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Abstract 50 

Memory formation involves the synchronous firing of neurons in task-relevant networks, with recent 51 

models postulating that a decrease in low frequency oscillatory activity underlies successful memory 52 

encoding and retrieval. However, to date, this relationship has been investigated primarily with face 53 

and image stimuli; considerably less is known about the oscillatory correlates of complex rule learning, 54 

as in language. Further, recent work has shown that non-oscillatory (1/ƒ) activity is functionally relevant 55 

to cognition, yet its interaction with oscillatory activity during complex rule learning remains unknown. 56 

Using spectral decomposition and power-law exponent estimation of human EEG data (17 females, 18 57 

males), we show for the first time that 1/ƒ and oscillatory activity jointly influence the learning of word 58 

order rules of a miniature artificial language system. Flexible word order rules were associated with a 59 

steeper 1/ƒ slope, while fixed word order rules were associated with a shallower slope. We also show 60 

that increased theta and alpha power predicts fixed relative to flexible word order rule learning and 61 

behavioural performance. Together, these results suggest that 1/ƒ activity plays an important role in 62 

higher-order cognition, including language processing, and that grammar learning is modulated by 63 

different word order permutations, which manifest in distinct oscillatory profiles. 64 
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Introduction 78 

Memory supports many essential cognitive functions, from learning the distinction between 79 

semantic categories (e.g., animal vs. human) to complex (motor) sequences, such as learning how to 80 

drive a car or speak a new language. However, while a broad literature has related neural oscillatory 81 

dynamics (i.e., [de]synchronisation of neural populations) to the encoding and retrieval of images and 82 

words (e.g., Parish, Hanslmayr, & Bowman, 2018), considerably less is known about oscillatory activity 83 

during the encoding and retrieval of complex sequences, such as in language (cf. de Diego-Balaguer, 84 

Fuentemilla, & Rodriguez-Fornells, 2011; Kepinska, Pereda, Caspers, & Schiller, 2017). Further, the 85 

few studies examining sequence and artificial language learning report mixed findings relative to 86 

(episodic) word and image paradigms: while alpha/beta desynchronisation in the human EEG predicts 87 

encoding of words and images (e.g., Griffiths, et al., 2019), alpha/beta and theta synchronisation is 88 

associated with sequence (Crivelli-Decker et al., 2018) and language learning (e.g., Kepinska et al., 89 

2017). This apparent inconsistency might be accounted for by stimulus heterogeneity; however, another 90 

possible source of divergence may lie in the mixture of oscillatory power with aperiodic activity 91 

(Ouyang et al., 2020; Wen & Liu, 2016), which has not been addressed in studies on the neural basis of 92 

complex rule learning to date. 93 

Electrophysiological brain activity exhibits a 1/ƒ-like power distribution, which is often 94 

removed from the signal to isolate transient task-related oscillations (Donoghue et al., 2020; He, 2014; 95 

Lendner et al., 2020). However, this aperiodic component has recently been implicated in a variety of 96 

higher-order cognitive computations (Fellner et al., 2019), partially explaining individual differences 97 

in theta activity during memory encoding and recall performance (Sheehan et al., 2018), and processing 98 

speed over and above that of alpha activity (Ouyang et al., 2020). Work on prediction during language 99 

has also shown that the aperiodic slope – but not oscillatory activity – influences the N400 event-related 100 

potential and performance accuracy (Dave et al., 2018). 101 

These findings suggest that aperiodic brain activity plays a critical functional role in the 102 

neurobiology of cognition (He et al., 2010); however, it is currently unknown whether oscillatory and 103 

aperiodic activity interact during memory encoding of information beyond single words and images, 104 

such as rule-based sequence learning, and whether any such interaction influences behavioural 105 
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outcomes. Clarifying the (separable) roles of oscillatory and aperiodic components of the EEG power 106 

spectrum may also bridge diverging results reported in studies using image and word stimuli and 107 

artificial grammar paradigms, lending support to the idea that neural oscillations differentially 108 

contribute to memory formation. 109 

To better characterise the neural mechanisms underlying complex rule learning, we examined 110 

fluctuations in delta, theta, alpha and beta power during an artificial language learning task. We also 111 

modelled the interaction between oscillatory and aperiodic activity to characterise how patterns of 112 

(de)synchronisation and aperiodic fluctuation influence the generalisation of different word order rules 113 

characteristic of many natural languages. Healthy young adults learned the artificial miniature language 114 

Mini Pinyin (Cross, Zou-Williams, Wilkinson, Schlesewsky, & Bornkessel-Schlesewsky, 2020a) 115 

without explicit instruction and then completed a sentence judgement task. Critically, participants – 116 

who were native monolingual English speakers – learned fixed and flexible word order rules: fixed 117 

word order sentences contained temporal- or sequence-based rules, while flexible word order sentences 118 

involved non-adjacent dependencies, likely relying on more associative- than sequence-based memory 119 

processing mechanisms (Cross et al., 2018). From this perspective, we were able to probe different 120 

learning and memory mechanisms that are involved in sentence comprehension (Bornkessel-121 

Schlesewsky, Schlesewsky et al., 2015). For example, native English speakers typically rely on word-122 

order-based cues for sentence comprehension, whereas speakers of Mandarin Chinese or the Australian 123 

language Jiwarli rely more strongly on cues other than word order, such as case marking and/or 124 

semantic information, including animacy (Austin, 2001; Bates et al., 2001; Bornkessel-Schlesewsky et 125 

al., 2011). 126 

We recorded EEG during the learning task, implementing generalised additive and linear 127 

mixed-effects regression analyses to model dynamic changes in oscillatory and aperiodic activity during 128 

the learning of the fixed and flexible word order rules. We also modelled learning-related oscillatory 129 

and aperiodic activity to predict subsequent behavioural performance on the sentence judgement task, 130 

quantified as the sensitivity index d’.  131 

 132 

 133 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 1, 2022. ; https://doi.org/10.1101/2020.03.10.984971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.984971
http://creativecommons.org/licenses/by-nd/4.0/


5 

Method 134 

Participants 135 

Data from 36 right-handed healthy, monolingual, native English-speakers were used from a 136 

study examining the effect of sleep on language learning (Cross et al., 2021). This sample size was 137 

based on previous EEG research examining the neural correlates of higher-order language learning (de 138 

Diego-Balaguer et al., 2011; Kepinska et al., 2017; Mueller et al., 2005). One participant was excluded 139 

from analysis for not having electroencephalography recorded during the sentence learning task due to 140 

experimenter error. The final sample size was 35 (Mage = 25.3, SD = 7.13; 17 female). Ethics approval 141 

was granted by the University of South Australia’s Human Research Ethics committee (I.D.: 142 

0000032556). 143 

Stimuli and experimental design 144 

Stimuli were based on the modified miniature language Mini Pinyin (for a detailed description 145 

of the language, see Cross et al., 2020a; see also Cross et al., 2021), which contains grammatical rules 146 

present in a number of natural languages (see Figure 1A and 1B for example sentence constructions 147 

and vocabulary items). Briefly, each sentence in Mini Pinyin contains two noun phrases and a verb, and 148 

each noun is associated with a different classifier: human nouns are preceded by ge, while animals, and 149 

small and large objects are preceded by zhi, xi and da, respectively. 150 

Mini Pinyin includes two main sentence types based on whether the sentence contains the 151 

coverbs ba and bei. Here we focus on the coverb ba: when ba is present, the sentence contains a fixed 152 

word order, in that the first noun phrase is invariably the Actor (the active, controlling participant in the 153 

action described by the sentence) and the sentence must be verb final. In this context, accurate sentence 154 

processing is dependent on the linear position of the words. When ba is not present, the sentence 155 

contains a flexible word order, in that the first noun phrase can either be the Actor or the Undergoer 156 

