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Abstract

Making accurate decisions often involves the integration of current and past evidence. Here
we examine the neural correlates of conflict and evidence integration during sequential
decision making. Patients implanted with deep-brain stimulation (DBS) electrodes and
age-matched healthy controls performed an expanded judgement task, in which they were
free to choose how many cues to sample. Behaviourally, we found that while patients
sampled numerically more cues, they were less able to integrate evidence and showed
suboptimal performance. Using recordings of Magnetoencephalography (MEG) and local
field potentials (LFP, in patients) in the subthalamic nucleus (STN), we found that beta
oscillations signalled conflict between cues within a sequence. Following cues that differed
from previous cues, beta power in the STN and cortex first decreased and then increased.
Importantly, the conflict signal in the STN outlasted the cortical one, carrying over to the next
cue in the sequence. Furthermore, after a conflict, there was an increase in coherence
between the dorsal premotor cortex and subthalamic nucleus in the beta band. These results
extend our understanding of cortico-subcortical dynamics of conflict processing, and do so in
a context where evidence must be accumulated in discrete steps, much like in real life. Thus,
the present work leads to a more nuanced picture of conflict monitoring systems in the brain

and potential changes due to disease.
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Introduction

Whether it is deciding which method of transportation to take to get to work most efficiently
or which horse to bet on to maximize monetary gain, humans are constantly integrating
noisy evidence from their environment and past experience, in order to optimize their
decisions. Often the information comes at intervals, thus necessitating a system that can
track incoming signals over time and only commit to making a choice after sufficient
evidence has been integrated (Ratcliff, 1978; Busemeyer and Townsend, 1993; Usher and
McClelland, 2001), a process that has been proposed to rely on the cortico-basal-ganglia
circuit (Bogacz et al., 2010). Research in human patients with implanted electrodes for
clinical deep-brain stimulation (DBS) treatment has pointed to the role of the subthalamic
nucleus (STN) of the basal ganglia as a decision gate-keeper. The STN is postulated to set
the decision threshold in the face of conflicting information by postponing action initiation
until the conflict is resolved (Frank, 2006). As predicted by the model, STN activity is
increased for high conflict trials and STN-DBS affects decision making in the face of
conflicting evidence (Frank et al., 2007; Coulthard et al., 2012; Green et al., 2013).
Furthermore, the decision threshold correlated specifically with changes in STN theta
oscillatory power (Cavanagh et al., 2011; Herz et al., 2016). Recent evidence has also
pointed to the role of beta oscillations during conflict (Zavala et al., 2018). Thus, oscillatory
activity, primarily in the theta and beta bands, in the basal ganglia, reflects immediate
inhibition to motor output during situations involving conflict (Frank, 2006), whether it is the

response, sensory or cognitive uncertainty (Bonnevie and Zaghloul, 2019).

The majority of previous studies in the STN employed paradigms in which the putative
processes of conflict detection and setting of decision threshold happened in close temporal
proximity. For example, in previously used paradigms such as the flanker task (Zavala et al.,
2015), go-no-go (Alegre et al., 2013; Benis et al., 2014), and Stroop task (Brittain et al.,
2012) evidence was presented simultaneously. Although STN activity was also studied in
random dot motion paradigm that required evidence accumulation over time (Herz et al.,
2018), it was unknown exactly what sensory evidence was presented when, on individual
trials, due to the noisy nature of stimuli. As a result, previous studies do not allow us to fully
disentangle the neural correlates of ongoing evidence accumulation and conflict during
decision making. In particular, it is not clear what kind of conflicting information during
evidence accumulation the STN responds to: does it respond to a local conflict, when a new
piece of information does not match single previous piece in the sequence, or global conflict,

when a new piece of information does not match overall evidence from the entire trial?

An important role in shaping the STN activity is played by the interaction between the cortical
circuits and the STN. However, the nature and cortical locus of this interaction has only been

examined in a handful of studies. Resting-state coherence between the STN and ipsilateral
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frontal cortex has shown a peak in the beta band in human patients (Litvak, Jha, et al., 2011;
West et al., 2020) as well as rodent models of Parkinson’s disease (Magill et al., 2004; West
et al., 2018). Additionally, coherence in the theta band from frontal sites (as measured with
electroencephalography) to the STN increased during a conflict detection task (Zavala et al.,
2014, 2016).

To precisely characterize how the neural activity in cortex and the STN changes during the
process of evidence accumulation, we recorded STN local field potential (STN-LFP)
simultaneously with whole-head magnetoencephalography (MEG) while Parkinson’s disease
patients performed an expanded judgement task (Leimbach et al., 2018). Here, cues are
presented at discrete intervals, and evidence for the correct answer develops as the
participant samples and integrates multiple cues over the course of the trial (Figure 1). This
paradigm allowed us to investigate how behavioural and neural responses depend on the
continual unfolding of evidence extended in time, determine what kind of conflicting

information the STN responds to, and test predictions of computational models.

- CORRECT

CUE 1SI CUE 181 CUE . RESPONSE FEEDBACK
200ms 600ms 200ms 600ms 200ms (self-paced) 2000ms
Figure 1: Expanded Judgement Task. Participants performed a version of an evidence
integration task, with two key elements: 1. the cues were presented sequentially within the
trial rather than simultaneously, which allowed us to examine evidence accumulation over
time, and 2. the ftrial duration, i.e. number of cues sampled, was up to the participants, who
responded when they felt they had received enough information to make a decision.
Participants were required to guess the likely direction (left or right) the mouse ‘would run’ in.
Each cue was 70% valid, i.e. they represented the correct direction 70% of the time if they

were to be treated in isolation.

