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ABSTRACT

One of the most important and challenging application areas for complex machine learning methods
is to predict, characterize and model rich, multi-dimensional, neural data. Recent advances in neural
recording techniques have made it possible to monitor the activities of a large number of neurons
across different brain regions as animals perform behavioural tasks. This poses the critical challenge
of establishing links between neural activity at a microscopic scale, which might for instance represent
sensory input, and at a macroscopic scale, which then generates behaviour. Predominant modeling
methods apply rather disjoint techniques to these scales; by contrast, we suggest an end-to-end model
which exploits recent developments of flexible, but tractable, neural network point-process models to
characterize dependencies between stimuli, actions, and neural data. We apply this model to a public
dataset collected using Neuropixel probes in mice performing a visually-guided behavioural task as
well as a synthetic dataset produced from a hierarchical network model with reciprocally connected
sensory and integration circuits intended to characterize animal behaviour in a fixed-duration motion
discrimination task. We show that our model outperforms previous approaches and contributes novel
insights into the relationships between neural activities and behaviour.

1 Introduction

Recent developments in neural recording techniques such as Neuropixel probes allow the activities of large numbers of
neurons across the brain to be monitored as animals perform behavioural tasks [Jun et al. 2017]. This allows us to study
how the brain represents past and present sensory inputs across areas, how these representations evolve over time and
ultimately lead to behaviour.

Very coarsely, supervised, reinforcement learning and unsupervised methods have been applied to examine the
relationships between activity and behaviour [Paninski, Pillow, and Lewi 2007; Mante et al. 2013; Ganguli and
Sompolinsky 2012; Kass, Eden, and Brown 2014; Sussillo 2014; Richards et al. 2019; Schaeffer et al. 2020]. Encoding
and decoding models are examples of supervised learning. Encoding models use linear or non-linear methods to predict
the activity of individual neurons based on task-related variables such as stimuli, actions, rewards and the like. Decoding
models use linear or non-linear methods to predict the values of these task-related variables from the conjoint activities
of multiple neurons within or between areas. Both types of model have been hugely influential from the earliest days of
the application of computational methods to understand neural representation and processing [Dayan and Abbott 2001;
Rieke et al. 1999; Kass, Eden, and Brown 2014; Meyer et al. 2017]. However, simple reflections of the computational
constraints of the task are often insufficient to capture complex neural representations of the sensory inputs and actions
that are distributed across different brain regions [Steinmetz et al. 2019] and can also evolve over time in ‘null’ neural

∗Authors contributed equally to this manuscript.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2022. ; https://doi.org/10.1101/2020.07.13.201673doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.201673
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neural Network Poisson Models for Behavioural and Neural Spike Train Data

modes that have no behavioural consequence. Moreover, neural responses are variable and a population’s response
will often differ from trial to trial and over time, even under the same experimental conditions [Shadlen and Newsome
1998]. Most traditional approaches do not generalize to these more naturalistic conditions where trials with identical
stimuli do not exhibit identical behavioural schemes [Goris, Movshon, and Simoncelli 2014; Churchland et al. 2010].
Hence, they can not account for the temporal irregularities in behaviour and neural recordings between trials.

Reinforcement learning (or in some cases, supervised learning) methods have more recently been used to learn
potentially complex feedforward and recurrent neural network (RNN) models that are themselves capable of performing
the same behavioural task as the subjects, based on assumptions about sensory noise and processing architecture [Barak
2017; Sussillo 2014; Richards et al. 2019; Schaeffer et al. 2020; Yamins et al. 2014]. These have been highly revealing
about neural coding. However, they are also ill-suited to capture the myriad complexities of null modes, or the particular
sub-optimalities expressed by individual subjects, reflecting their particular incompetence, training history and more.

Unsupervised methods have also been applied – often ways of mapping very high dimensional population activity into
lower dimensional spaces [Paninski et al. 2010; Cunningham and Yu 2014; Whiteway and Butts 2019; Yu et al. 2006];
with the structure in these spaces, and perhaps the dynamical evolution of the states in these spaces, subsequently being
related to task variables. These methods are typically useful since the number of dimensions of task input and/or output
variability is often rather modest, implying that much of the high dimensional space that could potentially be occupied
is either empty or at least not relevant for behaviour. However, they typically have to use intrinsic metrics such as
variance to specify which low dimensional projections should be considered – and this again begs the question as to
what is important.

Of course, there are methods that combine various of these approaches [Kobak et al. 2016; Kriegeskorte and Kievit
2013], and continual innovations. Along these lines, [Dezfouli et al. 2018] recently suggested a combined approach, with
an RNN being trained to tie fMRI BOLD activity across the brain directly with ongoing behaviour. fMRI data allowed
for a form of model inversion, pinning down the RNN state and so implying how behaviour would be realized neurally.
However, this approach is licensed by the invertibility that is at least plausible because of the high dimensionality of
fMRI. It is not currently guaranteed to be available on a trial-by-trial basis in neural recordings.

Here, motivated by previous approaches and recent neural network point-process models [Omi, Aihara, et al. 2019], we
suggest a novel neural network Poisson process model which: (i) flexibly learns the connections between environmental
stimuli and neural representations, and between neural representations and behavioural responses; (ii) jointly fits both
behavioural and neural data; (iii) handles variabilities between response times in different trials of an experiments by
a temporal rescaling mechanism, and (iv) derives spike count statistics disentangled from chosen temporal bin sizes.
The framework allows efficient training of the model without making assumptions about the functional form of the
relationship between input stimuli and neural and behavioural processes. We apply the method to two neural/behavioural
datasets concerning visual discrimination tasks: one collected using Neuropixel probes [Steinmetz et al. 2019] from
mice, and the other the output of a hierarchical network model with reciprocally connected sensory and integration
circuits that was designed to model behaviour in a motion-based task [Wimmer et al. 2015]. We show that our method
is able in both cases to link behavioural data with their underlying neural processes and input stimuli; the synthetic
dataset allows us to compare our results against ground truth.

2 The model

Data description. We model canonical visual discrimination experiments. In our case, on each trial, subjects are
presented with a stimulus and have to choose an option (or keep still; NoGo). We consider two datasets in this setting.
The first is the visual discrimination experiment of [Steinmetz et al. 2019] (Figure 1a). On each trial, mice are presented
with a stimulus (visual contrast on the left or right side) and have to make a simple response by turning a wheel left or
right or keeping it still. The second dataset is synthetic and based on the work of [Wimmer et al. 2015] (Figure 1b). A
hierarchical spiking neural network model is built to capture the essence of evidence integration and decision-making
of monkeys in a standard two-alternative forced-choice motion discrimination task [Gold and Shadlen 2007; Britten
et al. 1996].

Formalisation. The total number of trials in an experiment is denoted by |N |; the stimuli on trial n ∈ {1 . . . |N |}
are (generically) denoted by vector xn. If a response was made on trial n (at a time relative to stimulus onset we call
rn), we denote it by an ∈ A (where, here, A = {LEFT, RIGHT}. After an observation window of W =400ms (for the
Steinmetz dataset; same as the window size chosen in [Steinmetz et al. 2019]) and W =2000ms (for the synthetic data)
expires, then we consider the subject to have chosen NoGo.
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Different neurons in different areas and even different animals (in the Steinmetz dataset) may be recorded and contribute
in separate trials. In total, |Su,n| spikes are observed from unit u at times {siu,n}i=1...|Su,n|, relative to stimulus onset in
the corresponding trials.

