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 2 

Abstract 1 
Sentence comprehension involves the rapid decoding of both semantic and grammatical 2 
information, a process fundamental to communication. As with other complex cognitive 3 
processes, language comprehension relies, in part, on long-term memory. However, the 4 
electrophysiological mechanisms underpinning the initial encoding and generalisation of higher-5 
order linguistic knowledge remain elusive, particularly from a sleep-based consolidation 6 
perspective. One candidate mechanism that may support the consolidation of higher-order 7 
language is the temporal coordination of slow oscillations (SO) and sleep spindles during non-8 
rapid eye movement sleep (NREM). To examine this hypothesis, we analysed 9 
electroencephalographic (EEG) data recorded from 35 participants (Mage = 25.4, SD = 7.10; 16 10 
males) during an artificial language learning task, contrasting performance between individuals 11 
who were given an 8hr nocturnal sleep period or an equivalent period of wake. We found that 12 
sleep relative to wake was associated with superior performance for rules that followed a 13 
sequence-based word order. Post-sleep sequence-based word order processing was further 14 
associated with less task-related theta desynchronisation, an electrophysiological signature of 15 
successful memory consolidation, as well as cognitive control and working memory. Frontal 16 
NREM SO-spindle coupling was also positively associated with behavioural sensitivity to 17 
sequence-based word order rules, as well as with task-related theta power. As such, theta 18 
activity during retrieval of previously learned information correlates with SO-spindle coupling, 19 
thus linking neural activity in the sleeping and waking brain. Taken together, this study presents 20 
converging behavioral and neurophysiological evidence for a role of NREM SO-spindle coupling 21 
and task-related theta activity as signatures of successful memory consolidation and retrieval in 22 
the context of higher-order language learning. 23 
 24 
 25 
 26 
 27 
SIGNIFICANCE STATEMENT. The endogenous temporal coordination of neural oscillations 28 
supports information processing during both wake and sleep states. Here we demonstrate that 29 
slow oscillation-spindle coupling during non-rapid eye movement sleep predicts the 30 
consolidation of complex grammatical rules and modulates task-related oscillatory dynamics 31 
previously implicated in sentence processing. We show that increases in theta power predict 32 
enhanced sensitivity to grammatical violations after a period of sleep and strong slow oscillation-33 
spindle coupling modulates subsequent task-related theta activity to influence behaviour. Our 34 
findings reveal a complex interaction between both wake- and sleep-related oscillatory 35 
dynamics during the early stages of language learning beyond the single word level. 36 
 37 
 38 
 39 
Keywords: Sleep and memory; language learning; sentence processing; neural oscillations; 40 
cross-frequency coupling. 41 
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 3 

Introduction 1 

The human brain is adept at extracting regularities from sensory input, a process pivotal 2 
for generating knowledge of one’s physical and social environment (Santolin & Saffran, 2018). 3 
Notably, learning of such regularities plays a key role in the development of linguistic 4 
competencies, enabling the implicit acquisition of grammatical rules embedded in ambient 5 
speech (Cross et al., 2021; Isbilen et al., 2022; Romberg & Saffran, 2010, 2010). While this 6 
perspective of language learning has informed insights concerning the encoding of local 7 
dependencies, the acquisition of more complex linguistic structures remains less understood. 8 
Here, we address this gap from the perspective of sleep-based memory consolidation, a well-9 
established mechanism governing the generalisation of knowledge from sensory experience 10 
(Brodt et al., 2023; Diekelmann et al., 2009; Xie et al., 2018). 11 

A plethora of evidence (for review, see Rasch and Born 2013) demonstrates that sleep 12 
plays an active role in memory by consolidating and generalising mnemonic information. This 13 
dynamic account of the sleeping brain is captured by the Active System Consolidation 14 
hypothesis (ASC; (Born & Wilhelm, 2012; Klinzing et al., 2019). Core to ASC is that sleep 15 
facilitates repeated reactivation of encoded memory representations (Rasch & Born, 2013). This 16 
reactivation is dependent on cortical glutamatergic synapses, which weaken during prolonged 17 
wakefulness (Kavanau, 1997; Rasch & Born, 2013). The ASC is supported by electrophysiological 18 
evidence that learned sequences are replayed during non-rapid eye-movement (NREM) sleep, 19 
potentially via sleep spindle and slow oscillatory (SO) activity. Sleep spindles are bursts of 20 
electrical activity occurring between 11 – 16 Hz, while SOs centred at 1 Hz reflect synchronized 21 
membrane potential fluctuations between hyperpolarised up-states and depolarised down-22 
states of neocortical neurons (Crunelli & Hughes, 2010; Vyazovskiy & Harris, 2013). The precise 23 
coupling between SOs and spindles provides a temporal receptive window for the replay of 24 
hippocampal memory traces and their transfer to cortex for long-term storage (Bastian et al., 25 
2022; Mikutta et al., 2019). Critically, the transfer of newly encoded information from 26 
hippocampus to cortex enables generalisation of mnemonic information, allowing cortex to 27 
learn the regularities of sensory input gradually – a process known to support language learning 28 
(Cross et al., 2018; Davis & Gaskell, 2009; Rasch, 2017). 29 

Mechanisms of sleep-based memory consolidation have been associated with aspects 30 
of language learning, including novel-word learning (Bakker et al., 2015; James et al., 2017; 31 
Mirković & Gaskell, 2016) as well as the generalisation of grammatical rules (Batterink et al., 32 
2014; Nieuwenhuis et al., 2013). Positive associations have also been identified between rapid 33 
eye-moment (REM) sleep percentages and language learning proficiency (De Koninck et al., 34 
1989, 1990), supporting a link between REM sleep and language learning. To elucidate the 35 
mechanism of this relationship, Thompson et al. (2021) examined oscillatory dynamics during 36 
REM sleep and demonstrated that sleep spindles and theta power predicted language learning 37 
among individuals engaged in second-language immersion programs. This effect was stronger 38 
when time-locked to eye movements during REM sleep.  39 

Together, extant work on sleep and language learning underscore the significance of both 40 
REM and NREM sleep, sleep spindles, and theta power in facilitating second language learning. 41 
However, work examining the association between sleep and language often involves only 42 
behavioural measures as proxies for memory consolidation (e.g., Mirković & Gaskell, 2016; 43 
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Nieuwenhuis et al., 2013), or examines structure (e.g., grammar; Nieuwenhuis et al., 2013) and 1 
meaning (i.e., semantics; Bakker et al., 2015; Batterink et al., 2017; Batterink & Paller, 2017) in 2 
the language input separately (cf. Batterink et al., 2014). Markers of sleep-based memory 3 
consolidation are also often based on coarse experimental contrasts (i.e., sleep vs. wake 4 
conditions) or macroarchitectural measures (i.e., percent time spent in a particular sleep stage), 5 
rather than neurophysiological events that can more directly test models of systems 6 
consolidation anchored in NREM sleep, such as SO-spindle coupling. Online EEG measures 7 
during language learning and comprehension and their relation to offline states, such as sleep, 8 
are also lacking. 9 

From this perspective, neurobiological models of sleep, memory, and language 10 
processing would benefit from a direct investigation of the relation between sleep and higher-11 
order language, such as at the sentence level that have differing grammatical rules (Cross et al., 12 
2018; Rasch, 2017; Schreiner & Rasch, 2017), in conjunction with online measures of neural 13 
activity. This would extend our understanding of the complexity of language learning beyond 14 
single words, and how the generalisation of newly acquired linguistic knowledge is supported by 15 
sleep (for review, see Cross et al., 2018) and how the brain learns environmental regularities that 16 
span multiple scales of complexity and how this information is organised across sleep and wake. 17 

