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ABSTRACT

Identifying effective therapeutic strategies that can prevent tumor cell proliferation is a major
challenge to improving outcomes for patients with breast cancer. Here we sought to deepen our
understanding of how clinically relevant anti-cancer agents modulate cell cycle progression. We
genetically engineered breast cancer cell lines to express a cell cycle reporter and then tracked
drug-induced changes in cell number and cell cycle phase, which revealed drug-specific cell
cycle effects that varied across time. This suggested that a computational model that could
account for cell cycle phase durations would provide a framework to explore drug-induced
changes in cell cycle changes. Toward that goal, we developed a linear chain trick (LCT)
computational model, in which the cell cycle was partitioned into subphases that faithfully
captured drug-induced dynamic responses. The model inferred drug effects and localized them
to specific cell cycle phases, which we confirmed experimentally. We then used our LCT model
to predict the effect of unseen drug combinations that target cells in different cell cycle phases.
Experimental testing confirmed several model predictions and identified combination treatment
strategies that may improve therapeutic response in breast cancer patients. Overall, this
integrated experimental and modeling approach opens new avenues for assessing drug
responses, predicting effective drug combinations, and identifying optimal drug sequencing
strategies.
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INTRODUCTION

Developing transformative anti-cancer therapies requires drug combinations’, yet rationally
identifying effective combination therapy regimens remains challenging®®. Many anti-cancer
agents are designed to impact cell proliferation and viability, which suggests that incorporating
information about how individual drugs impact cell cycle behavior can lead to improved
predictions about drug combination effects. The mammalian cell cycle can be separated into
four linked phases (G1, S, G2, and M) with multiple checkpoints (restriction point, DNA damage
checkpoint, and the spindle assembly checkpoint)®®°. Cell cycle phases and checkpoints are
primarily composed of different molecular entities and, consequently, each phase is regulated in
different ways, which results in a minimal correlation between cell cycle phase durations in
individual cells'. This independence between phases and checkpoints has implications for
cancer treatment because many cancer drugs directly target different aspects of the cell cycle;
for example, CDK4/6 inhibitors block progression out of G; phase'’, while the nucleoside analog
gemcitabine activates the DNA damage checkpoint by targeting DNA synthesis during S-
phase'?. Together, these findings imply that drug-induced changes to cell numbers can be
achieved through distinct cell cycle-dependent molecular mechanisms. For example, these
observations suggest that combing two drugs that each reduce the rate of G4 progression will
lead to deeper reductions in the rate of G4 progression, rather than an increase in cell death.
Further, this framework predicts dose-dependent impacts: at sub-saturating doses, these G
effects will add together to reduce cell numbers, while at higher saturating doses the cell
number will peak at the maximum cytostatic effect. This general idea of drug combination
efficacy was recently explored in a study of the multi-drug CHOP protocol used in the treatment
of non-Hodgkin Lymphoma, which showed that the effectiveness of this drug combination could
be attributed to the fact that each agent had non-overlapping cytotoxic effects'®. The CHOP
protocol also demonstrates the benefit of drug combinations to improve patient outcomes.
Considering both cell cycle and cell death effects in greater detail, therefore, has the potential to
significantly improve drug combination predictions.

The classic approach to quantifying drug response is to calculate the number of cells 72 hours
after drug treatment and assume cells are undergoing exponential growth'-"". Other
approaches to quantify drug response include compartmental models such as pharmacokinetic
and pharmacodynamic (PK-PD) models that consider drug uptake and population dynamics'®.
Recent advances in methodological and quantitative approaches enable assessment of the
impact of therapies on cell growth rates, rather than static cell counts'®, which yields more
robust correlations between molecular features and drug sensitivity'®?°. However, while growth
rate approaches significantly improve quantification, they provide limited information about cell
cycle effects. A related approach, fractional proliferation, which models the number of cycling,
quiescent, and dying cells in a drug-treated population, incorporates growth rates and assumes
that cells irreversibly exit the cell cycle into quiescence?®'. Recent studies demonstrate that cells
may not irreversibly exit the cell cycle and instead may extend the duration of a specific cell
cycle phase before restarting progression through the cell cycle??. These prior studies motivate
our interest to deeply assess the influence of drugs on specific cell cycle phases and
progression through the cell cycle.

In this report, we quantify and incorporate cell cycle phase effects in an analysis of drug
responses to single agents and their combinations. We used live-cell imaging of a panel of
molecularly diverse breast cancer cells engineered to express a cell cycle reporter and tracked
the dynamics of cell number and cell cycle phase in response to single drugs and drug
combinations. Across single drugs, we observed distinct cell cycle effects, which led to similar
final cell numbers, with phase-specific responses that were oscillatory over time due to the
temporal impacts on the cell cycle. To describe these responses, we developed a computational
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model that uses a linear chain trick (LCT) to account for the delay from cell cycle phase transit
96 time upon drug treatment. This LCT model correctly inferred single drug responses across time
as well as the drug-induced oscillatory cell cycle dynamics. We used this model to predict the
98 effect of unseen combinations of drugs that impact different aspects of the cell cycle.
Experimentally testing several drug combinations, we validated that responses were primarily
100  determined by the specific cell cycle effects of each drug pair. These studies reveal the
complexity of cell behavior underlying drug responses, provide mechanistic insights into how
102 individual drugs modulate cell numbers and yield a framework for how the combination of
different drugs can be rationally modeled and predicted.
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104 RESULTS
Drug treatments induce distinct changes in cell number and cell cycle phasing
106  To track drug responses in individual cells, we genetically engineered HER2+ AU565 breast
cancer cells to stably express the HDHB cell cycle reporter?? and a nuclear-localized red
108  fluorescent protein (Fig. 1A,B). We then treated cells with escalating doses of five drugs
commonly used to treat breast cancer, each targeting different cell cycle phases or apoptotic
110  mechanisms (Fig. 1C). Cells were imaged every 30 minutes for 96H, and the number of cells in
each cell cycle phase and total cell numbers were quantified.
112
We found that each drug effectively reduced cell numbers in a dose-dependent manner (Fig.
114 1D, Sup. Fig. 1). As expected, paclitaxel, gemcitabine, and doxorubicin led to cytotoxic effects
indicated by the final cell numbers dropping below the starting cell numbers (Fig. 1D)**?. In
116  contrast, at the highest doses of palbociclib and lapatinib, the final cell numbers were
approximately equal to the starting cell numbers, suggesting cytostatic effects. For each drug,
118  the pattern of cell counts varied across time; at high doses responses tended to reach a peak
and then decline as the duration of drug exposure increased—an effect most marked for 30 nM

120  gemcitabine where the relative cell number declined from 1.1 at 48H to 0.5 at 96H (Fig. 1D)*>%.