(the affected participant); however, the sentence must be verb-medial (i.e., verb must be positioned 157 

between the noun phrases). As such, accurate sentence interpretation is based more heavily on the 158 
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animacy status of the noun phrases rather than word order. These manipulations are illustrated below, 159 

with a flexible word order shown in 1a and 1b and fixed (i.e., with the coverb ba) shown in 2: 160 

(1) 161 

(a) ge yisheng dale da piqiu. 162 

(human) doctor hit (object) ball. 163 

“the doctor hits the ball.” 164 

(b) da xianjiao chile zhi laoshu. 165 

(object) banana eat (animal) rat. 166 

“the rat eats the banana.” 167 

(2) 168 

ge xiaofang ba da shubao liangle. 169 

(human) firefighter ba (object) bag measure. 170 

“the firefighter measures the bag.” 171 

 172 

The experiment contained three phases: a vocabulary test, a learning phase, and a 173 

grammaticality judgement task. Approximately seven days before the sentence learning phase, 174 

participants received a paired picture-word vocabulary booklet containing the 25 nouns. Participants 175 

were required to learn the 25 nouns to ensure that they had a basic vocabulary. Prior to the learning and 176 

judgement tasks, participants completed the vocabulary test on a desktop computer by typing in 177 

translations of the nouns from Mini Pinyin to English. Only participants who attained a score > 90% 178 

were eligible to undertake the learning and judgement task phases of the experiment. All 35 participants 179 

achieved 90% accuracy on the vocabulary task and thus completed the main experimental session. 180 

Overall, 576 unique sentences (288 grammatical, 288 ungrammatical) were created and divided into 181 

two equivalent sets. 182 

 We focus here on a subset of sentence conditions to investigate the mechanisms underlying the 183 

learning of different word order permutations (for EEG analyses during the sentence judgement task, 184 

see Cross et al., 2021). While no explicit instructions were given to participants in regard to the structure 185 

of the miniature language, a picture was shown prior to each sentence illustrating an event occurring 186 

between two entities, which was then described in the subsequently presented sentence. The learning 187 
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task contained four blocks with 128 grammatical picture-sentence pairs overall (96 of which were 188 

included in the subset analysed here) that were presented via rapid visual serial presentation. The subset 189 

contained a further 156 novel sentences (50% grammatical, 50% ungrammatical) that were presented 190 

during the judgement task, which occurred immediately after the learning phase. The remaining 191 

sentences were considered fillers. The ungrammatical sentences induced a violation at either the 192 

position of the Actor or verb in fixed word order sentences (e.g., Actor-ba-Verb-Undergoer [AbaVU] 193 

instead of AbaUV) or the position of the verb in flexible word order sentences (e.g., AUV instead of 194 

AVU; see Figure 1A for an illustration and full list of ungrammatical constructions). 195 

During the learning phase, each picture was presented for 5000ms, while each corresponding 196 

sentence was presented on a word-by-word basis, with each word presented for 700ms with an inter-197 

stimulus interval (ISI) of 200ms. Across the four blocks, each grammatical construction was presented 198 

32 times, with stimuli pseudo-randomised such that no sentences of the same construction followed 199 

each other. During the judgement task, novel grammatical and ungrammatical sentences were presented 200 

word-by-word with a presentation time of 600ms and an ISI of 200ms. Participants responded via a 201 

button press to indicate whether the sentence conformed to the rules of Mini Pinyin. The assignment of 202 

grammatical/ungrammatical response buttons was counterbalanced across participants. Response time 203 

windows were presented for a maximum of 4000ms. Participants received feedback on whether their 204 

response was correct or incorrect (see Figure 1C and 1D for a schematic of the learning and judgement 205 

tasks, respectively). Both the learning and judgement tasks were created in OpenSesame (Mathot et al., 206 

2012) and performed on a desktop computer. 207 
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 208 

Figure 1. (A) Summary of the grammatical (left) and ungrammatical (right) sentence constructions. (B) 209 

A portion of linguistic elements used in the sentence examples provided in (A). (C) Schematic of the 210 

sequence of events occurring in the sentence learning phase. (D) Schematic of the sequence of events 211 

occurring in the sentence judgement task. 212 

 213 

 214 

 215 
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EEG recording and pre-processing 216 

Participants’ EEG was recorded using a 32-channel BrainCap with sintered Ag/AgCl electrodes 217 

(Brain Products, GmbH, Gilching, Germany) mounted according to the extended International 10-20 218 

system. The online reference was located at FCz. The ground electrode was located at AFz. The 219 

electrooculogram (EOG) was recorded via electrodes located at the outer canthus of each eye and above 220 

and below participants’ left eye. The EEG was amplified using a BrainAmp DC amplifier (Brain 221 

Products GmbH, Gilching, Germany) with an initial band-pass filter of DC – 250 Hz and a sampling 222 

rate of 1000 Hz. Electrode impedances were kept below 10kΩ. EEG was also recorded during two 223 

minutes of eyes-open and two minutes of eyes-closed resting-state periods immediately before the 224 

learning task and after the judgement task. 225 

EEG analysis was performed in MATLAB 2017b (The MathWorks, Natick, USA) using 226 

custom scripts in conjunction with the Fieldtrip toolbox (Oostenveld et al., 2011). EEG data were re-227 

referenced offline to the average of both mastoids and band-pass filtered from 1 – 40 Hz using a two-228 

pass Butterworth IIR filter (implemented in ft_preprocessing). Data were then epoched from -200ms to 229 

13s relative to the onset of each picture-sentence pair for both fixed and flexible sentences, and 230 

corrected for ocular artefacts using Infomax Independent Component Analysis (Bell & Sejnowski, 231 

1995; implemented in runica.m). Components demonstrating clear EOG artefacts were removed 232 

(median components rejected = 3, range = 2 – 6) and electrodes showing strong artefacts were visually 233 

inspected and subsequently interpolated with surrounding electrodes based on spherical spline 234 

interpolation (total channels interpolated n = 2; Perrin et al., 1989). 235 

EEG data analysis 236 

The aim of the analysis was to characterise the oscillatory and aperiodic dynamics underlying 237 

the initial encoding of complex grammatical rules. To this end, we computed differences between fixed 238 

and flexible word order sentences in the following five spectral features of the EEG recorded during 239 

the learning phase: mean power density within individualised delta, theta, alpha, and beta bands, and 240 

the (inverse) slope of the 1/ƒ spectral distribution (i.e., power-law exponent). We then used these 241 
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metrics to investigate whether trial-level variation in oscillatory power and 1/ƒ slope during the learning 242 

task predicted behavioural performance on the judgement task. We also tested whether interactions 243 

between oscillatory and aperiodic activity afford unique information predicting behavioural 244 

performance. 245 

Spectral decomposition and power-law exponent χ estimation 246 

The power-law scaling exponent χ, which summarises the rate of decay of the power spectrum 247 

in double-logarithmic co-ordinates, was estimated using the Irregular-Resampling Auto-Spectral 248 

Analysis toolbox (IRASA v1.0; Wen & Liu, 2016). Briefly, this technique seeks to separate oscillatory 249 

from aperiodic (random fractal) components by iteratively resampling the power spectrum across a 250 

range of non-integer factors h and their reciprocals 1/h (here, h = 1.1 to 1.95 in steps of 0.05). This 251 

procedure shifts any narrowband components away from their original location along the frequency 252 

spectrum while leaving the distribution of the fractal component intact. The median of the resampled 253 

spectral estimates is then calculated in order to strip the spectrum of narrowband peaks. For a more 254 

detailed treatment of the IRASA method, see Wen and Liu (2016). 255 

Trial data from each EEG channel were divided into two non-overlapping 4500ms segments 256 

corresponding to the picture and sentence presentation phases, respectively. Picture segments were 257 

timelocked to 500ms post-stimulus onset; sentence segments were timelocked to 100 ms prior to the 258 

first word onset. Both segments were further subdivided into seven 1800ms epochs (25% overlap) and 259 

separately passed to amri_sig_fractal.m for spectral parameter estimation. Once the fractal component 260 

had been recovered from each power spectrum, it was parameterised using amri_sig_plawfit.m. This 261 

function rescales the frequency spectrum to achieve equally-spaced intervals in log-space before fitting 262 

a linear regression to a subregion of the double-log transformed fractal spectrum (here, ~1.9 – 15.8 Hz, 263 

corresponding to an evaluated frequency range of 1 – 35 Hz; see Gerster et al. 2022, for further details).  264 

