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Abstract
Memory formation involves the synchronous firing of neurons in task-relevant networks, with recent
models postulating that a decrease in low frequency oscillatory activity underlies successful memory
encoding and retrieval. However, to date, this relationship has been investigated primarily with face
and image stimuli; considerably less is known about the oscillatory correlates of complex rule learning,
as in language. Further, recent work has shown that non-oscillatory (1/f) activity is functionally relevant
to cognition, yet its interaction with oscillatory activity during complex rule learning remains unknown.
Using spectral decomposition and power-law exponent estimation of human EEG data (17 females, 18
males), we show for the first time that 1/f and oscillatory activity jointly influence the learning of word
order rules of a miniature artificial language system. Flexible word order rules were associated with a
steeper 1/f slope, while fixed word order rules were associated with a shallower slope. We also show
that increased theta and alpha power predicts fixed relative to flexible word order rule learning and
behavioural performance. Together, these results suggest that 1/f activity plays an important role in
higher-order cognition, including language processing, and that grammar learning is modulated by

different word order permutations, which manifest in distinct oscillatory profiles.

Keywords: language learning  neural oscillations « aperiodic activity ¢ sentence processing « EEG

artificial grammar
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78 Introduction
79 Memory supports many essential cognitive functions, from learning the distinction between
80  semantic categories (e.g., animal vs. human) to complex (motor) sequences, such as learning how to
81  drive a car or speak a new language. However, while a broad literature has related neural oscillatory
82  dynamics (i.e., [de]synchronisation of neural populations) to the encoding and retrieval of images and
83  words (e.g., Parish, HansImayr, & Bowman, 2018), considerably less is known about oscillatory activity
84  during the encoding and retrieval of complex sequences, such as in language (cf. de Diego-Balaguer,
85  Fuentemilla, & Rodriguez-Fornells, 2011; Kepinska, Pereda, Caspers, & Schiller, 2017). Further, the
86  few studies examining sequence and artificial language learning report mixed findings relative to
87  (episodic) word and image paradigms: while alpha/beta desynchronisation in the human EEG predicts
88  encoding of words and images (e.g., Griffiths, et al., 2019), alpha/beta and theta synchronisation is
89  associated with sequence (Crivelli-Decker et al., 2018) and language learning (e.g., Kepinska et al.,
90  2017). This apparent inconsistency might be accounted for by stimulus heterogeneity; however, another
91  possible source of divergence may lie in the mixture of oscillatory power with aperiodic activity
92  (Ouyang et al., 2020; Wen & Liu, 2016), which has not been addressed in studies on the neural basis of
93  complex rule learning to date.
94 Electrophysiological brain activity exhibits a 1/f-like power distribution, which is often
95  removed from the signal to isolate transient task-related oscillations (Donoghue et al., 2020; He, 2014;
96  Lendner et al., 2020). However, this aperiodic component has recently been implicated in a variety of
97  higher-order cognitive computations (Fellner et al., 2019), partially explaining individual differences
98 intheta activity during memory encoding and recall performance (Sheehan et al., 2018), and processing
99  speed over and above that of alpha activity (Ouyang et al., 2020). Work on prediction during language
100  has also shown that the aperiodic slope — but not oscillatory activity — influences the N400 event-related
101  potential and performance accuracy (Dave et al., 2018).
102 These findings suggest that aperiodic brain activity plays a critical functional role in the
103  neurobiology of cognition (He et al., 2010); however, it is currently unknown whether oscillatory and
104  aperiodic activity interact during memory encoding of information beyond single words and images,

105 such as rule-based sequence learning, and whether any such interaction influences behavioural
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106  outcomes. Clarifying the (separable) roles of oscillatory and aperiodic components of the EEG power
107  spectrum may also bridge diverging results reported in studies using image and word stimuli and
108 artificial grammar paradigms, lending support to the idea that neural oscillations differentially
109  contribute to memory formation.

110 To better characterise the neural mechanisms underlying complex rule learning, we examined
111  fluctuations in delta, theta, alpha and beta power during an artificial language learning task. We also
112 modelled the interaction between oscillatory and aperiodic activity to characterise how patterns of
113  (de)synchronisation and aperiodic fluctuation influence the generalisation of different word order rules
114  characteristic of many natural languages. Healthy young adults learned the artificial miniature language
115  Mini Pinyin (Cross, Zou-Williams, Wilkinson, Schlesewsky, & Bornkessel-Schlesewsky, 2020a)
116  without explicit instruction and then completed a sentence judgement task. Critically, participants —
117  who were native monolingual English speakers — learned fixed and flexible word order rules: fixed
118  word order sentences contained temporal- or sequence-based rules, while flexible word order sentences
119 involved non-adjacent dependencies, likely relying on more associative- than sequence-based memory
120  processing mechanisms (Cross et al., 2018). From this perspective, we were able to probe different
121  learning and memory mechanisms that are involved in sentence comprehension (Bornkessel-
122 Schlesewsky, Schlesewsky et al., 2015). For example, native English speakers typically rely on word-
123 order-based cues for sentence comprehension, whereas speakers of Mandarin Chinese or the Australian
124  language Jiwarli rely more strongly on cues other than word order, such as case marking and/or
125  semantic information, including animacy (Austin, 2001; Bates et al., 2001; Bornkessel-Schlesewsky et
126 al., 2011).

127 We recorded EEG during the learning task, implementing generalised additive and linear
128  mixed-effects regression analyses to model dynamic changes in oscillatory and aperiodic activity during
129  the learning of the fixed and flexible word order rules. We also modelled learning-related oscillatory
130 and aperiodic activity to predict subsequent behavioural performance on the sentence judgement task,
131  quantified as the sensitivity index d’.

132

133
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134 Method
135 Participants
136 Data from 36 right-handed healthy, monolingual, native English-speakers were used from a

137  study examining the effect of sleep on language learning (Cross et al., 2021). This sample size was
138  based on previous EEG research examining the neural correlates of higher-order language learning (de
139  Diego-Balaguer et al., 2011; Kepinska et al., 2017; Mueller et al., 2005). One participant was excluded
140  from analysis for not having electroencephalography recorded during the sentence learning task due to
141 experimenter error. The final sample size was 35 (Mage = 25.3, SD = 7.13; 17 female). Ethics approval
142  was granted by the University of South Australia’s Human Research Ethics committee (I.D.:

143 0000032556).

144 Stimuli and experimental design

145 Stimuli were based on the modified miniature language Mini Pinyin (for a detailed description
146  of the language, see Cross et al., 2020a; see also Cross et al., 2021), which contains grammatical rules
147  present in a number of natural languages (see Figure 1A and 1B for example sentence constructions
148  and vocabulary items). Briefly, each sentence in Mini Pinyin contains two noun phrases and a verb, and
149  each noun is associated with a different classifier: human nouns are preceded by ge, while animals, and

150 small and large objects are preceded by zhi, xi and da, respectively.

151 Mini Pinyin includes two main sentence types based on whether the sentence contains the
152  coverbs ba and bei. Here we focus on the coverb ba: when ba is present, the sentence contains a fixed
153  word order, in that the first noun phrase is invariably the Actor (the active, controlling participant in the
154  action described by the sentence) and the sentence must be verb final. In this context, accurate sentence
155  processing is dependent on the linear position of the words. When ba is not present, the sentence
156  contains a flexible word order, in that the first noun phrase can either be the Actor or the Undergoer
157  (the affected participant); however, the sentence must be verb-medial (i.e., verb must be positioned

158  between the noun phrases). As such, accurate sentence interpretation is based more heavily on the
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159  animacy status of the noun phrases rather than word order. These manipulations are illustrated below,

160  with a flexible word order shown in 1a and 1b and fixed (i.e., with the coverb ba) shown in 2:

161 (1)

162 (a) ge yisheng dale da pigiu.

