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Abstract

Making accurate decisions often involves the integration of current and past evidence. Here

we examine the neural correlates of conflict and evidence integration during sequential

decision making. Patients implanted with deep-brain stimulation (DBS) electrodes and

age-matched healthy controls performed an expanded judgement task, in which they were

free to choose how many cues to sample. Behaviourally, we found that while patients

sampled numerically more cues, they were less able to integrate evidence and showed

suboptimal performance. Using recordings of Magnetoencephalography (MEG) and local

field potentials (LFP, in patients) in the subthalamic nucleus (STN), we found that beta

oscillations signalled conflict between cues within a sequence. Following cues that differed

from previous cues, beta power in the STN and cortex first decreased and then increased.

Importantly, the conflict signal in the STN outlasted the cortical one, carrying over to the next

cue in the sequence. Furthermore, after a conflict, there was an increase in coherence

between the dorsal premotor cortex and subthalamic nucleus in the beta band. These results

extend our understanding of cortico-subcortical dynamics of conflict processing, and do so in

a context where evidence must be accumulated in discrete steps, much like in real life. Thus,

the present work leads to a more nuanced picture of conflict monitoring systems in the brain

and potential changes due to disease. 
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Introduction

Whether it is deciding which method of transportation to take to get to work most efficiently

or which horse to bet on to maximize monetary gain, humans are constantly integrating

noisy evidence from their environment and past experience, in order to optimize their

decisions. Often the information comes at intervals, thus necessitating a system that can

track incoming signals over time and only commit to making a choice after sufficient

evidence has been integrated (Ratcliff, 1978; Busemeyer and Townsend, 1993; Usher and

McClelland, 2001), a process that has been proposed to rely on the cortico-basal-ganglia

circuit (Bogacz et al., 2010). Research in human patients with implanted electrodes for

clinical deep-brain stimulation (DBS) treatment has pointed to the role of the subthalamic

nucleus (STN) of the basal ganglia as a decision gate-keeper. The STN is postulated to set

the decision threshold in the face of conflicting information by postponing action initiation

until the conflict is resolved  (Frank, 2006). As predicted by the model, STN activity is

increased for high conflict trials and STN-DBS affects decision making in the face of

conflicting evidence (Frank et al., 2007; Coulthard et al., 2012; Green et al., 2013).

Furthermore, the decision threshold correlated specifically with changes in STN theta

oscillatory power (Cavanagh et al., 2011; Herz et al., 2016). Recent evidence has also

pointed to the role of beta oscillations during conflict (Zavala et al., 2018). Thus, oscillatory

activity, primarily in the theta and beta bands, in the basal ganglia, reflects immediate

inhibition to motor output during situations involving conflict (Frank, 2006), whether it is the

response, sensory or cognitive uncertainty (Bonnevie and Zaghloul, 2019).

The majority of previous studies in the STN employed paradigms in which the putative

processes of conflict detection and setting of decision threshold happened in close temporal

proximity. For example, in previously used paradigms such as the flanker task (Zavala et al.,

2015), go-no-go (Alegre et al., 2013; Benis et al., 2014), and Stroop task (Brittain et al.,

2012) evidence was presented simultaneously. Although STN activity was also studied in

random dot motion paradigm that required evidence accumulation over time (Herz et al.,

2018), it was unknown exactly what sensory evidence was presented when, on individual

trials, due to the noisy nature of stimuli. As a result, previous studies do not allow us to fully

disentangle the neural correlates of ongoing evidence accumulation and conflict during

decision making. In particular, it is not clear what kind of conflicting information during

evidence accumulation the STN responds to: does it respond to a local conflict, when a new

piece of information does not match single previous piece in the sequence, or global conflict,

when a new piece of information does not match overall evidence from the entire trial?

An important role in shaping the STN activity is played by the interaction between the cortical

circuits and the STN. However, the nature and cortical locus of this interaction has only been

examined in a handful of studies. Resting-state coherence between the STN and ipsilateral
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frontal cortex has shown a peak in the beta band in human patients (Litvak, Jha, et al., 2011;

West et al., 2020) as well as rodent models of Parkinson’s disease (Magill et al., 2004; West

et al., 2018). Additionally, coherence in the theta band from frontal sites (as measured with

electroencephalography) to the STN increased during a conflict detection task (Zavala et al.,

2014, 2016).

To precisely characterize how the neural activity in cortex and the STN changes during the

process of evidence accumulation, we recorded STN local field potential (STN-LFP)

simultaneously with whole-head magnetoencephalography (MEG) while Parkinson’s disease

patients performed an expanded judgement task (Leimbach et al., 2018). Here, cues are

presented at discrete intervals, and evidence for the correct answer develops as the

participant samples and integrates multiple cues over the course of the trial (Figure 1). This

paradigm allowed us to investigate how behavioural and neural responses depend on the

continual unfolding of evidence extended in time, determine what kind of conflicting

information the STN responds to, and test predictions of computational models.

Figure 1: Expanded Judgement Task. Participants performed a version of an evidence

integration task, with two key elements: 1. the cues were presented sequentially within the

trial rather than simultaneously, which allowed us to examine evidence accumulation over

time, and 2. the trial duration, i.e. number of cues sampled, was up to the participants, who

responded when they felt they had received enough information to make a decision.

Participants were required to guess the likely direction (left or right) the mouse ‘would run’ in.

Each cue was 70% valid, i.e. they represented the correct direction 70% of the time if they

were to be treated in isolation.