122 Next, we sought to identify whether changes in cell numbers arose through the modulation of
cell cycle phasing. We observed drug- and dose-dependent changes in the fraction of S-G,

124  cells, which varied over time (Fig. 1E,F). For example, lapatinib and palbociclib initially reduced
the fraction of cells in S-G; phase in a dose-dependent manner, whereas gemcitabine and

126 doxorubicin initially increased this fraction. Of note, intermediate doses of lapatinib (50 nM) and
paclitaxel (3 nM) induced oscillating cell cycle responses, with an initial S-G reduction near

128  30H, followed by a second S-G; reduction at 84H. In sum, our approach revealed drug-specific
cell cycle changes across time, which confirms that these drugs yield similar final numbers

130  through distinct impacts on the cell cycle.

132 A dynamical model of the cell cycle captures the dynamics of drug response
A common approach to model drug effects is to assume exponential growth that varies as a
134  function of drug dose. This approach, although informative, cannot explain the cell cycle
dynamics that we observed®® and motivated us to develop a dynamical model to capture the
136 observed behavior. As an initial model, we defined a system of ordinary differential equations
(ODEs) with transitions between G4 and S-Gz. The parameters of the ODE model were the cell
138  cycle phase progression and death rates, which were assumed to follow a Hill function with
respect to drug concentration (Sup. Table 1). This model failed to fit the experimental data of G+
140  and S-G2 cell numbers (Sup. Fig. 2); furthermore, dynamical systems theory dictates that this
model is unable to oscillate under any reasonable parameterization®’.
142
To address these limitations and capture the observed oscillatory temporal dynamics, we
144  modified our model’s assumptions for cell cycle phase durations. We noted that the durations
were well described by a gamma distribution and applied the observation that cell cycle phase
146 durations are uncorrelated' (Sup. Fig. 3A). Gamma and related distributions model each cell
cycle phase as a series of steps, with the key feature that they can model processes wherein
148  there is always some measurable duration before a system (e.g., a cell progressing through the
cell cycle) can move to the next state. By fitting the single cell measurements of G and S-G;
150  phase durations from the untreated control, we estimated the shape parameter of the gamma
distribution which determines the number of steps in each phase?®. This resulted in partitioning
152 the G phase into 8 and S-G; phase into 20 steps (Fig. 2A). We incorporated a “linear chain
trick” into our model, which creates similarly-distributed time delays in the cell cycle phase
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154  durations through a mean-field system of ODEs®°. Additionally, we simplified the model by
sharing parameters that were not drug specific, such as the number of cell cycle subphases and
156 the initial fraction of cells in G4 phase. We fit all five drug dose responses, varying the drug-
specific and shared parameters, simultaneously. Incorporation of this component enabled the
158  model to capture the experimentally observed oscillatory cell cycle behavior and cell cycle
phase-specific drug effects. We computed the fitting error of the two modeling frameworks by
160  calculating the sum of squared error of the difference between the data and model predictions
across all concentrations and observed that the LCT model had lower error terms (Fig. 2B). The
162 fits to lapatinib and palbociclib were particularly improved by the model refinement. Examples of
dose-response curves and model fits for lapatinib and gemcitabine are shown in Figure 2C-H.
164  Importantly, the model captured the dose-dependent changes to G1 and S-G2 populations as
well as the oscillatory dynamics. Estimating the cell cycle phase progression and death rates
166  also enabled calculation of the accumulated amount of cell death across time using inferred cell
counts at each phase (Fig. 2E,H). The LCT model also performed well for each of the other
168  drugs (Supp. Fig. 4A-F).

170  To summarize the overall effect of each drug treatment, we compared the average phase
durations and cell death probabilities inferred for each drug from the LCT model at the half

172 maximum concentration (ECso) to the untreated control condition (Fig. 2I-L). The model inferred
that lapatinib and palbociclib treatments lead to longer average G1 phase durations compared to

174 untreated cells (Fig. 2I-J), a 10% higher chance of cell death in G1 phase for lapatinib-treated
cells, and a slight chance of cell death in S-G; after palbociclib treatment (Fig. 2K-L). The model

176 also inferred that gemcitabine induces an increase in S-G; durations and greater chance of cell
death in S-G; phase as compared to untreated cells (Fig. 2G-H). Finally, a 10% chance of cell

178  death at the ECso concentration (2.4 nM) was inferred in late Gz phase for cells treated with
paclitaxel as compared to untreated controls (Fig. 2J and Sup. Fig. 3J).

180
Analysis of single cell responses confirms model inferences and reveals drug-specific

182  cell cycle phase effects
We developed model parameters from the average population response at each timepoint,

184  which facilitates robust model development by leveraging information from a large number of
cells. Importantly, as described above, the LCT model infers aspects of drug responses that can

186  be quantified at the individual cell level—including cell cycle phase duration and cell cycle-
specific death. We therefore tracked single cells in the image time course data to quantify cell

188  cycle phase durations and also cell death events associated with specific drug treatments and
concentrations (Sup. Fig. 3B). Quantification of cell death events also enables direct

190  assessment of whether drug effects are cytotoxic or cytostatic. We analyzed the first complete
cell cycle, which we reasoned would reveal early drug effects. We also quantified the relative

192  fate outcomes for the progeny of cells at time OH that underwent division, which provides
insights into effects of drug treatment that are observed at later timepoints (Sup. Fig. 3C). As

194  expected, in the untreated condition, most cells (93%) present at OH underwent cell division. In
contrast, at the highest lapatinib and gemcitabine doses, 32% and 61% of the cells present at

196  time OH failed to divide. Additionally, of the cells that did divide in these two conditions, only
10% underwent a second division. For both drugs, lower doses showed more modest changes

198  in the fraction of cells that divided as compared to untreated. As described below, we compared
these experimentally observed drug-induced cell cycle effects to those inferred by the LCT

200  model.

