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Abstract:

The immune system is a complex and dynamic network, crucial for combating infections
and maintaining health. Developing a comprehensive digital twin of the immune system
requires incorporating essential cellular components and their interactions. This study
presents the first blueprint for an immune system digital twin, consisting of a
comprehensive and simulatable mechanistic model. It integrates 51 innate and adaptive
immune cells, 37 secretory factors, and 11 disease conditions, providing the foundation
for developing a multi-scale model. The cellular-level model demonstrates its potential
in characterizing immune responses to various single and combinatorial disease
conditions. By making the model available in easy-to-use formats directly in the Cell
Collective platform, the community can easily and further expand it. This blueprint
represents a significant step towards developing general-purpose immune digital twins,
with far-reaching implications for the future of digital twin technology in life sciences and
healthcare, advancing patient care, and accelerating precision medicine.

Introduction:

Digital twin technology has emerged as a powerful tool for creating virtual
representations of real-world systems, allowing for the simulation, analysis, and
optimization of these systems in a controlled environment. By generating a digital
replica of a physical asset, process, or system, digital twin technology enables
engineers, scientists, and decision-makers to anticipate problems, design innovative
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solutions, and assess the viability of new products before their physical
implementation™2. The use of digital twins has grown exponentially across various
industries, including manufacturing, automotive, and medical devices, due to their
potential to improve efficiency, reduce costs, and minimize risks associated with
changes to existing operations or the development of new products®*®. As real-world
data continually informs the digital twin, the accuracy with which it represents the actual
system increases, allowing for more informed decision-making and better predictions of
system behavior.

Much of the massive influx of data produced by high-throughput technologies in the
biomedical domain consists of discrete snapshots of biological processes, offering an
incomplete view of working systems. The life sciences will thus benefit greatly from
digital twins that can integrate diverse data sources and reconstruct comprehensive,
dynamic models of biological systems to facilitate drug discovery, optimize treatment
plans, and even replace traditional clinical trials with simulations on virtual patients.
Digital twins provide researchers and healthcare professionals with a deeper
understanding of the functions and dysfunctions of complex biological systems,
ultimately leading to improved patient outcomes and precision medicine®’.

Digital twins have been designed to simulate the progression of individual tumors and
personalized cancer scenarios, incorporating parameters like magnetic resonance
imaging data, the intricacies of the tumor microenvironment, genetic alterations, a
spectrum of omics data, and responses to treatments®'°. These models can be used to
predict tumor progression, optimize treatment strategies, and identify potential
therapeutic targets’~'#. Digital twins simulating the function of the human heart and its
response to various interventions, such as pacemaker settings or drug therapies, and
patient-specific digital twins of vascular systems simulating blood flow, pressure, and
other hemodynamic parameters can be used to optimize treatment strategies and
predict patient outcomes in heart failure, arrhythmias, and other cardiovascular
conditions'™-"". Digital twins have also been developed for patients with type 1 and type
2 diabetes to simulate glucose metabolism, insulin sensitivity, and the effects of various
interventions, such as insulin administration and lifestyle modifications, thus helping
optimize glucose control and personalize diabetes management strategies'®?'.

The human immune system is an ideal candidate for digital twin development due to its
broad medical significance and complexity?’. Spanning every level of biological
organization, the immune system plays a crucial role in many health conditions,
including autoimmune diseases, primary immune disorders, allergies, infections, and
systemic biological responses related to chronic diseases, wound healing, and trauma.
The immune system is a highly complex and dynamic network involving many cellular
and molecular components, such as immune cells, cytokines, and immunoglobulins,
which interact in a tightly regulated manner. An accurate understanding of the system
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requires integrating these components and their interactions into a coherent and
consistent model.

This manuscript introduces a comprehensive map and a simulatable (logical) model of
the immune system as the first blueprint of an immune system digital twin - a key initial
step towards the development of an immune digital twin recently identified by the
community?:

Establishing a foundation: The immune system spans different temporal scales and
levels of biological organization, including molecular, cellular, tissue, organ, and
organism levels. The blueprint provides a solid foundation for a multi-scale model,
ensuring that the essential cellular components and their interactions are accurately
represented before introducing other levels of biological organization®.

Guiding model development: The blueprint serves as a guide for constructing the
multi-scale model, helping researchers identify critical components and interactions that
need to be integrated across different scales and ensuring that the model remains
consistent and coherent as it expands to encompass additional levels of biological
complexity®2.

Facilitating validation and refinement: Having a well-defined blueprint allows the
community to validate and refine the model more effectively, comparing its predictions
with experimental data at different levels of biological organization and making
necessary adjustments to improve its accuracy and reliability.

Enhancing collaboration and interdisciplinary research: A comprehensive blueprint of
the immune system can facilitate collaboration among researchers from different

disciplines, providing a common framework and language to understand the immune
system’s complexity and interactions.

Methods:

Model construction and mathematical framework

We chose logical modeling to represent the cellular-level interactions within the immune
system accurately in the absence of comprehensive quantitative kinetic information.
Logical models use rules to describe the relationships between various components of a
biological system, such as activation, inhibition, and feedback loops®-%. We
represented each immune cell type, cytokine, immunoglobulin, and disease as a distinct
component, with edges illustrating their interactions. The components are assigned
discrete values (e.g., O for inactive and 1 for active) based on the presence or absence
of a specific component’s activity, while logical rules dictate the state transitions
between these values. We built and curated the model in the web-based modeling and
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analysis platform, Cell Collective?’. All components and individual interactions used to
construct the regulatory mechanisms have been annotated in Cell Collective with the
exact quote from the reference literature. A total of 449 scientific publications were used
to build the model and have been listed in the reference panel of the Cell Collective
platform overview tab. The model is publicly available in Cell Collective, where it can be
simulated, further expanded, and downloaded in several file formats (such as
SBML-qual %, text files containing the logical functions, and truth tables).

Model simulations and analyses

We used Cell Collective for all computational simulations and analyses. This platform
utilizes discrete mathematics to construct the model, while the simulated output values
exhibit semi-continuous behavior, spanning from 0 to 100% activity levels 2", External
components’ activity levels are dimensionless and represent a percentage chance that
a component is active at a specific time (). It is important to note that the activity levels
provide a semi-quantitative measure of the relative activity of a particular component
rather than a specific biological measurement (e.g., concentration). Users can tailor
external components’ activity levels as required by the simulation experiment, either by
setting specific values or by defining a range from which values are randomly sampled
before each simulation (e.g., for simulating dose-response experiments).

Simulations and analyses used asynchronous updates®=°. We conducted two types of
analyses: real-time and dose-response.

For real-time simulations, the activity of components at different times (steps) was
presented using the mean activity level of multiple simulations (meantstandard error of
the mean [SEM]). For dose-response experiments, each experiment simulating a single
infection consisted of 100 simulations with different randomly sampled external
component activity levels. Each simulation consisted of 5,000 steps. Output
components’ activity levels were calculated as the fraction of 0’s and 1’s over the last
500 iterations®>3'*2, As noted previously*=? and from observations drawn from the
model presented here, the model reaches a steady state rapidly, and these values are

sufficient to describe the network’s “long-term” (e.g., attractor-like) behavior.
Simulation settings

Each pathogen is represented by an external component (independent variable) in the
model whose activity level can be set by the user. Each immune cell also possesses an
associated external component so that its initial levels can be set to represent different
immune system health statuses for various conditions or sub-populations. For real-time
simulations on the Cell Collective platform, under the “Simulation” tab, the “External
Components”, the simulations have been set to 100% to simulate the presence of
specific external component(s) activity level. For dose-response analysis, the model
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was simulated under 67-100% pathogens’ activity levels. The simulations we defined
mimic real-world scenarios, categorizing the severity of infections into different stages
(stage 1 (1-34%), stage 2 (34-67%), and stage 3 (67-100%)). The range used for the
simulations is based on the highest pathogen load and the impacts on host
physiology®*34.

