, transcriptomic, and proteomic features [4—6]. These distinctions have important implications for
endocrine therapy response. Also, when compared to the more common invasive ductal breast cancer (IDC,
invasive mammary carcinoma of no special type), ILC carries a greater risk for late recurrence (evident > 6
years after initial diagnosis) [7,8] and responds less to the SERM Tamoxifen [9,10] and potentially the steroidal
aromatase inhibitor exemestane [11]. Additionally, models of ILC are less responsive to the second-generation
SERD AzZD9496 than Fulvestrant, while these drugs are equipotent in preclinical models of IDC [12].

Our group [13,14] and others [12,15-20] have identified a number of potential mechanisms that
contribute to endocrine therapy resistance in ILC. We recently identified the upregulation of multiple
metabotropic glutamate receptors (mGIuRs, GRMs) in Tamoxifen-resistant ILC cells [14]. This, coupled with
other studies that directly or indirectly implicate altered amino acid metabolism and signaling in ILC pre-clinical
models [21] and clinical disease [22,23], led us to consider whether glutamate signaling is functionally relevant
to endocrine resistance in endocrine-resistant ILC. Initially reported in melanoma [24,25] and now other
malignancies (e.g.[26]), pro-tumorigenic signaling through GRMs can be inhibited by Riluzole, an oral
benzothiazole-based glutamate release inhibitor that is FDA-approved for the treatment of amyotrophic lateral
sclerosis (ALS). Riluzole’s proposed mechanism of action within the central nervous system in ALS and in
melanoma is that blocking glutamate release into the extracellular space starves GRMs of their glutamate
ligand, thus functionally inhibiting them. This inhibition of the GRMs ultimately reduces glutamate excitotoxicity
and inhibits tumor cell growth. In triple-negative breast cancer (TNBC), Riluzole’s action may not depend on
GRMs [27,28], although Riluzole exerts anti-tumor effects [29-31]. Despite the potential of repurposing
Riluzole in ER+ breast cancer, especially ILC, this approach has not been a major focus to date. Therefore,
this study aims to more broadly test the efficacy of Riluzole, alone and in combination with multiple endocrine
therapies, in a diverse set of ER+ in vitro and in vivo models enriched for ILC.
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Methods

Cell Culture and Reagents. Several cell lines were cultured, maintained, and used in this study. These cell
line models include; ER+ ILC cell lines (SUM44, LCCTam, MDA-MB-134VI (MM134) and MDA-MB-134VI long-
term estrogen-deprived (LTED; MM134 LTED), and BCK4), ER+ IDC cell lines (MCF7 and LCC9), and the ER-
negative (ER-) non-transformed mammary epithelial cell line MCF10A as a control. MCF7 and LCC9; SUM44
and LCCTam; MM134 and MM134 LTED all represent pairs of parental and resistant cell lines, respectively.
SUM44 and LCCTam cells were maintained under serum-free conditions in improved minimal essential media
(IMEM, #A1048901, ThermoFisher, Grand Island, NY) supplemented with insulin, hydrocortisone, and other
supplements as previously described [13], with the addition of 500 nM 4-hydroxytamoxifen (#H7904, Sigma
Aldrich, St. Louis, MO) to LCCTam cells. For selected experiments, SUM44 and LCCTam cells were
maintained under serum-free conditions in a base media of Ham’s F12 (#11765062, ThermoFisher)
supplemented as above. MM134 cells and MM134 LTED) were maintained in IMEM supplemented with 10%
fetal bovine serum (FBS) and phenol red-free IMEM (#A1048801, ThermoFisher) supplemented with 10%
charcoal-cleared serum (CCS), respectively. BCK4 cells were maintained in IMEM supplemented with 10%
FBS, insulin, and nonessential amino acids, as previously described [32]. MCF7 and LCC9 cells were
maintained in IMEM supplemented with 5% FBS and phenol red-free IMEM supplemented with 5% CCS,
respectively. MM134 and MCF7 cells were short-term hormone-deprived for selected experiments by culturing
in phenol red-free IMEM supplemented with 5% CCS for 72 hours. The immortalized mammary epithelial cell
line MCF10A was maintained as previously described [33]. All cell lines were authenticated by short tandem
repeat (STR) profiling and regularly tested to ensure they remained free of Mycoplasma spp. contamination.
Unless otherwise noted, general cell culture supplements and reagents were purchased from either
ThermoFisher or Sigma Aldrich. Fulvestrant and Riluzole were purchased from Sigma Aldrich, Tocris Bio-
Techne (Minneapolis, MN), or Selleckchem (Houston, TX). Ferrostatin-1 was purchased from Selleckchem.

Cell Proliferation Assays. On Day 0, cells were seeded in 96-well plates at the following densities: 1,000
cells/well (MCF7); 2,000 cells/well (LCC9, MCF10A); 10,000 cells/well (SUM44, LCCTam, MM134, MM134
LTED); 15,000 cells/well (BCK4). Forty-eight hours later, on Day 2, cells were treated with the indicated
concentration of compound(s) or solvent control (DMSQO) for an additional 7 or 8 days, with
media/compound(s) replaced on Day 5 or 6. Plates were then stained with crystal violet, dried, rehydrated, and
read as previously described in [14]. Data are presented as mean * standard error of the mean (SEM, Riluzole
growth curves), or median with upper/lower quartiles (effect of 10 uM Riluzole on cell line pairs) of % growth
(vehicle = 100%) for 5-6 technical replicates and are representative of 2-4 independent biological assays. For
assays of Riluzole in combination with Fulvestrant or Tamoxifen for all cell lines except BCK4, data are
processed as the mean % growth for 5-6 technical replicates and represent 2-4 independent biological assays.
A representative single technical replicate's mean % growth data was then used to create a combination matrix
used in SynergyFinder, and the results were presented as 2D surface plots. SynergyFinder uses predictive
models such as highest single agent (HSA), Bliss, and Zero interaction potency (ZIP) to quantify the degree of
combination synergy or antagonism and outputs a synergy score. When interpreting SynergyFinder scoring, a
synergy score less than -10 shows antagonistic drug interaction, a score between -10 and 10 shows an
additive drug interaction and a score greater than 10 shows a synergistic drug interaction. For the assay of
Riluzole in combination with Fulvestrant in BCK4 cells, data are presented as median with upper/lower
guartiles of % growth for 5-6 technical replicates and represent 2-4 independent biological assays.

Cell Cycle Assays. On Day 0, cells were seeded in 6-well plates at the following densities: 150,000 cells/well
(MCF7, LCC9); 300,000 cells/well (SUM44, LCCTam, MM134, MM134 LTED, BCK4, MCF10A). Forty-eight
hours later, on Day 2, cells were treated with 10 uM Riluzole or DMSO control for the additional indicated times
before collection, fixation, staining, and cell cycle analysis by flow cytometry as described in [34]. Data are
presented as mean * standard deviation (SD) for 3-4 independent biological assays.
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Annexin V Apoptosis Assays. On Day 0, cells were seeded in a 6-well plate at 300,000 cells/well (SUM44,
LCCTam). Forty-eight hours later, on Day 2, cells were treated with either 10 uM Riluzole or DMSO solvent as
a control for another 48 hours. On Day 4, cells were collected and stained with 4pL of propidium iodide (PI)
and 4L of annexin V conjugated with fluorescein isothiocyanate (FITC) in 100uL of 1X binding buffer. Control
cells were either left unstained or stained with either Pl or annexin V dye conjugated with FITC, as described in
[35]. Live (PI', annexin V), early apoptotic (PI, annexin V¥), late apoptotic(PI*, annexin V*), and necrotic cells
(PI*, annexin V') were guantified by flow cytometry. The PI/Annexin V-FITC apoptosis detection kit was
purchased from BioLegend (#640914, San Diego, CA, USA). Data are presented as mean + SD for 3 (SUM44)
or 4 (LCCTam) independent biological assays.