Here, we present data addressing the contribution of sleep-based memory consolidation 18 
to complex rule learning in language at the sentence level. We used the modified miniature 19 
language Mini Pinyin (Cross et al., 2021), which is modelled on Mandarin Chinese, to contrast 20 
rules that instantiate a fixed or flexible word order. Mandarin naïve Monolingual native English 21 
speakers completed a learning task where they were shown pictures of two-person events, 22 
followed by a sentence describing the event in the picture. During this task, participants learned 23 
varying word order rules without explicit instruction and then completed a baseline memory task 24 
prior to either 8hr of sleep or an equivalent period of wake (Figure 1). Participants then completed 25 
a delayed memory task to assess changes in memory of the word order rules after the 8hr delay. 26 

We focussed on theta oscillations (~ 3 – 7 Hz), which were quantified using complex 27 
Morlet wavelets across sentence presentation during the memory tasks. Theta oscillations are 28 
implicated in relational binding and memory-based decision making (Backus et al., 2016; 29 
Buzsáki, 2002; Jacobs et al., 2006). From this perspective, theta should track successful 30 
language learning and sleep-based consolidation (Cross et al., 2018). We further quantified 31 
whole-scalp NREM SO-spindle coupling by detecting spindle events and quantifying the 32 
percentage of spindle events that occurred during SO events. SO-spindle coupling as well as 33 
task-related theta power were used to independently predict language learning, and to 34 
determine whether task-related theta is modulated by sleep-based memory consolidation. 35 
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 1 
Figure 1. Illustration of stimulus presentation and experimental protocol. (A) Schematic 2 
representation of a single trial of a grammatical sentence during the sentence learning task. (B) Schematic 3 
representation of a single trial during the baseline sentence judgement task. This sentence is a violation of 4 
the verb-position, whereby the verb chile is positioned in the middle of the sentence when it should be 5 
positioned at the end of the sentence. Here, the participant incorrectly categorised this sentence as 6 
grammatical, and thus received feedback indicating that their response was incorrect. (C) Schematic 7 
diagram of the vocabulary test, which required participants to translate the nouns (e.g., yegou) into English 8 
(e.g., dog) using a keyboard. (D) Experimental protocol representing the time course of the conditions 9 
(sleep, wake) and testing sessions (sentence learning task, baseline, and delayed sentence judgement 10 
tasks). After completing the vocabulary test, participants were randomly assigned to either the sleep or 11 
wake conditions, with each participant only completing one of the two conditions. Time is represented 12 
along the x-axis, while each coloured block corresponds to a different task during the experimental 13 
protocol. 14 

 15 
Methods 16 

Participants 17 

We recruited 36 right-handed participants who were healthy, monolingual, native 18 
English-speakers (16 male) aged 18 – 40 years old (Mage = 25.4, SD = 7.0). Participants were 19 
randomly assigned to either a Sleep (n = 18) or Wake condition. All participants reported normal 20 
or corrected-to-normal vision, no history of psychiatric disorders, substance dependence, or 21 
intellectual impairment, and were not taking medication that influenced sleep or 22 
neuropsychological measures. All participants provided informed consent and received a $120 23 
honorarium. One participant from the Sleep condition was removed from the analysis due to 24 
technical issues during the experimental tasks and sleep period, resulting in a total sample size 25 
of 35 (Mage = 25.4, SD = 7.10; 16 males; Sleep n = 17). Ethics approval was granted by the 26 
University of South Australia’s Human Research Ethics committee (I.D: 0000032556). 27 

Screening and control measures  28 

The Flinders Handedness Survey (FLANDERS; Nicholls et al., 2013) was used to screen 29 
handedness, while the Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989) screened for 30 
sleep quality. PSQI scores ranged from 1-5 (M = 2.9, SD = 1.33) out of a possible range of 0 – 21, 31 
with higher scores indicating worse sleep quality. Prospective participants with scores > 5 were 32 
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unable to participate. As an additional control, the Stanford Sleepiness Scale (SSS) was 1 
administered at the beginning and end of the experiment to measure self-perceived sleepiness. 2 

Electroencephalography  3 

The electroencephalogram (EEG) was recorded during the learning and sentence 4 
judgement tasks and sleep opportunities using a 32-channel BrainCap with sintered Ag/AgCI 5 
electrodes (Brain Products, GmbH, Gilching, Germany) mounted according to the extended 6 
International 10-20 system. The reference was located at FCz, with EEG signals re-referenced to 7 
linked mastoids offline. The ground electrode was located at AFz. The electrooculogram (EOG) 8 
was recorded via electrodes located 1cm from the outer canthus of each eye (horizontal EOG) 9 
and above and below participants’ left eye (vertical EOG). Sub-mental electromyography (EMG) 10 
was added to facilitate accurate scoring of sleep periods. The EEG was amplified using a 11 
BrainAmp DC amplifier (Brain Products GmbH, Gilching, Germany) using an initial band-pass 12 
filter of DC – 250 Hz with a sampling rate of 1000 Hz. 13 

Vocabulary and structure of Mini Pinyin 14 

Stimuli consisted of sentences from a modified miniature language based on Mandarin 15 
Chinese (Cross et al., 2021). This language contained 32 transitive verbs, 25 nouns, 2 coverbs, 16 
and 4 classifiers. The nouns included 10 human entities, 10 animals and 5 objects (e.g., apple). 17 
Each category of noun was associated with a specific classifier, which always preceded each of 18 
the two noun phrases in a sentence. As illustrated in Figure 2B, ge specifies a human noun, zhi 19 
for animals, and xi and da for small and large objects, respectively. Overall, this stimulus set 20 
contained 576 unique sentences (288 grammatical, 288 ungrammatical) which are divided into 21 
two equivalent sets (see Cross et al., 2021) for a complete description of the stimuli; for the 22 
complete set of stimuli, visit: https://tinyurl.com/3an438h2).  23 

We focussed on a subset of sentence conditions to investigate the mechanisms 24 
underlying the learning of different word order rules, which fundamentally differs between 25 
natural languages (for review, see Bates et al., 2001). Languages like English and Dutch rely 26 
primarily on word order, while languages like German and Turkish rely more on cues such as case 27 
marking and animacy (Bornkessel & Schlesewsky, 2006; Bornkessel-Schlesewsky et al., 2015; 28 
MacWhinney et al., 1984). From this perspective, Mini Pinyin enabled a comparison between 29 
sentences with differing word orders (see Figure 3A), and the influence sleep may have on the 30 
respective consolidation of fixed and flexible word order rules. The subset of stimuli in the current 31 
analysis contained 96 sentences in the sentence learning task and 144 sentences in the 32 
grammaticality judgement tasks. The remaining sentences were considered fillers. These filler 33 
sentences included sentences that violated classifier-noun pairs, and thus were not suitable for 34 
testing predictions regarding fixed and flexible word order processing (for a full description of all 35 
sentence conditions present in this language, please see (Cross et al., 2021). 36 

As is apparent in Figure 3A, sentences that do not contain the coverb ba (i.e., actor-verb-37 
undergoer, AVU; undergoer-verb-actor, UVA) yield a flexible word order, such that understanding 38 
who is doing what to whom is not dependent on the ordering of the noun phrases. Instead, 39 
determining who is doing what to whom is facilitated by animacy cues. For instance, in the UVA 40 
condition, the bear is interpreted as the actor despite the first noun phrase being the apple, since 41 
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it is implausible for an apple to eat a bear. Therefore, both AVU and UVA are grammatical 1 
constructions. By contrast, sentences such as AbaUV yield a fixed word order, such that the 2 
inclusion of ba strictly renders the first noun phrase as the actor. Note that the positioning of the 3 
verb is critical in sentences with and without a coverb. With the inclusion of a coverb, the verb 4 
must be placed at the end of the sentence, while the verb must be positioned between the noun 5 
phrases in constructions without a coverb. 6 

