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Slow oscillation-spindle coupling predicts sequence-based language learning
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Abstract

Sentence comprehension involves the rapid decoding of both semantic and grammatical
information, a process fundamental to communication. As with other complex cognitive
processes, language comprehension relies, in part, on long-term memory. However, the
electrophysiological mechanisms underpinning the initial encoding and generalisation of higher-
order linguistic knowledge remain elusive, particularly from a sleep-based consolidation
perspective. One candidate mechanism that may support the consolidation of higher-order
language is the temporal coordination of slow oscillations (SO) and sleep spindles during non-
rapid eye movement sleep (NREM). To examine this hypothesis, we analysed
electroencephalographic (EEG) data recorded from 35 participants (Mag = 25.4, SD = 7.10; 16
males) during an artificial language learning task, contrasting performance between individuals
who were given an 8hr nocturnal sleep period or an equivalent period of wake. We found that
sleep relative to wake was associated with superior performance for rules that followed a
sequence-based word order. Post-sleep sequence-based word order processing was further
associated with less task-related theta desynchronisation, an electrophysiological signature of
successful memory consolidation, as well as cognitive control and working memory. Frontal
NREM SO-spindle coupling was also positively associated with behavioural sensitivity to
sequence-based word order rules, as well as with task-related theta power. As such, theta
activity during retrieval of previously learned information correlates with SO-spindle coupling,
thus linking neural activity in the sleeping and waking brain. Taken together, this study presents
converging behavioral and neurophysiological evidence for a role of NREM SO-spindle coupling
and task-related theta activity as signatures of successful memory consolidation and retrieval in
the context of higher-order language learning.

SIGNIFICANCE STATEMENT. The endogenous temporal coordination of neural oscillations
supports information processing during both wake and sleep states. Here we demonstrate that
slow oscillation-spindle coupling during non-rapid eye movement sleep predicts the
consolidation of complex grammatical rules and modulates task-related oscillatory dynamics
previously implicated in sentence processing. We show that increases in theta power predict
enhanced sensitivity to grammatical violations after a period of sleep and strong slow oscillation-
spindle coupling modulates subsequent task-related theta activity to influence behaviour. Our
findings reveal a complex interaction between both wake- and sleep-related oscillatory
dynamics during the early stages of language learning beyond the single word level.

Keywords: Sleep and memory; language learning; sentence processing; neural oscillations;
cross-frequency coupling.
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Introduction

The human brain is adept at extracting regularities from sensory input, a process pivotal
for generating knowledge of one’s physical and social environment (Santolin & Saffran, 2018).
Notably, learning of such regularities plays a key role in the development of linguistic
competencies, enabling the implicit acquisition of grammatical rules embedded in ambient
speech (Cross et al., 2021; Isbilen et al., 2022; Romberg & Saffran, 2010, 2010). While this
perspective of language learning has informed insights concerning the encoding of local
dependencies, the acquisition of more complex linguistic structures remains less understood.
Here, we address this gap from the perspective of sleep-based memory consolidation, a well-
established mechanism governing the generalisation of knowledge from sensory experience
(Brodt et al., 2023; Diekelmann et al., 2009; Xie et al., 2018).

A plethora of evidence (for review, see Rasch and Born 2013) demonstrates that sleep
plays an active role in memory by consolidating and generalising mnemonic information. This
dynamic account of the sleeping brain is captured by the Active System Consolidation
hypothesis (ASC; (Born & Wilhelm, 2012; Klinzing et al., 2019). Core to ASC is that sleep
facilitates repeated reactivation of encoded memory representations (Rasch & Born, 2013). This
reactivation is dependent on cortical glutamatergic synapses, which weaken during prolonged
wakefulness (Kavanau, 1997; Rasch & Born, 2013). The ASC is supported by electrophysiological
evidence that learned sequences are replayed during non-rapid eye-movement (NREM) sleep,
potentially via sleep spindle and slow oscillatory (SO) activity. Sleep spindles are bursts of
electrical activity occurring between 11 - 16 Hz, while SOs centred at 1 Hz reflect synchronized
membrane potential fluctuations between hyperpolarised up-states and depolarised down-
states of neocortical neurons (Crunelli & Hughes, 2010; Vyazovskiy & Harris, 2013). The precise
coupling between SOs and spindles provides a temporal receptive window for the replay of
hippocampal memory traces and their transfer to cortex for long-term storage (Bastian et al.,
2022; Mikutta et al., 2019). Critically, the transfer of newly encoded information from
hippocampus to cortex enables generalisation of mnemonic information, allowing cortex to
learn the regularities of sensory input gradually — a process known to support language learning
(Cross et al., 2018; Davis & Gaskell, 2009; Rasch, 2017).

Mechanisms of sleep-based memory consolidation have been associated with aspects
of language learning, including novel-word learning (Bakker et al., 2015; James et al., 2017;
Mirkovi¢ & Gaskell, 2016) as well as the generalisation of grammatical rules (Batterink et al.,
2014; Nieuwenhuis et al., 2013). Positive associations have also been identified between rapid
eye-moment (REM) sleep percentages and language learning proficiency (De Koninck et al.,
1989, 1990), supporting a link between REM sleep and language learning. To elucidate the
mechanism of this relationship, Thompson et al. (2021) examined oscillatory dynamics during
REM sleep and demonstrated that sleep spindles and theta power predicted language learning
among individuals engaged in second-language immersion programs. This effect was stronger
when time-locked to eye movements during REM sleep.

Together, extant work on sleep and language learning underscore the significance of both
REM and NREM sleep, sleep spindles, and theta power in facilitating second language learning.
However, work examining the association between sleep and language often involves only
behavioural measures as proxies for memory consolidation (e.g., Mirkovi¢ & Gaskell, 2016;
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Nieuwenhuis et al., 2013), or examines structure (e.g., grammar; Nieuwenhuis et al., 2013) and
meaning (i.e., semantics; Bakker et al., 2015; Batterink et al., 2017; Batterink & Paller, 2017) in
the language input separately (cf. Batterink et al., 2014). Markers of sleep-based memory
consolidation are also often based on coarse experimental contrasts (i.e., sleep vs. wake
conditions) or macroarchitectural measures (i.e., percent time spentin a particular sleep stage),
rather than neurophysiological events that can more directly test models of systems
consolidation anchored in NREM sleep, such as SO-spindle coupling. Online EEG measures
during language learning and comprehension and their relation to offline states, such as sleep,
are also lacking.

From this perspective, neurobiological models of sleep, memory, and language
processing would benefit from a direct investigation of the relation between sleep and higher-
order language, such as at the sentence level that have differing grammatical rules (Cross et al.,
2018; Rasch, 2017; Schreiner & Rasch, 2017), in conjunction with online measures of neural
activity. This would extend our understanding of the complexity of language learning beyond
single words, and how the generalisation of newly acquired linguistic knowledge is supported by
sleep (for review, see Cross et al., 2018) and how the brain learns environmental regularities that
span multiple scales of complexity and how this information is organised across sleep and wake.

