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ABSTRACT 26 
Identifying effective therapeutic strategies that can prevent tumor cell proliferation is a major 
challenge to improving outcomes for patients with breast cancer. Here we sought to deepen our 28 
understanding of how clinically relevant anti-cancer agents modulate cell cycle progression. We 
genetically engineered breast cancer cell lines to express a cell cycle reporter and then tracked 30 
drug-induced changes in cell number and cell cycle phase, which revealed drug-specific cell 
cycle effects that varied across time. This suggested that a computational model that could 32 
account for cell cycle phase durations would provide a framework to explore drug-induced 
changes in cell cycle changes. Toward that goal, we developed a linear chain trick (LCT) 34 
computational model, in which the cell cycle was partitioned into subphases that faithfully 
captured drug-induced dynamic responses. The model inferred drug effects and localized them 36 
to specific cell cycle phases, which we confirmed experimentally. We then used our LCT model 
to predict the effect of unseen drug combinations that target cells in different cell cycle phases. 38 
Experimental testing confirmed several model predictions and identified combination treatment 
strategies that may improve therapeutic response in breast cancer patients. Overall, this 40 
integrated experimental and modeling approach opens new avenues for assessing drug 
responses, predicting effective drug combinations, and identifying optimal drug sequencing 42 
strategies.  
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INTRODUCTION 44 
Developing transformative anti-cancer therapies requires drug combinations1, yet rationally 
identifying effective combination therapy regimens remains challenging2–5. Many anti-cancer 46 
agents are designed to impact cell proliferation and viability, which suggests that incorporating 
information about how individual drugs impact cell cycle behavior can lead to improved 48 
predictions about drug combination effects. The mammalian cell cycle can be separated into 
four linked phases (G1, S, G2, and M) with multiple checkpoints (restriction point, DNA damage 50 
checkpoint, and the spindle assembly checkpoint)6–9. Cell cycle phases and checkpoints are 
primarily composed of different molecular entities and, consequently, each phase is regulated in 52 
different ways, which results in a minimal correlation between cell cycle phase durations in 
individual cells10. This independence between phases and checkpoints has implications for 54 
cancer treatment because many cancer drugs directly target different aspects of the cell cycle; 
for example, CDK4/6 inhibitors block progression out of G1 phase11, while the nucleoside analog 56 
gemcitabine activates the DNA damage checkpoint by targeting DNA synthesis during S-
phase12. Together, these findings imply that drug-induced changes to cell numbers can be 58 
achieved through distinct cell cycle-dependent molecular mechanisms. For example, these 
observations suggest that combing two drugs that each reduce the rate of G1 progression will 60 
lead to deeper reductions in the rate of G1 progression, rather than an increase in cell death. 
Further, this framework predicts dose-dependent impacts: at sub-saturating doses, these G1 62 
effects will add together to reduce cell numbers, while at higher saturating doses the cell 
number will peak at the maximum cytostatic effect. This general idea of drug combination 64 
efficacy was recently explored in a study of the multi-drug CHOP protocol used in the treatment 
of non-Hodgkin Lymphoma, which showed that the effectiveness of this drug combination could 66 
be attributed to the fact that each agent had non-overlapping cytotoxic effects13. The CHOP 
protocol also demonstrates the benefit of drug combinations to improve patient outcomes. 68 
Considering both cell cycle and cell death effects in greater detail, therefore, has the potential to 
significantly improve drug combination predictions.  70 
 
The classic approach to quantifying drug response is to calculate the number of cells 72 hours 72 
after drug treatment and assume cells are undergoing exponential growth14–17. Other 
approaches to quantify drug response include compartmental models such as pharmacokinetic 74 
and pharmacodynamic (PK-PD) models that consider drug uptake and population dynamics18. 
Recent advances in methodological and quantitative approaches enable assessment of the 76 
impact of therapies on cell growth rates, rather than static cell counts19, which yields more 
robust correlations between molecular features and drug sensitivity19,20. However, while growth 78 
rate approaches significantly improve quantification, they provide limited information about cell 
cycle effects. A related approach, fractional proliferation, which models the number of cycling, 80 
quiescent, and dying cells in a drug-treated population, incorporates growth rates and assumes 
that cells irreversibly exit the cell cycle into quiescence21. Recent studies demonstrate that cells 82 
may not irreversibly exit the cell cycle and instead may extend the duration of a specific cell 
cycle phase before restarting progression through the cell cycle22. These prior studies motivate 84 
our interest to deeply assess the influence of drugs on specific cell cycle phases and 
progression through the cell cycle. 86 
 
In this report, we quantify and incorporate cell cycle phase effects in an analysis of drug 88 
responses to single agents and their combinations. We used live-cell imaging of a panel of 
molecularly diverse breast cancer cells engineered to express a cell cycle reporter and tracked 90 
the dynamics of cell number and cell cycle phase in response to single drugs and drug 
combinations. Across single drugs, we observed distinct cell cycle effects, which led to similar 92 
final cell numbers, with phase-specific responses that were oscillatory over time due to the 
temporal impacts on the cell cycle. To describe these responses, we developed a computational 94 
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model that uses a linear chain trick (LCT) to account for the delay from cell cycle phase transit 
time upon drug treatment. This LCT model correctly inferred single drug responses across time 96 
as well as the drug-induced oscillatory cell cycle dynamics. We used this model to predict the 
effect of unseen combinations of drugs that impact different aspects of the cell cycle. 98 
Experimentally testing several drug combinations, we validated that responses were primarily 
determined by the specific cell cycle effects of each drug pair. These studies reveal the 100 
complexity of cell behavior underlying drug responses, provide mechanistic insights into how 
individual drugs modulate cell numbers and yield a framework for how the combination of 102 
different drugs can be rationally modeled and predicted.  
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RESULTS 104 
Drug treatments induce distinct changes in cell number and cell cycle phasing 
To track drug responses in individual cells, we genetically engineered HER2+ AU565 breast 106 
cancer cells to stably express the HDHB cell cycle reporter22 and a nuclear-localized red 
fluorescent protein (Fig. 1A,B). We then treated cells with escalating doses of five drugs 108 
commonly used to treat breast cancer, each targeting different cell cycle phases or apoptotic 
mechanisms (Fig. 1C). Cells were imaged every 30 minutes for 96H, and the number of cells in 110 
each cell cycle phase and total cell numbers were quantified. 
 112 
We found that each drug effectively reduced cell numbers in a dose-dependent manner (Fig. 
1D, Sup. Fig. 1). As expected, paclitaxel, gemcitabine, and doxorubicin led to cytotoxic effects 114 
indicated by the final cell numbers dropping below the starting cell numbers (Fig. 1D)23,24. In 
contrast, at the highest doses of palbociclib and lapatinib, the final cell numbers were 116 
approximately equal to the starting cell numbers, suggesting cytostatic effects. For each drug, 
the pattern of cell counts varied across time; at high doses responses tended to reach a peak 118 
and then decline as the duration of drug exposure increased—an effect most marked for 30 nM 
gemcitabine where the relative cell number declined from 1.1 at 48H to 0.5 at 96H (Fig. 1D)20,25. 120 
 