In the following, we first discuss how we model the neural data; and then how we couple this model to predict behaviour.
Figure 2 provides an overview of the designed framework. For more details on the model architecture, please refer to
Supplementary Materials.
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Figure 1: a) Steinmetz’ visual discrimination task [Steinmetz et al. 2019]. On each trial, visual stimuli of different contrasts were
potentially presented on the left and right sides. If both sides had zero contrast, the mouse earned reward by NoGo. If both had
equal, non-zero, contrast, it was rewarded at random. Otherwise, it was rewarded for reporting (a ∈ {LEFT, RIGHT}) which contrast
was larger. The figure is adapted from [Steinmetz et al. 2019]. b) Synthetic network model illustrating the sensory (E1; E2) and
integrator (D1; D2) circuits enjoying feed-forward and top-down feedback connections as well as lateral excitatory and inhibitory
(population I) recurrent connections within each circuit. The figure is adapted from [Wimmer et al. 2015]. c) Illustrative example
illustrating the occurrence of systematic bias in firing rate estimation when aggregating trials with different end times. Red curves
show firing rates for six sample trials. The dashed line shows the average of firing rates based on the unfinished trials at each point in
time. Looking at the blue curve, one might conclude that neural activities increase and then decrease over times, which is not true for
any individual trial.
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ham and Yu, 2014; Whiteway and Butts, 2019; Yu et al.,
2006); with the structure in these spaces, and perhaps the dy-
namical evolution of the states in these spaces, subsequently
being related to task variables. These methods are typically
useful since the number of dimensions of task input and/or
output variability is often rather modest, implying that much
of the high dimensional space that could potentially be oc-
cupied is either empty or at least not relevant for behaviour.
However, they typically have to use intrinsic metrics such
as variance to specify which low dimensional projections
should be considered – and this again begs the question as
to what is important.

Of course, there are methods that combine various of these
approaches (Kobak et al., 2016; Kriegeskorte and Kievit,
2013), and continual innovations. Along these lines, (Dez-
fouli et al., 2018) recently suggested a combined approach,
with an RNN being trained to tie fMRI BOLD activity across
the brain directly with ongoing behaviour. fMRI data al-
lowed for a form of model inversion, pinning down the RNN
state and so implying how behaviour would be realized neu-
rally. However, this approach is licensed by the invertibility
that is at least plausible because of the high dimensionality
of fMRI – something that is not currently guaranteed to be
available on a trial-by-trial basis in neural recordings.

Here, motivated by previous approaches and recent neural
network point-process models (Omi et al., 2019), we sug-
gest a novel neural network Poisson process model which:
(i) flexibly learns the connections between environmental
stimuli and neural representations, and between neural rep-
resentations and behavioural responses; (ii) jointly fits both
behavioural and neural data; (iii) handles variabilities be-
tween response times in different trials of an experiments
by a temporal rescaling mechanism, (iv) allows us to trace
different stimulus-driven behavioural patterns back to their
neural substrates and (v) derives spike count statistics dis-
entangled from chosen temporal bin sizes. The framework
allows efficient training of the model without making as-
sumptions about the functional form of the relationship
between input stimuli and neural and behavioural processes.
We apply the method to two neural/behavioural datasets
concerning visual discrimination tasks: one collected using
Neuropixel probes (Steinmetz et al., 2019) from mice, and
the other the output of a hierarchical network model with
reciprocally connected sensory and integration circuits that
was designed to model behaviour in a motion-based task
(Wimmer et al., 2015). We show that our method is able
in both cases to link behavioural data with their underlying
neural processes and input stimuli; the synthetic dataset
allows us to compare our results against ground truth.
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zn(·)
t0

!!(⋅)

Figure 2: Network architecture. 1⃝ Embedding of input stimulus into vector hn. 2⃝ Transformation of embedding hn into neural
activity of each region for each time point t since the stimulus onset. The monotonic transformation function , zn(t′) = t·, is applied
to the input spike time series in this step. Neural activities are characterised by the rescaled cumulative intensity function of spike
train for each region, denoted by ΛN

u(t;hn) for regions u ∈ U . The intensity function λN
u(t;hn) is obtained by differentiating the

cumulative intensity function ΛN
u(t;hn) with respect to t. Component 2⃝ structurally ensures that ΛN

u(t;hn) increases with time, so
λN
u(t;hn) ≥ 0. 3⃝ Neural activities are mapped to behavioural responses which are represented by the rescaled cumulative intensity

function ΛB
a(t;hn) for making each action a ∈ A at each time t since stimulus onset (t). The data likelihood is computed over both

recorded spike trains and behavioural responses. This yields a neural log-likelihood function (LN) and a behavioural log-likelihood
function (LB).
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2.1 Spike train models

We make the simplification that the spikes of each neuron u in trial n can be modelled as the output of an inhomogeneous
Poisson process [Daley and Vere-Jones 2006] with a latent intensity function λN

u,n(τ ;hn) (the superscript N indicates
that the intensity function is for the Neural data). This can be interpreted as the instantaneous probability of observing a
spike at time τ , where hn is a function of the stimulus xn. The Poisson process assumption is that successive spike
times are independent, given λN

u,n(τ ;hn). Note that we seek to capture signal correlations but not noise correlations,
and so hn does not depend on the spikes observed during a trial.

2.1.1 Time rescaling of spike trains

We consider spikes from neuron u until either a response an was made at time rn, or to the end of time window W ,
whichever comes first, i.e., up to Wn = min(W, rn). The reason for restricting the observation period to rn is because
the aim is to model the neural processes that lead to behavioural responses, rather than what happens post-response.
The joint probability density of observing spike trains from neuron u in trial n is then,

f N
u,n(s

1
u,n . . . s

|Su,n|
u,n ) =

∏|Su,n|

i=1
λN
u,n(s

i
u,n;hn) exp

(
−
∫Wn

0
λN
u,n(τ

′;hn)dτ
′
)
. (1)

Intuitively, the term λN
u,n(s

i
u,n;hn) represents the probability density of observing a spike at time siu.n and the

exponential term represents the probability of not observing spikes at other times in the observation period. We aim to
estimate a single function λN

u,n(τ ;hn) to model the neural activities across all trials. However, note that the duration of
trials can be different (based on response times) and only trials that ended after τ can contribute to the estimation of
λN
u,n(τ ;hn), which means that this quantity is implicitly conditioned on rn > τ . This property makes the interpretation

of λN
u,n(τ ;hn) rather inconvenient since it will no longer represent how neural activities evolve over time, but is

confounded by the distribution of response times (see Fig 1c). To address this issue, it is tempting to merely condition
λN
u,n(τ ;hn) on response times (in addition to hn) to get a picture of the spike trains that lead to each specific response

time (rather than all the response times after τ ). This, however, only partially addresses the issue. To address it more
fully, we aim to map all trials with different duration to the same time span. To achieve this goal, we propose the
following theorem and proposition:

Theorem 1. Let 0 < s′1 < s′2 <, . . . , < s′j ≤ Wn ≤ W be a realization from an inhomogeneous Poisson point
process, n, with an intensity function λn(t

′) satisfying 0 < λn(t
′) for all t′ ∈ (0,Wn]. Define a one-to-one monotonic

transformation function, where:

zn : [0,Wn] → [0,W ], and zn(0) = 0, zn(Wn) = W

Assume 0 < s1 < s2 <, . . . , < sj ≤ W where ∀k ∈ {1, . . . , j}; sk = zn(s
′k). Then sk are a realization from a

second inhomogeneous Poisson point process with λ(t) = λn(t
′) where t = zn(t

′).

Proposition 1. For a linear transformation function zn(.), as defined in Theorem 1., the cumulative intensity function
of the original and second point process realizations are related as: Λ(t) = 1

∂t(z−1) · Λn(t
′).

Note that Theorem 1. is a special case under the Mapping Theorem [Grimmett and Stirzaker 2020]. Please see
Supplementary Materials for proofs.