163 (human) doctor hit (object) ball.

164 “the doctor hits the ball.”

165 (b) da xianjiao chile zhi laoshu.

166 (object) banana eat (animal) rat.

167 “the rat eats the banana.”

168 (2

169 ge xiaofang ba da shubao liangle.

170 (human) firefighter ba (object) bag measure.
171 “the firefighter measures the bag.”

172

173 The experiment contained three phases: a wvocabulary test, a learning phase, and a

174  grammaticality judgement task. Approximately seven days before the sentence learning phase,
175  participants received a paired picture-word vocabulary booklet containing the 25 nouns. Participants
176  were required to learn the 25 nouns to ensure that they had a basic vocabulary. Prior to the learning and
177  judgement tasks, participants completed the vocabulary test on a desktop computer by typing in
178 translations of the nouns from Mini Pinyin to English. Only participants who attained a score > 90%
179  wereeligible to undertake the learning and judgement task phases of the experiment. All 35 participants
180  achieved 90% accuracy on the vocabulary task and thus completed the main experimental session.
181  Overall, 576 unique sentences (288 grammatical, 288 ungrammatical) were created and divided into

182  two equivalent sets.

183 We focus here on a subset of sentence conditions to investigate the mechanisms underlying the
184  learning of different word order permutations (for EEG analyses during the sentence judgement task,
185  seeCross et al., 2021). While no explicit instructions were given to participants in regard to the structure
186  of the miniature language, a picture was shown prior to each sentence illustrating an event occurring

187  between two entities, which was then described in the subsequently presented sentence. The learning
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188  task contained four blocks with 128 grammatical picture-sentence pairs overall (96 of which were
189 included in the subset analysed here) that were presented via rapid visual serial presentation. The subset
190 contained a further 156 novel sentences (50% grammatical, 50% ungrammatical) that were presented
191  during the judgement task, which occurred immediately after the learning phase. The remaining
192  sentences were considered fillers. The ungrammatical sentences induced a violation at either the
193  position of the Actor or verb in fixed word order sentences (e.g., Actor-ba-Verb-Undergoer [AbaVU]
194  instead of AbaUV) or the position of the verb in flexible word order sentences (e.g., AUV instead of

195  AVU,; see Figure 1A for an illustration and full list of ungrammatical constructions).

196 During the learning phase, each picture was presented for 5000ms, while each corresponding
197  sentence was presented on a word-by-word basis, with each word presented for 700ms with an inter-
198  stimulus interval (ISI) of 200ms. Across the four blocks, each grammatical construction was presented
199 32 times, with stimuli pseudo-randomised such that no sentences of the same construction followed
200  each other. During the judgement task, novel grammatical and ungrammatical sentences were presented
201  word-by-word with a presentation time of 600ms and an ISI of 200ms. Participants responded via a
202  button press to indicate whether the sentence conformed to the rules of Mini Pinyin. The assignment of
203  grammatical/ungrammatical response buttons was counterbalanced across participants. Response time
204  windows were presented for a maximum of 4000ms. Participants received feedback on whether their
205  response was correct or incorrect (see Figure 1C and 1D for a schematic of the learning and judgement
206  tasks, respectively). Both the learning and judgement tasks were created in OpenSesame (Mathot et al.,

207  2012) and performed on a desktop computer.
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(A) Grammatical and Ungrammatical Sentence Constructions

Grammatical: Ungrammatical:

AVU: zhuole UbaAV: ba zhuole

UVA: zhuole AbaVU: ba zhuole

AbaUV: ba zhuole AUV: zhuole
UAV: zhuole

English Translation: captures

(B) Sample of Linguistic Elements from Mini Pinyin and English Translations

Classifier : ge (human), zhi (animal), da (large object), xi (small object)
Noun ¢ shuishou (sailor), maomi (cat), junma (pirate), pingguo (apple)
Coverb :  ba (actor-undergoer-verb)
Verb . zhoule (capture), xile (wash), zhaole (photograph), chile (eat)
(©) Learning Phase (D) Judgement Task
1000ms 1000ms
zhi
5000ms
+ daxiang
1000ms
zhi ba
700ms
daxiang tile
700ms
ba ge
700ms
ge jingcha
700ms
jingcha ?
4000ms
tile incorrect
700ms 1000ms

208

209  Figure 1. (A) Summary of the grammatical (left) and ungrammatical (right) sentence constructions. (B)
210 A portion of linguistic elements used in the sentence examples provided in (A). (C) Schematic of the
211  sequence of events occurring in the sentence learning phase. (D) Schematic of the sequence of events
212  occurring in the sentence judgement task.

213

214

215
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216  EEG recording and pre-processing

217 Participants’ EEG was recorded using a 32-channel BrainCap with sintered Ag/AgCl electrodes
218  (Brain Products, GmbH, Gilching, Germany) mounted according to the extended International 10-20
219  system. The online reference was located at FCz. The ground electrode was located at AFz. The
220  electrooculogram (EOG) was recorded via electrodes located at the outer canthus of each eye and above
221  and below participants’ left eye. The EEG was amplified using a BrainAmp DC amplifier (Brain
222 Products GmbH, Gilching, Germany) with an initial band-pass filter of DC — 250 Hz and a sampling
223  rate of 1000 Hz. Electrode impedances were kept below 10kQ. EEG was also recorded during two
224  minutes of eyes-open and two minutes of eyes-closed resting-state periods immediately before the

225  learning task and after the judgement task.

226 EEG analysis was performed in MATLAB 2017b (The MathWorks, Natick, USA) using
227  custom scripts in conjunction with the Fieldtrip toolbox (Oostenveld et al., 2011). EEG data were re-
228  referenced offline to the average of both mastoids and band-pass filtered from 1 — 40 Hz using a two-
229  pass Butterworth IR filter (implemented in ft_preprocessing). Data were then epoched from -200ms to
230  13s relative to the onset of each picture-sentence pair for both fixed and flexible sentences, and
231  corrected for ocular artefacts using Infomax Independent Component Analysis (Bell & Sejnowski,
232  1995; implemented in runica.m). Components demonstrating clear EOG artefacts were removed
233  (median components rejected = 3, range = 2 — 6) and electrodes showing strong artefacts were visually
234  inspected and subsequently interpolated with surrounding electrodes based on spherical spline

235 interpolation (total channels interpolated n = 2; Perrin et al., 1989).

236 EEG data analysis

237 The aim of the analysis was to characterise the oscillatory and aperiodic dynamics underlying
238 theinitial encoding of complex grammatical rules. To this end, we computed differences between fixed
239  and flexible word order sentences in the following five spectral features of the EEG recorded during
240  the learning phase: mean power density within individualised delta, theta, alpha, and beta bands, and

241  the (inverse) slope of the 1/f spectral distribution (i.e., power-law exponent). We then used these
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242 metrics to investigate whether trial-level variation in oscillatory power and 1/f slope during the learning
243  task predicted behavioural performance on the judgement task. We also tested whether interactions
244 between oscillatory and aperiodic activity afford unique information predicting behavioural

245  performance.