Statistical analysis

Statistical analyses were performed with GraphPad Prism software using the unpaired
parametric Student two-tailed t-test as appropriate.

Code availability

The model is freely available on the Cell Collective platform (contact authors for direct
link) This platform is a user-friendly online environment for building, simulating, and
analyzing computational models of biological systems, allowing researchers to access,
modify, and utilize the model for their research questions.

Results:

Model design and scope

Our comprehensive model captures the intricate network of signals and responses that
regulate the immune system’s defense against disease conditions and comprises 124
components representing: disease/pathogen target cells; innate and adaptive cells and
their respective subtypes (e.g., T helper [Th] 1, 2, 9, 17, 22 for CD4 T cells) and their
various states (e.g., resting, naive, activated, antigen presentation); 37 secretory factors
such as interleukins (ILs), immunoglobulins (lgs), growth factors, and reactive oxygen
species (ROS); 9 pathogens; an autoimmune disease (type 1 diabetes, T1D); transplant
(lung transplantation, LTx); and 1,450 regulatory interactions among these components
(Fig. 1a). A schematic overview of the model components, with the number of subtypes
per component stated in parentheses, is provided (Fig. 1b), along with a detailed
description of each cell type and subtype included in the model, their definition, and
associated references (Table 1).
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Figure 1: Components of the immune system model. a Network visualization of digital twin blueprint of
the human immune system in Cell Collective. b Overview of the cell-cell model components, with the
number of subtypes per cell type mentioned in parentheses. Disease environments: Cytomegalovirus
(CMV), Epstein-Barr Virus (EBV), Ebola virus (EBOV), Human Immunodeficiency Virus (HIV),
Mycobacterium tuberculosis (MTB), Helminth (Hel), Influenza A virus (IAV), Plasmodium Falcipurum (PF),
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Type 1 Diabetes (T1D), Lung
transplantation (LTx).

Secretory factors: Reactive oxygen species (ROS).

Target cells: Red blood cells (RBCs).

Innate cells: Basophils (Ba), Eosinophils (Eo), Neutrophils (Neu), Dendritic cells (DCs), Monocytes
(Mono), Macrophages (M®), Neutrophils (Neu), Mast cells (Mast), Innate lymphoid cells (ILCs), Natural
Killer cells (NK).

Adaptive cells: Plasma cells (PCs), gamma-delta T cells (Tyd).

Immune system stimuli

As stated, the model encompasses an autoimmune disease (i.e., T1D), LTx, and nine
common pathogens from different viral, bacterial, and parasitic groups to simulate the
initiation of the immune response under various disease conditions (Table 2). By
incorporating pathogen-specific immune responses and host-pathogen interactions at
the cellular level, the model provides a realistic representation of the complex interplay
between the immune system and invading pathogens.

These pathogens and disease conditions prompt a dynamic array of immune
responses, engaging both the innate and adaptive arms of the immune system. Innate
immune cells, such as macrophages, dendritic cells (DCs), neutrophils, and natural
killer (NK) cells swiftly recognize and respond to invading pathogens through
mechanisms like phagocytosis, cytokine secretion, and direct cytotoxicity.
Simultaneously, adaptive immune cells, including T lymphocytes (CD4+ and CD8+ T
cells) and B lymphocytes, undergo activation and differentiation to mount targeted and
specific responses against the pathogen. This immune activation triggers the release of
a myriad of signaling molecules, including cytokines, chemokines, and other soluble
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mediators, which orchestrate the immune response. Cytokines such as interleukins
(ILs), interferons (IFNs), and tumor necrosis factor (TNF) regulate inflammation, cell
proliferation, and differentiation, while chemokines guide immune cell migration to sites
of infection.

Understanding the intricacies of immune responses is paramount for the development
of effective treatments and vaccines to combat diseases. Insights into how pathogens
interact with the immune system, evade immune surveillance, and induce pathology
inform the design of targeted therapeutics, including antiviral drugs, immunomodulators,
and vaccines. By deciphering the complex interplay between pathogens and the
immune system, researchers can devise strategies to enhance host defense
mechanisms, mitigate disease progression, and ultimately safeguard global health.

Model validation: Inmune response to pathogens

To evaluate the accuracy and reliability of the computational model, we compared its
predictions with published human data, including in vitro and ex vivo studies and clinical
observations. These data encompass various aspects of immune responses to select
pathogens making them a suitable blueprint for validating the computational model.

We first evaluated the model's capacity to replicate inherent cell responses during 1AV
using real-time simulations. Jost et al. previously found a decline in NK bright cells and
an increase in activated NK dim cells among patients infected with seasonal IAV or the
H1N1 strain, and our immune system model was constructed based on the
experimental data from H1N1 infected patients®®. We validated the NK cell phenotype
during IAV infection by running real-time simulations in our model. Results from the
simulation mirror the published findings by predicting a reduction in NK bright cells
during acute IAV infection (Fig. 2a), thus demonstrating the accuracy of the model.

We further assessed the interaction between cytokines in MTB infection since cytokine
activity is an essential regulator of immune response. Previously, Paidipally et al. found
that IL-21 siRNA enhanced IL-10 production by peripheral blood mononuclear cells
infected with MTB?*. To address whether this phenomenon could be replicated in our
model, we simulated MTB infection and evaluated the activity level of IL-21 and IL-10 in
the absence or presence of IL-21 activation. Consistent with the published findings, our
model predicted that the absence of IL-21 activity resulted in a significant increase in
IL-10 levels during MTB infection (SEM (20.56 + 7.882). p=0.031) (Fig. 2b). Together,
these results demonstrate the model’s ability to accurately simulate immune cell
response and cytokine production following exposure to specific pathogens.
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Figure 2: In silico validations. a Time course distribution of NK bright (green) and NK dim (blue) cells
during IAV infection. b Assessment of IL-21 (triangle) and IL-10 (circle) activity levels upon MTB infection
with control (Ctrl) or without IL-21 (IL-21 KO). (replicates n=5). Data are presented as mean+SEM, and
the p-value is determined by an unpaired two-tailed t-test.

Comparing the model’s output with published human findings assesses its ability to
appropriately simulate innate and adaptive immune cell dynamics during infection. As
shown in Table 3, our model predicted the immune response of multiple innate and
adaptive cell subtypes following exposure to select pathogens, which was supported by
published literature. Specifically, we presented the reactions of several innate cells,
including DCs, macrophages, monocytes, neutrophils, and NK cells, to nine pathogens,
and all pathogens demonstrated activation of DCs and/or macrophages. This is
attributed to their critical role as antigen-presenting cells (APCs), which is indispensable
for initiating the adaptive T cell response. In addition to DCs and macrophages, the
simulation showed the activation of neutrophils, NK cells, and monocytes in most
pathogens, alluding to their critical role in pathogen clearance through phagocytosis and
cytokine release (Tables 1 and 2). For the adaptive response, both CD8+ T cells and the
humoral response are activated under all pathogen conditions. The cytotoxic function of
CD8+ T cells is essential in host defense against pathogens through the elimination of
infected cells, whereas the antibody response plays a crucial role in pathogen
opsonization for phagocytosis and antibody-dependent cellular toxicity (ADCC)*. Most
pathogens displayed CD4+ Th1-specific immune responses, whereas helminths
showed CD4+ Th2-specific immune responses. HIV did not initiate CD4+ Th1- or
Th2-specific immune responses, and this low activation of immune cells (e.g., CD4+ T
cells) mimics the stage of disease with immunodeficiency. The model appropriately
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predicted that the Th1 response is primarily triggered by bacterial and viral infections,
whereas Th2 is activated in the presence of parasitic infections®.

