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Abstract  

 

Brain network modeling studies are often limited with respect to the number of data features fitted, although 

capturing multiple empirical features is important to validate the models’ overall biological plausibility. Here 

we construct personalized models from multimodal data of 50 healthy individuals (18-80 years) with The 

Virtual Brain and demonstrate that an individual’s brain has its own converging optimal working point in the 

parameter space that predicts multiple empirical features in functional magnetic resonance imaging (fMRI) 

and electroencephalography (EEG). We further show that bimodality in the alpha band power - as an 

explored novel feature - arises as a function of global coupling and exhibits inter-regional differences 

depending on the degree. Reliable inter-individual differences with respect to these optimal working points 

were found that seem to be driven by the individual structural rather than by the functional connectivity. Our 

results provide the groundwork for future multimodal brain modeling studies.  
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Introduction 

Brain network simulations allow us to investigate how realistic neural behavior arises from variations in 

specific biological parameters. Large-scale brain network models can integrate empirical data from multiple 

modalities into a mathematical framework of complex dynamic systems1,2. The Virtual Brain (TVB; 

thevirtualbrain.org) is a simulation platform that combines local neural mass models (at the level of neural 

populations) with individual structural connectivity (SC) to simulate whole brain dynamics3–5. A unique 

feature of TVB is the ability to model “personalized virtual brains”, whereby an individual’s diffusion tensor 

imaging (DTI) derived SC together with functional connectivity data constrains the inter-regional 

interactions. TVB has previously been used to model biophysical correlates of recovery after stroke6, brain 

activity dynamics pre- and post-surgery in brain tumor patients7 and the spreading of seizure activity in 

epilepsy8 to aid the design of therapeutic interventions (see http://www.thevirtualbrain.org for a full list of 

publications). The global parameters in TVB that determine the spatio-temporal integration across the cortex 

are conduction speed and long-range global coupling. Conduction speed is the time rate at which the signal 

travels between the nodes and is used to estimate time delays based on distances derived from an individual’s 

SC. Global coupling is a scaling factor for the individual’s tractography-derived connectivity weights. 

Conduction speed and global coupling in TVB and similar models have been associated with important 

neural mechanisms of healthy and diseased brains6,9. Specifically, global coupling has been linked with e.g. 

tuning the network close to a bifurcation point10, exploring the dynamical landscape9, motor recovery in 

stroke6, Alzheimer’s disease11⁠. Optimal global parameters reproduce many empirical network behaviors such 

as network synchronization12, fluctuations in the system’s stability leading to the emergence of resting-state 

networks10, changes in the attractor landscape13, and realistic electroencephalography (EEG) alpha-band 

activity14. Yet, several brain network modeling studies are limited with respect to sample size and the 

number of metrics fitted - often a single brain activity modality is simulated and a single metric such as 

functional connectivity (FC; that is the time-averaged correlation matrix based on all regions pairs) is 

reproduced. However, the assessment across multiple modalities and metrics is essential to validate the 

models’ overall biological plausibility. In addition, investigating inter-subject variability is critical to 

disentangle individual from general population aspects.  
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Both limitations will be addressed in the present study: 

1) We utilize a large sample of healthy subjects across the full age spectrum (N = 50, 18 to 80 years of 

age, mean 41.12±18.20; 30 females and 20 males) for “virtualizing” their brains and simulating 

individual whole-brain neural and functional magnetic resonance imaging (fMRI) blood oxygen 

dependent (BOLD) signals.  

2) We aim to show that there exists a specific set of neural parameters for which virtual brains operate 

in a biologically realistic manner in the resting-state, and that these parameters converge to a unique 

point for each individual across several metrics. We focus on the global parameters of conduction 

speed and long-range coupling.  

Specifically, we demonstrate that the parameter subset for this optimal fit converges for the following 

metrics:  

a) correlation between empirical and simulated fMRI BOLD FC; 

b) fit of simulated to the empirical fMRI BOLD FC dynamics (FCD), that is the switching of functional 

connectivity over time15; 

c) frequency of the mean neural signal with a focus on the most prominent human EEG feature that is 

the alpha (10Hz) rhythm16 during wakefulness and delta (2Hz) during sleep17 and its known 

multistable power distribution18;  

We aim to demonstrate not only feasibility but also specificity of individual model predictions and to explore 

the mechanisms that lead to the emergence of the empirical data features under investigation – with a special 

focus on the bistable electrophysiological alpha rhythm in a full brain network context advancing our 

previous work lacking this aspect18–20.  
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Results 

 

The best predictions of empirical signal features (FC, oscillations and bimodality of the neural signal) arise 

as a function of particular ranges of neural parameters (Fig. 1), which we term the optimized parameters. 

Empirical features were reproduced at a wide range of conduction speeds, but only in a narrow range of 

global coupling values (Fig. 1). For the delta (alpha) set, these optimal parameters were around G∈[0.1,0.14] 

(G∈[0.0280,0.031]), where G is the global coupling. The mean best correlation to empirical data for 

individual subjects was 0.45 (0.514) and the highest correlation 0.66 (0.68) in the delta (alpha) set. 

Bimodality was found at 0.11<G<0.14 (0.0286<G<0.031) and was more likely to appear at higher 

conduction speeds in the delta (alpha) set (Fig. 1B). The fastest average oscillation was observed at lower 

couplings than the peaks of the two other metrics (Fig. 1C). With increasing global coupling, an increase in 

frequency was observed in the delta set, which continued until a critical point where the oscillation speed 

began to decrease again (Fig. 1C, left). In the alpha set, the frequency is continuously decreasing as a 

function of global coupling (Fig. 1C, right).  
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Figure 1. Overview of the parameter exploration generating oscillations in the alpha and delta rhythm 

range. Both simulation sets (delta set on the left and alpha set on the right) varied the parameters 

conduction speed and global coupling, but across different ranges. A: Prediction quality (comparison of 

simulated and empirical data via means of FC correlation) of all simulations averaged across all subjects. 