Human Phospho-Kinase Proteome Profiler™ Array. On Day 0, cells were seeded in a 6-well plate at
500,000 cells/well (SUM44, LCCTam). Forty-eight hours later, on Day 2, cells were treated with either 10 pM
Riluzole or DMSO solvent as a control for 48 hours. On Day 4, cells were collected in 100 pL lysis buffer/well
before determining total protein concentration by bicinchoninic acid (BCA) assay (#23225, ThermoFisher).
According to the manufacturer's instructions, five hundred micrograms of whole cell lysate were then assayed
using the Human Phospho-Kinase Proteome ProfilerTM Array (#ARY003B, Bio-Techne). Array membranes
were visualized using chemiluminescence detected by HyBlot CL autoradiography film (#£3018, Thomas
Scientific, Swedesboro, NJ), then films were scanned and analyzed using FIJI [36]. A ratio of background-
corrected intensity values for targets (phospho-kinase spots) to references (control spots) was created for each
condition (DMSO and Riluzole) within each cell line. Data are presented as the mean of the Riluzole: DMSO
ratio for two technical replicates from a single experiment for each cell line. Gene symbols corresponding to the
kinases showing decreased phosphorylation in response to Riluzole in LCCTam cells were analyzed using
SRPIlot (http://www.bioinformatics.com.cn/srplot) to identify top functional enrichments.

Western blot. SUM44 and LCCTam cells were seeded in 6-well plastic tissue culture plates at

250,000 cells/well (FAK and YES blots) or 300,000-600,000 cells/well (4-HNE and MDA blots) 48 h before
treatment. The cells were treated for the times indicated in the figure legend. For the FAK and YES blots, the
cells were treated with the control (DMSO) or drug (10uM Riluzole). In the case of the MDA and 4-HNE blots,
the cells were treated with control (DMSQ), Riluzole (10 uM), or a combination of Riluzole and Ferrostatin-1(10
pUM). After treatment, cells were lysed in radioimmunoprecipitation assay buffer (RIPA - 150 mm NaCl, 50

mwm Tris pH 7.5, 1% Igepal CA-630, and 0.5% sodium deoxycholate) supplemented with Pierce™ protease and
Phosphatase inhibitor mini-tablets (Thermo Scientific). Protein lysates, extracted following centrifugation of the
lysed cells, were mixed in a 3:1 with sample buffer (NUPAGE™ LDS Sample Buffer (4X) + 2-Mercaptoethanol
in 2:1) and loaded onto a precast Gel (NUPAGE™ 4-12% Bis-Tris Gel, Invitrogen). Proteins were transferred to
nitrocellulose membranes, blocked in 5% nonfat dry milk in Tris Buffered Saline and Tween-20 [TBST; 10 mm
Tris HCI, 150 mm NaCl, and 0.05% Tween-20 (pH 8.0)] at room temperature for one hour, then probed
overnight with the following primary antibodies (diluted in TBST): phospho-FAK (1:1000), total FAK (1:1000)
from Cell Signaling (Danvers, MA); phospho-YES (1:1000); total-YES (1:500-1:1000); 4-HNE (1:700) from
Abcam (Waltham, MA); and MDA clone -1F83 (1:200) from VWR (Radnor, PA). Nitrocellulose membranes
were then incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies from Cell

Signaling (Danvers, MA) (1:2000) at room temperature for one hour, followed by incubation in enhanced
chemiluminescence from Advansta (San Jose, CA) and imaged in the Amersham imager 600 (GE Healthcare).
Membranes were reprobed for beta-actin (Cell Signaling, 1:1000) for =21 h at room temperature as a loading
control.

Cell Viability Assays. On Day 0, 300,000 — 400,000 cells of SUM44 and LCCTam were seeded in 6-well
plates. Twenty-four hours later, on Day 1, cells were treated with control (DMSO), or Riluzole (10 uM), or a
combination of Riluzole and Ferrostatin-1 (10 uM). On day 2, the cells were collected after a 24hr treatment
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period. The collected cells were stained with trypan blue and counted using the Countess Il automated cell
counter (Thermofisher). Data are analyzed using Prism 9 and presented as mean + standard deviation (SD) of
the ratio of the cell number of the treatment groups relative to the control for 3-4 independent biological assays.

HCI-013 and HCI-013EI Patient Derived Xenograft (PDX) Experiments. All animal studies were ethically
conducted in accordance with our approved Institutional Animal Care and Use Committee (IACUC) protocols
#2018-0005 and #2018-0006. For the comparison of time to tumor formation between HCI-013 and HCI-013El
in the presence vs. absence of supplemental estrogen pellets, 5-6 week-old intact (non-ovariectomized) female
non-obese diabetic, severe combined immunodeficient mice (NOD.CB17-Prkdcscid/NCrCrl, purchased from
Charles River, Wilmington, MA) were orthotopically implanted into the right 4th mammary gland with a single 1-
3 mm?3 PDX fragment per mouse as follows: HCI-013EI (n=6); HCI-013EI+E2 (n=6); HCI-013 (n=6); HCI-
013+E2 (n=6). “+E2” denotes co-implantation of a 1 mg estrogen pellet under the skin on the back between the
shoulder blades. Mice were followed until measurable tumor development (by calipers), and data are
presented as a survival plot with n=6 mice per group.

For the treatment study of HCI-013EI tumors, 5-6-week old intact (non-ovariectomized) female mice were
orthotopically implanted into the right 4th mammary gland with a single 1-3 mm? HCI-013EI PDX fragment per
mouse without estrogen supplementation, then followed until tumors reached ~100 mm? before enrollment to
one of the four (4) treatment arms: Control (n=5); 25mg/kg Fulvestrant in castor oil SQ (once per week, n=5);
10 mg/kg Riluzole PO in corn oil (5 days per week, n=5); or the combination (n=5) for eight weeks. Mice were
monitored for tumor growth (measured by calipers) and body weight twice per week. Tumor volumes were
calculated by the modified ellipsoid formula V=1/2(XY?), where X is the longest axis, and Y is the longest
perpendicular axis. Tumor volume data are presented as mean + SEM for the number of mice per treatment
group. The baseline measurement represents the measurement at the point of enrollment to a treatment group
based on the a priori tumor volume as calculated above. The subsequent measurements are those taken while
the mice are on treatment at the twice per week frequency. At the study’s conclusion, mice were humanely
euthanized by approved AVMA guidelines. Tumors from the treatment study were resected, weighed, formalin-
fixed, and paraffin-embedded.

Standard Immunohistochemistry (IHC) Staining. Sections from formalin-fixed, paraffin-embedded tissues
were deparaffinized with xylenes and rehydrated through a graded alcohol series. Heat-induced epitope
retrieval (HIER) was performed by immersing the tissue sections at 98°C for 20 minutes in LowFlex (Dako
#K8005). Staining was performed following the epitope retrieval process using VectaStain Kit from Vector Labs
for cleaved Caspase-3 and horseradish peroxidase-labeled polymer from Dako (K4001) for PCNA. Slides were
treated with 3% hydrogen peroxide and 10% normal goat serum for 10 minutes each and exposed to primary
antibodies- 1/120 for Caspase-3 and 1/1000 for PCNA Santa Cruz #sc56- for one hour at room temperature.
Slides were then exposed to appropriate biotin-conjugated secondary antibodies, Vectastain ABC reagent, and
DAB chromagen (Dako) for cleaved Caspase-3 and HRP labeled polymer and DAB chromagen (Dako) for
PCNA. Slides were counterstained with Hematoxylin (Fisher, Harris Modified Hematoxylin), blued in 1%
ammonium hydroxide, dehydrated, and mounted with Acrymount.

IHC Imaging and Analysis. Slides were scanned at 40X magnification using the Aperio GT 450, an
automated digital pathology slide scanner. The whole slide scans were viewed and analyzed with QuPath-
0.3.0, open-source software used for bioimage analysis [37]. The images from the Caspase-3 and PCNA
slides were separated into respective project groups, and a representative image from each group was
analyzed. The corresponding analysis setting was then applied to the group to ensure uniformity across all the
images. First, the default stain vector was selected to deconvolute the hematoxylin and DAB stains. Next, a
region of interest (ROI) for analysis was selected; in this study, the entire tumor area was established as the
region of interest for this analysis. Finally, the ROI was analyzed for positive stain detection, and the results
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(number positive per mm squared) were exported as a CSV file for statistical analysis using GraphPad Prism
9. Data for both PCNA and cleaved Caspase-3 are presented as the individual and median positive cells per
mm? for each treatment group.