2.1.2 Parametrising the intensity function

Here, we define λN
u(t;hn) to represent canonical neural activities (prior to the response) defined over t ∈ [0,W ]. Based

on the above theorem, the neural activities for a certain trial with duration Wn can be obtained by applying the time
rescaling on the original spike time series using a monotonic function zn : [0,Wn] → [0,W ], t = zn(t

′),

λN
u,n(t

′;hn) = λN
u(zn(t

′);hn), with zn(0) = 0, zn(Wn) = W, t′ ∈ [0,Wn]. (2)

The dependence of the intensity function on the embedding hn plays a crucial role in determining how neural activities
are shaped by the stimulus and has to be characterized in a flexible manner. To achieve this, one option is to use a
multi-layer feed-forward network which takes t and hn as inputs, and outputs λN

u(t;hn) ≥ 0. Unfortunately, it is then
intractable to calculate the integral in equation 1. An elegant solution to this problem is to parameterize the cumulative
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intensity function ΛN
u(t;hn) instead of λN

u(t;hn) [Omi, Aihara, et al. 2019]. This is

ΛN
u(t;hn) =

∫ t

0

λN
u(τ ;hn)dτ, (3)

and can be (automatically) differentiated to produce the intensity function:

λN
u(t;hn) =

∂ΛN
u(t;hn)

∂t
. (4)

We represent ΛN
u(t;hn) using a feed-forward network. Note that the gradient of the cumulative intensity function w.r.t

to t must always be non-negative (see Section Model structure). In this work, we chose time to be rescaled uniformly
using zn(t

′) = t′W/Wn. This makes a substantive assumption that the activities in slow and fast trials are stretched
versions of each other. Its advantage is to reduce the task of learning trial-specific intensities to learning the canonical
intensity function λN

u(t;hn). Based on Theorem 1. and Proposition 1., trial specific intensity and cumulative intensity
functions (defined on t′ ∈ [0,Wn]) are then given by,

λN
u,n(t

′;hn) = λN
u(zn(t

′);hn), Λ
N
u,n(t

′;hn) =
Wn

W
· ΛN

u(zn(t
′);hn). (5)

The relatively simple form of transformed cumulative intensities is a consequence of the uniform time rescaling (see
Supplementary Materials for proof). Using these two related functions, the data log-likelihood implied by equation 1 is

LN
u.n = log f N

u.n(s
1
u.n . . . s

|Su.n|
u.n ) =

|Su.n|∑
i=1

[
log

∂ΛN
u(t = zn(s

i
u.n);hn)

∂t

]
− Wn

W
· ΛN

u(W ;hn), (6)

which retains the required flexibility, while obviating the calculation of the intractable integral. The total data likelihood
for all the trials and neurons is then

LN =
∑|N |

t=1

∑
u∈Un

LN
u.n.

In principle, each recorded neuron in the experiment could be assigned a separate intensity function. However, given
the experimental methodology of only recording some neurons on some trials in the Steinmetz dataset, the problem
of missing data would be radically acute, and the model would be uninterpretable. The computational cost would
also be prohibitive. Instead, we make the simplifying assumptions that all the neurons in each of the 42 brain regions
identified by [Steinmetz et al. 2019] and (as is true by design) the 4 regions in the synthetic model share common
intensity functions. As such, we consider |UStein| = 42 and |Usynth| = 4.

2.2 Behavioural response models

Having provided a way of characterizing the neural response to the embedding hn, we next need to model the link
between neural representations and behaviour. We assume that the probability of making a behavioural response at each
point in time depends on the activity of the neurons at that time. In turn, these are driven by the stimulus hn on that trial.
That is, the behavioural responses are indirectly affected by the stimulus via neural activities. However, rather than
model this dependence explicitly, which is hard given the punctate nature of the response, we approximate it implicitly,
via smooth intensity functions that in turn depend on ΛN.

The intensity function for an action a is denoted by λB
a(t;hn), which specifies the instantaneous probability of taking the

action at time t relative to stimulus onset. The superscript B indicates that the intensity function is for the Behavioural
data. A key simplification is to allow for the theoretical possibility that the animal performs the same action more than
once on a trial; or performs both actions. However, that actions are actually sparse implies that this approximation is
not too costly. We write the canonical behavioural cumulative intensity function as a function of the canonical neural
cumulative intensity functions.

ΛB
a(t;hn) = Φa(Λ

N
1(t;hn), . . . ,Λ

N
|U|(t;hn)). (7)

Function Φa(.) can be realised using a deep feed-forward network which can represent arbitrary dependencies between
neural activities and behavioural responses.

Then, differentiating:

λB
a(t;hn) =

∑|U|

u=1
λN
u(t;hn)

∂Φa(.)

∂ΛN
u

, (8)
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which implies that the behavioural response probability at each point in time is indirectly dependent on the stimulus
through the spike rate of different neural activities, as desired. Function Φ(.) is also designed to be increasing in t to
ensure that λB

a(t;hn) > 0 (see Section Model structure).
These response rates are presented as a function of canonical neural intensity functions. Similar to 5 for each trial n we
have,

λB
a,n(t

′;hn) = λB
a(zn(t

′);hn), Λ
B
a,n(t

′;hn) =
Wn

W
· ΛB

a(zn(t
′);hn). (9)

The subjects can either act or not on a trial; the latter is determined by a censoring window W . Write Na as the set of
trials on which action a was taken before W , at reaction time rn. The simplified joint probability distribution of the
behavioural observations is then:

f B
a({rn}n∈Na) =

(∏
n∈Na

λB
a,n(rn;hn)

)∏|N|

n=1
exp

(
−
∫ Wn

0

λB
a,n(τ

′;hn)dτ
′
)
, (10)

and, taking logs, the log-likelihood for those observations is,

LB
a =

∑
n∈Na

log
∂ΛB

a(t = zn(rn);hn)

∂t
−

∑|N|

n=1

Wn

W
· ΛB

a(W ;hn). (11)

Over the whole experiment and actions, the behavioural likelihood can be defined as,

LB =
∑

a∈A
LB
a, (12)

in which A is the set of available actions.

2.3 Model structure

We implement the model using the neural network architecture shown in Figure 2. This has three components. The
first maps the stimulus xn that was presented through a series of fully connected layers to realize an input embedding
denoted by hn. The second component takes the embedding hn and t and outputs the modelled activity of each neural
region u at time t in the form of cumulative intensity functions for ΛN

u(t;hn). This component is designed such that the
outputs of the network, i.e., ΛN

u(t;hn)s, are monotonic functions of t to ensure that their gradients with respect to t
(which are neural intensity functions) are always positive. To achieve this, following ideas from [Sill 1998; Chilinski
and Silva 2018; Omi, Aihara, et al. 2019], the weights of the network are constrained to be positive and tanh activation
functions are used in the middle layers and soft-plus in the output layers.
The third component of the model takes the neural cumulative intensity functions and maps them to the behavioural
cumulative intensity functions (function Φ in equation 7). We used the same method as for the second component to
ensure that the gradient of ΛB

a(t;hn) with respect to t is positive.
For training the model, the neural loss function LN is used to train all the weights from stimulus to neural
cumulative intensity functions (blue and red rectangles in Figure 2). Given these trained neural cumulative intensity
functions, then the weights connecting neural outputs to behavioural outputs are trained using LB. The gradients
were obtained using automatic differentiation in Tensorflow [Abadi et al. 2015]. See Supplementary Materials for details.