Materials and Methods
Participants

We tested 15 patients with a clinical diagnosis of Parkinson’s disease (14 male, mean age:
59, range 47-71, two left-handers), following electrode implantation for DBS treatment,
before full closure of the scalp, thus allowing for intracranial recordings of the STN (all

bilateral recordings, except 1 patient right unilateral and 1 patient with 3 contacts in the left


https://doi.org/10.1101/2020.06.09.141713
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.141713; this version posted February 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

STN and only 2 on the right, this patient was also subsequently diagnosed with Multiple
Systems Atrophy). Among tested patients, 11 had Medtronic 3389 electrodes, while 4 had
Boston Vercise™ directional leads. The surgical procedures are described in detail in
(Foltynie et al., 2011). All patients were assessed on medication (mean Levodopa Equivalent
Dosage 1272mg, range: 500-1727.5mg). Unified Parkinson's Disease Rating Scale
(UPDRS) part 3 scores were 39.6+14 (meantstandard deviation, range: 18-61) when OFF
medication, and 15.4+6.5 (range: 7-30) when ON medication. None of the patients had
cognitive impairment (Mini-Mental State Examination (MMSE) scores: mean 28.8, range:
26-30, one patient score missing), clinical depression, or apathy. Two patients were
excluded from the analysis due to poor performance of the task (see Task below). We
recruited 13 age and gender matched controls (12 male, mean age: 57, range 44-70, two
left-handers). The patient study was approved by the UK National Research Ethics Service
Committee for South Central Oxford and the control study was covered by University
College London Ethics Committee approval for minimum risk magnetoencephalography
studies of healthy human cognition. All participants gave written informed consent. Patients
did not receive financial compensation and the controls were compensated for their time

according to our centre’s standard hourly rate.
Surgical Procedure

Bilateral DBS implantation was performed under general anaesthesia using a stereotactic
(Leksell frame G, Elekta) MRI-guided and MRI-verified approach without microelectrode
recording as detailed in previous publications (Holl et al., 2010; Foltynie et al., 2011). Two
stereotactic, preimplantation scans were acquired, as part of the surgical procedure, to guide
lead implantation; a T2-weighted axial scan (partial brain coverage around the STN) with
voxel size of 1.0x1.0 mm? (slice thickness=2 mm) and a T1-weighted 3D-MPRAGE scan
with a (1.5 mm)? voxel size on a 1.5T Siemens Espree interventional MRI scanner. Three
dimensional distortion correction was carried out using the scanner’s built-in module. Target
for the deepest contact was selected at the level of maximal rubral diameter (~5 mm below
the AC-PC line). To maximise DBS trace within the STN, the target was often chosen 1.5 - 2
mm posterolateral to that described by Bejjani (Bejjani et al., 2000). Stereotactic imaging

was repeated following lead implantation to confirm placement.
Task

To investigate the neural basis of evidence accumulation over time, we used the expanded
judgement task (Figure 1, similar to the task previously used by Leimbach et al, 2018).
Participants were shown a series of images of a mouse facing either left or right. Cues were
presented for 200ms, with an inter-stimulus interval (ISI) of 600ms, so there was 800ms
interval from one onset to another, to which we refer as Stimulus Onset Asynchrony (SOA).

Participants were required to judge in which direction the mouse will ‘run’, based on the
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probabilities extracted from a series of sequential cue images, and then respond accordingly.
The validity of the cues was 70%, such that each cue (left or right mouse) represented the
correct choice 70% of the time. The two directions were equally likely across trials, thus the
chance level in the task was 50%. If the participants responded based on one of the cues
only, without accumulating information over time, then their expected success rate would be
70%. Responses were made by pressing a button with the thumb of the congruent hand
after a self-chosen number of cues, when the participant felt they had enough evidence to
make a decision. Prior to the recording, the participants underwent a short training session
where they were first asked to respond only after seeing a set number of stimuli (between
two and ten) and then told that for the main experiment they will decide themselves how
many stimuli to observe. This was to ensure that participants chose to respond based on
accumulating evidence from a sequence of images rather than just the first stimulus.
Participants performed up to 200 trials (Patients: 168+11; Controls: 200 each, except one
control who completed 150 trials). Two patients were excluded from the analysis due to poor

performance of the task (accuracy at chance level).
Recording and Analysis

Participants performed the task while seated in a whole-head MEG system (CTF-VSM
275-channel scanner, Coquitlam, Canada). For patients, STN-LFP, electrooculography
(EOG) and electromyography (EMG) recordings were also obtained using a battery-powered
and optically isolated EEG amplifier (BrainAmp MR, Brain Products GmbH, Gilching,
Germany). STN-LFP signals were recorded referenced to a common cephalic reference

(right mastoid).

All preprocessing was performed in SPM12 (v. 7771, http://www.fil.ion.ucl.ac.uk/spm/, (Litvak
et al,, 2011b)), and spectral analysis and statistical tests were performed in Fieldtrip

(http://www.ru.nl/neurcimaging/fieldtrip/ (Oostenveld et al., 2011)) using the version included
in SPM12.