Multiplex Immunohistochemistry (mIHC) Staining. HCI-013+E2 (n=5) and HCI-013EI (n=4) tumors from
mice in our PDX maintenance colony - independent from experimental animals described above - were
resected, formalin-fixed, paraffin-embedded, then sectioned for staining on the Vectra3 multispectral imaging
platform (Akoya Biosciences, Marlborough, MA) using OPAL chemistry. The slides were baked at 60°C,
deparaffinized in xylene, rehydrated, washed in tap water, and incubated with 10% neutral buffered formalin for
20 minutes to increase tissue-slide retention. Epitope retrieval/microwave treatment (MWT) for all antibodies
was performed by boiling slides in Antigen Retrieval buffer 6 (AR6 pH6; Akoya, AR6001KT). Protein blocking
was performed using antibody diluent/blocking buffer (Akoya, ARD1001EA) for 10 minutes at room
temperature. Primary antibody/OPAL dye pairings and incubation conditions for ER, PR, HER2, Ki67, and pan-
cytokeratin staining are detailed in Table 1. MWT was performed to remove the primary and secondary
antibodies between rounds of multiplex IHC. Multiplex IHC was finished with MWT, counterstained with
spectral DAPI (Akoya FP1490) for 5 min, and mounted with ProLong Diamond Antifade (ThermoFisher,
P36961). The order of antibody staining and the antibody/OPAL pairing was predetermined using general
guidelines and the particular biology of the panel. General guidelines include spectrally separating co-
localizing markers and separating spectrally adjacent dyes. Multiplex IHC was optimized by first performing
singleplex IHC with the chosen antibody/OPAL dye pair to optimize signal intensity values and proper cellular
expression, followed by optimizing the entire multiplex assay.

mIHC Imaging and Analysis. Slides were scanned at 10X magnification using the Vectra 3.0 Automated
Quantitative Pathology Imaging System (PerkinElmer/Akoya). Whole slide scans were viewed with
Phenochart (Perkin ElImer/Akoya), which allows for selecting high-powered images at 20X (resolution of 0.5m
per pixel) for multispectral image capture. Multispectral images of each xenograft tissue specimen were
captured in their entirety. Multispectral images were unmixed using spectral libraries built from images of
single stained tissues for each reagent using the inForm Advanced Image Analysis software (inForm 2.4.6;
PerkinElmer/Akoya). A selection of 10-15 representative multispectral images spanning all nine tissue
sections was used to train the inForm software (tissue segmentation, cell segmentation, and phenotyping
tools). All the settings applied to the training images were saved within an algorithm to allow the batch analysis
of all the multispectral images particular to each panel. Data are presented as the overall mean = SD of %
marker positivity for all tumors.

Fluorescence Lifetime Imaging (FLIM) Instrumentation. A modified Olympus FVMPERS (Waltham, MA)
microscope equipped with a Spectra-Physics Insight X3 (Milpitas, CA) laser and FastFLIM (ISS, Champaign,
IL) acquisition card were used to image the cancer samples. The samples were excited by two-photon
excitation at 740 nm using a 20X air objective (LUCPLFLN 0.45NA, Olympus), and the emitted fluorescence
was collected using the DIVER (Deep Imaging Via Enhanced Recovery) detector assembly equipped with a
FastFLIM card for lifetime imaging. The pixel dwell time was fixed at 20 ps, and the field of view was 318.8 pm
(Zoom =2X) at 256X256 pixels. 16 frames were integrated to increase signal-to-noise. The data from each
pixel were recorded and analyzed using the SImFCS software (available from the Laboratory for Fluorescence
Dynamics, University of California, Irvine, CA). The raster scanning was done using the Olympus software, and
the images were collected using the FLIMBox/FastFLIM system in passive mode [38].

The samples (5 pm thick) were imaged using the homebuilt DIVER (Deep Imaging via Enhanced Recovery)
microscope [39], a homebuilt modified detector based on an upright configuration. The details of this
microscope have been described elsewhere [40,41]. Briefly, this microscope uses a forward detection scheme
and a large area photon counting detector (R7600P-300, Hamamatsu), having a higher photon collection
efficiency due to the large cone angle of detection. A combination of filters capable of separating the blue
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wavelength (400 — 500 nm) fluorescence was used for FLIM imaging of NADH [42]. The phasor plot is
calibrated using Rhodamine 110 in water which has a mono-exponential lifetime of 4.0 ns.

FLIM Phasor Analysis [38,43,44].The fluorescence intensity decays collected at each pixel of the image were
transformed to the Fourier space, and the phasor coordinates were calculated using the following relations:

gij(@) = [, 1(t) - Cos(nwt)dt/ [ 1(D)dt 1

s (@) = [y 1(8) - Sin(nwt)dt/ [, I(t)dt 2

where g;j(w) and s;j(w) are the X and Y coordinates of the phasor plot, respectively, and n and w are the
harmonic numbers and the angular frequency of excitation, respectively. The transformed data were then
plotted in the phasor plot so that the data from each pixel is transformed to a point in the phasor plot [45-47].
The fractional intensity distribution between free and protein-bound NADH was calculated based on a two-

component analysis of the phasor plot [38,48] and then converted to concentration ratio based on the quantum
yield of the two species [49]. The higher free/bound NADH ratio is representative of increased glycolysis [43].

Primary Breast Tumor Explant Cultures. Patient-derived explants (PDESs) from five (5) ER+ primary breast
tumors were processed and cultured as described in [50]. PDEs were treated with 100 nM Fulvestrant, 10 uM
Riluzole, the combination, or solvent control (DMSO) for 48 hours before formalin fixation, paraffin embedding,
sectioning, and staining for PCNA (1:1000, #sc-56, SCBT, Santa Cruz, CA), cleaved caspase 3 (1:300, #9661,
Cell Signaling Technology, Danvers, MA), and Ki67 (1:500, #ab16667, Abcam, Cambridge, MA). Stained
sections were then visualized and scored as described in [50]. Data are presented as change relative to
vehicle (set to 0) for each PDE.

Statistical Analysis. Statistical analyses were performed using GraphPad Prism 9.0 (San Diego, CA) at
0<0.05, except for Riluzole/Fulvestrant and Riluzole/4-hydroxytamoxifen combination experiments, which were
analyzed by SynergyFinder [51]. Single-agent Riluzole experiments were analyzed by nonlinear regression
([inhibitor] vs. normalized response), and response to 10 uM Riluzole in endocrine therapy sensitive/resistant
cell line pairs (SUM44 vs. LCCTam and MCF7 vs. LCC9) was compared by Mann-Whitney test.
Riluzole/Fulvestrant and Riluzole/4-hydroxytamoxifen combination experiments were analyzed using the Bliss,
zero interaction potency (ZIP), and highest single agent (HSA) methods [52] in SynergyFinder. Cell cycle and
Annexin V apoptosis assays were analyzed by two-way Analysis of Variance (ANOVA) followed by Sidak’s
multiple comparisons tests. Cell viability assays for Riluzole Ferrostatin-1 were analyzed by two-way ANOVA
followed by Tukey’s multiple comparisons test. Staining for each marker in primary breast tumor explant
cultures was analyzed by one-sample t-test vs. O (vehicle). In the xenograft experiment comparing time to
tumor formation between HCI-013 and HCI-013El in the presence vs. absence of supplemental estrogen
pellets, data were analyzed by log-rank (Mantel-Cox) test. In the xenograft experiment testing Fulvestrant,
Riluzole, the combination, or control in HCI-013EI, tumor volume, and mouse body weight data were analyzed
by mixed-effects analysis followed by Dunnett’'s multiple comparisons tests at each time point vs. control.
Tumor weight at the endpoint and PCNA and cleaved caspase-3 were analyzed by Browne-Forsyth and Welch
ANOVA, followed by Dunnett’'s T3 multiple comparison tests. Partial response (PR), stable disease (SD), and
progressive disease (PD) were calculated using RECIST 1.1 criteria [53]. mIHC data were analyzed by the
Mann-Whitney test.
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Results

Riluzole has shown anti-tumor activity in preclinical models of multiple cancers, including melanoma,
glioblastoma, and breast cancer [25—-31]. In several (but not all) of these reports, Riluzole-mediated growth
inhibition is attributed to increased expression of metabotropic glutamate receptors (mGIluRs, GRMs). We
previously reported that acquisition of Tamoxifen resistance in a cellular model of invasive lobular breast
cancer (ILC, [13]) is accompanied by the upregulation of GRM mRNA expression and growth inhibition by
Riluzole [14]. Here, our goal was to test the efficacy of Riluzole more broadly, alone and in combination with
multiple endocrine therapies, in a diverse set of ER+ in vitro and in vivo models enriched for ILC.