Here, we present data addressing the contribution of sleep-based memory consolidation
to complex rule learning in language at the sentence level. We used the modified miniature
language Mini Pinyin (Cross et al., 2021), which is modelled on Mandarin Chinese, to contrast
rules that instantiate a fixed or flexible word order. Mandarin naive Monolingual native English
speakers completed a learning task where they were shown pictures of two-person events,
followed by a sentence describing the event in the picture. During this task, participants learned
varying word order rules without explicit instruction and then completed a baseline memory task
prior to either 8hr of sleep or an equivalent period of wake (Figure 1). Participants then completed
a delayed memory task to assess changes in memory of the word order rules after the 8hr delay.

We focussed on theta oscillations (~ 3 — 7 Hz), which were quantified using complex
Morlet wavelets across sentence presentation during the memory tasks. Theta oscillations are
implicated in relational binding and memory-based decision making (Backus et al., 2016;
Buzséaki, 2002; Jacobs et al., 2006). From this perspective, theta should track successful
language learning and sleep-based consolidation (Cross et al., 2018). We further quantified
whole-scalp NREM SO-spindle coupling by detecting spindle events and quantifying the
percentage of spindle events that occurred during SO events. SO-spindle coupling as well as
task-related theta power were used to independently predict language learning, and to
determine whether task-related theta is modulated by sleep-based memory consolidation.
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Figure 1. IlWustration of stimulus presentation and experimental protocol. (A) Schematic
representation of a single trial of a grammatical sentence during the sentence learning task. (B) Schematic
representation of a single trial during the baseline sentence judgement task. This sentence is a violation of
the verb-position, whereby the verb chile is positioned in the middle of the sentence when it should be
positioned at the end of the sentence. Here, the participant incorrectly categorised this sentence as
grammatical, and thus received feedback indicating that their response was incorrect. (C) Schematic
diagram of the vocabulary test, which required participants to translate the nouns (e.g., yegou) into English
(e.g., dog) using a keyboard. (D) Experimental protocol representing the time course of the conditions
(sleep, wake) and testing sessions (sentence learning task, baseline, and delayed sentence judgement
tasks). After completing the vocabulary test, participants were randomly assigned to either the sleep or
wake conditions, with each participant only completing one of the two conditions. Time is represented
along the x-axis, while each coloured block corresponds to a different task during the experimental
protocol.

Methods
Participants

We recruited 36 right-handed participants who were healthy, monolingual, native
English-speakers (16 male) aged 18 — 40 years old (Mage = 25.4, SD = 7.0). Participants were
randomly assigned to either a Sleep (n = 18) or Wake condition. All participants reported normal
or corrected-to-normal vision, no history of psychiatric disorders, substance dependence, or
intellectual impairment, and were not taking medication that influenced sleep or
neuropsychological measures. All participants provided informed consent and received a $120
honorarium. One participant from the Sleep condition was removed from the analysis due to
technical issues during the experimental tasks and sleep period, resulting in a total sample size
of 35 (Mage = 25.4, SD = 7.10; 16 males; Sleep n = 17). Ethics approval was granted by the
University of South Australia’s Human Research Ethics committee (1.D: 0000032556).

Screening and control measures

The Flinders Handedness Survey (FLANDERS; Nicholls et al., 2013) was used to screen
handedness, while the Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989) screened for
sleep quality. PSQIl scores ranged from 1-5 (M = 2.9, SD = 1.33) out of a possible range of 0 - 21,
with higher scores indicating worse sleep quality. Prospective participants with scores > 5 were


https://doi.org/10.1101/2020.02.13.948539
http://creativecommons.org/licenses/by-nd/4.0/

O 0 39 N L B~

10

12
13

14

15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.948539; this version posted October 27, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

6

unable to participate. As an additional control, the Stanford Sleepiness Scale (SSS) was
administered at the beginning and end of the experiment to measure self-perceived sleepiness.

Electroencephalography

The electroencephalogram (EEG) was recorded during the learning and sentence
judgement tasks and sleep opportunities using a 32-channel BrainCap with sintered Ag/AgClI
electrodes (Brain Products, GmbH, Gilching, Germany) mounted according to the extended
International 10-20 system. The reference was located at FCz, with EEG signals re-referenced to
linked mastoids offline. The ground electrode was located at AFz. The electrooculogram (EOG)
was recorded via electrodes located 1cm from the outer canthus of each eye (horizontal EOG)
and above and below participants’ left eye (vertical EOG). Sub-mental electromyography (EMG)
was added to facilitate accurate scoring of sleep periods. The EEG was amplified using a
BrainAmp DC amplifier (Brain Products GmbH, Gilching, Germany) using an initial band-pass
filter of DC - 250 Hz with a sampling rate of 1000 Hz.

Vocabulary and structure of Mini Pinyin

Stimuli consisted of sentences from a modified miniature language based on Mandarin
Chinese (Cross et al., 2021). This language contained 32 transitive verbs, 25 nouns, 2 coverbs,
and 4 classifiers. The nouns included 10 human entities, 10 animals and 5 objects (e.g., apple).
Each category of noun was associated with a specific classifier, which always preceded each of
the two noun phrases in a sentence. As illustrated in Figure 2B, ge specifies a human noun, zhi
for animals, and xi and da for small and large objects, respectively. Overall, this stimulus set
contained 576 unique sentences (288 grammatical, 288 ungrammatical) which are divided into
two equivalent sets (see Cross et al., 2021) for a complete description of the stimuli; for the
complete set of stimuli, visit: https://tinyurl.com/3an438h2).

We focussed on a subset of sentence conditions to investigate the mechanisms
underlying the learning of different word order rules, which fundamentally differs between
natural languages (for review, see Bates et al., 2001). Languages like English and Dutch rely
primarily on word order, while languages like German and Turkish rely more on cues such as case
marking and animacy (Bornkessel & Schlesewsky, 2006; Bornkessel-Schlesewsky et al., 2015;
MacWhinney et al., 1984). From this perspective, Mini Pinyin enabled a comparison between
sentences with differing word orders (see Figure 3A), and the influence sleep may have on the
respective consolidation of fixed and flexible word order rules. The subset of stimuliin the current
analysis contained 96 sentences in the sentence learning task and 144 sentences in the
grammaticality judgement tasks. The remaining sentences were considered fillers. These filler
sentences included sentences that violated classifier-noun pairs, and thus were not suitable for
testing predictions regarding fixed and flexible word order processing (for a full description of all
sentence conditions presentin this language, please see (Cross et al., 2021).

As is apparentin Figure 3A, sentences that do not contain the coverb ba (i.e., actor-verb-
undergoer, AVU; undergoer-verb-actor, UVA) yield a flexible word order, such that understanding
who is doing what to whom is not dependent on the ordering of the noun phrases. Instead,
determining who is doing what to whom is facilitated by animacy cues. For instance, in the UVA
condition, the bearis interpreted as the actor despite the first noun phrase being the apple, since
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it is implausible for an apple to eat a bear. Therefore, both AVU and UVA are grammatical
constructions. By contrast, sentences such as AbaUV yield a fixed word order, such that the
inclusion of ba strictly renders the first noun phrase as the actor. Note that the positioning of the
verb is critical in sentences with and without a coverb. With the inclusion of a coverb, the verb
must be placed at the end of the sentence, while the verb must be positioned between the noun

AN N B~ W=

phrases in constructions without a coverb.

