

1 **Macromolecular and cytological changes in fission yeast G0 nuclei**
2

3 Zhi Yang Tan^{1†}, Shujun Cai (蔡舒君)^{1,2†}, Saayli A. Paithankar¹, Xin Nie^{1,3}, Jian Shi¹ and
4 Lu Gan (甘露)^{1,*}

5 ¹ Department of Biological Sciences and Centre for BioImaging Sciences, National
6 University of Singapore, Singapore 117543

7 ² Present address: School of Life Sciences, Southern University of Science and
8 Technology, Nanshan, Shenzhen, Guangdong Province, China, 518055

9 ³ Present address: Thermo Fisher Scientific, The Capricorn, Singapore Science Park II,
10 Singapore 117528

11 † Equal contribution

12 * Correspondence: lu@anaphase.org

13 **Abbreviations**

14 G0: the quiescent state

15 CTD-S2P: RNA polymerase II large-subunit C-terminal domain phospho-serine 2

16 CTD-S5P: RNA polymerase II large-subunit C-terminal domain phospho-serine 5

17 5-EU: 5-ethynyl-uridine

18 TSA: Trichostatin A

19 cryo-ET: electron cryotomography / cryo-electron tomography

20 Megacomplex: multi-megadalton globular complexes

21 Keywords: nucleus, chromatin, transcription, quiescence, yeast, cryo-ET

22 **Running title**

23 S. pombe G0 nucleus analysis

24 **Summary**

25 We use multiple cell-biological techniques to compare proliferating and quiescent G0
26 fission yeast cell nucleus transcription, histone acetylation, macromolecular packing.

32 **ABSTRACT**

33 When starved of nitrogen, fission yeast *Schizosaccharomyces pombe* cells enter a
34 quiescent “G0” state with smaller nuclei and transcriptional repression. The genomics of
35 *S. pombe* G0 cells has been well studied, but much of its nuclear cell biology remains
36 unknown. Here we use confocal microscopy, immunoblots, and electron
37 cryotomography to investigate the cytological, biochemical, and ultrastructural
38 differences between *S. pombe* proliferating, G1-arrested, and G0 cell nuclei, with an
39 emphasis on the histone acetylation, RNA polymerase II fates, and macromolecular
40 complex packing. Compared to proliferating cells, G0 cells have lower levels of histone
41 acetylation, nuclear RNA polymerase II, and active transcription. The G0 nucleus has
42 similar macromolecular crowding yet fewer chromatin-associated multi-megadalton
43 globular complexes. Induced histone hyperacetylation in G0 results in cells that have
44 larger nuclei and therefore less compact chromatin. However, these histone-
45 hyperacetylated G0 cells remain transcriptionally repressed with similar nuclear
46 crowding. Canonical nucleosomes – those that resemble the crystal structure – are rare
47 in proliferating, G1-arrested, and G0 cells. Our study therefore shows that extreme
48 changes in nucleus physiology are possible without extreme reorganisation at the
49 macromolecular level.

50 **INTRODUCTION**

51

52 Eukaryotic cells can adopt states that vary greatly in nuclear morphology and chromatin

53 biochemistry and structure. Coordinated phenotypic changes in the nucleus are

54 believed to regulate essential functions like transcription, replication, DNA repair, and

55 stress response. The fission yeast *Schizosaccharomyces pombe* is an excellent model

56 organism for nucleus cell biology because the cells can be enriched in different cell-

57 cycle states, each with distinctive changes in chromosome compaction (Hiraoka et al.,

58 1984; Nurse et al., 1976). When starved of nitrogen for 24 hours, *S. pombe* cells enter a

59 non-dividing state called G0 quiescence (Su et al., 1996) (herein called G0) (**Figure**

60 **1A**). G0 cells are shorter and more thermotolerant than proliferating cells (Su et al.,

61 1996). Furthermore, G0 cells have only ~30% of the mRNA and ~20% of the rRNA

62 content of proliferating cells (Marguerat et al., 2012), suggesting that transcription is

63 globally repressed.

64

65 Even though *S. pombe* G0 cells have been studied for nearly three decades, many of

66 their cell-biological differences with proliferating cells are unknown; these differences

67 include histone post-translational modifications (histone marks), RNA polymerase

68 localisation and abundance, active-transcription status, and nuclear macromolecular

69 packing. Chromatin is one of the most abundant nuclear components and it controls

70 many of the cell's essential functions. The basic unit of chromatin is the nucleosome,

71 consisting of approximately 147 bp of DNA wrapped around a histone octamer

72 (Kornberg, 1974; Luger et al., 1997). Nucleosomes resemble ~10 nm wide, 6 nm thick

73 cylinders and are the most abundant macromolecular complexes in the nucleus.

74 Biochemical factors like histone post-translational modifications control nucleosome

75 packing, which may in turn either inhibit or enable the access of nuclear

76 macromolecular machinery (Luger et al., 2012; Maeshima et al., 2019). Consistent with

77 this idea, repressive and activating histone marks are associated with more compact

78 and open chromatin, respectively (Maeshima et al., 2019; Oomen and Dekker, 2017).

79

80 Electron cryotomography (cryo-ET) is a popular form of cryo-EM used to study

81 macromolecular complexes *in situ* in a life-like frozen-hydrated state (Bauerlein and

82 Baumeister, 2021; Bohning and Bharat, 2021; Hylton and Swulius, 2021; Ng and Gan,

83 2020; Schur, 2019). In a cryo-ET experiment, cells are rapidly frozen, thinned, and then

84 imaged in a way to produce a 3-D image called a cryotomogram. We previously used

85 cryo-ET to study *S. pombe* mitotic chromosomes, which have less conspicuous

86 chromatin compaction than what was seen by fluorescence microscopy: with no well-

87 defined boundary between compacted chromatin and nucleoplasm because the nucleus

88 is crowded with macromolecular complexes (Cai et al., 2018b). We also found that

89 prometaphase cells have fewer chromatin-associated multi-megadalton globular

90 complexes (herein called megacomplexes) than interphase cells. The open *in situ*

91 chromatin organisation in *S. pombe* cell nuclei is consistent with mitotic transcription,

92 indicated by the presence of conserved active RNA polymerase II post-translational

93 markers.

94

95 In addition to nuclear macromolecular packing, nucleosome structure itself may have a
96 role in transcriptional regulation *in situ*. Recently, we used cryo focused-ion beam (cryo-
97 FIB) milled cellular cryolamellae samples, an energy-filtered electron-counting camera,
98 and 3-D subtomogram classification to do a cryo-ET study of budding yeast
99 *Saccharomyces cerevisiae* nucleosome structure *in situ*. We found that canonical
100 nucleosomes (those that resemble the crystal structure) account for less than 10% of
101 the expected total in *S. cerevisiae* nuclei (Tan et al., 2023). This result contrasts with
102 our findings in human chromatin structure *in situ*, which has abundant and densely
103 packed canonical nucleosomes in both interphase and mitotic cells (Cai et al., 2018a;
104 Chen et al., 2023). Our previous analysis of *S. pombe* cryosections led us to conclude
105 that these cells may not have abundant canonical nucleosomes; this hypothesis has not
106 been rigorously tested using improved sample-preparation techniques (cryo-FIB-milled
107 lamellae) and better cameras. The large differences between yeast and human
108 chromatin could potentially be explained by large differences in transcription levels.
109 Therefore, combined analysis of nucleus cytology, biochemistry, and ultrastructure may
110 provide clues about how extremely different cell states are regulated.