202  The model inferred that the predominant lapatinib effect was to extend G durations from 22.3H
in the untreated condition to 33.6H and 47.4H for 25 nM and 50 nM lapatinib, respectively (Fig.
204  3A). Experimentally, we observed that G durations increased after lapatinib (mean 26.2H and
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32.5H with 25 nM and 50 nM lapatinib, respectively) (Fig. 3A, B). We also quantified an
206 increase in the G4 duration variance showing that cells varied in their responsiveness to
lapatinib (Fig. 3B). The model inferred minimal changes to S-G2 durations or cell death and we
208  accordingly observed little change in S-G; durations or cell death in the experimental data (Fig.
3C,D).
210
The model inferred that oscillations in the percentage of G+ cells after lapatinib treatment arise
212 from “waiting time” effects in cell cycle progression (see Fig. 2). Waiting times, which can be
modeled through distributions such as the gamma distribution, refer to the delay effect created
214 by processes that are comprised of many sequential steps. To confirm the mechanism
underlying this behavior at the single cell level, we examined various cell cycle measures and
216 found a reduction in the fraction of cells undergoing their first division beginning around 24H
(Fig. 3E). This observation, together with the lengthening of the subsequent G4 duration
218 following cell division (Fig. 3B), can explain the cell cycle synchronization observed in the
experimental data (see Fig. 1) and in the LCT model. At the start of the assay, cells in G, are
220  delayed in their time to division, while cells in S-G, only become delayed at the onset of G4
following division. In effect, this creates two populations of cells with distinct timing in the
222 induction of drug effects. We observed a similar effect after treatment with Palbociclib (Sup. Fig.
3D).
224
For gemcitabine, the model inferred a slight acceleration of G1 phases, which we also observed
226 experimentally (Fig. 3A,F). The model inferred that S-G; durations were extended following
gemcitabine treatment, which we confirmed experimentally: S-G, durations were extended from
228  22.3H to 34.5H with 5 nM and to 38H with 10 nM gemcitabine (Fig. 3G). Lastly, the model
inferred an increase in the number of cell death events relative to the starting cell number, from
230  0in control to 0.57 with 5 nM gemcitabine. At 10 nM gemcitabine, the model predicted 1.0
relative cell death events such that the number of cell death events across 96H was the same
232 as the initial starting cell number (Fig. 3A). The experimentally observed values showed similar
trends, though with more modest changes in cell numbers (0.14 and 0.41 relative cell numbers
234  for 5 and 10 nM gemcitabine, respectively) (Fig. 3H). Overall, we observed similar trends in
each of the parameters for gemcitabine treated cells as inferred by the model; modest
236  differences were that the model inferred higher cell death and shorter extensions to S-G; than
we observed experimentally.
238
We also tested an assumption of the model that G1 and S-G. phases are independent variables,
240  which captures the idea that these cell cycle phases are independently regulated at the
molecular level. We analyzed G1 versus S-Gz durations for individual cells in the control
242 condition, 10 nM gemcitabine, and 50 nM lapatinib, and found a minimal correlation between G
and S-G; durations (Fig. 3l). These experimental observations confirm the implicit assumption
244  of the model that Gy and S-G; durations are uncorrelated.

246  Lastly, we evaluated model inferences for paclitaxel treatment. Consistent with our experimental
observations, the model inferred minimal changes to G1 and S-G; durations following treatment

248  (Fig. 3A,J,K). At 2 nM paclitaxel, the model inferred 0.56 cell deaths relative to the starting cell
numbers, and at 3 nM inferred 0.90 relative cell deaths (Fig. 3A, Methods). Experimentally, our

250  observations were consistent with the values inferred by the model: we observed 0.54 and 1.00
relative cell deaths for 2 nM and 3 nM paclitaxel (Fig. 3L). To summarize the mechanisms that

252  account for the observed changes in cell numbers due to paclitaxel treatment, we compared the
number of cell death events against final cell counts for each of the other drugs. These data

254  show the relative bias of paclitaxel toward inducing cell death, especially at 2 nM, compared to 5
nM gemcitabine and 50 nM lapatinib, which both resulted in similar final cell numbers (Fig. 3M).
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256 Overall, the LCT model captured key observations about the cell cycle effects of each drug,
which were confirmed by in-depth single-cell tracking of the experimental data.

258
Drug-induced changes to cell cycle behavior generalize across a molecularly diverse

260  panel of breast cancer cell lines
To assess the generalizability of our computational framework and experimental observations,

262  we generated and tested three additional breast cancer cell lines from diverse molecular
backgrounds®: 21MT1 (Basal subtype, HER2+), HCC1143 (Basal subtype, HER2-) and

264 MDAMB157 (Claudin-low subtype, HER2-) (Sup. Figs. 5-7). Because these cell lines do not
uniformly overexpress HER2, we additionally tested BEZ235 and trametinib, which respectively

266 target PI3K and MEK, two growth factor pathways downstream from HER2. We observed dose-
dependent reductions in cell numbers and also modulation of the percent of G4 cells following

268  drug treatment. Importantly, similar to our findings for AU565 cells, we observed dynamic
responses not captured by terminal endpoint readouts of cell viability (Sup. Figs. 5-7, panels A-

270  B). We observed unique patterns, including: a delayed G, enrichment from trametinib in 21MT1
cells (Sup. Fig. 6), a lack of G4 enrichment from palbociclib and BEZ235 in MDAMB157 cells

272 (Sup. Fig. 7), and a dose-dependent bifurcation in Gy enrichment for doxorubicin in all three of
the cell lines (Sup. Figs. 5-7).

274
Next, we tested our LCT model on each of the new cell lines. Comparison of model fits to

276  experimental observations confirmed that our model could capture the dynamic responses
observed across this panel of molecularly distinct cell lines, indicating the generalizability of our

278  computational framework (Sup. Figs. 5-7, panels C-E). We analyzed the output of the LCT
model, which inferred changes to cell cycle phase durations and cell death probabilities for

280  drug-cell line pairs at the ECso concentration (Sup. Fig. 8). The model inferred cell-line-specific
changes to both G4 and G, phases (Sup. Fig. 8A,B). For instance, 21MT1 were inferred to

282  preferentially undergo G+ cell death after doxorubicin and paclitaxel treatments, at probabilities
of 60% and 15%, respectively (Sup. Fig. 8C). The model inferred that HCC1143 cells arrest and

284  die in S-G; following paclitaxel or palbociclib treatment (Sup. Fig. 8B,D). MDA-MB-157 cells
were inferred to become growth-arrested by drug treatment and to preferentially die in G1 phase

286  (Sup. Fig. 8C,D). Overall, we confirmed that our computational framework was generalizable
across several drugs and cell lines and could infer a range of drug treatment response

288  behaviors.

