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Abstract 

Although practicing a task generally benefits later performance on that same task, there are 

individual differences in practice effects. One avenue to model such differences comes from 

research showing that brain networks extract functional advantages from operating in the 

vicinity of criticality, a state in which brain network activity is more scale-free. We hypothesized 

that higher scale-free signal from fMRI data, measured with the Hurst exponent (H), indicates 

closer proximity to critical states. We tested whether individuals with higher H during repeated 

task performance would show greater practice effects. In Study 1, participants performed a 

dual-n-back task (DNB) twice during MRI (n = 56). In Study 2, we used two runs of n-back task 

(NBK) data from the Human Connectome Project sample (n = 599). In Study 3, participants 

performed a word completion task (CAST) across 6 runs (n = 44). In all three studies, 

multivariate analysis was used to test whether higher H was related to greater practice-related 

performance improvement. Supporting our hypothesis, we found patterns of higher H that 

reliably correlated with greater performance improvement across participants in all three 

studies. However, the predictive brain regions were distinct, suggesting that the specific spatial 

H↑ patterns are not task-general.  
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Introduction 

 Improvements in cognitive performance due to repeated practice vary considerably 

across individuals, even within the same task (Calamia et al, 2012). When situational factors 

and age are controlled, the variability observed in these so called ‘practice effects’ (see 

McCaffrey, Duff, & Westervelt, 2000) across healthy individuals is traditionally attributed to 

differences in intellectual ability, where individuals with higher fluid intelligence benefit more 

from practice (Rapport et al, 1997). The magnitude of practice effects in multiple tests of 

working memory, attention, and executive functioning has been shown to provide rich and 

unique information about the respondent, and can be used for diagnosis of clinical conditions as 

well as responsiveness to clinical interventions (Duff et al, 2012). Given the diagnostic and 

prognostic values of practice effects, it is important to pursue neural process models for 

explaining differences in cognitive performance improvements from practice.  

As there is increasing evidence for the theory that the brain displays critical or near-

critical dynamics (Beggs and Timme, 2012), in the current study, we characterized the brain as 

a network that imparts functional advantages when operating close to or at criticality (see Box 

1).  We propose that brain network criticality provides a theoretical framework for investigating 

changes in cognitive performance after practice. Specifically, performing most complex tasks 

that engage working memory and focused attention depend on active information storage and 

transfer in neuronal ensembles (Awh & Jonides, 2001; Ikkai & Curtis, 2011). Brain states near 

criticality would confer computational advantages (i.e., superior information transfer and 

storage) and such advantages could be measured in neural dynamics that we hypothesized 

would be tied to differences in learning and practice effects.  

 A common way to measure the criticality of large-scale brain networks is via estimation 

of time scale-invariance (e.g., the 1/f component of power spectral density function) in brain 

activity. Specifically, scale-free brain activity has been successfully measured using the Hurst 

exponent (H) for both electrophysiological brain activity (e.g., EEG, MEG, ECoG) and blood-

oxygen-level-dependent (BOLD) fMRI signals, where higher H indicates more scale-free 

dynamics. There is some evidence showing that operating near criticality may facilitate learning 

and plasticity (de Arcangelis & Herrmann, 2010). Higher H characterizes more long-range 

temporal correlations (LRTCs) corresponding to slowly attenuating autocorrelations in the 

signal, which coexist with features of a critical state (Tian et al., 2022; Bak et al, 1987). Both 

criticality and LRTCs have been used to describe brain network dynamics and states (Vohryzek 

et al., 2022; Marinazzo et al., 2014; Meisel, Klaus, et al., 2017; Zimmern, 2020; O’Byrne, & 

Jerbi, 2022). Importantly, operating close to or at a critical state in simulated neural networks 

has been shown to provide multiple advantageous functional properties for the network. These 

include improved information storage and transfer (Boedecker, Obst, Lizier, Mayer, & Asada, 

2012; Shriki et al., 2013; Shriki & Yellin, 2016; Tanaka, Kaneko, & Aoyagi, 2008), as well as 

increased dynamic range (Gautam, Hoang, McClanahan, Grady, & Shew, 2015; Kinouchi & 

Copelli, 2006) in the network. Other studies have found that LRTCs in cortical activity support 
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the integration of information in brain networks (see Meisel, Bailey, et al., 2017) especially in 

Box 1. Critical state in a dynamic network 
Consider a physical system whose large-scale behavior is not merely the sum of its smaller 
components (i.e., it is a network with interactions between nodes). Such systems can be in different 
states based on whether the network configuration is poised at minimum stability or not. As a toy 
example, the network in Figure 1 (left panel) consists of nodes with active or inactive states, where 
network dynamics are configured such that an active node becomes inactive at the rate of λ (i.e., 
decay rate), and activity in a node spreads to a random neighboring inactive node at the rate of γ (i.e., 
propagation rate). In such a network the time evolution of small-scale local activity can be spread 
chaotically if λ < γ or be absorbed before resulting in global activity patterns if λ > γ. At the border 
between these two regimes (λ = γ), the observed global patterns of activity tend to become self-similar 
over different temporal and/or spatial scales, i.e., they are scale-invariant as they follow the power-law 
distribution where power is directly proportional to frequency (Frette et al., 1996; Muñoz, 2018). In 
other words, this ‘critical’ state (λ = γ) separates the subcritical phase (λ > γ), where transient activity 
decays to a zero-activity steady state, from the supercritical phase (λ < γ), where transient activity 
turns into sustained global activity (See Figure 1 right panel for examples of activity spread under 
each of these states). Therefore, the minimal stability of the network at a critical state enables 
maximum susceptibility to perturbation by environmental inputs while avoiding sustained global activity 
that prevents sensitivity to other transient activity (Chialvo, 2004; Fraiman, Balenzuela, Foss, & 
Chialvo, 2009; Frette et al., 1996). One can conceive of brain networks similarly:  small-scale neuronal 
ensembles with short- and long-term interactions (phase-coupled electro-chemical activity) give rise to 
the emergent large-scale activity linked to cognitive functions (Chialvo, 2010; Cocchi, Gollo, Zalesky, & 
Breakspear, 2017; Fagerholm et al., 2015; Gisiger, 2001; He, 2014; Werner, 2010; Shew & Plenz, 
2013). There is evidence of self-organized criticality in the human brain’s intrinsic activity 
(de Arcangelis, Perrone-Capano, & Herrmann, 2006; Suckling, et al., 2008; Kitzbichler, Smith, 
Christensen, & Bullmore, 2009), permitting dynamic reorganization into alternative states (i.e., further 
from criticality) depending on behavioral and cognitive demands (Arviv, Goldstein, & Shriki, 2015; 
Fagerholm et al., 2015; Hahn et al., 2017; Yu et al., 2017). 

 
 
Figure 1. Left: Schematic of the dynamics of de-activation (λ) of an active node or propagation of 
activity (γ) to a neighboring node in a simple network exhibiting non-equilibrium phase transition. 
Right: Simulating propagation and decay in a 1-dimensional lattice of nodes shows how different 
relationships between activation rate (γ) and deactivation rate (λ) results in the network to be in: A. 

subcritical (λ > γ), B. critical (λ ≈ γ), or C. supercritical (λ < γ) states. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2020.05.25.114959doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.114959
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

tasks engaging working memory which require processing of information over longer periods of 

time (Kiebel et al., 2008; Chaudhuri et al., 2015; Kringelbach et al., 2015).  

Lower H in brain activity has been reported for populations with substance use (Ide et 

al., 2016), attention deficit (Sokunbi, 2018), depression (Wei et al., 2013), general 

psychopathology (Stier et al., 2021) and mild cognitive impairment (Long et al., 2018) disorders, 

as well as following sports-related concussions compared to healthy controls (Churchill et al., 

2020). Lowered H has been found to be correlated with distress and aging (Churchill et al., 

2016; Goldberger et al., 2002), and following sleep deprivation (Meisel, Bailey, et al., 2017). 

Furthermore, scale-free activity in electrophysiological and fMRI signals has been shown to be 

suppressed (i.e., decreased H) during the exertion of cognitive effort compared to more restful 

states (Churchill et al., 2016; He, 2014; Kardan, Adam, et al., 2020; Zhuang et al., 2022). For 

example, Fagerholm et al., (2015) used combined EEG and fMRI to find that the resting state is 

associated with near-critical dynamics while a focused cognitive task induces subcritical 

dynamics. Additionally, Kardan et al. (2020) found that when individuals were performing a task 

with trials of low, medium, or high working memory demands, global suppression of H in EEG 

brain activity tracked the task loads, indicating that lowered H represents a departure from the 

state of rest towards an ‘effortful’ state (i.e., potentially further away from criticality). Notably, the 

degree of H suppression monotonically tracked task demands within individuals better than 

specific EEG oscillatory components such as alpha power. Furthermore, differences in cognitive 

performance of healthy individuals has been found to be associated with the H component in 

both fMRI (Suckling et al., 2008; Stier et al., 2021), fNIRS (Zhuang et al., 2022), and EEG 

(Ouyang et al, 2020), such that higher H reflected better working memory performance and 

faster processing speed, respectively. None of these studies, however, have investigated the 

relationship of H with changes in task performance due to learning from practice.  

Taking these neural network simulation and human participant studies together, we 

hypothesized that when an exogenous task demand suppresses slow-decaying autocorrelations 

or H, the ability to process other exogenous or endogenous cognitive demands is diminished 

due to the transition into a sub-critical state (see Fagerholm et al., 2015; but also see Yu et al., 

2017 and Cocchi et al., 2017). Therefore, between two individuals initially performing equally 

well in a working memory and attention task, the person with higher H while performing the task 

is likely exhibiting more efficient information processing, as if performing an easier task despite 

the apparent equal performance. Such an advantage will eventually emerge as higher 

performance in the task, because efficient information processing facilitates any additional 

processes required for improving the execution of task (Figure 2). In other words, we propose 

that more scale-free brain activity accommodates cognitive resources for improving task 

performance, hence characterizing individual differences in practice effects. 
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Figure 2. Hypothetical relationship between differences in fMRI Hurst exponent (H) and 
differences in task performance improvements with practice. The participant shown in red, 
whose brain activity is more scale-invariant when performing the task compared to their blue 
counterpart (left panel), is expected to improve their task performance to a greater degree than 
their counterpart (right panel). 

Results 

1. Scale-invariance predicts task improvements in the dual n-back task. 

In Study 1, participants performed an audio-visual dual n-back (DNB) task (Jaeggi, 

Buschkuehl, Jonides, & Perrig, 2008) two times and watched an intermission video in between 

the task as a break (N = 56). In this task, participants had to press a button if a number (1-9) 

they heard was the same as the number they heard n trials ago (n = 2 or 3). Simultaneously, 

participants saw a square move across a 3x3 grid, and they needed to press a different button if 

the square appeared in the same location as it did n trials ago (n = 2 or 3; see Methods). We 

assessed brain H and task improvement relationships to test our hypothesis that participants 

with higher H in their fMRI activity during rest and task runs would show greater improvements 

in DNB performance from the 1st run to the 2nd run.  