3 Results

3.1 Data structure

Synthetic dataset. For the synthetic data, we use data generated from the model introduced in [Wimmer et al. 2015].
Activities from two direction-selective sensory regions (E1 and E2; e.g. V5/MT) as well as two integrator regions
(D1 and D2; e.g. LIP, FEF) are modeled and then observed. Each region has 240 neurons and the whole experiment
consists of 1800 trials (1200 trials for training and 600 trials for testing). Left and right sensory regions prefer leftwards
and rightwards motion respectively; time-varying activity in these regions inspired by stimuli with coherence levels
varying from completely obscure: 0%, to rather definite: 50% or 80% (which are encoded using one-hot encoding), are
accumulated by populations in the integration region. The latter has attractor dynamics; a response is realized when the
activity state is sufficiently close to one of the two attractors. A choice is modelled as being made when the average
activity of a (trial-)random subset of neurons in D1 or D2 over a window of 50ms reaches 40Hz. This corresponds to
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strong evidence in favour of motion in the corresponding direction which can be RIGHT (for D1) or LEFT (for D2).

Steinmetz dataset. We use the data reported in [Steinmetz et al. 2019]2. The experiments consist of 38 sessions of a
visual discrimination task (Figure 1a). Activities from 42 brain regions from the left hemisphere of the brain were
recorded (not all regions were recorded in all the sessions). Overall the data from 30,000 neurons were recorded and
the whole experiment consisted of 10011 trials. We used the data from 12 sessions for testing and the rest for training
the model.
On each trial, the animals were presented with stimuli on the left and right and were required to turn a wheel LEFT,
RIGHT or keep it fixed (NoGo), based on the contrast input (four possible levels of contrast on each side: 0, 25, 50,
100%; 0% on both sides requires NoGo). We encoded stimulus contrast using one-hot encoding based on which side
had a higher contrast, or whether they had equal contrasts (xn of dimension 3). The reaction time rn corresponds to the
beginning of the wheel turn if this happens before the end of the response window.

3.2 Training process

All the weights in the model were trained using the Adam optimiser [Kingma and Ba 2014]. Stimulus and integrator
components (blue and red rectangles in Figure 2) each were composed of three fully connected hidden layers with
20 neurons in each layer. The third layer was then connected to the output layer consisting of one neuron per region
in the dataset. The neural component was followed by two fully connected behavioural layers for each action (with
10 neurons). ‘softplus’ and ‘tanh’ activation functions were used to ensure positive of intensity functions. See
Supplementary Materials for more details about the model architecture and training process.

3.3 Experiments

We show statistics of the quality of the fit of the model later. However, we first illustrate the neural and behavioural
properties of the model by freezing the weights and performing simulations with different values of Wn for sample
regions of both synthetic and Steinmetz datasets. Results showing the performance of the model on all the available test
regions of both datasets are presented in Supplementary Materials.
The solid lines in the upper panels of Figure 3 illustrate the neural responses for the synthetic dataset for 0.3 ≤ Wn ≤ 0.6
when the stimulus had highest coherence level (0.8) and moved RIGHT. The chosen interval includes more than 90% of
all trials in the coherence level of 0.8. These results are compared with the empirical activity derived from the data
(dashed lines) for both integrator regions D1 and D2. Note the change in y-scale between the plots, given the strong left
stimulus. These values are closely related to the learned intensities and capture the observed variability in response
times between different trials given the time rescaling of input spike trains.
Figure 3 lower panels show the mean rate of behavioural responses for each interval of learned neural intensities for
the complete set of trials. As expected, the highest rate of behavioural action is observed for neural intensities close
to 40 spikes/sec for D1. By contrast, region D2 shows very low behavioural activity rates due to the non-favorable
direction of stimulus in these trials. Note that the shown empirical firing rates are averaged across all responses, while
the intensities correspond to different response times, which helps explain the differences between the two measures.
For example, in very fast responses, there is an initial burst in the firing rates, which is captured by the initial sharp rise
in the intensities (see Figure 3), but this is invisible in the averaged firing rates.
The upper panels of Figure 4 show modelled and actual neural activities in the Steinmetz dataset for two example brain
regions with high contrast levels of stimulus on RIGHT: one the subiculum (SUB), which [Steinmetz et al. 2019] reported
as containing neurons that consistently fired before wheel turns regardless of their direction (arguably a surprising
feature of this dataset, given the relationship of the subiculum with areas such as the hippocampus and entorhinal cortex
rather than motor regions), and the other, visual (VISp; primary visual area), which is reported to have the highest
portion of visual encoding neurons . The activities were all recorded in the left hemisphere, and therefore, the right
stimulus/action are contralateral to the recording sites. Comparing the lower and upper panels of Figure 4 show, we
generally see more activity on the left side in VISp for stimuli with high contrast levels on the RIGHT which is consistent
with previous analyses [Steinmetz et al. 2019]. It is clear that the region shows lower neural activity levels for ipsilateral
stimuli. The subiculum (SUB), is reported in [Steinmetz et al. 2019] as containing neurons that consistently fired before
wheel turns regardless of their direction. We can see in Figure 4 lower panels that this indeed is captured by our model
for the SUB region where it reaches similar firing rates no matter the direction of stimulus and motion are. The relative

2https://github.com/nsteinme/steinmetz-et-al-2019/wiki/data-files
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timing of the activities in the areas are also consistent with expectations. The solid lines in the panels show estimated
firing rates, which are consistent with the data (dashed lines) in particular for VISp which had a peak in firing rate early
after stimulus was presented (see below) and closely related to the presented visual stimuli in the task. Note that in our
framework, estimation of the neural activities (firing rates) does not rely on selecting a temporal bin size. This is unlike
most previous state-of-the-art works [Liu and Lengyel 2021] where the output firing rates are substantially affected by
the choice of bin size.
Next, examining the behavioural predictions of our model, the neural activities presented in Figure 4 show that sooner
responses (with high probabilities) are strongly related to the peak intensities in VISp. In agreement with these findings,
middle right panel in Figure 4 shows higher probability for the occurrence of reactions when the neural activity in VISp
peaks. SUB is also coupled to behaviour in the middle panel – in fact for both directions of movement.

D1, Coherence level = 0.8 Wn D2, Coherence level = 0.8 Wn

Figure 3: Synthetic Data (Upper panels). The activity rate of neural population in the two integrator regions of the synthetic
dataset. The dashed lines show the empirically derived firing rates compared to the solid lines which are estimated using the proposed
model. Each line plot corresponds to the average activity rate of trials with Wn in a specific interval illustrated by the colorbar (see
section F in Supplementary Materials). (Lower panels). Illustrating the average response rate for each interval of neural activity
rates. The plots correspond to the trials with highest coherence level. The plots show the average between trials with a RIGHT
reaction. Error bars show the standard error. Purple bars show the average behavioural response rates. Orange bars indicate the
proportion of trials with the occurrence of each neural response interval.

3.4 Baseline Methods

Finally, Table 1 shows a comparison of the performance of our proposed framework to those of recent prominent
baseline point process estimators. We compare the negative log likelihoods (NLL) for the neural activity on sample
regions of Steinmetz dataset as well as the 4 regions of the synthetic dataset. For details on the utilized settings for
implementing the baseline methods, please see the Supplementary Materials.

• GLM Model [Truccolo et al. 2005; Paninski 2004]: Generalized-linear models (GLM) also known as
Poisson regression, are used to model the intensity of the input data as a linear combination of time-dependent
covariates. Here, the total spike counts for all trials are calculated and concatenated for count windows of 5ms
as inputs to the GLM model.

• NHPoisson Model [Cebrian 2015]: NHPoisson is a method for the modelling non homogeneous Poisson
processes in time estimating maximum likelihood. The model is based on formulating the intensity as a
function of time-dependent covariates.