A Example Nouns B Example Sentences

c,!’%é,d? s Y“

Shubao (bag) Laohu (tiger)

tiger chases pirate
zhi laohu zhuile ge haidao

Haidao (pirate) Pingguo (apple) fireman measures bag rabbit kicks apple
ge xiaofang leangle da shubao zhi tuzi tile da pingguo

Figure 2. Example of images used in vocabulary and sentence learning phases. (A) Portion of the 25

9 illustrations used in the vocabulary booklet, which included human, animal, and inanimate objects (i.e.,
10 bag, apple). (B) Portion of the illustrations used in the sentence learning task, illustrating the interaction
11 between two entities. Note that the entities used in sentence learning task are the same as the illustrations
12 usedin the vocabulary booklet.
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(A) Grammatical and Ungrammatical Sentence Constructions

Grammatical Ungrammatical
Fixed Fixed
AbaUV zhi xiong ba xi pingguo chile UbaAVv Xxi pingguo ba zhi xiong chile
‘(animal) bear ba (small object) eats.’ ‘(small object) apple ba (animal) bear eats.’
AbaVvUu zhi xiong ba chile xi pingguo
‘(animal) bear ba eats (small object) apple.’
Flexible Flexible
AVU zhi xiong chile xi pingguo AUV zhi xiong xi pingguo chile
‘(animal) bear eats (small object) apple.’ ‘(animal) bear (small object) apple eats.’
UVA Xi pingguo chile zhi xiong UAV Xi pingguo zhi xiong chile
‘(small object) apple eats (animal) bear. ‘(small object) apple (animal) bear eats.’
English Translation: the bear eats the apple

(B) Sample of Linguistic Elements from Mini Pinyin and English Translations

Classifier :  ge (human), zhi (animal), da (large object), xi (small object)
Noun :  xiong (bear), maomi (cat), junma (pirate), pingguo (apple)
Coverb 1 ba (actor-undergoer-verb)

Verb :  zhoule (capture), xile (wash), zhaole (photograph), chile (eat)

Figure 3. Exemplar word order rules and vocabulary items of Mini Pinyin. (A) Example of grammatical
and ungrammatical fixed and flexible word order sentences. Classifiers and nouns are coded in blue, while
verbs are red. The coverb ba is coded in green. For the ungrammatical sentences (right), the point of
violation in the sentence is underlined. The direct English translation for each sentence construction is
provided below (i.e., the bear eats the apple). (B) A sample of the linguistic elements present in Mini Pinyin
and their English translation. Note that ba does not have a specific meaning, but when present in a
sentence, instantiates a strict actor-undergoer-verb word order.

Experimental protocol

Participants received a paired picture-word vocabulary booklet containing the 25 nouns
and were asked to maintain a minimum of 7hrs sleep per night (see Figure 2A for a portion of
nouns from the vocabulary booklet). Participants were required to learn the 25 nouns to ensure
that they had a basic vocabulary of the nouns to successfully learn the 32 transitive verbs. They
were asked to record periods of vocabulary learning in an activity log. Participants were
instructed to study the booklet for at least fifteen minutes per day and were informed that they
would need to pass a vocabulary test before commencing the main experimental protocol. After
approximately one week, participants returned to complete the main experimental session,
where EEG was recorded during a sentence learning task, baseline, and delayed sentence
judgement tasks.

Vocabulary test

Participants completed a vocabulary test by translating the nouns from Mini Pinyin into
English using a keyboard, as illustrated in Figure 1C. Each trial began with a 600ms fixation cross,
followed by the visual presentation of the noun for up to 20s. Prospective participants who
scored < 90% were unable to complete the main experimental EEG session. As such, all 36


https://doi.org/10.1101/2020.02.13.948539
http://creativecommons.org/licenses/by-nd/4.0/

W N

A

0 3 O n

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

30
31
32
33
34
35
36
37
38
39
40
41
42

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.948539; this version posted October 27, 2024. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

9

participants included in the current paper obtained over 90% correct on the vocabulary test. The
proportion of individuals who did not pass the vocabulary test was small (e.g., approximately less
than 5 cases); however, the exact number was not recorded.

Sentence learning

Sentence and picture stimuli were presented using OpenSesame (Mathét et al., 2012).
During sentence learning, pictures were used to depict events occurring between two entities.
The pictures and entities shown during the learning task were combinations of the static pictures
shown in the vocabulary booklet (for an example of booklet versus sentence learning picture
stimuli, see Figure 2A and 2B, respectively).

While participants were aware that they would complete sentence judgement tasks at a
later point, no explicit description of or feedback regarding grammatical rules was provided
during the learning task. Each picture corresponded to multiple sentence variations, similar to
the grammatical conditions in Figure 3A. Picture-sentence pairs were presented to participants
as correctlanguage input. Participants were presented with a fixation cross for 1000ms, followed
by the picture illustrating the event between two entities for 5000ms. A sentence describing the
event in the picture was then presented on a word-by-word basis. Each word was presented for
700ms followed by a 200ms ISI. This pattern continued for the 96 reported combinations, until
the end of the task, which took approximately 40 minutes. The 96 sentences included in this
analysis included the flexible (i.e., AVU, UVA) and fixed (i.e., AbaUV) sentence constructions.
Sentences considered as fillers contained a coverb that was not ba, and thus were not relevant
to testing the predictions posited in the current analysis. During this task, participants were
required to learn the structure of the sentences and the meaning of the verbs, classifiers and the
coverb ba. Stimuli were pseudo-randomised, such that no stimuli of the same construction
followed each other, and each sentence contained a different combination of nouns and verbs.
This was done to encourage learning of the underlying grammatical rules rather than episodic
events of individual sentences. Further, the two lists of sentences were counterbalanced across
participants and testing session. Following the sentence learning task, participants completed
the baseline judgement task.

Baseline and delayed judgement tasks

The baseline sentence judgement task taken immediately after learning provided a
baseline to control for level of encoding, while the delayed judgement task took place ~12hrs
after the learning and baseline judgement tasks. During both judgement tasks, 288 sentences
without pictures (144 grammatical, 144 ungrammatical), 156 of which are reported here, were
presented word-by-word with a presentation time of 600ms and an ISl of 200ms. The 156
included sentences included a combination of grammatical and ungrammatical flexible and
fixed sentence constructions, while the 132 sentences that were considered fillers contained
coverbs that were not ba, and classifier-noun pair violations, and thus were not relevant to
testing the predictions of the current analysis. Participants received feedback on whether their
response was correct or incorrect during the baseline but not the delayed judgement task. This
was to ensure that participants were able to continue learning the language without explicit
instruction. Figures 1A and 1B illustrate the sequence of events in the sentence learning and
baseline judgement tasks, respectively.
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Participants were instructed to read all sentences attentively and to judge their
grammaticality via a button-press. As a cue forjudgment, a question mark appeared in the centre
of the monitor for 4000ms after the offset of the last word. Two lists of sentence stimuli were
created, which were counterbalanced across participants and the baseline and delayed
sentence judgement tasks. Half of the sentences were grammatical, with each of the
grammatical constructions shown an equal number of times. The other half of the sentences
were ungrammatical constructions. Stimuli were pseudo-randomised, such that no stimuli of
the same construction followed each other.