STN-LFP recordings were converted offline to a bipolar montage between adjacent contacts
(three bipolar channels per hemisphere; 01, 12, and 23) to limit the effects of volume
conduction from distant sources (for more details see Litvak et al., 2010 and Oswal et al.,
2016b). Four of the patients had segmented DBS leads (Vercise™ DBS directional lead,
Boston Scientific, Marlborough, USA). In these cases, we averaged offline the signals from
the 3 segments of each ring and treated them as a single ring contact. Thus, for each
participant, we had a total of 3 STN EEG channels in each hemisphere (except for 2
participants: one with right side electrodes only, thus 3 channels, and one with 1 contact on
the right excluded due to extensive noise, thus 5 channels). The LFP data were
downsampled to 300Hz and high-pass filtered at 1Hz (Butterworth 5" order, zero phase
filter).
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A possibly problematic but unavoidable feature of our task was that the stimuli were
presented at relatively short SOA not allowing for the power to return to baseline before the
next stimulus was presented. Furthermore, the SOA was fixed making entrainment and
anticipation possible. These were deliberate design choices to be able to collect a large
number of trials for model-based analyses. Any jittering of the SOAs (which would have to
go in the direction of increasing their duration) would have led to far fewer trials being
collected. The total duration of the recording had to be kept short as the patients were
unable to tolerate extended periods of testing. Furthermore, having a very long SOA would
make it more likely that the participants would resort to explicit counting, which was
something we aimed to avoid.

To account for these design issues, we developed an unconventional way of performing
time-frequency analysis on these data in the absence of a baseline. We first ran time
frequency analysis on continuous LFP data (multitaper method (Thomson, 1982) 400ms
sliding window, in steps of 50ms) on a priori defined beta power (13-30 Hz average =
21.5Hz; note that when looking at individual participant beta power around the response
period, we found a similar band as defined a priori: individual mean range: 16.6-28.4Hz;
overall min: 11Hz, max: 31Hz). Separately we also estimated the power in the theta band
(2-8Hz average = 5Hz, e.g. Herz et al.,, 2016). The resulting power time series were
log-transformed and high-pass filtered at 0.5 Hz (Butterworth 5" order, zero phase filter) to
remove fluctuations in power that were slower than our SOA. Afterwards, the power time
series were epoched around the presentation of each cue stimulus (-500 to 800ms). We
averaged power across contacts within each hemisphere, resulting in 1 left and 1 right STN
channel, and we also calculated the mean STN signal by combining hemispheres. We used
a permutation cluster-based non-parametric test to correct for multiple comparisons across
time (the duration of the whole cue epoch (0-800ms) and report effects that survive

correction only (p<0.05 family-wise error (FWE) corrected at the cluster level).

Similarly to LFP, MEG data were downsampled to 300Hz, and high-pass filtered at 1Hz
(Butterworth 5th order, zero phase filter). For sensor-level analysis, we used only the control
group data, as in the patients the sensor signals were contaminated by ferromagnetic wire
artefacts (Litvak et al., 2010).

For the MEG sensor-level time-frequency analysis, we used all channels and a frequency
range of 1-45Hz. All other analyses were identical to the LFP pipeline reported above.
However, we corrected for multiple comparisons across all MEG channels, timepoints
(0-800ms) and frequencies (1-45Hz), and only report effects that survived that correction

(p<0.05 FWE corrected at the cluster level).

For source-level analysis, the continuous MEG data were projected to source space with
Linearly Constrained Maximum Variance (LCMV) beamformer (Veen et al., 1997) using a

10-fold reduced version of the SPM canonical cortical mesh (Mattout et al., 2007) as the
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source space (resulting in 818 vertices and the same number of source channels). The
source orientation was set in the direction of maximum power. See Litvak et al., (2012) for
details on beamforming and Litvak et al. (2010) for details on issues regarding beamformer
use for removing artefacts from simultaneous MEG and intracranial recordings. Next,
time-frequency analysis was performed on continuous source data the same way as for
STN-LFP except the frequencies of interest were informed by the sensor-level analysis. This
biased the statistical test for discovery of an effect (cf. double dipping, Kriegeskorte,
Simmons, Bellgowan, & Baker, 2009) but our aim in this analysis was post-hoc interrogation
of the effects established at the sensor level in terms of their location in the cortex rather
than hypothesis testing (Gross et al., 2012). To limit our search space for the coherence

analysis (below), we only investigated sources that survived p<0.05 FWE correction.

Time-resolved coherence was then computed between the identified cortical sources and
STN contacts by going back to raw source time series. The data were epoched (-1000 to
1000ms to increase the window for analysis), and time-frequency analysis was performed as
described above with coherence between the sources and the left and right STN also
computed from the cross-spectrum. Non-parametric permutation testing between conditions
was corrected for multiple comparisons across channels (source vertices), time (0-1600ms
to cover both cue ‘i’ and cue ‘i+1’) and frequencies (1-30Hz), and we only report effects that
survive correction (p<0.05 FWE corrected at the cluster level). For completeness, we also
ran an alternative connectivity measure, debiased weighted phase lag index, which is less

sensitive to unequal trial numbers across conditions and volume conduction effects.
Reconstruction of electrode locations