111
112 Here we characterise *S. pombe* cell nuclei in multiple states: G1-arrested cells and
113 proliferating cells as controls compared to G0 cells with and without hyperacetylated
114 histones. To fill in several knowledge gaps about G0 nuclear cell biology, we analyse *S.*
115 *pombe* using complementary methods: fluorescence microscopy, RNA labelling,
116 immunoblots, and *in situ* cryo-ET. Our study correlates histone acetylation,
117 thermotolerance, transcription, nucleus size, nuclear macromolecular packing, and

118 nucleosome structure. We find that G0 histones can be made hyperacetylated, which
119 inhibits nucleus shrinkage, but does not affect thermotolerance or transcriptional
120 repression. Furthermore, neither hypoacetylation nor hyperacetylation affect large-scale
121 nuclear macromolecular packing or the abundance of canonical nucleosomes. Overall,
122 we conclude that G0 transcriptional repression is robust to perturbations in histone
123 acetylation and nuclear morphology and does not lead to a massive upregulation of
124 canonical nucleosomes.

125 **RESULTS**

126 ***S. pombe* strains and cell-cycle states**

127 We have analysed how nuclear morphology, histone acetylation, transcription, and
128 nuclear macromolecular complex distribution differ in proliferating and G0 *S. pombe*
129 cells. This study therefore required cells of different strains, cell-cycle states, or
130 combinations thereof (**Table S1**). Strain MBY99 (herein called wild-type) was used as
131 wild-type and for the generation of new strains that have eGFP fusions to genes at their
132 endogenous loci (described later). Wild-type cells were used to generate asynchronous
133 proliferative cells (herein called proliferating) and G0 cells both without and with
134 hyperacetylated histones. Some experiments were done with the mutant strain *cdc10-*
135 129, which arrests in G1 at elevated temperature. For nascent-RNA labelling
136 experiments, we used the strain yFS240 (Sivakumar et al., 2004), which can
137 incorporate exogenous uridine and its analogues (Hodson et al., 2003). For some cryo-
138 ET controls, we used temperature-sensitive *cdc10-129* cells arrested in G1 phase (Aves
139 et al., 1985) because G1 and G0 cells both have a 1N nuclear DNA content and cells
140 enter G0 from a G1-like state (Mochida and Yanagida, 2006). We also used proliferating
141 cells, which are mostly in G2, the longest cell-cycle phase (Forsburg, 1999). We did not
142 use the strain *cdc10-129* for studies of G0 because when these cells were transferred to
143 EMM–N, they did not have G0 phenotypes (see below).

144

145 **Preparation of G0 and TSA-G0 cells**

146 To prepare G0 *S. pombe* cells (**Figure 1A**), we starved proliferating cells of nitrogen by
147 incubating them in Edinburgh Minimal Media without nitrogen (EMM–N) for 24 hours

148 (Costello et al., 1986; Su et al., 1996). G0 cells were prepared from wild-type (972 h-
149 cells, yFS240 cells, and new strains that express either an eGFP-tagged RNA
150 polymerase II subunit or an eGFP-tagged nuclear pore subunit (details in later
151 sections). To enable the study of histone-hyperacetylation effects, we prepared G0 cells
152 by adding Trichostatin A (TSA) to the EMM–N. TSA is a histone-deacetylase inhibitor
153 (Rundlett et al., 1996) that increases histone acetylation levels in proliferating *S. pombe*
154 cells (Kimata et al., 2008) and induces chromatin decompaction *in situ* in human cells
155 (Toth et al., 2004). To determine if TSA treatment affects G0 chromatin and if these
156 changes depend on the timing of TSA treatment, we subjected *S. pombe* cells to two
157 different regimens. In the TSA-G0 regimen, we incubated proliferating cells in EMM–N
158 plus TSA for 24 hours. In the G0-TSA regimen, we first incubated proliferating cells in
159 EMM–N for 24 hours, then we incubated the cells in EMM–N plus TSA for another 24
160 hours.

161
162 Differential interference contrast microscopy showed that following 24 hours of nitrogen
163 starvation, wild-type G0 cells became shorter (**Figure 1B**) as reported earlier (Su et al.,
164 1996), while fluorescence microscopy of DNA stained with 4',6-diamidino-2-
165 phenylindole (DAPI) showed that G0 chromosomes did not individualise like in
166 prometaphase-arrested *nda3-KM311* cells (Hiraoka et al., 1984). TSA treatment leads
167 to diverse cell morphologies depending on the genetic background. TSA-G0 wild-type
168 cells were longer than G0 cells but shorter than proliferating cells. G0-TSA cells were
169 shorter like untreated G0 cells (**Figure 1B**). Owing to their simpler preparation, most of
170 our analyses of TSA-treated G0 cells were done with TSA-G0 cells, for which TSA

171 treatment and nitrogen starvation are concurrent during G0 entry. G0 and TSA-G0 cells
172 were less sensitive to 48°C heat stress than proliferating cells (**Figure 1C**), meaning
173 that TSA-treated G0 cells retain an important G0 phenotype. In contrast, *cdc10-129*
174 cells that were transferred to EMM-N were less resistant to heat shock than wild-type
175 G0 cells (**Figure 1D**). Other strains, including yFS240, an Rpb1-eGFP strain, and a
176 Nup97-eGFP strain were all resistant to heat shock and had cell-to-cell heterogeneity
177 after TSA-G0 treatment, with cells longer than TSA-G0 wild-type cells (details in the
178 relevant sections below). To keep the number of phenotypes manageable, we limited
179 the analysis of TSA-G0 treatment to wild-type cells.

180

181 **G0 chromatin is hypoacetylated, but can be reversibly hyperacetylated**
182 Histone marks are correlated with chromatin structure and function in yeasts (Millar and
183 Grunstein, 2006; Sinha et al., 2006) and has been characterised in only a few extreme
184 cell states. *S. cerevisiae* G0 cells has altered levels of several histone marks compared
185 to proliferating cells (McKnight et al., 2015; Mews et al., 2014) and also globally
186 repressed transcription (Allen et al., 2006; McKnight et al., 2015). Notably, *S. cerevisiae*
187 G0 cells have lower histone acetylation, which is correlated with oligonucleosome
188 condensation (Robinson et al., 2008; Shogren-Knaak et al., 2006; Tse et al., 1998). We
189 performed immunoblot analysis of *S. pombe* histone acetylation and found that
190 compared to proliferating and G1 cells, the G0 cells had lower levels of H3 acetylated at
191 multiple N-terminal lysines (H3-Ac), but not H4 acetylated at multiple N-terminal lysines
192 (H4-Ac) or at K16 (H4K16ac) (**Figure 2A**). TSA treatment with either the TSA-G0 or G0-
193 TSA regime induced hyperacetylation of H3-Ac, H4-Ac, and H4K16ac at levels equal to

194 or greater than in G0 and even greater than in G1 and proliferating cells. This TSA-
195 induced G0 histone hyperacetylation was reversed after TSA washout from TSA-G0
196 cells (**Figure 2A**).

197

198 We next performed immunofluorescence to check if there is gross cell-to-cell variability
199 i.e., if a subset of G0 cells had much-more histone acetylation than the others. We
200 found that nearly all G0 cells had lower levels of H3-Ac than the typical proliferating cell
201 (**Figure 2B**; compare short vs long cells in the +DMSO rows). In contrast, neither H4-Ac
202 nor H4K16ac levels decreased noticeably in G0 cells (**Figure 2, C and D**; +DMSO
203 rows). Both the immunoblot and immunofluorescence experiments showed that overall
204 histone acetylation decreased in G0. In contrast, both immunoblots and
205 immunofluorescence microscopy (**Figure 2, B – D**; +TSA rows) showed that both TSA-
206 G0 and G0-TSA cells had equal or greater H3 and H4 acetylation than either untreated
207 G0 cells or proliferating cells.