Main experimental procedure

For the wake condition, participants completed the vocabulary test and EEG setup at
~08:00hr. The learning task was administered at ~09:00hr, followed by the baseline judgement
task, with EEG recorded during both the learning and judgement task. Participants then
completed the behavioural control tasks and were free to leave the laboratory to go about their
usual daily activities, before returning for EEG setup and the delayed judgement task at ~21:00hr
the same day. EEG was also recorded during the delayed judgement task.

Participants in the sleep condition arrived at ~20:00hr to complete the vocabulary test
and EEG setup before completing the learning task at ~21:00hr, followed by the baseline
judgement task, with EEG recorded during both the learning and judgement tasks. Participants
were then given an 8hr sleep opportunity from 23:00hr — 07:00hr. Polysomnography was
continuously recorded and later scored. After waking, participants were disconnected from the
head box and given a ~1hr break to alleviate sleep inertia before completing the delayed
judgement task and behavioural control tasks. During this time, participants sat in a quiet room
and consumed a small meal. Resting-state EEG recordings were obtained during quiet sitting
with eyes open and eyes closed for two minutes, respectively. See Figure 1D for a schematic of
the experimental protocol.

Data Analysis
Behavioural analysis

Two measures of behavioural performance were calculated. For the behavioural
analysis, grammaticality ratings were calculated on a trial-by-trial basis, determined by whether
participants correctly identified grammatical and ungrammatical sentences. For EEG analyses,
memory performance was quantified using the sensitivity index (d’) from signal detection theory
(Stanislaw & Todorov, 1999). Hit Rate (HR) and False Alarm rate (FA) were computed to derive d’,
defined as the difference between the z transformed probabilities of HR and FA (i.e., d’ = z[HR] -
z[FA]), with extreme values (i.e., HR and FA values of 0 and 1) adjusted using the
recommendations of (Hautus, 1995).

EEG recording and pre-processing

Task-related EEG analyses during the baseline and delayed sentence judgement tasks
were performed using MNE-Python (Gramfort et al., 2013). EEG data (C3, C4, CP1, CP2, CP5,
CP6, Cz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Fp1, Fp2, Fz, O1, 02, P3, P4, P7, P8, Pz) were re-
referenced offline to the average of both mastoids and filtered with a digital phase-true finite
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impulse response (FIR) band-pass filter from 0.1 — 40 Hz to remove slow signal drifts and high
frequency activity. Data segments from -0.5 — 6.5s relative to the onset of each sentence were
extracted and corrected for ocular artefacts using Independent Component Analysis (fastica;
(Hyvarinen, 1999). Epochs were dropped when they exceeded a 150 pV peak-to-peak amplitude
criterion or were identified as containing recordings from flat channels (i.e., <5 pV).

Task-related time frequency analysis.

To determine the individualised ranges used to define the theta frequency band,
individual alpha frequency (IAF) was estimated from participants’ pre- and post-experiment
resting-state  EEG recording. IAFs were estimated from an occipital-parietal cluster
(P3/P4/01/02/P7/P8/Pz/0Oz) using philistine.mne.savgol_iaf (see Corcoran et al.,, 2018)
implemented in MNE (philistine.mne). |IAF-adjusted frequency bandwidths were calculated
according to the harmonic frequency architecture proposed by (Klimesch, 2012,2013) and which
is in line with previous work (Corcoran et al., 2018; Cross et al., 2022; Doppelmayr et al., 1998;
Sauppe et al., 2021), in which the centre frequency of each successive band constitutes a
harmonic series scaled in relation to the IAF.

We conducted task-related time-frequency analyses by convolving the pre-processed
EEG with a family of complex Morlet wavelets using the MNE function tfr_morlet. Theta activity
was analysed using wavelet cycles, with the mother wavelet defined as the centre frequency
value divided by four. Relative power change values in the post-stimulus interval were computed
as a relative change from a baseline interval spanning -0.5s to the onset of each sentence. As
such, theta power during the sentence period reflects deviations from the baseline interval, such
that higher theta powerwould indicate an increase in power relative to baseline, while a decrease
in power indicates a decrease in power relative to baseline. 500ms was added to the beginning
and end of each sentence epoch to avoid edge artefacts. From this, we derived power estimates
from individually defined (i.e., based on participants’ IAF values) theta activity from the start to
end of each sentence stimulus, electrode, and from the baseline and delayed testing sessions.

Finally, in order to determine whether changes in neural activity between the sleep and
wake conditions were truly oscillatory, we used the irregular-resampling auto-spectral analysis
toolbox (IRASA v1.0; (Wen & Liu, 2016) to estimate the 1/f power-law exponent characteristic of
background spectral activity, which was used as a covariate in EEG-based statistical models.

Sleep parameters and sleep EEG analyses.

Sleep data were scored by two sleep technicians (Z.R.C and S.C.) according to
standardised criteria (Berry et al., 2012) using Compumedics Profusion 3 software (Melbourne,
Australia). The EEG was viewed with a high-pass filter of 0.3 Hz and a low-pass filter of 35 Hz. The
following sleep parameters were calculated: total sleep time, sleep onset latency, wake after
sleep onset, time (minutes) and percent of time spent in each sleep stage (N1, N2, N3 and R).
The EEG data were re-referenced to linked mastoids and filtered from 0.3 — 30 Hz using a digital
phase-true FIR band-pass filter. Data were then epoched into 30s bins and subjected to a
multivariate covariance-based artifact rejection procedure. This approach estimates a reference
covariance matrix for each sleep stage and rejects epochs that deviate too far from this
reference, where deviation is established using Riemannian geometry (Barachant et al., 2013;
Barthélemy et al., 2019). Slow oscillation-spindle coupling strength was extracted via the
danalyzer toolbox implemented in MATLAB based on published algorithms (Denis et al., 2021).
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Briefly, sleep spindles were automatically detected at every electrode during NREM sleep
based on individual peak spindle frequencies between 12 — 16 Hz. The raw EEG time series was
transformed to the frequency domain by estimating the power spectral density (PSD) of the time
series using Welch’s method with 5s windows and 50% overlap. Note that the PSD was
calculated on a derivative time series to remove the 1/f component and to make the peak
spindles more prominent (Demanuele et al., 2007; Sleigh et al., 2001). For each participant at
every channel, spindle peak frequencies were automatically detected. Sleep spindles were then
automatically detected using a wavelet decomposition, with the Morlet wavelets generated
using participants’ peak spindle frequencies. A thresholding algorithm was then applied to every
channel to detect spindles in the narrowband data, with a detected spindle needing to exceed a
threshold of six times the median amplitude for a minimum of 400ms.

For SOs, continuous NREM EEG data were bandpass filtered between 0.5 and 4 Hz, with
all positive-to-negative zero crossings identified based on published alogrithms (Helfrich et al.,
2018; Staresina et al., 2015). Potential SOs were flagged if two such positive-to-negative
crossings occurred 0.5 — 2s apart. Peak-to-peak amplitudes for all potential SOs were isolated,
and oscillations in the top quartile (i.e., with the strongest amplitudes) at each channel were
considered SOs (Helfrich et al., 2018; Staresina et al., 2015).