7 
Figure 2. Example of images used in vocabulary and sentence learning phases. (A) Portion of the 25 8 
illustrations used in the vocabulary booklet, which included human, animal, and inanimate objects (i.e., 9 
bag, apple). (B) Portion of the illustrations used in the sentence learning task, illustrating the interaction 10 
between two entities. Note that the entities used in sentence learning task are the same as the illustrations 11 
used in the vocabulary booklet. 12 
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 1 
Figure 3. Exemplar word order rules and vocabulary items of Mini Pinyin. (A) Example of grammatical 2 
and ungrammatical fixed and flexible word order sentences. Classifiers and nouns are coded in blue, while 3 
verbs are red. The coverb ba is coded in green. For the ungrammatical sentences (right), the point of 4 
violation in the sentence is underlined. The direct English translation for each sentence construction is 5 
provided below (i.e., the bear eats the apple). (B) A sample of the linguistic elements present in Mini Pinyin 6 
and their English translation. Note that ba does not have a specific meaning, but when present in a 7 
sentence, instantiates a strict actor-undergoer-verb word order. 8 
 9 
Experimental protocol 10 

Participants received a paired picture-word vocabulary booklet containing the 25 nouns 11 
and were asked to maintain a minimum of 7hrs sleep per night (see Figure 2A for a portion of 12 
nouns from the vocabulary booklet). Participants were required to learn the 25 nouns to ensure 13 
that they had a basic vocabulary of the nouns to successfully learn the 32 transitive verbs. They 14 
were asked to record periods of vocabulary learning in an activity log. Participants were 15 
instructed to study the booklet for at least fifteen minutes per day and were informed that they 16 
would need to pass a vocabulary test before commencing the main experimental protocol. After 17 
approximately one week, participants returned to complete the main experimental session, 18 
where EEG was recorded during a sentence learning task, baseline, and delayed sentence 19 
judgement tasks. 20 

Vocabulary test  21 

Participants completed a vocabulary test by translating the nouns from Mini Pinyin into 22 
English using a keyboard, as illustrated in Figure 1C. Each trial began with a 600ms fixation cross, 23 
followed by the visual presentation of the noun for up to 20s. Prospective participants who 24 
scored < 90% were unable to complete the main experimental EEG session. As such, all 36 25 
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 9 

participants included in the current paper obtained over 90% correct on the vocabulary test. The 1 
proportion of individuals who did not pass the vocabulary test was small (e.g., approximately less 2 
than 5 cases); however, the exact number was not recorded. 3 

Sentence learning 4 

Sentence and picture stimuli were presented using OpenSesame (Mathôt et al., 2012). 5 
During sentence learning, pictures were used to depict events occurring between two entities. 6 
The pictures and entities shown during the learning task were combinations of the static pictures 7 
shown in the vocabulary booklet (for an example of booklet versus sentence learning picture 8 
stimuli, see Figure 2A and 2B, respectively). 9 

While participants were aware that they would complete sentence judgement tasks at a 10 
later point, no explicit description of or feedback regarding grammatical rules was provided 11 
during the learning task. Each picture corresponded to multiple sentence variations, similar to 12 
the grammatical conditions in Figure 3A. Picture-sentence pairs were presented to participants 13 
as correct language input. Participants were presented with a fixation cross for 1000ms, followed 14 
by the picture illustrating the event between two entities for 5000ms. A sentence describing the 15 
event in the picture was then presented on a word-by-word basis. Each word was presented for 16 
700ms followed by a 200ms ISI. This pattern continued for the 96 reported combinations, until 17 
the end of the task, which took approximately 40 minutes. The 96 sentences included in this 18 
analysis included the flexible (i.e., AVU, UVA) and fixed (i.e., AbaUV) sentence constructions. 19 
Sentences considered as fillers contained a coverb that was not ba, and thus were not relevant 20 
to testing the predictions posited in the current analysis. During this task, participants were 21 
required to learn the structure of the sentences and the meaning of the verbs, classifiers and the 22 
coverb ba. Stimuli were pseudo-randomised, such that no stimuli of the same construction 23 
followed each other, and each sentence contained a different combination of nouns and verbs. 24 
This was done to encourage learning of the underlying grammatical rules rather than episodic 25 
events of individual sentences. Further, the two lists of sentences were counterbalanced across 26 
participants and testing session. Following the sentence learning task, participants completed 27 
the baseline judgement task. 28 

Baseline and delayed judgement tasks  29 

The baseline sentence judgement task taken immediately after learning provided a 30 
baseline to control for level of encoding, while the delayed judgement task took place ~12hrs 31 
after the learning and baseline judgement tasks. During both judgement tasks, 288 sentences 32 
without pictures (144 grammatical, 144 ungrammatical), 156 of which are reported here, were 33 
presented word-by-word with a presentation time of 600ms and an ISI of 200ms. The 156 34 
included sentences included a combination of grammatical and ungrammatical flexible and 35 
fixed sentence constructions, while the 132 sentences that were considered fillers contained 36 
coverbs that were not ba, and classifier-noun pair violations, and thus were not relevant to 37 
testing the predictions of the current analysis. Participants received feedback on whether their 38 
response was correct or incorrect during the baseline but not the delayed judgement task. This 39 
was to ensure that participants were able to continue learning the language without explicit 40 
instruction. Figures 1A and 1B illustrate the sequence of events in the sentence learning and 41 
baseline judgement tasks, respectively. 42 
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Participants were instructed to read all sentences attentively and to judge their 1 
grammaticality via a button-press. As a cue for judgment, a question mark appeared in the centre 2 
of the monitor for 4000ms after the offset of the last word. Two lists of sentence stimuli were 3 
created, which were counterbalanced across participants and the baseline and delayed 4 
sentence judgement tasks. Half of the sentences were grammatical, with each of the 5 
grammatical constructions shown an equal number of times. The other half of the sentences 6 
were ungrammatical constructions. Stimuli were pseudo-randomised, such that no stimuli of 7 
the same construction followed each other. 8 

Main experimental procedure  9 

For the wake condition, participants completed the vocabulary test and EEG setup at 10 
~08:00hr. The learning task was administered at ~09:00hr, followed by the baseline judgement 11 
task, with EEG recorded during both the learning and judgement task. Participants then 12 
completed the behavioural control tasks and were free to leave the laboratory to go about their 13 
usual daily activities, before returning for EEG setup and the delayed judgement task at ~21:00hr 14 
the same day. EEG was also recorded during the delayed judgement task. 15 

Participants in the sleep condition arrived at ~20:00hr to complete the vocabulary test 16 
and EEG setup before completing the learning task at ~21:00hr, followed by the baseline 17 
judgement task, with EEG recorded during both the learning and judgement tasks. Participants 18 
were then given an 8hr sleep opportunity from 23:00hr – 07:00hr. Polysomnography was 19 
continuously recorded and later scored. After waking, participants were disconnected from the 20 
head box and given a ~1hr break to alleviate sleep inertia before completing the delayed 21 
judgement task and behavioural control tasks. During this time, participants sat in a quiet room 22 
and consumed a small meal. Resting-state EEG recordings were obtained during quiet sitting 23 
with eyes open and eyes closed for two minutes, respectively. See Figure 1D for a schematic of 24 
the experimental protocol. 25 