We used the Lead-DBS toolbox (http://www.lead-dbs.org/ (Horn and Kiihn, 2015)) to
reconstruct the contact locations. Post-operative T2 and T1 images were co-registered to
pre-operative T1 scan using linear registration in SPM12 (Friston et al., 2007). Pre- (and
post-) operative acquisitions were spatially normalized into MNI_ICBM_2009b_NLIN_ASYM
space based on preoperative T1 using the Unified Segmentation Approach as implemented
in SPM12 (Ashburner and Friston, 2005). DBS electrode localizations were corrected for
brain shift in postoperative acquisitions by applying a refined affine transform calculated
between pre- and post-operative acquisitions that was restricted to a subcortical area of
interest as implemented in the brain shift correction module of Lead-DBS software. The
electrodes were then manually localized based on post-operative acquisitions using a tool in
Lead-DBS specifically designed for this task. The resulting locations were verified by an

expert neurosurgeon.
Choice Strategy

In order to analyse the strategy used by the participants during choice, we investigated

which factors influence commitment to a choice on a given trial. We considered two factors:
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The first of them is the evidence integrated for the chosen option. Such accumulated
evidence was computed from Equation 1 that continuously updates the evidence (decision
variable, DV) for a choice at time t based on the existing DV from the previous stimuli and

the new incoming stimulus St, where St =— 1 for the left stimulus, and St = 1 for the right

stimulus. At the start of each trial, the decision variable was initialized to DV0 = 0.

DV =DV,_ +5, (1)

The second factor we considered was whether the stimulus was the same as the previously

presented one, i.e. SAt =1if St = St_1 and SAt = 0 otherwise. For all stimuli excluding the
first stimulus on each ftrial (for which it is not possible to define SAt) we performed a logistic

regression predicting if the choice has been made after this stimulus, i.e. we tried to predict a

variable Dt = 1 if choice made after stimulus t and Dt = 0 otherwise. For each participant,

we looked at the significance of the two factors.
Estimating accumulated evidence using computational models

In order to analyse if STN activity reflects the amount of available evidence for each
response based on the stimuli presented so far, we employed computational models that can
estimate this quantity at each point in time. We compared how well different models of
evidence accumulation could capture the behaviour of different patients, and then generated
regressors for each patient based on the best model for that patient. In addition to the model
assuming evidence is integrated according to Equation 1, we also considered three
extended models which included a forgetting term (1), a bonus term (w), or both (Equations
2-4).

DV = (1 - DV,_ +S, )
DV =DV, +(1+ ooSAt)St (3)
DV, =(1 =)DV, + (1 + wSA)S (4)

t

The forgetting term was used to model the decay of memory over the course of the trial and
the bonus term is a weighting of ‘same’ pairs, i.e. the stimuli which match the directly
preceding one (e.g.: in a ‘left-left-right’ sequence the second left stimulus would be weighted

extra as it is the same as the first one).

To estimate the parameters (A, w), we assumed that the ratio of making a right choice to

making a left choice is related to decision variable according to:
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P(R) _
Lg%y =By + BV,

For each participant, we looked for parameters that maximized the likelihood of participant’s

behaviour after all stimuli shown to that participant.

We found the winning model (based on Bayesian information criterion) to be variable across
participants (number of participants in patients/control group indicated): M1 = 1/2; M2 = 0/0;

M3 = 4/9; M4 = 8/2, although the model that included bonus terms was the most common.
Estimating Bayesian normalization term

We investigated if the STN activity follows a pattern predicted by a computational model of
the basal ganglia (Bogacz et al., 2007; Bogacz and Larsen, 2011). This model suggests that
the basal ganglia compute the reward probabilities for selecting different actions according to
Bayesian decision theory. These probabilities are updated after each stimulus and the
updated information is fed back to the cortex via the thalamus. An action is initiated when the
expected reward under a particular action exceeds a certain threshold. The model attributes
a very specific function to the STN: ensuring that if the probability of one action goes up, the
probabilities of the others go down at the same time by normalising all probabilities so that

they add up to one.

In order to create regressors for neural activity recorded from the STN, we used the original
proposal that the STN computes the normalization term of the Bayesian equation during the
evidence integration process (Bogacz & Gurney, 2007). We defined 2 cortical integrators Y,
and Yg, which integrate evidence for the left and right stimulus respectively, as described
above. Additionally, we subtracted the STN normalization term from the cortical integrators
after each stimulus input in a sequence (Bogacz et al., 2016). For each participant, we
assumed the integration follows one of the models described by Equations 1-4, which best
describes given participants (see previous subsection). So, for example, for participants best

described by Equation 1, the integrators were updated as follows

YL't = YL't_1 +L —STN (5)
Yth = Ym_1 +R —STN | (6)
STNt = log(eprL,t + eprR't) (7)

In the above equations, Lt: 1, th 0 if cue t is left, and Lt: 0, Rt= 1, otherwise.

However, for models 2-4 we added decay to the cortical integrators and bonus terms to

Equations 5-6 analogously to Equation 2-4, i.e. we ensured that bv =Y, —Y, . At the start

of each ftrial, the integrators were initialized to YL0 = YRO = log0.5 (corresponding to equal
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prior probabilities of the two responses). The value computed from Equation 7 was used as

Bayesian normalization regressor in Figure 2.
Results
Patients are able to accumulate evidence over time

Patients waited on average 6.6 stimuli before making a response (6.59+£0.52 sem) and their
accuracy was significantly above the 70% level expected if they only based their decision on
a single cue (80+£0.03 sem, t=3.6, p=0.004). Controls waited on average 6.3 stimuli before
making a response (6.291£0.46 sem) and were similarly above 70% in their accuracy
(88.6+£0.01 sem, t=18.4, p<0.001). There was no significant difference between groups in the
number of stimuli viewed before making a choice (t=0.42, p-value = 0.68), but patients had
lower accuracy (t=-2.99, p=0.0009) and slower reaction time (as measured from the onset of
the last cue before a response was made, t=2.16, p=0.041). See Table 1 for summary of

behavioural measures.