Slow oscillation-spindle coupling was analyzed at each channel during NREM sleep.
Specifically, for each identified spindle, we assessed whether it occurred during an identified SO
event. These co-occurring events were deemed coupled, and we quantified the percentage of
spindle events that were coupled for each channel. For each coupled event, the instantaneous
phase of the SO at the time of the peak spindle amplitude was extracted. SO-spindle coupling
was further quantified using the mean SO phase and vector length of coupled events for each
channel. Finally, the Rayleigh test for circular non-uniformity with alpha set to .01 was used to
evaluate phase preference regularity across participants.

Statistical analysis

Data were imported into R version 4.0.2 (R Core Team, 2020) and analysed using
(generalised) linear mixed-effects models fit by restricted maximum likelihood (REML) using
Ime4 (Bates, 2010). For the behavioural model, we used a logistic mixed-effects regression,
modelling response choice (correct, incorrect) as a binary outcome variable. This model also
factored in by-item and by-participant differences by specifying them as random effects on the
intercept. The behavioural model took the following form:

Logit(response;) = By + Bigrammaticality; * B,type; * Bzcondition; + Byaccuracy_baseline; + Bssss;
+ subjecty; + item o; + €,

Here, grammaticality encodes sentence grammaticality (grammatical, ungrammatical),
type refers to word order (fixed, flexible), condition is sleep versus wake, baseline is performance
on the baseline (i.e., pre-sleep and -wake) judgement task, and sss refers to self-perceived
sleepiness estimated from the SSS. Asterisks denote interaction terms, including all subordinate
main effects; pluses denote additive terms.

Cluster-based permutation testing (Maris & Oostenveld, 2007) on task-related EEG data
was performed in MATLAB R2022a (v9.12.0.1884302; The MathWorks, Natick, MA, USA) using the
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FieldTrip toolbox (v20220810; Oostenveld et al., 2011). Baseline-corrected power estimates for
each channel and frequency band (theta, alpha, beta) were averaged over the grammaticality
factor for both fixed and flexible sentence types. The difference in spectral estimates between
fixed and flexible word orders was calculated for each channel and frequency band within-
subjects. These difference scores were then contrasted between sleep and wake conditions
(thereby testing the interaction between type and condition). Between-subject t-statistics were
computed using the ft_statfun_indepsamplesT function. Channels with t-values that exceeded
an alpha threshold of .10 were considered as candidates for cluster inclusion. The t-values of
resolved clusters were then summed and compared to the null distribution of t-statistics
obtained from 1000 random partitions of the data. The cluster-level statistic was considered
significant if it attained a p-value < .05.

Following the identification of significant topographical differences in oscillatory power,
the following structure was used for the EEG models, where we were interested in predicting
behaviour from task-related theta activity, and which did not include trial-based response
accuracy:

dprime; = [, + Bipower; * S,condition; * fztype; + fydprime_baseline + fsaperiodic; + Bgchannel;
+ subjecty; + €,

power is theta power from the post-sleep and -wake testing session, condition is sleep
versus wake, and type is sentence word order (fixed, flexible). Baseline is theta power from the
baseline judgement task (pre-sleep and -wake session). aperiodic refers to the 1/f exponent
estimated from the task-related EEG, and channel refers to the significant channels isolated
from the cluster-based permutation test. Subject was modelled as a random effect on the
intercept. d’ was specified as the outcome.

For sleep-related analyses, we first constructed linear mixed-effects model to predict
judgement accuracy from the combination of SO-spindle coupling strength, sentence type,
sagittality, and laterality, while controlling for baseline (i.e., pre-sleep and -wake) judgement
accuracy and sleep stage (N2, N3), with a random intercept of subject. A second linear mixed-
effects model was constructed predicting delayed judgement accuracy from anterior task-
related theta power, anterior SO-spindle coupling strength and sentence type, while controlling
for laterality and baseline judgement accuracy, with random intercepts of subject.

P-values for all models were estimated using the summary function from the ImerTest
package, which is based on Satterthwaite’s degrees of freedom (Kuznetsova et al., 2017), while
effects were plotted using the package effects (Fox & Hong, 2010) and ggplot2 (Wickham &
Wickham, 2016). Post-hoc comparisons for main effects were performed using the emmeans
package (Lenth et al., 2019). The Holm-Bonferroni method (Holm, 1979) was used to correct for
multiple comparisons, while outliers were isolated using Tukey's method, which identifies
outliers as exceeding = 1.5 x inter-quartile range. Categorical factors were sum-to-zero contrast
coded, such that factor level estimates were compared to the grand-mean (Schad et al., 2020).
Further, for modelled effects, an 83% confidence interval (Cl) threshold was used given that this
approach corresponds to the 5% significance level with non-overlapping estimates (Austin &
Hux, 2002; MacGregor-Fors & Payton, 2013). In the visualisation of effects, non-overlapping Cls
indicate a significant difference at p <.05.
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Results

Sleep supports the consolidation of fixed word order rules

Across testing sessions and grammaticality, participants showed a moderate degree of
accuracy for fixed (M = 64.00, SD = 48.00) and flexible (M = 58.00, SD = 49.00) word orders, with
performance accuracy ranging from 37.18 to 93.75 percent. As shown in Table 1, performance
also varied by sentence type, condition, and grammaticality, with the sleep relative to the wake
condition performing higher for fixed word orders at delayed testing.

Generalised linear mixed-effects modelling of single trial response accuracy (controlling
for baseline performance) revealed a significant Grammaticality x Sentence Type x Condition
interaction (f = 0.13, se = 0.03, p < 0.001; see Figure 4). Holm-Bonferroni adjusted post-hoc
comparisons revealed that response accuracy was higher for the sleep relative to wake condition
for fixed grammatical (OR=0.55,se =0.12, z=-2.60, paq; = 0.03) but not fixed ungrammatical (OR
=0.89,s5e=0.19, z=-0.52, p.q = 1.00) word orders.

Response accuracy was also higher in the sleep condition for grammatical fixed relative
to grammatical flexible word orders (OR = 0.58, se = 0.06, z = -4.63, paq; < 0.001). The sleep
condition also judged flexible over fixed word order sentences as ungrammatical (OR = 1.59, se
= 0.23, z = 3.10, p.g = 0.01). These results indicate that sleep may benefit the consolidation of
fixed (but not flexible) word order rules, although this pattern may be due to differing response
strategies adopted between the sleep and wake conditions. To address this in subsequent
analyses, we examine the sensitivity index d’ to account for potential response biases (see Table
1 for d’ values).

Table 1. Percent correct and the sensitivity index d’ by condition (sleep, wake), sentence judgement task

(baseline, delayed), grammaticality (grammatical, ungrammatical) and sentence type (fixed, flexible).
Standard deviations (SD) are given in parentheses.