Materials and Methods

Participants

We tested 15 patients with a clinical diagnosis of Parkinson’s disease (14 male, mean age:

59, range 47-71, two left-handers), following electrode implantation for DBS treatment,

before full closure of the scalp, thus allowing for intracranial recordings of the STN (all

bilateral recordings, except 1 patient right unilateral and 1 patient with 3 contacts in the left
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STN and only 2 on the right, this patient was also subsequently diagnosed with Multiple

Systems Atrophy). Among tested patients, 11 had Medtronic 3389 electrodes, while 4 had

Boston VerciseTM directional leads. The surgical procedures are described in detail in

(Foltynie et al., 2011). All patients were assessed on medication (mean Levodopa Equivalent

Dosage 1272mg, range: 500-1727.5mg). Unified Parkinson's Disease Rating Scale

(UPDRS) part 3 scores were 39.6±14 (mean±standard deviation, range: 18-61) when OFF

medication, and 15.4±6.5 (range: 7-30) when ON medication. None of the patients had

cognitive impairment (Mini–Mental State Examination (MMSE) scores: mean 28.8, range:

26-30, one patient score missing), clinical depression, or apathy. Two patients were

excluded from the analysis due to poor performance of the task (see Task below). We

recruited 13 age and gender matched controls (12 male, mean age: 57, range 44-70, two

left-handers). The patient study was approved by the UK National Research Ethics Service

Committee for South Central Oxford and the control study was covered by University

College London Ethics Committee approval for minimum risk magnetoencephalography

studies of healthy human cognition. All participants gave written informed consent. Patients

did not receive financial compensation and the controls were compensated for their time

according to our centre’s standard hourly rate.

Surgical Procedure

Bilateral DBS implantation was performed under general anaesthesia using a stereotactic

(Leksell frame G, Elekta) MRI-guided and MRI-verified approach without microelectrode

recording as detailed in previous publications (Holl et al., 2010; Foltynie et al., 2011). Two

stereotactic, preimplantation scans were acquired, as part of the surgical procedure, to guide

lead implantation; a T2-weighted axial scan (partial brain coverage around the STN) with

voxel size of 1.0×1.0 mm2 (slice thickness=2 mm) and a T1-weighted 3D-MPRAGE scan

with a (1.5 mm)3 voxel size on a 1.5T Siemens Espree interventional MRI scanner. Three

dimensional distortion correction was carried out using the scanner’s built-in module. Target

for the deepest contact was selected at the level of maximal rubral diameter (~5 mm below

the AC-PC line). To maximise DBS trace within the STN, the target was often chosen 1.5 - 2

mm posterolateral to that described by Bejjani (Bejjani et al., 2000). Stereotactic imaging

was repeated following lead implantation to confirm placement.

Task

To investigate the neural basis of evidence accumulation over time, we used the expanded

judgement task (Figure 1, similar to the task previously used by Leimbach et al, 2018).

Participants were shown a series of images of a mouse facing either left or right. Cues were

presented for 200ms, with an inter-stimulus interval (ISI) of 600ms, so there was 800ms

interval from one onset to another, to which we refer as Stimulus Onset Asynchrony (SOA).

Participants were required to judge in which direction the mouse will ‘run’, based on the
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probabilities extracted from a series of sequential cue images, and then respond accordingly.

The validity of the cues was 70%, such that each cue (left or right mouse) represented the

correct choice 70% of the time. The two directions were equally likely across trials, thus the

chance level in the task was 50%. If the participants responded based on one of the cues

only, without accumulating information over time, then their expected success rate would be

70%. Responses were made by pressing a button with the thumb of the congruent hand

after a self-chosen number of cues, when the participant felt they had enough evidence to

make a decision. Prior to the recording, the participants underwent a short training session

where they were first asked to respond only after seeing a set number of stimuli (between

two and ten) and then told that for the main experiment they will decide themselves how

many stimuli to observe. This was to ensure that participants chose to respond based on

accumulating evidence from a sequence of images rather than just the first stimulus.

Participants performed up to 200 trials (Patients: 168±11; Controls: 200 each, except one

control who completed 150 trials). Two patients were excluded from the analysis due to poor

performance of the task (accuracy at chance level).

Recording and Analysis

Participants performed the task while seated in a whole-head MEG system (CTF-VSM

275-channel scanner, Coquitlam, Canada). For patients, STN-LFP, electrooculography

(EOG) and electromyography (EMG) recordings were also obtained using a battery-powered

and optically isolated EEG amplifier (BrainAmp MR, Brain Products GmbH, Gilching,

Germany). STN-LFP signals were recorded referenced to a common cephalic reference

(right mastoid).

All preprocessing was performed in SPM12 (v. 7771, http://www.fil.ion.ucl.ac.uk/spm/, (Litvak

et al., 2011b)), and spectral analysis and statistical tests were performed in Fieldtrip

(http://www.ru.nl/neuroimaging/fieldtrip/ (Oostenveld et al., 2011)) using the version included

in SPM12.

STN-LFP recordings were converted offline to a bipolar montage between adjacent contacts

(three bipolar channels per hemisphere; 01, 12, and 23) to limit the effects of volume

conduction from distant sources (for more details see Litvak et al., 2010 and Oswal et al.,

2016b). Four of the patients had segmented DBS leads (VerciseTM DBS directional lead,

Boston Scientific, Marlborough, USA). In these cases, we averaged offline the signals from

the 3 segments of each ring and treated them as a single ring contact. Thus, for each

participant, we had a total of 3 STN EEG channels in each hemisphere (except for 2

participants: one with right side electrodes only, thus 3 channels, and one with 1 contact on

the right excluded due to extensive noise, thus 5 channels). The LFP data were

downsampled to 300Hz and high-pass filtered at 1Hz (Butterworth 5th order, zero phase

filter).
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A possibly problematic but unavoidable feature of our task was that the stimuli were

presented at relatively short SOA not allowing for the power to return to baseline before the

next stimulus was presented. Furthermore, the SOA was fixed making entrainment and

anticipation possible. These were deliberate design choices to be able to collect a large

number of trials for model-based analyses. Any jittering of the SOAs (which would have to

go in the direction of increasing their duration) would have led to far fewer trials being

collected. The total duration of the recording had to be kept short as the patients were

unable to tolerate extended periods of testing. Furthermore, having a very long SOA would

make it more likely that the participants would resort to explicit counting, which was

something we aimed to avoid.