246  Spectral decomposition and power-law exponent y estimation

247 The power-law scaling exponent y, which summarises the rate of decay of the power spectrum
248  in double-logarithmic co-ordinates, was estimated using the Irregular-Resampling Auto-Spectral
249  Analysis toolbox (IRASA v1.0; Wen & Liu, 2016). Briefly, this technique seeks to separate oscillatory
250  from aperiodic (random fractal) components by iteratively resampling the power spectrum across a
251  range of non-integer factors h and their reciprocals 1/h (here, h = 1.1 to 1.95 in steps of 0.05). This
252  procedure shifts any narrowband components away from their original location along the frequency
253  spectrum while leaving the distribution of the fractal component intact. The median of the resampled
254  spectral estimates is then calculated in order to strip the spectrum of narrowband peaks. For a more
255  detailed treatment of the IRASA method, see Wen and Liu (2016).

256 Trial data from each EEG channel were divided into two non-overlapping 4500ms segments
257  corresponding to the picture and sentence presentation phases, respectively. Picture segments were
258  timelocked to 500ms post-stimulus onset; sentence segments were timelocked to 100 ms prior to the
259  first word onset. Both segments were further subdivided into seven 1800ms epochs (25% overlap) and
260  separately passed to amri_sig_fractal.m for spectral parameter estimation. Once the fractal component
261  had been recovered from each power spectrum, it was parameterised using amri_sig_plawfit.m. This
262  function rescales the frequency spectrum to achieve equally-spaced intervals in log-space before fitting
263  alinear regression to a subregion of the double-log transformed fractal spectrum (here, ~1.9 — 15.8 Hz,
264  corresponding to an evaluated frequency range of 1 — 35 Hz; see Gerster et al. 2022, for further details).
265  The absolute value of the regression slope coefficient was taken as the y exponent.

266 To ensure the robustness of our analysis, we compared our estimates of the y exponent against
267  those derived using the more recently-developed ‘FOOOF’ method (Donoghue et al., 2020). Briefly,

268 this technique attempts to separate narrowband oscillatory peak components from broadband aperiodic
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269  activity by iteratively fitting Gaussian functions to the spectrum, and deleting these components until
270  no further deviations from background activity can be detected (given a predefined noise threshold).
271  The y exponent is then estimated by fitting a regression to the residual spectrum in double-log space,
272  similar to the IRASA procedure (see Donoghue et al., 2020, for details).

273 Since FOOOF requires PSD estimates (rather than timeseries data) as its input, power spectra
274 were derived from each epoch using the pwelch.m implementation of Welch’s (1967) modified
275  periodogram method. Epochs were Hann-tapered and zero-padded to 2048 points to facilitate
276  comparability with IRASA-generated spectral estimates. FOOOF was implemented via the MATLAB
277  wrapper (v1.0.0) using the following parameter settings: peak width limits = 1 — 12 Hz, maximum
278  number of peaks = infinite, minimum peak height = 0, peak threshold = 2 S.D., aperiodic mode = fixed,
279  evaluated frequency range = 1 — 35 Hz.

280  Spectral band power estimation

281 In order to quantify narrowband changes in spectral power independent of underlying changes
282 in aperiodic activity, mean power densities were estimated following the subtraction of the mean
283  regression fit of the aperiodic component from the PSD (spectra averaged across epochs within each
284  segment). This residual, ‘oscillatory’ spectrum was half-wave rectified (negative values set to zero) and
285  divided into the four frequency bands of interest. Notably, the limits of each frequency band were
286  adapted for each participant on the basis of their resting-state EEG. Specifically, the boundaries of each
287  frequency band were calculated according to the harmonic frequency architecture proposed by
288 Klimesch (2012; 2013; and which is in line with previous work, e.g., Corcoran et al., 2018, Doppelmayr
289  etal., 1998, Sauppe et al., 2021), in which the centre frequency of each successive band constitutes a
290  harmonic series scaled in relation to the individual alpha frequency (IAF). To avoid the potential overlap
291  of neighbouring frequency bands, we determined lower and upper frequency bounds using the
292  following formulae:

293 fi=fc—f./4,

294 fo=fo+ /2,

295  where f; is the centre frequency (based on the IAF-scaled harmonic series), f; the lower bound, and f;

296  the higher bound of a given frequency band.
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297 IAF estimates used to determine f. were obtained from a set of parieto-occipital electrodes
298  (P3/P4/01/02/P7/P8/Pz/1z) using the restinglAF package (v1.0.3; Corcoran et al., 2019; see also Cross
299 et al. 2020b). This method applies a Savitzky-Golay filter (frame width = 11 bins, polynomial order =
300 5) to smooth and differentiate the power spectrum prior to estimating the peak frequency within a
301  specified frequency range (here, 7—14 Hz). Peak estimates were averaged across channels, with a
302  minimum of 3 channel estimates required to return an IAF for a given recording. Estimates derived
303  from pre- and post-session eyes-closed resting states were then averaged for each participant using
304  meanlAF.m. For further details on this algorithm, see Corcoran and colleagues (2018).

305 Having determined 1AF-anchored bounds for the delta, theta, alpha, and beta bands, power
306  within each band was quantified using the mean power density metric proposed by Westfall (1990):

kfz

1+kf —k; Zp(f)

1lkf

307 P, =

308  where p(f;) is the power estimate of the i frequency bin, and f; and f, index the lower and upper bounds
309  of the individualised frequency band k, respectively. An advantage of this approach is that power
310  estimates are scaled by spectral range, thus controlling for differing frequency bandwidths both within
311  and between individuals.

312  Statistical analysis

313 We used R v.4.0.0 (R Core Team, 2020) and the packages Ime4 v.1.1.27.1 (Bates et al., 2015),
314  ImerTest v.3.1.2 (Kuznetsova et al., 2017), ggeffects v.4.1.4 (Lidecke, 2018), car v.3.0.7 (Fox et al.,
315  2011), tidyverse v.1.3.0 (Wickham et al., 2019), mgcv v.1.8.36 (Wood, 2006), mgcViz v.0.1.9 (Fasiolo
316 etal., 2019), rgl v.0.1.54 (Nenadic & Greenacre, 2007), ggpubr v.0.4.0 (Kassambara (2020), cowplot
317  v.1.0.0 (Wilke, 2019), and eegUtils v.0.7.0 (Craddock, 2022). For linear models, contrasts for
318  categorical variables were sum-to-zero contrast coded, with coefficients reflecting deviation from the

319  grand mean (Schad et al., 2020).
320

321


https://doi.org/10.1101/2020.03.10.984971
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.984971; this version posted May 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

13

322  Generalised additive mixed models

323 Generalized additive models (GAMs) are a nonparametric extension of the standard linear
324 regression model that substitute a linear predictor variable x with a smooth function f(x) (Hastie &
325  Tibshirani, 1987, 1990; Wood, 2017). Generalized additive mixed models (GAMMs; Lin & Zhang,
326  1999) constitute a further extension that incorporates random effects components within the GAM
327  framework (Pedersen et al., 2019). Together, these innovations offer an elegant solution to the problem
328  of autocorrelation amongst residuals induced by (1) attempting to fit linear models to non-linear
329  relationships, and (2) non-independence (or nesting) of observations (e.g., repeated measures within

330 participants or items; Baayen et al., 2008).