290 Responses to drug combinations are dependent on drug specific cell cycle and cell
death effects

292  Durable and effective cancer treatments frequently require administration of multiple drugs;
however identification of the principles underlying optimal drug combinations have been

204  challenging®'. Here, we tested the idea that our LCT model, which incorporates cell cycle
effects, can be used to predict the impact of different drug combinations on cell cycle behavior

296 and final cell numbers. We compared two strategies in accounting for drug combination effects.
In the first, we combined drug effects on the rates of G; and S-G; progression using Bliss

298  additivity and assumed the rates of cell death additively combined. In the second, we assumed
an additive combination through use of the drug effects on overall cell numbers. To explore

300 these predictions, we varied the dose of one drug in the two drug combination pair and analyzed
responses to drug combinations that targeted either the same cell cycle phase (G1 and G4, or S-

302 Gz and S-G) or different cell cycle phases (G1 and S-G).

304  First, we tested combining the rates for two G1 targeted drugs, such as lapatinib and palbociclib.
The model predicted that effects on cell number would saturate around the initial starting cell
306  number, indicating cytostatic effects of this drug combination (Fig. 4A). In contrast, drug
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combination effects based on cell numbers alone predicted a cytotoxic effect at higher drug
308  concentrations, resulting in a reduction in cell numbers relative to the starting cell numbers. We
tested these drug combinations experimentally and found a cytostatic effect at higher doses,
310  which matches the model prediction based on combining rates of cell cycle progression (Fig.
4A).
312
Next, we analyzed predictions of gemcitabine combined with doxorubicin, which both extend S-
314 Gz durations and induce cell death (see Fig. 3A). We found that combination predictions based
on rates and cell counts both predicted a reduction in cell numbers relative to each drug on its
316 own, which we also observed experimentally (Fig. 4B).

318  Lastly, we used the LCT model to examine the impact of combining two drugs that target
different cell cycle phases, which mimics lapatinib (G, effect) combined with gemcitabine (S

320 phase effect). The cell cycle model predicted an antagonistic effect at higher doses, such that
30 nM gemcitabine combined with 100 nM lapatinib is expected to yield a similar final cell

322 number as 30 nM gemcitabine on its own (Fig. 4C). Experimentally, we observed that three of
the four lapatinib and gemcitabine combination doses showed an antagonistic impact on cell

324  number as compared to gemcitabine alone indicating that combining these two drugs was
actually counterproductive. These antagonistic effects of the combination held when lapatinib

326  was replaced by palbociclib, which also impacted G1 durations (Fig. 4D). We examined the
model predictions in more detail to gain insights into the underlying biological mechanisms

328  driving these drug combination responses. The LCT model predicted that the G, effect of
lapatinib would initially dominate over the S-phase effects of gemcitabine, leading to an

330 increased G+ proportion for the population, which was confirmed experimentally, thus mitigating
the S-G2 effects of gemcitabine (Fig. 4E).

332
In summary, these data indicate that the cell cycle phase and cell death impacts of each drug in

334  a pair are critical for determining the influence of single drugs on cell cycle behavior and that
this information can be used for rational identification of drug combinations likely to be

336  therapeutically beneficial.
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DISCUSSION

338 In this report, we link cell cycle regulatory mechanisms with drug-specific cell cycle effects to
gain insights into cancer cell responses to individual drugs and drug combinations. To meld

340 these ideas, we developed a combined experimental and modeling approach to measure cell
dynamics and infer cell behavior. This combined approach revealed that assessment of

342  temporal dynamics and cell behavior is critical to interpret and model drug-induced effects.
Importantly, assessment of the impacts of single agents on cell cycle behavior could be used to

344  identify drug combinations likely to yield therapeutic benefits.

346  Recently, an in-depth analysis revealed that cell cycle phases in individual cells are
uncorrelated and have durations that can be accurately modeled as an Erlang distribution (a

348  special case of a gamma distribution)®. This observation indicates that the cell cycle can be
viewed as a series of uncoupled, memoryless phases rather than a single process'®33. In this

350  work, we found similar uncorrelated patterns in cell cycle phase responses after treatment with
different anti-cancer drugs. This revealed multiple implications for assessing and modeling drug

352  responses. First, viewing the cell cycle as a single process implies that cell behavior is
immediately impacted upon drug treatment; however, we and others have reported that drug

354  effects are often not observed until individual cells enter or approach a specific phase or
checkpoint®**3°. For instance, we found that cells were initially distributed across all phases of

356  the cell cycle and that the addition of lapatinib, a Gs-targeting drug, did not initially affect cells in
S-G; phase. This led to a partial cell cycle synchronization across the population and required

358  the incorporation of a linear chain trick into our model to account for this dwell time. Additionally,
the temporal dynamics of the therapeutic response were an important consideration for co-

360 treatment with gemcitabine and lapatinib. If both drugs had immediate effects on cell behavior,
we would expect that the G and S-G; effects of each drug would counteract each other and

362 lead to a constant ratio of cells in G1 phase. Instead, both experimentally and through model
predictions, we found an initial G1 enrichment. This likely induced a secondary effect of reducing

364 the relative time that each cell spent in S-phase, which further reduced gemcitabine sensitivity.
This finding could explain the antagonistic effects on cell numbers that we and others have

366  observed when combining gemcitabine with lapatinib or palbociclib®*®’. We speculate that a
synergistic effect on cell numbers could also arise by combining two drugs that target S-G»

368  phases, where each drug acts to extend the relative duration in which the other is effective. This
general strategy could be used to identify optimal temporal scheduling of other drug

370  combinations that induce different effects on the cell cycle.

372 A second implication of multiple independently regulated cell cycle processes relates to the
concept of effect equivalence in drug combinations. This concept—that two drugs with

374  independent targets can be used to identify drug synergy or drug antagonism—has
predominantly focused on the cell number effect of each drug?>. Our current work suggests that

376  equivalence in effect may be better applied to rates of cell cycle phase progression and cell
death. In our work, we found that lapatinib and palbociclib primarily impacted G+ phase with

378 limited effects on cell death. In contrast, doxorubicin and gemcitabine extended S-G; durations
and induced cell death. These cell cycle and cell death effects were critical for gaining insights

380 into the effect of drug combinations. For example, two cytostatic drugs, lapatinib and palbociclib,
were additive up to doses that reached the maximum cytostatic effect, with further dose

382  increases leading to only minor effects on cell numbers. In contrast, combining the two cytotoxic
drugs led to increasingly cytotoxic responses across the full dose range. These results suggest

384  that considering the cell cycle and cell death impacts of each drug is necessary to make
predictions about the effects of their combinations and implies that this information could be

386  used for the rational identification of effective drug combinations®3,


https://doi.org/10.1101/2020.07.24.219907
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.24.219907; this version posted January 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

388  Drug response measurements evaluated in the context of a mechanistic cell cycle model can
reveal insights about the nature of drug response and resistance not immediately apparent from

390 purely data-driven analyses. For instance, a model for the proliferation dynamics of cancer cells
can separate the contribution of dividing, non-dividing, and dying cells*', revealing that the rates

392  of cell death and entry into quiescence change with drug treatment. Previous computational
models of cell cycle behavior have explored various ways in which cell cycle behavior might

394  impact drug response but have struggled to identify experimental data amenable for model
fitting and evaluation. For instance, others have appreciated that drugs do not affect the cell

396  cycle uniformly and have therefore proposed computational models that partition the cell cycle
into several independent steps, both with'® and without®® cell death effects. Modeling cell

398 lifetimes as being hypo-exponentially distributed helps to explain the distribution of cell lifetimes
within a population but does not connect these observations to known cell cycle stages®. In this

400  report, we demonstrate that partitioning known cell cycle phases to account for their dwell time
effects—and including experimentally observed drug effects like cell death—results in a

402  modeling framework that can faithfully and mechanistically capture experimentally observed
anti-cancer drug effects.