Riluzole suppresses growth in ER+ breast cancer cell lines.

We performed dose-response assays of Riluzole (33 nM to 100 uM) in four ILC- and two IDC-derived cell lines
and the ER- non-transformed breast epithelial cell line MCF10A, using crystal violet staining as a proxy for total
cell number [14] (Figure 1A). Nonlinear regression analysis calculated the Riluzole ICso for all six cell lines to
be ~10-100 uM, consistent with published studies in other malignancies. Direct comparison of growth inhibition
by 10 uM Riluzole in three endocrine-responsive and -resistant cell line pairs (Figure 1B) confirmed [14] that
the Tamoxifen-resistant ILC cell line LCCTam, and the MM134 LTED cells were significantly more responsive
to Riluzole than their parental counterparts SUM44 and MM134 (Mann-Whitney test, **p= 0.002 & 0.0043
respectively). This was not the case for the MCF7/LCC9 IDC cell line pair [54], in which MCF7 cells showed
greater Riluzole-mediated growth inhibition (*p=0.024) than Fulvestrant-resistant/Tamoxifen-cross-resistant
LCC9 cells. However, MCF10A non-transformed cells were not growth inhibited by 10 uM Riluzole vs. DMSO
control.

The presence vs. absence of steroid hormones and estrogenic compounds in growth media (e.g.,
phenol red, serum) can influence the response of ER+ cell lines to growth inhibition by small molecules. The
SUM44/LCCTam cell line pair is cultured in serum-free media, but a phenol red-containing base (IMEM, 10
mg/L), while MCF7 and MM134 cells are cultured in phenol red-containing, IMEM supplemented with 5%FBS.
LCC9 cells and MM134 LTED are maintained in hormone-replete conditions. As such, experiments presented
in Figure 1 performed under hormone-replete conditions were repeated under hormone-deprived conditions
(Figure S1 [55]). While individual differences within cell lines were observed, hormone deprivation - reduced
phenol red media for SUM44/LCCTam (Ham'’s F12, 1.2 mg/L) or phenol red-free IMEM supplemented with 5%
CCS for MCF7 and MM134 - did not consistently enhance or impair Riluzole-mediated growth inhibition.

Riluzole induces a histologic subtype-associated cell cycle arrest.

To corroborate the cell proliferation assay results, we tested Riluzole's effect on cell cycle progression (Figure
2). All ILC cell lines (including BCK4, a third model of ER+ ILC [32], Figure S2 [55]) showed a significant
accumulation of cells in the G2-M phase (two-way ANOVA followed by Sidak’s multiple comparisons test, see
figure legends). However, both IDC-derived cell lines showed a significant accumulation of cells in the GO-G1
phase, while non-transformed MCF10A cells showed no significant cell cycle arrest in response to Riluzole.
Together with the results presented in Figures 1 and S1, these data suggest that while all ER+ breast cell lines
tested are growth inhibited by Riluzole, ILC cells preferentially undergo G2-M arrest while IDC cells arrest in
GO-G1.

Riluzole inhibits phosphorylation of pro-survival signaling molecules and induces apoptosis and
ferroptosis.

To identify molecular signaling events accompanying Riluzole-mediated growth inhibition in the
SUM44/LCCTam cell line pair, we used the Human Phospho-Kinase Proteome Profiler™ Array to detect
changes in 43 phosphorylation sites across 40 different kinases or substrates (Figure 3A). In SUM44 cells,
Riluzole reduced phosphorylation of mutant p53 [56] (S92 and S392), and Akt T308. In LCCTam cells, Riluzole
reduced phosphorylation of markedly more sites in kinases and substrates with several significantly enriched
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ontology clusters, including Signaling by Receptor Tyrosine Kinases and Cytokine Signaling in Immune System
(Figure S3A [55]). In addition, notable inhibition of Akt/mTOR (Akt S437, TOR S2448, PRAS40 T246), CREB
(Msk S376/360, CREB S133) and Src/Fak (Lyn Y397, Yes Y426, Fak Y397) signaling pathways were
observed specifically in LCCTam cells. Prior studies in melanoma and glioblastoma have shown that Riluzole
inhibits Akt phosphorylation and that Riluzole combined with mTOR inhibition can synergistically decrease
xenograft growth [26,57]. However, to our knowledge, inhibition of Src/Fak family kinases by Riluzole has not
been previously reported. Therefore, to further validate the inhibition of selected Src/Fak kinases observed
from the Human Phospho-Kinase Proteome Profiler™ Array, we performed a western blot analysis on
SUMA44/LCCTam cell line treated with Riluzole for several time points (6,12, 24, and 48 hours). The results
show markedly higher baseline Fak Y397 phosphorylation and confirmed reduced expression and
phosphorylation of Fak Y397 in the LCCTam cells versus no change to a slight increase in Fak
phosphorylation in SUMA44 cells (Figure 3B, 3C). However, we could not validate a change in Yes expression
or phosphorylation at Y426 (Figure S3B [55]).

We then performed Annexin V assays to measure the effect of Riluzole on apoptosis in the
SUM44/LCCTam cell line pair. LCCTam cells showed a significant increase in the percent of cells in early
apoptosis when treated with Riluzole (Figure 3D and S3C [55], two-way ANOVA followed by Sidak’s multiple
comparisons tests, **p<0.001). However, there was a less robust increase in early apoptotic SUM44 cells (two-
way ANOVA followed by Sidak’s multiple comparisons test, *p<0.0211). These data are consistent with those
presented in Figure 1B, where LCCTam cells were significantly more growth-inhibited by Riluzole than SUM44
cells.

In addition to apoptosis, the iron-dependent cell death mechanism of ferroptosis could be relevant to
Riluzole action in these cells. For example, inhibition of the PI3K-Akt-mTOR pathway has been previously
implicated in this form of cell death [58]. Furthermore, Fak signaling downstream of the glutamate/cystine
antiporter SLC7A11 or X¢, which can be inhibited by Riluzole, has also been implicated in ferroptosis [59]. To
explore the possibility of ferroptotic cell death, we performed a viability assay after treating Sum44 and
LCCTam cells with Vehicle (DMSQ), or Riluzole or a combination of Riluzole and Ferrostatin-1 (inhibitor of
Ferroptosis). The results showed that Riluzole reduces cell viability in both SUM44 and LCCTam, and the
addition of Ferrostatin-1 reverses the observed reduction (Figure 3E). To substantiate this observation, we
performed a western blot analysis on the SUM44/LCCTam cell line pair treated with vehicle (DMSO) or
Riluzole, or a combination of Riluzole and Ferrostatin for 48hrs, then probed for Malondialdehyde (MDA) and
4-Hydroxynonenal (4-HNE) — which are both by-products of ferroptosis. MDA levels were increased in
LCCTam cells treated for 48 hr with Riluzole. Conversely, ferrosatin-1 decreased the Riluzole-induced MDA
(Figure 3F). On the other hand, Riluzole slightly increased the levels of 4-HNE in LCCTam cells, whereas the
combined treatment of Riluzole and Ferrostatin-1 reduced the levels of Riluzole-induced 4-HNE (Figure S3D
[55]). Altogether, the Riluzole induction of lipid peroxidation products suggests Riluzole-induced ferroptosis in
LCCTam.

Riluzole, in combination with endocrine therapies, leads to additive suppression of ER+ breast cancer
cell line growth.