Data Analysis 26 

Behavioural analysis  27 

Two measures of behavioural performance were calculated. For the behavioural 28 
analysis, grammaticality ratings were calculated on a trial-by-trial basis, determined by whether 29 
participants correctly identified grammatical and ungrammatical sentences. For EEG analyses, 30 
memory performance was quantified using the sensitivity index (d’) from signal detection theory 31 
(Stanislaw & Todorov, 1999). Hit Rate (HR) and False Alarm rate (FA) were computed to derive d’, 32 
defined as the difference between the z transformed probabilities of HR and FA (i.e., d’ = z[HR] – 33 
z[FA]), with extreme values (i.e., HR and FA values of 0 and 1) adjusted using the 34 
recommendations of (Hautus, 1995). 35 

EEG recording and pre-processing  36 

Task-related EEG analyses during the baseline and delayed sentence judgement tasks 37 
were performed using MNE-Python (Gramfort et al., 2013). EEG data (C3, C4, CP1, CP2, CP5, 38 
CP6, Cz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Fp1, Fp2, Fz, O1, O2, P3, P4, P7, P8, Pz) were re-39 
referenced offline to the average of both mastoids and filtered with a digital phase-true finite 40 
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impulse response (FIR) band-pass filter from 0.1 – 40 Hz to remove slow signal drifts and high 1 
frequency activity. Data segments from -0.5 – 6.5s relative to the onset of each sentence were 2 
extracted and corrected for ocular artefacts using Independent Component Analysis (fastica; 3 
(Hyvarinen, 1999). Epochs were dropped when they exceeded a 150 μV peak-to-peak amplitude 4 
criterion or were identified as containing recordings from flat channels (i.e., < 5 μV). 5 

Task-related time frequency analysis. 6 

To determine the individualised ranges used to define the theta frequency band, 7 
individual alpha frequency (IAF) was estimated from participants’ pre- and post-experiment 8 
resting-state EEG recording. IAFs were estimated from an occipital-parietal cluster 9 
(P3/P4/O1/O2/P7/P8/Pz/Oz) using philistine.mne.savgol_iaf (see Corcoran et al., 2018) 10 
implemented in MNE (philistine.mne). IAF-adjusted frequency bandwidths were calculated 11 
according to the harmonic frequency architecture proposed by (Klimesch, 2012, 2013) and which 12 
is in line with previous work (Corcoran et al., 2018; Cross et al., 2022; Doppelmayr et al., 1998; 13 
Sauppe et al., 2021), in which the centre frequency of each successive band constitutes a 14 
harmonic series scaled in relation to the IAF. 15 

We conducted task-related time-frequency analyses by convolving the pre-processed 16 
EEG with a family of complex Morlet wavelets using the MNE function tfr_morlet. Theta activity 17 
was analysed using wavelet cycles, with the mother wavelet defined as the centre frequency 18 
value divided by four. Relative power change values in the post-stimulus interval were computed 19 
as a relative change from a baseline interval spanning -0.5s to the onset of each sentence. As 20 
such, theta power during the sentence period reflects deviations from the baseline interval, such 21 
that higher theta power would indicate an increase in power relative to baseline, while a decrease 22 
in power indicates a decrease in power relative to baseline. 500ms was added to the beginning 23 
and end of each sentence epoch to avoid edge artefacts. From this, we derived power estimates 24 
from individually defined (i.e., based on participants’ IAF values) theta activity from the start to 25 
end of each sentence stimulus, electrode, and from the baseline and delayed testing sessions. 26 

Finally, in order to determine whether changes in neural activity between the sleep and 27 
wake conditions were truly oscillatory, we used the irregular-resampling auto-spectral analysis 28 
toolbox (IRASA v1.0; (Wen & Liu, 2016) to estimate the 1/ƒ power-law exponent characteristic of 29 
background spectral activity, which was used as a covariate in EEG-based statistical models. 30 

Sleep parameters and sleep EEG analyses. 31 

Sleep data were scored by two sleep technicians (Z.R.C and S.C.) according to 32 
standardised criteria (Berry et al., 2012) using Compumedics Profusion 3 software (Melbourne, 33 
Australia). The EEG was viewed with a high-pass filter of 0.3 Hz and a low-pass filter of 35 Hz. The 34 
following sleep parameters were calculated: total sleep time, sleep onset latency, wake after 35 
sleep onset, time (minutes) and percent of time spent in each sleep stage (N1, N2, N3 and R). 36 
The EEG data were re-referenced to linked mastoids and filtered from 0.3 – 30 Hz using a digital 37 
phase-true FIR band-pass filter. Data were then epoched into 30s bins and subjected to a 38 
multivariate covariance-based artifact rejection procedure. This approach estimates a reference 39 
covariance matrix for each sleep stage and rejects epochs that deviate too far from this 40 
reference, where deviation is established using Riemannian geometry (Barachant et al., 2013; 41 
Barthélemy et al., 2019). Slow oscillation-spindle coupling strength was extracted via the 42 
danalyzer toolbox implemented in MATLAB based on published algorithms (Denis et al., 2021). 43 
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Briefly, sleep spindles were automatically detected at every electrode during NREM sleep 1 
based on individual peak spindle frequencies between 12 – 16 Hz. The raw EEG time series was 2 
transformed to the frequency domain by estimating the power spectral density (PSD) of the time 3 
series using Welch’s method with 5s windows and 50% overlap. Note that the PSD was 4 
calculated on a derivative time series to remove the 1/f component and to make the peak 5 
spindles more prominent (Demanuele et al., 2007; Sleigh et al., 2001). For each participant at 6 
every channel, spindle peak frequencies were automatically detected. Sleep spindles were then 7 
automatically detected using a wavelet decomposition, with the Morlet wavelets generated 8 
using participants’ peak spindle frequencies. A thresholding algorithm was then applied to every 9 
channel to detect spindles in the narrowband data, with a detected spindle needing to exceed a 10 
threshold of six times the median amplitude for a minimum of 400ms. 11 

For SOs, continuous NREM EEG data were bandpass filtered between 0.5 and 4 Hz, with 12 
all positive-to-negative zero crossings identified based on published alogrithms (Helfrich et al., 13 
2018; Staresina et al., 2015). Potential SOs were flagged if two such positive-to-negative 14 
crossings occurred 0.5 – 2s apart. Peak-to-peak amplitudes for all potential SOs were isolated, 15 
and oscillations in the top quartile (i.e., with the strongest amplitudes) at each channel were 16 
considered SOs (Helfrich et al., 2018; Staresina et al., 2015). 17 

Slow oscillation-spindle coupling was analyzed at each channel during NREM sleep. 18 
Specifically, for each identified spindle, we assessed whether it occurred during an identified SO 19 
event. These co-occurring events were deemed coupled, and we quantified the percentage of 20 
spindle events that were coupled for each channel. For each coupled event, the instantaneous 21 
phase of the SO at the time of the peak spindle amplitude was extracted. SO-spindle coupling 22 
was further quantified using the mean SO phase and vector length of coupled events for each 23 
channel. Finally, the Rayleigh test for circular non-uniformity with alpha set to .01 was used to 24 
evaluate phase preference regularity across participants.  25 