Ungrammatical

Condition Session Grammaticality Sentence Type Correct (SD) d’ (SD)
Grammatical Flexible 65.14 (47.67) 0.79(1.24)
Baseline Fixed 67.44 (46.90) 0.90 (0.80)
Ungrammatical Flexible 58.88 (49.26)
Sleep ] Fixed 47.65(50.00)
Grammatical Flexible 57.92 (49.38) 1.00 (1.90)
Delayed Fixed 71.28 (45.28) 1.50 (1.34)
Ungrammatical Flexible 64.85 (47.80)
Fixed 49.50 (50.00)
Grammatlcal """"" Flexible 63.04(48.28)  1.11(1.34)
. Fixed 67.66 (46.81) 1.40 (0.91)
Baseline .
Ungrammatical F.leX|ble 68.88 (46.35)
Wake o] bed o
Grammatical Flexible 66.82(47.10) 1.41(1.48)
Delayed Fixed 61.11 (48.80) 1.20 (1.42)
Flexible 71.12(45.31)
( )

Fixed 51.50 (50.00
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Figure 4. Visualisation of the behavioural results. Relationship between the probability of correct
response (y-axis; higher values indicate a higher probability of a correct response), grammaticality (x-axis;
grammatical, ungrammatical), sentence type (left column = flexible, right column = fixed), and condition
(wake = salmon, sleep = purple). Bars represent the 83% confidence interval around group-level expected
marginal mean estimates. Dots represent individual data points per subject for aggregated data.

Theta power after sleep is associated with increased memory for fixed, but decreased
memory for flexible word order rules

Based on the differences in behavioural performance between the sleep and wake
conditions on fixed and flexible word orders, we asked whether task-evoked theta power predicts
differences in behaviour across sleep and wake. A non-parametric cluster-based permutation
test (see Methods) contrasting Condition (sleep, wake) and Sentence Type (fixed, flexible)
revealed a significant difference in baseline-corrected theta power during the delayed session
(Monte Carlo p = .008; see Figure 5A for topography and demarcation of the cluster). No
significant clusters were identified for alpha- or beta-band estimates.

Given the significant theta-band effects, we constructed a linear mixed-effects model
with judgement accuracy (d’) as the outcome and task-related theta power (drawn from the
significant cluster identified above), Condition (sleep, wake) and Sentence Type (fixed, flexible)
as predictors. This analysis revealed a significant Theta x Condition x Sentence type interaction
(B =-1.09, se =0.34, p=0.001). Holm-Bonferroni adjusted post-hoc comparisons revealed that
for flexible word orders, greater theta synchronisation was associated with poorer judgement
accuracy for the sleep but not wake condition. However, the inverse was observed for fixed word
order sentences, such that less theta desynchronisation was associated with improved
judgement accuracy for the sleep but not wake condition (§ = -4.70, se = 1.10, paq; < 0.001).
Coupled with the behavioural model, the current analysis demonstrates that sleep preferentially
consolidates fixed word order rules at the expense of flexible word order rules, and that this is
reflected in task-related theta power. For a visualisation of these effects, see Figure 5C. For time-
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frequency and power spectral density plots for the sleep and wake conditions across fixed and
flexible word orders, see Figures 6 and 7, respectively.
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Sleep Wake Sleep Wake Task-Evoked Theta Power

Figure 5. Theta power and judgement accuracy. (A). Cluster-based permutation testing on the theta
band contrasting differences between Condition (sleep, wake) and Sentence Type (fixed, flexible). Warmer
colours denote a higher t statistic. Significant channels are indicated by white asterisks. (B) Raincloud
plots illustrating average theta power over significant channels between sentence type and condition.
Positive values on the y-axis denote increased theta power relative to the pre-stimulus interval. (C)
Modelled effects of task-related theta power (x-axis; higher values indicate increased power) on judgement
accuracy (y-axis; higher values indicate better performance) for the sleep and wake conditions (sleep =
purple solid line; wake = dashed pink line) for flexible (left facet) and fixed (right facet) sentences. The black
dashed line indicates chance-level performance, while the shaded regions indicate the 83% confidence
interval. The x-axis reflects theta power estimates, with more negative values reflecting a decrease in
power and positive values reflecting an increase in power from the pre-stimulus interval, respectively.
Individual data points represent raw (single subject) values.
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Figure 6. Differences in time-frequency activity between sleep and wake, and fixed and flexible word
orders. Time frequency plots for the sleep (top) and wake (bottom) conditions for fixed (left column) and
flexible (right column) word order sentences. Time is presented on the x-axis (dashed vertical bar
represents sentence onset), while frequency is presented on the y-axis. Warmer colours denote an
increase in power relative to the pre-stimulus period, while cooler colours represent a decrease in power.
The z-scale is in arbitrary units.
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Figure 7. Power spectral density plots for the sleep (blue) and wake (red) conditions for frontal,
central, parietal, and occipital regions of interest. Fixed word order sentences are on the left, while
flexible word orders are on the right. The solid red and blue lines represent the mean power spectral density
for the wake and sleep conditions, respectively, while the dashed lines represent the aperiodic (1/f) power
law. Individual lines represent individual participant power spectral densities.
SO-spindle coupling is predictive of memory for fixed but not flexible word order rules
Having observed differences between the sleep and wake conditions on the relationship
between task-related theta activity and behavioural performance, a logical next step was to test
whether behavioural performance for fixed word order rules is associated with SO-spindle
coupling. Based on previous work (e.g., Helfrich et al., 2018; Mikutta et al., 2019), we focussed
on the coupling strength, measured as the mean vector length of spindle phase during coupled
SO-spindle events (for a summary of typical sleep parameters and their correlation with d’, see
Table 2). There was a significant non-uniform distribution for the precise SO phase during peak
spindle activity (p < 0.001; Rayleigh test). In predicting behavioural performance, mixed-effects
modelling revealed a significant Coupling Strength x Sentence Type x Sagittality interaction (f =
3.05, se = 0.97, p = 0.002). Pairwise contrasts further revealed that this effect was largest
anteriorly for fixed sentences (8 = 6.85, se = 2.01, pag < 0.001; Figure 8B), but nonsignificant in
central (§ =-0.75, se = 2.62, p.q; = 0.77) and posterior regions (f = -3.90, se = 3.47, p.qj= 0.26).
Also note that while stronger SO-spindle coupling predicted improved judgement accuracy for
fixed word order sentences, the inverse relationship was present for flexible word order
sentences. Figure 8 illustrates an exemplary full-night spectrogram, distribution of SO-spindle
coupling strength across channels, as well as exemplar single subject and group level
comodulagrams and preferred phase of SO-spindle coupling for NREM sleep. For a summary of
sleep microarchitecture characteristics, see Table 3.
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Table 2. Descriptive statistics for sleep parameters and correlations with the difference between d’ at
delayed and baseline testing for fixed and flexible word order sentences.