Endocrine therapies ranging from SERMs and SERDs to aromatase inhibitors represent the standard of care
for the clinical management of ER+ breast cancers [2]. Therefore, we tested Riluzole's activity in combination
with the SERD Fulvestrant or SERM Tamoxifen (4-hydroxytamoxifen) in ILC- and IDC-derived ER+ breast
cancer cell lines and the ER- non-transformed breast epithelial cell line MCF10A as a negative control. These
experiments were conducted under hormone-replete conditions. To determine the possible relational effect of
the drug combinations, we used SynergyFinder, a web-based tool for interactive analysis and visualization of
multi-drug and multi-dose response data [51]. Based on the synergy finder scoring, the combination of
Fulvestrant and Riluzole showed additive benefits in nearly all tested cell lines (Figure 4 and S4A [55]). The
representative synergy map of the bliss model highlights the synergistic and antagonistic dose regions in red
and green, respectively, and the overall synergy score indicated at the top (Figure 4A, >10 = synergy, 10 to -
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10 = additive, <-10 = antagonistic). Examination of the other synergy models provided similar synergy scores
to the bliss model in Figure 4A, which supports the notion that the combination of Fulvestrant and Riluzole is
additive (Figure 4B). The synergy analysis of the combination of Riluzole and Tamoxifen resulted in scores
that indicated an additive interaction in all the cell lines except for MM134 LTED and MCF10A (Figure 4B).
MM134 LTED cells were only inhibited by the lowest concentration of 4HT and not by the higher
concentrations (Figure S4B [55]). On the other hand, Riluzole significantly inhibited growth, therefore, the
drugs' opposing effects likely account for the combination's antagonistic effect. Despite these exceptions, these
data suggest that the combination of endocrine therapy and Riluzole, in most cases, can additively suppress
the growth of a variety of ER+ breast cancer cell line models.

Single-agent Riluzole inhibits tumor growth in vivo, but the combination with Fulvestrant is not better
than Fulvestrant alone in the HCI-013EI ILC PDX model. PDXs are an important, clinically relevant
alternative to 2D culture models for pre-clinical testing of combination therapies. The HCI-013 PDX model was
established from a 53-year-old woman with metastatic, multi-therapy-resistant ER+/PR+/HER2- ILC by serial
passage through intact female NOD scid gamma (NSG) mice supplemented with a 1 mg estrogen (E2, 17[3-
estradiol) pellet [15]. The HCI-013EI (estrogen-independent) variant was established by two weeks of in vitro
culture of cells from HCI-013 tumors under hormone-deprived conditions, then reimplanted into intact female
NSG mice without estrogen supplementation [60]. Both models harbor the clinically relevant ESR1 activating
mutation Y537S, with the HCI-013El variant reported as having a more abundant variant allele fraction of
Y537S.

To directly compare the responsiveness to, and dependency on, supplemental estrogen of HCI-013 vs.
HCI-013El, six (6) 5-6 week-old intact severe combined immunodeficient (SCID) female mice per group were
orthotopically implanted with a single 1-3 mm?® PDX fragment, then tumor growth and development was
monitored (Figure 5A). In the presence of supplemental estrogen pellets, HCI-013 and HCI-013EI exhibited a
100% tumor take rate, with a median time to tumor formation of 23.5 and 26.5 days, respectively. However, in
the absence of supplemental estrogen pellets, HCI-013 PDX fragments were unable to form tumors outto 113
days post-implantation, and HCI-013EI PDX fragments exhibited a 50% tumor take rate, with a median time to
tumor formation of 39 days (log-rank Mantel-Cox test, ***p=0.0007). These data suggest that supplemental
estrogen is necessary for HCI-013 tumor formation and beneficial but not necessary for HCI-013EI tumor
formation in SCID mice.

We characterized an independent set of HCI-013+E2 (estrogen supplemented, n=5) and HCI-013ElI
(not estrogen supplemented, n=4) tumors with respect to hormone receptor (ER and PR), HER2, and
proliferative marker Ki67 expression using Opal chemistries on the Vectra3 multispectral imaging platform
(Figures 5B and 5C). This approach captured heterogeneity in marker expression between and within tumors.
Overall, percent ER positivity (% ER+) was significantly lower in HCI-013EIl vs. HCI-013+E2 tumors (Mann-
Whitney test, *p=0.032), consistent with a prior report that Y537S mutant ER protein expression can be lower
than wild type ER [61]. However, overall percent PR and Ki67 positivity were not significantly different between
these PDX variants. No HER2 staining was detected (data not shown).

An important feature of endocrine-resistant breast cancer is dysregulated metabolism, with published
studies showing increased dependency on glutamine [62] and other amino acids [63]. Advanced imaging
techniques like fluorescence lifetime imaging (FLIM) take advantage of the natural autofluorescence of
biomolecules, including the reduced form of nicotinamide adenine dinucleotide (NADH, a key output of cellular
metabolism). FLIM coupled with phasor analysis permits resolution of bound vs. free NADH, which correlates
with oxidative phosphorylation vs. glycolytic metabolism, respectively [38,64]. Using FLIM, we examined the
cellular metabolism of HCI-013+E2 and HCI-013EI tumors. We observed that cells were mainly glycolytic at
the edge of both HCI-013+E2 and HCI-013EIl tumors. However, cells at the core of HCI-013EI tumors were
preferentially in an oxidative phosphorylated state as opposed to a more glycolytic state observed in cells
within the core of the HCI-013+E2 tumors (Figures 5D and 5E, one-way ANOVA (p < 0.0001) followed by
Tukey’s multiple comparisons test (p=0.0516).
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We selected the HCI-013EI (not estrogen-supplemented) PDX variant to test the anti-tumor activity of
Fulvestrant, Riluzole, or the combination relative to vehicle control. Forty-eight (48) 5-6 week-old intact SCID
female mice were orthotopically implanted with a single 1-3 mm?® HCI-013EI PDX fragment without E2
supplementation, then followed until tumors reached ~100 mm? before enroliment to one of four (4) treatment
arms: control (n=5), Fulvestrant (n=5), Riluzole (n=5), or the combination (n=5) (Figures 6A and S5A [55]).
Relative to control, single-agent Riluzole, Fulvestrant, and the combination significantly slowed the tumor
volume. However, the level of tumor growth inhibition relative to control varied among the three groups. The
Riluzole group showed about 50% inhibition, whereas similar effects but greater inhibition (~90%) were
observed in the Fulvestrant and combination groups. (Figure 6A, mixed effect analysis followed by Tukey’s
multiple comparisons tests). Analysis of tumor weight at the endpoint for the treatment groups further
supported the observed difference in tumor volume. The mean weights of the Fulvestrant, Riluzole, and
Combination groups were lower than the control group. However, only the Fulvestrant and combination groups
showed statistically significant differences (Figure 6B, Browne-Forsyth and Welch ANOVA followed by
Dunnett’'s T3 multiple comparisons tests) and were not different from each other. Analysis of relative tumor size
at endpoint according to RECIST 1.1 criteria [53] shows that 2 of 5 tumors in the Fulvestrant group and 3 of 5
in the combination group achieved partial response (PR) (Figure 6C). We then performed
immunohistochemistry to stain for proliferating cell nuclear antigen (PCNA) and Caspase-3 as a proxy for
proliferation and apoptosis, respectively. Although not significant, the mean positive cells per mm? of Caspase-
3 for the Fulvestrant, Riluzole, and combination group were each higher than the control group (Figure 6D).
For the PCNA staining, expectedly, the Fulvestrant and combination group had lower mean positive cells per
mm?3. However, surprisingly, the mean positive stained cells per mm? for the Riluzole group was higher than
the control group (Figure 6E). Finally, analysis of mouse body weights between the treatment groups showed
no significant differences. As seen in Figure S5B [55] the slope of the graphs for each treatment group is close
to zero. Altogether, these data show that single-agent Riluzole has a significant inhibitory effect on HCI-013El
tumor volume, and with Fulvestrant already highly effective against this PDX model, combination treatment
does not provide additional benefit.