Statistical analysis  26 

Data were imported into R version 4.0.2 (R Core Team, 2020) and analysed using 27 
(generalised) linear mixed-effects models fit by restricted maximum likelihood (REML) using 28 
lme4 (Bates, 2010). For the behavioural model, we used a logistic mixed-effects regression, 29 
modelling response choice (correct, incorrect) as a binary outcome variable. This model also 30 
factored in by-item and by-participant differences by specifying them as random effects on the 31 
intercept. The behavioural model took the following form: 32 

Logit(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒!) = 𝛽" + 𝛽#𝑔𝑟𝑎𝑚𝑚𝑎𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦! ∗ 𝛽$𝑡𝑦𝑝𝑒! ∗ 𝛽%𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛!	+	𝛽'𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒!	 + 𝛽(𝑠𝑠𝑠!	33 
+ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡"! + 𝑖𝑡𝑒𝑚	"! + 𝜖,	 34 

Here, grammaticality encodes sentence grammaticality (grammatical, ungrammatical), 35 
type refers to word order (fixed, flexible), condition is sleep versus wake, baseline is performance 36 
on the baseline (i.e., pre-sleep and -wake) judgement task, and sss refers to self-perceived 37 
sleepiness estimated from the SSS. Asterisks denote interaction terms, including all subordinate 38 
main effects; pluses denote additive terms.  39 

Cluster-based permutation testing (Maris & Oostenveld, 2007) on task-related EEG data 40 
was performed in MATLAB R2022a (v9.12.0.1884302; The MathWorks, Natick, MA, USA) using the 41 
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FieldTrip toolbox (v20220810; Oostenveld et al., 2011). Baseline-corrected power estimates for 1 
each channel and frequency band (theta, alpha, beta) were averaged over the grammaticality 2 
factor for both fixed and flexible sentence types. The difference in spectral estimates between 3 
fixed and flexible word orders was calculated for each channel and frequency band within-4 
subjects. These difference scores were then contrasted between sleep and wake conditions 5 
(thereby testing the interaction between type and condition). Between-subject t-statistics were 6 
computed using the ft_statfun_indepsamplesT function. Channels with t-values that exceeded 7 
an alpha threshold of .10 were considered as candidates for cluster inclusion. The t-values of 8 
resolved clusters were then summed and compared to the null distribution of t-statistics 9 
obtained from 1000 random partitions of the data. The cluster-level statistic was considered 10 
significant if it attained a p-value < .05. 11 

Following the identification of significant topographical differences in oscillatory power, 12 
the following structure was used for the EEG models, where we were interested in predicting 13 
behaviour from task-related theta activity, and which did not include trial-based response 14 
accuracy: 15 

𝑑𝑝𝑟𝑖𝑚𝑒! =	𝛽" + 𝛽#𝑝𝑜𝑤𝑒𝑟! ∗ 𝛽$𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛!	 ∗ 𝛽%𝑡𝑦𝑝𝑒!	 + 𝛽'𝑑𝑝𝑟𝑖𝑚𝑒_𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 +	𝛽(𝑎𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐! + 𝛽)𝑐ℎ𝑎𝑛𝑛𝑒𝑙!16 
+ 𝑠𝑢𝑏𝑗𝑒𝑐𝑡"! + 𝜖,		 17 

 18 
power is theta power from the post-sleep and -wake testing session, condition is sleep 19 

versus wake, and type is sentence word order (fixed, flexible). Baseline is theta power from the 20 
baseline judgement task (pre-sleep and -wake session). aperiodic refers to the 1/ƒ exponent 21 
estimated from the task-related EEG, and channel refers to the significant channels isolated 22 
from the cluster-based permutation test. Subject was modelled as a random effect on the 23 
intercept. d’ was specified as the outcome. 24 
 For sleep-related analyses, we first constructed linear mixed-effects model to predict 25 
judgement accuracy from the combination of SO-spindle coupling strength, sentence type, 26 
sagittality, and laterality, while controlling for baseline (i.e., pre-sleep and -wake) judgement 27 
accuracy and sleep stage (N2, N3), with a random intercept of subject. A second linear mixed-28 
effects model was constructed predicting delayed judgement accuracy from anterior task-29 
related theta power, anterior SO-spindle coupling strength and sentence type, while controlling 30 
for laterality and baseline judgement accuracy, with random intercepts of subject. 31 

P-values for all models were estimated using the summary function from the lmerTest 32 
package, which is based on Satterthwaite’s degrees of freedom (Kuznetsova et al., 2017), while 33 
effects were plotted using the package effects (Fox & Hong, 2010) and ggplot2 (Wickham & 34 
Wickham, 2016). Post-hoc comparisons for main effects were performed using the emmeans 35 
package (Lenth et al., 2019). The Holm–Bonferroni method (Holm, 1979) was used to correct for 36 
multiple comparisons, while outliers were isolated using Tukey's method, which identifies 37 
outliers as exceeding ± 1.5 × inter-quartile range. Categorical factors were sum-to-zero contrast 38 
coded, such that factor level estimates were compared to the grand-mean (Schad et al., 2020). 39 
Further, for modelled effects, an 83% confidence interval (CI) threshold was used given that this 40 
approach corresponds to the 5% significance level with non-overlapping estimates (Austin & 41 
Hux, 2002; MacGregor-Fors & Payton, 2013). In the visualisation of effects, non-overlapping CIs 42 
indicate a significant difference at p < .05. 43 

 44 
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Results 1 

Sleep supports the consolidation of fixed word order rules 2 
Across testing sessions and grammaticality, participants showed a moderate degree of 3 

accuracy for fixed (M = 64.00, SD = 48.00) and flexible (M = 58.00, SD = 49.00) word orders, with 4 
performance accuracy ranging from 37.18 to 93.75 percent. As shown in Table 1, performance 5 
also varied by sentence type, condition, and grammaticality, with the sleep relative to the wake 6 
condition performing higher for fixed word orders at delayed testing. 7 

Generalised linear mixed-effects modelling of single trial response accuracy (controlling 8 
for baseline performance) revealed a significant Grammaticality × Sentence Type × Condition 9 
interaction (𝛽 = 0.13, se = 0.03, p < 0.001; see Figure 4). Holm-Bonferroni adjusted post-hoc 10 
comparisons revealed that response accuracy was higher for the sleep relative to wake condition 11 
for fixed grammatical (OR = 0.55, se = 0.12, z = −2.60, padj = 0.03) but not fixed ungrammatical (OR 12 
= 0.89, se = 0.19, z = −0.52, padj = 1.00) word orders.  13 

Response accuracy was also higher in the sleep condition for grammatical fixed relative 14 
to grammatical flexible word orders (OR = 0.58, se = 0.06, z = −4.63, padj < 0.001). The sleep 15 
condition also judged flexible over fixed word order sentences as ungrammatical (OR = 1.59, se 16 
= 0.23, z = 3.10, padj = 0.01). These results indicate that sleep may benefit the consolidation of 17 
fixed (but not flexible) word order rules, although this pattern may be due to differing response 18 
strategies adopted between the sleep and wake conditions. To address this in subsequent 19 
analyses, we examine the sensitivity index d’ to account for potential response biases (see Table 20 
1 for d’ values). 21 
 22 
Table 1. Percent correct and the sensitivity index d’ by condition (sleep, wake), sentence judgement task 23 
(baseline, delayed), grammaticality (grammatical, ungrammatical) and sentence type (fixed, flexible). 24 
Standard deviations (SD) are given in parentheses. 25 

Condition Session Grammaticality Sentence Type Correct (SD) d’ (SD) 

Sleep 

Baseline 
Grammatical 

Flexible 65.14 (47.67) 0.79 (1.24) 
Fixed 67.44 (46.90) 0.90 (0.80) 