B: Bimodality assessed on the mean neural signal using Hartigan's dip test. There is an overlap between 

best empirical-simulated FC fit and bimodality of the neural signal at distinct global coupling (compare red-

colored areas in 1st and 2nd rows) for both simulation sets. C: Frequency of the oscillating mean neural 
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signal. D: Distribution of optimal parameter points for all subjects derived by correlation to empirical FC. 

Density plot was smoothed with a Gaussian kernel. Best fits can be seen across a wide range of speed, but 

only across a few coupling values. Some subjects had best fits at conduction speeds around 40mm/ms, 

whereas others best fit around 100mm/ms in the delta set. The scatter plots show a linear relation between 

optimal global coupling (assessed by maximum correlation empirical-to-simulated FC fit) and average 

degree (defined as the mean of row sums in each subject’s SC matrix) (delta: r=-0.68, p<0.0001, alpha: r=-

0.88, p<0.1∙10-15).  

 

Because averaging over subjects obscures individual features, we also extracted an optimal parameter set for 

each subject defined as the best fit to empirical FC (density plot in Fig. 1D). Again, we observed that best 

fits to empirical data were distributed across many conduction speeds but in a narrow range of global 

coupling. Interestingly, there were two modes of highest fit in the delta set along the conduction speed axis, 

suggesting a large degree of between-subject variability. Within the alpha set, the optimal parameters were 

distributed around one single mode. Distribution parameters of individual optimal points are listed in 

Supplementary Table 3. We found no significant differences in optimal working point distributions 

between genders (Supplementary Table 5). We also confirmed that optimal global coupling correlates with 

the average degree of the SC (i.e. average number of connections of a brain region, Fig. 1D)28.  

 

Empirical-to-Simulated FC Fit: Subject Specificity 

We were interested in the subject specificity of a subject’s simulations, and the degree to which parameters 

are driven by SC and empirical FC. Therefore, we assessed how a subject’s set of simulated FCs fits to 

empirical FC of other subjects. This procedure yielded one highest possible correlation for each pair of 

subject’s sets of simulations and empirical FCs (‘highest correlation matrix’, Fig. 2A). There was no 

individual subject fit of simulated to empirical FCs (Fig. 2B, left). However, there was an individual subject 

fit of the SC to the simulated FC (stronger correlations on the diagonal of Fig. 2B, middle). This finding is 

also shown on the density distributions, where individual fits (SC and simulated FC come from the same 

subjects) outweigh all-to-all fits (where SC and simulated FC come from different subjects, Fig. 2B, right). 

The results are shown for the alpha set but resemble those for the delta set (Supplementary Fig. 10). We 
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also examined variations between subjects’ SCs and FCs (Supplementary Fig. 10).  

 

Figure 2. Cross-subject comparison of simulations results. A: Comparing all simulations of one subject to 

their own empirical FC yields one optimal parameter combination. However, this parameter combination 

does not have to be optimal in terms of goodness of fit if we compare the same set of simulations to other 

subjects’ empirical FC of other subjects. Performing this analysis for all 50 subjects yields two 50×50 

matrices: the optimal parameter combinations, further denoted as ‘optimal (G,v) parameter matrix’ and the 

‘highest correlation matrix’. The schematic shows the computation of those two matrices for two example 

subjects (subject #1 and subject #2). The rows of these matrices represent the subject’s empirical FC 
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compared to the set of simulated FCs based on the subject number equal to the column number (comparisons 

visualized as red and black arrows). Both matrices can also be calculated based on comparisons of the SC of 

each subject (as rows) with the set of simulated FCs based on the corresponding subject number of the 

column (grey arrows in the schematic). B: Alpha set: Left: We correlated all 1510 simulations of one subject 

to all 50 empirical FCs. For each empirical FC that we correlated to, there was one best (i.e. highest) 

correlation. The entry (i,j), 1≤ 𝑖, 𝑗 ≤50, in then displayed ‘highest correlation matrix’ represents the highest 

correlation based on the comparison of the empirical FC matrix of subject i with the set of all simulated FCs 

of subject j. Along the diagonal of the matrix, we found the highest possible correlation for the individual 

subject prediction (i.e. predicting a subject's empirical FC by using the same subject's SC for simulation). 

Horizontal red and blue stripes already indicate that some empirical FCs can be predicted better than 

others, regardless of the SC used for the simulation. Middle: The same as the left matrix but now comparing 

set of simulated FCs to SCs, instead of empirical FCs. We tested the possible prediction of the SCs from the 

simulation. A vague red diagonal indicates a best individual fit, pointing to the fact that the simulated FC 

contains typical features of the used SC. Right: To test for subject specificity, we took the diagonal values 

(i.e. subject's individual prediction) and tested their distribution against the values above and below the 

diagonal (i.e. all-to-all prediction). Comparing simulations to empirical FCs showed no significantly better 

individual prediction. Individual SCs can be predicted significantly better than all-to-all prediction (two-

sample Kolmogorov-Smirnov test d = 0.4963 (d = 0.5492) and p < 0.1∙10-9 (p < 0.1∙10-12) for delta (alpha)). 