The absolute value of the regression slope coefficient was taken as the χ exponent. 265 

To ensure the robustness of our analysis, we compared our estimates of the χ exponent against 266 

those derived using the more recently-developed ‘FOOOF’ method (Donoghue et al., 2020). Briefly, 267 

this technique attempts to separate narrowband oscillatory peak components from broadband aperiodic 268 
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activity by iteratively fitting Gaussian functions to the spectrum, and deleting these components until 269 

no further deviations from background activity can be detected (given a predefined noise threshold). 270 

The χ exponent is then estimated by fitting a regression to the residual spectrum in double-log space, 271 

similar to the IRASA procedure (see Donoghue et al., 2020, for details). 272 

Since FOOOF requires PSD estimates (rather than timeseries data) as its input, power spectra 273 

were derived from each epoch using the pwelch.m implementation of Welch’s (1967) modified 274 

periodogram method. Epochs were Hann-tapered and zero-padded to 2048 points to facilitate 275 

comparability with IRASA-generated spectral estimates. FOOOF was implemented via the MATLAB 276 

wrapper (v1.0.0) using the following parameter settings: peak width limits = 1 – 12 Hz, maximum 277 

number of peaks = infinite, minimum peak height = 0, peak threshold = 2 S.D., aperiodic mode = fixed, 278 

evaluated frequency range = 1 – 35 Hz. 279 

Spectral band power estimation 280 

In order to quantify narrowband changes in spectral power independent of underlying changes 281 

in aperiodic activity, mean power densities were estimated following the subtraction of the mean 282 

regression fit of the aperiodic component from the PSD (spectra averaged across epochs within each 283 

segment). This residual, ‘oscillatory’ spectrum was half-wave rectified (negative values set to zero) and 284 

divided into the four frequency bands of interest. Notably, the limits of each frequency band were 285 

adapted for each participant on the basis of their resting-state EEG. Specifically, the boundaries of each 286 

frequency band were calculated according to the harmonic frequency architecture proposed by 287 

Klimesch (2012; 2013; and which is in line with previous work, e.g., Corcoran et al., 2018, Doppelmayr 288 

et al., 1998, Sauppe et al., 2021), in which the centre frequency of each successive band constitutes a 289 

harmonic series scaled in relation to the individual alpha frequency (IAF). To avoid the potential overlap 290 

of neighbouring frequency bands, we determined lower and upper frequency bounds using the 291 

following formulae:  292 

f1 = fc – fc /4, 293 

f2 = fc + fc /2, 294 

where fc is the centre frequency (based on the IAF-scaled harmonic series), f1 the lower bound, and f2 295 

the higher bound of a given frequency band. 296 
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IAF estimates used to determine fc were obtained from a set of parieto-occipital electrodes 297 

(P3/P4/O1/O2/P7/P8/Pz/Iz) using the restingIAF package (v1.0.3; Corcoran et al., 2019; see also Cross 298 

et al. 2020b). This method applies a Savitzky-Golay filter (frame width = 11 bins, polynomial order = 299 

5) to smooth and differentiate the power spectrum prior to estimating the peak frequency within a 300 

specified frequency range (here, 7—14 Hz). Peak estimates were averaged across channels, with a 301 

minimum of 3 channel estimates required to return an IAF for a given recording. Estimates derived 302 

from pre- and post-session eyes-closed resting states were then averaged for each participant using 303 

meanIAF.m. For further details on this algorithm, see Corcoran and colleagues (2018). 304 

 Having determined IAF-anchored bounds for the delta, theta, alpha, and beta bands, power 305 

within each band was quantified using the mean power density metric proposed by Westfall (1990): 306 

𝑃𝑘 =
1

1 + 𝑘𝑓2 − 𝑘𝑓1
෍ 𝑝൫𝑓

𝑖
൯

𝑘𝑓2

𝑖=𝑘𝑓1

, 307 

where p(fi) is the power estimate of the ith frequency bin, and f1 and f2 index the lower and upper bounds 308 

of the individualised frequency band k, respectively. An advantage of this approach is that power 309 

estimates are scaled by spectral range, thus controlling for differing frequency bandwidths both within 310 

and between individuals.  311 

Statistical analysis 312 

We used R v.4.0.0 (R Core Team, 2020) and the packages lme4 v.1.1.27.1 (Bates et al., 2015), 313 

lmerTest v.3.1.2 (Kuznetsova et al., 2017), ggeffects v.4.1.4 (Lüdecke, 2018), car v.3.0.7 (Fox et al., 314 

2011), tidyverse v.1.3.0 (Wickham et al., 2019), mgcv v.1.8.36 (Wood, 2006), mgcViz v.0.1.9 (Fasiolo 315 

et al., 2019), rgl v.0.1.54 (Nenadic & Greenacre, 2007), ggpubr v.0.4.0 (Kassambara (2020), cowplot 316 

v.1.0.0 (Wilke, 2019), and eegUtils v.0.7.0 (Craddock, 2022). For linear models, contrasts for 317 

categorical variables were sum-to-zero contrast coded, with coefficients reflecting deviation from the 318 

grand mean (Schad et al., 2020). 319 

 320 

 321 
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Generalised additive mixed models 322 

Generalized additive models (GAMs) are a nonparametric extension of the standard linear 323 

regression model that substitute a linear predictor variable x with a smooth function f(x) (Hastie & 324 

Tibshirani, 1987, 1990; Wood, 2017). Generalized additive mixed models (GAMMs; Lin & Zhang, 325 

1999) constitute a further extension that incorporates random effects components within the GAM 326 

framework (Pedersen et al., 2019). Together, these innovations offer an elegant solution to the problem 327 

of autocorrelation amongst residuals induced by (1) attempting to fit linear models to non-linear 328 

relationships, and (2) non-independence (or nesting) of observations (e.g., repeated measures within 329 

participants or items; Baayen et al., 2008). 330 

Here, GAMMs were constructed to investigate how the exponent χ, and the mean power density 331 

P for each kth frequency band (delta, theta, alpha, and beta), fluctuate during artificial grammar learning. 332 

Trial-level χ and Pk estimates from the sentence processing phase of each trial were modelled as a 333 

function of learning time (trial number), sensor space (2D Cartesian co-ordinates), and sentence type 334 

(fixed, flexible). Estimates from the preceding image presentation phase were treated as a baseline 335 

measure of spectral activity. Random factor smooth interactions were included to account for individual 336 

differences in the functional relationship between spectral features and time-on-task (see Baayen et al., 337 

2017, Corcoran, Macefield, & Hohwy, 2021, for similar approaches). Each GAMM took the following 338 

general form: 339 

𝑌𝑖 = 𝛽
0
+ 𝛽

1
𝑡𝑦𝑝𝑒𝑖 + 𝛽

2
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖+ 𝑓൫𝑡𝑟𝑖𝑎𝑙𝑖, 𝑡𝑜𝑝𝑜. 𝑥𝑖, 𝑡𝑜𝑝𝑜. 𝑦𝑖, 𝑏𝑦 = 𝑡𝑦𝑝𝑒𝑖൯+ 340 