404
We applied our experimental approach and computational framework to examine dynamic drug-

406  induced responses in a molecularly diverse set of breast cancer cell lines. In all cases, we
observed that therapeutic inhibition induces a wide array of responses, indicating that the

408  influence of therapies on cell cycle dynamics is a generalizable mechanism operable in a wide
array of molecular backgrounds. Cancer cells treated with therapies may adopt new molecular

410  programs associated with adaptive and acquired resistance, and indeed previous studies have
demonstrated this principle in both model systems and patient samples*'. We hypothesize that

412 cells with acquired resistance may show distinct drug-induced cell cycle programs as compared
to naive cells and that our approach could be used to uncover the molecular mechanisms

414  associated with adaptive resistance. Our study provides a blueprint for studying responses of
diverse cell types—both normal and diseased—to a wide array of perturbations, including

416  therapeutic inhibitors, growth factors, or genetic manipulation with CRISPRi/a. The resultant
data could be used to adapt our computational framework to identify mechanisms of cell cycle

418  control in different cellular contexts, microenvironmental conditions, or disease states.

420  While our model could explain many of the key observations in our experimental data,
extensions of the model could further improve its generalizability and robustness. We partitioned

422  the cell cycle into two observed phases, G1 and S-G,, which were further subdivided to explain
the dwell time behavior of each phase. With improved reporter strategies*?, we may be able to

424  further subdivide these phases into constituent parts, which could help to localize the effect of a
drug to a more specific portion of one cell cycle phase. Generalizations of the linear chain trick

426 could be used to account for both subphases of varying passage rates, as well as heterogeneity
in the rates of passage, such as would arise through cell-to-cell heterogeneity?®. While the

428  subdivisions within each cell cycle phase are phenomenological, it is tempting to imagine they
represent mechanistic steps within each phase. Identifying how effects connect to actual

430  biological events in the cell cycle would help identify opportunities for drug combinations. A
practical challenge when using the model for drug combinations has been normalization

432 between experiments. While cell number measurements are routinely normalized by dividing by
a control, experiment-to-experiment variation in inferred rates requires additional consideration.

434 A wider panel of experiments, across multiple cell lines, may help to tease apart variations
associated with drugs, cell lines, or experiments. A final potential extension is considering the

436  existence of phenotypically diverse subpopulations*®. At the cost of additional complexity, one
could employ several instances of the current model with transition probabilities between these

438  states when the cells divide to simulate a heterogeneous population of cells.
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Summary

We observed that five commonly used cancer drugs each modulated cell numbers through
distinct routes and with different temporal dynamics. By revealing how these drugs uniquely
impacted cell fate, our model and analyses have implications for how different cancer drugs can
be combined to maximize therapeutic impact. For instance, our results can identify drug
combinations that modulate cell cycle effects in orthogonal ways or drug schedules that take
advantage of the shift in cell cycle state of the overall population. In summary, these studies
provide a map for understanding how cancer cells respond to treatment and how drugs may be
combined and timed for maximal effect.
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METHODS
458  Creation of Stable Cell Lines
AU565 (ATCC CRL 2351) and MDAMB157 (ATCC HTB 24) cells were grown in DMEM
460  supplemented with 10% FBS, HCC1143 (ATCC CRL 2321) cells were grown in RPMI
supplemented with 10% FBS, and 21MT1 (generous gift from Kornelia Polyak) cells were grown
462  in DMEM/F12 supplemented with 5% horse serum, 20 ng/ml rhEGF, 0.5 ug/ml hydrocortisone,
100 ng/ml cholera toxin, and 10 pg/ml insulin. The coding fragment for clover-HDHB was cloned
464  in frame into a transposase expression plasmid modified to also express a nuclear localized
mCherry*. The stable cell lines were created as previously described*® and selected for 7 days
466 with 0.75 pg/ml puromycin. To mitigate a range of fluorescent signals from transfection,
HCC1143 and 21MT1 cells were sorted at OHSU’s Flow Cytometry Core and cells with a
468  medium intensity clover-HDHB signal and a high intensity NLS-mCherry signal were selected
for drug dose response experiments. In all cases, cells were validated by STR profiling
470  (LabCorp) and tested negative for mycoplasma.

472 Drug Dose Response Protocol
AU565 cells were plated at a density of 25,000 cells per well into 24-well Falcon plates (Corning
474  #353047). 24H after plating the media was exchanged with Fluorobrite media supplemented
with 10% FBS, glutamine, and penicillin-streptomycin. Cells were then treated with dose-
476  escalation: lapatinib (Selleckchem #S1028), gemcitabine (#51149), paclitaxel (#51150),
doxorubicin (#S51208), palbociclibb (#51116), BEZ235 (#S1009), and trametinib (#52673). After
478  drug addition, plates were imaged every 30 minutes for 96H using phase, GFP, and RFP
imaging channels with an IncuCyte S3. For single drug treatments of AU565 cells only, at 48H
480  the media was replaced in all wells including the control wells, and fresh media and drug were
added. Four equally-spaced image locations per well and three biological replicates were
482  collected.

484 MDAMB157, HCC1143, and 21MT1 cell lines were transferred to and maintained in a base of
either Fluorobrite media and 1x GlutaMAX or mixed Fluorobrite/F12 media and 0.5x GlutaMAX

486  along with their corresponding supplements for no less than one week before performing the
drug dose response protocol. MDAMB157 and HCC1143 cells were plated at a density of

488 25,000 cells per well, while the larger 21MT1 cells were plated at a density of 5,000 cells per
well into 24-well Falcon plates (Corning #353047). 24H after plating the media was exchanged

490  with fresh Fluorobrite media as indicated per cell line. Cells were then treated with dose-
escalation: BEZ235, gemcitabine, paclitaxel, doxorubicin, palbociclib, and trametinib. After drug

492  addition, plates were imaged every 2 hours for 96H using phase, GFP, and RFP imaging
channels with the IncuCyte S3. Four equally-spaced image locations per well and three

494  biological replicates were collected.