This result indicates how strongly the SC shapes the simulated FC. The density plot was smoothed with a 

Gaussian kernel. C: Optimal parameter combinations are subject-specific (results displayed for the alpha 

set): We analyze how the optimal parameter distributions change between subjects. The parameters are 

influenced by the underlying SC as visible in the upper panel. Each boxplot displays the optimal global 

coupling values for each subject (best reproducing empirical FCs of all subjects). The variance of optimal 

global coupling for a given subject’s SC is small compared to the variance of the same across individual 

subjects’ SCs. In the lower panel, we display the influence of the empirical FC on the distributions of optimal 

global coupling values. In contrast to SC that strongly determines the value of optimal global coupling, the 

individual empirical FC does not determine the value of optimal global coupling to the same degree. This 

result underscores the high importance of the SC for determining optimal coupling parameters.  
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The simulated FC that fits best to the same subject’s empirical FC may not necessarily be the same simulated 

FC that fits best to other subjects (i.e. optimal parameter points may vary if we compare a set of simulations 

of one subject to empirical FCs of other subjects). Therefore, we extracted the corresponding optimal 

parameter combinations (‘optimal (G,v) parameter matrix’, Fig. 2A). The results show that optimal coupling 

is mostly determined by the underlying SC (Fig. 2C), which is strengthened by eta-squared effect sizes 

(Supplementary Table 4). The effect is more visible in the alpha set with an eta squared of 0.7968 for 

coupling explained by SC compared to 0.0175 by empirical FC. The delta set shows the same characteristics 

with small differences in effect sizes. However, conduction speed is neither determined by the SC nor by 

empirical FC (Supplementary Table 4 and Supplementary Figure 15). The change in simulation result is 

very small for different conduction speeds. Thus, a variety of transmission speeds can be seen as optimal. 

 

Mechanisms Underlying Electrophysiological Alpha Rhythm Bimodality 

To understand the mechanisms underlying electrophysiological rhythm bimodality, we conducted further 

simulations where we decreased global coupling gradually in five steps to zero (Fig. 3 and Supplementary 

Video 1). At G = 0, the mean field potential was the time series generated solely by the local neuronal 

population model. We observed a bursting behavior in the neural signal that has been documented by the 

authors of the population model34. A fold/homoclinic bifurcation is characteristic for this type of burst, where 

the trajectory follows a limit cycle. Meanwhile, the slow variable (z) increases and moves an unstable fixed 

point towards the limit cycle, generating a saddle homoclinic bifurcation, i.e., the unstable fixed point 

touches the cycle and breaks it up. The trajectory then switches towards a stable fixed point, which 

corresponds to the resting period. During “rest”, the slow variable decreases and moves the unstable system 

back towards the stable fixed point creating a fold bifurcation - a transition from rest back to spiking. This 

bifurcation type has been described for the single Hindmarsh-Rose neuron30, the foundation of the here used 

population model. 
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Figure 3. Bimodal behavior of electrophysiological neural dynamics in the brain network model. Time 

series represent simulated neural activity in the left inferior temporal cortex of an example subject. Local 

parameters were chosen as in the alpha set (Table 1, Methods) with conduction speed set to 100 mm/ms. 

Plots from top to bottom with increasing global coupling A: G=0, B: G=0.01, C: G=0.025, D: G=0.032 and 

E: G=0.04. Blue time series depict the mean field potential (i.e. neural signal). The global input to the 

inferior temporal cortex from all other nodes, scaled by connectivity weights and global coupling, is colored 
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in green. On the right, the excitatory phase space is depicted with excitatory state variables x, y and z. A: 

For G = 0, it shows the switching between a limit cycle and a fixed point, creating a burst-like behavior. B: 

As we increased global coupling (to G = 0.01), regions were unsynchronized and the global input consisted 

of noisy fluctuations. C: For even higher couplings (G = 0.025), we observed a synchronization of local 

dynamics with global input. The regional neural signal displayed single bursts with few spikes. There were 

only a few turns on the limit cycle in the phase space before the homoclinic bifurcation occurs. The global 

input became even more negative (i.e. -4). We show that the spiking in the regional neural signal coincided 

with the times at which the global input reached zero. This result can be interpreted as a temporary 

reduction in global inhibition that leads to spikes in the local model. D: The state of bimodality occurred in-

between the synchronized and the oscillation death state (G = 0.032). Namely, we observed a switching 

between oscillation death and spikes that occurs in synchrony with a reduction in global inhibition. E: For 

very high global coupling (G = 0.04), oscillation death occurred and very slow noisy fluctuations in the 

neural signal were observed. The neural signal and the global input had negative amplitudes and fluctuated 

very little. The trajectory remained at a stable fixed point. We show this behavior also in Supplementary 

Video 1. 

 

With increasing G, the system becomes increasingly shifted towards the fixed point, i.e., a point that once the 

system enters no changes in the dynamics occur anymore. It reaches oscillation death at G = 0.04. The global 

input range was negative (y-axis of Fig. 3B) because the neuronal population model’s excitatory state 

variable x (displayed) has a negative baseline (and positive values during spikes). That is, in the here used 

population model, an excitatory population decreases or increases the membrane potential of another neural 

population, depending on the current membrane potential. For G=0.032, we observe a bimodal state between 

oscillation death (i.e. residing in the fixed point) and oscillations (i.e. limit cycling, Fig. 3D). 

 

We also analyzed bimodality and the frequency of the neural signal of each region individually 

(Supplementary Fig. 11-12). Similar to what we found for the global signal, regional signals at critical 

values of conduction speed and global coupling also shape oscillations and bimodality. Furthermore, regional 
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distribution of the bimodal power distribution was strongly determined by the SC for the delta set, namely a 

strong degree, that is node connectivity, was linked to the emergence of bimodality (Supplementary Fig. 

12). For the alpha set, nearly all regions demonstrated bimodal power distribution at the optimal parameter 

point. This difference is caused by local parameters (see e.g. Supplementary Fig. 7).  

 

Functional Connectivity Dynamics 

Fig. 4 shows empirical and a simulated FCD for one example subject. Though the highest correlations of 

subsequent FC matrices in our simulations are lower than in the empirical data, persistent (over time) FC 

patterns in the BOLD signal can be observed for both empirical and simulated time series (Fig. 4A). 