To account for these design issues, we developed an unconventional way of performing

time-frequency analysis on these data in the absence of a baseline. We first ran time

frequency analysis on continuous LFP data (multitaper method (Thomson, 1982) 400ms

sliding window, in steps of 50ms) on a priori defined beta power (13-30 Hz average =

21.5Hz; note that when looking at individual participant beta power around the response

period, we found a similar band as defined a priori: individual mean range: 16.6-28.4Hz;

overall min: 11Hz, max: 31Hz). Separately we also estimated the power in the theta band

(2-8Hz average = 5Hz, e.g. Herz et al., 2016). The resulting power time series were

log-transformed and high-pass filtered at 0.5 Hz (Butterworth 5th order, zero phase filter) to

remove fluctuations in power that were slower than our SOA. Afterwards, the power time

series were epoched around the presentation of each cue stimulus (-500 to 800ms). We

averaged power across contacts within each hemisphere, resulting in 1 left and 1 right STN

channel, and we also calculated the mean STN signal by combining hemispheres. We used

a permutation cluster-based non-parametric test to correct for multiple comparisons across

time (the duration of the whole cue epoch (0-800ms) and report effects that survive

correction only (p<0.05 family-wise error (FWE) corrected at the cluster level).

Similarly to LFP, MEG data were downsampled to 300Hz, and high-pass filtered at 1Hz

(Butterworth 5th order, zero phase filter). For sensor-level analysis, we used only the control

group data, as in the patients the sensor signals were contaminated by ferromagnetic wire

artefacts (Litvak et al., 2010).

For the MEG sensor-level time-frequency analysis, we used all channels and a frequency

range of 1-45Hz. All other analyses were identical to the LFP pipeline reported above.

However, we corrected for multiple comparisons across all MEG channels, timepoints

(0-800ms) and frequencies (1-45Hz), and only report effects that survived that correction

(p<0.05 FWE corrected at the cluster level).

For source-level analysis, the continuous MEG data were projected to source space with

Linearly Constrained Maximum Variance (LCMV) beamformer (Veen et al., 1997) using a

10-fold reduced version of the SPM canonical cortical mesh (Mattout et al., 2007) as the
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source space (resulting in 818 vertices and the same number of source channels). The

source orientation was set in the direction of maximum power. See Litvak et al., (2012) for

details on beamforming and Litvak et al. (2010) for details on issues regarding beamformer

use for removing artefacts from simultaneous MEG and intracranial recordings. Next,

time-frequency analysis was performed on continuous source data the same way as for

STN-LFP except the frequencies of interest were informed by the sensor-level analysis. This

biased the statistical test for discovery of an effect (cf. double dipping, Kriegeskorte,

Simmons, Bellgowan, & Baker, 2009) but our aim in this analysis was post-hoc interrogation

of the effects established at the sensor level in terms of their location in the cortex rather

than hypothesis testing (Gross et al., 2012). To limit our search space for the coherence

analysis (below), we only investigated sources that survived p<0.05 FWE correction.

Time-resolved coherence was then computed between the identified cortical sources and

STN contacts by going back to raw source time series. The data were epoched (-1000 to

1000ms to increase the window for analysis), and time-frequency analysis was performed as

described above with coherence between the sources and the left and right STN also

computed from the cross-spectrum. Non-parametric permutation testing between conditions

was corrected for multiple comparisons across channels (source vertices), time (0-1600ms

to cover both cue ‘i’ and cue ‘i+1’) and frequencies (1-30Hz), and we only report effects that

survive correction (p<0.05 FWE corrected at the cluster level). For completeness, we also

ran an alternative connectivity measure, debiased weighted phase lag index, which is less

sensitive to unequal trial numbers across conditions and volume conduction effects.

Reconstruction of electrode locations

We used the Lead-DBS toolbox (http://www.lead-dbs.org/ (Horn and Kühn, 2015)) to

reconstruct the contact locations. Post-operative T2 and T1 images were co-registered to

pre-operative T1 scan using linear registration in SPM12 (Friston et al., 2007). Pre- (and

post-) operative acquisitions were spatially normalized into MNI_ICBM_2009b_NLIN_ASYM

space based on preoperative T1 using the Unified Segmentation Approach as implemented

in SPM12 (Ashburner and Friston, 2005). DBS electrode localizations were corrected for

brain shift in postoperative acquisitions by applying a refined affine transform calculated

between pre- and post-operative acquisitions that was restricted to a subcortical area of

interest as implemented in the brain shift correction module of Lead-DBS software. The

electrodes were then manually localized based on post-operative acquisitions using a tool in

Lead-DBS specifically designed for this task. The resulting locations were verified by an

expert neurosurgeon.