Ungrammatical 
Flexible 58.88 (49.26)  
Fixed 47.65 (50.00)  

Delayed 
Grammatical 

Flexible 57.92 (49.38) 1.00 (1.90) 
Fixed 71.28 (45.28) 1.50 (1.34) 

Ungrammatical 
Flexible 64.85 (47.80)  
Fixed 49.50 (50.00)  

Wake 

Baseline 
Grammatical 

Flexible 63.04 (48.28) 1.11 (1.34) 
Fixed 67.66 (46.81) 1.40 (0.91) 

Ungrammatical 
Flexible 68.88 (46.35)  
Fixed 51.14 (50.00)  

Delayed 
Grammatical 

Flexible 66.82 (47.10) 1.41 (1.48) 
Fixed 61.11 (48.80) 1.20 (1.42) 

Ungrammatical 
Flexible 71.12 (45.31)  
Fixed 51.50 (50.00)  
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 1 
Figure 4. Visualisation of the behavioural results. Relationship between the probability of correct 2 
response (y-axis; higher values indicate a higher probability of a correct response), grammaticality (x-axis; 3 
grammatical, ungrammatical), sentence type (left column = flexible, right column = fixed), and condition 4 
(wake = salmon, sleep = purple). Bars represent the 83% confidence interval around group-level expected 5 
marginal mean estimates. Dots represent individual data points per subject for aggregated data. 6 
 7 
Theta power after sleep is associated with increased memory for fixed, but decreased 8 
memory for flexible word order rules 9 

Based on the differences in behavioural performance between the sleep and wake 10 
conditions on fixed and flexible word orders, we asked whether task-evoked theta power predicts 11 
differences in behaviour across sleep and wake. A non-parametric cluster-based permutation 12 
test (see Methods) contrasting Condition (sleep, wake) and Sentence Type (fixed, flexible) 13 
revealed a significant difference in baseline-corrected theta power during the delayed session 14 
(Monte Carlo p = .008; see Figure 5A for topography and demarcation of the cluster). No 15 
significant clusters were identified for alpha- or beta-band estimates. 16 

Given the significant theta-band effects, we constructed a linear mixed-effects model 17 
with judgement accuracy (d’) as the outcome and task-related theta power (drawn from the 18 
significant cluster identified above), Condition (sleep, wake) and Sentence Type (fixed, flexible) 19 
as predictors. This analysis revealed a significant Theta × Condition × Sentence type interaction 20 
(𝛽 = -1.09, se = 0.34, p = 0.001). Holm-Bonferroni adjusted post-hoc comparisons revealed that 21 
for flexible word orders, greater theta synchronisation was associated with poorer judgement 22 
accuracy for the sleep but not wake condition. However, the inverse was observed for fixed word 23 
order sentences, such that less theta desynchronisation was associated with improved 24 
judgement accuracy for the sleep but not wake condition (𝛽 = -4.70, se = 1.10, padj < 0.001). 25 
Coupled with the behavioural model, the current analysis demonstrates that sleep preferentially 26 
consolidates fixed word order rules at the expense of flexible word order rules, and that this is 27 
reflected in task-related theta power. For a visualisation of these effects, see Figure 5C. For time-28 
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frequency and power spectral density plots for the sleep and wake conditions across fixed and 1 
flexible word orders, see Figures 6 and 7, respectively. 2 

 3 
Figure 5. Theta power and judgement accuracy. (A). Cluster-based permutation testing on the theta 4 
band contrasting differences between Condition (sleep, wake) and Sentence Type (fixed, flexible). Warmer 5 
colours denote a higher t statistic. Significant channels are indicated by white asterisks. (B) Raincloud 6 
plots illustrating average theta power over significant channels between sentence type and condition. 7 
Positive values on the y-axis denote increased theta power relative to the pre-stimulus interval. (C) 8 
Modelled effects of task-related theta power (x-axis; higher values indicate increased power) on judgement 9 
accuracy (y-axis; higher values indicate better performance) for the sleep and wake conditions (sleep = 10 
purple solid line; wake = dashed pink line) for flexible (left facet) and fixed (right facet) sentences. The black 11 
dashed line indicates chance-level performance, while the shaded regions indicate the 83% confidence 12 
interval. The x-axis reflects theta power estimates, with more negative values reflecting a decrease in 13 
power and positive values reflecting an increase in power from the pre-stimulus interval, respectively. 14 
Individual data points represent raw (single subject) values. 15 
 16 

 17 
Figure 6. Differences in time-frequency activity between sleep and wake, and fixed and flexible word 18 
orders. Time frequency plots for the sleep (top) and wake (bottom) conditions for fixed (left column) and 19 
flexible (right column) word order sentences. Time is presented on the x-axis (dashed vertical bar 20 
represents sentence onset), while frequency is presented on the y-axis. Warmer colours denote an 21 
increase in power relative to the pre-stimulus period, while cooler colours represent a decrease in power. 22 
The z-scale is in arbitrary units. 23 
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 1 
 2 
Figure 7. Power spectral density plots for the sleep (blue) and wake (red) conditions for frontal, 3 
central, parietal, and occipital regions of interest. Fixed word order sentences are on the left, while 4 
flexible word orders are on the right. The solid red and blue lines represent the mean power spectral density 5 
for the wake and sleep conditions, respectively, while the dashed lines represent the aperiodic (1/f) power 6 
law. Individual lines represent individual participant power spectral densities. 7 
 8 
SO-spindle coupling is predictive of memory for fixed but not flexible word order rules 9 

Having observed differences between the sleep and wake conditions on the relationship 10 
between task-related theta activity and behavioural performance, a logical next step was to test 11 
whether behavioural performance for fixed word order rules is associated with SO-spindle 12 
coupling. Based on previous work (e.g., Helfrich et al., 2018; Mikutta et al., 2019), we focussed 13 
on the coupling strength, measured as the mean vector length of spindle phase during coupled 14 
SO-spindle events (for a summary of typical sleep parameters and their correlation with d’, see 15 
Table 2). There was a significant non-uniform distribution for the precise SO phase during peak 16 
spindle activity (p < 0.001; Rayleigh test). In predicting behavioural performance, mixed-effects 17 
modelling revealed a significant Coupling Strength × Sentence Type × Sagittality interaction (𝛽 = 18 
3.05, se = 0.97, p = 0.002). Pairwise contrasts further revealed that this effect was largest 19 
anteriorly for fixed sentences (𝛽 = 6.85, se = 2.01, padj < 0.001; Figure 8B), but nonsignificant in 20 
central (𝛽 = -0.75, se = 2.62, padj = 0.77) and posterior regions (𝛽 = -3.90, se = 3.47, padj = 0.26). 21 
Also note that while stronger SO-spindle coupling predicted improved judgement accuracy for 22 
fixed word order sentences, the inverse relationship was present for flexible word order 23 
sentences. Figure 8 illustrates an exemplary full-night spectrogram, distribution of SO-spindle 24 
coupling strength across channels, as well as exemplar single subject and group level 25 
comodulagrams and preferred phase of SO-spindle coupling for NREM sleep. For a summary of 26 
sleep microarchitecture characteristics, see Table 3. 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
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Table 2. Descriptive statistics for sleep parameters and correlations with the difference between d’ at 1 
delayed and baseline testing for fixed and flexible word order sentences. 2 

Sleep 
Parameter 

Mean Minutes 
(SD) 

% in Stage 
(SD) Correlations with d’ (Delayed – Baseline) 