For each fMRI DNB task run, task performance was operationalized with a discrimination 

index A’ averaged across all DNB task blocks (6 blocks per run). There was an average 

improvement of ΔA’ = 0.045, t(55) = 7.50, p < .001 in performance (5.5% improvement) from 

first run of DNB (A’ Mean = 0.827, SD = 0.081) to second run of DNB (A’ Mean = 0.872, SD = 

0.081), with large variability in the amount of change in performance (ΔA’) across individuals 

(SD = 0.045; Figure 3.i). All performance levels (shown in Figure 3.i) were above chance 

(A’>0.5), suggesting that the participants were engaged and compliant during the DNB runs.  
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Figure 3. (i) Performance on the dual n-back task (A’) for all participants in the first and second 
runs of the DNB. Each line connects a participant’s performance in the first run to their 
performance in the second run. (ii) Average Hurst exponent (H) for all participants in the first 
DNB run, the video run, and the second DNB run. Each line connects a participant’s average H 
across the runs. (iii) Relationship of adjusted change in performance (adj. ΔA’) with the average 
H across participants in each of the 3 fMRI runs (dots are individual participants and each color 
is a separate run). The intercept of the regression of Δ A’ on initial performance (i.e., run1 A’) is 
added to adj. Δ A’ in this figure to center the spread around the mean of adj. Δ A’ rather than 
zero. (iv) The primary latent variable from Behavioral PLS relating adj. ΔA’ to parcel-wise H in 
the DNB experiment shows a predominantly positive H pattern that is significantly positively 
expressed in all imaging runs, i.e., the first DNB run, the video run, and second DNB run. In the 
left panel, y-axis shows the correlation of the PLS weight with adj. ΔA’ at each run and error 
bars show 95% confidence intervals as indicated by bootstrapping: * for p < .05, ** for p < .001. 
All red parcels in the right panel show Bootstrap ratio ZBR values above +3 (total of 5 parcels) 
indicating a reliable positive association between H and the contrast in the left panel, i.e., higher 
H in those brain regions across all 3 brain imaging runs was related to greater performance 
improvements adjusting for baseline performance. There are no blue parcels with ZBR < −3, 
indicating an exclusively positive direction for the H-to-adj. ΔA’ association. Cross-block 

covariance (σXY) shows the proportion of covariance between the left and right panel explained 
by this LV, and the p-value is calculated from a permutation test for the eigenvalue for this LV. 

 

Across the three fMRI runs, the average whole-brain H (across the 268 brain parcels 

from Shen, et al., 2013) was quantified for each participant and the values are plotted in Figure 

3.ii. This average Hurst exponent across all brain parcels is henceforth referred to as Hwb (wb = 

Whole Brain). There is across-individual variability in the Hwb in both DNB task runs but no 

overall mean difference between the two runs (Mean = .684, SD = .046 for 1st DNB; Mean = 

.678, SD = .048 for 2nd DNB; t(55) = 1.12, p = .267). The video run also showed across-

individual variability in Hwb (Mean = .725, SD = .052), with mean Hwb being significantly higher 

than the two task runs (t(55) = 6.44, p < .001 compared to 1st DNB and t(55) = 8.80, p < .001 

compared to the 2nd DNB). The higher Hwb for video watching compared to DNB tasks follow 

previous findings of widespread decreased H with increased task difficulty (He, 2011; Churchill 

et al., 2016; Kardan, Adam, et al., 2020; Zhuang et al., 2022).  

We then assessed how performance improvements (practice effects) are related to 

individual differences in scale-free brain dynamics. First, we looked at the relationship of Hwb 

with performance change across participants from 1st to 2nd DNB run. Importantly, we wanted to 

assess practice effects independent of baseline performance, so we regressed A’0 out of ΔA’ to 

make adj. ΔA’ scores that are linearly independent from baseline performance of the 

participants. In Figure 3.iii, the relationship between the Hwb in each run with the adj. ΔA’ 

scores across participants are shown with blue, orange, and yellow scatterplots for the 1st DNB, 

the video, and the 2nd DNB runs respectively. There were no significant correlations between 

the Hwb and performance improvement across participants, though all trends were positive (r = 

.019, p = .888 for Hwb during 1st DNB; r = .213, p = .115 for Hwb during video; r = .199, p = .142).  

Second, we performed a multivariate analysis where H values were not averaged across 

the brain for each individual, but kept at parcel-wise level (268-node whole-brain gray matter 
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atlas from Shen et al., 2013 spanning cortical, subcortical, and cerebellar regions). We 

conducted Partial Least Squares (PLS) regression analysis simultaneously relating H in all brain 

parcels from all three runs to the performance improvements across participants to find the 

multivariate pattern of parcel-wise H that maximally predicts tasks improvements in a data-

driven manner. The primary latent variable from the PLS analysis (shown in Figure 3.iv) 

revealed an exclusively positive H pattern (5 parcels with Z > +3 compared to no parcel with Z < 

-3, Figure 3.iv right panel) that are significantly correlated with higher task improvement (Figure 

3.iv left panel). In DNB, higher H in 5 parcels, one located in right prefrontal, one in left 

prefrontal, one in right motor, one in left parietal and one in left cerebellum regions were reliably 

related to more task performance improvement. The threshold of ±3 for bootstrap Z for 

statistical significance in the PLS brain latent variable was chosen the same as prior work 

(Kardan et al., 2019), but the positive gradient finding was consistent for less stringent threshold 

of Z = 2 (31 parcels with Z > +2 compared to no parcel with Z < -2). Together, the Hwb and the 

PLS results provide support for our hypothesis that higher H is related to more task performance 

improvement in the NDB task.  

2. Scale-invariance predicts task improvements in the n-back task. 

In Study 2, we tested if higher H was predictive of improvements in performance of the 

n-back task (NBK) from 1st run to 2nd run in the Human Connectome Project (HCP) sample (N = 

599). In this task participants were shown a series of images and they had to indicate whether 

the current image matched the image shown n trials ago (n = 0 or 2).  

The NBK performance in each run was operationalized as the response accuracy to the 

2-back task across the task blocks [The other condition of the HCP n-back task is 0-back 

(essentially a target-detection task). Including the 0-back accuracy in the performance accuracy 

does not change the relationship between Hurst exponent and Δ Accuracy or the PLS results].  

The performance levels of participants across the two runs are shown in Figure 4.i. There was 

a significant average improvement in performance (8.6% improvement; Δ Accuracy= 0.071; 

t(598) = 21.3, p <.001) from the first run of NBK (Mean = 0.823, SD = 0.104) to the second run 

(Mean = 0.899, SD = 0.099), with relatively large variability across individuals in the amount of 

change in performance (SD = 0.082; Figure 4.i).  
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Figure 4. (i) Performance accuracy in the 2-back task for the HCP participants across the two 
NBK runs. Each line connects a participant’s performance in the two runs. (ii) Average Hurst 
exponent (H) for all participants in the 2 NBK runs. Each line connects a participant’s average H 
across the runs. (iii) Relationship of adjusted change in performance with their average H 
across participants in each of the 2 fMRI runs (dots are individual participants and each color is 
a separate run). The intercept of the regression of Δ Acc. on initial performance (i.e., run1 Acc.) 
is added to adj. Δ Acc in this figure to center the spread around the mean of adj. Δ Acc rather 
than zero. (iv) The primary latent variable from Behavioral PLS relating adj. Δ Accuracy to 
parcel-wise H in the NBK data shows a predominantly positive H pattern that is significantly 
positively expressed in the two runs. In the left panel, y-axis shows the correlation of the PLS 
weight at each run with adj. Δ Accuracy and error bars show 95% confidence intervals as 
indicated by bootstrapping: * for p < .05, ** for p < .001. All red parcels in the right panel (9 total) 
show Bootstrap ratio ZBR values above +3 indicating reliable positive H association with the 
contrast in the left panel. There are no blue parcels with ZBR < −3, indicating exclusively positive 
direction for the H-to-adj. Δ performance association. Cross-block covariance (σXY) shows the 
proportion of covariance between the left and right panel explained by this LV, and the p value 
is calculated from permutation testing for the eigenvalue for this LV. 

The average whole-brain Hurst exponent (Hwb) values in each NBK run are plotted in 

Figure 4.ii for all participants. Similar to the DNB results, there is across-individual variability in 

the Hwb in the NBK runs (Mean = .795, SD = .050 for 1st NBK; Mean = .804, SD = .049 for 2nd 

NBK). We found an overall mean difference between the two NBK runs where Hwb was 

significantly higher for the 2nd NBK (t(598) = 5.96, p < .001), which follows previous reports of 

increased fMRI H upon increased task familiarity (Churchill et al., 2016). 

Next, we investigated how individual differences in scale-free brain dynamics were 

related to the performance changes from the 1st NBK to the 2nd NBK run in two ways. First, we 
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plotted the relationship of Hwb (which is averaged across all brain parcels) with performance 

change across participants from 1st to 2nd NBK run, with the run 1 performance regressed out of 

the performance change. These relationships between the Hwb in each run with the adj. Δ 

Accuracy scores across participants are shown with blue and orange scatterplots in In Figure 

4iii. Similar to the Study 1, we found small positive trends between the Hwb and performance 

improvement across participants, though the correlation for the 2nd run was statistically 

significant even at this coarse whole-brain level of analysis (r = .078, p = .056 for Hwb during 1st 

NBK; r = .093, p = .023 for Hwb during 2nd NBK run). 

Second, we performed a PLS regression analysis to simultaneously relate H in all brain 

parcels from the NBK runs to the performance improvements across participants. As shown in 

Figure 4.iv, the primary latent variable from the PLS analysis revealed an exclusively positive H 

pattern (i.e., 9 parcels with Z > +3 compared to no parcel with Z < -3, Figure 4.iv right panel) 

that are significantly correlated with higher task improvement (Figure 4.iv left panel). In NBK, 

the 9 parcels in the latent variable were located in right and left parietal, right and left temporal, 

right and left cerebellum, left occipital (2 parcels), and left subcortex regions. This positive 

direction was consistent at the threshold of Z = 2 (there were 48 parcels with Z > +2 compared 

to no parcels with Z < -2). Together, the NBK study results for both the Hwb and the multivariate 

analysis again shows that higher H is related to greater task improvement. 

3. Scale-invariance predicts task improvements in the word completion task. 

In Study 3, we used a dataset with a completely different task than the DNB and NBK, 

again asking whether higher H is indicative of more task improvement. The study involved a 

sample of participants performing 6 consecutive runs of Choose and Solve Task (N = 44) which 

tested working-memory and crystallized knowledge (CAST; Choe et al., 2019). Briefly, in this 

task1 words with omitted letters were shown to the participant and they had to choose the right 

letter that would complete the word (see Methods). 