208

209 **Transcription is repressed in G0 cells with and without histone hyperacetylation**

210 An early study used RNA-seq to show that G0 cells have fewer transcripts than
211 proliferating cells (Marguerat et al., 2012). To further assess the differences in
212 transcription phenotypes between interphase and G0 cells, we analysed the abundance
213 of RNA polymerase II, active RNA polymerase II, and newly synthesised RNA. In *S.*
214 *pombe*, the *rpb1* gene encodes the largest subunit of the RNA polymerase II complex
215 and exists as a single copy (Kimura et al., 1997). We tracked RNA polymerase II levels
216 and localisation *in vivo* by creating a strain that has the *rpb1* gene tagged at its C-

217 terminus with eGFP (**Figure S1**). In confocal fluorescence micrographs of living cells,
218 we found that both proliferating and G0 cells had bright Rpb1-eGFP nuclear signals
219 (**Figure 3A**). RNA polymerase II levels are therefore unlikely to be downregulated in G0.
220
221 RNA polymerase II activity may also be controlled by interactions with other
222 transcription machinery, resulting in detectable changes to this enzyme's post-
223 translational state. So we next performed immunoblots against the Rpb1 subunit's
224 carboxy-terminal domain (CTD) as well as two post-translational modifications of the
225 Rpb1 CTD, serine 2 (CTD-S2P) and serine 5 (CTD-S5P) phosphorylation. The two
226 phosphorylation marks are conserved markers for transcriptional elongation and
227 transcription initiation respectively (Harlen and Churchman, 2017; Komarnitsky et al.,
228 2000). Immunoblots that were calibrated using total H3 levels showed that G0 cells
229 have less Rpb1 (consistent with the Rpb1-eGFP analysis), CTD-S2P, and CTD-S5P
230 marks than proliferating cells, suggesting that RNA polymerase II initiation and
231 elongation were decreased (**Figure 3B**). Immunoblots that were calibrated to equal
232 CTD levels (using a pan-CTD antibody) showed that G0 cells also had similar levels of
233 both CTD-S2P and CTD-S5P marks per Rpb1 subunit (**Figure 3C**). To characterise G0
234 RNA polymerase II activity in single cells, we performed immunofluorescence imaging
235 to detect CTD-S2P. To keep the chromatin content comparable, we used *cdc10-129*
236 cells arrested at G1 rather than asynchronous cells. We found that G0 cells had weaker
237 CTD-S2P signals than G1 cells (**Figure 3D**). Therefore, Rpb1 is expressed at lower
238 levels in G0 than in proliferating cells, yet the concentrations of this protein and activity
239 of the enzyme to which it belongs are non-negligible in G0 cell nuclei.

240

241 To characterise bulk RNA synthesis in G0 cells, we fluorescently labelled new
242 transcripts in the strain yFS240 (Sivakumar et al., 2004). Strains like yFS240 can
243 incorporate exogenous uridine and its analogues into nascent RNA (Hodson et al.,
244 2003). Newly synthesised RNA molecules that incorporate 5-ethynyl-uridine (5-EU)
245 become detectable after ligation with a fluorescent dye like Alexa Fluor 488 (Jao and
246 Salic, 2008). We therefore treated proliferating yFS240 cells with 5-EU to reveal new
247 transcripts. For negative controls, we incubated wild-type cells with 5-EU, yFS240 cells
248 with 5-EU plus the transcription inhibitor phenanthroline, and yFS240 cells with uridine.
249 All 5-EU and uridine treatments were done for 10 minutes. The chromatin was stained
250 with DAPI. Fluorescence microscopy showed nucleus-localised Alexa Fluor 488 signals
251 above the background only in yFS240 cells that were incubated with 5-EU without
252 transcription inhibitor; no signals were visible in the negative controls (**Figure S2**). In
253 proliferating cells, the newly transcribed RNA appeared more abundant in the
254 hemisphere opposite the DAPI signal (**Figure 3E**). This DAPI-poor (low DNA
255 concentration) region is the *S. pombe* nucleolus (Tanaka and Kanbe, 1986), meaning
256 that the strong 5-EU signal in this hemisphere came from newly synthesised rRNA
257 (**Figure 3E** lower-left cell; and see the nucleolus analysis below). In comparison, 5-EU
258 signal was much weaker in the DAPI-rich (chromatin) hemisphere of the nucleus, where
259 most mRNA is synthesised. Such high levels of rRNA synthesis are consistent with the
260 extremely high levels of ribosome biogenesis in yeasts (Warner, 1999). Compared to
261 proliferating cells, G0 cells had very weak 5-EU signals (**Figure 3E**). To test if 10-minute
262 incubations were too short for sufficient 5-EU-labelled RNA to accumulate in G0 cells,

263 we increased the 5-EU incorporation to 5 hours. The 5-EU-labelled RNA signal
264 thereafter became detectable, albeit weak, in the G0 nucleus (**Figure 3F**). Furthermore,
265 5-EU was also present in the cytoplasm, possibly from the exported RNAs (**Figure 3F**).

266

267 Next, we tested the effect of TSA treatment on transcription in G0 cells. Like untreated
268 G0 cells, TSA-G0 cells had weak CTD-S2P immunofluorescence signal (**Figure S3A**)
269 and weak nuclear 5-EU signals (**Figure S3B**), meaning that transcription in G0 cells
270 remained repressed even when the histones were hyperacetylated. TSA-G0 's Rpb1-
271 eGFP signal was similar to that of G0 cells and fainter than in proliferating cells (**Figure**
272 **S3C**). Histone hyperacetylation therefore does not have large effects on either the
273 intranuclear localisation or the concentrations of Rpb1 in G0. In summary, RNA
274 transcription is repressed in G0 cells, even when the cells are forced to have histone
275 marks that are associated with transcriptional activity.

276

277 **S. pombe** cells do not undergo rapid transcriptional upregulation after G0 exit
278 G0 is a reversible state, so G0 exit may reveal clues about the nuclear changes needed
279 to de-repress genes. Many cell types exit G0 when nutrients are restored to the cell
280 culture medium (Marescal and Cheeseman, 2020). Just minutes after G0 *S. cerevisiae*
281 are switched into rich media, they undergo a state called “hypertranscription”, which is
282 detectable as a large increase in transcription markers and nascent RNA (Cucinotta et
283 al., 2021). This finding inspired us to characterise *S. pombe* transcription in G0 exit. We
284 performed immunoblots against the total CTD levels (to account for total RNA
285 polymerase II) and the transcription markers CTD-S2P and CTD-S5P on *S. pombe*

286 exiting G0, and found that compared to histone H3 levels (to calibrate for cell number),
287 total CTD, CTD-S2P and CTD-S5P all remained low for 2 hours, increased at 4 hours,
288 and continued increasing to the highest signal level at 6 hours (**Figure S4A**). When we
289 compared CTD-S2P and CTD-S5P to total CTD levels, neither CTD-S2P nor CTD-S5P
290 levels increased substantially over 24 hours, with a very minor increase in CTD-S2P
291 levels at 2 hours (**Figure S4B**). These results suggest that transcription in *S. pombe*
292 does not increase as quickly as in *S. cerevisiae* during G0 exit.

293
294 To characterise *S. pombe* G0 exit in single cells, we imaged Rpb1 and the transcription
295 markers by fluorescence microscopy. First, we performed live-cell fluorescence time-
296 lapse imaging of G0 Rpb1-eGFP cells deposited on a YES agar pad, which verified that
297 these cells were exiting G0, elongating, and undergoing nuclear division followed by cell
298 division (**Figure S5A; Movie S1**). Since the growth conditions on an agar pad are
299 different from liquid culture, we also analysed Rpb1-eGFP G0 cells suspended in liquid
300 YES medium and collected freshly at different time points. Cells exiting G0 became
301 visibly longer 2 hours after resuspension in rich medium and resembled proliferating
302 cells within 24 hours. The Rpb1-eGFP signal had a very small fluorescence-intensity
303 increase over 6 hours after the rich-media switch (**Figure S5B**). We then subjected
304 yFS240 cells exiting G0 to 5-EU incorporation analysis. Nascent (albeit weak) nuclear
305 RNA signals became visible above background starting at 6 hours after resuspension in
306 rich media (**Figure S6**). In wild-type cells that were exiting G0, levels of the
307 transcription-elongation marker CTD-S2P were weak until 6 hours after the rich-media
308 switch (**Figure S7**). Cells exiting G0 showed weak immunofluorescence signals for the

309 transcription-initiation marker CTD-S5P until 4 hours after the rich-media switch (**Figure**
310 **S8**) and weak CTD levels until 6 hours after the rich-media switch (**Figure S9**). These
311 combined results indicate the *S. pombe* does not undergo hypertranscription during G0
312 exit and that transcription markers become non-negligible approximately when cell
313 division restarts.