Next, we simulated cytokine and Ig production in response to each infection (Fig. 3) and
compared our results with the literature. CMV infection induces a stronger inflammatory
cytokine response (IL-1B, IL-2, IL-6, IL-12, IL-15, IFN-y, TNF-a, and TGF-R) with low
expression of IgE in our model, which is aligned with the literature®*“°. EBV infection
stimulates granulocyte-macrophage colony-stimulating factor (GM-CSF) and several
pro-inflammatory cytokines, including IL1-B, IL-6, IL-8, IL-18, TNF-a, IFN-a, IFN-R, and
IFN-y, with low levels of IL-4. This response predicted by our model is also aligned with
experimental data*'#2. Our model predicted that EBOV infection promotes a strong
response of both pro-inflammatory cytokines (IL-103, IL-6, IL-12, IL-15, IFN-a/i3/y,
TNF-a) and anti-inflammatory cytokines (IL-8 and IL-10), which mimics previously
published results*®. HIV infection in our model is characterized by a burst of cytokines,
including pro-inflammatory (IL-1a/R, IL-2, IL-6, TNF-a, IFN-a/B/y) and anti-inflammatory
(IL-4, IL-10, IL-13) mediators; however, some cytokines did not show any activity level,
including IL-9 and IL-22, which were previously shown to be reduced during HIV
progression*'#4+4_|AV infection occurs in alveolar macrophages in the lower respiratory
tract and induces a robust pro-inflammatory response (IL-1a/R, IL-2, IL-5, IL-6, IL-10,
IL-12, IL-17, IL-18, IFN-y, TNF-a, and IL-23)*, which was confirmed by our model.
Concerning SARS-CoV-2, our simulation exhibits a large panel of cytokines that overlap
with those published, including IL-183, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-17,
IL-18, TNF-a, IFN-y, and GM-CSF*"°. This mirrors the cytokine storm and subsequent
severe inflammation, immune dysfunction, and tissue damage seen in SARS-CoV-24"%,
The model found that MTB elicits a strong pro-inflammatory cytokine response,
increasing IL-1a/B, IL-2, IL-6, TNF-a, IFN-a/3/y, and IL-23, and inducing some cytokines
with dual functions such as IL-22, IL-27, and IL-35, which also aligns with the
literature®'. Our simulations found that Helminth infection prompts the production of key
cytokines, such as IL-4, IL-3, IL-5, and IL-13 (Fig. 3), that are associated with Th2
responses (Table 3)*. In contrast to other pathogens, 1gG is inactive in helminth
infection, consistent with prior research findings that indicate these antibodies are
susceptible to enzymatic cleavage as a strategy to evade ADCC?®®. Cytokine response
to PF is mixed pro- and anti-inflammatory in the model, which aligns with the literature
since both pro- and anti-inflammatory responses are important in the immune response
against malaria®. Additional cytokine validations are available in Table 1 . Among all
pro-inflammatory cytokines, IL-1i3, IL-6, and IFN-y were identified as the most active in
response to simulated infections by different pathogens. Although these cytokines play
a protective role against infection, their excessive secretion has been associated with
high inflammation, damage, and dysfunction of immune responses in infectious
diseases®’. Conclusively, the model simulates key cytokine and Ig activity following
pathogen exposure that aligns with current studies.
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Despite the extensive literature on these nine pathogens, certain cytokines, such as
IL-9, IL-32, and IL-35, lack experimental validations that explore the intricate chain
linking pathogen-cell-cytokine responses. Consequently, the model's scope is
constrained by the absence of data in the literature concerning any unverified
interactions. In summary, the model accurately replicated the immune responses for
nine different pathogens, and correctly simulated cytokine and Ig production in response
to each infection, aligning with the literature. Notably, the model appropriately
reproduced complex experimental scenarios, such as the increase of IL-10 in the
absence of IL-21 during replication of MTB infection in the absence of IFN-y (Fig. 2a).
Overall, the model showed a high level of accuracy and reliability in simulating immune
responses to infections.
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Figure 3: Dose-response analysis of the secretory response to single pathogen infections. (A)
Cytokine activity upon infection. The activity levels represent the average value of 100 simulation results
triggered by each pathogen and were performed at 67-100% pathogen activity level.

Case study 1: Inmune response to various coinfections

Coinfections can complicate clinical presentation, diagnosis, and treatment, often
resulting in more severe symptoms and increased morbidity and/or mortality, underlining
the importance of understanding the immune response during coinfection.
Characterizing immune responses to coinfections allows researchers to identify key
differences in cytokine and Ig activity depending on the infection order leading to more
effective therapies and targeted interventions, thereby improving patient outcomes.
Furthermore, examining the immune system’s behavior during coinfections provides
valuable information on the complex interplay between various pathogens and the
host’s immune system. This knowledge can help researchers better understand the
mechanisms behind immune system regulation, identify potential vulnerabilities, and
design innovative strategies to prevent or manage coinfections. In an era of emerging
and re-emerging infectious diseases, understanding the immune responses to
coinfections is paramount to global public health.

To address these issues, we analyzed the model’s dynamics in response to medically
relevant (observed) coinfections. First, we explored the CD4+ Th1 response in MTB and
HIV coinfection, using dose-response analysis, since some clinical observations
showed that HIV infection induces the decline of Th1 response in coinfected patients,
increasing the susceptibility to MTB infection®®*°. The model simulation aligned with the
literature, confirming the decrease of Th1 activity in HIV-MTB coinfection compared to
MTB single infection (SEM (-53.1+£0.43), p<0.0001) (Fig. 4a).

Additionally, we assessed cytokine responses in MTB-Helminth coinfection. Studies
showed that the synergistic effect of MTB-Helminth induces the anti-inflammatory IL-10
along with robust pro-inflammatory responses including IL-5, IL-6, IL-13, IL-17, and
IL-2250¢1 Kathamuthu et al. showed that coinfected patients display an increase of IL-5,
IL-13, IL-17, IL-22, and IL-10 compared to individual MTB-infected patients®. Our
dose-response simulation aligned well with these data, except IL-13 where the
simulation failed to demonstrate any difference in activity levels between the single and
coinfection conditions (Fig. 4b). In another study, Bewket et al. showed that IL-6 and
TNF-a are higher in MTB single infection and coinfection regardless of Helminth
infection®’. Again, our simulation properly predicted the increase of IL-6 and TNF-a in
MTB-Helminth coinfection (Fig. 4b).
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In the third experiment, we evaluated EBV infection in the setting of T1D using real-time
simulations. Klatka et al. showed a decrease in CD8+ T cells and IL-4 secretion in
patients with T1D coinfected with EBV, while IL-10 increases in the same coinfected
patients®2. Our model validates the significance of IL-4 decrease when comparing T1D
with T1D-EBV coinfected condition (SEM (-22.70% 8.155), p=0.02) or comparing EBV to
T1D-EBV coinfection (SEM (-18.35+ 6.838), p=0.023); however, our model showed a
partial agreement with the data, in which CD8+ T cells and IL-10 levels exhibit an
increase without significance (Fig. 4c). The discrepancy between the model simulation
and literature might be due to the nature of logical models to be qualitative and
non-quantitative.