For each of the 6 CAST (Choe et al., 2019) fMRI runs, task performance for a participant 

was quantified as their accuracy*difficulty level of Word Completion questions they chose to 

solve (i.e., weighted accuracy scaled to 0-to-1 range; see Methods). Another difference between 

this dataset and those in Studies 1 and 2 was that difficulty of trials were tied to the performance 

of the participant. Each two consecutive correct responses would increase the difficulty of the 

following trials, and each two consecutive errors would decrease the difficulty of the following 

trials. The performance levels of participants across the 6 runs are shown in Figure 5.i. There 

was no significant average improvement of task performance from the first run of CAST (Mean 

= 0.451, SD = 0.196) to the last run (Mean = 0.473, SD = 0.211). An ANOVA showed no 

performance difference across the 6 runs (F(5,258) = .417, p = .837), but there was large 

variability in the amount of change in performance (Δ Accuracy from 1st run to 6th run) across 

individuals. In other words, some individuals showed improved performance while others 

showed worsened performance; SD = 0.301 (see spread across y-axis in Figure 5.iii).  

                                                           
1 There is also a math equation completion component to this task that is not used in the current study. 
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Figure 5. (i) Performance on the Word Completion CAST for all participants across all 6 runs. 
Each line connects a participant’s performance in the consecutive runs. (ii) Average Hurst 
exponent (H) for all participants in the 6 CAST runs. Each line connects a participant’s average 
H across the runs. (iii) Relationship of adjusted change in performance with their average H 
across participants in each of the 6 fMRI runs (dots are individual participants and each color is 
a separate run). The intercept of the regression of Δ Acc. on initial performance (i.e., run1 Acc.) 
is added to adj. Δ Acc in this figure to center the spread around the mean of adj. Δ Acc rather 
than zero. (iv) The primary latent variable from Behavioral PLS relating adj. Δ Accuracy to 
parcel-wise H in the CAST experiment shows a predominantly positive H pattern that is 
significantly positively expressed in all 6 runs, i.e., higher H in those areas was related with 
improvements in performance. In the left panel, y-axis shows the correlation of the PLS weight 
at each run with adj. Δ Accuracy and error bars show 95% confidence intervals as indicated by 
bootstrapping: * for p < .05, ** for p < .001. All red parcels in the right panel (4 total) show 
Bootstrap ratio ZBR values above +3 indicating reliable positive H association with the contrast in 
the left panel. There are no blue parcels with ZBR < −3, indicating exclusively positive direction 
for the H-to-adj. Δ performance association. Cross-block covariance (σXY) shows the proportion 
of covariance between the left and right panel explained by this LV, and the p value is 
calculated from permutation tests for the eigenvalue for this LV. 

 The average whole-brain Hurst exponent (Hwb) values are plotted in Figure 5.ii for all 

participants across the six CAST runs. Similar to the Studies 1 and 2 results, there is across-

individual variability in the Hwb in all CAST runs but also a slight overall mean difference 

between the six runs (Mean = .658, SD = .035 for 1st CAST; Mean = .666, SD = .034 for 2nd 

CAST; Mean = .673, SD = .038 for 3rd CAST; Mean = .676, SD = .038 for 4th CAST; Mean = 

.682, SD = .042 for 5th CAST; Mean = .681, SD = .043 for 6th CAST; F(5, 258) = 2.52, p = .030). 

The difference is driven by the last three runs having significantly higher Hwb compared to the 

first run (4th run: t(43) = 3.13, padj = .047; 5th run: t(43) = 4.00, padj = .004; 6th run: t(43) = 3.46, 
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padj = .019; p values are Bonferroni-adjusted for 15 pairwise comparisons). The higher H after 

task repetition follows previous reports of increased fMRI H upon increased task familiarity 

(Churchill et al., 2016) and our results in the Study 2 (HCP) dataset.   

Next, we asked how performance changes from the first to the last CAST run are related 

to individual differences in scale-free brain dynamics. Similar to Study 1, we first investigated 

the relationship of Hwb with performance change across participants from 1st to 6th CAST run, 

with the run 1 performance regressed out of the performance change. In Figure 5.iii, the 

relationship between the Hwb in each run with the adj. Δ Accuracy scores across participants are 

shown with scatterplots in different colors. Similar to Study 1, there were no significant 

correlations between the Hwb and performance improvement across participants, though all 

trends were positive (r = .116, p = .453 for Hwb during 1st CAST; r = .204, p = .184 for Hwb during 

2nd CAST; r = .143, p = .355; for Hwb during 3rd CAST; r = .091, p = .556 for Hwb during 4th CAST; 

r = .061, p = .693 for Hwb during 5th CAST; r = .239, p = .118 for Hwb during 6th CAST run). 

We then performed a PLS regression analysis to simultaneously relate H in all brain 

parcels from all six CAST runs to the performance improvements across participants from the 

first to the last run. The primary latent variable from the PLS analysis (shown in Figure 5.iv) 

again revealed an exclusively positive H pattern (i.e., 4 parcels with Z > +3 compared to no 

parcel with Z < -3, Figure 5.iv right panel) that are significantly correlated with higher task 

improvement (Figure 5.iv left panel). In CAST, higher H in 4 parcels, one located in left 

prefrontal, one in right motor, and two in the left temporal regions were reliably correlated with 

performance improvements in the task. At the less stringent threshold of Z = 2 there were 19 

parcels with Z > +2 compared to 4 parcels with Z < -2). Together, the Hwb and the PLS results 

again show that higher H is related to greater task improvement upon repetition in the CAST 

task.  

4. Exploring the stability of spatial patterns of H and their overlap across tasks. 

We performed some exploratory analyses to assess the stability of the spatial patterns of 

H in the PLS regressions, as well as their overlap across different tasks. These results are 

outlined below and detailed in the supplementary sections 1-5.  

Overlap of parcel-wise H latent variables across datasets:  

At the bootstrap ratio Z = 3, there were no overlapping parcels (from the 268 parcels of 

the Shen et al., 2013 parcellation) in the DNB, CAST, and NBK PLS latent variables (i.e., no 

overlap between parcels indicated in Figures 3.iv, 4.iv, and 5.iv). The lack of overlap was 

independent of specific Z threshold, as the non-thresholded primary brain PLS LVs across the 

three tasks were dissimilar (r1,2 = -.016, p = .792; r1,3 = .032, p = .611; r2,3 = -.176, p = .004, 

where 1, 2, and 3 indices refer to DNB, NBK, and CAST tasks, respectively). These exploratory 

results are discussed further in the discussion section. 

Stability of parcel-wise H latent variables based on different analytic choices:  

First, to assess the stability of the PLS results associating H in brain parcels to 

improvements in task performance, we repeated the analyses with a different whole-brain 

parcellation consisting of 392 parcels (Craddock et al., 2012). Across all three datasets, we 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2020.05.25.114959doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.114959
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

found consistent PLS results with the Shen 268 version of the analysis where brain H positively 

loaded on higher task performance improvements. However, the stability of the spatial brain 

pattern was low to moderate (r = .375, p<.001 in DNB, r = .478, p<.001 in NBK, and r = .174, 

p<.001 in CAST). These results are detailed in Supplementary section 1. 

Next, to assess if differences in the temporal structures of tasks contributed to the 

reported findings, we recalculated the H exponents in the three datasets after regressing out the 

temporal block structure in each task run from the BOLD timeseries. We then repeated the PLS 

regressions relating adj. Δ Accuracy to parcel-wise H.  The spatial pattern in brain H latent 

variable was highly correlated with the original analysis in all three datasets (r > .952, p<.001). 

These results are detailed in Supplementary section 2. 

 Finally, we repeated the PLS analyses using H estimated from Wavelet Leaders 

Multifractal method (Jaffard et al., 2007; Wendt et al., 2007) instead of DFA to supplement our 

evaluation of linear fit of the H exponents (supplementary section 3) to the fMRI data. This 

analysis is detailed in supplementary section 4, and the PLS results showed medium to high 

correlation between the spatial patterns of H from the WLMF method compared to our DFA-

based results shown in Figures 3-5 (r = .647, p<.001 for DNB; r = .757, p<.001 for NBK; and r = 

.473, p<.001 for CAST; see supplementary section 4.1 for details). 

Comparing the mean H across tasks:  

When comparing the mean H values between different tasks, we found that the NBK 

task from the HCP dataset had significantly higher Hwb compared to the task runs in DNB (two-

sample t(653) =18.4, p < .001) and CAST (two-sample t(641) = 17.8, p < .001) datasets. 

Additionally, as expected, the video run in the DNB study had significantly higher mean H 

compared to the DNB runs of the same participants (t(55) = 8.21, p < .001) or the CAST runs of 

other individuals from the same scanner (two-sample t(98) = 5.89, p < .001). These exploratory 

results are discussed further in the discussion section. 

Discussion 

Criticality is a unifying and therefore appealing framework, as it allows for the description 

of the many ways in which information flows through the brain at different spatiotemporal scales 

(e.g., Scott et al., 2014). Previous work has theorized that the shift from resting-state near-

critical dynamics to a focused, task-induced subcritical state may be to switch from the 

advantage of higher dynamics range and state repertoire to a state of lower dynamic range that 

can reduce interference during task performance (Fagerholm et al., 2015).   

Importantly, the variability in H across individuals is comparable to the size of task-

induced H suppression effects. Therefore, we think it is important to combine and compare 

state-like and trait-like H differences to better understand the relationship of H with cognitive 

performance. We hypothesized that the temporal and spatial efficiency of information transfer 

between the nodes of brain networks is diminished when H is low. Specifically, given the 

modulation of H with cognitive exertion (Kardan et al., 2020; Zhuang et al., 2022; Churchill et al., 

2016), we hypothesized that between-individual differences in fMRI scale-invariance when 

performing equally well on a task could signal differences in the potential for further 
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improvement in task performance, as higher H may indicate the task is being performed more 

‘easily’ and closer to a resting critical state.  

Previous research has indicated trait-like patterns of higher H across participants being 

related to superior cognitive performance (Suckling et al., 2008; Stier et al., 2021; Zhuang et al., 

2022; Ouyang et al, 2020). Here we explored a more nuanced topic: whether higher trait H at 

baseline, would predict improvements in task performance with practice, which combines 

elements of state and trait factors. Across three datasets with different cognitive tasks, 

differences in scale-free dynamics of the BOLD signal were reliably associated with cognitive 

task improvement with higher H values being related to improved behavioral performance. 

Patterns of higher H of fMRI activity were significantly associated with more task improvement, 

even when adjusting for baseline task performance, in DNB, CAST, and NBK tasks. Taken 

together, our findings provide evidence for our hypothesis that more scale-free brain activity 

accommodates cognitive resources for improving task performance.  