• Universal Count Model [Liu and Lengyel 2021]: This model builds on sparse Gaussian processes (GP)
to capture arbitrary spike count distributions flexibly relying on both observed and latent covariates. It uses
scalable variational inference and can jointly infer the covariate-to-spike count distribution mappings and latent
trajectories. We also examine a second variant of this model which replaces the GP-based approaches with an
artificial neural network (ANN) mapping. We denote the two variations by U-GP and U-ANN respectively.
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WnHigh contrast on the LEFT, SUB WnHigh contrast on the LEFT, VISp

WnHigh contrast on the RIGHT, SUB High contrast on the RIGHT, VISp Wn

Figure 4: Steinmetz (Upper panels). The activity rate of neural population in the two sample regions of the Steinmetz dataset for
the highest contrast level on RIGHT. The dashed lines show the empirically derived firing rates compared to the solid lines which are
estimated using the proposed model. Each line plot corresponds to the average activity rate of trials with Wn in a specific interval
illustrated by the colorbar (see section F in Supplementary Materials). (Middle panels). Illustrating the average response rate for
each interval of neural activity rates. The plots correspond to the trials with high contrast on RIGHT. Error bars show the standard
error. Purple bars show the average behavioural response rates. Orange bars indicate the proportion of trials with the occurrence
of each neural response interval. (Lower panels). Neural activities for contralateral and ipsilateral stimuli. The VISp shows a
direction selective activity pattern, preferring the contralateral stimuli on the RIGHT. However this is not the case for SUB which is in
agreement with reports in [Steinmetz et al. 2019] where this region is known to contain firing neurons before the motion initiation
regardless of the direction of stimulus and movement.

• Poisson Gaussian-Process Latent Variable Model (P-GPL) [Wu et al. 2017]: In this model, Poisson
spiking observations are accompanied by two underlying Gaussian processes: One governing a temporal latent
variable, the other governing a set of nonlinear tuning curves. The model learns using a decoupled Laplace
approximation which is a fast approximate inference method. The same set of temporal covariates as above
are also utilized in the implementation of this method.

It is important to mention that the performance of all the baseline methods depend on the length of the selected time bin
for spike count calculation; a constraining dependency causing non-robust results that our proposed method overcomes.
We selected the time bin length for optimal performance by performing a heuristic search in a rational range.
Note that the average spike counts per region in the Steinmetz dataset is roughly 60 times less than in the synthetic
one. This is due to the difference between the lengths of the experiment and the numbers of neurons per region in the
Steinmetz and synthetic dataset. Thereby, the NLL measures differ by two orders of magnitude.

Finally, Figure 5 shows the comparison of the performance of the proposed model with the baseline methods in
estimating neural activities summed over all the 37 regions in the test data of Steinmetz dataset (including the 4 regions
reported in Table 1).
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Table 1: Comparison of the Negative Log-Likelihood (NLL) measure for the neural intensity function estimations in example regions
of the synthetic and Steinmetz datasets.

Methods Synthetic Dataset Steinmetz Dataset
D1 D2 E1 E2 VISp SUB VISam SNr

NN-Poisson -5285.118 -2703.695 -14708.950 -8570.335 3.451 -2.522 0.022 -19.217
GLM -324.343 -146.556 -439.662 -347.569 87.114 17.219 2.216 -5.782

NHPoisson -1330.065 -1066.044 -1354.954 -1341.548 33.817 -0.012 2.915 -11.871
U-GP -3532.831 -2317.245 -10334.716 -5289.174 12.337 1.336 1.066 -17.484

U-ANN -3417.905 -2010.752 -4981.384 -2863.996 12.679 1.354 1.108 -14.603
P-GPL -2631.857 -2196.593 -4774.682 -3729.311 12.375 -1.312 1.584 -15.173

Method
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Figure 5: Total NLL of the estimated neural intensity function on Steinmetz test set. Illustrating the sum of NLL values
evaluated over all the 37 test regions in the Steinmetz dataset using different baselines compared to the performance of the proposed
method.

4 Discussion

We presented a novel framework for linking neural spike trains to sensory inputs and behaviour. The framework
extended previous works on fMRI data [Dezfouli et al. 2018] by using a flexible Point process framework. The model
was able to learn a suitable encoding of the stimulus and provided a joint explanation for both behavioural and neural
data that could be used to recover correlational links between neural and behavioural activities. Unlike previous efforts,
the learning process of the proposed model is independent of the selection of a time bin for spike count calculations
obtaining higher robustness. The current method represents the dependency of neural activities on stimulus and trial
duration, but not on previous neural activities – thus capturing signal rather than noise correlations (although the latter
are an obvious target for future work). There are many additional directions for future work: capturing richer aspects of
behaviour that are known to couple to neural activity [Balleine and O’Doherty 2010]; integrating and/or substituting
spiking activity with calcium imaging; like auto-regressive linear-nonlinear-Poisson (LNP) models [Chichilnisky
2001]; differentiating more finely the activity in different regions (including neurons with opposite stimulus coding).
Nevertheless, we suggest that our method casts brain and behaviour interactions in a compelling new light.
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Supplementary Materials

Moein Khajehnejad∗ , Forough Habibollahi∗, Richard Nock, Ehsan Arabzadeh, Peter Dayan, Amir Dezfouli

A Proof of Theorem 1.

Following the Mapping Theorem of an inhomogeneous Poisson process [Grimmett and Stirzaker 2020], and given a
one-to-one monotonic transformation function, zn(t′) = t, between the original inhomogeneous Poisson point process
0 < s′1 < s′2 <, . . . , < s′j ≤ Wn ≤ W and 0 < s1 < s2 <, . . . , < sj ≤ W , let 0 < s1 < s2 <, . . . , < sj ≤ W
represent a set of event (spike) times from a second inhomogeneous Poisson point process. Let g(t) represent the
corresponding event time probability density. Given g(t) is a density function (measurable and non-negative function),
following the push-forward probability density, we get:

g(t) = f((z−1)(t)) · ∂t (z−1), (13)

where z−1 is the inverse of the transformation, zn(.), and f(t′) is the event time probability density function of the
original Poisson point process.
Now, for t ∈ (0,W ], let N(t) be the sample path of the associated counting process. The sample path is a right
continuous function that jumps 1 at the event times and is constant otherwise. Then, we compute the probability that a
spike sk occurs in [t, t+∆t) where k = N(t)+1. Note that events {N(t+∆t)−N(t) = 1} and {sk < t+∆t | sk > t}
are equivalent. Thereby,

P (N(t+∆t)−N(t) = 1) = P (sk < t+∆t | sk > t). (14)
From the definition of conditional probability:

P (sk < t+∆t | sk > t) =
P (t < s k < t+∆t)

P (sk > t)
. (15)

Therefore, we get:

P (N(t+∆t)−N(t) = 1) =
P (t < s k < t+∆t)

P (sk > t)
=

∫ t+∆t

t
g(u)du

1−
∫ t

sN(t)
g(u)du

. (16)

Using equation 13, we obtain:

P (N(t+∆t)−N(t) = 1) =

∫
t+∆t

t
∂u (z−1

n ) · f(z−1
n (u))du

1−
∫

t

sN(t)

∂u (z−1
n ) · f(z−1

n (u))du

. (17)

We also have u′ = z−1
n (u) and hence:

du

du′ =
du

dz−1
n (u)

=
1

dz−1
n (u)
du

=
1

∂u (z−1
n )

. (18)

Thereby, inserting the above in equation 17 and by a change of variable u to u′, noting that z−1
n (t+∆t) := (t+∆t)′,

we get:

P (N(t+∆t)−N(t) = 1) =

∫
(t+∆t)′

t′
∂u (z−1

n ) · f(u′) · 1
∂u (z−1

n )
du′

1−
∫

t′

s′
N(t′)