Finally, we assessed real-time simulations for the IgG responses in cases of both 1AV
and SARS-CoV-2 coinfection. As demonstrated by Kim et al., IAV exhibited higher IgG
titers compared to SARS-CoV-2 single infection and coinfection 3. Additionally, there
was evidence of IgG impairment in vivo in response to coinfection . Our model
corroborated these findings by revealing a significant reduction in IgG levels when
comparing lAV to coinfection (SEM (-12.9 £ 5.14), p=0.036), as well as IAV to
SARS-CoV-2 alone (SEM (-7.36 + 2.169), p=0.0095). 1gG in IAV-SARS-CoV-2
coinfection is lower than SARS-CoV-2 single infection; however, we did not observe a
significant difference in activity level (Fig. 4d).

These studies provide evidence that the model can mostly replicate the immune
response during coinfections. Importantly, the model correctly simulates the activity of
various cells, cytokines, and Igs in coinfection, which aligns with the literature. These
findings pose important solutions for addressing questions related to coinfection.
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Figure 4: Inmune response to coinfections. a Activation of CD4+ Th1 in response to MTB, HIV, and
MTB-HIV coinfection (replicates n=100 simulations). b Differential cytokine response to MTB, Helminth,
and MTB-Helminth coinfection. ¢ Activity level of IL-4, CD8+ T cells, and IL-10 in response to EBV
(circle), T1D (triangle), and coinfection (Co, square) (replicates n=5). d Activity level of IgG in response to
IAV, SARS-CoV-2, and coinfection. (replicates n=5). All data are presented as mean+SEM, p-value
determined by unpaired two-tailed t-test.

Case study 2: Inmune response in LTx associated with CMV, EBV, and
SARS-CoV-2

LTx presents a complex scenario wherein recipients face the challenge of balancing
immune suppression to prevent graft rejection with the need to mount effective immune
responses against infectious agents, specifically CMV and EBV. Lung transplant
recipients are particularly susceptible to CMV reactivation due to the intense
immunosuppressive regimens required to prevent allograft rejection®. Similarly, EBV
infections can result in severe outcomes in post-transplant patients®*. SARS-CoV-2
infections’ effects on the respiratory system pose a grave threat to those with
compromised lung function, increasing the concerns about the susceptibility and
outcomes of lung transplant recipients if infected®®. Indeed, the COVID-19 pandemic
presented unprecedented challenges for lung transplant recipients as shown in clinical
studies where lung transplant patients infected with SARS-CoV-2 had higher mortality
rates and the survivor exhibited decreased lung function even after recovery®®. The
delicate balance between immune response to prevent rejection and immune activation
to combat infections like CMV, EBV, and SARS-CoV-2 underscores the importance of
tailored management strategies and vigilant monitoring in lung transplant recipients®.

Here, we conducted a comparative in silico simulation of LTx conditions under three
distinct viruses: CMV, EBV, and SARS-CoV-2. Previous studies have established that
CD8+ T cells play dual roles, promoting rejection in LTx® while also controlling viremia,
primarily through their cytotoxic activity’""2. Zaffiri et al. demonstrated that CD8+ T cell
levels are higher in LTx without EBV infection compared to those with EBV3. Others
have published that the frequency of CD8+ T cells remained stable over time in LTx
patients regardless of CMV infection’. Interestingly, in SARS-CoV-2 infection, CD8+ T
cell levels decrease following vaccination’. Due to the lack of CD8+ T cell experimental
validations in dual conditions of LTx and SARS-CoV-2, we validated our findings based
on SARS-CoV-2 vaccination data. Our simulation revealed that the CD8+ T cell
response in LTx and LTx-CMV conditions was similar (SEM (-0.1120 + 0.5835), p=0.84),
while in LTx-EBV it was lower compared to LTx alone (SEM (-48.31 + 1.735),
p<0.0001), which is consistent with previous findings. Notably, in the SARS-CoV-2
condition, the CD8+ T cell response decreased compared to LTx alone (SEM (-44.62 +
1.769), p<0.0001), mirroring trends observed in vaccination data (Fig. 5a).


https://www.zotero.org/google-docs/?D3putP
https://www.zotero.org/google-docs/?alHxGj
https://www.zotero.org/google-docs/?HWlXCK
https://www.zotero.org/google-docs/?snbiun
https://www.zotero.org/google-docs/?W496la
https://www.zotero.org/google-docs/?KnnjEP
https://www.zotero.org/google-docs/?xMyRQQ
https://www.zotero.org/google-docs/?OaSAtF
https://www.zotero.org/google-docs/?kSs7Q5
https://www.zotero.org/google-docs/?dKJFJd
https://doi.org/10.1101/2020.03.11.988238
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.11.988238; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Next, we assessed the IgG responses under comparable environmental conditions
since it is generally used as a quantitative biomarker of pathogen infection. Similar to
the dual nature of CD8+ T cells in LTx, the 1gG protects against infections, while also
contributing to rejection by targeting donor-specific antigens’. LTx patients
demonstrated robust IgG responses against CMV, targeting a range of epitopes, with
the response correlating with viral load”’. Conversely, in EBV infection, patients
exhibited limited IgG responses, primarily attributable to the target cells of EBV being B
cells, which can differentiate into plasma cells. This observation is consistent with our
model simulations (SEM (-10.31 + 0.4797), p<0.0001)"®. Additionally, several cohorts of
lung transplant recipients receiving SARS-CoV-2 vaccines failed to mount a sufficient
IgG response . Our findings complement the published literature showing that the 1IgG
drop is mostly observed in SARS-CoV-2 infection (SEM (-33.26 + 2.032), p<0.0001)
(Fig. 5b).

We next assessed different cytokine responses for their pivotal role in promoting
inflammation and tolerance®. As shown in Fig 3, the pro-inflammatory IL-1R, IL-6, and
IFN-y are highly represented across all pathogens. Notably, in LTx, these cytokines
have been implicated in post-transplant complications®'-33. Our simulation results (Fig.
5c) aligned with clinical observations for individual conditions (LTx, CMV, EBV, and
SARS-CoV-2). In dual LTx-CMV, LTx-EBV, and LTx-SARS-CoV-2 conditions, IL-6 and
IFN-y mirrored the patterns observed in single conditions, except for IL-13. The activity
level of IL-113 in LTx-CMV behaves like the LTx profile and not CMV single infection.
Additionally, a subtle reduction in IL-113 was evident in LTx-EBV compared to EBV
alone.

Whitehead et al. observed an elevation of IL-4 levels in bronchoalveolar lavage samples
from patients experiencing acute allograft rejection compared to those without
rejection®®. In our simulation, IL-4 was active in all conditions except for those
associated with EBV infection, where its presence was notably reduced (31% for both
EBV alone and LTx-EBV), suggesting a potential dependency of IL-4 secretion on EBV
infection. This observation is consistent with prior research by Buidiani et al., which
demonstrated decreased IL-4 expression in EBV-associated infections*2.