Interestingly, the optimal range of global coupling for the FCD fit, bimodality, and static FC fit are highly 

overlapping (Fig. 4B). Thus, only when our local model presents bimodal behavior, switching of modes is 

generated in our global network. Supplementary Video 2 shows simulated and empirical FCDs and FCs for 

this example subject while sliding across the range of global coupling values. 
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Figure 4. Functional connectivity dynamics align with bimodal behavior of neural dynamics. A: Example 

of empirical (left) and simulated (right) FCD of an example subject (female, 47 years old). B: Metrics of 22 

minutes simulations for four sample subjects (sex/age: f/30, f/47, m/20, m/73). In blue, the Kolmogorov-

Smirnov distance between the simulated and empirical FCD. Best FCD fit (i.e. lowest Kolmogorov-Smirnov 

distance) occurs at the same range of global coupling as bimodality of the global signal (green) and best fit 

between FCs (red). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 15, 2024. ; https://doi.org/10.1101/2020.03.26.009795doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.009795
http://creativecommons.org/licenses/by/4.0/


 

15 

 

Discussion 

In this study, we conducted a large parameter space exploration with TVB, simulating BOLD fMRI and 

electrophysiological neural signals for 50 individual human brains. Minute variations in global coupling and 

conduction speed were shown to give rise to fluctuations in 1) the correlation between empirical and 

simulated BOLD FC, 2) frequency of the mean neural signal, 3) the bimodality in the frequency power in the 

alpha band, as well as fluctuations in 4) the fit of FCD. We have shown that all of these features converge at 

a particular parameter point unique to each subject and demonstrated that there are reliable inter-individual 

differences in biophysical parameters that lead to optimal working points.  

 

Optimal Parameter Values 

Our range of explored conduction velocities (10-100m/s) was comparable to that found in the adult primate 

brain (5-94m/s), where neural axons are heavily biased towards those with large diameters and high 

conduction speeds21. Similarly, we found that our empirical signal features were best reproduced at 

conduction velocities higher than 20mm/ms with negligible differences above this threshold. Optimal global 

coupling is largely dependent on the underlying SC characteristics22. Our global coupling factor was quite 

low, and comparable to studies with dense SCs due to coarse parcellation schemes (optimal G: delta set 

0.13, alpha set 0.03). Previous results for global coupling were   and . The found 

differences in optimal global coupling parameters for the delta vs. alpha set are in line with a previous study 

applying a Wilson-Cowan model26,27. 

 

We found that the ability of the model to approximate the empirical neural signal was determined 

predominantly by the global coupling, and less by the conduction speed. Previous resting-state models have 

emphasized the critical role of the inter-nodal coupling in determining spatial structure23,28,29. Spiking 

models, such as the reduced Wong-Wang30, in contrast to simple oscillators, may not necessitate time delays, 

as synchronization is decreased through system heterogeneity, noise, and greater time between individual 

spikes31. Moreover, delays have a greater influence on dynamics in directed (asymmetric) than undirected 

(symmetric) networks22, such as our DTI-inferred SCs. This result arises because symmetric matrices with 
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real entries have real eigenvalues. Thus, the connectivity affects the system’s equilibrium but not its dynamic 

oscillatory behavior22. The Hindmarsh-Rose model forming the basis of the current study is similar to the 

FitzHugh-Nagumo, where time delays were not critical in shaping network dynamics32–34.  

 

The observed realistic properties of the simulated neural signal do not arise linearly with global coupling, but 

rather slowly emerge, sharply peak, and drop off afterwards. A number of other resting-state neural network 

properties, such as system multistability10, cluster synchronization23, emergence of resting-state networks28, 

instability of the equilibrium state22, or system efficiency35 have similarly been shown to develop as a 

function of this inter-regional coupling and/or conduction speed. Similar to what we noticed in our study, 

these behaviors emerge at the point where global coupling produces the highest correlation between 

empirical and simulated FC. Taken together, these findings point to the significance of a critical point at 

which the system operates optimally.  

 

Convergence of optimal parameters for different experimental features  

We showed that the region of parameter space that gives rise to the best fit between simulated and empirical 

(static) FC, and bimodality, coincides with the best model of FCD. Our simulations reproduced time-varying 

features of the signal relevant to capturing individual differences36, and other resting-state phenomena15. Our 

results are in line with previous findings showing that the meta-stable state is a function of a bifurcation 

parameter along with global coupling, and, importantly, that the best FCD fit is achieved at this meta-stable 

state15. 

 

Reproducing EEG features 

We found that global coupling which exceeded a certain threshold led to a sharp reduction in oscillation 

frequency resulting in a predominantly delta frequency range with low amplitude. Further, we were able to 

reproduce bistable switching between two distinct alpha modes, a feature of empirical EEG19. Transmission 

delays and global coupling were previously shown to affect the mean power when simulating 

magnetoencephalography signals with brain networks, and the best model fit was found in the alpha band 

power31. However, this work is limited to the traditional mean power metric, without taking into account the 
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bistable switching between two distinct alpha modes that occurs in empirical neural signal. The largely 

overlooked multistable nature of these neural processes should be taken into account26. Converging evidence 

indicates that the different alpha modes are linked to cognitive processing37. We show that this bimodality, 

which has previously been modelled as a function of noise18, arises also as a function of optimal global 

coupling. This result can be contrasted with a previous study18, where bimodality was modelled on the neural 

signal of a single node, thus global parameters would likely not play a large role in determining its behavior.  