Next, we sought to identify whether changes in cell numbers arose through the modulation of 122 
cell cycle phasing. We observed drug- and dose-dependent changes in the fraction of S-G2 
cells, which varied over time (Fig. 1E,F). For example, lapatinib and palbociclib initially reduced 124 
the fraction of cells in S-G2 phase in a dose-dependent manner, whereas gemcitabine and 
doxorubicin initially increased this fraction. Of note, intermediate doses of lapatinib (50 nM) and 126 
paclitaxel (3 nM) induced oscillating cell cycle responses, with an initial S-G2 reduction near 
30H, followed by a second S-G2 reduction at 84H. In sum, our approach revealed drug-specific 128 
cell cycle changes across time, which confirms that these drugs yield similar final numbers 
through distinct impacts on the cell cycle. 130 
 
A dynamical model of the cell cycle captures the dynamics of drug response 132 
A common approach to model drug effects is to assume exponential growth that varies as a 
function of drug dose. This approach, although informative, cannot explain the cell cycle 134 
dynamics that we observed26 and motivated us to develop a dynamical model to capture the 
observed behavior. As an initial model, we defined a system of ordinary differential equations 136 
(ODEs) with transitions between G1 and S-G2. The parameters of the ODE model were the cell 
cycle phase progression and death rates, which were assumed to follow a Hill function with 138 
respect to drug concentration (Sup. Table 1). This model failed to fit the experimental data of G1 
and S-G2 cell numbers (Sup. Fig. 2); furthermore, dynamical systems theory dictates that this 140 
model is unable to oscillate under any reasonable parameterization27. 
 142 
To address these limitations and capture the observed oscillatory temporal dynamics, we 
modified our model’s assumptions for cell cycle phase durations. We noted that the durations 144 
were well described by a gamma distribution and applied the observation that cell cycle phase 
durations are uncorrelated10 (Sup. Fig. 3A). Gamma and related distributions model each cell 146 
cycle phase as a series of steps, with the key feature that they can model processes wherein 
there is always some measurable duration before a system (e.g., a cell progressing through the 148 
cell cycle) can move to the next state. By fitting the single cell measurements of G1 and S-G2 
phase durations from the untreated control, we estimated the shape parameter of the gamma 150 
distribution which determines the number of steps in each phase28. This resulted in partitioning 
the G1 phase into 8 and S-G2 phase into 20 steps (Fig. 2A). We incorporated a “linear chain 152 
trick” into our model, which creates similarly-distributed time delays in the cell cycle phase 
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durations through a mean-field system of ODEs29. Additionally, we simplified the model by 154 
sharing parameters that were not drug specific, such as the number of cell cycle subphases and 
the initial fraction of cells in G1 phase. We fit all five drug dose responses, varying the drug-156 
specific and shared parameters, simultaneously. Incorporation of this component enabled the 
model to capture the experimentally observed oscillatory cell cycle behavior and cell cycle 158 
phase-specific drug effects. We computed the fitting error of the two modeling frameworks by 
calculating the sum of squared error of the difference between the data and model predictions 160 
across all concentrations and observed that the LCT model had lower error terms (Fig. 2B). The 
fits to lapatinib and palbociclib were particularly improved by the model refinement. Examples of 162 
dose-response curves and model fits for lapatinib and gemcitabine are shown in Figure 2C-H. 
Importantly, the model captured the dose-dependent changes to G1 and S-G2 populations as 164 
well as the oscillatory dynamics. Estimating the cell cycle phase progression and death rates 
also enabled calculation of the accumulated amount of cell death across time using inferred cell 166 
counts at each phase (Fig. 2E,H). The LCT model also performed well for each of the other 
drugs (Supp. Fig. 4A-F). 168 
 
To summarize the overall effect of each drug treatment, we compared the average phase 170 
durations and cell death probabilities inferred for each drug from the LCT model at the half 
maximum concentration (EC50) to the untreated control condition (Fig. 2I-L). The model inferred 172 
that lapatinib and palbociclib treatments lead to longer average G1 phase durations compared to 
untreated cells (Fig. 2I-J), a 10% higher chance of cell death in G1 phase for lapatinib-treated 174 
cells, and a slight chance of cell death in S-G2 after palbociclib treatment (Fig. 2K-L). The model 
also inferred that gemcitabine induces an increase in S-G2 durations and greater chance of cell 176 
death in S-G2 phase as compared to untreated cells (Fig. 2G-H). Finally, a 10% chance of cell 
death at the EC50 concentration (2.4 nM) was inferred in late G2 phase for cells treated with 178 
paclitaxel as compared to untreated controls (Fig. 2J and Sup. Fig. 3J). 
 180 
Analysis of single cell responses confirms model inferences and reveals drug-specific 
cell cycle phase effects 182 
We developed model parameters from the average population response at each timepoint, 
which facilitates robust model development by leveraging information from a large number of 184 
cells. Importantly, as described above, the LCT model infers aspects of drug responses that can 
be quantified at the individual cell level—including cell cycle phase duration and cell cycle-186 
specific death. We therefore tracked single cells in the image time course data to quantify cell 
cycle phase durations and also cell death events associated with specific drug treatments and 188 
concentrations (Sup. Fig. 3B). Quantification of cell death events also enables direct 
assessment of whether drug effects are cytotoxic or cytostatic. We analyzed the first complete 190 
cell cycle, which we reasoned would reveal early drug effects. We also quantified the relative 
fate outcomes for the progeny of cells at time 0H that underwent division, which provides 192 
insights into effects of drug treatment that are observed at later timepoints (Sup. Fig. 3C). As 
expected, in the untreated condition, most cells (93%) present at 0H underwent cell division. In 194 
contrast, at the highest lapatinib and gemcitabine doses, 32% and 61% of the cells present at 
time 0H failed to divide. Additionally, of the cells that did divide in these two conditions, only 196 
10% underwent a second division. For both drugs, lower doses showed more modest changes 
in the fraction of cells that divided as compared to untreated. As described below, we compared 198 
these experimentally observed drug-induced cell cycle effects to those inferred by the LCT 
model. 200 
 