∂u (z−1
n ) · f(u′) · 1

∂u (z−1
n )

du′
= P (N(t+∆t)′ −N(t′) = 1), (19)
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where N(t′) is the sample path of the associated counting process for t′ ∈ (0,Wn].
The intensity function of a point process, λ(t), can be written as:

λ(t) = lim
∆t→0

P (N(t+∆t)−N(t) = 1)

∆t
. (20)

hence, since we proved P (N(t+∆t)−N(t) = 1) = P (N(t+∆t)′ −N(t′) = 1), we get:

λ(t) = lim
∆t→0

P (N(t+∆t)−N(t) = 1)

∆t
= lim

∆t→0

P (N(t+∆t)′ −N(t′) = 1)

∆t
= λn(t

′). (21)

Finally, the intensity function of the new count process λ(t) equals λn(t
′) of the original Poisson point process, thereby

satisfying the four properties of a Poisson point process [Ross et al. 1996] and we have now established our result. 2
Figure 6 is schematically illustrating this result in case of a linear transformation function.
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Figure 6: Illustrating the transformation of the Poisson point process in real time λn(t
′), to the rescaled time domain which results a

point process with intensity function λ(t). The transformation function zn(t
′) = t′ · W

Wn
performs a one-to-one monotonic mapping

of the events in real time (s′j) to the events on the rescaled time axis (sj).

B Proof of Proposition 1.

The cumulative intensity function of a point process with intensity function λn(t
′) is given by:

Λn(t
′) =

∫ t′

0

λn(τ
′)dτ ′, (22)

for t′ ∈ [0,Wn], which can be (automatically) differentiated to produce the intensity function,

λn(t
′) =

∂Λn(t
′)

∂t′
. (23)

Given a monotonic transformation function zn(t
′) = t, and since λn(t

′) = λ(t) (see A), we get:

Λ(t) =

∫ t

0

λ(τ)dτ =

∫ t

0

λn(τ
′)dτ

=

∫ z−1
n (t)

0

λn(τ
′) · 1

∂τ (z
−1
n )

dτ ′.

(24)

Now, following integration by parts,

Λ(t) = Λn(t
′) · 1

∂t(z
−1
n )

−
∫ t′

0

Λn(τ
′) · d

dτ ′

(
1

∂τ (z
−1
n )

)
dτ ′. (25)
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Inserting the special case of a linear transformation function where ∂τ (z
−1
n ) is a constant, the above equation reduces

to:

Λ(t) =
1

∂t(z
−1
n )

· Λn(t
′). (26)

In this work, we rescaled time using function zn(t
′) = t′W/Wn where zn : [0,Wn] → [0,W ] and we chose to stretch

the firing rates. Thereby, trial specific cumulative intensity functions are simply defined as:

Λ(t) =
W

Wn
· Λn(t

′). (27)

C Model architecture and training

In this section we explain the details of the model architecture.

C.1 Steinmetz dataset

The input stimulus xn is passed through two dense layers with 20 units (SOFTPLUS activation). The output is then
passed through a layer with |hn| = 50 units using a linear activation function to create the stimulus embedding, hn.
There is no constraint on the weights in these layers.

As mentioned in the main text, we assumed the time rescaling function is linear. The elapsed time t′ ∈ [0,Wn] (since
the stimulus) is first scaled by a factor of W/Wn to obtain t ∈ [0,W ] and is then passed through a linear layer (with the
same number of units as |hn| = 50) with the weights constrained to be non-negative. The resulting output is added to
hn, with the sum then being passed through a TANH activation function.
The output of this TANH activation is passed through a dense layer with 20 units and a further TANH activation function
(first neural layer) and then through another dense layer with 42 units and SOFTPLUS activation function (second neural
layer). The weights of these layers are all constrained to be non-negative. The outputs of this layer correspond to
ΛN
u(t;hn), referred to as neural outputs, and are multiplied by Wn/W in the network readout to obtain ΛN

u,n(t
′;hn) for

u = 1 . . . 42 which is then passed to the loss function.

For modelling behavioural data, the neural output (ΛN
u(t;hn)) is passed through a dense layer with 10 units (TANH

activation) and then through another dense layer with 1 unit (SOFTPLUS activation) to produce ΛB
RIGHT(t;hn). The

weights are all constrained to be non-negative.

The neural output (ΛN
u(t;hn)) is also passed through a dense layer with 10 units (TANH activation) and then through

another dense layer with 1 unit (SOFTPLUS activation) to produce ΛB
LEFT(t;hn). The weights of all the layers are

constrained to be non-negative.

Note that the path from t to neural and behavioural outputs only contains positive weights which, together with
monotonic activation functions, is a sufficient condition to guarantee that the outputs (neural and behavioural) are
monotonic functions of t [Sill 1998; Chilinski and Silva 2018; Omi, Aihara, et al. 2019].

ΛB
LEFT(t;hn) and ΛB

RIGHT(t;hn) were multiplied by factor of Wn/W to obtain trial specific values for ΛB
LEFT,n(t

′;hn)
and ΛB

RIGHT,n(t
′;hn).

Figure 7 visualizes the details of the model structure implemented to be trained on the Steinmetz dataset.

C.2 Synthetic dataset

The same model architecture was used for this dataset as explained above, but with the following differences: (i) the
size of output neural layer was set to four for the four regions involved in this dataset; (ii) the size of the embedding was
set to |hn| = 20, which was smaller than for the Steinmetz dataset, since the synthetic dataset had a smaller number of
regions.
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ham and Yu, 2014; Whiteway and Butts, 2019; Yu et al.,
2006); with the structure in these spaces, and perhaps the dy-
namical evolution of the states in these spaces, subsequently
being related to task variables. These methods are typically
useful since the number of dimensions of task input and/or
output variability is often rather modest, implying that much
of the high dimensional space that could potentially be oc-
cupied is either empty or at least not relevant for behaviour.
However, they typically have to use intrinsic metrics such
as variance to specify which low dimensional projections
should be considered – and this again begs the question as
to what is important.

Of course, there are methods that combine various of these
approaches (Kobak et al., 2016; Kriegeskorte and Kievit,
2013), and continual innovations. Along these lines, (Dez-
fouli et al., 2018) recently suggested a combined approach,
with an RNN being trained to tie fMRI BOLD activity across
the brain directly with ongoing behaviour. fMRI data al-
lowed for a form of model inversion, pinning down the RNN
state and so implying how behaviour would be realized neu-
rally. However, this approach is licensed by the invertibility
that is at least plausible because of the high dimensionality
of fMRI – something that is not currently guaranteed to be
available on a trial-by-trial basis in neural recordings.

Here, motivated by previous approaches and recent neural
network point-process models (Omi et al., 2019), we sug-
gest a novel neural network Poisson process model which:
(i) flexibly learns the connections between environmental
stimuli and neural representations, and between neural rep-
resentations and behavioural responses; (ii) jointly fits both
behavioural and neural data; (iii) handles variabilities be-
tween response times in different trials of an experiments
by a temporal rescaling mechanism, (iv) allows us to trace
different stimulus-driven behavioural patterns back to their
neural substrates and (v) derives spike count statistics dis-
entangled from chosen temporal bin sizes. The framework
allows efficient training of the model without making as-
sumptions about the functional form of the relationship
between input stimuli and neural and behavioural processes.
We apply the method to two neural/behavioural datasets
concerning visual discrimination tasks: one collected using
Neuropixel probes (Steinmetz et al., 2019) from mice, and
the other the output of a hierarchical network model with
reciprocally connected sensory and integration circuits that
was designed to model behaviour in a motion-based task
(Wimmer et al., 2015). We show that our method is able
in both cases to link behavioural data with their underlying
neural processes and input stimuli; the synthetic dataset
allows us to compare our results against ground truth.
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ham and Yu, 2014; Whiteway and Butts, 2019; Yu et al.,
2006); with the structure in these spaces, and perhaps the dy-
namical evolution of the states in these spaces, subsequently
being related to task variables. These methods are typically
useful since the number of dimensions of task input and/or
output variability is often rather modest, implying that much
of the high dimensional space that could potentially be oc-
cupied is either empty or at least not relevant for behaviour.
However, they typically have to use intrinsic metrics such
as variance to specify which low dimensional projections
should be considered – and this again begs the question as
to what is important.