 

As a sub-analysis of the newly added fitting criterion of bimodality, we sought to elucidate the mechanisms 

behind the emergence of bimodality in our model. For low values of global coupling (i.e. G=0), we observed 

bursting behavior at the local model. Such square-wave bursting behavior, as well as single spikes and 

chaotic behavior have been observed previously in the here used population model and the underlying single-

neuron Hindmarsh-Rose model32,34. In the current population model, the activity of excitatory neurons is 

transmitted into the global network, which corresponds to a biological global excitatory coupling in the 

brain. The baseline of this activity is around -2[a.u.] corresponding to a neuron at rest and transmitting global 

inhibition, while spikes peak at +2[a.u.]. Thus, at low values of global coupling, bursts/spikes still occur at a 

node as global inhibition is not strong enough to suppress this activity. Increasing global coupling yet 

further, results in oscillation death because global inhibition is strong enough to cancel out all activity. In 

between these two scenarios, there is a narrow range of coupling values where a switching between periods 

of spiking behavior and periods of oscillation death can be observed, giving rise to a bimodal power 

distribution. Taking into account that different nodes have different degrees, we can explain that some nodes 

reach bimodality and oscillation death earlier than others (receiving more global input than others). Thus, 

inter-regional input plays an important role in driving oscillatory activity, as seen previously in the alpha 

band31.  

 

Inter-individual differences 

We show that there are inter-individual differences in the optimal long-range global coupling. This result 

suggests that the optimal point of functioning is highly dependent on the individual’s anatomical architecture 

in combination with the spatio-temporal dynamics of the model. Our findings indicate the importance of 
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conducting parameter space explorations at the individual level, as more standard group-level analyses may 

obscure important and reliable variability. Moreover, we show that individual variability in the connectomes 

was driven primarily by the simulated FC and the underlying SC, and to a lesser extent by the empirical FC, 

which is important for exploring subject-specific parameters. Thus, the best starting point for optimal global 

coupling can be drawn from the SC rather than the empirical FC. The same conclusion cannot be drawn for 

conduction speed. There may be other parameters that we did not explore which may be more determined by 

the empirical FC than the SC.  

 

The observed simulated-to-empirical FC correlations (delta set: mean r=0.45; max r=0.66; alpha set: mean 

r=0.51, max r=0.68) are in the range of those obtained in parameter explorations with similar models 

(r=0.42728; r=0.4213; r0.410). The ability of our model to reproduce the empirical data is limited by the 

quality of current diffusion techniques. Existing links that are not captured by the SC may conceal how real 

structural connections influence FC. However, in light of these inherent limitations, our model has captured a 

number of important properties of the neural and BOLD signal. Another limitation of the current study is the 

computationally expensive full-grid search for the optimal parameters, which should be improved with e.g. 

Bayesian optimization techniques in the future38. 

 

In sum, we have demonstrated that as global coupling and conduction speed approach an optimal working 

point, the behavior of the neural system reproduces the resting-state BOLD static and dynamic FC, as well as 

the neural signal. With the present work, we aim to provide guidance for personalized brain network 

modelling with the neuroinformatics platform TVB. A systematic exploration of other population models 

and comparisons of their respective parameter landscapes will help to further test and validate the biological 

interpretability of parameters and model variables. 
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Methods 

Data Acquisition 

Simultaneous EEG-fMRI data, diffusion-weighted MRI (dwMRI), and structural MRI were recorded from 

50 healthy adult subjects at Berlin Center for Advanced Imaging, Charité University Medicine, Berlin, 

Germany (18 to 80 years of age, mean 41.12±18.20; 30 females and 20 males, for the distributions see 

Supplementary Fig. 14). Subjects were voluntarily recruited, and had no self-reported history of cognitive, 

neurological or psychiatric conditions. Informed consent was provided to subjects before participating in the 

study, and the research was conducted in accordance with the Code of Ethics of the World Medical 

Association Declaration of Helsinki and approved by the local ethics community at Charité University. The 

data acquisition procedures are those reported by our colleagues5 and are summarized here. 

 

Images were acquired on a Siemens Tim Trio MR scanner (12-channel Siemens head coil). Anatomical and 

dwMRI acquisition was performed first, after which subjects were taken out of the scanner to have their EEG 

cap set up. Subjects then returned to the scanner for simultaneous EEG-fMRI measurements. Subjects laid in 

the scanner with their eyes closed and were asked not to fall asleep. 

 

High resolution 1×1×1mm T1-weighted scans were acquired with an MPRAGE sequence: repetition time 

(TR) =1900 ms, echo time (TE) =2.25 ms, flip angle (FA) =98, field of view (FoV) =256 mm, 256 matrix, 

192 sagittal slices, slice thickness =1mm. EEG and fMRI were recorded for 22 minutes at resting state. We 

used an echo planar imaging (EPI) T2* sequence: 666 volumes, TR= 1940ms, TE=30ms, FA=788, 

FoV=192, 64 matrix, voxel size =3×3×3mm3, 32 transversal slices, slice thickness =3mm. The first five 

images of the BOLD fMRI series were removed to prevent disturbance from saturation effects. Diffusion-

weighted MR echo-planar measurements were conducted with TR=7500ms, TE=86ms, FoV=220mm, 96 

matrix, voxel size =2.3×2.3×2.3mm, 61 transversal slices, slice thickness =2mm; 64 diffusion gradient 

directions with b-values =1000s/mm2.  

 

Brain Imaging Data Preprocessing 
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Preprocessing of anatomical, diffusion and functional data was performed using our pipeline for derivation 

of individual connectomes39. The preprocessing steps are described in detail there, and more briefly below. 

Preprocessing of T1-weighted images included the following: motion correction, intensity normalization, 

extraction of non-brain tissue, brain mask generation, and segmentation of cortical and subcortical grey 

matter. We used the parcellation from the Desikan-Killiany Atlas40 implemented in FREESURFER to divide 

the cortex into 68 regions of interest. A quality check of the parcellation of individual high-resolution T1-

weighted scans was performed manually. 