The model inferred that the predominant lapatinib effect was to extend G1 durations from 22.3H 202 
in the untreated condition to 33.6H and 47.4H for 25 nM and 50 nM lapatinib, respectively (Fig. 
3A). Experimentally, we observed that G1 durations increased after lapatinib (mean 26.2H and 204 
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32.5H with 25 nM and 50 nM lapatinib, respectively) (Fig. 3A, B). We also quantified an 
increase in the G1 duration variance showing that cells varied in their responsiveness to 206 
lapatinib (Fig. 3B). The model inferred minimal changes to S-G2 durations or cell death and we 
accordingly observed little change in S-G2 durations or cell death in the experimental data (Fig. 208 
3C,D). 
 210 
The model inferred that oscillations in the percentage of G1 cells after lapatinib treatment arise 
from “waiting time” effects in cell cycle progression (see Fig. 2). Waiting times, which can be 212 
modeled through distributions such as the gamma distribution, refer to the delay effect created 
by processes that are comprised of many sequential steps. To confirm the mechanism 214 
underlying this behavior at the single cell level, we examined various cell cycle measures and 
found a reduction in the fraction of cells undergoing their first division beginning around 24H 216 
(Fig. 3E). This observation, together with the lengthening of the subsequent G1 duration 
following cell division (Fig. 3B), can explain the cell cycle synchronization observed in the 218 
experimental data (see Fig. 1) and in the LCT model. At the start of the assay, cells in G1 are 
delayed in their time to division, while cells in S-G2 only become delayed at the onset of G1 220 
following division. In effect, this creates two populations of cells with distinct timing in the 
induction of drug effects. We observed a similar effect after treatment with Palbociclib (Sup. Fig. 222 
3D). 
 224 
For gemcitabine, the model inferred a slight acceleration of G1 phases, which we also observed 
experimentally (Fig. 3A,F). The model inferred that S-G2 durations were extended following 226 
gemcitabine treatment, which we confirmed experimentally: S-G2 durations were extended from 
22.3H to 34.5H with 5 nM and to 38H with 10 nM gemcitabine (Fig. 3G). Lastly, the model 228 
inferred an increase in the number of cell death events relative to the starting cell number, from 
0 in control to 0.57 with 5 nM gemcitabine. At 10 nM gemcitabine, the model predicted 1.0 230 
relative cell death events such that the number of cell death events across 96H was the same 
as the initial starting cell number (Fig. 3A). The experimentally observed values showed similar 232 
trends, though with more modest changes in cell numbers (0.14 and 0.41 relative cell numbers 
for 5 and 10 nM gemcitabine, respectively) (Fig. 3H). Overall, we observed similar trends in 234 
each of the parameters for gemcitabine treated cells as inferred by the model; modest 
differences were that the model inferred higher cell death and shorter extensions to S-G2 than 236 
we observed experimentally. 
 238 
We also tested an assumption of the model that G1 and S-G2 phases are independent variables, 
which captures the idea that these cell cycle phases are independently regulated at the 240 
molecular level. We analyzed G1 versus S-G2 durations for individual cells in the control 
condition, 10 nM gemcitabine, and 50 nM lapatinib, and found a minimal correlation between G1 242 
and S-G2 durations (Fig. 3I). These experimental observations confirm the implicit assumption 
of the model that G1 and S-G2 durations are uncorrelated. 244 
 
Lastly, we evaluated model inferences for paclitaxel treatment. Consistent with our experimental 246 
observations, the model inferred minimal changes to G1 and S-G2 durations following treatment 
(Fig. 3A,J,K). At 2 nM paclitaxel, the model inferred 0.56 cell deaths relative to the starting cell 248 
numbers, and at 3 nM inferred 0.90 relative cell deaths (Fig. 3A, Methods). Experimentally, our 
observations were consistent with the values inferred by the model: we observed 0.54 and 1.00 250 
relative cell deaths for 2 nM and 3 nM paclitaxel (Fig. 3L). To summarize the mechanisms that 
account for the observed changes in cell numbers due to paclitaxel treatment, we compared the 252 
number of cell death events against final cell counts for each of the other drugs. These data 
show the relative bias of paclitaxel toward inducing cell death, especially at 2 nM, compared to 5 254 
nM gemcitabine and 50 nM lapatinib, which both resulted in similar final cell numbers (Fig. 3M). 
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Overall, the LCT model captured key observations about the cell cycle effects of each drug, 256 
which were confirmed by in-depth single-cell tracking of the experimental data. 
 258 
Drug-induced changes to cell cycle behavior generalize across a molecularly diverse 
panel of breast cancer cell lines   260 
To assess the generalizability of our computational framework and experimental observations, 
we generated and tested three additional breast cancer cell lines from diverse molecular 262 
backgrounds30: 21MT1 (Basal subtype, HER2+), HCC1143 (Basal subtype, HER2-) and 
MDAMB157 (Claudin-low subtype, HER2-) (Sup. Figs. 5-7). Because these cell lines do not 264 
uniformly overexpress HER2, we additionally tested BEZ235 and trametinib, which respectively 
target PI3K and MEK, two growth factor pathways downstream from HER2. We observed dose-266 
dependent reductions in cell numbers and also modulation of the percent of G1 cells following 
drug treatment. Importantly, similar to our findings for AU565 cells, we observed dynamic 268 
responses not captured by terminal endpoint readouts of cell viability (Sup. Figs. 5-7, panels A-
B). We observed unique patterns, including: a delayed G1 enrichment from trametinib in 21MT1 270 
cells (Sup. Fig. 6), a lack of G1 enrichment from palbociclib and BEZ235 in MDAMB157 cells 
(Sup. Fig. 7), and a dose-dependent bifurcation in G1 enrichment for doxorubicin in all three of 272 
the cell lines (Sup. Figs. 5-7).  
 274 
Next, we tested our LCT model on each of the new cell lines. Comparison of model fits to 
experimental observations confirmed that our model could capture the dynamic responses 276 
observed across this panel of molecularly distinct cell lines, indicating the generalizability of our 
computational framework (Sup. Figs. 5-7, panels C-E). We analyzed the output of the LCT 278 
model, which inferred changes to cell cycle phase durations and cell death probabilities for 
drug-cell line pairs at the EC50 concentration (Sup. Fig. 8). The model inferred cell-line-specific 280 
changes to both G1 and G2 phases (Sup. Fig. 8A,B). For instance, 21MT1 were inferred to 
preferentially undergo G1 cell death after doxorubicin and paclitaxel treatments, at probabilities 282 
of 60% and 15%, respectively (Sup. Fig. 8C). The model inferred that HCC1143 cells arrest and 
die in S-G2 following paclitaxel or palbociclib treatment (Sup. Fig. 8B,D). MDA-MB-157 cells 284 
were inferred to become growth-arrested by drug treatment and to preferentially die in G1 phase 
(Sup. Fig. 8C,D). Overall, we confirmed that our computational framework was generalizable 286 
across several drugs and cell lines and could infer a range of drug treatment response 
behaviors. 288 
 
Responses to drug combinations are dependent on drug specific cell cycle and cell 290 
death effects 
Durable and effective cancer treatments frequently require administration of multiple drugs; 292 
however identification of the principles underlying optimal drug combinations have been 
challenging31. Here, we tested the idea that our LCT model, which incorporates cell cycle 294 
effects, can be used to predict the impact of different drug combinations on cell cycle behavior 
and final cell numbers. We compared two strategies in accounting for drug combination effects. 296 
In the first, we combined drug effects on the rates of G1 and S-G2 progression using Bliss 
additivity and assumed the rates of cell death additively combined. In the second, we assumed 298 
an additive combination through use of the drug effects on overall cell numbers. To explore 
these predictions, we varied the dose of one drug in the two drug combination pair and analyzed 300 
responses to drug combinations that targeted either the same cell cycle phase (G1 and G1, or S-
G2 and S-G2) or different cell cycle phases (G1 and S-G2). 302 
 