Riluzole plus Fulvestrant significantly inhibits proliferation in primary breast tumor explant cultures.
Patient-derived explants (PDES) provide another pre-clinical strategy to test combination therapies. These
short-term cultures of surgical samples maintain the local tumor microenvironment and capture inter-person
heterogeneity [50]. We tested the efficacy of Fulvestrant, Riluzole, or the combination vs. solvent control
(DMSO) in five (5) PDEs from ER+/PR+/HER2-negative primary tumors (Figure 7A). Using PCNA staining as
a proxy for cell proliferation, the combination of Riluzole plus Fulvestrant significantly reduced PCNA (Figures
7B and 7C, one-sample t-test vs. 0 (Vehicle), *p=0.013 Vehicle vs. Combination), with 4 of 5 PDEs showing
better growth inhibition by the combination than either drug alone and the greatest effect seen in the ILC PDE.
Staining for cleaved caspase 3 suggested a modest induction of apoptosis by either drug alone or the
combination in some of the PDEs (Figure S4A [55]), but this was not statistically significant. Together with the
results presented in Figures 5, 6, and accompanying supplementary figures, these data suggest that
combining Fulvestrant and Riluzole may offer improved therapeutic benefits in some ER+ breast cancers.
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Discussion

We tested the efficacy of Riluzole, alone and in combination with multiple endocrine therapies, in a diverse set
of ER+ in vitro and in vivo models enriched for ILC. Single-agent Riluzole suppressed the growth of ER+ ILC
and IDC cell lines in vitro, by inducing a histologic subtype-associated cell cycle arrest (GO-GL1 for IDC, G2-M
for ILC). In the Tamoxifen-resistant ILC-derived LCCTam model, Riluzole induced apoptosis and reduced
phosphorylation of multiple pro-survival signaling molecules, including AkKtmTOR, CREB, and Src/Fak family
kinases. Furthermore, in combination with either Fulvestrant or 4-hydroxytamoxifen, Riluzole additively
suppressed ER+ breast cancer cell growth in vitro. In addition, single-agent Riluzole inhibited HCI-013EI ILC
PDX growth in vivo, and the combination of Riluzole plus Fulvestrant significantly reduced proliferation in
primary breast tumor explant cultures.

The increased combinatorial efficacy of Riluzole and Fulvestrant we observe across diverse cell line
models of ER+ breast cancer in vitro is recapitulated ex vivo using PDEs. In the HCI-013EI PDX experiment,
tumor volume after ~7 weeks of treatment was not significantly different in combination- vs. Fulvestrant-
treatment groups, although single-agent Riluzole had significant activity. We attribute this partly to the very
strong response of this PDX to single-agent Fulvestrant as seen in this experiment (~90% inhibition) and
reported by others [45,46]. In the PDE experiment, the combination of Riluzole and Fulvestrant was highly
effective, with 80% of primary tumor explants (4/5) showing significant growth inhibition by the combination as
measured by a reduction in PCNA (Figure 7). Improved combinatorial efficacy in the PDEs may also be due to
the lower concentration of Fulvestrant used in these studies (100 nM). Additionally, Riluzole bioavailability is
variable, leading to mixed efficacy in preclinical and clinical studies. For example, in preclinical studies of triple-
negative breast cancer [30] and glioblastoma [26], single-agent Riluzole does not have significant anti-tumor
activity in vivo, whereas in our study and preclinical studies of melanoma [24,25,65] it does. However, in Figure
6B-C, two of five Riluzole-treated tumors showed no reduction in tumor weight or relative tumor size versus
control-treated tumors, which could be due to inconsistent bioavailability. Serum levels of the drug vary widely
in ALS patients receiving the drug, and in a phase Il trial for advanced melanoma, circulating Riluzole
concentrations had marked inter-patient variability [66]. The Riluzole pro-drug troriluzole [67] appears to offer
better bioavailability by reducing first-pass metabolism by CYP1A2, leading to sustained ~0.3-1.8 uM plasma
concentrations of active drug in a recent phase Ib study that combined troriluzole (BHV-4157) with nivolumab
in advanced solid tumors [68]. These and other Riluzole analogs will be important to explore alone and in
combination with endocrine therapy in ER+ breast cancer.

In the Tamoxifen-resistant ILC-derived LCCTam model, Riluzole induces apoptosis and ferroptosis
concomitant with reduced phosphorylation of multiple pro-survival signaling molecules. That these include
components of the Akt/mTOR signaling pathway (Akt S437, TOR S2448, PRAS40 T246) is not surprising since
Riluzole has been shown to inhibit Akt phosphorylation and synergize with mTOR inhibition in melanoma and
glioblastoma models [26,57]. However, Src/Fak kinase family members (e.g., Yes and Fak) have not, to our
knowledge, been previously implicated in Riluzole action. In vehicle-treated LCCTam cells, baseline
phosphorylation of Fak Y397 is markedly increased compared to vehicle-treated SUM44 cells (Figure 3B). At
the same time, Riluzole treatment reduced total and phosphorylated protein levels of Fak in only the LCCTam
cells (Figure 3B-C). Multiple Src/Fak kinase family members play critical roles in cell survival, invasion, and
migration. Additionally, Fak has been previously implicated in endocrine therapy resistance [69,70]. Being
functionally E-cadherin-negative, ILC is highly resistant to anoikis (a form of cell death induced by extracellular
matrix detachment) [71] and dependent upon a rewired actin cytoskeleton and constitutive actomyosin
contractility (reviewed in [72]). Consistent with this, expression of activated Src and Fak — both of which can
drive resistance to anoikis [73] — are significantly higher in ILC vs. atypical lobular hyperplasia [74]. In parallel,
ILC may exhibit increased sensitivity to ferroptosis inducers. Ferroptosis is cell density-dependent, with cells
cultured in low-density conditions with fewer cell-cell contacts (a defining feature of ILC) being highly
vulnerable to ferroptosis caused by inhibition of glutathione peroxidase 4 (GPX4, [75]). On the other hand, E-
cadherin-mediated intercellular interactions can suppress ferroptosis via activation of neurofibromin 2 (NF2,
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[76]). The specific contribution of Fak to Riluzole-mediated growth inhibition, apoptosis, and ferroptosis in ILC
remains to be explored and will be a component of future studies, as will its role in the additive or synergistic
growth suppression achieved by the combination of Riluzole and endocrine therapy. Nevertheless, it is
tempting to speculate that agents (like Riluzole) that broadly target rewired cytoskeletal regulatory pathways
and induce ferroptosis may be particularly effective against ILC.

This study has limitations that are important to consider. First, hormone-responsive ER+ models,
particularly of ILC, are limited. In this study, we used three of the four well-established ER+, hormone-
responsive ILC lines [71], the ILC-derived HCI-013El PDX model [15,60], and one of the five PDEs originated
from ILC. In all ILC models we tested except for the HCI-013El PDX, Riluzole plus Fulvestrant provided greater
growth inhibition than single-agent Fulvestrant. Expansion of the PDE approach is an important strategy for
rapidly diversifying the repertoire of preclinical ILC models [77] to test this and other novel endocrine therapy
combinations, essential for a breast cancer subtype that has a significantly greater risk of late recurrence, and
worse response to Tamoxifen and the second-generation SERD AZD9496 [12]. Second, Riluzole’s multiple
proposed or confirmed mechanisms of action - from inhibition of signaling through GRMs [24] and glutamate
release via the glutamate/cystine antiporter SLC7A11 or X. [78], to blockade of voltage-gated sodium channels
[79], inhibition of internal ribosome entry site (IRES)-mediated protein synthesis [26], attenuation of RNA
polymerase Ill complex assembly [80], and inhibition of Wnt/p-catenin signaling [81] — present a challenge to
readily identifying patients who would benefit most from the drug. Some of this variability is cancer type-
specific, with Riluzole action tightly coupled to GRM expression in melanoma [24] and, to some extent,
glioblastoma [26], but not in triple-negative breast cancer [27]. While reasonably well-defined in the central
nervous system, the interconnected pathways of glutamate release, uptake, and signaling remain understudied
in epithelial cells and their pathologies. We posit that future preclinical studies of Riluzole in this context
(epithelial tumors generally, and ER+ ILC more specifically) should address these limitations.
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Conclusions

Our data suggest that Riluzole, alone or together with endocrine therapy, may offer therapeutic benefit in some
ER+ breast cancers, including ILC, and support optimization and further investigation of Riluzole and its
combinations in this setting.
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Figure Legends