Choice Strategy

In order to analyse the strategy used by the participants during choice, we investigated

which factors influence commitment to a choice on a given trial. We considered two factors:
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The first of them is the evidence integrated for the chosen option. Such accumulated

evidence was computed from Equation 1 that continuously updates the evidence (decision

variable, DV) for a choice at time t based on the existing DV from the previous stimuli and

the new incoming stimulus , where for the left stimulus, and for the right𝑆
𝑡

𝑆
𝑡
=− 1 𝑆

𝑡
= 1

stimulus. At the start of each trial, the decision variable was initialized to .𝐷𝑉
0
= 0

(1)𝐷𝑉
𝑡
= 𝐷𝑉

𝑡−1
+ 𝑆

𝑡

The second factor we considered was whether the stimulus was the same as the previously

presented one, i.e. if and otherwise. For all stimuli excluding the𝑆𝐴
𝑡
= 1 𝑆

𝑡
= 𝑆

𝑡−1
𝑆𝐴

𝑡
= 0

first stimulus on each trial (for which it is not possible to define ) we performed a logistic𝑆𝐴
𝑡

regression predicting if the choice has been made after this stimulus, i.e. we tried to predict a

variable if choice made after stimulus t and otherwise. For each participant,𝐷
𝑡
= 1 𝐷

𝑡
= 0

we looked at the significance of the two factors.

Estimating accumulated evidence using computational models

In order to analyse if STN activity reflects the amount of available evidence for each

response based on the stimuli presented so far, we employed computational models that can

estimate this quantity at each point in time. We compared how well different models of

evidence accumulation could capture the behaviour of different patients, and then generated

regressors for each patient based on the best model for that patient. In addition to the model

assuming evidence is integrated according to Equation 1, we also considered three

extended models which included a forgetting term ( ), a bonus term ( ), or both (Equationsλ ω

2-4).

(2)𝐷𝑉
𝑡
= 1 − λ( )𝐷𝑉

𝑡−1
+ 𝑆

𝑡

(3)𝐷𝑉
𝑡
= 𝐷𝑉

𝑡−1
+ 1 + ω𝑆𝐴

𝑡( )𝑆
𝑡

(4)𝐷𝑉
𝑡
= 1 − λ( )𝐷𝑉

𝑡−1
+ 1 + ω𝑆𝐴

𝑡( )𝑆
𝑡

The forgetting term was used to model the decay of memory over the course of the trial and

the bonus term is a weighting of ‘same’ pairs, i.e. the stimuli which match the directly

preceding one (e.g.: in a ‘left-left-right’ sequence the second left stimulus would be weighted

extra as it is the same as the first one).

To estimate the parameters ( ), we assumed that the ratio of making a right choice toλ, ω

making a left choice is related to decision variable according to:
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𝑙𝑜𝑔 𝑃 𝑅( )
𝑃 𝐿( ) = β

0
+ β

𝑡
𝐷𝑉

𝑡

For each participant, we looked for parameters that maximized the likelihood of participant’s

behaviour after all stimuli shown to that participant.

We found the winning model (based on Bayesian information criterion) to be variable across

participants (number of participants in patients/control group indicated): M1 = 1/2; M2 = 0/0;

M3 = 4/9; M4 = 8/2, although the model that included bonus terms was the most common.

Estimating Bayesian normalization term

We investigated if the STN activity follows a pattern predicted by a computational model of

the basal ganglia (Bogacz et al., 2007; Bogacz and Larsen, 2011). This model suggests that

the basal ganglia compute the reward probabilities for selecting different actions according to

Bayesian decision theory. These probabilities are updated after each stimulus and the

updated information is fed back to the cortex via the thalamus. An action is initiated when the

expected reward under a particular action exceeds a certain threshold. The model attributes

a very specific function to the STN: ensuring that if the probability of one action goes up, the

probabilities of the others go down at the same time by normalising all probabilities so that

they add up to one.

In order to create regressors for neural activity recorded from the STN, we used the original

proposal that the STN computes the normalization term of the Bayesian equation during the

evidence integration process (Bogacz & Gurney, 2007). We defined 2 cortical integrators YL

and YR, which integrate evidence for the left and right stimulus respectively, as described

above. Additionally, we subtracted the STN normalization term from the cortical integrators

after each stimulus input in a sequence (Bogacz et al., 2016). For each participant, we

assumed the integration follows one of the models described by Equations 1-4, which best

describes given participants (see previous subsection). So, for example, for participants best

described by Equation 1, the integrators were updated as follows

(5)𝑌
𝐿,𝑡
= 𝑌

𝐿,𝑡−1
+ 𝐿

𝑡
− 𝑆𝑇𝑁

𝑡−1

(6)𝑌
𝑅,𝑡

= 𝑌
𝑅,𝑡−1

+ 𝑅
𝑡
− 𝑆𝑇𝑁

𝑡−1

(7)𝑆𝑇𝑁
𝑡
= 𝑙𝑜𝑔 𝑒𝑥𝑝𝑌

𝐿,𝑡
+ 𝑒𝑥𝑝𝑌

𝑅,𝑡( )
In the above equations, , if cue is left, and , , otherwise.𝐿

𝑡
= 1 𝑅

𝑡
= 0 𝑡 𝐿

𝑡
= 0 𝑅

𝑡
= 1

However, for models 2-4 we added decay to the cortical integrators and bonus terms to

Equations 5-6 analogously to Equation 2-4, i.e. we ensured that . At the start𝐷𝑉
𝑡
= 𝑌

𝑅,𝑡
− 𝑌

𝐿,𝑡

of each trial, the integrators were initialized to (corresponding to equal𝑌
𝐿,0

= 𝑌
𝑅,0

= 𝑙𝑜𝑔0. 5
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prior probabilities of the two responses). The value computed from Equation 7 was used as

Bayesian normalization regressor in Figure 2.