331 Here, GAMMSs were constructed to investigate how the exponent y, and the mean power density
332 P foreach k" frequency band (delta, theta, alpha, and beta), fluctuate during artificial grammar learning.
333  Trial-level ¥ and Py estimates from the sentence processing phase of each trial were modelled as a
334  function of learning time (trial number), sensor space (2D Cartesian co-ordinates), and sentence type
335  (fixed, flexible). Estimates from the preceding image presentation phase were treated as a baseline
336  measure of spectral activity. Random factor smooth interactions were included to account for individual
337  differences in the functional relationship between spectral features and time-on-task (see Baayen et al.,
338 2017, Corcoran, Macefield, & Hohwy, 2021, for similar approaches). Each GAMM took the following

339  general form:

340 Y, =B, + B,type; + B,baseline; + f(trial, topo. x,topo.y, by = type;) +

341 fsubject;(time) + €,

342  where Y, is the i" observation of spectral feature Y, fois the model intercept, Sitype is a factor encoding
343  the main effect of Sentence Type, S-baseline is a covariate encoding the corresponding observation for
344 Y during the baseline period, f( ., by = type) is the tensor product interaction between the learning time
345  (trial) and sensor space (topo.x, topo.y) covariates for each level of Sentence Type, fsuject IS the by-
346  participant factor smooth for time-on-task, and ¢ is a t distributed error term (since response variables
347  were heavy-tailed). Note that marginal smooths for sensor space co-ordinates were treated as isotropic

348  (i.e., assumed to share a common scale).
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349 GAMMs were estimated using the bam() function of the R package mgcv (Wood, 2011).
350  Models were fit using the Fast REML method. Px estimates for both the baseline and sentence
351  processing period were logio transformed prior to model inclusion. Models were fit with tensor product
352  interaction smooths in order to enable ANOVA-decomposition of main effect and interaction
353  components (Wood, Scheipl, & Faraway, 2013). All tensor product smooths were fit using low rank
354  thin plate regression splines as their basis function (Wood, 2003, 2017). Factor smooths were fit with a
355  first-derivative penalty in order to shrink participant-level smooths towards the population-level. An
356  additional shrinkage penalty was imposed on the smoothing penalty null space to enable automated
357  model reduction (see Marra & Wood, 2011). Type was entered as an ordered factor with Fixed assigned
358 as the reference level, hence model terms involving a Sentence Type interaction assess the difference

359  between Fixed and Flexible condition splines (see van Rij et al., 2016).
360  Linear mixed-effects models

361 The relationship between aperiodic and oscillatory power during grammar learning with
362  behavioural performance on the judgement task was assessed using linear mixed-effects models.
363  Behavioural performance was operationalised using the discrimination index (d’). d’ is defined as the
364  difference between the z transformed probabilities of hit rate (HR) and false alarm rate (FA; i.e.,

365  d’=z[HR] - z[FA]). These models took the following general form:
366 d'; = Bo + B1Pk; * B2bexp; * Bstype; * Bulat; * fssag; + participanty; + e,

367  where Py is mean baseline-corrected (i.e., sentence presentation — pre-sentence interval) power density
368 in the frequency band of interest (i.e., delta, theta, alpha, beta), bexp is the baseline-corrected (i.e.,
369  sentence presentation — pre-sentence interval) exponent of the aperiodic 1/f slope, type refers to
370  Sentence Type (fixed, flexible), sag is Sagittality (anterior, central, posterior) and lat refers to Laterality
371  (left, midline, right). Participant ID (participant) was modelled as a random intercept. ¢ refers to a

372  Gaussian-distributed error term.

373 Type 1l Wald y*-tests from the car package (Fox et al., 2011) were used to provide p-values.

374  An 83% confidence interval (Cl) threshold was adopted for visualisations, which corresponds to the


https://doi.org/10.1101/2020.03.10.984971
http://creativecommons.org/licenses/by-nd/4.0/

375
376
377
378
379
380
381

382
383

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.984971; this version posted May 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-ND 4.0 International license.

15

5% significance level with non-overlapping estimates (Austin & Hux, 2002; MacGregor-Fors &
Payton, 2013). General linear models were performed to assess the relationship between baseline
corrected oscillatory power and aperiodic 1/f slope between fixed and flexible word orders. Baseline-

corrected oscillatory power values were logio transformed prior to model inclusion. All data, as well as

analysis scripts (MATLAB and R) are available on the OSF platform: https://osf.io/7yr46/; Cross,

Corcoran, Schlesewsky, Kohler, &. Bornkessel-Schlesewsky, 2022). For a schematic visualisation of

EEG signal processing and statistical analysis steps, see Figure 2.
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Figure 2. Schematic of the EEG recording, pre-processing, signal, and statistical analysis
procedures. a. Neurophysiological signals were recorded at rest and during the sentence learning task
using a 32-channel EEG system. b. The EEG signal was filtered, re-referenced and subjected to an
independent component analysis. ¢. The individual alpha frequency (I1AF) was estimated per participant
from resting-state EEG recordings based on an occipital-parietal electrode cluster (see topoplot). Peak
frequencies within the alpha band (7-14 Hz; light blue shading) were identified using restingl AF, an
automated procedure that smoothes and differentiates the power spectrum before estimating the average
IAF (dotted line) across selected channels. IAF estimates were subsequently used to calculate
participant-specific delta, theta, alpha and beta centre frequencies (fc) and bandwidths (fi, f2) for the
time-frequency decomposition of the sentence learning task. d. (i) Grand-average time-frequency
representation of fixed word order sentences during the learning session. Dashed black boxes
correspond to the presentation of elements in the stimulus train above. (ii) Histograms illustrating the
distribution of the aperiodic exponent and alpha power estimated using FOOOF (pink) and IRASA
(blue). e. (i) Single-subject power spectral density (PSD) plots at the beginning (left) and end (right) of
the sentence learning task. Straight turquoise and tan lines represent the IRASA-based aperiodic
regression fit for fixed and flexible word order sentences, respectively. (ii) PSD plots illustrating power
in the 1AF-derived delta (8), theta (), alpha (¢) and beta () bands after subtraction of the aperiodic
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400  regression fit depicted in (i). (iii) Raw data at electrode Cz illustrating the analysis performed to estimate
401  time-varying modulations in the aperiodic exponent between fixed and flexible word orders. (iv)
402  scatterplots illustrating the analyses predicting behaviour (i.e., judgement accuracy [d’]) from the
403  sentence judgement task from aperiodic and oscillatory activity derived from the sentence learning task.

404 Results

405  Task performance

406 The results on the judgement task are visualised in Figure 3. Participants performed moderately
407  well on the judgement task, with a mean d’ score of 1.02 (range: -1.20 — 3.78) and mean reaction time
408  of 878.08 ms (range: 254.75 — 2076.83). There is clearly a high degree of inter-individual variability
409  across both fixed and flexible sentences; however, flexible sentences had greater variability in d” scores,
410  while fixed grammatical sentences had faster responses overall. For a detailed report and interpretation

411  of these behavioural data, see Cross et al. (2020a).
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413  Figure 3. Raincloud plots illustrating the behavioural responses during the sentence judgement task.
414  (A) Mean d’ scores (x-axis) for Fixed and Flexible sentence types. (B) Mean reaction time (ms; x-axis)
415  for Grammatical (left) and Ungrammatical (right) Fixed and Flexible sentence types. Individual data
416  points represent the mean for each participant, while the lines join within-participant differences

417  between fixed and flexible word order sentences.
418
419  Neurophysiological results

420 Individual alpha frequency estimates varied between participants (Miar = 9.78, SD = 0.96),
421  resulting in a range of participant-specific frequency bands (summarised in Table 1). A full list of

422  participant-specific IAFs and frequency bandwidth are available on the OSF repository.
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Table 1. Mean lower (f;) and upper (f.) frequency bounds for the delta, theta, alpha and beta bands.
Participant-specific range provides the lowest and highest frequency band limits based on single-
participant estimates, as is also provided for IAF estimates.