Iizzl:neter Mean(;'IDi;mtes % ir(1$SDt)age Correlations with d’ (Delayed - Baseline)
Fixed Flexible

r p r p
TST 400.00 (67.02) -.44 .42 .30 .96
SOL 15.23(12.23) .45 .42 -.47 .35
WASO 52.64 (55.60) 41 .42 -.19 1.00
N1 38.05(29.47) 10.05 (8.21) A2 1.00 .10 1.00
N2 196.30 (46.29) 49.52 (10.36) .26 .93 .33 .95
SWS 104.23 (42.27) 25.84 (9.60) .02 1.00 -.48 .35
REM 61.30(39.39) 14.57 (8.56) -.46 .42 .04 1.00

Note. SD = standard deviation. TST = total sleep time; SOL = sleep onset latency; WASO = wake after sleep
onset; N1 = stage 1; N2 = stage 2; SWS = slow wave sleep; REM = rapid eye movement sleep. Significance
values are Holm-Bonferroni corrected (Holm, 1979).
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Figure 8. Sleep neurophysiology metrics and relationship between phase amplitude coupling and
judgement accuracy. (A) Hypnogram and full-night multi-taper spectrogram for a single participant from
channel Cz. (B) Modelled effects from the linear mixed-effects regression of SO-spindle coupling strength
(x-axis; higher values indicate stronger coupling) on judgement accuracy (y-axis; higher values indicate
better performance) for fixed and flexible word order sentences (fixed = purple solid ling; flexible = dashed
pink line) across levels of anterior (left), central (middle) and posterior (right) regions. The black dashed
line indicates chance-level performance, while the shaded regions indicate the 83% confidence interval.
(C) Scatterplot indicating the relationship between judgement accuracy (y-axis; higher values denote
better memory performance) and SO-spindle coupling strength (x-axis; higher values denote stronger
coupling) for flexible (left) and fixed (right) word order sentences across anterior channels. The topoplot
visualises the beta coefficient from the SO-spindle coupling strength x sentence type interaction, with
higher values/warmer colours denoting a stronger interaction coefficient. (D) Single-subject and group-
level average time-frequency response of all SOs coupled to a spindle (-1200 to 1200ms, centred on the
trough of the SO), with the time-domain averaged SO overlaid. To the right is the preferred phase of SO-
spindle coupling for NREM sleep. Note that 0 represents the peak of the SO. (E) Ridge plot illustrating the
distribution of SO-spindle coupling strength (x-axis; higher values indicate stronger coupling) across
channels (y-axis).
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Table 3. NREM slow oscillation-spindle coupling characteristics for frontal, central, and parietal channels.

Channel _Coupling Strength Phase % Coupled n Coupled nUncoupled Coupled Density Uncoupled Density
c3 0.53(0.11) -0.27(0.29)  16.95(4.15) 399.34 (161.21) 1934.81 (651.20) 1.33(0.38) 6.55 (1.50)
ca 0.55(0.11) -0.24(0.32)  17.36(4.58) 397.81 (169.80) 1870.47 (660.39) 1.32(0.39) 6.33 (1.56)
F7 0.44(0.11) 0.08(0.73)  18.39(4.88) 317.75 (133.49) 1422.44 (514.52) 1.09(0.38) 4.81(1.38)
F8 0.52(0.11) -0.14(0.29)  18.78(5.17) 333.47 (152.94) 1425.06 (492.26) 1.13(0.42) 4.81(1.22)
P3 0.58 (0.11) -0.34(0.26)  17.36(3.65)  435.38(166.33) 2038.84 (589.56) 1.45(0.35) 6.93 (1.29)
P4 0.57(0.12) -0.39(0.23)  17.11(4.53) 414.84 (174.65) 1972.50 (619.66) 1.37(0.39) 6.69 (1.40)

Note: % Coupled = percent of spindles coupled to an SO; n Coupled = total number of coupled spindles to SOs; n Uncoupled = total number of uncoupled spindles;
Coupling Density = average number of coupled spindles to SOs per 30s epoch; Uncoupled Density = average number of uncoupled spindles per 30s epoch. Standard

deviations are provided in parentheses.
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Frontal SO-spindle coupling and task-evoked theta power interact to predict judgement
accuracy

Having shown that SO-spindle coupling is associated with improved judgement accuracy for
fixed word orders, and judgement accuracy is tracked by task-related theta power, we examined
whether frontal theta power interacts with frontal SO-spindle coupling strength to predict judgement
accuracy. A mixed-effects model regressing SO-spindle coupling strength, task-based theta power,
sagittality (anterior, central, posterior), and sentence type (fixed, flexible) onto judgement accuracy
revealed a significant three-way interaction between SO-spindle coupling strength, task-based theta
power and sentence type (f = -41.60, se = 16.70, p = 0.01). As illustrated in Figure 9, high anterior
task-based theta power and stronger anterior SO-spindle coupling was positively associated with
delayed judgement accuracy for fixed but not flexible word order sentences. This finding links frontal
neural activity in the sleeping and waking brain to predict higher-order language learning.

#= Flexible = Fixed

Low High
5
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Figure 9. The interaction between task-related theta power and SO-spindle coupling strength predicts
judgement accuracy. Delayed judgement accuracy (y-axis; higher values denote higher accuracy), SO-
spindle coupling strength (x-axis; higher values denote stronger coupling) and task-related theta power
(facetted; low and high contrast for plotting purposes only) averaged across anterior channels. Fixed
sentences are colour coded in yellow, while flexible sentences are colour coded in gray.

Discussion

Coordination between SOs and sleep spindles is hypothesised to provide an optimal
temporal receptive window for hippocampal-cortical communication during sleep (Helfrich et al.,
2019; Staresina et al., 2015) in the support of memory consolidation. Here, we show that the
beneficial effect of SO-spindle coupling on memory extends to sentence-level regularities.
Behaviourally, we demonstrated that a period of sleep compared to an equivalent period of wake
benefits the consolidation of fixed relative to flexible word order rules, and that this effect is
modulated by the strength of coupling between spindles and SOs. Our results further reveal that SO-
spindle coupling correlates with changes in task-evoked theta activity during sentence processing.
Interestingly, participants in the sleep condition exhibited overall less theta power at delayed testing
relative to the wake condition; however, less theta desynchronisation was associated with improved
judgement accuracy for fixed word orders in the sleep group. Lastly, we reveal that the interaction
between frontal SO-spindle coupling, and task-related frontal theta power predicts improved
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judgement accuracy for fixed but not flexible word order rules. In sum, our results establish
converging behavioural and neurophysiological evidence for arole of NREM SO-spindle coupling and
task-related theta activity as signatures of successful memory consolidation and retrieval in the
context of higher-order language learning

Beyond single word learning: a role for sleep in consolidating word order rules

Using a complex modified miniature language paradigm (Cross et al., 2021), we
demonstrated that a period of sleep facilitates the extraction of fixed relative to flexible word order
rules. Importantly, the key distinction between these word order permutations is that successful
interpretation of fixed word order sentences relates to the sequential position of the noun phrases
and verb (i.e., the first noun phrase is invariably the actor, and the sentence is verb-final). By
contrast, successful interpretation of flexible word order sentences depends more heavily on the
animacy of the nouns. As such, fixed word order sentences, requiring a more sequential order-based
interpretation and are more compatible with an English word-order-based processing strategy
(Bornkessel & Schlesewsky, 2006; Bornkessel-Schlesewsky et al., 2015; MacWhinney et al., 1984).
Critically, this sleep-based enhancement for fixed word order rules was predicted by stronger SO-
spindle coupling (Figure 8F).

Sleep-related memory effects are proposed to be biased toward stimuli following temporal
or sequence-based regularities compared to relational information (for review, see Lerner & Gluck
2019). This is posited to occur via the hippocampal complex encoding temporal occurrences of
sensory input (Durrant et al., 2011), which are replayed during SWS, potentially via SO-spindle
coupling (e.g., Navarrete et al., 2020; Solano et al., 2020). Here, we provide evidence supporting this
account. Specifically, sleep-based consolidation of higher order language may favor sequence-
based regularities, with mechanisms of sleep-related memory consolidation generalizing fixed over
flexible word order rules, indexed by task-related theta activity.