Results

Patients are able to accumulate evidence over time

Patients waited on average 6.6 stimuli before making a response (6.59±0.52 sem) and their

accuracy was significantly above the 70% level expected if they only based their decision on

a single cue (80±0.03 sem, t=3.6, p=0.004). Controls waited on average 6.3 stimuli before

making a response (6.29±0.46 sem) and were similarly above 70% in their accuracy

(88.6±0.01 sem, t=18.4, p<0.001). There was no significant difference between groups in the

number of stimuli viewed before making a choice (t=0.42, p-value = 0.68), but patients had

lower accuracy (t=-2.99, p=0.0009) and slower reaction time (as measured from the onset of

the last cue before a response was made, t=2.16, p=0.041). See Table 1 for summary of

behavioural measures.

To explore potential strategies participants could have used in the task, we compared

performance in both groups to an agent that would have been an optimal observer, and

would choose to respond left if the number of left cues was higher than the number of right

cues, to respond right for a larger number of right cues, and would choose randomly if the

numbers were equal. In other words, for each participant, we calculated the accuracy they

would have achieved had they integrated evidence optimally, having seen the stimuli

sampled by the participant on each trial. We found that controls and patients had

significantly lower accuracy (controls: p=0.019, patients: p=0.0076) than an ideal observer

would have, based on the same cue sampling (89% for controls and 87% for patients).

Next, we asked whether participants were just solving the task by responding after they

spotted two of the same stimuli in a row (i.e. after the first ‘same’ pair). To address this

question, we investigated to what extent participants’ response after stimulus was predicted

by accumulated evidence, and by same stimuli in a row (see Materials and Methods for

details). Most participants had responses best predicted either by accumulated evidence

alone (6 patients and 6 controls), or by both accumulated evidence and stimulus repetition (5

patients and 7 controls). For remaining 2 patients none of these factors was predicting their

response. Hence, there was no participant who exclusively relied of making a choice after

seeing the ‘same’ stimulus, without considering evidence integrated so far.
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Table 1: Behavioural results showing mean and standard deviations for each group. RT:

Reaction time; ACC: accuracy. The analytical probability of a ‘same’ pair at the end of the

sequence would be 58% if participants chose the moment of response randomly. Both

patients and controls responded significantly more often after a ‘same’ pair (both groups

p<0.001).

# stimuli

seen
Accuracy RT(ms)

Fraction of

responses after

‘same’ at end

PATIENTS Mean 6.59 0.80 536.52 0.73

PATIENTS SD 1.88 0.10 29.48 0.11

CONTROLS Mean 6.29 0.89 502.74 0.81

CONTROLS SD 1.65 0.04 48.81 0.09

STN beta power reflects multiple variables related to ongoing decision making

In order to understand the impact of different variables related to the decision making

process on activity in the STN, we created a combined GLM, including four regressors: cue

identity, normalization model, accumulated evidence and sample number. These are

described in detail below.

Cue identity was taken as a measure of ‘local conflict’, by taking all cues (excluding the first

and last cues in a sequence) and categorizing them as the ‘same’ or ‘different’ from the

previous cue (Figure 2A & 2D). We found that beta power carried information about the

similarity of the stimulus to the previous one (‘cue identity’, 200-350 and 650-800ms,

p=0.024 and p=0.032, see Figure 2B & 2D).

In addition to local conflict, we analyzed whether other variables occurring in theoretical

models of decision making were reflected in neural activity. We explored if STN represents

the normalization term in Bayes theorem as proposed in a previously suggested

computational model (Bogacz et al., 2007). This model predicts that the activity in the STN is

proportional to a logarithm of the normalization term in Bayes theorem ln P(cue i). This

probability is computed on the basis of all previous cues {cue 1 , …, cue i-1} so it expresses

how expected the current cue is given all cues seen before. The negative of this regressor,

-ln P(cue i), is equal to Shannon’s surprise, so it expresses how much cue i disagrees with

overall information in all previous cues, and hence it could be viewed as a measure of global

conflict. Therefore, a possible correlation between the normalization term ln P(cue i) and

LFP activity could be explained by either of two hypotheses. A computational model (Bogacz

et al., 2007) predicts a positive correlation, whereas a hypothesis that STN responds to
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global conflict predicts a negative correlation. We tested if the normalization term affects

power of beta oscillations in the STN and did not find evidence supporting any of these two

hypotheses in our data (Figure 2B).

We also explored whether there was a signal reflecting the magnitude of accumulated

evidence in the STN. Additionally, we included a regressor on beta power equal to the serial

position of the cue stimulus within a trial. Including this regressor was motivated by two

observations: reports of decreasing beta power as a result of increasing working memory

load (Zavala et al., 2017), and presence of “urgency signals” in the basal ganglia that

increase within a trial and reflect the growing urgency to making a choice (Thura & Cisek,

2017). We found a significant effect in both regressors (absolute evidence: 550-700ms,

p=0.008; cue number or urgency: 0-250 and 500-650ms, p=0.01 and p=0.02).

We did not find a clear relationship between behaviour on the task and these neural effects

(see Extended Data Table 2-1). However, cue identity (early peak) showed a relationship

with both RT (r=0.62,p=0.024; note if an outlier of the STN data is taken out then the

correlation is no longer significant, p=0.12; outlier detected as more than 1.5 interquartile

range above the upper quartile or below the lower quartile, which is appropriate when data is

not normally distributed), as well as a trend for the number of cues sampled

(r=0.53,p=0.064).

Figure 2: STN activity encodes local conflict and variables related to accumulation of

evidence via beta oscillations. A) Example sequence of cues, with each regressor value

shown below. For example, evidence for the ‘right’ facing mouse goes up during the first two

cues, but then the appearance of a ‘left’ mouse reduces the evidence for a right response.