To explore potential strategies participants could have used in the task, we compared
performance in both groups to an agent that would have been an optimal observer, and
would choose to respond left if the number of left cues was higher than the number of right
cues, to respond right for a larger number of right cues, and would choose randomly if the
numbers were equal. In other words, for each participant, we calculated the accuracy they
would have achieved had they integrated evidence optimally, having seen the stimuli
sampled by the participant on each trial. We found that controls and patients had
significantly lower accuracy (controls: p=0.019, patients: p=0.0076) than an ideal observer

would have, based on the same cue sampling (89% for controls and 87% for patients).

Next, we asked whether participants were just solving the task by responding after they
spotted two of the same stimuli in a row (i.e. after the first ‘same’ pair). To address this
question, we investigated to what extent participants’ response after stimulus was predicted
by accumulated evidence, and by same stimuli in a row (see Materials and Methods for
details). Most participants had responses best predicted either by accumulated evidence
alone (6 patients and 6 controls), or by both accumulated evidence and stimulus repetition (5
patients and 7 controls). For remaining 2 patients none of these factors was predicting their
response. Hence, there was no participant who exclusively relied of making a choice after

seeing the ‘same’ stimulus, without considering evidence integrated so far.
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Table 1: Behavioural results showing mean and standard deviations for each group. RT:
Reaction time; ACC: accuracy. The analytical probability of a ‘same’ pair at the end of the
sequence would be 58% if participants chose the moment of response randomly. Both
patients and controls responded significantly more often after a ‘same’ pair (both groups
p<0.001).

Fraction of
# stimuli
Accuracy | RT(ms) responses after
seen
‘same’ at end
PATIENTS Mean 6.59 0.80 536.52 0.73
PATIENTS SD 1.88 0.10 29.48 0.11
CONTROLS Mean |6.29 0.89 502.74 0.81
CONTROLS SD 1.65 0.04 48.81 0.09

STN beta power reflects multiple variables related to ongoing decision making

In order to understand the impact of different variables related to the decision making
process on activity in the STN, we created a combined GLM, including four regressors: cue
identity, normalization model, accumulated evidence and sample number. These are

described in detail below.

Cue identity was taken as a measure of ‘local conflict’, by taking all cues (excluding the first
and last cues in a sequence) and categorizing them as the ‘same’ or ‘different’ from the
previous cue (Figure 2A & 2D). We found that beta power carried information about the
similarity of the stimulus to the previous one (‘cue identity’, 200-350 and 650-800ms,
p=0.024 and p=0.032, see Figure 2B & 2D).

In addition to local conflict, we analyzed whether other variables occurring in theoretical
models of decision making were reflected in neural activity. We explored if STN represents
the normalization term in Bayes theorem as proposed in a previously suggested
computational model (Bogacz et al., 2007). This model predicts that the activity in the STN is
proportional to a logarithm of the normalization term in Bayes theorem In P(cue i). This
probability is computed on the basis of all previous cues {cue 1, ..., cue i-1} so it expresses
how expected the current cue is given all cues seen before. The negative of this regressor,
-In P(cue i), is equal to Shannon’s surprise, so it expresses how much cue i disagrees with
overall information in all previous cues, and hence it could be viewed as a measure of global
conflict. Therefore, a possible correlation between the normalization term In P(cue i) and
LFP activity could be explained by either of two hypotheses. A computational model (Bogacz

et al., 2007) predicts a positive correlation, whereas a hypothesis that STN responds to
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global conflict predicts a negative correlation. We tested if the normalization term affects
power of beta oscillations in the STN and did not find evidence supporting any of these two

hypotheses in our data (Figure 2B).

We also explored whether there was a signal reflecting the magnitude of accumulated
evidence in the STN. Additionally, we included a regressor on beta power equal to the serial
position of the cue stimulus within a trial. Including this regressor was motivated by two
observations: reports of decreasing beta power as a result of increasing working memory
load (Zavala et al., 2017), and presence of “urgency signals” in the basal ganglia that
increase within a trial and reflect the growing urgency to making a choice (Thura & Cisek,
2017). We found a significant effect in both regressors (absolute evidence: 550-700ms,
p=0.008; cue number or urgency: 0-250 and 500-650ms, p=0.01 and p=0.02).

We did not find a clear relationship between behaviour on the task and these neural effects
(see Extended Data Table 2-1). However, cue identity (early peak) showed a relationship
with both RT (r=0.62,p=0.024; note if an outlier of the STN data is taken out then the
correlation is no longer significant, p=0.12; outlier detected as more than 1.5 interquartile
range above the upper quartile or below the lower quartile, which is appropriate when data is
not normally distributed), as well as a trend for the number of cues sampled
(r=0.53,p=0.064).