Figure 1. Growth suppression of ER+ breast cancer cell lines by Riluzole. A, Cells seeded in 96-well
plates were treated with the indicated concentrations of Riluzole (RIL, 33 nM to 100 uM) or DMSO control for
7-8 days prior to staining with crystal violet. Data are presented as mean % growth + standard error of the
mean (SEM) of % growth (vehicle = 100%) for 5-6 technical replicates and represent 2-4 independent
biological assays. The dotted line box indicates data re-graphed in panel B. Data were analyzed by nonlinear
regression ([inhibitor] vs. normalized response), yielding the following ICso [M] estimates: SUM44, 1.27e-4;
LCCTam, 2.13e-5; MM134, 2.73e-5; MM134 LTED, 1.209e-5; MCF7, 1.09e-5; LCC9, 2.23e-5; MCF10A,
4.33e-5. B, Relative response to 10 uM RIL re-graphed from panel A (dotted line box). Data are presented as
median % growth with upper/lower quartiles of % growth (vehicle = 100%) for 5-6 technical replicates and
represent 2-4 independent biological assays. For the SUM44/LCCTam, MM134/MM134 LTED, and
MCF7/LCC9 cell line pairs, data were compared by the Mann-Whitney test. **p=0.002, **p = 0.0043, and
*p=0.024 respectively. Dashed lines denote 50% (panels A and B) and 100% growth inhibition (panel B).

Figure 2. Riluzole induces a histologic subtype-associated cell cycle arrest. Cells seeded in 6-well plates
were treated with 10 uM Riluzole or DMSO control (vehicle, Veh) for the indicated times prior to collection,
fixation, staining, and cell cycle analysis. Data are presented as mean % cells + SD for 3-4 independent
biological assays and analyzed by two-way ANOVA followed by either Sidak’s (single time point) or Dunnett’s
(multiple time points) multiple comparisons tests. SUM44: *p = 0.018. LCCTam: ****p < 0.0001. MM134: *p =
0.011. MM134 LTED: *p = 0.05. MCF7: ****p < 0.0001. LCC9: *p = 0.015. MCF10A: not significant.

Figure 3. Riluzole inhibits phosphorylation of pro-survival signaling molecules and induces apoptosis
and ferroptosis.

A, Cells seeded in 6-well plates were treated with 10 uM Riluzole or DMSO control (vehicle, Veh) for 2 days
prior to collection, lysis, and processing, then assayed using the Human Phospho-Kinase Proteome Profiler™
Array. A ratio of background-corrected intensity values for targets (phospho-kinase spots) to references
(control spots) was created for each condition (DMSO and Riluzole) within each cell line. Data are presented
as the geometric mean of the Riluzole: DMSO ratio for 2 technical replicates from a single experiment. B,
Sum44, and LCCTam cells seeded in 6-well plates were treated with 10 yM Riluzole or DMSO control for
several time points (6,12, 24, and 48 hours). After which, cells were collected, lysed, and western blot analysis
was performed to test for expression and phosphorylation of Fak Y397 phosphorylation. The data are
presented as images showing expression levels. C, Quantification analysis of Fak and p-Fak protein band
density from western blot in Figure 3B. D, Cells seeded in 6-well plates were treated with 10 uM Riluzole or
DMSO control (vehicle, Veh) for 2 days prior to staining with Annexin V and PIl. The percent of live cells (PI’,
annexin V°) and early apoptotic (PI, annexin V*) cells are shown. Data are presented as mean % cells + SD for
3 (SUM44) or 4 (LCCTam) independent biological assays and analyzed by two-way ANOVA followed by
Sidak’s multiple comparisons test (*p =0.021, **p = 0.04 (live) and **p= 0.011). E, Cells of SUM44 and
LCCTam were seeded in 6-well plates. Twenty-four hours later, cells were treated with control (DMSO),
Riluzole (10 yM), or a combination of Riluzole and Ferrostatin-1 (10 uM). 24h after treatment, the cells were
collected, stained with trypan blue, and counted. Data are presented as mean * standard deviation (SD) of the
ratio of the cell number of the treatment groups relative to the control for 3-4 independent biological assays and
analyzed by two-way ANOVA followed by Tukey’s multiple comparison test (Sum44 — (**p = 0.005, *p = 0.016),
LCCTam — ( **p = 0.002, *p = 0.043)). F, Sum44, and LCCTam cells seeded in 6-well plates were treated with
control (DMSO), Riluzole (10 uM), or a combination of Riluzole and Ferrostatin-1(10 uM) for 48hr. Post-
treatment, cells were collected, lysed, and western blot analysis was performed to test for expression of
Malondialdehyde (MDA). The data are presented as images showing expression levels.
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Figure 4. Additive suppression of ER+ breast cancer cell line growth by Riluzole in combination with
endocrine therapies. A, Cells seeded in 96-well plates were treated with 1 yM Fulvestrant, 10 uM Riluzole
(RIL), the combination, or DMSO control (vehicle, Veh) for 7-8 days prior to staining with crystal violet. Data
are processed as the mean % growth for 5-6 technical replicates and represent 2-4 independent biological
assays. The mean % growth data of a representative single technical replicate was then used to create a
combination matrix used in SynergyFinder, and the results were presented as 2D surface plots. The
SynergyFinder scores are shown at the top of the plots, highlighting the level of synergy. B and C, Graphical
representation of the synergy scores from the Riluzole — Fulvestrant (B) and Riluzole — 4HT (C) combination
using 3 models — Bliss, HSA, and ZIP.

Figure 5. Characterization of tumor growth, hormone receptor expression, and metabolic state for HCI-
013 vs. HCI-013EI ILC PDX models. A, Tumor latency for HCI-013 and HCI-013El patient-derived xenografts
(PDXs) with or without estrogen (E2) supplementation. Six (6) mice per group were orthotopically implanted
with a 1-3 mm? PDX fragment, then followed until measurable tumor development (by calipers). Data are
presented as percent tumor free and were analyzed by log-rank (Mantel-Cox) test. ***p=0.0007. B,
Representative images of ER, PR, and Ki67 staining from HCI-013+E2 and HCI-013EI tumors. C, Semi-
gquantitative analysis of multiplex IHC (mIHC) staining for ER, PR, and Ki67 from HCI-013+E2 (n=5) and HCI-
013El (n=4) tumors from mice independent of those for whom tumor latency is shown in panel A. Data are
presented as overall mean + SD of % marker positivity for 5-13 fields per tumor. D, Representative schematic
of fluorescence lifetime imaging microscopy (FLIM) analysis of cellular metabolism at the tumor core and edge.
Images are pseudo-colored based on the phasor plot (below) where more protein bound and more free NADH
phasor positions are indicated by red and cyan circles, respectively, and the color scheme chosen reflects
more bound NADH in purple and more free NADH in cyan. E, Quantification of FLIM in HCI-013+E2 vs. HCI-
013El tumor cores and edges. Tumor edges were strongly glycolytic in both HCI-013+E2 and HCI-013El, but
tumor cores were preferentially in an oxidative phosphorylated state in HCI-013EIl.The data were analyzed by
one-way ANOVA (p < 0.0001) followed by Tukey’s multiple comparisons test. Each symbol indicates the mean
Ciree NabH/Chound NapH foOr 16 fields of view of the tumor edge or core in an individual tumor (n=5 tumors per PDX
line).