First, we tested combining the rates for two G1 targeted drugs, such as lapatinib and palbociclib. 304 
The model predicted that effects on cell number would saturate around the initial starting cell 
number, indicating cytostatic effects of this drug combination (Fig. 4A). In contrast, drug 306 
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combination effects based on cell numbers alone predicted a cytotoxic effect at higher drug 
concentrations, resulting in a reduction in cell numbers relative to the starting cell numbers. We 308 
tested these drug combinations experimentally and found a cytostatic effect at higher doses, 
which matches the model prediction based on combining rates of cell cycle progression (Fig. 310 
4A). 
 312 
Next, we analyzed predictions of gemcitabine combined with doxorubicin, which both extend S-
G2 durations and induce cell death (see Fig. 3A). We found that combination predictions based 314 
on rates and cell counts both predicted a reduction in cell numbers relative to each drug on its 
own, which we also observed experimentally (Fig. 4B). 316 
 
Lastly, we used the LCT model to examine the impact of combining two drugs that target 318 
different cell cycle phases, which mimics lapatinib (G1 effect) combined with gemcitabine (S 
phase effect). The cell cycle model predicted an antagonistic effect at higher doses, such that 320 
30 nM gemcitabine combined with 100 nM lapatinib is expected to yield a similar final cell 
number as 30 nM gemcitabine on its own (Fig. 4C). Experimentally, we observed that three of 322 
the four lapatinib and gemcitabine combination doses showed an antagonistic impact on cell 
number as compared to gemcitabine alone indicating that combining these two drugs was 324 
actually counterproductive. These antagonistic effects of the combination held when lapatinib 
was replaced by palbociclib, which also impacted G1 durations (Fig. 4D). We examined the 326 
model predictions in more detail to gain insights into the underlying biological mechanisms 
driving these drug combination responses. The LCT model predicted that the G1 effect of 328 
lapatinib would initially dominate over the S-phase effects of gemcitabine, leading to an 
increased G1 proportion for the population, which was confirmed experimentally, thus mitigating 330 
the S-G2 effects of gemcitabine	(Fig. 4E).  
 332 
In summary, these data indicate that the cell cycle phase and cell death impacts of each drug in 
a pair are critical for determining the influence of single drugs on cell cycle behavior and that 334 
this information can be used for rational identification of drug combinations likely to be 
therapeutically beneficial.  336 
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DISCUSSION 
In this report, we link cell cycle regulatory mechanisms with drug-specific cell cycle effects to 338 
gain insights into cancer cell responses to individual drugs and drug combinations. To meld 
these ideas, we developed a combined experimental and modeling approach to measure cell 340 
dynamics and infer cell behavior. This combined approach revealed that assessment of 
temporal dynamics and cell behavior is critical to interpret and model drug-induced effects. 342 
Importantly, assessment of the impacts of single agents on cell cycle behavior could be used to 
identify drug combinations likely to yield therapeutic benefits.	344 
 
Recently, an in-depth analysis revealed that cell cycle phases in individual cells are 346 
uncorrelated and have durations that can be accurately modeled as an Erlang distribution (a 
special case of a gamma distribution)32. This observation indicates that the cell cycle can be 348 
viewed as a series of uncoupled, memoryless phases rather than a single process10,33. In this 
work, we found similar uncorrelated patterns in cell cycle phase responses after treatment with 350 
different anti-cancer drugs. This revealed multiple implications for assessing and modeling drug 
responses. First, viewing the cell cycle as a single process implies that cell behavior is 352 
immediately impacted upon drug treatment; however, we and others have reported that drug 
effects are often not observed until individual cells enter or approach a specific phase or 354 
checkpoint34,35. For instance, we found that cells were initially distributed across all phases of 
the cell cycle and that the addition of lapatinib, a G1-targeting drug, did not initially affect cells in 356 
S-G2 phase. This led to a partial cell cycle synchronization across the population and required 
the incorporation of a linear chain trick into our model to account for this dwell time. Additionally, 358 
the temporal dynamics of the therapeutic response were an important consideration for co-
treatment with gemcitabine and lapatinib. If both drugs had immediate effects on cell behavior, 360 
we would expect that the G1 and S-G2 effects of each drug would counteract each other and 
lead to a constant ratio of cells in G1 phase. Instead, both experimentally and through model 362 
predictions, we found an initial G1 enrichment. This likely induced a secondary effect of reducing 
the relative time that each cell spent in S-phase, which further reduced gemcitabine sensitivity. 364 
This finding could explain the antagonistic effects on cell numbers that we and others have 
observed when combining gemcitabine with lapatinib or palbociclib36,37. We speculate that a 366 
synergistic effect on cell numbers could also arise by combining two drugs that target S-G2 
phases, where each drug acts to extend the relative duration in which the other is effective. This 368 
general strategy could be used to identify optimal temporal scheduling of other drug 
combinations that induce different effects on the cell cycle. 370 
 
A second implication of multiple independently regulated cell cycle processes relates to the 372 
concept of effect equivalence in drug combinations. This concept—that two drugs with 
independent targets can be used to identify drug synergy or drug antagonism—has 374 
predominantly focused on the cell number effect of each drug2–5. Our current work suggests that 
equivalence in effect may be better applied to rates of cell cycle phase progression and cell 376 
death. In our work, we found that lapatinib and palbociclib primarily impacted G1 phase with 
limited effects on cell death. In contrast, doxorubicin and gemcitabine extended S-G2 durations 378 
and induced cell death. These cell cycle and cell death effects were critical for gaining insights 
into the effect of drug combinations. For example, two cytostatic drugs, lapatinib and palbociclib, 380 
were additive up to doses that reached the maximum cytostatic effect, with further dose 
increases leading to only minor effects on cell numbers. In contrast, combining the two cytotoxic 382 
drugs led to increasingly cytotoxic responses across the full dose range. These results suggest 
that considering the cell cycle and cell death impacts of each drug is necessary to make 384 
predictions about the effects of their combinations and implies that this information could be 
used for the rational identification of effective drug combinations38,39. 386 
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Drug response measurements evaluated in the context of a mechanistic cell cycle model can 388 
reveal insights about the nature of drug response and resistance not immediately apparent from 
purely data-driven analyses. For instance, a model for the proliferation dynamics of cancer cells 390 
can separate the contribution of dividing, non-dividing, and dying cells21, revealing that the rates 
of cell death and entry into quiescence change with drug treatment. Previous computational 392 
models of cell cycle behavior have explored various ways in which cell cycle behavior might 
impact drug response but have struggled to identify experimental data amenable for model 394 
fitting and evaluation. For instance, others have appreciated that drugs do not affect the cell 
cycle uniformly and have therefore proposed computational models that partition the cell cycle 396 
into several independent steps, both with10 and without33 cell death effects. Modeling cell 
lifetimes as being hypo-exponentially distributed helps to explain the distribution of cell lifetimes 398 
within a population but does not connect these observations to known cell cycle stages40. In this 
report, we demonstrate that partitioning known cell cycle phases to account for their dwell time 400 
effects—and including experimentally observed drug effects like cell death—results in a 
modeling framework that can faithfully and mechanistically capture experimentally observed 402 
anti-cancer drug effects.  
 404 
We applied our experimental approach and computational framework to examine dynamic drug-
induced responses in a molecularly diverse set of breast cancer cell lines. In all cases, we 406 
observed that therapeutic inhibition induces a wide array of responses, indicating that the 
influence of therapies on cell cycle dynamics is a generalizable mechanism operable in a wide 408 
array of molecular backgrounds. Cancer cells treated with therapies may adopt new molecular 
programs associated with adaptive and acquired resistance, and indeed previous studies have 410 
demonstrated this principle in both model systems and patient samples41. We hypothesize that 
cells with acquired resistance may show distinct drug-induced cell cycle programs as compared 412 
to naïve cells and that our approach could be used to uncover the molecular mechanisms 
associated with adaptive resistance. Our study provides a blueprint for studying responses of 414 
diverse cell types—both normal and diseased—to a wide array of perturbations, including 
therapeutic inhibitors, growth factors, or genetic manipulation with CRISPRi/a. The resultant 416 
data could be used to adapt our computational framework to identify mechanisms of cell cycle 
control in different cellular contexts, microenvironmental conditions, or disease states. 418 
 