   Fixed Flexible 
   r p r p 
TST 400.00 (67.02)  -.44 .42 .30 .96 

SOL 15.23 (12.23)  .45 .42 -.47 .35 

WASO 52.64 (55.60)  .41 .42 -.19 1.00 
N1 38.05 (29.47) 10.05 (8.21) .12 1.00 .10 1.00 

N2 196.30 (46.29) 49.52 (10.36) .26 .93 .33 .95 
SWS 104.23 (42.27) 25.84 (9.60) .02 1.00 -.48 .35 
REM  61.30 (39.39) 14.57 (8.56) -.46 .42 .04 1.00 

Note. SD = standard deviation. TST = total sleep time; SOL = sleep onset latency; WASO = wake after sleep 3 
onset; N1 = stage 1; N2 = stage 2; SWS = slow wave sleep; REM = rapid eye movement sleep. Significance 4 
values are Holm-Bonferroni corrected (Holm, 1979).  5 
 6 

 7 
Figure 8. Sleep neurophysiology metrics and relationship between phase amplitude coupling and 8 
judgement accuracy. (A) Hypnogram and full-night multi-taper spectrogram for a single participant from 9 
channel Cz. (B) Modelled effects from the linear mixed-effects regression of SO-spindle coupling strength 10 
(x-axis; higher values indicate stronger coupling) on judgement accuracy (y-axis; higher values indicate 11 
better performance) for fixed and flexible word order sentences (fixed = purple solid line; flexible = dashed 12 
pink line) across levels of anterior (left), central (middle) and posterior (right) regions. The black dashed 13 
line indicates chance-level performance, while the shaded regions indicate the 83% confidence interval. 14 
(C) Scatterplot indicating the relationship between judgement accuracy (y-axis; higher values denote 15 
better memory performance) and SO-spindle coupling strength (x-axis; higher values denote stronger 16 
coupling) for flexible (left) and fixed (right) word order sentences across anterior channels. The topoplot 17 
visualises the beta coefficient from the SO-spindle coupling strength × sentence type interaction, with 18 
higher values/warmer colours denoting a stronger interaction coefficient. (D) Single-subject and group-19 
level average time-frequency response of all SOs coupled to a spindle (−1200 to 1200ms, centred on the 20 
trough of the SO), with the time-domain averaged SO overlaid. To the right is the preferred phase of SO-21 
spindle coupling for NREM sleep. Note that 0 represents the peak of the SO. (E) Ridge plot illustrating the 22 
distribution of SO-spindle coupling strength (x-axis; higher values indicate stronger coupling) across 23 
channels (y-axis). 24 
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Table 3. NREM slow oscillation-spindle coupling characteristics for frontal, central, and parietal channels. 1 

 2 
Note: % Coupled = percent of spindles coupled to an SO; n Coupled = total number of coupled spindles to SOs; n Uncoupled = total number of uncoupled spindles; 3 
Coupling Density = average number of coupled spindles to SOs per 30s epoch; Uncoupled Density = average number of uncoupled spindles per 30s epoch. Standard 4 
deviations are provided in parentheses.5 
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Frontal SO-spindle coupling and task-evoked theta power interact to predict judgement 1 
accuracy 2 

Having shown that SO-spindle coupling is associated with improved judgement accuracy for 3 
fixed word orders, and judgement accuracy is tracked by task-related theta power, we examined 4 
whether frontal theta power interacts with frontal SO-spindle coupling strength to predict judgement 5 
accuracy. A mixed-effects model regressing SO-spindle coupling strength, task-based theta power, 6 
sagittality (anterior, central, posterior), and sentence type (fixed, flexible) onto judgement accuracy 7 
revealed a significant three-way interaction between SO-spindle coupling strength, task-based theta 8 
power and sentence type (𝛽 = -41.60, se = 16.70, p = 0.01). As illustrated in Figure 9, high anterior 9 
task-based theta power and stronger anterior SO-spindle coupling was positively associated with 10 
delayed judgement accuracy for fixed but not flexible word order sentences. This finding links frontal 11 
neural activity in the sleeping and waking brain to predict higher-order language learning. 12 

 13 
Figure 9. The interaction between task-related theta power and SO-spindle coupling strength predicts 14 
judgement accuracy. Delayed judgement accuracy (y-axis; higher values denote higher accuracy), SO-15 
spindle coupling strength (x-axis; higher values denote stronger coupling) and task-related theta power 16 
(facetted; low and high contrast for plotting purposes only) averaged across anterior channels. Fixed 17 
sentences are colour coded in yellow, while flexible sentences are colour coded in gray. 18 

Discussion 19 

Coordination between SOs and sleep spindles is hypothesised to provide an optimal 20 
temporal receptive window for hippocampal-cortical communication during sleep (Helfrich et al., 21 
2019; Staresina et al., 2015) in the support of memory consolidation. Here, we show that the 22 
beneficial effect of SO-spindle coupling on memory extends to sentence-level regularities. 23 
Behaviourally, we demonstrated that a period of sleep compared to an equivalent period of wake 24 
benefits the consolidation of fixed relative to flexible word order rules, and that this effect is 25 
modulated by the strength of coupling between spindles and SOs. Our results further reveal that SO-26 
spindle coupling correlates with changes in task-evoked theta activity during sentence processing. 27 
Interestingly, participants in the sleep condition exhibited overall less theta power at delayed testing 28 
relative to the wake condition; however, less theta desynchronisation was associated with improved 29 
judgement accuracy for fixed word orders in the sleep group. Lastly, we reveal that the interaction 30 
between frontal SO-spindle coupling, and task-related frontal theta power predicts improved 31 
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judgement accuracy for fixed but not flexible word order rules. In sum, our results establish 1 
converging behavioural and neurophysiological evidence for a role of NREM SO-spindle coupling and 2 
task-related theta activity as signatures of successful memory consolidation and retrieval in the 3 
context of higher-order language learning 4 

Beyond single word learning: a role for sleep in consolidating word order rules 5 

Using a complex modified miniature language paradigm (Cross et al., 2021), we 6 
demonstrated that a period of sleep facilitates the extraction of fixed relative to flexible word order 7 
rules. Importantly, the key distinction between these word order permutations is that successful 8 
interpretation of fixed word order sentences relates to the sequential position of the noun phrases 9 
and verb (i.e., the first noun phrase is invariably the actor, and the sentence is verb-final). By 10 
contrast, successful interpretation of flexible word order sentences depends more heavily on the 11 
animacy of the nouns. As such, fixed word order sentences, requiring a more sequential order-based 12 
interpretation and are more compatible with an English word-order-based processing strategy 13 
(Bornkessel & Schlesewsky, 2006; Bornkessel-Schlesewsky et al., 2015; MacWhinney et al., 1984). 14 
Critically, this sleep-based enhancement for fixed word order rules was predicted by stronger SO-15 
spindle coupling (Figure 8F). 16 

Sleep-related memory effects are proposed to be biased toward stimuli following temporal 17 
or sequence-based regularities compared to relational information (for review, see Lerner & Gluck 18 
2019). This is posited to occur via the hippocampal complex encoding temporal occurrences of 19 
sensory input (Durrant et al., 2011), which are replayed during SWS, potentially via SO-spindle 20 
coupling (e.g., Navarrete et al., 2020; Solano et al., 2020). Here, we provide evidence supporting this 21 
account. Specifically, sleep-based consolidation of higher order language may favor sequence-22 
based regularities, with mechanisms of sleep-related memory consolidation generalizing fixed over 23 
flexible word order rules, indexed by task-related theta activity. 24 