𝑓𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖(𝑡𝑖𝑚𝑒) + 𝜖, 341 

where 𝑌𝑖 is the ith observation of spectral feature Y, β0 is the model intercept, β1type is a factor encoding 342 

the main effect of Sentence Type, β2baseline is a covariate encoding the corresponding observation for 343 

Y during the baseline period, f( . , by = type) is the tensor product interaction between the learning time 344 

(trial) and sensor space (topo.x, topo.y) covariates for each level of Sentence Type, fsubject is the by- 345 

participant factor smooth for time-on-task, and ε is a t distributed error term (since response variables 346 

were heavy-tailed). Note that marginal smooths for sensor space co-ordinates were treated as isotropic 347 

(i.e., assumed to share a common scale). 348 
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GAMMs were estimated using the bam() function of the R package mgcv (Wood, 2011). 349 

Models were fit using the Fast REML method. Pk estimates for both the baseline and sentence 350 

processing period were log10 transformed prior to model inclusion. Models were fit with tensor product 351 

interaction smooths in order to enable ANOVA-decomposition of main effect and interaction 352 

components (Wood, Scheipl, & Faraway, 2013). All tensor product smooths were fit using low rank 353 

thin plate regression splines as their basis function (Wood, 2003, 2017). Factor smooths were fit with a 354 

first-derivative penalty in order to shrink participant-level smooths towards the population-level. An 355 

additional shrinkage penalty was imposed on the smoothing penalty null space to enable automated 356 

model reduction (see Marra & Wood, 2011). Type was entered as an ordered factor with Fixed assigned 357 

as the reference level, hence model terms involving a Sentence Type interaction assess the difference 358 

between Fixed and Flexible condition splines (see van Rij et al., 2016). 359 

Linear mixed-effects models 360 

The relationship between aperiodic and oscillatory power during grammar learning with 361 

behavioural performance on the judgement task was assessed using linear mixed-effects models. 362 

Behavioural performance was operationalised using the discrimination index (d’). d’ is defined as the 363 

difference between the z transformed probabilities of hit rate (HR) and false alarm rate (FA; i.e., 364 

d’=z[HR] – z[FA]). These models took the following general form: 365 

𝑑′𝑖 = 𝛽0 + 𝛽1𝑃𝑘𝑖 ∗ 𝛽2𝑏𝑒𝑥𝑝𝑖 ∗ 𝛽3𝑡𝑦𝑝𝑒𝑖 ∗ 𝛽4𝑙𝑎𝑡𝑖 ∗ 𝛽5𝑠𝑎𝑔𝑖 + 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡0𝑖 + 𝜖, 366 

where Pk is mean baseline-corrected (i.e., sentence presentation – pre-sentence interval) power density 367 

in the frequency band of interest (i.e., delta, theta, alpha, beta), bexp is the baseline-corrected (i.e., 368 

sentence presentation – pre-sentence interval) exponent of the aperiodic 1/ƒ slope, type refers to 369 

Sentence Type (fixed, flexible), sag is Sagittality (anterior, central, posterior) and lat refers to Laterality 370 

(left, midline, right). Participant ID (participant) was modelled as a random intercept. ε refers to a 371 

Gaussian-distributed error term. 372 

Type II Wald χ2-tests from the car package (Fox et al., 2011) were used to provide p-values. 373 

An 83% confidence interval (CI) threshold was adopted for visualisations, which corresponds to the 374 
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5% significance level with non-overlapping estimates (Austin & Hux, 2002; MacGregor-Fors & 375 

Payton, 2013). General linear models were performed to assess the relationship between baseline 376 

corrected oscillatory power and aperiodic 1/ƒ slope between fixed and flexible word orders. Baseline-377 

corrected oscillatory power values were log10 transformed prior to model inclusion. All data, as well as 378 

analysis scripts (MATLAB and R) are available on the OSF platform: https://osf.io/7yr46/; Cross, 379 

Corcoran, Schlesewsky, Kohler, &. Bornkessel-Schlesewsky, 2022). For a schematic visualisation of 380 

EEG signal processing and statistical analysis steps, see Figure 2.  381 

382 
Figure 2. Schematic of the EEG recording, pre-processing, signal, and statistical analysis 383 

procedures. a. Neurophysiological signals were recorded at rest and during the sentence learning task 384 

using a 32-channel EEG system. b. The EEG signal was filtered, re-referenced and subjected to an 385 

independent component analysis. c. The individual alpha frequency (IAF) was estimated per participant 386 

from resting-state EEG recordings based on an occipital-parietal electrode cluster (see topoplot). Peak 387 

frequencies within the alpha band (7-14 Hz; light blue shading) were identified using restingIAF, an 388 

automated procedure that smoothes and differentiates the power spectrum before estimating the average 389 

IAF (dotted line) across selected channels. IAF estimates were subsequently used to calculate 390 

participant-specific delta, theta, alpha and beta centre frequencies (fc) and bandwidths (f1, f2) for the 391 

time-frequency decomposition of the sentence learning task. d. (i) Grand-average time-frequency 392 

representation of fixed word order sentences during the learning session. Dashed black boxes 393 

correspond to the presentation of elements in the stimulus train above.  (ii) Histograms illustrating the 394 

distribution of the aperiodic exponent and alpha power estimated using FOOOF (pink) and IRASA 395 

(blue). e. (i) Single-subject power spectral density (PSD) plots at the beginning (left) and end (right) of 396 

the sentence learning task. Straight turquoise and tan lines represent the IRASA-based aperiodic 397 

regression fit for fixed and flexible word order sentences, respectively. (ii) PSD plots illustrating power 398 

in the IAF-derived delta (𝛿), theta (θ), alpha (α) and beta (β) bands after subtraction of the aperiodic 399 
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regression fit depicted in (i). (iii) Raw data at electrode Cz illustrating the analysis performed to estimate 400 

time-varying modulations in the aperiodic exponent between fixed and flexible word orders. (iv) 401 

scatterplots illustrating the analyses predicting behaviour (i.e., judgement accuracy [d’]) from the 402 

sentence judgement task from aperiodic and oscillatory activity derived from the sentence learning task. 403 

Results 404 

Task performance 405 

The results on the judgement task are visualised in Figure 3. Participants performed moderately 406 

well on the judgement task, with a mean d’ score of 1.02 (range: -1.20 – 3.78) and mean reaction time 407 

of 878.08 ms (range: 254.75 – 2076.83). There is clearly a high degree of inter-individual variability 408 

across both fixed and flexible sentences; however, flexible sentences had greater variability in d’ scores, 409 

while fixed grammatical sentences had faster responses overall. For a detailed report and interpretation 410 

of these behavioural data, see Cross et al. (2020a). 411 

 412 

Figure 3. Raincloud plots illustrating the behavioural responses during the sentence judgement task. 413 

(A) Mean d’ scores (x-axis) for Fixed and Flexible sentence types. (B) Mean reaction time (ms; x-axis) 414 

for Grammatical (left) and Ungrammatical (right) Fixed and Flexible sentence types. Individual data 415 

points represent the mean for each participant, while the lines join within-participant differences 416 

between fixed and flexible word order sentences. 417 

 418 

Neurophysiological results 419 

 Individual alpha frequency estimates varied between participants (MIAF = 9.78, SD = 0.96), 420 

resulting in a range of participant-specific frequency bands (summarised in Table 1). A full list of 421 

participant-specific IAFs and frequency bandwidth are available on the OSF repository. 422 
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Table 1. Mean lower (f1) and upper (f2) frequency bounds for the delta, theta, alpha and beta bands. 423 