Figure 2: STN activity encodes local conflict and variables related to accumulation of
evidence via beta oscillations. A) Example sequence of cues, with each regressor value
shown below. For example, evidence for the ‘right’ facing mouse goes up during the first two
cues, but then the appearance of a ‘left’ mouse reduces the evidence for a right response.
B) Results of the combined GLM. A linear regression of beta power in the STN revealed that
a clear signal was related to the identity of the cue (‘same’ or ‘different’, shaded in grey),
absolute integrated evidence, and sample number in the sequence of cues in a trial (or
‘urgency’, i.e. the number of stimuli presented so far that could influence a general tendency
to make a choice or working-memory load). Horizontal lines represent significant times after
cluster correction for multiple comparisons. There was no encoding of Bayesian
normalization in the STN signal, as proposed previously (Bogacz et al., 2007, 2016). Note
that although the regressors are presented separately for easier visualization, they were
included in a combined GLM. All regressors were z-scored before entering the model. We
did not find any effects when regressing theta band activity in the STN with the above
regressors. C) Raw beta power plotted as a function of binned evidence (left) or cue number

(right), as well as for cue identity (D), note this latter panel is identical to part of Figure 3B.
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STN beta power shows persistent activity to local conflict during evidence accumulation

Complementing, and extending on the above regression analyses, in order to further
investigate how the STN represents the inconsistencies when faced with conflicting evidence
over time, we separated all cues into two categories: ‘same’ or ‘different’ to the one
immediately before it (we term this ‘cue i’, Figure 3A). In our analyses of neural responses to
cues, we excluded the first cues in a sequence, because it is not possible to classify them as
‘same’ or ‘different’, and last cues seen as they overlapped with the response period. Thus, if
a participant experienced this sequence of mouse images: ‘left-right-left-left-right’, the

analysed conditions would be ‘different-different-same’.

We found that beta oscillations (i.e raw beta power) responded to local conflict, generating a
significant difference between ‘same’ and ‘different’ cues (cue i’ in Figure 3B left panel)
starting around 100ms after cue onset. Beta also showed a significant difference in the
subsequent cue (i+1), with ‘different’ cues showing an increase in beta power, thus
conflicting information on cue i results in increased beta power on cue i+1 (see Figure 3C), a
pattern of activity that is consistent with response inhibition. Significant time clusters:
100-450ms (p=0.022, d=1.74), 750-1100ms (p=0.014, d=1.73), 1300-1600ms (p=0.012,
d=2.40). These effects were greatly reduced in the theta band, with an effect of condition

only briefly detectable during cue ‘i+1’ (Figure 3B-C, right panel).
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Figure 3: Beta signalled local conflict, and carried this effect over to the next cue in a
sequence. A) Notation used in the paper. Let us consider an arbitrary cue i in a sequence,
where i>1: If cue i-1 is the same as cue i, then we would call this the ‘same’ condition, and
‘different’ otherwise. We also plot the subsequent cues (i+1, i+2) for carry-over effects, but
these are collapsed across cue type, left or right. See Extended Data Figure 3-1 for more
details. (B) Left panel: Beta carried information locally as well as over to the next cue, with
increased beta power for the ‘different’ condition. Right panel: Theta only carried mismatch
information at the next cue in the sequence. Significant time periods are highlighted with
shaded grey bars. Vertical lines show onset of cues in the sequence. The shaded error bars
show standard error of the mean. C) Difference waves of conditions (‘different’ minus ‘same’)
with 95% confidence intervals shown by the dotted lines. After an initial dip there is a clear
increase in beta power following the conflicting cue (i) starting just before the onset of cue

i+1. Significant time periods are highlighted with shaded grey bars copied from panel B for
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comparison. Note that the apparent onset of the effect before zero is due to limited time

resolution of the time-frequency decomposition.
Cortical activity reflects rapid but non-persistent local conflict detection

We investigated sensor-level MEG signals from controls in response to local conflict
detection within the sequence. As with the STN, widespread activity over central sensors
was found to signal local conflict — with an initial dip followed by an increase in beta power
on ‘different’ trials (Figure 4A). The dip and increase in beta power were associated with
different clusters of electrodes. The first cluster showed a significant decrease to different
cues in the beta band across central, and predominantly right occipital, parietal and temporal
sensors (inset in Figure 4A, 0-450ms, 8-35Hz, p=0.002, Cohen’s d=1.22;). A subsequent
second cluster, more restricted to central sensors, showed an increase in beta power to
different cues (550-800ms, 9-25Hz, p= 0.008, Cohen’s d=1.35).

Interestingly, the time-course of the cortical effect was quicker than that of the STN (Figure
4B vs 3B), with conflicting information only lasting until the onset of the next cue in the

sequence.

Figure 4: Cortical activity to local conflict parallels STN but peaks earlier on average
and has a shorter time course. A) Time-frequency plot showing significant times and
frequencies when contrasting ‘different’ vs ‘same’ cues, averaged over all significant
sensors. Significant sensors are shown as an inset, separately for the 2 clusters (cluster 1:
0-450ms, 8-35Hz; cluster 2: 550-800ms, 9-25Hz,). B) Difference wave for the beta effects
over clusters (13-30Hz) band, as represented in Figure 3B. The dotted lines indicate 95%
confidence intervals. C) Left: Source localization in a combined sample of patients and
controls revealed the source of cluster 1 in three right-lateralized areas: occipital pole,
ventral temporal cortex and lateral premotor cortex (BAG). Right: Cluster 2 showed left
lateralized superior parietal lobe (BA7), left posterior cingulate cortex (BA23), right primary

sensory cortex and right dorsal premotor cortex/pre-supplementary motor area (dPM/BAG).
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Coherence is increased between STN and frontal cortex during local conflict