While our model could explain many of the key observations in our experimental data, 420 
extensions of the model could further improve its generalizability and robustness. We partitioned 
the cell cycle into two observed phases, G1 and S-G2, which were further subdivided to explain 422 
the dwell time behavior of each phase. With improved reporter strategies42, we may be able to 
further subdivide these phases into constituent parts, which could help to localize the effect of a 424 
drug to a more specific portion of one cell cycle phase. Generalizations of the linear chain trick 
could be used to account for both subphases of varying passage rates, as well as heterogeneity 426 
in the rates of passage, such as would arise through cell-to-cell heterogeneity29. While the 
subdivisions within each cell cycle phase are phenomenological, it is tempting to imagine they 428 
represent mechanistic steps within each phase. Identifying how effects connect to actual 
biological events in the cell cycle would help identify opportunities for drug combinations. A 430 
practical challenge when using the model for drug combinations has been normalization 
between experiments. While cell number measurements are routinely normalized by dividing by 432 
a control, experiment-to-experiment variation in inferred rates requires additional consideration. 
A wider panel of experiments, across multiple cell lines, may help to tease apart variations 434 
associated with drugs, cell lines, or experiments. A final potential extension is considering the 
existence of phenotypically diverse subpopulations43. At the cost of additional complexity, one 436 
could employ several instances of the current model with transition probabilities between these 
states when the cells divide to simulate a heterogeneous population of cells. 438 
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Summary 	440 
We observed that five commonly used cancer drugs each modulated cell numbers through 
distinct routes and with different temporal dynamics. By revealing how these drugs uniquely 442 
impacted cell fate, our model and analyses have implications for how different cancer drugs can 
be combined to maximize therapeutic impact. For instance, our results can identify drug 444 
combinations that modulate cell cycle effects in orthogonal ways or drug schedules that take 
advantage of the shift in cell cycle state of the overall population. In summary, these studies 446 
provide a map for understanding how cancer cells respond to treatment and how drugs may be 
combined and timed for maximal effect.	448 
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METHODS 
Creation of Stable Cell Lines 458 
AU565 (ATCC CRL 2351) and MDAMB157 (ATCC HTB 24) cells were grown in DMEM 
supplemented with 10% FBS, HCC1143 (ATCC CRL 2321) cells were grown in RPMI 460 
supplemented with 10% FBS, and 21MT1 (generous gift from Kornelia Polyak) cells were grown 
in DMEM/F12 supplemented with 5% horse serum, 20 ng/ml rhEGF, 0.5 µg/ml hydrocortisone, 462 
100 ng/ml cholera toxin, and 10 µg/ml insulin. The coding fragment for clover-HDHB was cloned 
in frame into a transposase expression plasmid modified to also express a nuclear localized 464 
mCherry44. The stable cell lines were created as previously described45 and selected for 7 days 
with 0.75 µg/ml puromycin. To mitigate a range of fluorescent signals from transfection, 466 
HCC1143 and 21MT1 cells were sorted at OHSU’s Flow Cytometry Core and cells with a 
medium intensity clover-HDHB signal and a high intensity NLS-mCherry signal were selected 468 
for drug dose response experiments. In all cases, cells were validated by STR profiling 
(LabCorp) and tested negative for mycoplasma.  470 
 
Drug Dose Response Protocol 472 
AU565 cells were plated at a density of 25,000 cells per well into 24-well Falcon plates (Corning 
#353047). 24H after plating the media was exchanged with Fluorobrite media supplemented 474 
with 10% FBS, glutamine, and penicillin-streptomycin. Cells were then treated with dose-
escalation: lapatinib (Selleckchem #S1028), gemcitabine (#S1149), paclitaxel (#S1150), 476 
doxorubicin (#S1208), palbociclibb (#S1116), BEZ235 (#S1009), and trametinib (#S2673). After 
drug addition, plates were imaged every 30 minutes for 96H using phase, GFP, and RFP 478 
imaging channels with an IncuCyte S3. For single drug treatments of AU565 cells only, at 48H 
the media was replaced in all wells including the control wells, and fresh media and drug were 480 
added. Four equally-spaced image locations per well and three biological replicates were 
collected.  482 
 
MDAMB157, HCC1143, and 21MT1 cell lines were transferred to and maintained in a base of 484 
either Fluorobrite media and 1x GlutaMAX or mixed Fluorobrite/F12 media and 0.5x GlutaMAX 
along with their corresponding supplements for no less than one week before performing the 486 
drug dose response protocol.  MDAMB157 and HCC1143 cells were plated at a density of 
25,000 cells per well, while the larger 21MT1 cells were plated at a density of 5,000 cells per 488 
well into 24-well Falcon plates (Corning #353047). 24H after plating the media was exchanged 
with fresh Fluorobrite media as indicated per cell line. Cells were then treated with dose-490 
escalation: BEZ235, gemcitabine, paclitaxel, doxorubicin, palbociclib, and trametinib. After drug 
addition, plates were imaged every 2 hours for 96H using phase, GFP, and RFP imaging 492 
channels with the IncuCyte S3. Four equally-spaced image locations per well and three 
biological replicates were collected.  494 
 