Of course, there are methods that combine various of these
approaches (Kobak et al., 2016; Kriegeskorte and Kievit,
2013), and continual innovations. Along these lines, (Dez-
fouli et al., 2018) recently suggested a combined approach,
with an RNN being trained to tie fMRI BOLD activity across
the brain directly with ongoing behaviour. fMRI data al-
lowed for a form of model inversion, pinning down the RNN
state and so implying how behaviour would be realized neu-
rally. However, this approach is licensed by the invertibility
that is at least plausible because of the high dimensionality
of fMRI – something that is not currently guaranteed to be
available on a trial-by-trial basis in neural recordings.

Here, motivated by previous approaches and recent neural
network point-process models (Omi et al., 2019), we sug-
gest a novel neural network Poisson process model which:
(i) flexibly learns the connections between environmental
stimuli and neural representations, and between neural rep-
resentations and behavioural responses; (ii) jointly fits both
behavioural and neural data; (iii) handles variabilities be-
tween response times in different trials of an experiments
by a temporal rescaling mechanism, (iv) allows us to trace
different stimulus-driven behavioural patterns back to their
neural substrates and (v) derives spike count statistics dis-
entangled from chosen temporal bin sizes. The framework
allows efficient training of the model without making as-
sumptions about the functional form of the relationship
between input stimuli and neural and behavioural processes.
We apply the method to two neural/behavioural datasets
concerning visual discrimination tasks: one collected using
Neuropixel probes (Steinmetz et al., 2019) from mice, and
the other the output of a hierarchical network model with
reciprocally connected sensory and integration circuits that
was designed to model behaviour in a motion-based task
(Wimmer et al., 2015). We show that our method is able
in both cases to link behavioural data with their underlying
neural processes and input stimuli; the synthetic dataset
allows us to compare our results against ground truth.

⇤N
1(t;hn)

⇤N
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u(t;hn)
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Figure 7: Model Architecture. Schematic representing the details of the implemented neural network to be trained on the Steinmetz
dataset. The neural and behavioural outputs of this network are multiplied by a factor of Wn/W for the selected linear transformation
function, z, to obtain the final model readouts.

C.3 Training

Parameter adaptation was performed using the Adam optimizer with learning rates of 0.01 (Steinmetz) and 0.001
(synthetic). The neural loss function was used to train all the weights up to the neural outputs, and behavioural loss was
used to train all the weights connecting neural outputs to the behavioural outputs. For the Steinmetz dataset, in each
iteration of training the weights were updated using neural loss for 10 steps, and then the behavioural loss was used
to update the weights for 420 steps (each step is one update to the weights). The training process continued until no
significant improvement on the losses (on training data) was observed. For the synthetic dataset, in each iteration the
neural loss was used to update the weights for 10 steps, which was followed by training using the behavioural loss for
40 steps.

For the generation of the synthetic data we used the code provided in this link3. We generated 1200 trials for training
and 600 trials for testing. For the Steinmetz dataset, we used 12 sessions for testing and the rest for training. Note that
since in each session only a subset of regions were recorded (42 regions in total), we had 42 regions for training the
model and 37 regions for testing the model. The split of sessions between training and test was chosen so as to obtain
the maximum number of regions in both training and test datasets. The data was downloaded from this link4.

Automatic differentiation in Tensorflow was used to calculate the intensities.

D Effects of spike time rescaling on model performance

To illustrate the effectiveness of our proposed model and the increase in model performance compared to the case where
the time rescaling block is disabled, we reproduced both networks and evaluated them on the synthetic dataset. The two
networks were identical in all other aspects. The NLL measures computed on the test data for both networks in all 4
regions as well as the scores of the NO SCALING version of the model relative to the original model are listed in Table 2;
the positive score means that the proposed model (with time rescaling) is better than the case without rescaling.

3https://senselab.med.yale.edu/MicrocircuitDB/showModel.cshtml?model=168867
&file=%2Fhierarchical_network%2Freadme.html#tabs-2

4https://github.com/nsteinme/steinmetz-et-al-2019/wiki/data-files
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Table 2: Comparison of the Negative Log-Likelihood (NLL) measure for the neural intensity function estimations in the original
model with and without time rescaling.

Network Model Synthetic Dataset
D1 D2 E1 E2 Total

NN-Poisson (time rescaling) -5285.118 -2703.695 -14708.95 -8570.335 -31268.098
NN-Poisson (no time rescaling) -5038.888 -2477.002 -14574.856 -8394.009 -30484.717

Relative score 0.04 0.08 0.009 0.02 0.025

E Baseline Methods

For the comparison of our method with the available baselines, we use Generalized-linear models (GLM) [Truccolo
et al. 2005; Paninski 2004] as well as a recent method for modelling non homogeneous Poisson processes (NHPoisson)
[Cebrian 2015].

E.1 GLM

For comparison with a Poisson family GLM, one Poisson GLM with a continuous predictor (elapsed time), a categorical
predictor with three/four levels for synthetic/Steinmetz dataset (stimuli coherence/contrast), as well as a behavioral
predictor (the reaction times) is used to estimate the neural intensity function of each region. As the continuous
predictor, we include a list of sinusoidal, tanh, and exponential functions of the elapsed time as covariates. The observed
behavioral covariates are in the form of temporal arrays consisting of NO-ACTION:0, RIGHT reaction time, or -LEFT
reaction time in each time bin. Note that the sign of the provided reaction time is indicative of the direction of the
motion. The total spike counts for all trials were then calculated and concatenated for count windows of 5ms. Due to
the large data size and the use of aggregated spike counts from all trials, we did not use self-coupling terms for spike
events. The spike counts were then used as targets for the GLM model, leading to a specific neural intensity function.
The derived intensity function was then used to calculate the negative log-likelihood (NLL) based on equation 1.

E.2 NHPoisson

We used the same procedure as above with the count windows equal to 0.5 ms for the Steinmetz and synthetic datasets
to extract the regional activity rates exploiting the elapsed time, trial stimulus type, and the behavioral reaction times.
The NHPoisson R package [Cebrian 2015] requires binary information about whether a given event has occurred in
each time bin. Thereby, we used a smaller count window with an order of magnitude similar to inter spike intervals.
This enabled us to keep the average spike events per non empty time bin equal to 0.97 and 0.99 for Steinmetz and
synthetic datasets respectively. A binary vector then stored the presence or absence of spikes in each time bin and then
non-zero indices were fed to the NHPoisson model. Repeatedly, in addition to elapsed time arrays and the categorical
array of stimuli coherence/contrast levels for synthetic/Steinmetz dataset, temporal arrays consisting of NO-ACTION:0,
RIGHT reaction time, or -LEFT reaction time in each time bin were also provided as behavioural covariates. We also
examined a list of sinusoidal, tanh, and exponential functions of the elapsed time as covariates. Using the embedded
Akaike information criterion (AIC) calculator in the package, the best covariate was selected and added to the model
(lowest AIC score). The extracted neural intensity functions for each region were then obtained. The derived intensity
functions were plugged into equation 1 to obtain NLL values for the NHPoisson model.