Band Mean f1 (SD) Mean f, (SD) Participant-Specific Range
Delta 1.83(0.18) 3.67 (0.36) 1.42 - 4.33

Theta 3.67 (0.36) 7.34 (0.72) 2.83-8.66

Alpha 7.34 (0.72) 14.7 (1.45) 5.67 —17.33

Beta 14.7 (1.45) 29.4 (2.90) 11.36 — 34.67

IAF - - 7.57 - 11.55

Note. SD = standard deviation; IAF = individual alpha frequency. Participant-specific range provides
the absolute lowest and upper band limits.

Aperiodic and oscillatory changes across time and space during language learning

Neurophysiological signals are non-stationary, showing dynamic changes over time as a
function of endogenous and exogenous factors (e.g., Donoghue, Schaworonkow & Voytek, 2021), such
as attentional fluctuations and the complexity of incoming sensory information (Waschke et al., 2021).
However, neurophysiological signals are typically analysed using linear models, which often do not
capture non-linear modulations in neural activity, particularly over time. Here, we examine how
aperiodic and oscillatory dynamics evolve over time during language learning, focusing specifically on
the way in which spectral activity varies across sentence types (fixed vs flexible word orders). Estimated
changes in aperiodic and oscillatory spectral activity across learning task conditions are illustrated in
Figure 5 (for topographical maps, see Figure 6).

Comparisons between IRASA and FOOOF showed that FOOOF provided higher exponent
estimates than IRASA, irrespective of sentence type (fixed, flexible; Figure 4) and were also more
variable (Mrooor = 1.08, SD = 0.48; Mirasa= 1.00, SD = 0.42). However, exponent estimates between
IRASA and FOOOF were highly positively correlated across both fixed (p = 0.75, p <.001, 83% CI =
[.63, .84] and flexible (p = 0.76, p <.001, 83% CI =[.63, .85]; Figure 4B) word order sentences. These

observations were complemented by a linear mixed-effects regression which revealed that while
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446  FOOOF had overall higher exponent estimates than IRASA (8 = 0.02, se = 0.004, p < .001), exponent
447  estimates between FOOOF and IRASA did not vary by sentence type (8 = 0.0005, se = 0.004, p =.89;
448  Figure 4C). These observations are consistent with simulations reported by Donoghue et al., 2020;

449  however, given that there was no significant interaction between method (FOOOF, IRASA) and

450  sentence type (fixed, flexible), we present the IRASA-based analysis.
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452  Figure 4. Comparison between FOOOF and IRASA exponent estimates. (A) Histogram illustrating the
453  distribution of exponent estimates derived from FOOOF (red) and IRASA (grey). (B) Scatterplot
454 showing the relationship between FOOOF (y-axis) and IRASA (x-axis) between fixed (turquoise) and
455  flexible (tan) sentences. (C) Relationship between the aperiodic exponent (y-axis; higher values indicate
456  asteeper exponent), method (x-axis; FOOOF, IRASA), and sentence type (left facet = fixed, right facet
457 = flexible). Bars represent the 83% confidence interval around group-level expected marginal mean
458  estimates. Dots represent individual data points per participant for aggregated data.

459

460 The x-exponent GAMM revealed the 1/f slope was steeper on average for Flexible compared

461  to Fixed word order sentences (8 = 0.02, SE = 0.008, F(1) = 5.84, p = .015). Visualisation of smooth
462  terms (Figure 5A) revealed that exponent values tended to decrease (indicating a flattening of the 1/f
463  slope) over the course of the learning period; however, Flexible trials evoked higher values (steeper 1/f
464  slopes) at the beginning and during the second half of the session, relative to Fixed trials (Trial x
465  Sentence Type estimated degrees of freedom [edf] = 3.87, F = 29.67, p < .001). This model further
466  revealed significant topographic differences between conditions, with Flexible word orders evoking
467  higher exponent values over fronto-central regions compared to Fixed word order sentences by the end
468  of the session (Trial x Sagittality x Sentence Type edf = 1.78, F = 1.13, p < .001; see Figure 6; for full
469  summary tables of all models, see Appendix).

470 Mean delta power was higher on average during Flexible compared to Fixed word order trials,

471  although this difference was not significant (84 = 0.03, SE = 0.016, F = 3.68, p = .055). However,


https://doi.org/10.1101/2020.03.10.984971
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.984971; this version posted May 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

19

472  visualisation of smooth terms (Figure 5B) revealed a complex pattern whereby delta power increased
473  over early trials, followed by a marked decrease that was more pronounced in response to Fixed than
474  Flexible sentence stimuli (edf = 2.74, F = 9.66, p < .001). This interaction was significantly modulated
475 by sagittality, with between-condition differences (Fixed versus Flexible) in mean power density
476  increasing over fronto-central electrodes as a function of time (edf = 2.68, F = 1.54, p < .001). Theta
477  power was non-significantly lower on average during Flexible compared to Fixed rule learning (8 = -
478 0.01, SE = 0.014, F = 0.60, p = .437). Again, smooth terms revealed a nonlinear pattern of spectral
479  fluctuation, whereby theta power evinced a sigmoidal shape over the course of rule-learning (Figure
480  5C). This pattern was similar across both conditions, with Fixed sentence stimuli tending to evoke
481  increased theta power (edf = 0.824, F = 1.25, p = .014). This pattern of activity varied as a function of
482  topography, with the difference between conditions being more accentuated across lateralised and
483  posterior sites, as illustrated in Figure 6 (edf = 7.63, F = 0.22, p =.003).

484 Alpha power tended to increase over the early and later trials of the learning task, although this
485  pattern was interrupted by a marked decline during the middle of the session (edf = 3.20, F = 12.50, p
486 < .001). Flexible word orders evoked less alpha power than Fixed word orders at the beginning of the
487  session, but was similar thereafter (edf = 3.20, F = 13.46, p < .001; Figure 5D). This difference was
488  most pronounced over left-lateralised and frontal sites (edf = 2.27, F = 0.35, p =.012). Finally, the beta
489  power model revealed significant differences in the nonlinear profile of power dynamics across the
490 learning session. In fact, Fixed and Flexible trials evoked markedly different patterns of activity: beta
491  power showed an approximately triphasic response to Fixed sentence stimuli that was mirrored by the
492  response to Flexible stimuli (edf = 2.94, F = 30.08, p < .001; Figure 5E). The strongest beta response
493  was observed over frontal and temporal regions (edf = 16.59, F = 33.04, p < .001), particularly toward
494 the beginning of the learning phase for Flexible word order sentences (edf = 6.82, F = 1.24, p <.001).
495 Taken together, these data illustrate dynamic changes in both aperiodic and oscillatory activity
496 as a function of different word order rules during learning. Both the aperiodic slope and delta power
497  tended to decrease over time, while theta power tended to increase. By contrast, alpha and especially

498  beta power evinced more complex dynamics as participants learnt different word order rules.
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505  Figure 6. Difference in topographical distribution of aperiodic and oscillatory activity between fixed
506 and flexible word order sentences at the beginning and end of the sentence learning task.