The dwMRI data was preprocessed as follows: motion and eddy current correction, linear registration of b0 

image to individual T1-weighted image. The anatomical cortical parcellations were transformed to individual 

diffusion space, where probabilistic tractography was conducted. Spherical deconvolution was applied to 

constrain tractography, using MRTrix streaming method, which has the ability to identify crossing fibers (FA 

threshold =0.1)41. The gray matter – white matter interface was exhaustively sampled, streamlining up to 

200,000 times from each voxel (radius of curvature =1mm, maximum length =300mm). Binary connections 

for each region pair, based on the Desikan-Killiany atlas, were then aggregated, and a 68-by-68 SC was 

obtained. The region labels are listed in Supplementary Table 1. A weights and distance matrix were 

calculated for each subject. Weights matrices were the number of voxel pairs between two ROIs with at least 

one track found. We modified the weights matrix by using the common logarithm of its values and then 

normalizing to its highest value. Distance matrices were the mean track length of fibers between each pair of 

ROIs, measured in mm. 

 

In brief, the functional data was preprocessed as follows: motion correction, brain extraction, high-pass filter 

(100s), registration to individual T1-weighted anatomical scans to apply high-resolution parcellation mask to 

the fMRI. Additionally, quality of BOLD signal was analyzed with temporal signal to noise to maps42. 

BOLD signal was averaged across voxels within brain regions. Functional connectivity was computed using 

a Pearson's linear correlation coefficient on the BOLD data of each region pair. 

 

Global Dynamics of TVB Model 
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The global behavior of the system is driven by interactions between individual nodes, as described by the 

conduction speed and long-range coupling. Conduction speed is used to estimate time delays based on 

distances from DTI data. Thus, propagation of neural signal is faster for dense, myelinated neural fibers 

compared to smaller fibers for the same distance43. With a fixed distance, a large conduction speed results in 

a short time delay; a small conduction speed leads to a large time delay and slower system. The global 

dynamics at a node i can be described by 

𝑥𝑖(𝑡 + 1)  =  𝑥𝑖(𝑡)  +  𝑓(𝑥𝑖(𝑡))𝑑𝑡 +  𝐺 ∑ 𝐴𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

𝑥𝑗(𝑡 − 𝛥𝑡𝑖𝑗)𝑑𝑡 + √2 ∙ 𝐷  ∙ √𝑑𝑡  ∙  𝜂(𝑡). 
(1) 

The mean-field potential of node i is integrated across time t={1, …, T} by taking the sum of its current 

potential xi(t), the derivative of the local model f(xi(t))dt, the scaled input of all other nodes j={1, …, N}, ji, 

and the influence of noise. The parameter D scales the dispersion of the Gaussian distribution η(t) from 

which random values are drawn. Connectivity weights (i.e. individual diffusion-tractography-derived SC 

weights ⁠) are defined here as Aij, where the connection weight scales the influence of node i on node j. The 

time delays of signal propagation, Δtij=dij/v, are influenced by distances dij (i.e. diffusion-tractography-

derived distances between regions) and conduction speed v. The long-range coupling factor G provides an 

additional scaling of influence. 

 

The simulations were performed with TVB v1.5. TVB input was the individual SC, and a combination of 

local and global parameters describing the nodal and network-level dynamics. Different parameter 

combinations were simulated in two sets for each individual subject, with global and local parameters 

described in Table 1. The neural signal in the first set of simulations oscillated with a frequency of around 2-

5Hz and around 8-12Hz in the second set. We call them delta and alpha set, respectively. Because we were 

interested in the bimodality mechanisms in the alpha, we conducted more extensive explorations of the alpha 

set.  

 

The different simulations produced one 3D matrix with the dimensions [subjects, conduction speed values, 

global coupling values] for each simulation set. The elements of the matrix are correlation coefficients which 
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quantify the similarity between the empirical and the simulation BOLD signal (empirical-to-simulated FC 

fit). Similarly, a 3D matrix was calculated for bimodality and frequency analysis of the mean neural signal. 

To visualize our results, we averaged over the [subjects] dimension of each 3D matrix. The result is a 2D 

matrix with dimensions [conduction speed and global coupling] whose elements are the averaged correlation 

coefficients over all subjects, the percentage of subjects presenting bimodality in their power distribution and 

the averaged frequency (in Hz) over all subjects.  

 

All computations described in the following section were performed on a high-performance computer 

consisting of multicore CPUs at a clock rate of 2.50 GHz per CPU core and 8 GB RAM per core. The time 

per simulation was approximately 10h (1.6h) for integration step size 0.01220703125ms (0.05ms) for the 

delta (alpha) set. In total, we tested 1615 parameter combinations for each subject resulting in 80750 

simulations with a total simulation length of 6554h. The total computation time was 230000h. Simulation 

scripts including optimal parameter values and imaging-derived data used to constrain the models are made 

available via EBRAINS – Human Brain Project's European Brain Research Infrastructures.  