It is important to note, however, that our sample of participants were native monolingual
speakers, and as such, may have preferentially consolidated fixed word order rules at the expense
of flexible rules. While behavioral work demonstrates sentence-level preferences of grammatical
rules that are analogous to learners’ native languages (e.g., Cross et al., 2021), less is known
regarding the neural underpinnings of this phenomenon. We now turn to how the neurobiological
processes underpinning the beneficial effect of SO-spindle coupling on memory consolidation
extends to higher order language learning.

Slow oscillation-spindle coupling as a marker of sleep-associated memory consolidation and
higher-order language learning

Coupling between SOs and spindles predicts successful overnight memory consolidation
(Hahnetal., 2020, 2022; Helfrich et al., 2018; Mikutta et al., 2019). However, these studies often use
old-new paradigms with single words (e.g., Helfrich et al., 2018; Mikutta et al., 2019) or word-image
pairs (e.g., Muehlroth et al., 2019). Here, we found that the generalisation of sequence-based (or
fixed word order) rules is facilitated by the strength of NREM SO-spindle coupling. Mechanistically,
during SWS, the cortex is synchronised during the up state of the SO, allowing effective interregional
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communication, particularly between the prefrontal cortex and hippocampal complex (Helfrich et
al., 2019). It is during this SO up-state that spindles induce an influx of Ca®" into excitatory neurons,
enabling synaptic plasticity and the generalisation and stabilisation of memory traces (Niethard et
al., 2018). Here we revealed that the interaction between these cardinal markers of sleep-related
memory processing extend to sentence-level regularities. This finding also accords with previous
work examining not only NREM sleep and language learning (Batterink et al., 2014; Mirkovi¢ &
Gaskell, 2016; Schreiner & Rasch, 2017), but also REM (De Koninck et al., 1989, 1990; Thompson et
al., 2021). For example, the interaction between time spent in NREM and REM modulates the
amplitude of language-related ERPs (N400, late positivity) during the processing of novel
grammatical rules (Batterink et al., 2014), while percent of time spent in REM is predictive of French
learning in a naturalistic multi-week program (De Koninck et al. 1989, 1990). By demonstrating sleep-
related consolidation effects for linguistic stimuli of varying complexity, these findings have begun
to establish a link between sleep-related memory consolidation of various aspects of language
(Rasch, 2017). Building on this foundational work, we have provided empirical evidence supporting
a link between oscillatory-based models of hippocampo-cortical memory consolidation and
sentences-level learning, and how this effect manifests in on-task oscillatory theta activity. In the
following, we discuss how SO-spindle coupling, as a marker of sleep-associated memory
consolidation, modulates task-related oscillatory activity and how these interactions affect
sentence processing.

Task-related theta oscillations index successful memory consolidation of complex linguistic
rules

Theta is the dominant frequency in the hippocampal complex and surrounding structures
during wake (Covington & Duff, 2016; Duff & Brown-Schmidt, 2012). Oscillations in this frequency
range are critical for associative memory formation and coordinating hippocampal-cortical
interactions, having been related to associative memory formation (Tort et al., 2009), tracking
sequential rules (Crivelli-Decker et al., 2018) and predicting words based on contextual linguistic
information (Corcoran et al., 2023; Piai et al., 2016). In the sleep and memory literature, increased
theta power has been reported for successfully remembered items, interpreted as reflecting a
stronger memory trace induced by sleep-based consolidation. Here, we observed that less theta
desynchronisation relative to the pre-stimulus interval predicted higher sensitivity for fixed word
order rules after a 12hr delay period, and that the effect of theta on fixed word order processing was
more pronounced in the sleep relative to wake condition. This finding accords with the general
memory literature, possibly reflecting the binding of linguistic items in a sequence to generate a
coherent sentential percept.

We also observed that frontal NREM SO-spindle coupling, and task-related theta power
interacted to predict improved delayed judgement accuracy for fixed but not flexible word order
rules. In line with systems consolidation theory (Born & Wilhelm, 2012), NREM oscillatory activity
contributes to the consolidation of newly encoded memory representations, which may manifestin
stronger theta power during retrieval, indicating a stronger neocortical memory trace (Schreiner &
Rasch, 2015), reflected in improved sensitivity to fixed word order rules.
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Future directions and concluding remarks

Future studies may include groups in AM-PM (12h Wake), PM-AM (12h Sleep), PM-PM (24h
Sleep early) and AM-AM (24h Sleep late), as recommended by Nemeth et al. (2024). We did, however,
model participants’ sleepiness levels and the 1/f exponentin our statistical analyses, which partially
controlled for potential time-of-day effects. Further, the evidence presented here is correlational
and neuroanatomical inferences are unable to be drawn based on scalp-recorded EEG. However,
this is the first study to relate sleep-based memory consolidation mechanisms (i.e., SO-spindle
coupling) to online sentence-level oscillatory activity, and as such, has set the foundation for future
work using techniques with greater spatial-temporal resolution. For example, electrocorticography
and stereoelectroencephalography would allow for a better characterization of task-evoked cortical
dynamics and SO-spindle coupling between cortical regions and the hippocampal complex,
respectively (e.g., Helfrich et al., 2018, 2019). This approach would be complemented by
demonstrating a selective reinstatement of memory traces during SO-spindle coupling using
representational similarity analysis (Zhang et al.,, 2018). Identifying stimulus-specific
representations during the encoding of sentence-level regularities and tracking the replay of
stimulus activity related to SO-spindle coupling events would further demonstrate the critical role of
sleep-based oscillatory mechanisms on higher-order language learning. Comparisons between
sleep-related consolidation effects on language-specific and non-language but related tasks (i.e.,
statistical learning tasks) in the same group of participants would also further establish the role of
sleep in higher-order language learning.

In addition to representational similarity analyses, we suggest that research examine
different baselining approaches to task-related differences in theta activity in conditions of sleep
and wake. Here, we adopted a conventional baselining approach of subtracting theta power from
the pre-stimulus interval from the stimulus period. In doing so, we observed that the sleep group had
greater theta desynchronization than the wake group, but that less desynchronization was
associated with improved recognition accuracy. From this perspective, it appears that more theta
power is indeed associated with better memory, but future research should establish whether this
effect is driven by a limiting of task-related desynchronization, as we observed, or if a different
baselining procedure would reveal an increase in theta power.

Taken together, our results demonstrate that the temporal coupling between NREM SOs and
spindles supports the consolidation of complex sentence-level rules. We demonstrated that SO-
spindle coupling promotes the consolidation of sequence-based rules and modulates task-evoked
theta oscillations previously implicated in language learning (e.g., de Diego-Balaguer et al., 2011;
Kepinska et al., 2017) and sentence processing (Vassileiou et al., 2018). Critically, these findings add
to models of sleep-based memory consolidation (e.g., Born & Wilhelm, 2012; Lewis & Durrant, 2011)
and help characterise how effects of sleep-related oscillatory dynamics on memory manifest in
oscillatory activity during complex language-related operations.
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