314

315 **G0 nucleus shrinkage is inhibited by TSA treatment**

316 A popular hypothesis of transcriptional regulation is that nuclear macromolecular
317 crowding sterically inhibits the transcription machinery. TSA-treated G0 cells have
318 repressed transcription despite their increased histone acetylation, raising the question:
319 do TSA-G0 cells have less crowded nuclei? The confocal microscopy images above
320 show hints that the larger TSA-G0 cells have bigger nuclei, whose spaciousness may
321 allow for less macromolecular crowding. However, it is difficult to estimate nuclear
322 volume using fluorescence microscopy of DAPI signals because the nuclear boundary
323 is ambiguous. A better strategy is to image a strain that expresses a fluorescent
324 nuclear-envelope protein, measure the nucleus diameter, and then calculate the nuclear
325 volume (Heun et al., 2001; Neumann and Nurse, 2007; Varberg et al., 2022). We
326 therefore created an *S. pombe* strain in the wild-type background in which the nuclear-
327 pore protein Nup97 is tagged with eGFP at its endogenous locus (**Figure S10**). We did
328 not use the *cdc10-129* background because live-cell imaging allows for the selection of
329 G1 cells in a wild-type background – specifically, G1 cells are those that have just
330 finished nucleokinesis. Fluorescence microscopy analysis of Nup97-eGFP-expressing
331 G0 cells confirmed that their nuclei were smaller, with approximately half the nuclear

332 volume of G1 cells (mean volume of G1 nuclei = $5.2 \mu\text{m}^3$, n = 52, and G0 nuclei = $2.8 \mu\text{m}^3$, n = 114; p < 0.0001) (**Figure S11; Movie S2**). We also treated Nup97-eGFP-expressing cells with TSA either during or after entry into G0, then followed up with fluorescence microscopy (**Figure S12, A – C**). TSA-G0 cell nuclei had approximately twice the volume of G0 cell nuclei (mean volume of TSA-G0 nuclei = $5.7 \mu\text{m}^3$, n = 90; p < 0.0001) (**Figure S12D**). In contrast, when the TSA was added to cells that have already entered G0, the resulting G0-TSA nuclei had ~30% more volume than G0 nuclei (G0-TSA nucleus mean volume = $3.7 \mu\text{m}^3$, n = 138; p < 0.0001) (**Figure S12E**). These results show that nuclei are enlarged more due to TSA treatment while the cell is entering G0 than after it has already entered G0.

342

343 **Cryo-ET analysis of *S. pombe* cells**

344 To characterise the ultrastructural details of nuclei in proliferating, G1, G0 and TSA-G0 cells, we used cryo focused-ion-beam milling to prepare cellular cryolamellae (most of which were thinner than 150 nm) and then imaged them by cryo-ET. Defocus phase-contrast crytomograms of nuclei in G1 and G0 cells revealed crowds of macromolecular complexes (**Figure S13, A and B**), which were previously not visible (Sajiki et al., 2009; Su et al., 1996). The contrast of the G0 nuclear densities in these crytomograms was lower than in the G1 cells (**Figures S13, C and D**). This contrast difference is likely inherent in the sample and not due to sample preparation because the G0 cell lamella was thinner than the G1 cell lamella (~135 vs ~152 nm) and should therefore have the higher contrast expected of thinner samples. Subtomogram analysis of small complexes like nucleosomes is facilitated when the data are collected with a

355 Volta phase plate (VPP), which increases the low-resolution contrast (Asano et al.,
356 2015; Fukuda et al., 2015; Tan et al., 2023). Therefore, the cryo-ET data reported below
357 were collected with the VPP.

358

359 **Canonical nucleosomes are rare in Proliferating, G1, G0 and TSA-G0 cells**

360 Our previous attempts to identify canonical nucleosomes *in situ* in VPP cryotomograms
361 of *S. pombe* cryosections did not reveal canonical class averages (Cai et al., 2018b).
362 However, that study used cryosections, which may have sample-preparation-induced
363 structural artefacts, and previous-generation electron detectors, which have lower
364 signal-to-noise ratios (Ruskin et al., 2013). Because the *S. pombe* lysates did reveal
365 canonical nucleosome class averages, we hypothesised that the nucleosomes in these
366 cells may have partially detached DNA *in situ*. Our recent *in situ* study of wild-type *S.*
367 *cerevisiae* (Tan et al., 2023), which used cryolamellae, a K3 detector, and a VPP,
368 showed that canonical nucleosomes account for < 10% of the expected total, meaning
369 that non-canonical nucleosomes (whose structures remain unknown) are the majority in
370 budding yeast.

371

372 To characterise the prevalence of canonical nucleosomes of *S. pombe*, we performed
373 VPP cryotomography of proliferating, G1, G0, and TSA-G0 cell cryolamellae (**Figures 4**,
374 **S14 – S23**). We then used a workflow that involves template matching followed by 3D
375 classification to attempt to identify and locate the canonical nucleosomes among the
376 nucleosome-like particles (Tan et al., 2023). In this workflow, we minimised model bias
377 by using a smooth cylindrical reference for both template matching and classification.

378 Canonical nucleosome class averages were not found *in situ* in proliferating, G1, or
379 TSA-G0 *S. pombe* cell tomograms (**Figures S24, S25, S27**). Note that the absence of
380 canonical nucleosome class averages in the other cell states reflects the rarity – but not
381 the absence – of canonical nucleosomes. Only the G0 cell tomograms had a class
382 average that vaguely resembles the canonical nucleosome (**Figures 5A, S26**). While
383 the refined canonical nucleosome-like class average vaguely resembles the canonical
384 nucleosome crystal structure (White et al., 2001), it has jagged features (**Figure 5, B**
385 **and C**). These unusual density features suggest that 3-D classification could not resolve
386 all the heterogeneity, meaning that canonical nucleosomes are also rare in G0 (less
387 than ~4% of the expected population). Further advances in classification will be needed
388 to improve the estimation of canonical-nucleosome structure abundance.

389

390 **G1, G0 and TSA-G0 nuclei have similar macromolecular complex crowding**
391 Our light-microscopy experiments above showed that G0 cells have smaller nuclei than
392 both G1 (**Figure S11**) and TSA-G0 cells (**Figure S12**), even though they all have the
393 same number of chromosomes. We thus expected that G0 cells would show denser
394 nucleoplasmic particle packing than both G1 and TSA-G0 cells, which would reflect
395 differences in chromatin compaction. Previously, we assumed that most nucleosomes
396 were canonical (not detectable due to suspected technical limitations discussed above),
397 so we had used nearest-neighbour density analysis of nucleosome-like particles to
398 assess chromatin packing in nuclei (Cai et al., 2018b). Here our study rectifies both the
399 sample-preparation and data-quality issues and now shows that non-canonical
400 nucleosomes are the majority species *in situ*. Therefore, we cannot use nearest-

401 neighbour-distance analysis to study chromatin packing because we cannot yet identify
402 the non-canonical nucleosomes. Before nucleosome identification *in situ* in cryo-EM and
403 cryo-ET studies was feasible, Fourier analysis was used to characterise the packing
404 density of macromolecular complexes (Chen et al., 2016; Eltsov et al., 2008; Gan et al.,
405 2013; Scheffer et al., 2011). We therefore evaluated the overall packing of nuclear
406 complexes using radially averaged Fourier power spectra (herein power spectra), which
407 is less sensitive to the identities of the nuclear complexes.