496  Image Analysis
To analyze AU565 image data, phase, GFP, and RFP images were overlaid and collated into
498  single files using FIJI*®, then segmented into three classes (nuclei, background, debris) using a
manually trained classifier in llastik*’. The segmented nuclear masks from llastik and the
500 IncuCyte GFP images were used to count the number of nuclei in each image with Cell
Profiler*®. Additionally, using the same images (nuclear masks from llastik and GFP cell cycle
502  reporter images) cell cycle phase was determined by taking the mean fluorescence in the
nucleus compared to the mean fluorescence in a 5-pixel ring surrounding the nucleus, excluding
504  background pixels. A threshold was then manually set for the ratio of nuclear fluorescence to
cytoplasmic fluorescence and cells with values below the threshold were defined as being in G1
506 and cells with values above the threshold were defined as being in S/G2 phase*.
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508  To manually track AU565 cells and identify drug-induced changes operable in single cells, GFP
image sequences were registered using the FIJI plug-in ‘StackReg’. Individual cells present in

510 the firstimage and their progeny were followed to identify the time of G+ transition, cell death,
and cell division using the plug-in mTrackJ*°. We excluded cells that were binucleated, had

512  abnormally large nuclei, or were near the image border where complete lineages could not be
tracked. The Gy transition was defined as the last frame before the nuclear intensity of the cell

514  cycle reporter was below the level of the cytoplasm. Assessment of cell death enabled
disentangling of cytostatic and cytotoxic drug effects.

516
We used the following approach for automated analysis of HCC1143, 21MT1 and MDAMB157

518  cell lines. Image registration was performed on the red channel nuclear marker image stack
using the python skimage phase_cross_correlation function to correct translations. Image

520  stacks were cropped to their common areas and individual cells were segmented with the
Cellpose LC2 model trained on phase and nuclear images from the untreated and highest drug

522 concentration treatments®’. Nuclei were segmented with the Cellpose cyto2 model on the
nuclear channel. To associate nuclei across the image stack, to identify progeny after mitosis,

524 and to identify cell death events we used Loeffler tracking®' with the default parameters of
delta_t = 3 and roi_size = 2. We created cytoplasm masks by subtracting the nuclear masks

526  from the cell masks and applied these masks to the green channel cell cycle reporter images
using the python skimage function regionprops_table. To assign cells to G1 or S/G2 states, we

528  computed the ratios between the cytoplasm and nuclear cell cycle reporter. k-means clustering
of the ratios observed in cells in the untreated condition was used to establish a per-plate

530 threshold between cell cycle states.

532  The quantitated cell-level data was mean summarized to the population level for each image
and to assess cell counts and G1 cell cycle state proportion. The cell counts were normalized to
534  the mean of the counts of the first three images. The cell count dose response curves were
normalized to the control by dividing each drug cell count by the control cell count at the same
536 time slice.

538 Core Model
To identify the dynamics of the AU565 cancer cell population in response to compounds, we
540  built a system of ordinary differential equations (ODEs) with two states: G4, and S-G.. Cells
transition from G+ to S-G; phase, and then vice versa when doubling. Cell death can occur in
542  either phase with phase-specific death rates. S and G, phases are combined as our reporter
cannot distinguish them. From single-cell tracking, we identified that G and S-G. phase time-
544  intervals are gamma-distributed. Based on this observation, we employed the linear chain trick
(LCT)? to capture these waiting time distributions. We broke down each phase into a series of
546  sequential sub-phases and derived the system of mean-field ordinary differentials. Each sub-
phase is represented as a single state variable within the differential equation system. The total
548  number of cells in each phase is the sum of the cell numbers in each sub-phase. Furthermore,
to account for the non-uniform effect of the drugs over each cell cycle phase, we divided G+ and
550  S-G: into 4 parts each, such that the effect of a drug can be distinguishable at the beginning,
middle, or the end of the phases.

552
The mean-field system of ODEs is:
554
dG
% = +2B4Go45 — (“1 + V1,1)G11,1
dG
556 d—ltk'l = +ar_1G1x-12 — (ak + V1,k)G1k,1
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dG
dltkz = +arGixs — (“k + Vl,k)G1k,2 1<k<4
558
dG
dztl'l = +asG142 — (:31 + V2,1)Gz1,1
d Gy _ .
560 diu = +BiGaij-1 — (Bi +v2,)Gaij 2<j<5,1<i<4
562

The parameters of the model include progression rates through G phase, «, and S-G; phase,
564  f3, and death rates in each of the G1 phase, y;, and S-G. phase, y,. Cells at the end of the S-G,

phase divide and give birth to two cells at G4 phase. Because each phase is divided into 4 parts,
566  each part of G4 contains 2 sub-phases, and each part of S-G; contains 5 sub-phases.

568  The model was implemented in Julia v1.5.3. The differential equations were solved by the
matrix exponential. As the data was measured with equal spacing, we pre-calculated the
570  transition matrix between timesteps.

Dose Response Relationship
572  We assumed that the progression and death rates in G1 and S-G» that form the quantified drug
effects on the population follow a Hill function:
574
Hill (C) = Epin + %
576
where the ECs, indicates the half-maximal drug effect concentration, E,,,;,, the value of the rate
578  parameter in the absence of drug, E,,,, the rate parameter at infinite concentration, and k the
steepness of the dose-response curve. Given these parameters and the drug concentration (C)
580  we then calculated the specific rate parameters for that treatment.

582  Exponential Model
To show the benefit of our LCT model, we employed a commonly used exponential model to fit
584  to the G1 and S-G; cell numbers and showed that the exponential model cannot capture the
dynamics of the data. The parameters were the same as the mean-field model.

586
dG
d_tl = +2BG, — (@ +v1)G,
d G,

590 Model Fitting
The data included the percentage of cells in Gy phase and the total number of cells normalized
592  to the cell numbers at the initial time point. We assumed 1 starting cell at OH and calculated the
number of cells in Gy and S-G; phase over time. The Savitzky-Golay filter was used to smooth
594  the data. Three replicates of each experiment were averaged, and the average was used for the
purpose of fitting.
596
The number of G4 and S-G; subphases, and the parameters in the absence of drug were
598  shared across all drugs and concentrations. The sum of squared error was used as the cost
function value and was calculated between the cell numbers predicted by the model and the
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600 average cell numbers of three replicates, over all time points, concentrations, and drugs tested.
This cost function was then minimized using the default adaptive differential evolution optimizer
602  from the BlackBoxOptim.jl Julia package, version 0.5.0.