Numerous studies have highlighted the presence of IL-10 and IL-2 in the majority of LTx
patient samples, regardless of the presence or absence of complications, with
occasional instances of low expression®'#3-%_Qur predictive analysis revealed a
diminished expression of IL-10 and IL-2 across all conditions, except for IL-10 in CMV
(Fig. 5¢). Of note, IL-10 was previously shown to increase during CMV infection®’;
however, our simulation indicated that CMV infection does not significantly impact IL-10
levels in LTx coinfection.
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To assess the clinical impact of the immune response in LTx, we incorporated two key
phenotypes into the LTx environment: rejection and tolerance. Our simulation verified
that both rejection and tolerance components are inactive in single infections (CMV,
EBV, and SARS-CoV-2) (Fig. 5d). Furthermore, our in silico model predicted that EBV
infection elevates the likelihood of rejection (SEM (15.39 + 1.691), p<0.0001), while
SARS-CoV-2 doesn't show a significant effect (SEM (2.252 + 1.871), p=0.23). In
contrast, CMV infection decreases the likelihood of rejection (SEM (-4.774 + 2.029),
p=0.02). However, the tolerance phenotype is poor when associated with SARS-CoV-2
(SEM (-3.212 + 1.517), p=0.035) and does not improve with CMV (SEM (3.466 + 1.812),
p=0.057). Our model highlights the heterogeneous responses during viral infection and
confirms the negative impact of CMV®, EBV®®, and SARS-CoV-2% infection in LTx
patients. Notably, to date, no clinical study has directly compared the outcomes of LTx
patients infected with these pathogens, and our model may help to bridge these gaps.

In summary, our model demonstrated the capability to interrogate the immune digital
twin within a clinical context, elucidating immune cell behavior in response to multiple
infections simultaneously.
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Figure 5: Inmune response to LTx and CMV, EBV, and SARS-CoV-2 infections using
dose-response analysis. a CD8+ T cell response to various single and dual infections. b Activity levels
of IgG. ¢ Cytokine profile of immune response to various pathogens and combinatorial disease
conditions. d Rejection and tolerance phenotype response in single and dual conditions. The activity
levels represent the average value of 100 simulation results triggered by each disease condition.
Simulations were performed at 67-100% pathogen activity level. Data are presented as meantSEM,
p-value determined by unpaired two-tailed t-test.

Discussion:

The immune system is a highly complex and dynamic network, spanning multiple
temporal scales and levels of biological organization. Developing an accurate and
comprehensive digital twin of the immune system necessitates a solid foundation that
incorporates the essential cellular components and their interactions. The logical model
and blueprint presented in this study serve as this foundation, ensuring that the innate
and adaptive immune cells, cytokines, immunoglobulins, and other components of the
immune system are accurately represented before introducing additional levels of
complexity. As the community continues its efforts towards implementing immune digital
twins and including other levels of biological organization, the blueprint will serve as a
guide for constructing the multi-scale model. The immune system is an area of active
research stemming from many different disciplines, including immunology and
computational biology. A comprehensive blueprint of the immune system can facilitate
collaboration among these researchers by providing a common framework and
language for understanding the system’s complexity and interactions.

We validate the cellular-level logical model against available experimental data to
assess their accuracy in representing the immune system’s response to different
modeled pathogens, which include bacteria, viruses, and parasites. This assessment
allowed us to gauge how well the model captures the complexities and interactions
within the immune system when faced with different types of infections. For instance,
the model was able to reproduce the activation and differentiation of T cells in response
to viral infections, as well as the recruitment and activation of neutrophils during
bacterial infections.

Despite the compelling advantages of logical modeling, there are some limitations to
this approach. For example, logical models are qualitative and therefore lack the
quantitative precision required to model the kinetics of immune responses. Furthermore,
the construction of logical models is heavily dependent on the current state of
knowledge and may lack components or interactions that have not yet been discovered
or fully understood. On the other hand, logical models provide numerous benefits,
particularly in their ability to capture complex systems in a simplified and
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computationally efficient manner. They are especially useful for systems with incomplete
kinetic data, as they allow for studying system-level behavior based on the known
structure of the regulatory network. Logical models can be used to generate hypotheses
about the system's behavior, which can then be tested experimentally. Moreover, they
are valuable tools for identifying key regulatory components and potential intervention
points in the system.

While the immune digital blueprint model provides a comprehensive representation of
many key immune system components and their interactions, it is important to
acknowledge that it is not an exhaustive depiction of the entire immune system. There
are still many cellular and molecular components, as well as interactions, that have not
been included in the current model. The immune system model is also limited to
pathogens as triggers for an immune response. For example, other specialized subsets
of T cells, such as follicular helper T cells and resident memory T cells, are not explicitly
represented in the current model. Similarly, the model does not include immune cell
homing, chemotaxis, and the influence of the local tissue environment on cell behavior.
Moreover, some cellular components (e.g., innate lymphoid cells) and molecular factors
(such as cytokines) have not been thoroughly investigated experimentally, constraining
our biological understanding and the model’s accuracy. Regarding infectious diseases,
the focus is on the most documented pathogens, rather than their strains. However, the
model is primarily designed to capture the core, broadly applicable aspects of the
immune system functioning against a variety of insults. Our validation exercises have
shown that these key immune responses can be accurately represented even without
these additional cell types and states. Thus, while these components could provide
additional granularity and potentially enable the model to address more specific
questions in future iterations, their absence does not undermine the model's current
accuracy or utility in simulating the general patterns of the immune response.
Furthermore, the model’s accessibility in Cell Collective and through SBML provides an
opportunity for the community to continue to refine and expand the model to enable
simulations of the immune response to other insults, such as allergies, autoimmune
conditions, and trauma.

The current blueprint model focuses primarily on immune cell-level communication,
including direct and indirect interactions (e.g., cytokines, growth factors,
immunoglobulins). To provide a more comprehensive understanding of the immune
system, future work should aim to integrate multi-scale modeling approaches,
encompassing genetic, molecular, cellular, tissue, organ, and organism levels. By
incorporating information from these various scales, researchers can develop a more
holistic understanding of the immune system and its role in health and disease.
Including physiologically based pharmacokinetics/pharmacodynamics, for instance,
would allow the model to predict the effects of drug interventions on the immune system
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and how these effects might vary among different individuals or under different
physiological conditions.

We recently created the first draft of a multicellular, multi-scale, and multi-approach
computational model of CD4+ T cells®!, which can serve as a computational framework
for implementing additional scales atop the cellular-level blueprint model presented
here. This multi-scale framework integrates physiological (ordinary differential
equations), cellular (agent-based approaches), molecular (stochastic logical approach),
and genome-level (constraint-based approach) models with heterogeneous
high-throughput datasets and bioinformatics algorithms. The model also represents the
target cells of initial insult/infection (e.g., epithelial lung cells for infectious diseases),
lymphoid tissues connected to the site of insult (a micro-environment where antigens
can stimulate antigens), and the circulatory system. The multi-scale and multicellular
model demonstrates mathematically and computationally how information flows within
and across scales in a single integrated framework, validated by reproducing observed
responses of naive CD4+ T cells to different combinations of cytokines.®’

The presented cellular-level blueprint immune system model will guide the expansion of
the aforementioned multi-scale, multicellular framework by expanding it and
incorporating additional immune cell-specific sub-models of genome-scale metabolism
and signal transduction. While a few such models already exist (e.g., signal transduction
network models of antigen-presenting cells*®, CD4+ effector T cells®, and
macrophages® and constraint-based metabolic models of Th1, Th2, Th17, and
regulatory T cells "% and macrophages®), the majority of sub-models of other immune
cells will need to be developed.