408

409 The *S. pombe* nucleus has two major compartments – the nucleolus, which is the site of
410 ribosome biogenesis, and the region outside the nucleolus, which has more chromatin.
411 Nuclear megacomplexes include preribosomes, transcription initiation complexes,
412 spliceosomes, and many other globular complexes that exceed one megadalton
413 molecular weight. We first analysed cryolamella tomograms from the G1 cell cytoplasm
414 as a control (**Figure S14**). Power spectra from the ribosome-regions showed a broad
415 peak at approximately 30 nm spacing (**Figure 6A**), which reflects the densely packed
416 ribosomes (25 – 28 nm) (Verschoor et al., 1998). To compare the crowding (average
417 centre-to-centre spacing) of all nuclear complexes, we performed Fourier analysis on
418 the G1 (**Figures S15 and S16**), proliferating (**Figures S17 and S18**), G0 (**Figure S19**
419 and **S20**) and TSA-G0 (**Figure S22 and S23**) nucleus crytomograms. The power
420 spectra showed that the nuclei from all four cell types have a broad peak centred
421 around 20 nm (**Figure 6**). As such, proliferating, G1, G0 and TSA-G0 nuclei have
422 similar macromolecular crowding in the nucleoplasm. Furthermore, when the
423 nucleoplasm (**Figure S20**) and the nucleolus (**Figure S21**) in the same G0 nucleus

424 were compared, the power spectra were indistinguishable (**Figure S28**), meaning that
425 these two nuclear subcompartments have similar crowdedness.

426

427 **G0 and TSA-G0 chromatin has fewer megacomplexes than G1**

428 *S. pombe* cells also undergo large nuclear changes when they enter mitosis. Compared
429 to G2 (interphase) cells, prometaphase *S. pombe* cells have weaker (but still
430 detectable) CTD-S2P signals, compacted chromosomes, and fewer megacomplexes in
431 the chromatin (Cai et al., 2018b). These observations suggest a weak positive
432 correlation between megacomplex abundance and transcription. To further explore the
433 relationship between megacomplexes and transcription states, we sought to estimate
434 the concentration of nucleoplasmic megacomplexes in G1, G0 and TSA-G0 cells. Since
435 megacomplexes are too heterogeneous for 3D classification, we manually annotated
436 globular particles larger than ~15 nm and found that megacomplexes were more
437 abundant in G1 chromatin than in G0 chromatin (mean concentration of G1 = 665
438 megacomplexes per femtoliter, n = 5; mean concentration of G0 = 179 megacomplexes
439 per femtoliter, n = 10; p = 0.0002) (**Figure 7A**). The G0 nucleoplasmic megacomplex
440 concentration was similar to that of TSA-G0 (mean concentration of G0 = 179
441 megacomplexes per femtoliter, n = 10; mean concentration of TSA-G0 = 155
442 megacomplexes per femtoliter, n = 7, p = 0.57) (**Figure 7B**). Therefore, both TSA-G0
443 and G0 cells have lower concentrations of chromatin megacomplexes than G1 cells.

444

445 We next characterised the nucleolus, which can be immunofluorescently localised using
446 the conserved marker fibrillarin (Tollervey et al., 1990). Fibrillarin immunofluorescence

447 images showed that G0 cells had smaller nucleoli than G1 cells (**Figure 8, A and B**), in
448 line with previous traditional EM data (Su et al., 1996). Some G1 and G0
449 crytomograms seemingly included a portion of the nucleolus (**Figure 8, C and D**), in
450 which megacomplexes were more abundant than in the rest of the nucleus (**Figure 8, E**
451 – H). The fact that transcription is repressed in the G0 nucleolus even though
452 megacomplexes are abundant there indicates that megacomplex concentration and
453 transcription may be positively correlated in proliferating cells and uncorrelated in G0 vs
454 G1 cells.

455 **DISCUSSION**

456 When *S. pombe* cells enter G0, nearly every cell becomes shorter, undergoes
457 transcriptional repression, and becomes more thermotolerant (Marguerat et al., 2012;
458 Su et al., 1996). Several phenotype changes remained unknown, namely changes in
459 histone acetylation, abundance of a key polymerase subunit, nucleus volume changes,
460 distribution of nuclear macromolecular complexes, and structural state of the
461 nucleosomes. Our study uses different microscopy and biochemistry techniques to fill in
462 these knowledge gaps, giving a clearer picture of the cell-biological phenotypes of
463 extreme cell states (**Figure 9**).

464

465 ***S. pombe* G0 transcription repression shares some features with other extreme
466 states**

467 Transcriptional repression has been studied in a few extreme cell states. Early studies
468 found that chromatin compaction is correlated with near-complete transcriptional
469 shutdown during mitosis (Prescott and Bender, 1962; Taylor, 1960). While mitotic
470 chromatin is believed to sterically exclude transcription machinery (Luger et al., 2012;
471 Maeshima et al., 2019), later studies showed that compacted mammalian mitotic
472 chromatin is accessible enough to be bound by a small amount of the transcription
473 machinery and that low levels of transcription or and even upregulation of some genes
474 (Chen et al., 2005; Hsiung et al., 2015; Liang et al., 2015; Palozola et al., 2017; Teves
475 et al., 2018; Teves et al., 2016). In line with previous studies (Marguerat et al., 2012; Su
476 et al., 1996), we demonstrate here that *S. pombe* cell nuclei have lower active
477 transcription in the G0 state than in the proliferative state. Notably, the lower 5-EU

478 incorporation, lower RNA polymerase II levels, and lower levels of Rpb1 CTD-S2P and
479 CTD-S5P markers seen here are all consistent with transcriptional repression.

480

481 We previously found that mitotic *S. pombe* chromatin contains megacomplexes and
482 nucleosome-free “pockets”, indicating that the chromatin is unevenly packed (Cai et al.,
483 2018b). This nuclear phenotype is conducive to mitotic transcription (Oliva et al., 2005;
484 Peng et al., 2005; Rustici et al., 2004), which was supported by the observation of
485 active Rpb1 CTD-S2P marks in mitotic chromatin (Cai et al., 2018b). While G0
486 transcription is on average repressed, there are some genes that expressed at levels
487 similar to or greater than in proliferating cells (Marguerat et al., 2012; Shimanuki et al.,
488 2007). Here we find that some of the cytological and biochemical phenotypes observed
489 in mitotic *S. pombe* cells also hold for G0 cells. Megacomplexes are rarer within G0
490 chromatin, but abundant in the nucleolus. While the CTD-S2P signal is barely
491 detectable in immunofluorescence images, our immunoblots show that the levels of
492 CTD-S2P and CTD-S5P levels remain the same in G0 when calibrated to total Rpb1.
493 We also find that G0 cells have non-trivial levels of Rpb1-eGFP in the nucleus.
494 Therefore, *S. pombe* G0 cell nuclei also have properties conducive to low levels of
495 transcription.

496

497 When *S. cerevisiae* exits G0, it undergoes a process termed hypertranscription, i.e., a
498 large increase in transcription markers within minutes after G0 exit is triggered
499 (Cucinotta et al., 2021). In contrast, *S. pombe* nascent transcripts (assessed by 5-EU
500 incorporation) and RNA polymerase II activity (assessed by CTD-S2P and CTD-S5P

501 marks) remain low for several hours after G0 exit is triggered. Interestingly, *S.*
502 *cerevisiae* and *S. pombe* require 4 hours (Cucinotta et al., 2021) and 6 to 7 hours (Su et
503 al., 1996), respectively, to re-start proliferation. In both organisms, re-entry into the
504 proliferative state takes approximately 2 – 3 times longer than the cell cycle. It remains
505 to be determined what physiological features account for the difference in G0-exit
506 transcription programs.