We also compared the differences in mean H across the three different studies. These 

results are tempered by differences in signal-to-noise ratio (SNR) across fMRI datasets that 

could originate from different scanners, which are known to impact H (Meisel et al., 2017). The 

NBK task from the HCP dataset had significantly higher Hwb compared to the task runs in DNB 

and CAST datasets. This is expected from previous studies showing H is suppressed more with 

more difficult tasks (Churchill et al., 2016; Kardan et al., 2020), as the NBK data consisted of 0-

back and 2-back task blocks, both of which are considerably easier than the dual 2-back and 

dual 3-back in the DNB dataset and the Word completion task in the CAST dataset. As 

expected, the video run in the DNB study had significantly higher mean H compared to the DNB 

runs of the same or the CAST runs of other individuals from the same scanner. However, it 

should be mentioned that scanner, image acquisition, SNR, and some preprocessing 

differences between the HCP dataset and the DNB and CAST datasets (which were collected 

using the same scanner) may be related to the mean H values as well. For example, the video 

watching run in the DNB dataset still has lower mean H compared to the HCP dataset’s NBK 

task (two-sample t(653) = 11.4, p < .001). One possibility for this could be due to the delay of 

fMRI scale-free dynamics in returning to baseline H after performing a task, as the video 

watching run in the DNB study occurs shortly after the 1st DNB task (e.g. Barnes et al., 2009 

report ~6 min delay of fMRI H to recover to rest levels after a 2-back task).  

One question is whether these differences in H reflect state-based or trait-based factors 

with respect to differences in practice effects. The state-based interpretation of these data is 

that individuals who were in a higher H state at the time of the experiment processed the tasks 

more efficiently, leaving cognitive resources available for additional learning of task 

characteristics and forming better task-relevant memories and cognitive strategies. The higher 

state of H could be due to e.g., lower stress or fatigue (Churchill et al., 2015). The additional 

encoding of task-relevant information then enabled these individuals to perform better the 

second time around. 

The trait-based interpretation of these data/results can be made in two related, but not 

equivalent ways. Both relate to individual differences in an unobserved trait such as fluid 
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intelligence and/or WM capacity. The first interpretation assumes no direct relationship between 

H and trait WM/IQ absent from cognitive load.  Under this account the tasks utilized here 

demanded less cognitive effort from task improvers due to them having higher fluid intelligence 

or working-memory capacity, which is in line with the neural efficiency intelligence hypothesis 

(Neubauer & Fink, 2009a & 2009b). The lower amount of exerted effort then led to less 

suppression of H (Barnes et al., 2009; Kardan et al., 2020). This means that lower H during 

tasks for participants whose performance did not improve (or decreased) is a proxy for their 

amount of cognitive exertion, which is high, and therefore they are not able to improve due to 

their WM capacity limitations. As such, higher or lower H is not a cause for more or less 

performance improvements, but a consequence of individuals being in different states of 

cognitive effort exertion.  

The second trait-based interpretation assumes a direct and rigid relationship between H 

and WM capacity/IQ at all times. In other words, participants whose performance improved 

more may have a more critically-organized functional brain network dynamics at baseline due to 

trait-level characteristics (e.g., higher WM capacity or IQ). These individuals then have 

consistently higher H than others, even when not performing a task (e.g., during the video 

watching runs in the DNB study). Their higher H during cognitive tasks then enable them to 

more readily improve their performance due to advantages of criticality discussed before (He, 

2011; Kitzbichler et al., 2009; Proekt, Banavar, Maritan, & Pfaff, 2012). Based on this account, 

we may expect the same spatial brain patterns of higher H to reflect the high-performance trait 

across the individuals regardless of the task. However, the involved brain regions in the PLS 

latent variable from the DNB task and those in the PLS for NBK or CAST are not overlapping. 

We compared the PLS loadings on the parcel-wise brain H values across the DNB, CAST, and 

NBK tasks to determine if these positive H patterns that are predictive of performance 

improvements were consistent across the tasks. We found that the spatial patterns of H related 

to higher performance improvement in DNB, CAST, and NBK tasks were dissimilar. This 

suggests that unlike the consistent direction of [higher H]  [more performance improvement] 

across the tasks, the predictive H↑ features (i.e. brain regions) are not task-general, though it is 

not clear if the patterns are specific to task demands or noisy in any one dataset. 

In addition to contributions to the criticality framework and theory, our findings also have 

practical implications. Specifically, previous clinical research has proposed that variation in 

practice effects provide unique diagnostic and treatment information for clinical populations. For 

example, older adults that show the expected practice effects in a test respond more to 

treatment for cognitive decline than those that do not show practice effects (Calero & 

Navarro, 2007; Duff, Beglinger, Moser, Schultz, & Paulsen, 2010; Fiszdon et al., 2006; Sergi, 

Kern, Mintz, & Green, 2005; Watzke, Brieger, Kuss, Schoettke, & Wiedl, 2008). However, the 

same line of research has found individual differences in practice effects for many cognitive 

tests to be uncorrelated with a wide range of demographic and cognitive ability scales that 

typically influence cognitive scores themselves (Duff et al, 2012; but also see Calamia, Markon, 

& Tranel, 2012). Our results suggest that H provides a promising avenue for future research in 

this field, as higher H was indicative of performance improvements across different tasks 

irrespective of initial task performance at baseline (see also Supplementary section 5).  
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There are a number of limitations to our study. First, it is important to consider alternative 

processes unrelated to criticality that may yield power law scaling in empirical brain data (see 

Cocchi et al., 2017, Farmer 2015). This is particularly challenging to assess in the relatively 

narrow-band fMRI data where, in addition to being inherently slow, drift and physiological noise 

are filtered out, thus restricting the temporal scales to fewer than two orders of magnitude 

(roughly .01 to .1 Hz; see Cocchi et al., 2017). Additionally, when hypothesizing about potential 

benefits of higher brain H for improvements in task performance, we considered the findings 

from Fagerholm et al., 2015. In this simultaneous EEG and fMRI study, Fagerholm et al., (2015) 

posited that shifts toward a sub-critical brain state occur when the participants are sustaining 

attention to the task compared to rest. However, in a potential challenge to this view, Yu et al., 

2017 hypothesized that activity during cognitive processing still exhibits power law scaling and 

that the apparent shift to sub-criticality could be a result of unaccounted for changes in firing 

rate rather than changes in dynamic range (Yu et al., 2017). Second, as we mentioned, 

distinguishing state- versus trait-based contributions to individual differences in practice effects 

is difficult in the current study. Future studies should investigate the state vs. trait components of 

between-subjects variability in H by assessing it across multiple days of testing in both resting-

state and task runs. Third, the spatial patterns of H (i.e., the brain regions involved) were strictly 

data-driven and showed low to moderate stability with regards to the brain parcellations used 

(stability was moderate to high for other sensitivity analyses outlined in the Results section 4 

and detailed in Supplementary results sections 1-4). Future studies can interrogate the degree 

to which H predictors of changes in performance vary specifically with different cognitive tasks 

or share common nodes.  

In conclusion, the current study investigated the relationship between differences in 

practice-based improvements in cognitive task performance with respondents’ level of scale-

free BOLD activity. Across three groups of participants performing different tasks, we found that 

individuals with higher fMRI H at the time of cognitive tests were more likely to improve their 

task performance when repeating the same cognitive task. Importantly, this was true even when 

controlling for baseline task performance, meaning that H provides predictive power for 

individual differences in practice effects above and beyond baseline behavioral performance. In 

addition, while building upon previous work relating brain scale-invariance with overall 

behavioral performance, these results are the first to show how measures of fMRI scale 

invariance relate to changes in behavioral performance. These results provide empirical support 

for the hypothesis that brain networks impart functional advantages when their activity is in a 

more scale-free state. We propose that individual variability in H across the brain may hold 

promise as a neuro-marker of learning potential, which has wide-ranging theoretical and applied 

implications for cognitive neuroscience. 

Methods 

Study 1: Dual n-back task (DNB) dataset 

Participants and procedure. In Study 1, we recruited 68 participants (41 female) aged 

between 18 and 40 years old (mean = 24.3 years, SD = 5.6 years). Twelve participants were 

excluded from analysis due to the following reasons: two participants were excluded due to 
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incomplete fMRI data because of discomfort before the scanning session was finished; two 

were excluded due to technical issues with audio/visual during a run; five were flagged for 

sleepiness during the data acquisition as indicated by their eye-movement behavior by two on-

site researchers (eye-movements were monitored using an MR-compatible EyeLink 1000 

system); and five were excluded after the primary data quality check (see fMRI data acquisition 

and preprocessing section). Our final sample was N = 56. All participants had self-reported 

normal or corrected-to-normal visual acuity and normal color vision. All participants provided 

their written informed consent as approved by the University of Chicago Institutional Review 

Board and were compensated $35 for participation plus a potential bonus of $10. Participants 

were informed before the scanning session that if they “stayed attentive and still” during scans 

they would receive a $10 bonus. All participants who were not excluded based on the stated 

criteria above successfully received the bonus.  

Following the collection of anatomical scans, 3 functional runs were acquired: a 7-min 

dual n-back run, a 10-min passive video watching run, and a second 7-min dual n-back run. 

Participants were randomly assigned to passively watch one of two videos during the video run: 

a video of non-nature tourist attractions in Europe or a video of outdoor nature scenes. Videos 

were roughly equated for aesthetic preference as rated by a different sample of 30 participants 

prior to this study (Likert scale 1-7, Mnature = 5.47, SD = 1.14 and Murban = 4.77, SD = 1.38), and 

did not include sound. After the scan session, participants were asked to give a preference 

rating (1-7 scale) for the video they watched. Ratings were included in subsequent analyses as 

a potential nuisance variable. At the beginning of each dual n-back run, participants were 

instructed to perform the task to the best of their ability. Linear regression of ΔA’ on video type 

(i.e., nature vs. urban) and preference rating for the video failed to find a significant relationship 

between video type or video rating and change in performance (t = 0.403, p = 0.688 for video 

type and t = -0.870, p = 0.388 for preference rating). Therefore, we collapsed the participants on 

the video types for the rest of the analyses. 

Task. In an n-back task, participants are instructed to press a button if the current visual or 

auditory stimulus matches the stimulus that was presented ‘n’ previous trials back. The dual n-

back (DNB) is a variant of this task in which two stimuli are presented simultaneously. Here, 

these stimuli were spoken integers, 1-9, and a blue square whose position varied in a 3 x 3 grid 

(see Figure 5). The paradigm was implemented in MATLAB and its code is publicly available at 

https://enl.uchicago.edu/stimuli-software/ (Layden, 2018). 

On each trial of the dual n-back task, participants pressed their right index finger, right 

middle finger, both fingers, or neither finger, to indicate a position match, a number match, both 

a position and number match, or no match. Each trial lasted 3000 ms and the button press was 

permitted throughout the trial. Immediate feedback was provided to participants via red 

(incorrect press) or green (correct press) text at the bottom of the screen (see Figure 6). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2020.05.25.114959doi: bioRxiv preprint 

https://enl.uchicago.edu/stimuli-software/
https://doi.org/10.1101/2020.05.25.114959
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

Figure 6. Audio-visual dual n-back task paradigm. In this example of the first three trials in a 

dual 2-back round, the participant correctly pressed their index finger for a match between the 

current and 2-back position of blue square, but falsely pressed their middle finger when they 

should not have (i.e., 2 does not match 9; so the correct response was only an index finger 

response and not an index finger and middle finger response). This is an example of 1 hit and 1 

false alarm. 