 

Table 1: Global and local parameters for delta and alpha set simulations. 

 parameters delta set alpha set 

Global 

parameters 

global coupling: 

 

G (multiplicative) 

linear 

 

[0.05, 0.25], step size: 

0.01 

linear 

 

[0.025, 0.04], step size: 

0.0001 

 conduction speed [mm/ms] [20, 100], step size: 20 [10, 100], step size: 10 

integrator: 

 

integration step size 

additive noise  

HeunStochastic 

 

dt = 0.01220703125ms 

D = 1.0 

HeunStochastic 

 

dt = 0.05ms 

D = 0.001 

monitors: 

 

SubSample (of neural signal) 

sampling period  

 

BOLD 

HRF Kernel  

sampling period 

 

 

 

3.90625ms (= 256Hz)  

 

 

MixtureOfGammas 

500ms (= 2Hz) 

 

 

 

3.90625ms (= 256Hz)  

 

 

MixtureOfGammas 

500ms (= 2Hz) 
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duration of simulated time 

series 

180s 300s 

Local parameters r 0.006 0.006 

a 1 1 

b 3 3 

c  1 1 

d  5 5 

s  4 4 

xo  -1.6 -1.6 

K11 0.5 4 

K12 0.1 1.6 

K21 0.15 0.15 

σ 0.3 0.4 

μ 2.2 2.2 

 

We coupled nodes via long-range connections in the model. The anatomical connectome served as the 

structural backbone of these connections. In both sets, we varied two free parameters to examine the 

spatiotemporal dynamics: the global coupling G, which scales the input to a node from others, and the 

conduction speed v (mm/ms), which represents delays in the propagation of the signal. The global coupling 

scaling factor G is named “a” in the TVB interface. In this article, we refer to it as global coupling or “G”. In 

the first simulation set (delta set), conduction speed was explored in a range from 20mm/ms to 100mm/ms in 

steps of 20mm/ms and global coupling from 0.05 to 0.25 in steps of 0.01 (Table 1). This procedure gave rise 

to 5250 simulations (50 subjects x 105 parameter combinations). For the second set (alpha set), achieving 

bimodality in the alpha frequency oscillations, we varied conduction speed from 10mm/ms to 100mm/ms in 

steps of 10mm/ms and global coupling from 0.025 to 0.04 in steps of 0.0001, for a total of 75500 simulations 

(50 subjects x 1510 parameter combination, Table 1). Both sampling rates are much faster than the Nyquist 

rate for the frequency band of interest, allowing both delta and alpha rhythms to be resolved in the signal. 

The integration step sizes were then chosen to allow fast computation and guarantee stability. 

 

Local Stefanescu-Jirsa 3D Model 

We used a local Stefanescu-Jirsa Hindmarsh-Rose 3D (SJHMR3D) mean-field model34⁠⁠ in TVB to simulate 

nodal neural behavior. The SJHMR3D is a biologically realistic model based on a network of heterogeneous 

excitatory and inhibitory coupled Hindmarsh-Rose neurons33 ⁠⁠ that exhibit a complex repertoire of neural 

behavior - such as synchronization and random firing, multi-clustering, bursting, transient oscillations and 
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oscillation death. Coupled neurons of the detailed network showed reorganizing behavior into clusters with 

similar dynamics. Using mode decomposition techniques, the authors in33 ⁠⁠ were able to capture cluster 

dynamics from the detailed network in a low-dimensional representation of only three modes. The set of 

equations in Eq. 2 describes local dynamics at a node i, with each state variable being a vector of length 

three to represent the different modes. The SJHMR3D model aims to describe the average membrane 

potential of a population of neurons that are electrically coupled. The model is comprised of six differential 

equations representing interconnected neural populations of excitatory (x, y, z), and inhibitory (w, v, u) 

populations as such 

ẋi = yi − axi
3+bxi

2 − zi + [K11(X1 − xi) − K12(X2 − xi)]+IEi

ẏi = ci − dxi
2 − yi

żi = rsxi − rzi − mi

ẇi = vi − awi
3+bwi

2 − ui+K21(X1 − wi)+IIi

v̇i = hi − piwi
2 − vi

u̇i = rswi − rui − ni

 (2) 

Eq. 2. Local dynamics of the SJHMR3D model. 

Legend: x, y, z, v, w, u – state variables; a, b, c, d – constants representing fast ion channels; r – constant 

representing slow ion channels; s – bursting strength; IE, II – excitatory and inhibitory input current, 

respectively; K11 – excitatory-excitatory coupling; K12 – inhibitory-excitatory coupling; K21 – excitatory-

inhibitory coupling; X1, X2 – mean field potential of inhibitory and excitatory subpopulations; m, n, p, h – 

constant parameters. 

 

Here, x(t) and w(t) represent the membrane potentials, y(t) and v(t) symbolize the recovery variables via fast 

ion channels, and z(t) and u(t) the inward currents via slow channels in the membrane for the excitatory and 

inhibitory populations, respectively. From each simulation, the state variables x and w have been recorded. 

Their three modes were averaged to generate the mean field potential of excitatory and inhibitory neurons. 

The used local parameters for the simulations are described in Table 1 and initialized with random 

conditions within certain bounds (see the simulation script for more details). 
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One of our goals was to create resting-state activity that shows the electrophysiological alpha band frequency 

oscillation that is present in empirical EEG data. To achieve faster oscillations in the alpha set, we had to not 

only change the global but also the local parameters. Therefore, we conducted an exploration of the local 

model and its parameters, which is described in detail in Supplementary Table 2 and Supplementary 

Figures 1-7. Shortly summarized, we simulated 2250 different combinations of parameters in an uncoupled 

network (i.e. connection weights = 0) to observe the effect of parameter changes on the local model. From 

there, we selected those combinations which peaked around 8-12Hz in the spectral density. Due to changes 

of local parameters, we also changed the noise distribution and integration step size in the second set of 

simulations (alpha set, Table 1).  

 

Data Analysis 

All data preprocessing and analysis was performed with Python and the statistical computing language R. 

Figures were generated with the Python library Seaborn. To allow the neural signal to stabilize, and to 

account for random initial conditions in our simulation, we deleted the first 2s of each simulated time series. 

The BOLD signal was simulated using a mixture of gamma kernels as a hemodynamic response function44. 

To account for the 20s length of the kernel, we removed the first 20s of the BOLD signal. For better 

comparison of simulated to empirical data, we down-sampled the simulated BOLD signal to a 2Hz sampling 

frequency. Simulated FC was derived by calculating the Pearson correlation coefficient between all brain 

regions’ pairs of simulated BOLD signals. Correlation was also used to quantify similarities between the 

simulated and the empirical FC.  