Participant-specific range provides the lowest and highest frequency band limits based on single-424 

participant estimates, as is also provided for IAF estimates. 425 

Band Mean f1 (SD) Mean f2 (SD) Participant-Specific Range 

Delta 1.83 (0.18) 3.67 (0.36) 1.42 – 4.33 

Theta 3.67 (0.36) 7.34 (0.72) 2.83 – 8.66  

Alpha 7.34 (0.72) 14.7 (1.45) 5.67 – 17.33 

Beta 14.7 (1.45) 29.4 (2.90) 11.36 – 34.67 

IAF -- -- 7.57 – 11.55 

 426 
Note. SD = standard deviation; IAF = individual alpha frequency. Participant-specific range provides 427 

the absolute lowest and upper band limits. 428 

 429 

Aperiodic and oscillatory changes across time and space during language learning 430 

Neurophysiological signals are non-stationary, showing dynamic changes over time as a 431 

function of endogenous and exogenous factors (e.g., Donoghue, Schaworonkow & Voytek, 2021), such 432 

as attentional fluctuations and the complexity of incoming sensory information (Waschke et al., 2021). 433 

However, neurophysiological signals are typically analysed using linear models, which often do not 434 

capture non-linear modulations in neural activity, particularly over time. Here, we examine how 435 

aperiodic and oscillatory dynamics evolve over time during language learning, focusing specifically on 436 

the way in which spectral activity varies across sentence types (fixed vs flexible word orders). Estimated 437 

changes in aperiodic and oscillatory spectral activity across learning task conditions are illustrated in 438 

Figure 5 (for topographical maps, see Figure 6).  439 

 Comparisons between IRASA and FOOOF showed that FOOOF provided higher exponent 440 

estimates than IRASA, irrespective of sentence type (fixed, flexible; Figure 4) and were also more 441 

variable (MFOOOF = 1.08, SD = 0.48; MIRASA = 1.00, SD = 0.42). However, exponent estimates between 442 

IRASA and FOOOF were highly positively correlated across both fixed (ρ = 0.75, p < .001, 83% CI = 443 

[.63, .84] and flexible (ρ = 0.76, p < .001, 83% CI = [.63, .85]; Figure 4B) word order sentences. These 444 

observations were complemented by a linear mixed-effects regression which revealed that while 445 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 1, 2022. ; https://doi.org/10.1101/2020.03.10.984971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.984971
http://creativecommons.org/licenses/by-nd/4.0/


18 

FOOOF had overall higher exponent estimates than IRASA (𝛽 = 0.02, se = 0.004, p < .001), exponent 446 

estimates between FOOOF and IRASA did not vary by sentence type (𝛽 = 0.0005, se = 0.004, p = .89; 447 

Figure 4C). These observations are consistent with simulations reported by Donoghue et al., 2020; 448 

however, given that there was no significant interaction between method (FOOOF, IRASA) and 449 

sentence type (fixed, flexible), we present the IRASA-based analysis. 450 

451 
Figure 4. Comparison between FOOOF and IRASA exponent estimates. (A) Histogram illustrating the 452 

distribution of exponent estimates derived from FOOOF (red) and IRASA (grey). (B) Scatterplot 453 

showing the relationship between FOOOF (y-axis) and IRASA (x-axis) between fixed (turquoise) and 454 

flexible (tan) sentences. (C) Relationship between the aperiodic exponent (y-axis; higher values indicate 455 

a steeper exponent), method (x-axis; FOOOF, IRASA), and sentence type (left facet = fixed, right facet 456 

= flexible). Bars represent the 83% confidence interval around group-level expected marginal mean 457 

estimates. Dots represent individual data points per participant for aggregated data. 458 

 459 

The χ-exponent GAMM revealed the 1/ƒ slope was steeper on average for Flexible compared 460 

to Fixed word order sentences (β = 0.02, SE = 0.008, F(1) = 5.84, p = .015). Visualisation of smooth 461 

terms (Figure 5A) revealed that exponent values tended to decrease (indicating a flattening of the 1/ƒ 462 

slope) over the course of the learning period; however, Flexible trials evoked higher values (steeper 1/ƒ 463 

slopes) at the beginning and during the second half of the session, relative to Fixed trials (Trial × 464 

Sentence Type estimated degrees of freedom [edf] = 3.87, F = 29.67, p < .001). This model further 465 

revealed significant topographic differences between conditions, with Flexible word orders evoking 466 

higher exponent values over fronto-central regions compared to Fixed word order sentences by the end 467 

of the session (Trial × Sagittality × Sentence Type edf = 1.78, F = 1.13, p < .001; see Figure 6; for full 468 

summary tables of all models, see Appendix).  469 

Mean delta power was higher on average during Flexible compared to Fixed word order trials, 470 

although this difference was not significant (β = 0.03, SE = 0.016, F = 3.68, p = .055). However, 471 
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visualisation of smooth terms (Figure 5B) revealed a complex pattern whereby delta power increased 472 

over early trials, followed by a marked decrease that was more pronounced in response to Fixed than 473 

Flexible sentence stimuli (edf = 2.74, F = 9.66, p < .001). This interaction was significantly modulated 474 

by sagittality, with between-condition differences (Fixed versus Flexible) in mean power density 475 

increasing over fronto-central electrodes as a function of time (edf = 2.68, F = 1.54, p < .001). Theta 476 

power was non-significantly lower on average during Flexible compared to Fixed rule learning (β = -477 

0.01, SE = 0.014, F = 0.60, p = .437). Again, smooth terms revealed a nonlinear pattern of spectral 478 

fluctuation, whereby theta power evinced a sigmoidal shape over the course of rule-learning (Figure 479 

5C). This pattern was similar across both conditions, with Fixed sentence stimuli tending to evoke 480 

increased theta power (edf = 0.824, F = 1.25, p = .014). This pattern of activity varied as a function of 481 

topography, with the difference between conditions being more accentuated across lateralised and 482 

posterior sites, as illustrated in Figure 6 (edf = 7.63, F = 0.22, p = .003). 483 

Alpha power tended to increase over the early and later trials of the learning task, although this 484 

pattern was interrupted by a marked decline during the middle of the session (edf = 3.20, F = 12.50, p 485 

< .001). Flexible word orders evoked less alpha power than Fixed word orders at the beginning of the 486 

session, but was similar thereafter (edf = 3.20, F = 13.46, p < .001; Figure 5D). This difference was 487 

most pronounced over left-lateralised and frontal sites (edf = 2.27, F = 0.35, p = .012). Finally, the beta 488 

power model revealed significant differences in the nonlinear profile of power dynamics across the 489 

learning session. In fact, Fixed and Flexible trials evoked markedly different patterns of activity: beta 490 

power showed an approximately triphasic response to Fixed sentence stimuli that was mirrored by the 491 

response to Flexible stimuli (edf = 2.94, F = 30.08, p < .001; Figure 5E).  The strongest beta response 492 

was observed over frontal and temporal regions (edf = 16.59, F = 33.04, p < .001), particularly toward 493 

the beginning of the learning phase for Flexible word order sentences (edf = 6.82, F = 1.24, p < .001). 494 

Taken together, these data illustrate dynamic changes in both aperiodic and oscillatory activity 495 

as a function of different word order rules during learning. Both the aperiodic slope and delta power 496 

tended to decrease over time, while theta power tended to increase. By contrast, alpha and especially 497 

beta power evinced more complex dynamics as participants learnt different word order rules. 498 
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 499 

 500 

Figure 5. Modelled effects for changes in the aperiodic exponent (A), delta (B), theta (C), alpha (D) and beta (E) activity across the learning task for fixed 501 

(solid line) and flexible (dashed line) word order rules. Time from beginning to the end of the learning task is represented on the x-axis.502 
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 503 

 504 

Figure 6. Difference in topographical distribution of aperiodic and oscillatory activity between fixed 505 

and flexible word order sentences at the beginning and end of the sentence learning task. 506 

 507 

Task-related aperiodic and oscillatory activity are dynamically related during language learning 508 