B) Results of the combined GLM. A linear regression of beta power in the STN revealed that

a clear signal was related to the identity of the cue (‘same’ or ‘different’, shaded in grey),

absolute integrated evidence, and sample number in the sequence of cues in a trial (or

‘urgency’, i.e. the number of stimuli presented so far that could influence a general tendency

to make a choice or working-memory load). Horizontal lines represent significant times after

cluster correction for multiple comparisons. There was no encoding of Bayesian

normalization in the STN signal, as proposed previously (Bogacz et al., 2007, 2016). Note

that although the regressors are presented separately for easier visualization, they were

included in a combined GLM. All regressors were z-scored before entering the model. We

did not find any effects when regressing theta band activity in the STN with the above

regressors. C) Raw beta power plotted as a function of binned evidence (left) or cue number

(right), as well as for cue identity (D), note this latter panel is identical to part of Figure 3B.

11

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2020.06.09.141713doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.141713
http://creativecommons.org/licenses/by-nc/4.0/


12

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2020.06.09.141713doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.141713
http://creativecommons.org/licenses/by-nc/4.0/


STN beta power shows persistent activity to local conflict during evidence accumulation

Complementing, and extending on the above regression analyses, in order to further

investigate how the STN represents the inconsistencies when faced with conflicting evidence

over time, we separated all cues into two categories: ‘same’ or ‘different’ to the one

immediately before it (we term this ‘cue i’, Figure 3A). In our analyses of neural responses to

cues, we excluded the first cues in a sequence, because it is not possible to classify them as

‘same’ or ‘different’, and last cues seen as they overlapped with the response period. Thus, if

a participant experienced this sequence of mouse images: ‘left-right-left-left-right’, the

analysed conditions would be ‘different-different-same’.

We found that beta oscillations (i.e raw beta power) responded to local conflict, generating a

significant difference between ‘same’ and ‘different’ cues (cue ‘i’ in Figure 3B left panel)

starting around 100ms after cue onset. Beta also showed a significant difference in the

subsequent cue (i+1), with ‘different’ cues showing an increase in beta power, thus

conflicting information on cue i results in increased beta power on cue i+1 (see Figure 3C), a

pattern of activity that is consistent with response inhibition. Significant time clusters:

100-450ms (p=0.022, d=1.74), 750-1100ms (p=0.014, d=1.73), 1300-1600ms (p=0.012,

d=2.40). These effects were greatly reduced in the theta band, with an effect of condition

only briefly detectable during cue ‘i+1’ (Figure 3B-C, right panel).
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Figure 3: Beta signalled local conflict, and carried this effect over to the next cue in a

sequence. A) Notation used in the paper. Let us consider an arbitrary cue i in a sequence,

where i>1: If cue i-1 is the same as cue i, then we would call this the ‘same’ condition, and

‘different’ otherwise. We also plot the subsequent cues (i+1, i+2) for carry-over effects, but

these are collapsed across cue type, left or right. See Extended Data Figure 3-1 for more

details. (B) Left panel: Beta carried information locally as well as over to the next cue, with

increased beta power for the ‘different’ condition. Right panel: Theta only carried mismatch

information at the next cue in the sequence. Significant time periods are highlighted with

shaded grey bars. Vertical lines show onset of cues in the sequence. The shaded error bars

show standard error of the mean. C) Difference waves of conditions (‘different’ minus ‘same’)

with 95% confidence intervals shown by the dotted lines. After an initial dip there is a clear

increase in beta power following the conflicting cue (i) starting just before the onset of cue

i+1. Significant time periods are highlighted with shaded grey bars copied from panel B for
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comparison. Note that the apparent onset of the effect before zero is due to limited time

resolution of the time-frequency decomposition.

Cortical activity reflects rapid but non-persistent local conflict detection

We investigated sensor-level MEG signals from controls in response to local conflict

detection within the sequence. As with the STN, widespread activity over central sensors

was found to signal local conflict – with an initial dip followed by an increase in beta power

on ‘different’ trials (Figure 4A). The dip and increase in beta power were associated with

different clusters of electrodes. The first cluster showed a significant decrease to different

cues in the beta band across central, and predominantly right occipital, parietal and temporal

sensors (inset in Figure 4A, 0-450ms, 8-35Hz, p=0.002, Cohen’s d=1.22;). A subsequent

second cluster, more restricted to central sensors, showed an increase in beta power to

different cues (550-800ms, 9-25Hz, p= 0.008, Cohen’s d=1.35).

Interestingly, the time-course of the cortical effect was quicker than that of the STN (Figure

4B vs 3B), with conflicting information only lasting until the onset of the next cue in the

sequence.

Figure 4: Cortical activity to local conflict parallels STN but peaks earlier on average

and has a shorter time course. A) Time-frequency plot showing significant times and

frequencies when contrasting ‘different’ vs ‘same’ cues, averaged over all significant

sensors. Significant sensors are shown as an inset, separately for the 2 clusters (cluster 1:

0-450ms, 8-35Hz; cluster 2: 550-800ms, 9-25Hz,). B) Difference wave for the beta effects

over clusters (13-30Hz) band, as represented in Figure 3B. The dotted lines indicate 95%

confidence intervals. C) Left: Source localization in a combined sample of patients and

controls revealed the source of cluster 1 in three right-lateralized areas: occipital pole,

ventral temporal cortex and lateral premotor cortex (BA6). Right: Cluster 2 showed left

lateralized superior parietal lobe (BA7), left posterior cingulate cortex (BA23), right primary

sensory cortex and right dorsal premotor cortex/pre-supplementary motor area (dPM/BA6).
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Coherence is increased between STN and frontal cortex during local conflict

We used beamforming in a combined sample of patients and controls to localize the source

of the ‘same-different’ effect (cluster 1: averaged over: 200-400ms [to exclude the time the

stimulus was displayed on the screen], 10-30Hz; cluster 2: averaged over 600-800ms,

10-20Hz). In cluster 1 we found  3 right-hemisphere lateralized peaks (Figure 4C): occipital

pole (2 peaks: MNI 19, -98, -14; 35, -89, -16), ventral temporal cortex (2 peaks: MNI 59, -53,

-21; 52, -51, -21) and lateral premotor cortex (BA6, 2 peaks: MNI 52, -7, 44; 51, 3, 40).