Each functional MRI run included 6 blocks of the dual n-back task (four 2-back blocks 

and two 3-back blocks). Each block contained 20+n trials (n = 2 or 3), resulting in a total of 134 

trials per dual n-back fMRI run. Blocks were separated by a 10-sec countdown that indicated 

whether the upcoming task would be 2-back or 3-back. As in the practice, the discrimination 

index A’ (Stanislaw & Todorov, 1999) was used as the main performance measure. A’ is similar 

to other sensitivity indices such as d’, but is more robust to non-normality of responses 

(Stanislaw & Todorov, 1999). Furthermore, unlike d’, A’ = 0.5 corresponds to chance level 

performance, A’ = 1 corresponds to perfect performance, and A’<0.5 corresponds to 

performance that is systematically worse than chance. A’ is calculated as follows: 

A’ = 0.5 + 𝑠𝑖𝑔𝑛
(𝐻𝑖𝑡−𝐹𝐴)∗[(𝐻𝑖𝑡−𝐹𝐴)2+|(𝐻𝑖𝑡−𝐹𝐴)|]

(4∗𝑚𝑎𝑥(𝐻𝑖𝑡,𝐹𝐴)−4∗𝐻𝑖𝑡∗𝐹𝐴)
 

Where Hit is the number of correct button presses and FA is the number of false alarms for both 

numbers and positions in a task block, where sign(Hit - FA) equals: +1 if (Hit - FA) > 0, 0 if (Hit - 

FA) = 0, and -1 if (Hit - FA) < 0, and where max(Hit, FA) equals the bigger value between Hit 

and FA. 

Adjusted Δ A’. Consider y = (A’2 – A’1) and X = a matrix containing ones in the first column 

andA’1 in the second column (i.e., A’ from the first run of the task). Then adj. Δ A’ was the 

residual of regression of y on X: 

adj. Δ A’  =  y −  X 𝛽̂, where : 𝛽̂ =  (X′X)−1X′y is the coefficients of the least squares fit of y on X. 

 

Study 2: n-back task (NBK) dataset 
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Participants. In Study 2, we analyzed data from the Human Connectome Project (HCP) release 

S1200, a multi-site consortium that collected MRI, behavioral, and demographic data from 1113 

participants (final N = 599 after scan exclusions based on head motion and quality control). 

Task. The n-back task in the HCP dataset (Barch et al., 2013) includes two runs of eight blocks 

each with 10 trials in each block. A picture is shown in every trial and Participants are 

instructed to press a button for every picture. If the currently presented picture matches the 

cued picture (0-Back, 4 blocks in each run) or the same picture that was presented two pictures 

before (2-Back, 4 blocks in each run), participants press one button with their right index finger. 

For non-matching pictures, participants press a second button with their right middle finger. At 

the start of each block, a 2.5 s cue indicates the task type (“2-back” or “target=” and a photo of 

the target stimulus).  

Two blocks of 0-back and two blocks of 2-back contain tools (1 in each run), another two 

in each task contain body parts, another two contain neutral faces, and another two contain 

places. There are 24 unique stimuli per type presented in separate blocks, each trial is 2.5 s (2 s 

presentation of a stimulus, followed immediately by a 500 ms fixation cross) resulting in 160 

total trials in 16 blocks of n-back. Four fixation blocks (15 s each) also occur in each run after 

every other n-back block. Accuracy in each run was calculated as the proportion of correct 

responses in the 2-back trials across the 4 two-back blocks of the run. 

Adjusted ΔAccuracy. Consider y = (Acc2 – Acc1) and X = a matrix containing ones in the first 

column and accuracy in the first run (Acc1) in the second column. Then adj. ΔAcc was the 

residual of regression of y on X: adj. ΔA’  =  y −  X 𝛽̂, where 𝛽̂ is the coefficients of the least 

squares fit of y on X: 𝛽̂ =  (X′X)−1X′y. 

Study3: Word completion task (CAST) dataset 

Participants. In Study 3, an independent sample of subjects from the same site as Study 1 was 

provided by Choe, Jenifer, Rozek, Berman, & Beilock (in preparation). This dataset consists of 

fMRI runs for 49 participants aged between 18-35 (final N = 44 after scan exclusions based on 

head motion and quality control). All participants provided their written informed consent as 

approved by the University of Chicago Institutional Review Board. 

Task. Participants performed a math and word Choose-and-Solve Task (CAST) for 6 minutes in 

every run. The fMRI acquisition parameters and preprocessing pipeline were the same as in 

Study 1. CAST involves choosing to solve math equation completion and word completion tasks 

and is originally designed for detecting math anxiety and math avoidance behavior (Choe et al., 

2019). The participants performed the CAST in 6 runs in fMRI scanner which provided us with a 

different learning/practice paradigm to complement the dual n-back study. The questions were 

designated as having a 1-7 difficulty level (Choe et al., 2019). The performance of participants in 

CAST was quantified as their accuracy*difficulty level of questions they solved, since the 

question difficulty was adaptive in a manner that two correct answers in a row would result in an 

increase in difficulty and one wrong answer would result in decrease in question difficulty. 

Because the number of trials where difficult math questions (with higher reward) were chosen 
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over easy math questions (with lower reward) was very sparse across participants, performance 

was quantified only over word-completion trials.  

In word completion trials, participants see words with omitted letters replaced by ~ and 

☐ characters. The participant has to quickly choose (< 2000 msec) the correct letter that should 

be in the square (i.e., ☐). For example, for E~☐DE~CE, the correct choice is letter ‘I’ (the word 

is ‘evidence’).  

Adjusted ΔAccuracy. Similar to the other tasks, we regressed out accuracy in run 1 out of the 

change in accuracy to construct adj. ΔAcc for CAST. Specifically, if y = (Acc6 – Acc1) and X = a 

matrix containing ones in the first column and accuracy in the first run (Acc1) in the second 

column, then adj. ΔAcc was the residual of regression of y on X: adj. ΔA’  =  y −  X 𝛽̂, where 𝛽̂ is 

the coefficients of the least squares fit of y on X: 𝛽̂ =  (X′X)−1X′y. 

fMRI data acquisition and preprocessing for Studies 1 and 3 

 Images were acquired on a Philips Achieva 3.0 T scanner with a standard quadrature 

32-channel head coil at University of Chicago MRI Research Center. A T1-weighted gradient 

echo (MP-RAGE) was used to acquire high-resolution anatomical images for each participant 

(TR = 8 ms, TE = 3.5 ms, flip angle = 8°, FOV = 240 mm × 228 mm× 171 mm, matrix size = 240 

× 228, in-plane resolution 1.0 mm2, slice thickness = 1.0 mm, 171 sagittal slices). Functional T2* 

weighted images were acquired using an echo-planar sequence (TR = 2000 ms, TE = 26 ms, 

flip angle = 77°, FOV = 208 mm × 208 mm× 143.25 mm, matrix size = 64 × 64, in-plane 

resolution 3.25 mm2, slice thickness = 3.25 mm with 0.25 mm gap, 41 transverse-oblique slices 

parallel to the A-P line) during the dual n-back runs (241 volumes for each run) and the video 

run (305 volumes).  

Initial data quality checks were performed using MRIQC (Esteban et al., 2017), which 

revealed excessive head movement and low tSNR (peak frame displacement > 2 mm, mean 

frame displacement > 0.2 mm, or tSNR < 50) for 5 participants during at least one of the 

scanning runs. These participants were excluded from analysis. The first 5 volumes of each 

functional run were discarded for all participants.  

 The preprocessing was performed using FMRIPREP version 1.5.0 (Esteban et al., 

2019), a Nipype (Gorgolewski et al., 2011) based tool. Each T1w (T1-weighted) volume was 

corrected for INU (intensity non-uniformity) using N4BiasFieldCorrection v2.1.0 and skull-

stripped using antsBrainExtraction.sh v2.1.0 (using the OASIS template). Spatial normalization 

to the ICBM 152 Nonlinear Asymmetrical template version 2009c was performed through 

nonlinear registration with the antsRegistration tool of ANTs v2.1.0 (Avants et al., 2009), using 

brain-extracted versions of both T1w volume and template. Brain tissue segmentation of 

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-

extracted T1w using fast (FSL v5.0.9). 

 Functional data was motion corrected using mcflirt (FSL v5.0.9). "Fieldmap-less" 

distortion correction was performed by co-registering the functional image to the same-subject 
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T1w image with intensity inverted constrained with an average fieldmap template, implemented 

with antsRegistration (ANTs). This was followed by co-registration to the corresponding T1w 

using boundary-based registration with six degrees of freedom, using flirt (FSL). Motion 

correcting transformations, field distortion correcting warp, BOLD-to-T1w transformation and 

T1w-to-template (MNI) warp were concatenated and applied in a single step using 

antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation. 

  Frame-wise displacement (Power et al., 2013) was calculated for each functional run 

using the implementation of Nipype. Following Power et al., (2014) we performed a 36 

parameter confound regression that included: the timecourses of mean CSF signal, mean global 

signal, mean white matter signal, the 6 standard affine motion parameters (x, y, z, pitch, roll and 

yaw), their squares, their derivatives, and their squared derivatives of these signals. We also 

simultaneously regressed out linear and quadratic trends to remove drift related signals. This 

was followed by the application of a bandpass filter with a highpass cutoff of .008 Hz and a 

lowpass cutoff of .12 Hz via the 3dBandpass command in AFNI. 

After preprocessing, the whole brain was parcellated by applying a 268-node whole-

brain gray matter atlas spanning cortical, subcortical, and cerebellar regions (Shen et al., 2013). 

fMRI data acquisition and preprocessing for Study 3 was the same as Study 1. Six of the 268 

parcels had significant signal drop-out in 9 of the participants and were excluded from further 

analyses to preserve sample size. The fMRI signal time course in each run was averaged 

across brain voxels within each of the 262 nodes (i.e. brain parcels), and H was estimated in 

each parcel for all the runs in each participant. 

fMRI data acquisition and preprocessing for Study 2 

In Study 2, we analyzed data from the Human Connectome Project (HCP) release 

S1200. We downloaded the minimally preprocessed, open-access n-back fMRI data from 

connectomeDB (https://db.humanconnectome.org/). The details of the acquisition parameters 

and prepossessing of these data can be found in (Glasser et al., 2013), and the additional 

preprocessing steps to the minimally preprocessed data are the same as (Kardan et al., 2022). 

Briefly, preprocessing for task data included gradient nonlinearity distortion correction, fieldmap 

distortion correction, realignment, and transformation to a standard space. In addition, we 

applied additional preprocessing steps to the minimally preprocessed task data. This included a 

high-pass filter of 0.001 Hz via fslmaths (Jenkinson et al., 2012), and the application of the ICA-

FIX denoising procedure using the HCPpipelines (https://github.com/Washington-

University/HCPpipelines) tool, which regresses out nuisance noise components effectively, 

similar to regressing out motion parameters and tissue type regressors (Parkes et al., 2018). 