Future multi-scale general-purpose immune digital twins can be applied to many
immune-related conditions, including autoimmune diseases and primary immune
disorders, infectious diseases, cancer, immunotherapy, chronic diseases, wound
healing, transplantation, and trauma responses. By considering the immune digital twin
scope within these areas, researchers can explore the immune system’s involvement in
these processes and identify potential interventions to improve patient outcomes. For
example, the model could be used to simulate the immune response during wound
healing to optimize wound care strategies, or to predict the risk of graft rejection in
transplantation settings, leading to better patient management and improved clinical
outcomes.

Conclusion:

This study provides a comprehensive and simulatable logical model of the immune
system, serving as the first blueprint for an immune system digital twin. This blueprint
integrates 51 innate and adaptive immune cells, 37 secretory factors, and 11 different
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disease conditions, providing a solid foundation for developing a multi-scale model. We
demonstrated the model’s potential in characterizing system-wide immune responses to
various disease conditions. By making the model available in easy-to-use formats
directly in the Cell Collective platform, it can be easily further expanded by the
community.

The presented cellular-level blueprint of the immune system represents a significant
step toward the development of general-purpose immune digital twins. The
development and application of immune digital twins have far-reaching implications for
the future of digital twin technology in life sciences and healthcare. As digital twins
continue to advance, they have the potential to advance patient care and accelerate the
transition toward precision medicine. By integrating diverse data sources and providing
comprehensive, dynamic models, digital twins enable researchers and healthcare
professionals to investigate system behavior, optimize treatments, and develop
innovative solutions to pressing medical challenges. Furthermore, digital twins can
facilitate collaboration among researchers from different disciplines, providing a
common framework and language to understand the complexities and interactions of
biological systems.
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Table 1: List of cell types included in the modeled immune system.

Cell Types Brief Synopsis Citations

Target Cells

These barrier-forming cells are essential for maintaining tissue integrity and
preventing pathogen entry. They secrete interleukins, chemokines, and
Epithelial growth factors, such as IL-1, IL-6, IL-8, TGF-f (transforming growth
cells factor-), and GM-CSF (granulocyte-macrophage colony-stimulating factor),
that recruit and activate immune cells, such as neutrophils, macrophages,

and dendritic cells. %

Red blood These cells transport oxygen, carbon dioxide, and nutrients throughout the
cells (RBCs) entire body. Modifications in their structure and quantity serve as clinical

indications of disease processes. o7

Innate Immunity

These granulocytes contribute to allergic reactions and inflammation. They

are activated when antigens cross-link IgE bound to their FceRI receptors.
Basophils Upon activation, basophils release histamine and other infammatory

mediators, including IL-4, IL-13, and IL-33, that increase vascular

permeability and attract other immune cells, such as eosinophils, to the site 98,99
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Dendritic cells
(DCs)

Monocyte-
derived
dendritic cells
(moDCs)

Conventional
type 1
dendritic cells
(cDC1)

Conventional
type 2
dendritic cells
(cDC2)

Plasmacytoid
dendritic cells
(pDC)

Eosinophils

Innate
lymphoid cells
(ILCs)

of inflammation.

These antigen-presenting cells (APCs) serve as a crucial bridge between
innate and adaptive immunity. Their primary function involves capturing and
processing antigens, which are then presented to T cells through major
histocompatibility complex (MHC) molecules, initiating adaptive immune
responses. Activation of DCs occurs upon recognition of
pathogen-associated molecular patterns (PAMPs) or damage-associated
molecular patterns (DAMPs) through pattern recognition receptors (PRRs)
like toll-like receptors. Subsequently, DCs release a variety of cytokines,
such as IL-12, IL-6, and IL-1, which promote T cell differentiation and
activation, thus enhancing the adaptive immune response. DCs are divided
into three major subtypes: monocyte-derived DCs (moDCs), conventional
DCs (cDC1 and cDC2), and plasmacytoid DCs (pDCs).

These DCs are derived from monocytes in response to inflammation and
infection. They activate both CD8+ and CD4+ T cells through antigen
presentation and the secretion of TNF-a, IL-13, and IL-12, which are
essential for driving inflammatory responses and promoting T cell
polarization.

cDC1 cells are crucial in initiating anti-viral immunity by efficiently
cross-presenting antigens to CD4+ and CD8+ T cells. They produce high
levels of IL-12, which is important for driving Th1 responses and enhancing
the function of cytotoxic T cells in killing infected cells.

These subtypes of DCs initiate immune responses against extracellular
pathogens, such as bacteria and fungi. They produce various cytokines,
including IL-6, IL-12, IL-23, and IL-10, which help shape the immune
response by promoting CD8+ T cell, Th2, Th17, and regulatory T cell
responses.

These DCs primarily sense viral infections through toll-like receptors (TLRs),
particularly TLR7 and TLR9, which recognize viral RNA and DNA,
respectively. Upon viral infection, pDCs rapidly produce large amounts of
IFN-y, which is responsible for the activation and proliferation of NK cells, T
cells, and cDCs.

These granulocytes defend against parasitic infections and contribute to
allergic inflammation. Eosinophils are activated by cytokines produced by
Th2 cells, such as IL-5, and by other inflammatory mediators, such as
leukotrienes. Upon activation, they release cytotoxic granules containing
reactive oxygen species (ROS) and release cytokines, such as IL-4, that
modulate other immune cell functions.

These cells defend against diverse infections and play a role in initiating
adaptive responses. Presented as an innate counterpart of CD4+ T helper
cells, ILCs share a similar array of cytokines upon activation by epithelial- or
myeloid cell-derived cytokines. They promote inflammation, mucus
production, and tissue repair. ILCs comprise three subtypes: ILC1, ILC2 and
ILC3.

30,100,101

40,102

39,40

39,40

103,104

105

106
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These cells are crucial in early defense against viral infection as they can
Type 1innate directly kill infected cells through the production of cytotoxic mediators,
lymphoid cells including granzymes and perforins. ILC1s secrete Th1 cytokines that mirror
(ILC1s) those produced by CD4+ T cells, including the production of IFN-y and
TNF-a. 107

ILC2s are the innate counterparts of Th2 cells and protect against parasite
infections. They secrete cytokines similar to Th2 cells, including IL-4, IL-13,
and IL-5, that promote the recruitment of eosinophils and mast cells and
facilitate the differentiation of M2 macrophages and plasma cells.

Type 2 innate
lymphoid cells

(ILC2s) 108

Presented as sentinel cells in mucosa, these cells mainly defend against
bacteria and fungi. By secreting similar cytokines to Th17 cells, including
IL17, IL-22, and GM-CSF, ILC3s promote neutrophil recruitment, plasma cell
differentiation, and myeloid activation.

Type 3 innate
lymphoid cells

(ILC3s) 109

These phagocytic cells engulf and clear pathogens, remove cellular debris,
and produce cytokines that regulate inflammation and immune responses.
Macrophages can be activated by PAMPs, DAMPs, or cytokines, such as
IFN-y (interferon-y) and GM-CSF. Upon activation, macrophages release a
diverse array of cytokines including IL-1, IL-6, TNF-a (tumor necrosis
factor-a), IL-10, and IL-12, as well as other factors like nitric oxide, ROS,
and inducible nitric oxide synthase (iNOS). These molecules collectively
modulate immune cell activation and differentiation, contributing to the
orchestration of immune responses. Macrophages comprise two main
subtypes: M1 and M2 macrophages.