507

508  Task-related aperiodic and oscillatory activity are dynamically related during language learning

509 Neurophysiological signals are dominated by transient oscillatory and broadband aperiodic
510 activity; however, in the study of the oscillatory correlates of higher-order language processing,
511  aperiodic activity is rarely considered, with little known regarding its influence on task-related
512  oscillatory activity (cf. Cross et al., 2021). Here, we examined the associations between task-related
513  oscillations in individualised (i.e., anchored on participants’ |AF) frequency bands and aperiodic

514  activity during the learning of different word order rules. There was non-significant positive association
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between delta power and the aperiodic slope (8=0.58, p=.05, R?=0.02). There was no relationship
between theta power and the aperiodic slope (8=0.09, p=.77, R>=-0.04); however, there was a
significant negative association between alpha power and the aperiodic slope (f#=-2.88, p< .001,
R?=0.33), which did not vary by sentence type. Finally, there was no significant relationship between
task-evoked beta power and the aperiodic slope (8= 0.31, p = .49, R?>=-0.04; for a visualisation of these
associations, see Figure 7). These results indicate that aperiodic and narrowband spectral estimates may
afford complementary information about learning and task performance. Based on this, we now
examine whether such aperiodic and (putative) oscillatory activity interact to predict performance on

the sentence judgement task.
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Figure 7. Association between task-related aperiodic slope and oscillatory power in the delta (A), theta
(B), alpha (C) and beta (D) bands during the sentence learning task averaged across all channels. The
aperiodic slope is represented on the x-axis (higher values indicate a steeper slope relative to the pre-
sentence interval), while oscillatory power is represented on the y-axis (higher values indicate higher
power relative to the pre-sentence interval). The density of observations for frequency band power and
the aperiodic slope are indicated on the margins of each plot, while the fixed and flexible word order
sentences are coded in turquoise and tan, respectively.
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532  Interactions between oscillatory and aperiodic activity modulate behavioural performance

533 Given the association between task-related oscillatory and aperiodic activity during the learning
534  of complex linguistic rules, we now examine whether the 1/f slope and oscillatory activity interact
535  during learning to influence behavioural performance on the sentence judgement task. For all analyses,
536  we used linear mixed-effects regression models (for full summary tables for all models, see Appendix).
537  For the delta model, there was a significant Power x 1/f Slope x Sentence Type interaction (x*(1) =
538  12.47,p <.001). As shown in Figure 8A, when the 1/f slope was steepest and delta power was low, d’
539  was higher for flexible relative to fixed word orders. By contrast, when the 1/f slope was steep and
540  delta power was high, performance for fixed word orders increased. For the theta model, there was a
541  significant Power x Sentence Type (x*(1) = 4.57, p = .03) and 1/f Slope x Sentence Type interaction
542  (¥%(1) = 17.43, p < .001). Here, when the 1/f slope was steep, d’ scores increased for flexible sentences
543  (Figure 8B; left). By contrast, when theta power increased, performance for both fixed sentences was
544 higher (Figure 8B; right).

545 For the alpha model, there was a significant three-way Power x 1/f Slope x Sentence Type
546 interaction (x*(1) = 15.94, p <.001). As depicted in Figure 8C, when the 1/f slope was shallow, and as
547  alpha power increased, d’ scores were higher for both fixed and flexible word orders. By contrast, when
548  the 1/f slope was steep, and as alpha power decreased, d” scores were lower for flexible word order
549  sentences. Similarly, the beta model yielded a significant Power x 1/f Slope x Sentence Type
550 interaction (¥*(1) = 30.96, p <.001). When the 1/f slope was shallow, and as beta power decreased, d’
551  scores were higher for both fixed and flexible word orders (Figure 8D). By contrast, when the 1/f slope
552  was steep, increased beta power predicted higher d” scores for fixed but lower d’ scores for flexible
553  word order sentences, respectively.

554 Together, these results suggest that when there is a steeper 1/ slope, increased delta and beta
555  power were associated with better behavioural performance, and thus better learning outcomes for fixed
556 relative to flexible word order sentences. Further, when the 1/f slope was shallow and alpha power
557 decreased, there was a general benefit in performance for both fixed and flexible word order sentences,

558  relative to when the 1/f slope was steep.
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560 Figure 8. Visualisation of the relation between behavioural performance, aperiodic slope, and
561  oscillatory delta (A), theta (B), alpha (C), and beta (D) activity. Modelled effects of task-related
562  oscillatory activity (x-axis; higher values indicate greater power) on d’ scores (y-axis; higher values
563 indicate better performance) for fixed and flexible word order sentences (fixed = solid line; flexible =
564  dashed line). Task-related aperiodic 1/f slope estimates are faceted from shallow (left), to moderate
565  (middle), to steep (right). Note that the trichotomisation of the aperiodic slope into shallow, moderate
566  and steep facets is for visualisation purposes only, with the aperiodic slope being entered into all models
567  as a continuous predictor. Note that (B) illustrates the two-way modelled interaction effects of task-
568 related aperiodic slope (left; x-axis, higher values indicate a steeper slope) and theta power (right; x-
569 axis, higher values indicate greater power) for fixed and flexible word order sentences (fixed = solid
570 line; flexible = dashed line). The red dashed line indicates chance-level performance, while the shaded
571  regions indicate the 83% confidence interval. For A, B, C and E, the x-axis reflects scaled single-trial
572  oscillatory power estimates, with negative values reflecting a decrease in power and positive values
573  reflecting an increase in power.

574
575 Discussion
576 Here, we estimated the 1/f slope during artificial grammar learning to characterise the influence

577  of dynamic alterations in aperiodic and oscillatory activity on higher-order cognition. This is the first
578  study to examine aperiodic activity and its interaction with oscillatory power in the context of language
579 learning, with three critical findings emerging: (1) both (putative) oscillatory and aperiodic activity
580  dynamically change over time during complex language-related rule learning; (2) the 1/f slope becomes
581  steeper during the learning of complex rules, but this effect differed depending on the type of rules

582  being learned, and; (3) learning-related aperiodic activity interacted with oscillatory power to modulate
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583  behavioural performance for both fixed and flexible word orders. These findings speak strongly to the
584  view that aperiodic 1/f dynamics should be explicitly modelled or isolated as a source of variance when
585  analysing power spectra to ensure that any oscillatory changes are not confounded with modulations in
586  broadband aperiodic activity (Donoghue et al., 2021).

587 Indeed, a considerable proportion of work examining the oscillatory correlates of higher-order
588  language processing have not explicitly accounted for modulations in broadband aperiodic activity (e.g.,
589  Bonhage et al., 2017; Corcoran et al., 2022; Kepinska et al., 2017; Lewis et al., 2016; Mai, Minett, &
590 Wang, 2016; Prat et al., 2016; Rossi & Prystauka, 2020; c.f., Cao et al., 2022), making it difficult to
591  determine whether oscillatory activity parsimoniously explains behavioural outcomes. By separating
592  oscillatory and aperiodic components, we have demonstrated that the aperiodic exponent flattens across
593  time, while, for example, theta and alpha power increase across time throughout the language learning
594  phase. Recent computational work has highlighted the criticality of such a separation of neural signals
595  (e.g., Donoghue et al., 2020), given that both aperiodic and oscillatory signals vary by clinical status
596  (Robertson et al., 2019), state of consciousness (e.g., sleep versus wake; Lendner et al., 2020), and are
597  modulated by task demands (Waschke et al., 2021). From this perspective, language studies reporting
598  differences in oscillatory activity (e.g., increases in theta power) between experimental conditions (e.g.,
599  grammatical vs ungrammatical sentences) without accounting for broadband activity may be
600  confounded by changes in aperiodic dynamics (Donoghue et al., 2021).