604  To characterize the identifiability of our fit parameters we conducted a local sensitivity analysis.
To do so, we calculated the cost function while varying each parameter from 0.1 to 10 times the

606  optimal value, holding all the other parameters at their optimum (results not shown). We
observed that all parameters were identifiably constrained by this analysis.

608  Calculating relative number of cell deaths and average phase durations
We evaluated the number of dead cells at 96H relative to the starting cell number at OH. This
610  formed the observed relative cell death numbers reported in Figure 3A. To calculate the
corresponding cell death values inferred from the model, we calculated the predicted number of
612  cells at each phase part (G11, G12, G13, G14, G21, G22, Gz23, G24) separately, and multiplied them
by their individual death rates at all time points. This provides the number of dead cells at each
614  phase part at each time point. The sum of cell numbers died in each phase part provides the
total cell death counts at each time point, n(t). Figure 2C-D show the accumulated dead cells
616  across time for lapatinib and gemcitabine treatments which was calculated by summing over the
cell death counts, n(t), across time from 0 to each timepoint, T. Calculating for 96H results in
618  the total cell death normalized by the initial cell numbers, 1, this value refers to the relative
predicted cell death number reported in Figure 3A.

620
2
n(t) = Z Gij(t) X yij
i=1 j:1T
622 N(T) = ) n(®)

624  The average phase durations (G, ,S — G,) from the model were calculated using the progression
rates. The G4 phase has 8 subphases which is divided into 4 parts that results in 2 phases per

626  part. S-G, phase has 20 subphases divided into 4 parts that results in 5 subphases in each part.
Each phase part has a unique parameter for cell death and phase progression rate. The

628  average phase duration will be given by the following expressions, derived by recognizing that
the time in each part is gamma-distributed with a shape parameter equal to the number of

630 subphases.

632 G= ) —

634  Predicting Drug Combinations
Bliss independence was used to calculate the predicted effect of drug combinations. Assuming
636 E,and Ej, to be the saturable, quantified effects of drugs a and b, the expected combined effect
would be:
638
Eqp = Eq + Ep — Eg.Ep ™)
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640
For death effects, we added the effects of each drug to find the death effect of the drug
642  combination:

644 D,, = D, + Dy (**)

646  The Bliss relationship requires that data first be scaled to be between 0 and 1, and then scaled
back after the interaction calculation:

648
X = (Xcontrot — X)

Xcontrol

650
This measure is usually used as a baseline to decide whether the combination of two drugs is

652  synergistic or antagonistic. Here we used Bliss in two ways: (1) on the progression rate
parameters to simulate the model predictions of drug combinations; and (2) on cell numbers to

654  serve as a baseline approach to calculate drug combination effects, as is commonly used. In the
first case, we use Bliss additivity on the cell cycle progression rates (*) to find the set of

656  progression parameters representing the combined treatment and assume that the death effects
are only additive because the cell death process is not saturable (**). The combination

658  parameters for all the eight concentrations for all pairs of drugs were calculated and then
converted back to their original units. Next, we simulated the cell numbers using these

660 parameters. In the baseline case, we used the cell numbers in the control condition to normalize
the cell number measurements and then converted the cell numbers back to their original scale.

662  This was used as a benchmark reference.

664  Data Availability
Data was deposited to the Image Data Resource (https://idr.openmicroscopy.org) under

666  accession number idr0119. All other data and analyses used in this study are available from the
corresponding author upon reasonable request.

668
Code Availability

670  The code and analysis can be found at https://github.com/meyer-lab/DrugResponseModel.jl.
Code for the automated segmentation and tracking is at

672  https://github.com/markdane/CellTracking.

674 FIGURE LEGENDS

676  Figure 1. Drugs induce dose- and time-dependent changes in cell cycle behavior. A.
Schematic of reporter with a bidirectional promoter driving expression of human DNA Helicase

678 B (HDHB) fused to the green fluorescent protein clover, and a second transcript coding for NLS-
RFP-NLS, a ribosome skipping domain (T2A), and a puromycin resistance protein. B.

680  Quantification of nuclear intensity of the cell cycle reporter in a cell and its progeny across time.
The time of G+/S transition and cell division are demarcated with black and red circles

682  respectively. C. Schematic of the five drugs tested and the cell cycle phase they target. D.
Average growth curves of AU565 cells tracked every 30 min for 96H across an 8-point dose

684  response for lapatinib, gemcitabine, paclitaxel, palbociclib, and doxorubicin. The null dose is
colored red. Line traces show the average from three independent experiments. The black

686  triangle indicates the addition of fresh drug and media. E. Percentage of cells in S-G; phase of
the cell cycle across doses. 50 nM Lapatinib and 3 nM paclitaxel are colored blue. F. GFP

688  images at 39.5H for 250 nM lapatinib, 30 nM gemcitabine, 3 nM paclitaxel, 250 nM palbociclib,
20 nM doxorubicin.
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690
Figure 2. A computational model of the cell cycle captures the dynamics of drug
692 response. A. Diagram of the phase transitions in the linear chain trick (LCT) model. a4, a5, a3 ,
and a, are the progression rates through G phase; 3, S2, B3, and B, are the progression rates
694  through S-G; phase. Similarly, y11, Y12, Y13, and y,4 are the death rates within the G4 phase
parts, and y,1, V22, V23, and y,, are death rates within S-G, phase parts. B. The sum of squared
696  errors for the fits of each of five drugs over all concentrations with and without the LCT
modification. C-D. G4 and S-G; cell numbers over time, respectively, for lapatinib-treated cells at
698 5 concentrations and untreated control (solid lines), overlayed with the average of three
experimental replicates (dashed lines). E. The predicted accumulated dead cells over time for
700  untreated and lapatinib-treated cells at 5 concentrations. F-G. G1 and S-G> cell numbers over
time, respectively, for gemcitabine-treated cells at 5 concentrations and untreated control (solid
702  lines), overlayed with the average of three experimental replicates (dashed lines).
H. The predicted accumulated dead cells over time for untreated and gemcitabine-treated cells
704  at 5 concentrations. I-J. The average phase durations in G1 and S-G2 phases for all five drug
treatments. The arrow shows the shift from the control condition to the drug effect at the half
706  maximum concentration (Eecso). K-L. The overall probability of cell death in G1 and S-G; phase,
respectively, for all five drug treatments. The arrow shows the shift from the control condition to
708  the drug effect at the half maximum concentration (Eecso) for G1 and S-G; phases.