Macrophages

110

M1 macrophages are classified as pro-inflammatory cells and produce a
variety of pro-inflammatory cytokines, such as IL-1, IL-6, IL-12, and TNF-q,
upon microbial infection or by the presence of IFN-y in the milieu. These
M1 cytokines create an inflammatory milieu that enhances the recruitment and
macrophages activation of other immune cells, such as T cells and NK cells. Additionally,
the high levels of reactive oxygen species (ROS) and nitric oxide (NO)
produced by M1 macrophages contribute to pathogen clearance and the

immune response. "

In contrast to M1 macrophages, M2 macrophages are anti-inflammatory
cells that resolve inflammation through the production of anti-inflammatory
cytokines. The cytokines produced by M2 macrophages, including IL-4,
IL-13, IL-10, and TGF-B, foster an anti-inflammatory environment that
inhibits the activity of pro-inflammatory cells and promotes the resolution of
inflammation. M2 macrophages are essential in tissue repair, homeostasis,
and wound healing after an inflammatory response.

M2
macrophages

1

These cells play a role in allergic reactions and inflammation. Upon

crosslinking of the IgE-antigen complex to the surface receptor FceRI, mast
Mast cells cells release histamine, tryptase, and other mediators. Mast cells also

produce cytokines, such as TNF-a, IL-4, IL-5, IL-6, and IL-13, which

modulate the function of other immune cells, including T cells and DCs. "2
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These circulating cells differentiate into macrophages or DCs upon entering
tissues. They participate in phagocytosis and release cytokines, such as
IL-1, IL-6, TNF-a, and IL-10, which regulate inflammation and immune
responses. Monocytes can be activated by PAMPs, DAMPs, or cytokines,
such as GM-CSF and M-CSF (macrophage colony-stimulating factor).

These phagocytic cells are the first responders to infection and tissue
damage. They release antimicrobial peptides, proteases, and ROS to
destroy pathogens. Neutrophils are rapidly recruited to sites of infection or
inflammation by chemokines, such as IL-8 and MIP-1q, and other
inflammatory mediators produced by epithelial cells, endothelial cells, and
other immune cells.

These cytotoxic cells recognize and directly kill virus-infected and cancerous
cells without prior sensitization. Activation of NK cells occurs through
various means, including cytokine stimulation, such as IL-12, IL-15, and
IL-18, as well as recognition of stress-induced ligands present on target
cells. Upon activation, NK cells not only perform cytotoxic functions but also
secrete immunomodulatory cytokines like IFN-y. The cytokine production by
NK cells promotes Th1 responses and augments the cytotoxic activity of
CD8+ T cells.

113

114

115,116

NK bright
cells

These cells demonstrate an immunomodulatory role by secreting both pro-
and anti-inflammatory cytokines, including IFN-y, TNF-a, IL-10, and
GM-CSF. NK bright cells are described as immature and with low cytotoxic
ability, but upon infection they can differentiate into a mature NK dim cell
that displays higher cytotoxic potential.

47,48

NK dim cells

These cells can directly induce apoptosis of infected cells through the
release of cytotoxic granules and initiation of antibody-dependent cellular
toxicity (ADCC). NK dim cells can also secrete IFN-y and TNF-a but to a
lesser extent than NK bright cells. These cytokines play significant roles in
promoting immune cell recruitment and enhancing antigen presentation
capabilities of DCs and macrophages.

48

Adaptive Immunity

B cells

Plasma cells
(PCs)

CD4+ T cells

B cells are integral to the adaptive immune system, expressing
membrane-bound antibodies called immunoglobulins (Ig) (such as IgM,
IgA, IgE, and IgG classes) that target and neutralize specific pathogens.
Additionally, activated B cells can serve as antigen-presenting cells for T
cells, further enhancing the coordination of immune responses.

Upon encountering their specific antigen, B cells undergo differentiation into
antibody-secreting PCs, which is mediated by CD4+ T cells. This
immunological synapse relies on the interaction between CD40 ligand
(CD40L) on T cells and CD40 on B cells, complemented by the release of
cytokines, such as IL-4, IL-6, and IL-21.

Upon activation by DCs presenting antigens via MHC Il, naive CD4+ T cells
can differentiate into various Th cell subsets, such as Th1, Th2, Th9, Th17,
Th22, and regulatory T cells (Tregs). This differentiation is influenced by the
cytokine milieu produced by other immune cells, such as DCs,

17

117

118,119
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macrophages, and NK cells.

These CD4+ T cells are involved in cell-mediated immunity against

intracellular pathogens, such as viruses and some bacteria. They produce
T helper 1 IFN-y and TNF-a, which promote macrophage activation and enhance the
(Th1) cells cytotoxic activity of CD8+ T cells and NK cells. Th1 cell differentiation is

induced by IL-12 and IFN-y that are released by antigen-presenting cells,

such as DCs and macrophages, in response to intracellular pathogens. 92,118

These CD4+ T cells are involved in humoral immunity against extracellular
pathogens, such as parasites. They produce IL-4, IL-5, and IL-13, which
promote B cell differentiation into plasma cells, eosinophil activation, and
mast cell activation. Th2 cell differentiation is induced by IL-4, which can be
released by DCs, basophils, or mast cells.

T helper 2
(Th2) cells

118,120

These CD4 + T cells are characterized by their ability to produce IL-9, a
T helper 9 cytokine involved in various immune responses. Th9 cells play a role in
(Th9) cells immune-related diseases such as inflammation, allergy, and parasite

infection. 121

These CD4+ T cells play a role in defending against extracellular bacterial

and fungal infections. They produce cytokines, such as IL-17A, IL-17F,

IL-21, and IL-22, which stimulate the production of antimicrobial peptides

and the recruitment of neutrophils. Th17 cell differentiation is induced by the

cytokines IL-6, TGF-B, IL-1, and IL-23. 120.122

T helper 17
(Th17) cells

These cells are named after the main cytokine that they produce, IL-22.
These CD4+ T cells are involved in immune responses at barrier surfaces,
T helper 22 such as the skin and mucosal membranes, and contribute to defense
(Th22) cells  against certain infections including HIV and influenza. Additionally, Th22
cells have been implicated in various inflammatory and autoimmune

conditions. 123

These CD4+ T cells play a critical role in maintaining immune tolerance and
preventing autoimmunity. They suppress the activation and function of other
Regulatory T immune cells, including B cells, CD4+ T cells, CD8+ T cells, and DCs,
cells (Treg)  through various mechanisms, such as the secretion of immunosuppressive
cytokines (e.g., TGF-B and IL-10) and direct cell-cell interactions. Treg
differentiation is induced by TGF-B and IL-2. 120,124

These cytotoxic T cells recognize and kill virus-infected and cancerous cells
CD8+ by releasing cytotoxic granules containing perforin and granzymes. CD8+
cytotoxic T cytotoxic T cell activation requires antigen presentation by MHC | molecules
cells on infected or abnormal cells, as well as help from CD4+ T cells in the form

of cytokines, such as IL-2 and IFN-y. A

These cells represented a minor subset of T cells, with the capability to

Gamma- present antigens similar to innate cells. These cells present dual functions in
delta (yd0) T  maintaining immunosuppression or activating inflammation due to the
cells ambivalent cytokine function they produce, including IL-4, IL-17, IL-21,

IL-22, GM-CSF, and IFN-y. 126
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Table 2: List of disease conditions of the modeled immune system.