601  Aperiodic and oscillatory activity are modulated by time-on-task

602 The potential confounding of aperiodic and oscillatory components is further compounded by
603 the fact that neural activity is non-stationary (Donoghue et al., 2021; Kosciessa et al., 2020; Stokes &
604  Spaak, 2016). Here, we modelled single trial fluctuations of both aperiodic and oscillatory EEG
605  components across the learning task, revealing fine-grained temporal dynamics underlying complex
606  rule learning. For the aperiodic component, we observed a general flattening of the slope across time
607  for both fixed and flexible sentences; however, the slope was steeper overall for flexible sentences. The
608  general flattening of the aperiodic slope across time is in line with previous work reporting attentional
609  modulations of spectral exponents (Kosciessa et al., 2021; Waschke et al., 2021). As exposure to

610  grammar rules increased with time-on-task, participants may have become more adept at allocating
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611  attention to cues relevant for successful sentence interpretation. Increased attentional modulation in
612  accordance with learnt rules may have been accompanied by increased excitation/inhibition ratio, which
613  reflects an increase in high-frequency power in cortical regions involved in processing task-relevant
614  information (Cohen & Maunsell, 2011; Harris & Thiele, 2011), thus explaining the flattening of the
615 aperiodic slope (Kosciessa et al., 2021; Waschke et al., 2021).

616 The observed increases in theta and alpha power over time are also consistent with previous
617  work on complex rule and language learning (e.g., Crivelli-Decker et al., 2018; de Diego-Balaguer,
618  Fuentemilla, & Rodriguez-Fornells, 2011; Kepinska et al., 2017). In the few studies examining the
619  neural oscillations involved in grammar learning (e.g., de Diego-Balaguer et al., 2011; Kepinska et al.,
620  2017), it has been demonstrated that theta and alpha synchronisation predict learning success. Here,
621  theta and alpha power showed a non-linear increase in power across the learning task. Theta oscillations,
622  particularly over frontal regions when recorded with scalp-EEG, are associated with plasticity-related
623 learning and memory processes, reflecting the encoding and generalisation of new information
624  (Eschmann etal., 2020; Khader et al., 2010). From this perspective, the observed increase in theta power
625  for both fixed and flexible word orders may have reflected successful memory encoding and
626  accumulating knowledge of the underlying grammatical rules.

627 Beta activity also displayed complex non-linear changes for fixed and flexible word orders
628  across the learning task. Overall, beta power was higher for flexible than fixed word orders, particularly
629 in the second half of the learning session (Figure 5E). In the native language processing literature
630  (Bastiaansen et al., 2010; Davidson & Indefrey, 2007; Kielar et al., 2014, 2015), beta oscillations are
631  argued to reflect prediction-related activity, with beta power increasing in highly predictable linguistic
632  contexts, and decreasing when grammatical violations occur (for review, see Lewis et al., 2015, 2016).
633  However, in studies on second language learning (e.g., Lewis et al. 2016), beta power increases in
634  response to sentences with long-distance dependencies, possibly indicating more effortful processing
635  (Meyer et al., 2013). From this position, the observed general increase in beta power for both fixed and
636  flexible word orders across the task may reflect the accumulation of grammatical knowledge, allowing
637  participants to better predict underlying rules of the language. Further, the marked increase in beta

638  power for flexible word order processing may indicate more effortful processing, given that flexible
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639  word orders contain non-adjacent elements that require integration for successful comprehension (Cross
640 etal., 2018).

641 Interactions between aperiodic and oscillatory activity predict learning

642 Interactions between oscillatory and aperiodic activity during the learning task also predicted
643  subsequent behavioural performance. Increased alpha power predicted an increase in performance for
644  fixed word orders when the aperiodic 1/f was shallow, while a decrease in alpha power predicted higher
645  performance for flexible word orders when the aperiodic slope was steep. By contrast, when the
646  aperiodic slope was shallow, a decrease in beta power (i.e., beta desynchronisation) was associated with
647  improved behavioural performance for both fixed and flexible word orders. Further, when the aperiodic
648  slope was steep, the relationship between beta desynchronisation and flexible word order processing
649  was stronger, but the inverse was observed for fixed word order sentences.

650 The effect of differing levels of 1/f slope on, for instance, beta power and behavioural
651  performance likely reflect more nuanced inter-individual differences in information processing
652  capacities (Dziego et al., 2022; Immink, Cross et al., 2021; Thuwal, Banerjee, & Roy, 2021), which
653  may explain behavioural gains that are otherwise related to the manifestation of oscillatory activity
654  (e.g., Kepinska et al., 2017). For example, here we observed that a decrease in beta power predicted
655  better behavioural performance for flexible rules, while the inverse was seen for fixed word order rules.
656  From this perspective, a steeper slope may be more conducive for learning more complex information
657  based on distinct neural dynamics, reflecting a decrease in the excitation/inhibition balance, and thus a
658  decrease in high-frequency activity (Cohen & Maunsell, 2011; Harris & Thiele, 2011; Waschke et al.,
659  2021). A reduction in high-frequency activity has been associated with error-driven learning (Luft,
660  Takase, & Bhattacharya, 2014; Luft, 2014; Tan, Jenkinson, & Brown, 2014) and predictive processing-
661  based activity (Bastos et al., 2012; Arnal & Giraud, 2012), particularly in the context of language
662  comprehension (Cross et al., 2018; Lewis & Bastiaansen, 2015; Lewis et al., 2016). As such, a steeper
663  1/f slope, which was observed for flexible relative to fixed word order rules across the learning task
664  (Figure 5A), may be foundational for task-related oscillatory activity during higher-order language

665  learning.
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666 The oscillatory-based findings are also broadly consistent with previous work (e.g., Kepinska
667  etal, 2017), but reveal fine-grained patterns of spectral activity between word order variations, which
668 may be explained by cue-integration-based models of language processing (Bates et al., 2001;
669  Bornkessel & Schlesewsky, 2006; Bornkessel-Schlesewsky et al., 2015; Kaufeld et al., 2020; Martin,
670  2016). Under this framework, cues that are differentially weighted according to the probabilities of the
671  language are integrated to comprehend incoming linguistic input (e.g., sentences). Here, fixed word
672  orders contained linear order-based cues, which are analogous to English, while flexible word orders
673  required animacy-based cues for interpretation. From this perspective, and in line with previous work
674  onsequence processing (Crivelli-Decker et al., 2018; Kikuchi, et al., 2018; Wang et al., 2019), increased
675  beta power likely reflected the propagation of top-down predictions during the learning of fixed word
676  orders (Cross et al., 2018). In fixed sentences, the first noun is invariably the Actor, and as such,
677  predictions are constrained to anticipating that the second noun will be the Undergoer, while also
678  containing a verb-final construction. Therefore, due to the strong sequence dependence in fixed word
679  orders, precision-weighted predictions would likely increase linearly across the sentence, manifesting
680 inincreased beta power (Arnal, 2012; Cross et al., 2018; Lewis & Bastiaansen, 2015).