Image Analysis 496 
To analyze AU565 image data, phase, GFP, and RFP images were overlaid and collated into 
single files using FIJI46, then segmented into three classes (nuclei, background, debris) using a 498 
manually trained classifier in Ilastik47. The segmented nuclear masks from Ilastik and the 
IncuCyte GFP images were used to count the number of nuclei in each image with Cell 500 
Profiler48. Additionally, using the same images (nuclear masks from Ilastik and GFP cell cycle 
reporter images) cell cycle phase was determined by taking the mean fluorescence in the 502 
nucleus compared to the mean fluorescence in a 5-pixel ring surrounding the nucleus, excluding 
background pixels. A threshold was then manually set for the ratio of nuclear fluorescence to 504 
cytoplasmic fluorescence and cells with values below the threshold were defined as being in G1 
and cells with values above the threshold were defined as being in S/G2 phase48. 506 
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To manually track AU565 cells and identify drug-induced changes operable in single cells, GFP 508 
image sequences were registered using the FIJI plug-in ‘StackReg’. Individual cells present in 
the first image and their progeny were followed to identify the time of G1 transition, cell death, 510 
and cell division using the plug-in mTrackJ49. We excluded cells that were binucleated, had 
abnormally large nuclei, or were near the image border where complete lineages could not be 512 
tracked. The G1 transition was defined as the last frame before the nuclear intensity of the cell 
cycle reporter was below the level of the cytoplasm. Assessment of cell death enabled 514 
disentangling of cytostatic and cytotoxic drug effects. 
 516 
We used the following approach for automated analysis of HCC1143, 21MT1 and MDAMB157 
cell lines. Image registration was performed on the red channel nuclear marker image stack 518 
using the python skimage phase_cross_correlation function to correct translations. Image 
stacks were cropped to their common areas and individual cells were segmented with the 520 
Cellpose LC2 model trained on phase and nuclear images from the untreated and highest drug 
concentration treatments50. Nuclei were segmented with the Cellpose cyto2 model on the 522 
nuclear channel. To associate nuclei across the image stack, to identify progeny after mitosis, 
and to identify cell death events we used Loeffler tracking51 with the default parameters of 524 
delta_t = 3 and roi_size = 2. We created cytoplasm masks by subtracting the nuclear masks 
from the cell masks and applied these masks to the green channel cell cycle reporter images 526 
using the python skimage function regionprops_table. To assign cells to G1 or S/G2 states, we 
computed the ratios between the cytoplasm and nuclear cell cycle reporter. k-means clustering 528 
of the ratios observed in cells in the untreated condition was used to establish a per-plate 
threshold between cell cycle states.  530 
 
The quantitated cell-level data was mean summarized to the population level for each image 532 
and to assess cell counts and G1 cell cycle state proportion. The cell counts were normalized to 
the mean of the counts of the first three images. The cell count dose response curves were 534 
normalized to the control by dividing each drug cell count by the control cell count at the same 
time slice. 536 
 
Core Model	538 
To identify the dynamics of the AU565 cancer cell population in response to compounds, we 
built a system of ordinary differential equations (ODEs) with two states: G1, and S-G2. Cells 540 
transition from G1 to S-G2 phase, and then vice versa when doubling. Cell death can occur in 
either phase with phase-specific death rates. S and G2 phases are combined as our reporter 542 
cannot distinguish them. From single-cell tracking, we identified that G1 and S-G2 phase time-
intervals are gamma-distributed. Based on this observation, we employed the linear chain trick 544 
(LCT)28 to capture these waiting time distributions. We broke down each phase into a series of 
sequential sub-phases and derived the system of mean-field ordinary differentials. Each sub-546 
phase is represented as a single state variable within the differential equation system. The total 
number of cells in each phase is the sum of the cell numbers in each sub-phase. Furthermore, 548 
to account for the non-uniform effect of the drugs over each cell cycle phase, we divided G1 and 
S-G2 into 4 parts each, such that the effect of a drug can be distinguishable at the beginning, 550 
middle, or the end of the phases. 
 552 
The mean-field system of ODEs is: 
 554 
!	#!!,!
!$

=	+2𝛽%𝐺&%,( − (𝛼) + 𝛾),)+𝐺)),)  
!	#!#,!
!$

=	+𝛼*+)𝐺)*+),& − (𝛼* + 𝛾),*+𝐺)*,)  556 
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 558 
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!	#$%,&
!$

=	+𝛽,𝐺&,,-+) − (𝛽, + 𝛾&,,+𝐺&,,-                2 ≤ 𝑗 ≤ 5	, 1 ≤ 𝑖 ≤ 4 560 

 
 562 
The parameters of the model include progression rates through G1 phase, 𝛼, and S-G2 phase, 
𝛽, and death rates in each of the G1 phase, 𝛾), and S-G2 phase, 𝛾&. Cells at the end of the S-G2 564 
phase divide and give birth to two cells at G1 phase. Because each phase is divided into 4 parts, 
each part of G1 contains 2 sub-phases, and each part of S-G2 contains 5 sub-phases.  566 
 
The model was implemented in Julia v1.5.3. The differential equations were solved by the 568 
matrix exponential. As the data was measured with equal spacing, we pre-calculated the 
transition matrix between timesteps. 570 

Dose Response Relationship 
We assumed that the progression and death rates in G1 and S-G2 that form the quantified drug 572 
effects on the population follow a Hill function: 
 574 

𝐻𝑖𝑙𝑙	(𝐶) 	= 	𝐸.,/ 	+ 	
0'()	+	0'%*

()	2	+,-., )#
  

 576 
where the 𝐸𝐶(4 indicates the half-maximal drug effect concentration, 𝐸.,/ the value of the rate 
parameter in the absence of drug, 𝐸.56 the rate parameter at infinite concentration, and 𝑘 the 578 
steepness of the dose-response curve. Given these parameters and the drug concentration (𝐶) 
we then calculated the specific rate parameters for that treatment. 580 
 

Exponential Model 582 
To show the benefit of our LCT model, we employed a commonly used exponential model to fit 
to the G1 and S-G2 cell numbers and showed that the exponential model cannot capture the 584 
dynamics of the data. The parameters were the same as the mean-field model. 
 586 
!	#!
!$

=	+2𝛽𝐺& − (𝛼 + 𝛾))𝐺)  
!	#$
!$

=	+𝛼𝐺) − (𝛽 + 𝛾))𝐺&	  588 

 

Model Fitting 590 
The data included the percentage of cells in G1 phase and the total number of cells normalized 
to the cell numbers at the initial time point. We assumed 1 starting cell at 0H and calculated the 592 
number of cells in G1 and S-G2 phase over time. The Savitzky-Golay filter was used to smooth 
the data. Three replicates of each experiment were averaged, and the average was used for the 594 
purpose of fitting. 
 596 
The number of G1 and S-G2 subphases, and the parameters in the absence of drug were 
shared across all drugs and concentrations. The sum of squared error was used as the cost 598 
function value and was calculated between the cell numbers predicted by the model and the 
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average cell numbers of three replicates, over all time points, concentrations, and drugs tested. 600 
This cost function was then minimized using the default adaptive differential evolution optimizer 
from the BlackBoxOptim.jl Julia package, version 0.5.0.  602 
 
To characterize the identifiability of our fit parameters we conducted a local sensitivity analysis. 604 
To do so, we calculated the cost function while varying each parameter from 0.1 to 10 times the 
optimal value, holding all the other parameters at their optimum (results not shown). We 606 
observed that all parameters were identifiably constrained by this analysis. 