Disease
Environments Brief Synopsis Citations

Cytomegalovirus (CMV) triggers an innate response involving DCs and
NK' cells, leading to the release of type | interferons to regulate the early
stages of infection. During the persistence phase, CD4+ T cells, CD8+ T
Cytomegalovirus  cells, and B cells, primed by NK cells and DCs, orchestrate a vigorous
(CMV) and enduring immune response to restrain high viral loads. Despite this
response, CMV can establish a latent state within the host, posing a risk
of reactivation and reinfection particularly when the immune system is 127
compromised.

Epstein-Barr virus (EBV) primarily infects B cells, which can be eliminated
by NK cells, effector CD4+ T cells, and CD8+ T cells, thereby controlling
Epstein-Barr virus the initial phase of infection and maintaining viral latency. However,
(EBV) sporadic reactivation may occur, evading immune surveillance despite the 128,129
presence of long-lasting CD8+ and CD4+ T cell responses.

Ebola virus (EBOV) triggers a multifaceted immune response, where
innate defenses mobilize macrophages, DCs, and NK cells to release
Ebola virus proinflammatory cytokines such as TNF-q, IL-6, and IFN-a/f. In the
(EBOV) adaptive arm, CD8+ T cells directly target infected cells, while CD4+ T
cells secrete key cytokines like IFN-y and IL-2. Additionally, plasma cells 130,131
produce neutralizing antibodies to counteract the virus.

The immune response against Human Immunodeficiency Virus (HIV)
comprises both innate and adaptive components. In the innate immune
response, DCs, NK cells, and macrophages produce IFN-a/$ and other

Human - cytokines. Adaptive immunity involves CD8+ T cells, which directly target
immunodeficiency . . .
virus (HIV) infected cells, and CD4+ T cells, which secrete cytokines such as IFN-y

and IL-2. Plasma cells contribute by producing neutralizing antibodies.
However, HIV's high mutation rate enables it to evade the immune 132
system, posing a significant challenge for effective immune responses.

The immune response against influenza A virus (IAV) commences with
the activation of the innate system, comprising macrophages, DCs, and
NK cells, which release cytokines including IFN-a/f, TNF-a, and IL-6.
Adaptive immunity then follows, with CD4+ T cells producing cytokines
like IFN-y and IL-2 to orchestrate the immune response, while CD8+ T
cells target and eliminate infected cells. Additionally, plasma cells
produce neutralizing antibodies that specifically recognize and bind to
viral surface proteins, such as hemagglutinin and neuraminidase, aiding
in viral clearance.

Influenza A virus
(IAV)

133

The immune response to mycobacterium tuberculosis (MTB) entails

macrophages engulfing the bacteria and producing cytokines like TNF-a,
Mycobacterium IL-1, and IL-6. CD4+ T cells produce IFN-y and IL-2, activating
tuberculosis (MTB) macrophages to eliminate intracellular bacteria. Simultaneously, CD8+ T

cells target and eradicate infected cells. Although plasma cells produce

antibodies, their precise role in MTB immunity remains incompletely 134,138
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understood.

COVID-19, caused by the SARS-CoV-2 virus, induces the activation of
neutrophils, monocytes, and macrophages. In severe cases of

COVID-19, inflammation disrupts both innate and adaptive immune

responses, resulting in an excessive release of cytokines such as IL-6,

IL-1B, and TNF-a. These cytokines are implicated in the development of 136,137
clinical complications associated with the disease.

Severe acute
respiratory
syndrome
coronavirus 2
(SARS-CoV-2)

These parasitic worms trigger a multifaceted immune response. Initially,

the innate immune system responds by activating group 2 innate

lymphoid cells (ILC2) and eosinophils, which release a cascade of

cytokines including IL-4, IL-5, IL-9, and IL-13. These cytokines play

crucial roles in orchestrating defense against helminth infections by

promoting mucus production, smooth muscle contraction, and recruitment

of additional immune cells to the site of infection. Subsequently, the

adaptive immune system mounts a Th2 response, characterized by CD4+

T cells secreting similar cytokines as those produced by the innate 138,139
immune cells.

Helminth

The pathogen plasmodium falciparum (PF), the causative agent of severe
malaria, elicits a complex immune response. In the innate arm,
macrophages and neutrophils engage in phagocytosis of infected RBCs,
attempting to curb parasite proliferation. DCs and NK cells contribute by
releasing key cytokines such as IFN-y and TNF-a, which aid in parasite
clearance. The adaptive immune response is orchestrated by CD4+ T
cells, which produce a spectrum of cytokines including IFN-y, IL-2, and
IL-10, crucial for both parasite control and regulation of inflammation.
Additionally, plasma cells play a pivotal role by generating antibodies
specifically targeting the parasite, thus assisting in the immune-mediated
elimination of PF.

Plasmodium
falciparum (PF)

140,141

Type 1 diabetes (T1D) is characterized by an autoimmune attack against
the insulin-producing beta cells in the pancreas. The immune response in
T1D involves the activation of both CD4+ and CD8+ T cells, which
erroneously identify beta cell antigens as foreign and mount an
Type 1 diabetes  inflammatory response against them. This inflammatory cascade is
(T1D) further fueled by the secretion of cytokines such as IL-6, IL-17, and IL-21.
Additionally, autoantibodies produced by plasma cells target beta-cell
antigens, contributing to the ongoing destruction of pancreatic beta-cells.
This immune-mediated destruction ultimately leads to insulin deficiency 142
and the clinical manifestations of T1D.

As a result of solid organ transplantation, the recipient's immune system
can perceive the newly transplanted lung as foreign tissue, initiating an
immune response. This response engages various immune cells,

Lung . including T cells, B cells, and antigen-presenting cells, which collaborate
transplantation ) . .
(LTx) to mount an attack against the transplanted lung tissue. Pro-inflammatory

cytokines produced during this process exacerbate inflammation,
increasing the risk of rejection of the transplanted lung. Managing this

immune response and preventing rejection are critical aspects of 143
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post-transplant care in LTx.

Table 3: Innate and adaptive cell response to nine different pathogens at the
single scale infection as predicted by our model.

Infectious Agents| Innate Immune Responses Adaptive Immune Supporting
Modeled Predicted Responses Predicted | References
CMmVv DCs, NK cells Th1, CD8+, IgM, IgA, IgG
43,144,145
EBV DCs, Monocytes, Th1, CD8+, IgM, IgA, IgG w6147
Macrophages, NK cells, '
Neutrophils
EBOV DCs, Macrophages, Monocytes | Th1, CD8+, IgM, IgA, IgG s
HIV DCs, Macrophages CD8+, IgM, IgA, IgG 149
AV DCs, NK cells Th1, CD8+, IgM, IgA, IgG 150
SARS-CoV-2 DCs, Neutrophils, Monocytes, CD8+, IgM, IgA, 1gG
Macrophages 136,137
MTB DCs, Macrophages, Neutrophils | Th1, CD8+, IgM, IgA, 1gG .
Helminth DCs, Macrophages, Th2, IgM, IgA 53
PF DCs, Monocytes, Macrophages Th1, IgM, 1gG, IgA 152,153



https://www.zotero.org/google-docs/?bnfV9h
https://www.zotero.org/google-docs/?64G6ye
https://www.zotero.org/google-docs/?TYI8Hj
https://www.zotero.org/google-docs/?DmUagy
https://www.zotero.org/google-docs/?E3v3Kz
https://www.zotero.org/google-docs/?mjGWjE
https://www.zotero.org/google-docs/?9gBTWo
https://www.zotero.org/google-docs/?ypLJQi
https://www.zotero.org/google-docs/?iqdQHm
https://doi.org/10.1101/2020.03.11.988238
http://creativecommons.org/licenses/by-nd/4.0/