507

508 **Histone hyperacetylation leads to complex phenotypes**

509 Acetylation marks make chromatin more negatively charged and potentially change
510 chromatin structure and function. For example, TSA treatment causes histone
511 hyperacetylation and chromatin decompaction in both interphase HeLa (Toth et al.,
512 2004) and G0 B cells (Kieffer-Kwon et al., 2017). In *S. cerevisiae* G0 cells, TSA
513 treatment increases chromatin volume (Swygent et al., 2021) while deletion of the RPD3
514 lysine deacetylase gene (which also leads to increased histone acetylation) prevents
515 transcriptional repression (McKnight et al., 2015). A recent study found that enzymes
516 help control *S. pombe* G0 entry efficiency and survival (Zahedi et al., 2020). One may
517 expect that perturbation of histone acetylation in *S. pombe* G0 cells may lead to large
518 changes in cellular physiology. Compared to untreated G0 cells, TSA-treated G0 cells
519 had hyperacetylated histone H3, longer cell bodies, and larger nuclei (similar volume to
520 G1 nuclei). In contrast, TSA-induced histone hyperacetylation did not lead to a
521 detectable decrease in thermotolerance or a derepression of transcription. Also, *S.*
522 *pombe* TSA-G0 cell nuclei have similar macromolecular complex crowding as G0 cells,
523 suggesting that the larger TSA-G0 nuclear volume may be packed with additional

524 complexes, whose identities are unknown. A counter-intuitive histone hyperacetylation
525 phenotype was also found in mitotic human fibroblasts (SK-N-SH cells), where TSA
526 treatment does not inhibit progression through mitosis and leaves chromosomes
527 compacted (Kruhlak et al., 2001). Changes in histone-acetylation therefore does not
528 lead to predictable phenotype differences in cells with repressed transcription.

529

530 **G0 chromatin does not undergo extreme local compaction**

531 In *S. cerevisiae*, the G0 nucleoplasm contains thicker STEM tomography densities than
532 in interphase nucleoplasm, suggesting that its G0 chromatin is more compact (Swygent
533 et al., 2021). Because *S. pombe* G0 nuclei have half the volume of G1 cells, we
534 expected that that the G0 nuclear contents would also show major rearrangements,
535 such as chromatin compacted into the domains in human perinuclear heterochromatin
536 or the chromatids in mitotic human cells (Cai et al., 2018a; Chen et al., 2023). However,
537 we did not see any regions in the G0 nuclei that resemble domains. Instead, our Fourier
538 analysis showed that proliferating, G1, G0, and TSA-G0 nuclei have a similar
539 crowdedness of macromolecular complexes, indicated by a single broad peak centred
540 at approximately 20 nm. A simple explanation of the similar cryo-ET power spectra
541 between different-sized nuclei is that the smaller G0 nuclei have fewer non-nucleosome
542 nuclear complexes. These studies show that transcriptional repression may be achieved
543 in diverse species and cell types that have different chromatin organisation.

544

545 **Canonical nucleosomes are rare in *S. pombe***

546 We recently found that in proliferating *S. cerevisiae*, less than 10% of the nucleosomes
547 have the canonical structure (Tan et al., 2023). Here, we applied the same *in situ* 3-D
548 classification analysis to *S. pombe* cryotomograms and found one class average in G0
549 chromatin that resembles the canonical nucleosome, accounting for <4% of the
550 expected nucleosome population. This average had jagged density features, which
551 suggests that misclassified complexes contributed heterogeneity that could not be
552 removed by classification. Therefore, G0 canonical nucleosomes are likely rarer than
553 4%. No canonical nucleosome class averages were found in the proliferating, G1, and
554 TSA-G0 cells, meaning that canonical nucleosomes are even rarer in these cell types.
555 Note that these classification results mean that canonical nucleosomes are rare, not
556 absent. The rarity of canonical nucleosomes is consistent with earlier findings that *S.*
557 *pombe* nucleosomes have lower thermal stability and more flexible DNA ends than
558 human nucleosomes *in vitro* (Koyama et al., 2017).

559
560 What intracellular factors result in the rarity of canonical nucleosomes inside *S.*
561 *cerevisiae* and *S. pombe* cells? Canonical nucleosomes are rare in G0 cells even
562 though all three RNA polymerases are repressed (Marguerat et al., 2012), meaning that
563 transcriptional repression does not explain the rarity of canonical nucleosomes in *S.*
564 *pombe*. Furthermore, the differences in histone acetylation levels in G0, G1,
565 proliferating, and TSA-G0 cells, do not adequately account for the rarity of canonical
566 nucleosomes *in situ*. Further comparative analysis of proliferating and G0 *S. pombe*
567 cells may shortlist the factors that *do not* influence *in situ* canonical nucleosome
568 abundance.

569 **MATERIALS AND METHODS**

570

571 **Cell culture and synchronisation**

572 Proliferating wild-type 972 h- cells (strain MBY99) were grown in Edinburgh Minimal
573 Medium (EMM, USBio, Salem, MA) or in yeast extract with supplements (YES; 5 g L⁻¹
574 yeast extract, 30 g L⁻¹ glucose, 75 mg L⁻¹ histidine, 75 mg L⁻¹ leucine, 75 mg L⁻¹
575 adenine, 75 mg L⁻¹ uracil) at 30°C (shaken at 200 – 250 RPM for all cell culture
576 experiments) to OD₆₀₀ = 0.2. Most cell washes were done by pelleting the cells by
577 centrifugation, followed by resuspension in fresh growth media or buffer. To prepare G0
578 cells, proliferating cells were washed twice in EMM without nitrogen (EMM–N) and then
579 incubated for 24 hours in EMM–N at 30°C. For experiments with *cdc10-129* (strain
580 MBY165; *leu1-32*) cells, the cultures were grown in YES at 30°C. When the OD₆₀₀
581 reached 0.2, the cultures were transferred to 36°C and incubated for 4 hours, which
582 arrests the majority of cells in G1 phase. For G0 experiments, wild-type cells, yFS240
583 cells, or cells of strains that express either eGFP-tagged RNA polymerase II or eGFP-
584 tagged nuclear pore subunits were used. *Cdc10-129* cells were not used for G0-cell
585 analysis because after incubation in EMM–N (with leucine, which this strain requires for
586 survival), they did not become shorter and were less thermotolerant than G0 cells of
587 other strains. We suspect this phenotype is a consequence of the supplements, which
588 may act as a sufficient source of nitrogen that prevents G0 entry.

589

590 **TSA perturbation**

591 TSA (T8552, Sigma, Merck KGaA, Darmstadt, Germany) was prepared as a 20 mg mL⁻¹
592 stock solution in dimethyl sulfoxide (DMSO). Cells growing in YES or EMM–N were
593 pelleted and then TSA was added following two different regimens. For G0-TSA,
594 proliferating cells were first incubated 24 hours in EMM–N, then 20 mg mL⁻¹ TSA was
595 added to 20 µg mL⁻¹ (66 µM) final concentration. These cells were then incubated in
596 TSA for 24 hours. For TSA-G0, proliferating cells were resuspended in EMM–N, then 20
597 mg mL⁻¹ TSA was immediately added to 20 µg mL⁻¹ final concentration. These cells
598 were incubated for 24 hours. For the washout control, TSA-G0 cells were washed with
599 fresh EMM–N, then incubated 24 hours before immunoblot processing.

600

601 **DAPI staining (not for immunofluorescence)**

602 For microscopy of DAPI-stained nuclei, cells were grown in EMM because the DAPI
603 signal is harder to see in YES-grown cells. Proliferating cells (0.5 OD₆₀₀ units) were
604 concentrated by pelleting at 5,000 × g for 1 minute and then resuspended in 1 mL EMM.
605 G0 cell cultures started at OD₆₀₀ = 0.2 and sometimes grew to OD₆₀₀ > 0.5 after 24
606 hours of nitrogen starvation. These cultures were diluted to OD₆₀₀ = 0.5 with EMM–N.
607 Cell cultures were fixed by adding 37% formaldehyde (#47608-1L-F, Sigma) to 3.7%
608 final concentration, incubated for 90 minutes (all fixation was done 200 – 250 RPM
609 shaking), then collected by centrifugation at 5,000 × g for 1 minute. Cells were then
610 washed twice in phosphate-buffered saline, pH 7.4 (PBS; Vivantis, Selangor Darul
611 Ehsan, Malaysia) and resuspended in 20 µL of PBS with 1 µg mL⁻¹ DAPI for G0 cells
612 and 10 ng mL⁻¹ DAPI for proliferating cells. To visualise the nuclei of G0 cells, they
613 needed to be treated with 100-fold higher DAPI concentrations than proliferating cells.