Calculating relative number of cell deaths and average phase durations 608 
We evaluated the number of dead cells at 96H relative to the starting cell number at 0H. This 
formed the observed relative cell death numbers reported in Figure 3A. To calculate the 610 
corresponding cell death values inferred from the model, we calculated the predicted number of 
cells at each phase part (G11, G12, G13, G14, G21, G22, G23, G24) separately, and multiplied them 612 
by their individual death rates at all time points. This provides the number of dead cells at each 
phase part at each time point. The sum of cell numbers died in each phase part provides the 614 
total cell death counts at each time point, 𝑛(𝑡). Figure 2C-D show the accumulated dead cells 
across time for lapatinib and gemcitabine treatments which was calculated by summing over the 616 
cell death counts, 𝑛(𝑡), across time from 0 to each timepoint, 𝑇. Calculating for 96H results in 
the total cell death normalized by the initial cell numbers, 1, this value refers to the relative 618 
predicted cell death number reported in Figure 3A. 
 620 

𝑛(𝑡) = 	==𝐺,-(𝑡) ×	𝛾,-

%

-7)

&

,7)

 

𝑁(𝑇) = 	=𝑛(𝑡)
8

$74

 622 

 
The average phase durations (𝐺)@@@	, 𝑆 − 𝐺&@@@@@@@@@) from the model were calculated using the progression 624 
rates. The G1 phase has 8 subphases which is divided into 4 parts that results in 2 phases per 
part. S-G2 phase has 20 subphases divided into 4 parts that results in 5 subphases in each part. 626 
Each phase part has a unique parameter for cell death and phase progression rate. The 
average phase duration will be given by the following expressions, derived by recognizing that 628 
the time in each part is gamma-distributed with a shape parameter equal to the number of 
subphases. 630 
 

𝐺)@@@ = 	=
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%
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Predicting Drug Combinations 634 
Bliss independence was used to calculate the predicted effect of drug combinations. Assuming 
𝐸5and 𝐸9 to be the saturable, quantified effects of drugs 𝑎 and 𝑏, the expected combined effect 636 
would be: 
 638 
𝐸59 	= 	𝐸5 	+ 	𝐸9 	− 	𝐸5 . 𝐸9                       (*)      
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 640 
For death effects, we added the effects of each drug to find the death effect of the drug 
combination: 642 
 
𝐷59 	= 	𝐷5 	+ 	𝐷9	                                    (**) 644 
 
The Bliss relationship requires that data first be scaled to be between 0 and 1, and then scaled 646 
back after the interaction calculation: 
 648 

𝑋G = (:/0*1203	+	:)
:/0*1203

 
 650 
This measure is usually used as a baseline to decide whether the combination of two drugs is 
synergistic or antagonistic. Here we used Bliss in two ways: (1) on the progression rate 652 
parameters to simulate the model predictions of drug combinations; and (2) on cell numbers to 
serve as a baseline approach to calculate drug combination effects, as is commonly used. In the 654 
first case, we use Bliss additivity on the cell cycle progression rates (*) to find the set of 
progression parameters representing the combined treatment and assume that the death effects 656 
are only additive because the cell death process is not saturable (**). The combination 
parameters for all the eight concentrations for all pairs of drugs were calculated and then 658 
converted back to their original units. Next, we simulated the cell numbers using these 
parameters. In the baseline case, we used the cell numbers in the control condition to normalize 660 
the cell number measurements and then converted the cell numbers back to their original scale. 
This was used as a benchmark reference. 662 
 
Data Availability 664 
Data was deposited to the Image Data Resource (https://idr.openmicroscopy.org) under 
accession number idr0119. All other data and analyses used in this study are available from the 666 
corresponding author upon reasonable request. 
 668 
Code Availability 
The code and analysis can be found at https://github.com/meyer-lab/DrugResponseModel.jl. 670 
Code for the automated segmentation and tracking is at 
https://github.com/markdane/CellTracking. 672 
 
FIGURE LEGENDS 674 
 
Figure 1. Drugs induce dose- and time-dependent changes in cell cycle behavior.  A. 676 
Schematic of reporter with a bidirectional promoter driving expression of human DNA Helicase 
B (HDHB) fused to the green fluorescent protein clover, and a second transcript coding for NLS-678 
RFP-NLS, a ribosome skipping domain (T2A), and a puromycin resistance protein. B. 
Quantification of nuclear intensity of the cell cycle reporter in a cell and its progeny across time. 680 
The time of G1/S transition and cell division are demarcated with black and red circles 
respectively. C. Schematic of the five drugs tested and the cell cycle phase they target. D. 682 
Average growth curves of AU565 cells tracked every 30 min for 96H across an 8-point dose 
response for lapatinib, gemcitabine, paclitaxel, palbociclib, and doxorubicin. The null dose is 684 
colored red. Line traces show the average from three independent experiments. The black 
triangle indicates the addition of fresh drug and media. E. Percentage of cells in S-G2 phase of 686 
the cell cycle across doses. 50 nM Lapatinib and 3 nM paclitaxel are colored blue. F. GFP 
images at 39.5H for 250 nM lapatinib, 30 nM gemcitabine, 3 nM paclitaxel, 250 nM palbociclib, 688 
20 nM doxorubicin. 
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 690 
Figure 2. A computational model of the cell cycle captures the dynamics of drug 
response. A. Diagram of the phase transitions in the linear chain trick (LCT) model. 𝛼), 𝛼&, 𝛼; , 692 
and 𝛼%  are the progression rates through G1 phase; 𝛽), 𝛽&, 𝛽;, and 𝛽% are the progression rates 
through S-G2 phase. Similarly, 𝛾)), 𝛾)&, 𝛾);, and 𝛾)% are the death rates within the G1 phase 694 
parts, and 𝛾&), 𝛾&&, 𝛾&;, and 𝛾&% are death rates within S-G2 phase parts. B. The sum of squared 
errors for the fits of each of five drugs over all concentrations with and without the LCT 696 
modification. C-D. G1 and S-G2 cell numbers over time, respectively, for lapatinib-treated cells at 
5 concentrations and untreated control (solid lines), overlayed with the average of three 698 
experimental replicates (dashed lines). E. The predicted accumulated dead cells over time for 
untreated and lapatinib-treated cells at 5 concentrations. F-G. G1 and S-G2 cell numbers over 700 
time, respectively, for gemcitabine-treated cells at 5 concentrations and untreated control (solid 
lines), overlayed with the average of three experimental replicates (dashed lines). 702 
H. The predicted accumulated dead cells over time for untreated and gemcitabine-treated cells 
at 5 concentrations. I-J. The average phase durations in G1 and S-G2 phases for all five drug 704 
treatments. The arrow shows the shift from the control condition to the drug effect at the half 
maximum concentration (EEC50). K-L. The overall probability of cell death in G1 and S-G2 phase, 706 
respectively, for all five drug treatments. The arrow shows the shift from the control condition to 
the drug effect at the half maximum concentration (EEC50) for G1 and S-G2 phases.  708 
 