E.3 Universal Count Model

This universal probabilistic spike count model uses sparse Gaussian processes to derive spike count distributions. It
consists of C Gaussian process (GP) priors, a basis expansion, and a linear-softmax mapping [Liu and Lengyel 2021].
Using 1 ms time bins, the spike counts of all trials associated with each neuron (in the Steinmetz dataset) or the
neuronal population (in the synthetic dataset) are calculated and concatenated together. Note that for the case of the
synthetic dataset, since the generated spike time sequences are not associated with specific neuron IDs and represent the
population activity, a single cumulative spike count sequence was fed to the model for training. Once again, we use
the elapsed time, the categorical stimulus type associated with each trial repeated for the duration of the trial, as well
as the behavioural temporal array (consisting of 0 (i.e. NoGo), RIGHT reaction time, or -LEFT reaction time in each
time bin) as the observed covariates for the model. To implement the original model (U-GP), we set hyperparameter
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C = 3 as suggested in [Liu and Lengyel 2021] and choose an elementwise linear-exponential basis expansion. We use
5 fold-cross validation on the data from each region and we cross-validate over the neuron dimension by using the train
set to infer the latent states in the test data, and then evaluate the cross-validated log-likelihood of the fitted model. For
the case of synthetic dataset, the cross validation is across the trials. The learning rate is set to 0.001 and we choose a
tuple batch size (to indicate the trial structure of the data; for details please refer to [Liu and Lengyel 2021]) equal to the
number of time bins accumulated over all trials associated with each region. In this method, an inference model with
log likelihood based objectives using variational inference is built upon the data and spike couplings are computed and
added as well.
In the second variation of the model (U-ANN), the same setting is implemented by replacing the GP mapping with an
artificial neural network (ANN) mapping. In this model, a 10-fold cross validation is utilized. The remainder of the
parameters and model settings are tuned according to the suggestions in [Liu and Lengyel 2021].

E.4 Poisson Gaussian-Process Latent Variable (P-GPL)

This model uses Poisson spiking observations and two underlying Gaussian processes [Wu et al. 2017]. A fast
approximate inference method called the decoupled Laplace approximation is applied to learn the model from data. A
Gaussian process is first used to extract the nonlinear evolution of the latent dynamic in the form of a latent variable.
A second GP then generates the log of the tuning curve as a nonlinear function of the latent variable. This curve
is then mapped to a final tuning curve via an exponential link function to estimate the spike rates of each neuron
(λi(t) for the ith neuron) and henceforth obtain the population activity rate in each discrete time bin. Here, the
spike count matrix consisting of spike counts in time bins of 1 ms for each neuron (or the whole population in the
synthetic dataset) is used to construct a generative model of the latent structure underlying these data. The data from all
trials for each neuron are once again concatenated. Both Sinusoid and deterministic Gaussian bump tuning curves
are examined to estimate the latent processes. The deterministic Gaussian bump tuning curve was then selected to
report the results due to higher performance on our data which was expected given the naturally 2D motion space
which is present in the Steinmetz dataset. We first estimated the parameters for the mapping function using spike
trains from all the neurons within the training dataset. Then these parameters were fixed and the latent process using
spike trains from 70% of the test data were inferred (as suggested in [Wu et al. 2017]). We then report the NLL
measure comparing the estimated latent process generating λi(t) values and the known empirical rates from the remain-
ing test data averaged over all neurons in each region. The rest of the parameters are chosen according to [Wu et al. 2017].

F Calculation of empirical rates

For the empirical firing rates, we divided the observation period into equally-sized bins each having 0.008s and 0.05s
width for the Steintmetz and synthetic datasets respectively. Then, we calculated the total number of spikes in each
period and normalized that by the total number of neurons and trials contributed to the spike set and also by the period
duration (0.008s or 0.05s). Note that only spikes which were made before the response were included in the analysis.
Moreover, given the selected stimulus type for each examined Wn in Figure 4, only trials which had end times in an
interval of 37.5 ms before the Wn were included. This interval was chosen to be 60 ms for the results in Figure 3. This
interval’s width was adjusted so that for each region in both datasets, at least 15% of all trials with the chosen stimulus
type would fall within the interval before each of the 5 selected Wns in Figures 8 and 10.

G Additional results

G.1 Synthetic dataset

Using the procedure explained in Section F, Figure 8 shows the comparison of the model estimation to the empirically
derived firing rates for all the regions in the synthetic dataset.

To evaluate the performance of the model in terms of predicting the behaviour of the neural population and the reaction
times, we used all trials with rightward motion and fed them to the trained network of the model to get the estimated
neural and behavioural response rates. The average of the estimated behavioural response rates corresponding to each of
a set of potential intervals of the estimated neural responses were then calculated over trials. Figure 9 shows the results
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D1, Wn D2, Wn

E1, Wn E2, Wn

Figure 8: Synthetic Dataset. The red dashed lines are the empirically derived firing rates compared to the blue solid lines which are
estimated using the proposed model. The plots correspond to the trials with high contrast on RIGHT. As expected from the dataset
architecture, for trials when the RIGHT choice is made, the activity in D1 represents an increasing trend until the response is made.
This is in contrast with region D2 for these trials where there is little to no activity detected in this region. Neurons in both sensory
regions, E1 and E2 show constant activity throughout each trial with higher activity detected by E1 neurons which prefer rightward
motion.

for all 4 regions. The purple bars show the average behavioural response rate in each occurred neural activity interval.
The orange bars indicate the proportion of trials which achieve each specific neural activity range among all RIGHT
trials, hence its occurrence frequency. Comparing the sensory regions in this figure, the behavioural correlate is with a
low firing rate for E2 and with significantly higher firing rates in E1 which is the rightward selective sensory region.

G.2 Steinmetz dataset

With a similar procedure as explained above, Figure 10 shows the comparison of the model estimation with the
empirically derived firing rates for all the regions in the Steinmetz dataset. The occasional observed underfitting for
some regions may be overcome by further forms of regularization in future works. The plots highlight the performance
quality of the trained network on test regions. The temporal neural pattern in each region is well captured by the model
outputs for different observation windows Wn.

The behavioural performances were also evaluated similar to above for the available test regions in the Steinmetz
dataset. Figure 11 illustrates the results. In each region, the highest response rates correspond to the neural activity
values achieved near the end of trial in Figure 10. The purple bars show the average behavioural response rate in each
neural activity interval. The orange bars show how frequently these were observed in each RIGHT trial; meaning the
occurrence ratio of that specific neural response range over all RIGHT test trials.
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Figure 9: Synthetic Dataset Illustrating the average estimated response rate for each interval of estimated neural activity. Error bars
show the standard error. Purple bars show the average behavioural response rates. Orange bars indicate the proportion of trials with
the occurrence of each neural response interval. As expected in the RIGHT trials and represented by purple bars, highest behaviour
rates are detected in D1 when neural activities approach 40 spikes/s in the (32,36) and (36,40) range. On the other hand, there is little
to no activity estimated for D2 which is a leftward preferring integration region. Highest response rates are achieved for when E1
neural activity is in the vicinity of 40 spikes/s (in the (36,40) range) and when the neural activity in E2 is in (12,14) range. These are
in agreement with results from Figure 8.
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Figure 10: Steinmetz Dataset. The red dashed lines are the empirically derived firing rates compared to the blue solid lines which
are estimated using the proposed model. The plots correspond to the trials with high contrast on RIGHT. The results are obtained
only using trials with the RIGHT side contrast higher than LEFT.
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Figure 11: Steinmetz Dataset. Illustrating the average estimated response rate for each interval of estimated neural activity. The
purple bars show the average behavioural response rate and orange bars represent the occurrence ratio of that specific neural response
interval among all RIGHT test trials. Error bars show the standard error. The size of error bars is invisible compared to the bar sizes
in most cases.
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