614 Five μ l of this sample was then added to a microscope slide and imaged using an
615 Olympus FV3000 Confocal Laser Scanning Microscope (Olympus, Tokyo, Japan)
616 equipped with a 1.35 NA 60 \times oil-immersion objective lens. The confocal microscopy
617 details are listed in **Table S2**.

618

619 **Thermotolerance tests**

620 Cells (OD_{600} range = 0.2 – 1.0 for proliferating, 0.7 for G0, and 0.5 for TSA-G0 – all at
621 0.01 OD_{600} units per sample) were pelleted at 5,000 \times g for 1 minute. The cell pellets
622 were resuspended in 100 μ L of 30°C or 48°C YES or EMM–N medium (from 1 mL
623 prewarmed stock) and then immediately placed in either a 30°C shaking incubator or a
624 48°C heating block, respectively, then incubated for 30 minutes. The 48°C-heated cells
625 were then cooled on ice for 1 minute. Four serial dilutions (10 \times , 100 \times , 1,000 \times , 10,000 \times)
626 were made for each sample into YES to 45 μ L or 50 μ L final total volume. The undiluted
627 stock and diluted cultures (5 μ L each) were spotted on a dry YES agar plate (2% w/v
628 agar in YES medium). Once the cells were adsorbed onto the agar (~30 minutes), the
629 plates were turned upside down, sealed with Parafilm®, incubated at 30°C for 2 days,
630 and then photographed.

631

632 **Immunoblots**

633 Immunoblot samples were prepared using trichloroacetic acid (TCA) precipitation. The
634 cell pellet (7 – 21 OD_{600} units, subsequently diluted to obtain equal protein loading) was
635 resuspended in 200 μ L of 20% TCA on ice. Approximately 0.4 g of glass beads (425 –
636 600 μ m, Sigma) was added to the mixture. The cells were then vortexed for 1 minute,

637 followed by incubation on ice for 1 minute; this vortex-incubation treatment was done
638 four times in total. The cell lysate was then centrifuged at 2,000 \times g for 10 seconds to
639 sediment the glass beads. Next, 500 μ L ice-cold 5% TCA was mixed with the lysate.
640 The mixture (without glass beads) was transferred to a new tube. Another 500 μ L of 5%
641 ice-cold TCA was mixed with the glass beads and this new mixture (without glass
642 beads) was added to the tube in the previous step. The combined mixture was then
643 placed on ice for 10 minutes to precipitate proteins. Then the precipitated proteins were
644 pelleted at 4°C, 15,000 \times g for 20 minutes. The supernatant was removed and the pellet
645 was re-centrifuged (either short-spin for 3 seconds or 15,000 \times g for 1 minute), followed
646 by the removal of the residual supernatant. The pellet was resuspended in 212 μ L of 1 \times
647 Laemmli sample buffer, followed by the immediate addition of 26 μ L of 1 M Tris pH 8 to
648 neutralise the residual TCA. Then the lysates were heated at 100°C for 5 minutes. The
649 lysates were then centrifuged at 15,000 \times g for 10 minutes and the clarified supernatant
650 containing solubilized proteins was transferred to a new tube.

651
652 Protein loading levels were calibrated using immunoblots against both histone H3 and
653 H4 C-termini, or against Rpb1 C-terminal domain. SDS-PAGE was done with Mini-
654 PROTEAN® TGXTM 4-15% Precast Gels (Bio-Rad, Hercules, CA), electrophoresed for
655 90 minutes at 80 volts. Precision Plus Protein™ WesternC™ Standards (Bio-Rad) or
656 Invitrogen™ MagicMark™ XP Western Protein Standard (Thermo Fisher Scientific,
657 TFS, Waltham, MA) (2.5 μ L) were loaded as molecular-weight markers. The proteins
658 were then transferred to PVDF membrane (Bio-Rad Immun-Blot®) at 100 volts for 30
659 minutes at 4°C. The membrane was blocked in 2% BSA in 1 \times Tris-Buffered Saline,

660 0.1% Tween® 20 Detergent (TBST) for 1 hour at 22°C and then incubated with primary
661 antibody overnight at 22°C. All antibody dilution factors are reported in **Table S3**. Next,
662 the blot was rinsed in TBST for 20 minutes three times at 22°C, and incubated with
663 HRP-conjugated secondary antibody in 2% BSA in TBST for 1 hour at 22°C, with
664 additional StrepTactin-HRP Conjugate (Bio-Rad) if Precision Plus Protein™
665 WesternC™ Standards ladder was used. The blot was then rinsed in TBST for 10
666 minutes three times. Finally, the blot was treated with a 50:50 mixture of Clarity Western
667 Peroxide Reagent and Clarity Western Luminol/Enhancer Reagent (Bio-Rad) for 5
668 minutes before visualisation. The chemiluminescent signals were recorded using an
669 ImageQuant LAS 4000 (Cytiva, Marlborough, MA). Uncropped immunoblots are shown
670 in **Figure S29**.

671

672 **Immunofluorescence microscopy**

673 Indirect immunofluorescence microscopy was done using a modified version of our
674 previous protocol (Cai et al., 2018b) as follows. Proliferating, G1, and G0 cells were
675 fixed with 3.7% formaldehyde for 90 minutes at 30°C. Cells were collected by
676 centrifugation at 5,000 × g for 5 minutes and were then resuspended in 1 mL PEM (100
677 mM PIPES, 1 mM EGTA, 1 mM MgSO₄, pH 6.9) buffer. The cells were then washed
678 once by centrifugation and resuspension with PEM, followed by resuspension in 1 mL
679 PEMS (1.2 M sorbitol in PEM). Next, the cells were converted to spheroplasts with 25
680 U/mL Zymolyase (Zymo Research, Irvine, CA) in PEMS and incubated for 75 minutes in
681 a 37°C water bath. All subsequent incubations were done at 10 RPM in a rotator
682 (Invitrogen HulaMixer™). The cells were washed again with PEMS, resuspended in

683 PEMS with 1% Triton X-100 (Sigma) and incubated at 22°C for 5 minutes. Cells were
684 then washed twice with PEM and then incubated in PEMBAL (PEM, 1% bovine serum
685 albumin (BSA), 100 mM L-lysine hydrochloride) for 1 hour at 22°C. The primary and
686 secondary antibodies used for immunostaining are listed, alongside the immunoblot
687 experimental parameters, in **Table S3**. The cells were resuspended in 100 µL of primary
688 antibody diluted in PEMBAL, incubated at 22°C overnight. Next, the cells were washed
689 twice with PEMBAL and resuspended in 100 µL of secondary antibody diluted in
690 PEMBAL, and then incubated at 22°C in the dark overnight. Finally, the cells were
691 washed in PEM, then PBS, then resuspended in 20 µL of DAPI diluted to 1 µg/mL in
692 PBS. Five µL of the sample was then added to a microscope slide and imaged using
693 either an Ultraview Vox spinning-disc confocal microscope (PerkinElmer, Waltham, MA)
694 or an Olympus FV3000 Confocal Laser Scanning Microscope. The images were
695 recorded using either a 60× or a 100× objective lens.