681 The inverse relationship with flexible word order processing — which was predicted by a
682  reduction in beta power— can also be explained under this framework. Given that flexible word orders
683  contain either Actor-first or Undergoer-first constructions, predictions cannot be based on the linear
684  position of the words, and instead must be driven by the integration of (non-adjacent) animacy-based
685  cues to arrive at an accurate sentential percept. Given that our sample consisted of native monolingual
686  English speakers (a language that relies heavily on word order cues; Bates et al., 2001; Bornkessel-
687  Schlesewsky, et al. 2011; MacWhinney et al., 1984), a reduction in beta power during flexible word
688  order processing likely reflected prediction errors and internal model updating. That is, beta
689  desynchronization during the learning of flexible word orders may have reflected internal model
690  updating based on mismatches with predicted and actual sensory input, while an increase in beta power
691  during fixed word order processing likely reflected the accumulation of top-down predictions based on
692  our sample of native English speakers’ preference for word-order-based cues. Importantly, this

693 interpretation is consistent with temporal sequence learning paradigms, where beta power increases for
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694  fixed relative to “random” sequences (Crivelli-Decker et al., 2018), which also aligns with the observed
695  beta power increase from the second half the learning task for fixed relative to flexible word orders
696  (Figure 5E).

697 Alpha activity showed a similar interaction: when the 1/f slope was steep, reduced alpha power
698  (i.e., alpha desynchronisation) predicted flexible word order processing. Alpha power reductions during
699  language comprehension may reflect goal-directed processing and enhanced allocation of attentional
700  resources, which is required for the successful learning of flexible word orders (Kepinska et al., 2017),
701  given that they deviate from the canonical English word order (Bates et al., 2001). This interpretation
702  is in line with evidence demonstrating that alpha oscillations reflect rhythmic cortical gating by
703  alternating the activation of task-relevant cortical regions while inhibiting the processing of task-
704 irrelevant information (Chapeton et al., 2019; de Vries et al., 2020; Gallotto et al., 2020; Klimesch,
705  2012; Jensen & Mazaheri, 2010). From this perspective, a decrease in alpha power likely facilitated the
706  extraction of flexible word order rules by suppressing task-irrelevant input and optimising cortical
707  communication in a selectively precise manner, promoting the encoding and consolidation of non-
708  canonical grammatical rules. This interpretation is also supported by the observation that alpha power
709  was lower for flexible relative to fixed word order rules, particularly at the beginning of the learning
710  task (Figure 5D).

711 We also found that an increase in theta power predicted performance for flexible but not fixed
712  word orders; however, theta did not interact with the aperiodic exponent to predict behavioural
713  performance. Theta oscillations have been proposed to combine linguistic input into successively more
714  complex representations, establishing relations between (non-adjacent) elements in a sentence
715  (Covington & Duff, 2016; Cross et al., 2018). The positive association between theta power and
716  performance for flexible word orders may reflect the learning and integration of non-adjacent rules,
717  which involves the decoding and combination of words that are non-adjacent in a sentence. Indeed,
718  such theta effects have been reported during native sentence processing (Lam et al., 2016). These effects
719  are also consistent with the general memory literature: retrieval of language (e.g., single words), and
720  shape/face stimuli elicit higher theta synchronisation (Bastiaansen et al., 2002; Klimesch et al., 2008;

721  Klimesch et al., 2010; Mormann et al., 2005; Osipova et al., 2006), with these effects manifesting over
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722 medial temporal and prefrontal cortices (Guderian & Diizel, 2005), indexing the activation of relevant
723  memory traces and executive control processes, respectively.

724  Functional relevance of aperiodic activity in language and higher-order cognition

725 Our analysis revealed a link between aperiodic activity during language learning and
726  performance on a grammaticality judgement task. This finding is consistent with previous studies
727  demonstrating the influence of aperiodic activity on a range of cognitive computations, including
728  processing speed (Ouyang et al., 2020), memory (Sheehan et al., 2018) and prediction in language
729  (Dave et al., 2018). From a neurophysiological perspective, 1/f-like neural activity has been proposed
730  to encode information relating to intrinsic brain function (Muthukumaraswamy & Liley, 2018),
731  including the balance between excitation/inhibition (Gao et al., 2017), likely reflecting glutamate and
732  GABA synaptic inputs into inter- and intra-cortical networks (Dave et al., 2018; Gao et al., 2017). Based
733 on this perspective, Dave et al. (2018) argued that aperiodic activity influences prediction in language
734 by modulating the strength of predictions of upcoming linguistic information via population spiking
735  synchrony (Engel et al., 2001). This interpretation applies to our finding that aperiodic and beta activity
736  showed a negative association with performance for fixed and flexible word orders: an increase in beta
737  power predicted more sensitive behavioural responses for fixed sentences, while reduced beta predicted
738  performance for flexible word orders. These findings can be explained by integrating two perspectives:
739  the “spectral fingerprints” hypothesis (Hanslmayr & Staudigl, 2014; Keitel & Gross, 2016; Siegel et
740  al., 2012; Watrous et al., 2015; Womelsdorf et al., 2014) and generalised predictive coding (Friston,
741 2010, 2018, 2019).

742 The “spectral fingerprints” hypothesis argues that power changes in different frequency bands
743  reflect distinct stages of memory and information processing (Fellner et al., 2019; Keitel & Gross,
744 2016), rather than reflecting a “spectral tilt” between lower and higher frequencies. For example,
745  decreases in alpha/beta and increases in gamma power during memory retrieval occur on different
746  temporal scales and in different brain areas, providing evidence against proposals that a change in the
747  tilt of the power spectrum solely drives memory computations (Fellner et al., 2019). Further, increases
748  in high frequency gamma activity have been proposed to reflect the propagation of bottom-up sensory

749  signals (Lewis et al., 2015; Richter, Thompson, Bosman, & Fries, 2017), while a decrease in alpha/beta
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750  power is thought to index prediction errors (Bressler & Richter, 2015; Friston, 2019; Samaha, Bauer,
751  Cimaroli, & Postle, 2015). From this perspective, a steeper 1/f slope may reflect the maintenance of
752  top-down predictions that allow comprehenders to generate expectations for incoming stimuli, thus
753  minimizing prediction error at lower levels of the cortical hierarchy. This interpretation also holds for
754 interactions observed with aperiodic and oscillatory activity in the alpha and beta bands, and as such,
755  provides evidence that 1/f-like activity may partially reflect cortical excitability across the frequency
756  spectrum that serves to minimize prediction error during language learning and sentence processing.
757 Conclusions and Future Directions

758 Taken together, we have demonstrated that oscillatory and aperiodic activity jointly predict the
759  learning of higher-order language. There are, of course, several open questions that arise from these
760  results. For example, how do interactions between oscillatory and aperiodic activity relate to individual
761  differences in atypical populations, such as those with schizophrenia and age-related pathologies,
762  including Alzheimer’s disease? Previous research has shown that cognitive deficits characteristic of
763  schizophrenia may be better explained by changes in the 1/f slope than irregularities in the canonical
764  frequency bands (Peterson et al., 2018), and that 1/f activity mediates age-related deficits in working
765 memory (Voytek et al., 2015); however, the interaction between aperiodic and oscillatory activity
766  during more complex cognitive computations, such as sequence learning and language processing,
767  remains less well known. While we attempt to address the relationship between aperiodic and
768  oscillatory activity during higher-order language learning, future work would benefit from examining
769  how and if these interactions emerge in (age-related) pathologies, and whether patterns of aperiodic and
770  oscillatory activity during language learning and sentence processing are generated by specific
771  neuroanatomical networks. Such work will provide a better understanding of the neurobiology of
772  cognition in both health and disease.

773

774

775

776

777
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