Cluster 2 was localized to left superior parietal lobe (SPL/BA7, MNI -23, -61, 52), left

posterior cingulate cortex (PCC/BA23, MNI -14, -47, 31), right dorsal premotor area

(dorsal/medial BA6, MNI 7, 2, 69) and right primary somatosensory cortex (BA1, MNI 61,

-18, 31). Note, at an uncorrected threshold (p<0.001) we also found the lateral premotor

cortex, occipital pole and temporal cortex as in cluster 1, which is expected given the

overlapping topography of sensors in the two clusters.

Next, we measured in patients the coherence between these cortical vertices and both the

left and right STN-LFPs, separately. The coherence spectra were averaged over adjacent

vertices resulting in three cortical sources for cluster 1 and four sources for cluster 2. We

found a significant increase in coherence between the right dorsal premotor cortex and the

right STN (510-900ms, 10-13Hz, p=0.03, Cohen’s d=1.71; 900-1240ms, 18-24Hz, p=0.01,

Cohen’s d=1.44; see Figure 5), suggesting that ipsilateral cortical-subthalamic coherence is

increased in the face of local conflict in the right hemisphere. Furthermore, it seems there

are two separate points of coherence over the course of the cue, one after the onset of the

conflict cue and one that extends into the processing of the next cue in the sequence, this

latter effect is in the mid-high beta band, possibly reflecting response inhibition. No other

sources, nor the left STN showed any significant effects. For completeness based on

previous reports, we also investigated coherence with the inferior frontal gyrus (which was

present as a source in patients at an uncorrected threshold), and found that it did not show

any significant coherence with the STN. We also used debiased weighted phase lag index

as an alternative measure and found the same effects, albeit with reduced significance

(cluster 1: 690-910ms,10-13Hz, p=0.043; cluster 2: 860-1150ms, 20-24Hz p=0.056).
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Figure 5: Increased coherence between right frontal cortex and right STN during local

conflict. A) Time-frequency plot of coherence between the right STN and the right dorsal

premotor cortex (visualized on the left). Two coherent clusters emerged, with an alpha/low

beta coherence increase after ‘different’ cues, and a later increase in beta coherence

carrying over into the next cue in the sequence. Significant clusters are shown in black

outline. Inset on top left shows the source of the cortical effect for reference. B)

Time-courses of coherence for both alpha/low and high beta plotted as a difference wave

between conditions. The dotted lines indicate 95% confidence intervals. Significant

timepoints are highlighted in grey. C) Frequency spectra of ‘same’ (black) and ‘different’

(blue) trials during the significant time period from A. Grey area highlights significant

frequencies:10-13, 18-24 Hz.
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Discussion

In this experiment we present novel evidence pertaining to the role of the STN and

cortico-subthalamic communication during sequential decision making, using a task in which

participants had to integrate evidence over discrete time periods, with no constraints on how

many samples they could observe before making a decision. We find evidence for persistent

local conflict representation in the STN via beta oscillations, and increased coherence with

frontal cortex. We also observed modulation of beta power in STN by evidence accumulation

and number of cues presented so far in a trial.

Representation of Conflict in the STN

We found that activity in the beta band carried information about local conflict, i.e. a

difference between the current cue and the preceding one, but not about global conflict i.e. a

surprise by the current cue given all previous cues. Although we established that beta power

varies depending on whether the current cue differs from a previous one in a sequence – an

event to which we refer as a local conflict – it is less clear from our data what the function of

this activity is, and what fundamental variable it encodes.

It is possible that the observed changes in beta power are connected with motor inhibition.

Beta power was initially lower for cues that were ‘different’ to the one immediately before and

continued to increase across the next cue in the sequence. Activity in the beta band has

been shown to carry conflict information across trials (Zavala et al., 2018), but we also show

this effect within a trial, as conflict arises within the sequence of evidence. Hence, one can

interpret the increase of beta power as a stop signal, or a break on motor output (Alegre et

al., 2013) inhibiting a response after an inconsistent cue. Moreover, the majority of trials

ended on a ‘same’ cue (Table 1), which is in line with an overall increase in beta

synchronization after ‘different’ cues and lower probability of responding.

The response to different cues could also be interpreted as encoding of expectancy

valuation, uncertainty or surprise. Beta power increases have been reported when a

‘surprise’ stimulus is presented (Wessel et al., 2016), and STN activity measured with fMRI

has been shown to increase when there is increased uncertainty which option is correct

arising due to too much choice (Keuken et al., 2015). However, in our study we found no

evidence that the STN encodes the Shannon’s surprise term.

Interaction between STN and Cortex

Interestingly, the ‘same’-‘different’ effect on average peaked earlier in the cortex, and also

did not carry over to the next cue in the sequence (Figure 4A). A possible interpretation is

that the cortex signalled the immediate local conflict to STN, dovetailing with recent evidence

suggesting the cortical conflict signal precedes the STN (Chen et al., 2020), which then
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maintains a more persistent activity to inhibit responses (Brittain et al., 2012; Fife et al.,

2017).