Neurophysiological signals are dominated by transient oscillatory and broadband aperiodic 509 

activity; however, in the study of the oscillatory correlates of higher-order language processing, 510 

aperiodic activity is rarely considered, with little known regarding its influence on task-related 511 

oscillatory activity (cf. Cross et al., 2021). Here, we examined the associations between task-related 512 

oscillations in individualised (i.e., anchored on participants’ IAF) frequency bands and aperiodic 513 

activity during the learning of different word order rules. There was non-significant positive association 514 
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between delta power and the aperiodic slope (β = 0.58, p = .05, R2 = 0.02). There was no relationship 515 

between theta power and the aperiodic slope (β = 0.09, p = .77, R2 = -0.04); however, there was a 516 

significant negative association between alpha power and the aperiodic slope (β = -2.88, p < .001, 517 

R2 = 0.33), which did not vary by sentence type. Finally, there was no significant relationship between 518 

task-evoked beta power and the aperiodic slope (β = 0.31, p = .49, R2 = -0.04; for a visualisation of these 519 

associations, see Figure 7). These results indicate that aperiodic and narrowband spectral estimates may 520 

afford complementary information about learning and task performance. Based on this, we now 521 

examine whether such aperiodic and (putative) oscillatory activity interact to predict performance on 522 

the sentence judgement task. 523 

 524 

Figure 7. Association between task-related aperiodic slope and oscillatory power in the delta (A), theta 525 

(B), alpha (C) and beta (D) bands during the sentence learning task averaged across all channels. The 526 

aperiodic slope is represented on the x-axis (higher values indicate a steeper slope relative to the pre-527 

sentence interval), while oscillatory power is represented on the y-axis (higher values indicate higher 528 

power relative to the pre-sentence interval). The density of observations for frequency band power and 529 

the aperiodic slope are indicated on the margins of each plot, while the fixed and flexible word order 530 

sentences are coded in turquoise and tan, respectively. 531 
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Interactions between oscillatory and aperiodic activity modulate behavioural performance  532 

Given the association between task-related oscillatory and aperiodic activity during the learning 533 

of complex linguistic rules, we now examine whether the 1/ƒ slope and oscillatory activity interact 534 

during learning to influence behavioural performance on the sentence judgement task. For all analyses, 535 

we used linear mixed-effects regression models (for full summary tables for all models, see Appendix). 536 

For the delta model, there was a significant Power × 1/ƒ Slope × Sentence Type interaction (χ2(1) = 537 

12.47, p < .001). As shown in Figure 8A, when the 1/ƒ slope was steepest and delta power was low, d’ 538 

was higher for flexible relative to fixed word orders. By contrast, when the 1/ƒ slope was steep and 539 

delta power was high, performance for fixed word orders increased. For the theta model, there was a 540 

significant Power × Sentence Type (χ2(1) = 4.57, p = .03) and 1/ƒ Slope × Sentence Type interaction 541 

(χ2(1) = 17.43, p < .001). Here, when the 1/ƒ slope was steep, d’ scores increased for flexible sentences 542 

(Figure 8B; left). By contrast, when theta power increased, performance for both fixed sentences was 543 

higher (Figure 8B; right). 544 

For the alpha model, there was a significant three-way Power × 1/ƒ Slope × Sentence Type 545 

interaction (χ2(1) = 15.94, p < .001). As depicted in Figure 8C, when the 1/ƒ slope was shallow, and as 546 

alpha power increased, d’ scores were higher for both fixed and flexible word orders. By contrast, when 547 

the 1/ƒ slope was steep, and as alpha power decreased, d’ scores were lower for flexible word order 548 

sentences. Similarly, the beta model yielded a significant Power × 1/ƒ Slope × Sentence Type 549 

interaction (χ2(1) = 30.96, p < .001). When the 1/ƒ slope was shallow, and as beta power decreased, d’ 550 

scores were higher for both fixed and flexible word orders (Figure 8D). By contrast, when the 1/ƒ slope 551 

was steep, increased beta power predicted higher d’ scores for fixed but lower d’ scores for flexible 552 

word order sentences, respectively. 553 

Together, these results suggest that when there is a steeper 1/ƒ slope, increased delta and beta 554 

power were associated with better behavioural performance, and thus better learning outcomes for fixed 555 

relative to flexible word order sentences. Further, when the 1/ƒ slope was shallow and alpha power 556 

decreased, there was a general benefit in performance for both fixed and flexible word order sentences, 557 

relative to when the 1/ƒ slope was steep. 558 
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 559 

Figure 8. Visualisation of the relation between behavioural performance, aperiodic slope, and 560 

oscillatory delta (A), theta (B), alpha (C), and beta (D) activity. Modelled effects of task-related 561 

oscillatory activity (x-axis; higher values indicate greater power) on d’ scores (y-axis; higher values 562 

indicate better performance) for fixed and flexible word order sentences (fixed = solid line; flexible = 563 

dashed line). Task-related aperiodic 1/ƒ slope estimates are faceted from shallow (left), to moderate 564 

(middle), to steep (right).  Note that the trichotomisation of the aperiodic slope into shallow, moderate 565 

and steep facets is for visualisation purposes only, with the aperiodic slope being entered into all models 566 

as a continuous predictor. Note that (B) illustrates the two-way modelled interaction effects of task-567 

related aperiodic slope (left; x-axis, higher values indicate a steeper slope) and theta power (right; x-568 

axis, higher values indicate greater power) for fixed and flexible word order sentences (fixed = solid 569 

line; flexible = dashed line). The red dashed line indicates chance-level performance, while the shaded 570 

regions indicate the 83% confidence interval. For A, B, C and E, the x-axis reflects scaled single-trial 571 

oscillatory power estimates, with negative values reflecting a decrease in power and positive values 572 

reflecting an increase in power.  573 

 574 

Discussion 575 

Here, we estimated the 1/ƒ slope during artificial grammar learning to characterise the influence 576 

of dynamic alterations in aperiodic and oscillatory activity on higher-order cognition. This is the first 577 

study to examine aperiodic activity and its interaction with oscillatory power in the context of language 578 

learning, with three critical findings emerging: (1) both (putative) oscillatory and aperiodic activity 579 

dynamically change over time during complex language-related rule learning; (2) the 1/ƒ slope becomes 580 

steeper during the learning of complex rules, but this effect differed depending on the type of rules 581 

being learned, and; (3) learning-related aperiodic activity interacted with oscillatory power to modulate 582 
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behavioural performance for both fixed and flexible word orders. These findings speak strongly to the 583 

view that aperiodic 1/ƒ dynamics should be explicitly modelled or isolated as a source of variance when 584 

analysing power spectra to ensure that any oscillatory changes are not confounded with modulations in 585 

broadband aperiodic activity (Donoghue et al., 2021). 586 

Indeed, a considerable proportion of work examining the oscillatory correlates of higher-order 587 

language processing have not explicitly accounted for modulations in broadband aperiodic activity (e.g., 588 

Bonhage et al., 2017; Corcoran et al., 2022; Kepinska et al., 2017; Lewis et al., 2016; Mai, Minett, & 589 

Wang, 2016; Prat et al., 2016; Rossi & Prystauka, 2020; c.f., Cao et al., 2022), making it difficult to 590 

determine whether oscillatory activity parsimoniously explains behavioural outcomes. By separating 591 

oscillatory and aperiodic components, we have demonstrated that the aperiodic exponent flattens across 592 

time, while, for example, theta and alpha power increase across time throughout the language learning 593 

phase. Recent computational work has highlighted the criticality of such a separation of neural signals 594 

(e.g., Donoghue et al., 2020), given that both aperiodic and oscillatory signals vary by clinical status 595 