We used beamforming in a combined sample of patients and controls to localize the source
of the ‘same-different’ effect (cluster 1: averaged over: 200-400ms [to exclude the time the
stimulus was displayed on the screen], 10-30Hz; cluster 2: averaged over 600-800ms,
10-20Hz). In cluster 1 we found 3 right-hemisphere lateralized peaks (Figure 4C): occipital
pole (2 peaks: MNI 19, -98, -14; 35, -89, -16), ventral temporal cortex (2 peaks: MNI 59, -53,
-21; 52, -51, -21) and lateral premotor cortex (BAG, 2 peaks: MNI 52, -7, 44; 51, 3, 40).
Cluster 2 was localized to left superior parietal lobe (SPL/BA7, MNI -23, -61, 52), left
posterior cingulate cortex (PCC/BA23, MNI -14, -47, 31), right dorsal premotor area
(dorsal/medial BA6, MNI 7, 2, 69) and right primary somatosensory cortex (BA1, MNI 61,
-18, 31). Note, at an uncorrected threshold (p<0.001) we also found the lateral premotor
cortex, occipital pole and temporal cortex as in cluster 1, which is expected given the

overlapping topography of sensors in the two clusters.

Next, we measured in patients the coherence between these cortical vertices and both the
left and right STN-LFPs, separately. The coherence spectra were averaged over adjacent
vertices resulting in three cortical sources for cluster 1 and four sources for cluster 2. We
found a significant increase in coherence between the right dorsal premotor cortex and the
right STN (510-900ms, 10-13Hz, p=0.03, Cohen’s d=1.71; 900-1240ms, 18-24Hz, p=0.01,
Cohen’s d=1.44; see Figure 5), suggesting that ipsilateral cortical-subthalamic coherence is
increased in the face of local conflict in the right hemisphere. Furthermore, it seems there
are two separate points of coherence over the course of the cue, one after the onset of the
conflict cue and one that extends into the processing of the next cue in the sequence, this
latter effect is in the mid-high beta band, possibly reflecting response inhibition. No other
sources, nor the left STN showed any significant effects. For completeness based on
previous reports, we also investigated coherence with the inferior frontal gyrus (which was
present as a source in patients at an uncorrected threshold), and found that it did not show
any significant coherence with the STN. We also used debiased weighted phase lag index
as an alternative measure and found the same effects, albeit with reduced significance
(cluster 1: 690-910ms,10-13Hz, p=0.043; cluster 2: 860-1150ms, 20-24Hz p=0.056).
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Figure 5: Increased coherence between right frontal cortex and right STN during local
conflict. A) Time-frequency plot of coherence between the right STN and the right dorsal
premotor cortex (visualized on the left). Two coherent clusters emerged, with an alpha/low
beta coherence increase after ‘different’ cues, and a later increase in beta coherence
carrying over into the next cue in the sequence. Significant clusters are shown in black
outline. Inset on top left shows the source of the cortical effect for reference. B)
Time-courses of coherence for both alpha/low and high beta plotted as a difference wave
between conditions. The dotted lines indicate 95% confidence intervals. Significant
timepoints are highlighted in grey. C) Frequency spectra of ‘same’ (black) and ‘different’
(blue) trials during the significant time period from A. Grey area highlights significant
frequencies:10-13, 18-24 Hz.
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Discussion

In this experiment we present novel evidence pertaining to the role of the STN and
cortico-subthalamic communication during sequential decision making, using a task in which
participants had to integrate evidence over discrete time periods, with no constraints on how
many samples they could observe before making a decision. We find evidence for persistent
local conflict representation in the STN via beta oscillations, and increased coherence with
frontal cortex. We also observed modulation of beta power in STN by evidence accumulation

and number of cues presented so far in a trial.

Representation of Conflict in the STN

We found that activity in the beta band carried information about local conflict, i.e. a
difference between the current cue and the preceding one, but not about global conflicti.e. a
surprise by the current cue given all previous cues. Although we established that beta power
varies depending on whether the current cue differs from a previous one in a sequence — an
event to which we refer as a local conflict — it is less clear from our data what the function of
this activity is, and what fundamental variable it encodes.

It is possible that the observed changes in beta power are connected with motor inhibition.
Beta power was initially lower for cues that were ‘different’ to the one immediately before and
continued to increase across the next cue in the sequence. Activity in the beta band has
been shown to carry conflict information across trials (Zavala et al., 2018), but we also show
this effect within a trial, as conflict arises within the sequence of evidence. Hence, one can
interpret the increase of beta power as a stop signal, or a break on motor output (Alegre et
al., 2013) inhibiting a response after an inconsistent cue. Moreover, the majority of trials
ended on a ‘same’ cue (Table 1), which is in line with an overall increase in beta
synchronization after ‘different’ cues and lower probability of responding.

The response to different cues could also be interpreted as encoding of expectancy
valuation, uncertainty or surprise. Beta power increases have been reported when a
‘surprise’ stimulus is presented (Wessel et al., 2016), and STN activity measured with fMRI
has been shown to increase when there is increased uncertainty which option is correct
arising due to too much choice (Keuken et al., 2015). However, in our study we found no

evidence that the STN encodes the Shannon’s surprise term.

Interaction between STN and Cortex

Interestingly, the ‘same’-‘different’ effect on average peaked earlier in the cortex, and also
did not carry over to the next cue in the sequence (Figure 4A). A possible interpretation is
that the cortex signalled the immediate local conflict to STN, dovetailing with recent evidence

suggesting the cortical conflict signal precedes the STN (Chen et al., 2020), which then
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maintains a more persistent activity to inhibit responses (Brittain et al., 2012; Fife et al.,
2017).