It is important to note, however, that our sample of participants were native monolingual 25 
speakers, and as such, may have preferentially consolidated fixed word order rules at the expense 26 
of flexible rules. While behavioral work demonstrates sentence-level preferences of grammatical 27 
rules that are analogous to learners’ native languages (e.g., Cross et al., 2021), less is known 28 
regarding the neural underpinnings of this phenomenon. We now turn to how the neurobiological 29 
processes underpinning the beneficial effect of SO-spindle coupling on memory consolidation 30 
extends to higher order language learning. 31 
 32 
Slow oscillation-spindle coupling as a marker of sleep-associated memory consolidation and 33 
higher-order language learning 34 

Coupling between SOs and spindles predicts successful overnight memory consolidation 35 
(Hahn et al., 2020, 2022; Helfrich et al., 2018; Mikutta et al., 2019). However, these studies often use 36 
old-new paradigms with single words (e.g., Helfrich et al., 2018; Mikutta et al., 2019) or word-image 37 
pairs (e.g., Muehlroth et al., 2019). Here, we found that the generalisation of sequence-based (or 38 
fixed word order) rules is facilitated by the strength of NREM SO-spindle coupling. Mechanistically, 39 
during SWS, the cortex is synchronised during the up state of the SO, allowing effective interregional 40 
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communication, particularly between the prefrontal cortex and hippocampal complex (Helfrich et 1 
al., 2019). It is during this SO up-state that spindles induce an influx of Ca2+ into excitatory neurons, 2 
enabling synaptic plasticity and the generalisation and stabilisation of memory traces (Niethard et 3 
al., 2018). Here we revealed that the interaction between these cardinal markers of sleep-related 4 
memory processing extend to sentence-level regularities. This finding also accords with previous 5 
work examining not only NREM sleep and language learning (Batterink et al., 2014; Mirković & 6 
Gaskell, 2016; Schreiner & Rasch, 2017), but also REM (De Koninck et al., 1989, 1990; Thompson et 7 
al., 2021). For example, the interaction between time spent in NREM and REM modulates the 8 
amplitude of language-related ERPs (N400, late positivity) during the processing of novel 9 
grammatical rules (Batterink et al., 2014), while percent of time spent in REM is predictive of French 10 
learning in a naturalistic multi-week program (De Koninck et al. 1989, 1990). By demonstrating sleep-11 
related consolidation effects for linguistic stimuli of varying complexity, these findings have begun 12 
to establish a link between sleep-related memory consolidation of various aspects of language 13 
(Rasch, 2017). Building on this foundational work, we have provided empirical evidence supporting 14 
a link between oscillatory-based models of hippocampo-cortical memory consolidation and 15 
sentences-level learning, and how this effect manifests in on-task oscillatory theta activity. In the 16 
following, we discuss how SO-spindle coupling, as a marker of sleep-associated memory 17 
consolidation, modulates task-related oscillatory activity and how these interactions affect 18 
sentence processing. 19 

Task-related theta oscillations index successful memory consolidation of complex linguistic 20 
rules 21 

Theta is the dominant frequency in the hippocampal complex and surrounding structures 22 
during wake (Covington & Duff, 2016; Duff & Brown-Schmidt, 2012). Oscillations in this frequency 23 
range are critical for associative memory formation and coordinating hippocampal-cortical 24 
interactions, having been related to associative memory formation (Tort et al., 2009), tracking 25 
sequential rules (Crivelli-Decker et al., 2018) and predicting words based on contextual linguistic 26 
information (Corcoran et al., 2023; Piai et al., 2016). In the sleep and memory literature, increased 27 
theta power has been reported for successfully remembered items, interpreted as reflecting a 28 
stronger memory trace induced by sleep-based consolidation. Here, we observed that less theta 29 
desynchronisation relative to the pre-stimulus interval predicted higher sensitivity for fixed word 30 
order rules after a 12hr delay period, and that the effect of theta on fixed word order processing was 31 
more pronounced in the sleep relative to wake condition. This finding accords with the general 32 
memory literature, possibly reflecting the binding of linguistic items in a sequence to generate a 33 
coherent sentential percept. 34 

We also observed that frontal NREM SO-spindle coupling, and task-related theta power 35 
interacted to predict improved delayed judgement accuracy for fixed but not flexible word order 36 
rules. In line with systems consolidation theory (Born & Wilhelm, 2012), NREM oscillatory activity 37 
contributes to the consolidation of newly encoded memory representations, which may manifest in 38 
stronger theta power during retrieval, indicating a stronger neocortical memory trace (Schreiner & 39 
Rasch, 2015), reflected in improved sensitivity to fixed word order rules. 40 
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Future directions and concluding remarks 1 

Future studies may include groups in AM-PM (12h Wake), PM-AM (12h Sleep), PM-PM (24h 2 
Sleep early) and AM-AM (24h Sleep late), as recommended by Nemeth et al. (2024). We did, however, 3 
model participants’ sleepiness levels and the 1/ƒ exponent in our statistical analyses, which partially 4 
controlled for potential time-of-day effects. Further, the evidence presented here is correlational 5 
and neuroanatomical inferences are unable to be drawn based on scalp-recorded EEG. However, 6 
this is the first study to relate sleep-based memory consolidation mechanisms (i.e., SO-spindle 7 
coupling) to online sentence-level oscillatory activity, and as such, has set the foundation for future 8 
work using techniques with greater spatial-temporal resolution. For example, electrocorticography 9 
and stereoelectroencephalography would allow for a better characterization of task-evoked cortical 10 
dynamics and SO-spindle coupling between cortical regions and the hippocampal complex, 11 
respectively (e.g., Helfrich et al., 2018, 2019). This approach would be complemented by 12 
demonstrating a selective reinstatement of memory traces during SO-spindle coupling using 13 
representational similarity analysis (Zhang et al., 2018). Identifying stimulus-specific 14 
representations during the encoding of sentence-level regularities and tracking the replay of 15 
stimulus activity related to SO-spindle coupling events would further demonstrate the critical role of 16 
sleep-based oscillatory mechanisms on higher-order language learning. Comparisons between 17 
sleep-related consolidation effects on language-specific and non-language but related tasks (i.e., 18 
statistical learning tasks) in the same group of participants would also further establish the role of 19 
sleep in higher-order language learning. 20 

In addition to representational similarity analyses, we suggest that research examine 21 
different baselining approaches to task-related differences in theta activity in conditions of sleep 22 
and wake. Here, we adopted a conventional baselining approach of subtracting theta power from 23 
the pre-stimulus interval from the stimulus period. In doing so, we observed that the sleep group had 24 
greater theta desynchronization than the wake group, but that less desynchronization was 25 
associated with improved recognition accuracy. From this perspective, it appears that more theta 26 
power is indeed associated with better memory, but future research should establish whether this 27 
effect is driven by a limiting of task-related desynchronization, as we observed, or if a different 28 
baselining procedure would reveal an increase in theta power.  29 

 Taken together, our results demonstrate that the temporal coupling between NREM SOs and 30 
spindles supports the consolidation of complex sentence-level rules. We demonstrated that SO-31 
spindle coupling promotes the consolidation of sequence-based rules and modulates task-evoked 32 
theta oscillations previously implicated in language learning (e.g., de Diego-Balaguer et al., 2011; 33 
Kepinska et al., 2017) and sentence processing (Vassileiou et al., 2018). Critically, these findings add 34 
to models of sleep-based memory consolidation (e.g., Born & Wilhelm, 2012; Lewis & Durrant, 2011) 35 
and help characterise how effects of sleep-related oscillatory dynamics on memory manifest in 36 
oscillatory activity during complex language-related operations. 37 

 38 
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