(Robertson et al., 2019), state of consciousness (e.g., sleep versus wake; Lendner et al., 2020), and are 596 

modulated by task demands (Waschke et al., 2021). From this perspective, language studies reporting 597 

differences in oscillatory activity (e.g., increases in theta power) between experimental conditions (e.g., 598 

grammatical vs ungrammatical sentences) without accounting for broadband activity may be 599 

confounded by changes in aperiodic dynamics (Donoghue et al., 2021). 600 

Aperiodic and oscillatory activity are modulated by time-on-task 601 

The potential confounding of aperiodic and oscillatory components is further compounded by 602 

the fact that neural activity is non-stationary (Donoghue et al., 2021; Kosciessa et al., 2020; Stokes & 603 

Spaak, 2016). Here, we modelled single trial fluctuations of both aperiodic and oscillatory EEG 604 

components across the learning task, revealing fine-grained temporal dynamics underlying complex 605 

rule learning. For the aperiodic component, we observed a general flattening of the slope across time 606 

for both fixed and flexible sentences; however, the slope was steeper overall for flexible sentences. The 607 

general flattening of the aperiodic slope across time is in line with previous work reporting attentional 608 

modulations of spectral exponents (Kosciessa et al., 2021; Waschke et al., 2021). As exposure to 609 

grammar rules increased with time-on-task, participants may have become more adept at allocating 610 
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attention to cues relevant for successful sentence interpretation. Increased attentional modulation in 611 

accordance with learnt rules may have been accompanied by increased excitation/inhibition ratio, which 612 

reflects an increase in high-frequency power in cortical regions involved in processing task-relevant 613 

information (Cohen & Maunsell, 2011; Harris & Thiele, 2011), thus explaining the flattening of the 614 

aperiodic slope (Kosciessa et al., 2021; Waschke et al., 2021). 615 

The observed increases in theta and alpha power over time are also consistent with previous 616 

work on complex rule and language learning (e.g., Crivelli-Decker et al., 2018; de Diego-Balaguer, 617 

Fuentemilla, & Rodriguez-Fornells, 2011; Kepinska et al., 2017). In the few studies examining the 618 

neural oscillations involved in grammar learning (e.g., de Diego-Balaguer et al., 2011; Kepinska et al., 619 

2017), it has been demonstrated that theta and alpha synchronisation predict learning success. Here, 620 

theta and alpha power showed a non-linear increase in power across the learning task. Theta oscillations, 621 

particularly over frontal regions when recorded with scalp-EEG, are associated with plasticity-related 622 

learning and memory processes, reflecting the encoding and generalisation of new information 623 

(Eschmann et al., 2020; Khader et al., 2010). From this perspective, the observed increase in theta power 624 

for both fixed and flexible word orders may have reflected successful memory encoding and 625 

accumulating knowledge of the underlying grammatical rules. 626 

 Beta activity also displayed complex non-linear changes for fixed and flexible word orders 627 

across the learning task. Overall, beta power was higher for flexible than fixed word orders, particularly 628 

in the second half of the learning session (Figure 5E). In the native language processing literature 629 

(Bastiaansen et al., 2010; Davidson & Indefrey, 2007; Kielar et al., 2014, 2015), beta oscillations are 630 

argued to reflect prediction-related activity, with beta power increasing in highly predictable linguistic 631 

contexts, and decreasing when grammatical violations occur (for review, see Lewis et al., 2015, 2016). 632 

However, in studies on second language learning (e.g., Lewis et al. 2016), beta power increases in 633 

response to sentences with long-distance dependencies, possibly indicating more effortful processing 634 

(Meyer et al., 2013). From this position, the observed general increase in beta power for both fixed and 635 

flexible word orders across the task may reflect the accumulation of grammatical knowledge, allowing 636 

participants to better predict underlying rules of the language. Further, the marked increase in beta 637 

power for flexible word order processing may indicate more effortful processing, given that flexible 638 
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word orders contain non-adjacent elements that require integration for successful comprehension (Cross 639 

et al., 2018).  640 

Interactions between aperiodic and oscillatory activity predict learning 641 

Interactions between oscillatory and aperiodic activity during the learning task also predicted 642 

subsequent behavioural performance. Increased alpha power predicted an increase in performance for 643 

fixed word orders when the aperiodic 1/ƒ was shallow, while a decrease in alpha power predicted higher 644 

performance for flexible word orders when the aperiodic slope was steep. By contrast, when the 645 

aperiodic slope was shallow, a decrease in beta power (i.e., beta desynchronisation) was associated with 646 

improved behavioural performance for both fixed and flexible word orders. Further, when the aperiodic 647 

slope was steep, the relationship between beta desynchronisation and flexible word order processing 648 

was stronger, but the inverse was observed for fixed word order sentences. 649 

The effect of differing levels of 1/ƒ slope on, for instance, beta power and behavioural 650 

performance likely reflect more nuanced inter-individual differences in information processing 651 

capacities (Dziego et al., 2022; Immink, Cross et al., 2021; Thuwal, Banerjee, & Roy, 2021), which 652 

may explain behavioural gains that are otherwise related to the manifestation of oscillatory activity 653 

(e.g., Kepinska et al., 2017). For example, here we observed that a decrease in beta power predicted 654 

better behavioural performance for flexible rules, while the inverse was seen for fixed word order rules. 655 

From this perspective, a steeper slope may be more conducive for learning more complex information 656 

based on distinct neural dynamics, reflecting a decrease in the excitation/inhibition balance, and thus a 657 

decrease in high-frequency activity (Cohen & Maunsell, 2011; Harris & Thiele, 2011; Waschke et al., 658 

2021). A reduction in high-frequency activity has been associated with error-driven learning (Luft, 659 

Takase, & Bhattacharya, 2014; Luft, 2014; Tan, Jenkinson, & Brown, 2014) and predictive processing-660 

based activity (Bastos et al., 2012; Arnal & Giraud, 2012), particularly in the context of language 661 

comprehension (Cross et al., 2018; Lewis & Bastiaansen, 2015; Lewis et al., 2016). As such, a steeper 662 

1/ƒ slope, which was observed for flexible relative to fixed word order rules across the learning task 663 

(Figure 5A), may be foundational for task-related oscillatory activity during higher-order language 664 

learning.  665 
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The oscillatory-based findings are also broadly consistent with previous work (e.g., Kepinska 666 

et al., 2017), but reveal fine-grained patterns of spectral activity between word order variations, which 667 

may be explained by cue-integration-based models of language processing (Bates et al., 2001; 668 

Bornkessel & Schlesewsky, 2006; Bornkessel-Schlesewsky et al., 2015; Kaufeld et al., 2020; Martin, 669 

2016). Under this framework, cues that are differentially weighted according to the probabilities of the 670 

language are integrated to comprehend incoming linguistic input (e.g., sentences). Here, fixed word 671 

orders contained linear order-based cues, which are analogous to English, while flexible word orders 672 

required animacy-based cues for interpretation. From this perspective, and in line with previous work 673 

on sequence processing (Crivelli-Decker et al., 2018; Kikuchi, et al., 2018; Wang et al., 2019), increased 674 

beta power likely reflected the propagation of top-down predictions during the learning of fixed word 675 

orders (Cross et al., 2018). In fixed sentences, the first noun is invariably the Actor, and as such, 676 

predictions are constrained to anticipating that the second noun will be the Undergoer, while also 677 

containing a verb-final construction. Therefore, due to the strong sequence dependence in fixed word 678 

orders, precision-weighted predictions would likely increase linearly across the sentence, manifesting 679 

in increased beta power (Arnal, 2012; Cross et al., 2018; Lewis & Bastiaansen, 2015).  680 

The inverse relationship with flexible word order processing – which was predicted by a 681 

reduction in beta power– can also be explained under this framework. Given that flexible word orders 682 

contain either Actor-first or Undergoer-first constructions, predictions cannot be based on the linear 683 

position of the words, and instead must be driven by the integration of (non-adjacent) animacy-based 684 

cues to arrive at an accurate sentential percept. Given that our sample consisted of native monolingual 685 