When we localized the sources of the ‘same’-‘different’ effect, we found the local conflict
signal in widespread areas of the cortex. Only one frontal source, located in dorsal premotor
cortex/supplementary motor area (dPM/BAB) showed a significant coherence modulation
with the ipsilateral STN only, namely an increase in alpha/low-beta coherence shortly after
the offset of a ‘different’, or conflict, cue, and an increase in beta coherence that carried over
to the next cue in the sequence (Figure 5). The right BA6, specifically dorsal BA6 (Mattia et
al.,, 2012; Mirabella, 2014), is well-established as a cortical region involved in
response-inhibition/initiation and cognitive control (Chambers et al., 2007; Simmonds et al.,
2008; Aron, 2011).

While it is well-established that the cortex communicates with the STN via two anatomically
defined pathways, the indirect and the hyperdirect pathways (Albin et al., 1989; DelLong,
1990; Nambu et al., 2002), recent evidence suggests the existence of two separate coherent
beta oscillatory networks between the cortex and the STN (Oswal et al., 2016a). Here we
find evidence for two different bands of oscillatory connectivity between the STN and dorsal
premotor cortex, which may have implications for understanding the involvement of various
pathways in sequential evidence accumulation. Interestingly, a recent study showed
evidence of a hyperdirect pathway from inferior frontal gyrus (IFG) to the STN operating in
the 13-30Hz range (Chen et al., 2020), which points to a more ventral portion of the frontal
cortex than presented here. In fact, many studies in stop-signal/go-nogo tasks point to the
IFG (Aron et al.,, 2014), however in these tasks conflict is not part of an evidence
accumulation process, hence we may expect differences depending on the type of decision
being made, (Erika-Florence et al., 2014; Hampshire, 2015; Mosley et al., 2020).

Due to the evoked-activity as a result of the ongoing cue presentation, we were unable to
reliably estimate the directionality of coherence, but previous reports on resting-state data
have shown cortex to drive STN activity (Litvak et al., 2011a), which is in line with the finding
here that the ‘same’-‘different’ effect seems to peak earlier in the cortical signal. However,
recent data has also suggested that during processing of incongruent stimuli, STN to primary
motor effective connectivity is increased in the beta band (Wessel et al., 2019), suggesting

that the directionality of communication may be different across task and non-task contexts.

Where is the theta conflict signal?

The predominant theory of STN function, and also that of the cortex during conflict detection,
is the involvement of theta oscillations (Cavanagh and Frank, 2014). A large portion of
empirical findings on the STN shows that it carries conflict information via the theta band
(Cavanagh et al., 2011; Bastin et al., 2014; Zavala et al., 2015, 2016, 2017, 2018; Herz et
al., 2016). Yet in our task we only found a weak effect of theta modulation, in the cue

following a local conflict (cue i+1). This effect was present only in the STN, and no theta
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effects were found in the cortex. Moreover, this manifested as reduced theta synchronization
to ‘different’ cues, which is the opposite of the standard reported theta increase during
conflict. One explanation may be the task design, as it differs from previous paradigms: there
are no long intervals over which to examine slow oscillations, such as theta. Our results,
therefore, though focussed on theta power, may be dominated by evoked potentials, as cues
were presented in a fixed, relatively short duration sequence. Additionally, here conflict is
defined over the course of multiple cues, not on a singular trial in isolation. Thus, the
integration of conflict over time may in fact be driven by different signals — beta may
represent a more consistent inhibition. Nevertheless, others have also reported a lack of

theta effects in the STN during a stop-signal task (Bastin et al., 2014).

Updating models of the STN

An influential model of the role of the STN in decision making proposed by Frank (2006)
suggests that in situations of conflict between competing responses an increased activity of
STN postpones action initiation (Frank, 2006). This model proposes that STN is essential for
decision making since it ensures that an action is only selected when it has high evidence,
relative to the other options. Another model proposed by Bogacz & Gurney (2007) suggests
that the basal ganglia compute the reward probabilities for selecting different actions
according to Bayesian decision theory (Bogacz et al., 2007; Bogacz and Larsen, 2011).
While in our task we did not find conclusive evidence that the STN is encoding Bayesian
normalization (Figure 2B), it is important to remember that, despite being on medication,
these experiments were performed in patients whose neural circuitry has been affected by
advanced Parkinson’s disease. Thus, one cannot rule out the possibility that the Bayesian
normalization is encoded by the STN of healthy individuals, but testing this hypothesis would
require a different experimental technique (e.g. recording of STN neural activity from animals
during an analogous decision making task, such as in Brunton, Botvinick, & Brody, 2013).
Evidence also suggests that subdivisions within the STN may be responsible for different
types of inhibition, with prepotent response inhibition to cues (go-no-go task) being more
dependent on the ventral portion of the STN (Hershey et al., 2010). Given that the majority
of our recording sites were well within the dorsal (‘motor’) region of the STN, we cannot rule

out the contribution of more ventral sites to these computations.

We conclude that contrary to the emphasis on theta signals in the context of immediate
conflict, here we find a prominent role for beta oscillations in signalling local conflict in a
sequence of evidence. We find that both frontal cortex and the STN carry this signal, and
show increased coherence in the beta band that carries over to the next cue in the
sequence. Thus, we show increased communication in these areas may reduce the

probability of responding in the face of incoming conflicting information.
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Data availability

The full MEG dataset for controls is available in BIDS format on

https://openneuro.org/datasets/ds002908 and LFP and source data for patients is available

on

Code and analysis pipeline at https;//github.com/zits69/MOUSE_LFPMEG.
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