The cleaned volumetric BOLD images were spatially averaged into 268 predefined parcels 

(Shen et al., 2013) similar to Studies 1 and 3. 

For participants to be included in the Study 3 analyses, both of their n-back fMRI runs 

had to have low head motion (mean FD < 0.2 mm and max FD < 2 mm similar to the DNB and 

CAST datasets). Additionally, we removed participants with any quality control flags from the 
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HCP quality control process (variable QC_Issue), in either of their n-back fMRI runs, resulting in 

a final sample of N = 599 participants. 

Estimation of scale-free activity (H)  

 Following our hypothesis, to evaluate the degree of scale-free dynamics of BOLD and its 

relationship to practice effects between individuals, we estimated the Hurst Exponent (H) of the 

fMRI timeseries from all 3 functional runs in for each participant (i.e., DNB-1, video watching 

and DNB-2). There are many different methods to estimate H. Here we used both detrended 

fluctuations analysis (DFA) and wavelet leader multifractal (WLMF) formalisms, both of which 

are robust to signal non-stationary and low-frequency confounds (Churchill et al., 2016; 

Hardstone et al., 2012; Jaffard, Lashermes, & Abry, 2007; Peng et al., 1995). The estimations 

were done on a parcel-wise level, and the DFA estimations of H were highly correlated with the 

first-order cumulant (i.e., mono-fractal) estimations of H from the WLMF. As such, further 

analysis was carried out using the DFA estimates, as this method is more computationally 

efficient. 

To elaborate DFA, consider the linearly detrended BOLD timeseries 𝑥(𝑡) in a parcel over 

a run of total length 𝑇. There are 3 runs in the DNB study (the first dual n-back run, the video 

run, and the second dual n-back run), with the task runs including 3 blocks of dual 2-back and 3 

blocks of dual 3-back each. In the HCP dataset there are 2 runs of the n-back task(each 

containing 4 blocks of 0-back and 4 blocks of 2-back). Finally, in the CAST dataset there are 6 

runs of the choose-and-solve word completion task  containing 20 blocks in total. This signal is 

first integrated and transformed into a cumulative sum 𝑦(𝑡), where 𝑦(𝑡) = ∑ (𝑥(𝑖) − 𝑥𝑎𝑣𝑒)𝑡
𝑖=1 ; 𝑡 =

1, … , 𝑇. 𝑥(𝑖) is the 𝑖th data point in the timeseries and 𝑥𝑎𝑣𝑒 is the average amplitude over all of 

the timeseries. Next, 𝑦(𝑡)is divided into windows of equal length n. A least-square linear 

regression is fit to each subdivision of 𝑦(𝑡) with length 𝑛, with the fitted values denoted as 𝑦𝑛(𝑡). 

Next we detrend the integrated timeseries 𝑦(𝑡) by subtracting the local trend (i.e., the local 

least-squares straight-line fit), 𝑦𝑛(𝑡) in each window. The root-mean-square magnitude of 

fluctuations on the detrended data 𝐹(𝑛) is then computed over a range of window sizes: 

𝐹(𝑛) = √
1

𝑇
∑[𝑦(𝑡) − 𝑦𝑛(𝑡)]2

𝑇

𝑡=1

 

Where 𝑛 = 50 TRs is maximum window size corresponding to 0.01 Hz minimum frequency in 

the current study, and 𝑛 = 3 TRs is minimum window size for fitting a line with a non-zero 

residual. Finally, the linear fit of 𝑙𝑜𝑔(𝑛) vs. 𝑙𝑜𝑔(𝐹(𝑛)) is calculated and the slope of this fitted line 

is used as the estimate of the degree of scale-invariance (H) for the parcel time-series 𝑥(𝑡). A 

slope of H = 0.5 indicates no long-range correlation in the signal (i.e., a random walk), while H 

values closer to 1 indicate greater scale-invariance.  

Partial Least Squares Analysis 
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 Multivariate methods applied to fMRI data offer a novel opportunity to discover 

meaningful associations between distributed patterns of brain activities and behavioral 

measures across runs in a single statistical model (e.g., Kardan et al., 2019; 2020), as opposed 

to univariate methods where conditions are regressed on every cluster of voxels separately. 

Partial Least Squares (PLS; Krishnan et al., 2011; McIntosh and Lobaugh, 2004) analysis was 

used to identify the relationship between the set of parcel-wise H values with group-by-run 

treatment levels. The PLS implementation software was downloaded from Randy McIntosh's lab 

at: https://www.rotman-baycrest.on.ca/index.php?section=84. In PLS, the goal of the analysis is 

to find weighted patterns of the original variables in the two sets (termed “latent variables” or 

“LVs”) that maximally co-vary with one another.  Briefly, PLS is computed via singular value 

decomposition (SVD). The covariance between the two data sets X (parcel-wise H values 

across runs) and Y (continuous Δ Accuracy values) is computed (X'Y) and is subjected to the 

SVD: 

𝑆𝑉𝐷(𝑋′𝑌) = 𝑈𝑆𝑉′ 

Where U and V (the right and left singular vectors) provide weights (or “saliences”) for the two 

sets (parcel-wise H across runs and Δ Accuracy), respectively. The scalar singular value on the 

diagonal matrix S is proportional to the “crossblock covariance” between X and Y captured by 

the LV, and is naturally interpreted as the effect size of this statistical association (reported as 

σXY). Additionally, we corelated the U scores with the V scores in each PLS Latent Variable to 

calculate the pseudo R2 in that LV. 

 In our study, a set of 1000 covariance matrices were generated by randomly permuting 

condition labels for the X variables (brain set). These covariance matrices embody the null 

hypothesis that there is no relationship between X and Y variables. They were subjected to SVD 

resulting in a null distribution of singular values. The significance of the original LV was 

assessed with respect to this null distribution. The P value was estimated as the proportion of 

the permuted singular values that exceed the original singular value.  

 Bootstrapping was used to determine the reliability with which each parcel’s H 

contributes to the overall multivariate pattern. A set of 5000 bootstrap samples were created by 

re-sampling subjects with replacement within each run (i.e., preserving Δ Accuracy values). 

Each new covariance matrix was subjected to SVD as before, and the singular vector weights 

from the resampled data were used to build a sampling distribution of the saliences from the 

original data set. The purpose of a constructed bootstrapped sampling distribution is to 

determine the reliability of each salience (i.e., saliences that are highly dependent on which 

participants are included in the analysis will have wide distributions). For the brain parcels, a 

single index of reliability (termed “bootstrap” ratio, or “Z” value) was calculated by taking the 

ratio of the salience to its bootstrap estimated standard error. A Z for a given connection is large 

when the connection has a large salience (i.e., makes a strong contribution to the LV) and when 

the bootstrap estimated standard error is small (i.e., the salience is stable across many 

resamplings). Here, parcels with Z > 3 or Z < −3 (equivalent to p~0.0025, 2-tailed, under normal 

distribution assumptions) were selected as showing reliable H relationship to Δ Accuracy, 

similar to Kardan et al., 2019; 2022. However, we also assessed Z > 2 or Z < −2 threshold 
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(p~0.05) to assess whether positive associations were dominant for less conservative 

thresholds. 
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Supplementary Results 

Supplementary section 1. PLS results from a different parcellation (Craddock 392).  

To assess the stability of the PLS results associating H in brain parcels to improvements in task 

performance, we repeated the analyses with a different whole-brain brain parcellation consisting 

of 392 parcels (Craddock et al., 2012). Across all three datasets, we found consistent PLS 

results with the Shen 268-node parcellation scheme. For each analysis, H positively loaded on 

higher task-performance improvements, i.e., increases in H were related to improvements in 

task performance. The stability of the spatial brain patterns was low to moderate (see below for 

details). Specifically, we correlated the brain LV1 from Craddock parcels and Shen parcels in 

each PLS by up-sampling both versions to the common voxel space, and tested the correlation 

between the two patterns against correlations between up-sampled permuted brain LV values 

(1000 permutations). 

Dual n-back task PLS results: In the DNB task, we found a pattern of higher H across brain 

parcels (using Craddock 392 parcels) which was related to greater improvement in the dual n-

back task from run1 to run2, adjusted for performance in run1 (adj. ΔA’). The spatial pattern in 

the brain H latent variable was moderately correlated with the original analysis (i.e., Shen 268-

node parcellation scheme) when projected back into voxel space (r = .375, p<.001). This shows 

that the granularity of the brain parcellation impacts the spatial pattern of the brain latent 

variable associated with performance improvement in the PLS, but the general direction is 

unchanged (i.e., higher H is related to performance improvement). Figure S1 shows the PLS 

result for the Craddock 392-node parcellation in the dual n-back study. 

 

Figure S1. The primary latent variable from Behavioral PLS relating adj. ΔA’ to parcel-wise H in 

the DNB experiment with Craddock 392 parcels. All red parcels (total of 8) in the right panel 

show Bootstrap ratio ZBR values above +3 and there are no blue parcels with ZBR < −3, indicating 

an exclusively positive direction for the H-to-adj. ΔA’ association. Cross-block covariance (σXY) 

shows the proportion of covariance between the left and right panel explained by this LV, and 

the p-value is calculated from a permutation test for the eigenvalue for this LV. 

 

N-back task PLS results: In the HCP dataset, we again found a pattern of higher H using the 

Craddock 392 brain parcels which was related to greater improvement in the n-back task from 
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run1 to run2, adjusted for performance in run1 (adj. ΔAccuracy). The spatial pattern in the brain 

H latent variable was moderately correlated with the LV from the original Shen 268-node 

analysis (r = .478, p<.001). This shows that the granularity of the brain parcellation moderately 

impacts the spatial pattern of the brain latent variable associated with performance improvement 

in the PLS, but the general direction is unchanged (i.e., higher H is related to performance 

improvement). Figure S2 shows the PLS result for the Craddock 392-node parcellation in the n-

back study. 

 

Figure S2. The primary latent variable from Behavioral PLS relating adj. ΔAccuracy in the n-

back task to parcel-wise H with Craddock 392 brain parcels. All red parcels (total of 9) in the 

right panel show Bootstrap ratio ZBR values above +3 and there are no blue parcels with 

ZBR < −3, indicating an exclusively positive direction for the H-to-adj. ΔA’ association. Cross-

block covariance (σXY) shows the proportion of covariance between the left and right panel 

explained by this LV, and the p value is calculated from permutation test for the eigenvalue for 

this LV. 