English speakers (a language that relies heavily on word order cues; Bates et al., 2001; Bornkessel-686 

Schlesewsky, et al. 2011; MacWhinney et al., 1984), a reduction in beta power during flexible word 687 

order processing likely reflected prediction errors and internal model updating. That is, beta 688 

desynchronization during the learning of flexible word orders may have reflected internal model 689 

updating based on mismatches with predicted and actual sensory input, while an increase in beta power 690 

during fixed word order processing likely reflected the accumulation of top-down predictions based on 691 

our sample of native English speakers’ preference for word-order-based cues. Importantly, this 692 

interpretation is consistent with temporal sequence learning paradigms, where beta power increases for 693 
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fixed relative to “random” sequences (Crivelli-Decker et al., 2018), which also aligns with the observed 694 

beta power increase from the second half the learning task for fixed relative to flexible word orders 695 

(Figure 5E). 696 

Alpha activity showed a similar interaction: when the 1/ƒ slope was steep, reduced alpha power 697 

(i.e., alpha desynchronisation) predicted flexible word order processing. Alpha power reductions during 698 

language comprehension may reflect goal-directed processing and enhanced allocation of attentional 699 

resources, which is required for the successful learning of flexible word orders (Kepinska et al., 2017), 700 

given that they deviate from the canonical English word order (Bates et al., 2001). This interpretation 701 

is in line with evidence demonstrating that alpha oscillations reflect rhythmic cortical gating by 702 

alternating the activation of task-relevant cortical regions while inhibiting the processing of task-703 

irrelevant information (Chapeton et al., 2019; de Vries et al., 2020; Gallotto et al., 2020; Klimesch, 704 

2012; Jensen & Mazaheri, 2010). From this perspective, a decrease in alpha power likely facilitated the 705 

extraction of flexible word order rules by suppressing task-irrelevant input and optimising cortical 706 

communication in a selectively precise manner, promoting the encoding and consolidation of non-707 

canonical grammatical rules. This interpretation is also supported by the observation that alpha power 708 

was lower for flexible relative to fixed word order rules, particularly at the beginning of the learning 709 

task (Figure 5D). 710 

We also found that an increase in theta power predicted performance for flexible but not fixed 711 

word orders; however, theta did not interact with the aperiodic exponent to predict behavioural 712 

performance. Theta oscillations have been proposed to combine linguistic input into successively more 713 

complex representations, establishing relations between (non-adjacent) elements in a sentence 714 

(Covington & Duff, 2016; Cross et al., 2018). The positive association between theta power and 715 

performance for flexible word orders may reflect the learning and integration of non-adjacent rules, 716 

which involves the decoding and combination of words that are non-adjacent in a sentence. Indeed, 717 

such theta effects have been reported during native sentence processing (Lam et al., 2016). These effects 718 

are also consistent with the general memory literature: retrieval of language (e.g., single words), and 719 

shape/face stimuli elicit higher theta synchronisation (Bastiaansen et al., 2002; Klimesch et al., 2008; 720 

Klimesch et al., 2010; Mormann et al., 2005; Osipova et al., 2006), with these effects manifesting over 721 
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medial temporal and prefrontal cortices (Guderian & Düzel, 2005), indexing the activation of relevant 722 

memory traces and executive control processes, respectively. 723 

Functional relevance of aperiodic activity in language and higher-order cognition 724 

Our analysis revealed a link between aperiodic activity during language learning and 725 

performance on a grammaticality judgement task. This finding is consistent with previous studies 726 

demonstrating the influence of aperiodic activity on a range of cognitive computations, including 727 

processing speed (Ouyang et al., 2020), memory (Sheehan et al., 2018) and prediction in language 728 

(Dave et al., 2018). From a neurophysiological perspective, 1/ƒ-like neural activity has been proposed 729 

to encode information relating to intrinsic brain function (Muthukumaraswamy & Liley, 2018), 730 

including the balance between excitation/inhibition (Gao et al., 2017), likely reflecting glutamate and 731 

GABA synaptic inputs into inter- and intra-cortical networks (Dave et al., 2018; Gao et al., 2017). Based 732 

on this perspective, Dave et al. (2018) argued that aperiodic activity influences prediction in language 733 

by modulating the strength of predictions of upcoming linguistic information via population spiking 734 

synchrony (Engel et al., 2001). This interpretation applies to our finding that aperiodic and beta activity 735 

showed a negative association with performance for fixed and flexible word orders: an increase in beta 736 

power predicted more sensitive behavioural responses for fixed sentences, while reduced beta predicted 737 

performance for flexible word orders. These findings can be explained by integrating two perspectives: 738 

the “spectral fingerprints” hypothesis (Hanslmayr & Staudigl, 2014; Keitel & Gross, 2016; Siegel et 739 

al., 2012; Watrous et al., 2015; Womelsdorf et al., 2014) and generalised predictive coding (Friston, 740 

2010, 2018, 2019). 741 

The “spectral fingerprints” hypothesis argues that power changes in different frequency bands 742 

reflect distinct stages of memory and information processing (Fellner et al., 2019; Keitel & Gross, 743 

2016), rather than reflecting a “spectral tilt” between lower and higher frequencies. For example, 744 

decreases in alpha/beta and increases in gamma power during memory retrieval occur on different 745 

temporal scales and in different brain areas, providing evidence against proposals that a change in the 746 

tilt of the power spectrum solely drives memory computations (Fellner et al., 2019). Further, increases 747 

in high frequency gamma activity have been proposed to reflect the propagation of bottom-up sensory 748 

signals (Lewis et al., 2015; Richter, Thompson, Bosman, & Fries, 2017), while a decrease in alpha/beta 749 
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power is thought to index prediction errors (Bressler & Richter, 2015; Friston, 2019; Samaha, Bauer, 750 

Cimaroli, & Postle, 2015). From this perspective, a steeper 1/ƒ slope may reflect the maintenance of 751 

top-down predictions that allow comprehenders to generate expectations for incoming stimuli, thus 752 

minimizing prediction error at lower levels of the cortical hierarchy. This interpretation also holds for 753 

interactions observed with aperiodic and oscillatory activity in the alpha and beta bands, and as such, 754 

provides evidence that 1/ƒ-like activity may partially reflect cortical excitability across the frequency 755 

spectrum that serves to minimize prediction error during language learning and sentence processing. 756 

Conclusions and Future Directions 757 

Taken together, we have demonstrated that oscillatory and aperiodic activity jointly predict the 758 

learning of higher-order language. There are, of course, several open questions that arise from these 759 

results. For example, how do interactions between oscillatory and aperiodic activity relate to individual 760 

differences in atypical populations, such as those with schizophrenia and age-related pathologies, 761 

including Alzheimer’s disease? Previous research has shown that cognitive deficits characteristic of 762 

schizophrenia may be better explained by changes in the 1/ƒ slope than irregularities in the canonical 763 

frequency bands (Peterson et al., 2018), and that 1/ƒ activity mediates age-related deficits in working 764 

memory (Voytek et al., 2015); however, the interaction between aperiodic and oscillatory activity 765 

during more complex cognitive computations, such as sequence learning and language processing, 766 

remains less well known. While we attempt to address the relationship between aperiodic and 767 

oscillatory activity during higher-order language learning, future work would benefit from examining 768 

how and if these interactions emerge in (age-related) pathologies, and whether patterns of aperiodic and 769 

oscillatory activity during language learning and sentence processing are generated by specific 770 

neuroanatomical networks. Such work will provide a better understanding of the neurobiology of 771 

cognition in both health and disease. 772 

 773 

 774 

 775 

 776 

 777 
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