 

When we mention the ‘optimal fit’ of parameters in the following, we refer to the optimal parameter 

combination to achieve the highest possible correlation coefficient between the empirical and the simulated 

FC matrices (empirical-to-simulated FC fit). However, we define the expression ‘optimal working point’ as 

the parameter set that not only results in the best empirical-to-simulated FC fit but also presents bimodality 

in the power distribution of the alpha frequency band and reaches the maximum correlation with the FCD 

matrix (details explained below). We examined whether a relation exists between optimal parameters (global 

coupling and conduction speed) and graph-theoretical metrics of the SC (Supplementary Methods). 
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Empirical-to-Simulated FC Fit: Subject Specificity  

So far, we compared simulated to empirical FCs of the same subject to optimize our parameters. An 

important feature of TVB is to provide subject-specific simulations. Since structure shapes function in the 

brain29, one could assume that by providing a subject-specific input, the output fits best to its own empirical 

data. This assumption would mean that using individual SCs as a structural backbone of a simulation should 

generate data closer to its own empirical counterpart than to other subjects’ SCs or FCs. To test for subject 

specificity of our TVB model predictions, we compared all simulated FCs of a subject to the empirical FCs 

(and SCs) of all other subjects to determine whether the best fit is achieved with the subject’s own FC (SC) 

or the FC (SC) of another subject. We therefore correlated the set of 105 (1510) simulated FCs in the delta 

(alpha) set of each subject to all subject’s 50 empirical FCs. Fig. 2A shows a schematic overview of these 

comparisons based on two example subjects. The set of simulated FCs of each subject was compared with 

the empirical FCs (SCs) of all other subjects, resulting in a highest correlation coefficient for each 

comparison with the corresponding combination of global coupling and conduction speed parameter values. 

These results were written in two matrices, the ‘highest correlation matrix’ and the ‘optimal (G,v) parameter 

matrix’ (Fig. 2A). There was no significant linear relation between our optimal parameters and the age of a 

subject (Supplementary Fig. 8-9). 

 

We also quantified whether the underlying SC or the empirical FC determines optimal parameters. 

Therefore, we use the eta squared effect size45, which is computed as the ratio of sum of squares between 

groups and total sum of squares, grouped here either by the same underlying SC (Fig. 2C, upper panel) or 

by the same empirical FC (Fig. 2C, lower panel). This metric has values between zero (no variance 

explained by the grouping variable) and one (variance completely explained). 

 

Bimodality: Hartigan’s Dip Test 

For every neural signal, we calculated a time-frequency analysis using SciPy’s spectrogram function. The 

frequency with the highest power values in the spectrogram was then used to test for bimodality. Bimodality 

can be described as the switching of the neural signal between two modes: one mode with high and another 
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with low amplitude to no oscillation. We used Hartigan's dip test (as implemented in R) on the distribution of 

power coefficients of the selected frequency to assess whether power is unimodally or bimodally 

distributed46. With p<0.05, we can reject our null hypothesis that the distribution is unimodal and, therefore, 

it must at least be bimodal. Bimodality was assessed of the mean simulated neural signal, where the average 

over the neural signals of all regional time series was taken. We also conducted this analysis on a regional 

level to account for potential regional differences in bimodality. Examples of a unimodal and a bimodal 

power distribution are displayed in Supplementary Fig. 13.  

 

As the frequency of the oscillations varies across simulations, we did not assess the same frequency for every 

simulation. Rather, we tested the frequency that is most dominant in the signal, i.e., the frequency that has 

the highest power in the spectrogram. Therefore, subsequent figures assessing bimodality for a certain 

parameter range have corresponding figures showing the tested dominant frequencies (e.g. Fig. 1B and C).  

 

Functional Connectivity Dynamics  

Since our local SJHMR3D model is highly non-linear, we expected to observe dynamical changes in 

functional connections as well47. It is known that FC is not static over time and rather switches between 

different modes during, for example, rest48⁠, tasks49 and learning50. To characterize FCD, we required a longer 

simulation to be able to divide the time series into meaningful time windows. To this end, we conducted 22 

minutes simulations for four sample subjects (sex/age: f/30, f/47, m/20, m/73). We used local parameters and 

global coupling values from the alpha set. Conduction speed was set to the subject-specific optimum derived 

from the previous analysis of the alpha-set simulations. For each simulated BOLD signal, we created an FCD 

matrix by correlating numerous FCs from sub-windows of the time series. Time windows of size 60s with an 

overlap of 40s were used for all FCD matrices. The fit between empirical and simulated FCD was assessed 

with Kolmogorov-Smirnov distance.  

 

We plan to publish all code after publication. For the reproducibility of our study, we prepared an 

accompanying data descriptor entitled “Connectomes, simultaneous EEG-fMRI resting-state data and brain 

simulation results from 50 healthy subjects”51, where we present the used multimodal empirical data in raw 
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and processed format as well as the simulation results. This large comprehensive empirical and simulated 

data set is annotated according to the openMINDS metadata schema and structured following Brain Imaging 

Data Structure (BIDS) standards for EEG and MRI as well as the BIDS Extension Proposal for 

computational modeling data. This is the first data set of its kind since it is the first data set that uses the new 

Brain Imaging Data Structure (BIDS) extension proposal guidelines for computational neuroscience data 

(https://zenodo.org/doi/10.5281/zenodo.7962031), which is especially designed in an effort to make 

computational neuroscience studies reproducible. Our code includes a reproduction notebook, which loads 

the necessary files from the prepared data structure and reproduces the dominant frequency results of an 

example subject. After publication, the metadata will be available on the EBRAINS Knowledge Graph 

(https://search.kg.ebrains.eu/). 
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