710  Figure 3. Analysis of single cell responses confirms model inferences and reveals drug-
specific cell cycle phase effects. A. Quantification of cell cycle parameters as inferred by the
712 model and observed experimentally (G1 and S-G; durations and cell death). B. Distributions of
G+ durations for cells that underwent one division in response to 0, 25, and 50 nM lapatinib. C.
714 Distributions of S-Gz durations. D. Accumulated cell death across time. E. Time to first division
for cells in the CTRL condition (red line) compared to 50 nM lapatinib (gray line). F-H. G; and S-
716 G distributions, and cell death accumulation in response to gemcitabine. I. G1 and S-G;
durations for the first complete cell cycle for all cells tracked in the control condition, in response
718 to 100 nM lapatinib, and 10 nM gemcitabine. J-L. G1 and S-G; distributions, and cell death
accumulation in response to paclitaxel. M. Observed cell counts against cell deaths per drug.
720
Figure 4. Responses to drug combinations are dependent on drug-specific effects on the
722 cell cycle and cell death. A-D. Comparison between model predictions for single drug
responses, or from drug combinations of Bliss additivity using cell numbers or model rates. A.
724 Single drug responses for increasing doses of palbociclib and in combination with 100 nM
lapatinib. B-D. Single drug responses for increasing doses of gemcitabine and in combination
726 with 20 nM doxorubin, 100 nM lapatinib, 50 nM palbociclib. E. Model predictions for the
percentage of cells in G4 phase for the control condition, 100 nM lapatinib, 17 nM gemcitabine,
728  or the combination of lapatinib and gemcitabine. E-H. Comparison between the model
predictions and experimental observations for the single drug responses and the drug
730  combinations as described in panels A-D. Error bars show the standard error of the mean for
three biological replicates.
732
Figure S1. Individual replicates for AU565 drug responses show similar temporal
734  dynamics and drug-induced changes to cell cycle. Panels show relative cell numbers and S-
G2 normalized cell numbers for lapatinib (A), gemcitabine (B), paclitaxel (C), palbociclib (D), and
736 doxorubicin (E) treatments for three biological replicates. Five drug concentrations (gray lines)
and untreated control (red line) are plotted.
738
Figure S2. An exponential cell cycle model without incorporating delay times fails to
740  capture the dynamics of drug response. A. The transition diagram for a simple dynamical
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model with 2 phases (G1 and S-Gz) and without the LCT. @ and 3, are the transition rates from
742 G to S-G and vice versa, y; and y, are the death rates in G1 and S-G,, respectively. (B-E).
Exponential cell cycle model simulations of G and S-G2 cell numbers over time for control and
744 5 concentrations of lapatinib (B-C) and gemcitabine (D-E) (solid lines), respectively, overlayed
with the average of three experimental replicates (dashed lines).
746
Figure S3. Analysis of single cell tracking data reveals drug-specific cell cycle phase
748  effects in AU565 cells. A. Lineage trees of 25 lineages across 96H for various drug treatments.
Tracks are colored coded based on cell cycle phase: gray indicates G4 and red indicates S-G»
750  phase. Track splitting indicates mitosis, and track ending prior to 96H corresponds to apoptosis.
B. Quantification of cell outcomes (division, apoptosis, still present at end of experiment) for
752  cells from the first and second generations treated with lapatinib, gemcitabine, or paclitaxel. C.
Gamma distribution of G1 and S-G; phase durations for cells in control condition with sample
754  size of 520 and 514 for G1 and S-G; phases, respectively. D. Lineage trees for 25 lineages
across 96H after treatment with Palbociclib.
756
Figure S4. A dynamical model of the cell cycle captures the dynamics of drug response.
758  A-F. G1 and S-G; cell numbers overtime, respectively, for the control and treatment at 5
concentrations (solid lines) for doxorubicin (A-B) paclitaxel (C-D), and palbociclib (E-F)
760  overlayed with the average of three corresponding experimental replicates (dashed lines). G-L.
The average phase durations in Gy and S-G; phases for selected drug treatments. The arrow
762  shows the shift from the control condition to the drug effect at the half maximum concentration
(Eecso).
764
Figure S6. The introduced dynamical model captures the cell cycle dynamics of drug
766  response in 21MT1 cell line. A,B. Experimentally observed drug-induced changes to cell
numbers (A) and G cell cycle phase proportion (B) after dose-escalation treatment with a panel
768  of inhibitors. C,D. G1 and S-G; fits overtime, respectively, for the untreated and treatment at 5
concentrations (solid lines) overlayed with the average of three corresponding experimental
770  replicates (dashed lines) for 6 drug treatments. E. Inferred accumulated dead cells over time for
6 drug treatments.
772
Figure S5. The introduced dynamical model captures the cell cycle dynamics of drug
774  response in TNBC cell line HCC1143. A,B. Experimentally observed drug-induced changes to
cell numbers (A) and G cell cycle phase proportion (B) after dose-escalation treatment with a
776  panel of inhibitors. C,D. G4 and S-G; fits overtime, respectively, for the untreated and treatment
at 5 concentrations (solid lines) overlayed with the average of three corresponding experimental
778  replicates (dashed lines) for 6 drug treatments. E. Inferred accumulated dead cells over time for
6 drug treatments.
780
Figure S7. The introduced dynamical model captures the cell cycle dynamics of drug
782  response in TNBC cell line MDA-MB-175. A,B. Experimentally observed drug-induced
changes to cell numbers (A) and G+ cell cycle phase proportion (B) after dose-escalation
784  treatment with a panel of inhibitors. C,D. G1 and S-G: fits overtime, respectively, for the
untreated and treatment at 5 concentrations (solid lines) overlayed with the average of three
786  corresponding experimental replicates (dashed lines) for 6 drug treatments. E. Inferred
accumulated dead cells over time for 6 drug treatments.
788
Figure S8. Summary of inferred cell cycle drug effects at half maximum concentration
790 compared to untreated. A-B. The average phase durations in G4 (A) and S-G» (B) phases for
HCC1143 (blue), 21MT1 (olive) and MDA-MB-157 (pink) treated with paclitaxel, palbociclib,
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792  trametinib, BEZ235, doxorubicin, and gemcitabine. The dashed lines show the average phase
duration at untreated for each cell line. C-D. The cell death probability in G1 (C) and S-G. (D)
794  phases for HCC1143 (blue), 21MT1 (olive) and MDA-MB-157 (pink) treated with the same panel
of drugs. The arrows show the quantity of increase or decrease in the effects from untreated to
796  the half maximal concentration (Egcso).
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