 

Choose-and-Solve Task (CAST) PLS results: In the CAST dataset, we found a general pattern 

of greater task improvement associated with higher H in the PLS using Craddock 392 brain 

parcels, although one brain parcel with negative association also emerged (i.e., ZBR < -3) in this 

analysis (compared to 4 parcels with ZBR > +3). At less stringent threshold of |Z| > 2, there were 

24 parcels with ZBR > +2 compared to 5 parcels with ZBR < -2. The spatial pattern in the brain H 

latent variable had a small but significant correlation with the LV in the original Shen 268-node 

analysis r = .174, p<.001). This again shows that the granularity of the brain parcellation impacts 

the spatial pattern of the brain latent variable associated with performance improvement in the 

PLS, but the general direction is consistent (i.e., higher H is related to performance 

improvement). The spatial pattern was more impacted here compared to the other two tasks, 

which may be due, in part, to the higher number of possible latent variables in the PLS (6 LVs) 

and smaller sample size. Figure S3 shows the PLS result for the Craddock 392-node 

parcellation in the CAST study. 
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Figure S3. The primary latent variable from Behavioral PLS relating adj. ΔAccuracy in the 

CAST task to parcel-wise H with Craddock 392 brain parcels. Red parcels (total of 4) in the right 

panel show Bootstrap ratio ZBR values above +3 and one blue parcel with ZBR < −3 shows 

negative association with the left panel (Δaccuracy). Cross-block covariance (σXY) shows the 

proportion of covariance between the left and right panel explained by this LV, and the p value 

is calculated from a permutation test for the eigenvalue for this LV. 

 

Supplementary section 2. Results are robust to block-level temporal structure of task 

fMRI runs. To assess if differences in the temporal structures of the tasks contributed to the 

reported findings, we recalculated the H exponents in the three datasets after regressing out the 

temporal block structure in each task run from the BOLD timeseries. Note that contributions 

from trial-level temporal structure are too fast and are not included in the frequency range of our 

fMRI data. Therefore, in this analysis we only removed dynamics that are slower than ~8 

seconds (i.e., block changes) corresponding to the .12 Hz upper bound of the band-pass filtered 

fMRI data. Block-timing regressors were vectors of 0 and 1 corresponding to the onset and 

offset of task blocks convolved with the default double-gamma function of Statistical Parametric 

Mapping (SPM-12) for the hemodynamic response function (HRF).  

Dual n-back task: 

First, we compared the calculated mean H values for each participant per run between the 

original and block-time-regressed analyses. The average H over brain parcels after block timing 

regression were highly correlated with the original analysis across participants in the DNB 

dataset (Pearson rs > .955, ps <.001 for both DNB runs). Our finding that the overall H mean 

was higher during the video run in the DNB study compared to the two DNB task runs was also 

replicated in this version of the analysis where the temporal structure of the DNB tasks were 

regressed out (t(55) = 13.69, p < .001). Next, we assessed the PLS analyses. The new results 

replicated the PLS results without the block-structure regressors from Figure 3. Specifically, a 

pattern of higher H across the brain was related to greater improvement in the dual n-back task 

from run1 to run2, adjusted for performance in run1. The spatial pattern in brain H latent 

variable was highly correlated with the original analysis (r = .952, p<.001). The Z-thresholded 

maps also looked similar as shown in Figure S4, (3 parcels had Z>+3, 0 parcels had Z<-3; all of 
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these 3 parcels were among the 5 parcels with Z>+3 in the original dual n-back PLS results in 

Fig 3).  

 

Figure S4. The primary latent variable from Behavioral PLS relating adj. ΔA’ to parcel-wise H in 

the DNB experiment with the temporal structure of the task blocks regressed out of the parcel 

timeseries prior to calculation of H values. All red parcels (total of 3) in the right panel show 

Bootstrap ratio ZBR values above +3 and there are no blue parcels with ZBR < −3, indicating 

exclusively positive direction for the H-to-adj. ΔA’ association. Cross-block covariance (σXY) 

shows the proportion of covariance between the left and right panel explained by this LV, and 

the p value is calculated from a permutation test for the eigenvalue for this LV. 

 

N-back task: 

In the HCP dataset, first, we compared the calculated mean H values for each participant per 

run between the original and block-time-regressed analyses. The average H over brain parcels 

after block timing regression were highly correlated with the original analysis across participants 

in the HCP dataset (Pearson rs > .984, ps <.001 for both NBK runs). Next, we assessed the 

PLS analyses. The results replicated the PLS results without the block-structure regressors from 

Figure 4. Specifically, a pattern of higher H across the brain was related to more improvement in 

the n-back task from run1 to run2, adjusted for performance in run1. The spatial pattern in brain 

H latent variable was highly correlated with the original analysis (r = .975, p<.001). The Z-

thresholded maps also look very similar to those in the version without block timing regressors 

as shown in Figure S5, (8 parcels had Z>+3, 0 parcels had Z<-3; all of these 8 parcels were 

among the 9 parcels with Z>+3 in the original n-back PLS results in Fig 4).  
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Figure S5. The primary latent variable from Behavioral PLS relating adj. ΔAccuracy in the n-

back task to parcel-wise H with task block timings regressed out of the timeseries prior to 

calculating H values. All red parcels (total of 8) in the right panel show Bootstrap ratio ZBR 

values above +3 and there are no blue parcels with ZBR < −3, indicating exclusively positive 

direction for the H-to-adj. ΔAccuracy association. Cross-block covariance (σXY) shows the 

proportion of covariance between the left and right panel explained by this LV, and the p value 

is calculated from a permutation test for the eigenvalue for this LV. 

 

Choose-and-solve task (CAST):  

In the third study, we first compared the calculated mean H values for each participant per run 

between the original and block-time-regressed analyses. The average H over brain parcels after 

block timing regression were highly correlated with those without the timing regressors across 

participants (Pearson rs > .987, ps <.001 for all 6 runs of CAST). Next, we assessed the PLS 

analysis. The results replicated the PLS results without the block-structure regressors from 

Figure 5. Specifically, a pattern of higher H across the brain was related to greater improvement 

in the CAST task from run1 to run6, adjusted for performance in run1. The spatial pattern in the 

brain H latent variable was highly correlated with the original analysis (r = .990, p<.001). The Z-

thresholded maps were the same between the two analyses as shown in Figure S6, (4 parcels 

had Z>+3, 0 parcels had Z<-3; all of these 4 parcels were the same as the original CAST PLS 

results in Fig 5).  
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Figure S6. The primary latent variable from Behavioral PLS relating adj. ΔAccuracy in the 

CAST task to parcel-wise H with task block timings regressed out of the timeseries prior to 

calculating H values. All red parcels (total of 4) in the right panel show Bootstrap ratio ZBR 

values above +3 and there are no blue parcels with ZBR < −3, indicating exclusively positive 

direction for the H-to-adj. ΔAccuracy association. Cross-block covariance (σXY) shows the 

proportion of covariance between the left and right panel explained by this LV, and the p value 

is calculated from a permutation test for the eigenvalue for this LV. 

 

Supplementary section 3. Linear fit of the single H exponents to the data range. To assess 

if our single H exponents were a good fit to the range of scales in the data, we calculated the R2 

of the linear fit between F(n) (i.e., fluctuations) and n (i.e., window size) from the DFA in each 

brain parcel of each run for each participant. Overall, we found a very good linear fit of the de-

trended fluctuation variance as a function of temporal scale across the datasets (examples from 

each task are shown in Figures S7-S9 below). 

H exponent fit in dual n-back task: We calculated the R2 values for the regression of log(n) on 

log(F(n)) in the DNB dataset (dual n-back task and video). The linear fit was a good fit to these 

data, with R2 values in the range of min R2 = .720 to max R2 = .997 across all brain parcels and 

participants. Figure S7 shows some examples for two random participants across runs (each 

line is a brain parcel). 

 

Fig S7. Examples of DFA fits to the fMRI data at the parcel level in the dual n-back study for two 

random participants. Top row panels show subject 1 across the three runs and bottom row 
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panels show subject number 2 across the 3 runs. Each line represents a brain parcel (from the 

Shen 268-node atlas). 

 

H exponent fit in the n-back task: We also calculated the R2 values for the regression of log(n) 

on log(F(n)) in the Human Connectome dataset (n-back task). The linear fit was good to these 

data, with R2 values in the range of  min R2 = .892 to max R2 = .997 across all brain parcels and 

participants. 

 

 

Fig S8. Examples of DFA fits to the fMRI data at the parcel level in the n-back study (HCP 

dataset) for two random participants. Top row panels show subject 1 across the n-back runs 

and bottom row panels show subject 2 across the n-back runs. Each line represents a brain 

parcel (from the Shen 268-node atlas). 

 

H exponent fit in the CAST task: We also calculated the R2 values for the regression of log(n) on 

log(F(n)) in the Study 3 dataset (choose-and-solve task). Again, the linear fit was good to these 

data, with R2 values in the range of  min R2 = 729 to max R2 = 996 across all brain parcels and 

participants. 
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Fig S9. Examples of DFA fits to the fMRI data at the parcel level in the CAST study for two 

random participants. Top two rows show subject 1 across the six CAST runs and bottom two 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2020.05.25.114959doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.114959
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 

rows show subject 2 across the CAST runs. Each line represents a brain parcel (from the Shen 

268-node atlas). 

 

Supplementary section 4. Wavelet Leaders Multifractal (WLMF) analysis 

The wavelet leader multifractal (WLMF) formalism has emerged as a powerful technique to 

estimate H that is highly robust to signal non-stationarity (Jaffard et al., 2007). To analyze a 

signal of interest at different delays and timescales, the wavelet transform uses translated and 

dilated versions of a basis function Ψ([𝑡 − 𝑘]/𝑎). Specifically, signal energy present at delay k 

and at time scale a is the wavelet coefficient 𝑑𝑥(𝑎, 𝑘) which is measured by calculating the 

integral 𝑑𝑥(𝑎, 𝑘) =
1

𝑎
∫ 𝑥(𝑡)Ψ(𝑡−𝑘

𝑎
)𝑑𝑡, where 𝑎 = 2𝑗 for integer j represents a range of dyadic 

scales. Wavelet leaders 𝐿𝑥(𝑎, 𝑘) are subsequently calculated as the largest coefficient value  

|𝑑𝑥(𝑎′, 𝑘′)| within a narrow temporal neighbourhood of k, for any scale 𝑎′ ≤ 𝑎. Multifractal scaling 

is then defined by the function 
1

𝐾
∑ |𝐿𝑥(2𝑗, 𝑘)|

𝑞
𝑘 = 𝐶𝑞2𝑗𝜍(𝑞) which describes wavelet power as a 

function of time scale, for a range of different scaling exponents q, in terms of a characteristic 

function 𝜍(𝑞). To assess linear, quadratic and cubic components of the scaling function, 𝜍(𝑞) 

was parameterized as a polynomial expansion 𝜍(𝑞) = ∑ 𝑐𝑝(𝑞𝑝/𝑝!)𝑝 , where the log-cumulants cp 

define the scaling behavior of the signal 𝑥(𝑡). In our first analysis, we focused on first-order 

cumulant c1, which is closely linked to the monofractal scaling parameter H from DFA (Wendt, et 

al, 2007). These yielded similar results showing higher H (c1) across brain parcels was related 

to greater task performance improvement across the three datasets. In our second analysis we 

assessed the higher-order cumulants (c2 and c3) and found them to have values close to zero, 

demonstrating a lack of systematic non-linear scaling in these data.  