Figure 3. Analysis of single cell responses confirms model inferences and reveals drug-710 
specific cell cycle phase effects. A. Quantification of cell cycle parameters as inferred by the 
model and observed experimentally (G1 and S-G2 durations and cell death). B. Distributions of 712 
G1 durations for cells that underwent one division in response to 0, 25, and 50 nM lapatinib. C. 
Distributions of S-G2 durations. D. Accumulated cell death across time. E. Time to first division 714 
for cells in the CTRL condition (red line) compared to 50 nM lapatinib (gray line). F-H. G1 and S-
G2 distributions, and cell death accumulation in response to gemcitabine. I. G1 and S-G2 716 
durations for the first complete cell cycle for all cells tracked in the control condition, in response 
to 100 nM lapatinib, and 10 nM gemcitabine. J-L. G1 and S-G2 distributions, and cell death 718 
accumulation in response to paclitaxel. M. Observed cell counts against cell deaths per drug. 
 720 
Figure 4. Responses to drug combinations are dependent on drug-specific effects on the 
cell cycle and cell death. A-D. Comparison between model predictions for single drug 722 
responses, or from drug combinations of Bliss additivity using cell numbers or model rates. A. 
Single drug responses for increasing doses of palbociclib and in combination with 100 nM 724 
lapatinib. B-D. Single drug responses for increasing doses of gemcitabine and in combination 
with 20 nM doxorubin, 100 nM lapatinib, 50 nM palbociclib. E. Model predictions for the 726 
percentage of cells in G1 phase for the control condition, 100 nM lapatinib, 17 nM gemcitabine, 
or the combination of lapatinib and gemcitabine. E-H. Comparison between the model 728 
predictions and experimental observations for the single drug responses and the drug 
combinations as described in panels A-D. Error bars show the standard error of the mean for 730 
three biological replicates. 
 732 
Figure S1. Individual replicates for AU565 drug responses show similar temporal 
dynamics and drug-induced changes to cell cycle. Panels show relative cell numbers and S-734 
G2 normalized cell numbers for lapatinib (A), gemcitabine (B), paclitaxel (C), palbociclib (D), and  
doxorubicin (E) treatments for three biological replicates. Five drug concentrations (gray lines) 736 
and untreated control (red line) are plotted. 
 738 
Figure S2. An exponential cell cycle model without incorporating delay times fails to 
capture the dynamics of drug response. A. The transition diagram for a simple dynamical 740 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2023. ; https://doi.org/10.1101/2020.07.24.219907doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.219907
http://creativecommons.org/licenses/by-nc/4.0/


model with 2 phases (G1 and S-G2) and without the LCT. 𝛼 and 𝛽, are the transition rates from 
G1 to S-G2 and vice versa, 𝛾) and 𝛾& are the death rates in G1 and S-G2, respectively. (B-E). 742 
Exponential cell cycle model simulations of G1 and S-G2 cell numbers over time for control and 
5 concentrations of lapatinib (B-C) and gemcitabine (D-E) (solid lines), respectively, overlayed 744 
with the average of three experimental replicates (dashed lines). 
 746 
Figure S3. Analysis of single cell tracking data reveals drug-specific cell cycle phase 
effects in AU565 cells. A. Lineage trees of 25 lineages across 96H for various drug treatments. 748 
Tracks are colored coded based on cell cycle phase: gray indicates G1 and red indicates S-G2 
phase. Track splitting indicates mitosis, and track ending prior to 96H corresponds to apoptosis. 750 
B. Quantification of cell outcomes (division, apoptosis, still present at end of experiment) for 
cells from the first and second generations treated with lapatinib, gemcitabine, or paclitaxel. C. 752 
Gamma distribution of G1 and S-G2 phase durations for cells in control condition with sample 
size of 520 and 514 for G1 and S-G2 phases, respectively. D. Lineage trees for 25 lineages 754 
across 96H after treatment with Palbociclib. 
 756 
Figure S4.	A dynamical model of the cell cycle captures the dynamics of drug response. 
A-F. G1 and S-G2 cell numbers overtime, respectively, for the control and treatment at 5 758 
concentrations (solid lines) for doxorubicin (A-B) paclitaxel (C-D), and palbociclib (E-F) 
overlayed with the average of three corresponding experimental replicates (dashed lines). G-L. 760 
The average phase durations in G1 and S-G2 phases for selected drug treatments. The arrow 
shows the shift from the control condition to the drug effect at the half maximum concentration 762 
(EEC50). 
 764 
Figure S6.	The introduced dynamical model captures the cell cycle dynamics of drug 
response in 21MT1 cell line. A,B. Experimentally observed drug-induced changes to cell 766 
numbers (A) and G1 cell cycle phase proportion (B) after dose-escalation treatment with a panel 
of inhibitors. C,D. G1 and S-G2 fits overtime, respectively, for the untreated and treatment at 5 768 
concentrations (solid lines) overlayed with the average of three corresponding experimental 
replicates (dashed lines) for 6 drug treatments. E. Inferred accumulated dead cells over time for 770 
6 drug treatments. 
 772 
Figure S5.	The introduced dynamical model captures the cell cycle dynamics of drug 
response in TNBC cell line HCC1143. A,B. Experimentally observed drug-induced changes to 774 
cell numbers (A) and G1 cell cycle phase proportion (B) after dose-escalation treatment with a 
panel of inhibitors. C,D. G1 and S-G2 fits overtime, respectively, for the untreated and treatment 776 
at 5 concentrations (solid lines) overlayed with the average of three corresponding experimental 
replicates (dashed lines) for 6 drug treatments. E. Inferred accumulated dead cells over time for 778 
6 drug treatments. 
 780 
Figure S7.	The introduced dynamical model captures the cell cycle dynamics of drug 
response in TNBC cell line MDA-MB-175. A,B. Experimentally observed drug-induced 782 
changes to cell numbers (A) and G1 cell cycle phase proportion (B) after dose-escalation 
treatment with a panel of inhibitors. C,D. G1 and S-G2 fits overtime, respectively, for the 784 
untreated and treatment at 5 concentrations (solid lines) overlayed with the average of three 
corresponding experimental replicates (dashed lines) for 6 drug treatments. E. Inferred 786 
accumulated dead cells over time for 6 drug treatments. 
 788 
Figure S8.	Summary of inferred cell cycle drug effects at half maximum concentration 
compared to untreated. A-B. The average phase durations in G1 (A) and S-G2 (B) phases for 790 
HCC1143 (blue), 21MT1 (olive) and MDA-MB-157 (pink) treated with paclitaxel, palbociclib, 
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trametinib, BEZ235, doxorubicin, and gemcitabine. The dashed lines show the average phase 792 
duration at untreated for each cell line. C-D. The cell death probability in G1 (C) and S-G2 (D) 
phases for HCC1143 (blue), 21MT1 (olive) and MDA-MB-157 (pink) treated with the same panel 794 
of drugs. The arrows show the quantity of increase or decrease in the effects from untreated to 
the half maximal concentration (EEC50).  796 
 
 798 
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