Figure 6. Single-agent Riluzole inhibits tumor growth in vivo, but the combination with Fulvestrant is
not better than Fulvestrant alone in the HCI-013EI ILC PDX model. A, Forty-eight (48) mice were
orthotopically implanted with a 1-3 mm?® HCI-013EI PDX fragment without E2 supplementation, then followed
until tumors reached ~100 mm? before enroliment to one of four (4) treatment arms: control (n=5), Fulvestrant
(n=5), Riluzole (n=5), or the combination (n=5). Mice were monitored for tumor growth (measured by calipers)
and body weight twice per week. Data are presented as mean tumor volume £ SEM, and were analyzed by
mixed-effects analysis followed by Dunnett’s multiple comparisons tests at each timepoint vs. control. B, At the
end of the study, tumors were collected and weighed. The graph illustrates the summary of the collected data,
which were analyzed using Browne-Forsyth and Welch ANOVA followed by Dunnett’'s T3 multiple comparisons
tests. C, Graph showing relative tumor size at endpoint according to RECIST 1.1 criteria. It shows that 2 of 5
tumors in the Fulvestrant group and 3 of 5 in the combination group achieved partial response (PR). D and E,
The tumors collected from each treatment group were formalin-fixed, paraffin-embedded, sectioned, and
stained with proliferating cell nuclear antigen (PCNA) and Caspase-3 by IHC. These antibodies served as a
proxy for proliferation and apoptosis, respectively. The stained samples were analyzed, and the data were
presented graphically in D for PCNA, and E for Caspase-3.

Figure 7. Riluzole plus Fulvestrant significantly inhibits proliferation in primary breast tumor explant
cultures. A, Pathologic data for five (5) patient-derived explants (PDESs). ER, PR, and Ki67% are from the
initial surgical specimen, and NOS = not otherwise specified. *denotes the PDE for which representative
images are shown in panel C. B, PDEs were treated with 100 nM Fulvestrant, 10 uM Riluzole, the
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combination, or DMSO control (vehicle) for 2 days prior to formalin fixation, paraffin embedding, sectioning,
and staining for PCNA by IHC. Data are presented as change relative to vehicle (set to 0) for each explant and
analyzed by one-sample t-test vs. O (vehicle). *p=0.013 Vehicle vs. Combination. *denotes the PDE for which
representative images are shown in panel C. C, Representative images of PCNA and Caspase-3 staining from
PDE #1055 (ILC).
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014  Table 1: Primary Antibody/OPAL Dye Pairings and Incubation Conditions

015
Antibody 1  Antibody 2 Antibody 3 Antibody 4 Antibody 5
Antigen PR Ki67 HER2 ER alpha panCK
Company Agilent Agilent Agilent Santa Cruz Agilent
Cat# M3569 M7240 A0485 sc-8002 M3515
Species Mouse Mouse Rabbit Mouse Mouse
Dilution 1/50 1/50 1/200 1/50 1/300
Incubation Time 1hr overnight 1hr overnight 1hr
Incubation
Temp. RT 4°C RT 4°C RT
Breast Breast Breast Breast

Control Tissue Cancer Tonsil Cancer Cancer Cancer
OPAL Fluor. 650 520 620 570 690
OPAL Conc. 1/140 1/30 1/160 1/125 1/30
Antigen Retrieval ARG ARG ARG ARG ARG
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Supplementary Figure Legends, Olukoya et al 2023 (https://doi.org/10.1101/2020.07.30.227561)

Figure S1. Growth suppression of ER+ breast cancer cell lines by Riluzole in hormone-deprived vs.
hormone-replete conditions. In these panels, data already presented in Figure 1A (hormone-replete
conditions, filled symbols) were directly compared to hormone-reduced (SUM44 and LCCTam F12 cells, open
symbols) or hormone-deprived conditions (MM134 CCS and MCF7 CCS cells, open symbols) as detailed in
the Methods section. Cells seeded in 96-well plates were treated with the indicated concentrations of Riluzole
(RIL, 33 nM to 100 uM) or DMSO control for 7-8 days prior to staining with crystal violet. Data are presented as
mean % growth + standard error of the mean (SEM) of % growth (vehicle = 100%) for 5-6 technical replicates
and represent 2-4 independent biological assays. The dotted line box indicates 10 uM RIL, the concentration
used for subsequent in vitro assays. Data were analyzed by nonlinear regression ([inhibitor] vs. normalized
response), yielding the following ICso [M] estimates: SUM44, 1.27e-4 hormone-replete vs. 5.5e-5 hormone-
reduced; LCCTam, 2.13e-5 hormone-replete vs. 3.96e-5 hormone-reduced; MM134, 2.73e-5 hormone-replete
vs. 1.16e-4 hormone-deprived; MCF7, 1.09e-5 hormone-replete vs. 7.69e-6 hormone-deprived.

Figure S2. Cell cycle analysis of Riluzole-treated BCK4 cells. Cells seeded in 6-well plates were treated
with 10 yM Riluzole or DMSO control (vehicle, Veh) for the indicated times prior to collection, fixation, staining,
and cell cycle analysis. Data are presented as mean % cells £ SD for 3-4 independent biological assays and
analyzed by two-way ANOVA followed by either Sidak’s (single time point) or Dunnett’s (multiple time points)
multiple comparisons tests BCK4: *p=0.044.

Figure S3. Effect of Riluzole on kinase phosphorylation, cell death, and expression of ferroptosis
marker 4-HNE. A, SRPIot analysis of gene symbols corresponding to the dephosphorylated kinases and
substrates in Riluzole-treated LCCTam cells shown in Figure 3A. False discovery rate (FDR) corrected p
values are rank-ordered in -log(10) scale. B, Sum44, and LCCTam cells seeded in 6-well plates were treated
with 10 yM Riluzole or DMSO control at several time points (6,12, 24, and 48 hours). After which, cells were
collected, lysed, and western blot analysis was performed to test for expression and phosphorylation of Yes
Y426 phosphorylation. The data are presented as images showing expression levels. C, Cells seeded in 6-well
plates were treated with 10 uM Riluzole or DMSO control (vehicle, Veh) for 2 days prior to staining with
Annexin V and PI. The percent of cells that are live (PI', annexin V), early apoptotic (PI, annexin V%), late
apoptotic ( PI*, annexin V*), and necrotic (PI*, annexin V") are shown. Data are presented as mean % cells +
SD for 3 (SUM44) or 4 (LCCTam) independent biological assays, and analyzed by two-way ANOVA followed
by Sidak’s multiple comparisons test. D, Sum44, and LCCTam cells seeded in 6-well plates were treated with
control (DMSO), Riluzole (10 uM), or a combination of Riluzole and Ferrostatin-1(10 uM) for 48hr. Post-
treatment, cells were collected, lysed, and western blot analysis was performed to test for expression of 4-
Hydroxynonenal (4HNE). The data are presented as images showing expression levels.

Figure S4. Cell growth assays in BCK4 and MM134 LTED cells. A, Cells seeded in 96-well plates were
treated with 1 yM Fulvestrant, 10 uM Riluzole (RIL), the combination, or DMSO control (vehicle, Veh) for 7-8
days prior to staining with crystal violet. Data are presented as median with upper/lower quartiles of % growth
for 5-6 technical replicates and represent 2-4 independent biological assays. Data were analyzed by the
Kruskal-Wallis test, followed by Dunn’s multiple comparison test. B, Cells seeded in 96-well plates were
treated with 1 uM Fulvestrant, 10 uM Riluzole (RIL), the combination, or DMSO control (vehicle, Veh) for 7-8
days prior to staining with crystal violet. Data are processed as the mean % growth for 5-6 technical replicates
and represent 2-4 independent biological assays. The % growth data of a representative single technical
replicate is presented in the graph showing the effecting of different concentrations of fulvestrant on MM134
LTED.
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Figure S5. Effect of Riluzole plus Fulvestrant on individual HCI-013EIl tumor growth and mouse body
weight. A, Data already presented in Figure 6A as mean tumor volume + SEM are re-graphed to show the
growth of each individual tumor. B, Mouse weights of experimental animals for whom tumor volume
measurements are shown in panel A and Figure 6A are presented as mean weight + SEM for each treatment
group. C, Representative image of tumor presented in Figure S5A, which were formalin-fixed, paraffin-
embedded, sectioned, and stained with proliferating cell nuclear antigen (PCNA) and Caspase-3 by IHC.

Figure S6. Effect of Riluzole plus Fulvestrant on apoptosis in patient-derived explants (PDEs). PDEs
were treated with 100 nM Fulvestrant, 10 uM Riluzole, the combination, or DMSO control (vehicle) for 2 days
prior to formalin fixation, paraffin embedding, sectioning, and staining for cleaved caspase 3 by IHC. Data are
presented as change relative to vehicle (set to 0) for each explant and analyzed by one-sample t-test vs. O
(vehicle).
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