When we localized the sources of the ‘same’-‘different’ effect, we found the local conflict

signal in widespread areas of the cortex. Only one frontal source, located in dorsal premotor

cortex/supplementary motor area (dPM/BA6) showed a significant coherence modulation

with the ipsilateral STN only, namely an increase in alpha/low-beta coherence shortly after

the offset of a ‘different’, or conflict, cue, and an increase in beta coherence that carried over

to the next cue in the sequence (Figure 5). The right BA6, specifically dorsal BA6 (Mattia et

al., 2012; Mirabella, 2014), is well-established as a cortical region involved in

response-inhibition/initiation and cognitive control (Chambers et al., 2007; Simmonds et al.,

2008; Aron, 2011).

While it is well-established that the cortex communicates with the STN via two anatomically

defined pathways, the indirect and the hyperdirect pathways (Albin et al., 1989; DeLong,

1990; Nambu et al., 2002), recent evidence suggests the existence of two separate coherent

beta oscillatory networks between the cortex and the STN (Oswal et al., 2016a). Here we

find evidence for two different bands of oscillatory connectivity between the STN and dorsal

premotor cortex, which may have implications for understanding the involvement of various

pathways in sequential evidence accumulation. Interestingly, a recent study showed

evidence of a hyperdirect pathway from inferior frontal gyrus (IFG) to the STN operating in

the 13-30Hz range (Chen et al., 2020), which points to a more ventral portion of the frontal

cortex than presented here. In fact, many studies in stop-signal/go-nogo tasks point to the

IFG (Aron et al., 2014), however in these tasks conflict is not part of an evidence

accumulation process, hence we may expect differences depending on the type of decision

being made, (Erika-Florence et al., 2014; Hampshire, 2015; Mosley et al., 2020).

Due to the evoked-activity as a result of the ongoing cue presentation, we were unable to

reliably estimate the directionality of coherence, but previous reports on resting-state data

have shown cortex to drive STN activity (Litvak et al., 2011a), which is in line with the finding

here that the ‘same’-‘different’ effect seems to peak earlier in the cortical signal. However,

recent data has also suggested that during processing of incongruent stimuli, STN to primary

motor effective connectivity is increased in the beta band (Wessel et al., 2019), suggesting

that the directionality of communication may be different across task and non-task contexts.

Where is the theta conflict signal?

The predominant theory of STN function, and also that of the cortex during conflict detection,

is the involvement of theta oscillations (Cavanagh and Frank, 2014). A large portion of

empirical findings on the STN shows that it carries conflict information via the theta band

(Cavanagh et al., 2011; Bastin et al., 2014; Zavala et al., 2015, 2016, 2017, 2018; Herz et

al., 2016). Yet in our task we only found a weak effect of theta modulation, in the cue

following a local conflict (cue i+1). This effect was present only in the STN, and no theta
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effects were found in the cortex. Moreover, this manifested as reduced theta synchronization

to ‘different’ cues, which is the opposite of the standard reported theta increase during

conflict. One explanation may be the task design, as it differs from previous paradigms: there

are no long intervals over which to examine slow oscillations, such as theta. Our results,

therefore, though focussed on theta power, may be dominated by evoked potentials, as cues

were presented in a fixed, relatively short duration sequence. Additionally, here conflict is

defined over the course of multiple cues, not on a singular trial in isolation. Thus, the

integration of conflict over time may in fact be driven by different signals – beta may

represent a more consistent inhibition. Nevertheless, others have also reported a lack of

theta effects in the STN during a stop-signal task (Bastin et al., 2014).

Updating models of the STN

An influential model of the role of the STN in decision making proposed by Frank (2006)

suggests that in situations of conflict between competing responses an increased activity of

STN postpones action initiation (Frank, 2006). This model proposes that STN is essential for

decision making since it ensures that an action is only selected when it has high evidence,

relative to the other options. Another model proposed by Bogacz & Gurney (2007) suggests

that the basal ganglia compute the reward probabilities for selecting different actions

according to Bayesian decision theory (Bogacz et al., 2007; Bogacz and Larsen, 2011).

While in our task we did not find conclusive evidence that the STN is encoding Bayesian

normalization (Figure 2B), it is important to remember that, despite being on medication,

these experiments were performed in patients whose neural circuitry has been affected by

advanced Parkinson’s disease. Thus, one cannot rule out the possibility that the Bayesian

normalization is encoded by the STN of healthy individuals, but testing this hypothesis would

require a different experimental technique (e.g. recording of STN neural activity from animals

during an analogous decision making task, such as in Brunton, Botvinick, & Brody, 2013).

Evidence also suggests that subdivisions within the STN may be responsible for different

types of inhibition, with prepotent response inhibition to cues (go-no-go task) being more

dependent on the ventral portion of the STN (Hershey et al., 2010). Given that the majority

of our recording sites were well within the dorsal (‘motor’) region of the STN, we cannot rule

out the contribution of more ventral sites to these computations.

We conclude that contrary to the emphasis on theta signals in the context of immediate

conflict, here we find a prominent role for beta oscillations in signalling local conflict in a

sequence of evidence. We find that both frontal cortex and the STN carry this signal, and

show increased coherence in the beta band that carries over to the next cue in the

sequence. Thus, we show increased communication in these areas may reduce the

probability of responding in the face of incoming conflicting information.
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Data availability

The full MEG dataset for controls is available in BIDS format on

https://openneuro.org/datasets/ds002908 and LFP and source data for patients is available

on

https://data.mrc.ox.ac.uk/data-set/human-lfp-recordings-stn-during-sequential-conflict-task.

Code and analysis pipeline at https://github.com/zits69/MOUSE_LFPMEG.
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