Supplementary section 4.1. Comparison of DFA results with WLMF first cumulant. 

Dual n-back task PLS results: Using the first cumulant (c1) of the WLMF to estimate the Hurst 

Exponent (H) instead of DFA yielded similar results in the PLS. Specifically, a pattern of higher 

c1 across the brain was related to greater improvement in the dual n-back task from run1 to 

run2, adjusted for performance in run1. The spatial pattern in brain H (c1) for latent variable 1 

was highly correlated with the original H (DFA) analysis (r = .647, p<.001). The Z-thresholded 

maps for brain c1 latent variable are shown in Figure S10, (5 parcels had Z>+3, 0 parcels had 

Z<-3; one of these 5 parcels were among the 5 parcels with Z>+3 in the DFA-based original 

dual n-back PLS result in Fig 3).  
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Figure S10. The primary latent variable from Behavioral PLS relating adj. ΔA’ to parcel-wise H 

in the DNB experiment with H values estimated as c1 in WLMF analysis. All red parcels (total of 

5) in the right panel show Bootstrap ratio ZBR values above +3 and there are no blue parcels 

with ZBR < −3, indicating exclusively positive direction for the H-to-adj. ΔA’ association. Cross-

block covariance (σXY) shows the proportion of covariance between the left and right panel 

explained by this LV, and the p value is calculated from a permutation test for the eigenvalue for 

this LV. 

 

N-back task PLS results: Using the first cumulant (c1) of the WLMF to estimate the Hurst 

Exponent (H) instead of DFA yielded similar results in the PLS for the HCP dataset. Specifically, 

a pattern of higher c1 across the brain was related to more improvement in the n-back task from 

run1 to run2, adjusted for performance in run1. The spatial pattern in brain H (c1) for latent 

variable 1 was highly correlated with the original H (DFA) analysis (r = .757, p<.001). The Z-

thresholded maps for brain c1 latent variable are shown in Figure S11, (9 parcels had Z>+3, 0 

parcels had Z<-3; four of these 9 parcels were among the 9 parcels with Z>+3 in the DFA-based 

original n-back PLS result in Fig 4). 

 

Figure S11. The primary latent variable from Behavioral PLS relating adj. ΔAccuracy in the NBK 

task to parcel-wise H estimated as c1 in WLMF analysis. Red parcels (total of 9) in the right 

panel show Bootstrap ratio ZBR values above +3 and there are no blue parcels with ZBR < −3, 

indicating exclusively positive direction for the H-to-adj. ΔAccuracy association. Cross-block 
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covariance (σXY) shows the proportion of covariance between the left and right panel explained 

by this LV, and the p value is calculated from a permutation test for the eigenvalue for this LV. 

 

CAST task PLS results: Using the first cumulant (c1) of the WLMF to estimate the Hurst 

Exponent (H) instead of DFA yielded generally similar results in the PLS for the CAST study. 

Specifically, a pattern of higher c1 across the brain was related to more improvement in the 

CAST task from run1 to run6, adjusted for performance in run1. On the behavioral side of the 

PLS’s LV1, the loading for run 3 became non-significant (see Figure S12; this run instead 

loaded on the second LV of the PLS, which was non-significant (p = .198) so is not included in 

the results). The spatial pattern in brain H (c1) from the primary latent variable was moderately 

correlated with the original H (DFA) analysis (r = .473, p<.001). The Z-thresholded maps were 

not overlapping, however. These are shown for brain c1 latent variable in Figure S12, (5 parcels 

had Z>+3, 0 parcels had Z<-3; none of these 5 parcels were among the 4 parcels with Z>+3 in 

the DFA-based original n-back PLS result in Fig 5). 

 

Figure S12. The primary latent variable from Behavioral PLS relating adj. ΔAccuracy in the 

CAST task to parcel-wise H estimated as c1 in WLMF analysis. All red parcels (total of 5) in the 

right panel show Bootstrap ratio ZBR values above +3 and there are no blue parcels with 

ZBR < −3, indicating exclusively positive direction for the H-to-adj. ΔAccuracy association. Cross-

block covariance (σXY) shows the proportion of covariance between the left and right panel 

explained by this LV, and the p value is calculated from a permutation test for the eigenvalue for 

this LV. 

 

Supplementary section 4.2. Higher order WLMF cumulants. 

We also quantified the second and third order cumulants (c2 and c3) from the WLMF analysis . 

Our analysis of the higher-order quadratic and cubic cumulants (i.e., c2 and c3) showed that 

these non-linear components had values close to zero for both the second order and 3rd order 

cumulants across brain parcels in all runs of the three datasets (See Table S1), demonstrating a 

lack of non-linear scaling in these data. 
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 c2: Mean  (SD)  [min, max]) c3: Mean  (SD)  [min, max]) 

1st DNB -.049  (.013)  [-.308, .222] -.003  (.005)  [-.178, .133] 

Video -.041  (.011)  [-.246, .178] -.003  (.004)  [-.156, .109] 

2nd DNB -.050  (.012)  [-.316, .242] -.004  (.005)  [-.191, .125] 

   

1st NBK -.023  (.015)  [-.223, .187] -.005  (.005)  [-.135, .105] 

2nd NBK -.021  (.015)  [-.222, .188] -.006  (.005)  [-.139, .107] 

   

1st CAST -.064  (.020)  [-.434, .403] -.006  (.010)  [-.321, .182] 

2nd CAST -.067  (.020)  [-.412, .368] -.004  (.006)  [-.297, .183] 

3rd CAST -.068  (.021)  [-.447, .419] -.004  (.008)  [-.314, .203] 

4th CAST -.065  (.016)  [-.414, .390] -.004  (.007)  [-.336, .176] 

5th CAST -.071  (.026)  [-.440, .417] -.005  (.006)  [-.337, .209] 

6th CAST -.070  (.022)  [-.456, .375] -.006  (.014)  [-.326, .206] 

Table S1. The second- and third-order cumulants from the WLMF fit to the fMRI data across the 

three datasets. SD is the standard deviation of whole-brain average cumulant value between 

participants. Min and max inside square brackets are minimum and maximum values observed 

across all brain parcels of all participants. 

 

Supplementary section 5. Non-adjusted change in performance. 

The adjustment of ΔAccuracy was motivated by three points. First, our hypothesis was about 

predicting who will improve their performance between participants who are initially performing 

at the same level (figure 2). To be close to this hypothetical scenario, albeit statistically, we 

adjusted the ΔAccuracy by regressing out the initial performance to make the measure linearly 

independent of the initial performance. The second reason can be argued based on the data 

and the regression to the mean component of Δperformance. Specifically, non-adjusted 

Δperformance is negatively correlated with baseline performance (DNB: r = -.280, p = .037; 

NBK: r = -.460, p <.001; CAST: r = -.716, p < .001) which is largely due to regression to the 

mean (i.e., starting lower allows for more room for increased performance). As such, without 

regressing out the baseline performance, the relationship between brain H and change in 

performance will capture an amalgam of variance due to regression to the mean and true 

Δperformance, while adjusted ΔAcc will capture portion of Δperformance that is independent of 

the regression to the mean. A third reason is based on the general neuroimaging discussion 

point related to the benefit of using brain data rather than purely behavioral measures. Adjusting 

for baseline performance means our H findings are explaining unique variance for practice 
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effects independent of initial task performance. Therefore, if for example the goal is forecasting 

future task performance, a model will likely gain additional predictive power by adding the fMRI 

H as a predictive feature over and above previous task performance. Nevertheless, in this 

section we assessed the PLS regressions between parcel-wise H and ΔAccuracy without 

regressing out the baseline accuracy from ΔAccuracy. These results are shown in Figures S13-

S15 for each dataset detailed below: 

Dual n-back task: A pattern of higher H across the brain was related to greater improvement 

(ΔA’) in the DNB task from run1 to run2, not adjusted for performance in run1. The resulting 

brain LV was very highly correlated with the brain LV using adj. ΔA’ in the original analysis (r = 

.967, p <.001). The Z-thresholded brain parcels are shown in Figure S13, where 9 parcels had 

Z>+3. All 5 parcels with Z>+3 in the original results (Figure 3) were among the 9 parcels in the 

non-adjusted analysis. 

 

Figure S13. The primary latent variable from Behavioral PLS relating ΔA’ (non-adjusted) to 

parcel-wise H in the DNB experiment. All red parcels (total of 9) in the right panel show 

Bootstrap ratio ZBR values above +3 and there are no blue parcels with ZBR < −3, indicating 

exclusively positive direction for the H-to-ΔA’ association. Cross-block covariance (σXY) shows 

the proportion of covariance between the left and right panel explained by this LV, and the p 

value is calculated from a permutation test for the eigenvalue for this LV. 

 

N-back task: There were no significant latent variables in the PLS regression relating H across 

the brain to greater improvement in the NBK task from run1 to run2, not adjusted for 

performance in run1. Figure S14 shows the primary LV in this analysis which has p = .198 from 

the permutation test. This non-significant result, compared to Figure 4 results where adj. ΔAcc is 

used, could be due to mixing regression to the mean variance and true practice effects from the 

non-adjusted ΔAccuracy. 
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Figure S14. The primary latent variable from Behavioral PLS relating ΔAccuracy (non-adjusted) 

in the NBK task to parcel-wise H. Error bars in left panel show 95% confidence intervals as 

indicated by bootstrapping, which also yield the ZBR values in the right panel (1 red, 1 blue). The 

p-value is calculated from a permutation test for the eigenvalue for this LV, and shows that this 

primary latent variable is not significantly different from the null distribution (p = .176, N.S.). 

Choose-and-solve task: A pattern of higher H across the brain was related to greater 

improvement in the CAST task from run1 to run6, not adjusted for performance in run1. The 

resulting brain LV was highly correlated with the brain LV using adj. Δ Accuracy in the original 

analysis (r = .673, p <.001). The Z-thresholded brain parcels are shown in Figure S15, where 4 

parcels had Z>+3. Despite the high correlation between the brain LVs in the continuous form, 

the Z>+3 parcels in this PLS did not overlap with the Z>+3 parcels from the original results 

(Figure 5). 

 

 

Figure S15. The primary latent variable from Behavioral PLS relating ΔAccuracy (non-adjusted) 

in the CAST task to parcel-wise H. All red parcels (total of 4) in the right panel show Bootstrap 

ratio ZBR values above +3 and there are no blue parcels with ZBR < −3, indicating exclusively 

positive direction for the H-to- Δ Accuracy association. Cross-block covariance (σXY) shows the 

proportion of covariance between the left and right panel explained by this LV, and the p-value 

is calculated from a permutation test for the eigenvalue for this LV. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2020.05.25.114959doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.114959
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2020.05.25.114959doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.114959
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2020.05.25.114959doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.114959
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2020.05.25.114959doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.114959
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2020.05.25.114959doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.114959
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2020.05.25.114959doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.114959
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2020.05.25.114959doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.114959
http://creativecommons.org/licenses/by-nc-nd/4.0/