696

697 **Nascent RNA detection**

698 Newly synthesised RNA was detected *in situ* using a 5-EU click-chemistry kit (“Click-
699 iT™” C10329, Thermo Fisher Scientific (TFS), Waltham, MA). As a negative control, the
700 RNA-polymerase inhibitor phenanthroline (20 mg mL⁻¹ stock in deionized water, P9375,
701 Sigma) was added to 1 mL cell culture to a final concentration of 350 µg/mL. Five-
702 ethynyl-uridine (100 mM stock in deionized water) was added to the cultures of strain
703 yFS240 or to strain MBY99 (the control strain) to 1 mM final concentration and
704 incubated at 30°C in the dark with shaking at 250 RPM for the various durations
705 indicated in the results. Cells were then fixed with 1 mL of 3.7% formaldehyde in PBS

706 for 15 minutes at 22°C; all subsequent incubations were done at 10 RPM in a rotator.
707 Next, the cells were washed once by pelleting at 1,500 × g and resuspending in 1 mL of
708 PBS. The cells were permeabilized with 1 mL of 0.5% Triton X-100 in PBS for 15
709 minutes at 22°C in the dark and then washed in PBS. Then the cells were treated with a
710 reaction cocktail made with 428 µL of Click-iT RNA reaction buffer, 20 µL of 100 mM
711 CuSO₄, 1.8 µL of Alexa Fluor® 488 stock solution and 50 µL of Click-iT reaction buffer
712 additive as directed in the Click-iT RNA Alexa Fluor 488 Imaging Kit. This mixture was
713 incubated at 22°C in the dark for 30 minutes. Finally, the labelled cells were washed in
714 Click-iT reaction rinse buffer before they were resuspended in 20 µL of PBS with 1
715 µg/mL of DAPI.

716

717 **Plasmid extraction and linearization**

718 The plasmid pFA6a-link-yoEGFP-Kan was a gift from Wendell Lim & Kurt Thorn
719 (Addgene plasmid # 44900 ; <https://www.addgene.org/44900> ; RRID:Addgene_44900)
720 (Lee et al., 2013), given in the form of a DH5-Alpha *Escherichia coli* bacterial stab. Five
721 mL of bacteria were cultured in vent cap tubes shaking at 220 RPM at 37°C overnight,
722 then plasmids were extracted with the QIAprep Spin Miniprep Kit (QIAGEN, Hilden,
723 Germany) following the manufacturer's instructions.

724

725 Extracted plasmids were linearized by digestion with a reaction containing 1 µg of
726 plasmid DNA, 5 µL of 10x rCutSmart™ Buffer (New England BioLabs, Ipswich, MA), 10
727 units of restriction enzyme (New England BioLabs) topped up to 50 µL with nuclease-
728 free water. *Sa*I restriction enzyme was used for the template pFA6a-link-yoEGFP-Kan

729 plasmid, *Aat*II was used for confirmation of the Gibson Assembly product plasmid (see
730 below). The reaction mixture was heated at 37°C for 15 minutes to digest the DNA, then
731 80°C for 20 minutes to inactivate the enzymes.

732

733 **Strain construction**

734 The strain details are shown in **Table S1**. Primers were from IDT (Integrated DNA
735 Technologies, Inc., Singapore) and listed in **Table S4**. Q5 PCR Master Mix (New
736 England BioLabs) was used for PCR reactions. MBY99 served as the wild-type strain.
737 The insert and backbone fragments were amplified from pFA6a-link-yoEGFP-Kan
738 plasmids linearized with *Sal*II restriction enzyme. Homology fragments were amplified
739 from genomic DNA extracted from MBY99 with the DNeasy Blood & Tissue Kit
740 (QIAGEN) following the manufacturer's instructions. All PCR reactions contained 1 ng of
741 plasmid template DNA or 100 ng of genomic template DNA plus 0.5 µM of each primer.
742 The PCR program was 98°C for 30 seconds, then 30 cycles of 98°C for 5 seconds,
743 60°C for 10 seconds and 72°C for 1.5 minutes, then 72°C for 5 minutes.

744

745 For *rpb1-EGFP*, a plasmid containing the tagging cassette was created first by Gibson
746 Assembly (Gibson et al., 2009). The fragment containing 1kb of homology to the *rpb1*
747 gene sequence just before the stop codon (5' homology fragment), the EGFP-Kan
748 module fragment, the fragment containing 1kb of homology to the genomic sequence
749 just downstream of the *rpb1* stop codon (3' homology fragment), and the backbone
750 fragment were amplified as described above. For each fragment, the reverse primer
751 contained an overhang sequence matching the start of the next fragment. After their

752 amplification, the backbone and 5' homology fragments were combined by assembly
753 PCR using the same PCR cycle as above, and the same was done with the EGFP-Kan
754 module and 3' homology fragments. The resulting assembly PCR fragments were
755 purified with the QIAquick PCR Purification Kit (QIAGEN), then assembled into plasmids
756 and cloned into DH5-Alpha *E. coli* with the Gibson Assembly® Cloning Kit (NEB)
757 following the manufacturer's instructions. The tagging cassette (5' homology, EGFP-
758 Kan module, 3' homology) for transformation was then created by extracting the
759 plasmids with the QIAprep Spin Miniprep Kit (QIAGEN) and linearizing the plasmids
760 with *Aat*II restriction enzyme (New England BioLabs) using the digestion reaction as
761 described above. The entire tagging cassette was then amplified using the same PCR
762 cycle as above.

763

764 For *nup97-EGFP*, the tagging cassette was created directly through assembly PCR.
765 The *nup97* 5' homology fragment, EGFP-Kan module fragment, and *nup97* 3' homology
766 fragment were created as described above, each with the reverse primer containing an
767 overhang sequence homologous to the start of the next fragment. All three fragments
768 were then combined by assembly PCR using the same PCR cycle as above, and the
769 resulting product was directly used for transformation.

770

771 Cells were transformed using the lithium acetate / PEG4000 method reported in (Murray
772 et al., 2016) with modifications. Overnight cell culture in YES was diluted to OD₆₀₀ = 0.2
773 in 25 mL of YES and grown to an OD₆₀₀ of 0.5. Ten mL of cells were collected,
774 centrifuged at 2,500 × g at 22°C for 5 minutes, and the supernatant was removed. The

775 cells were then washed with 5 mL sterile water with centrifugation at 2,500 \times g at 22°C
776 for 3 minutes. The cells were resuspended in 1 mL sterile water, transferred to a new
777 1.5 mL collection tube, centrifuged at 16,000 \times g at 22°C for 1 minute, washed in 1 mL
778 of TE/LiAc (10 mM tris, 1 mM ethylenediaminetetraacetic acid (EDTA), 100 mM lithium
779 acetate), with centrifugation at 16,000 \times g for 1 minute, and resuspended in 100 μ L of
780 the same buffer. One hundred μ L of cell suspension was transferred to a new 1.5 mL
781 collection tube containing 10 μ L of 2 mg mL⁻¹ salmon sperm DNA (Sigma-Aldrich,
782 Burlington, MA) plus 5 μ L of PCR-amplified cassette DNA, and incubated for at 22°C for
783 10 min. 260 μ L of TE/LiAc/PEG (10 mM tris, 1 mM EDTA, 100 mM lithium acetate, 40%
784 w/v Polyethylene glycol 4000) was added and incubated with shaking at 22°C for 30
785 minutes. Forty-three μ L of DMSO was added, the suspension was incubated at 42°C for
786 15 minutes in a water bath, then the suspension was centrifuged at 6,000 \times g for 1
787 minute. The supernatant was removed, the cells were resuspended in 1 mL of EMM-N,
788 and the suspension was transferred to a vented-cap tube shaking at 220 RPM at 30°C
789 for 24 hours. Finally, the cells were transferred to a new 1.5 mL collection tube,
790 centrifuged at 16,000 \times g for 1 minute, the medium was removed, and the cells were
791 resuspended in 300 μ L of 1 \times TE buffer, pH 8.0 (10 mM tris, 1 mM EDTA). All this cell
792 suspension was plated on a G418 YES selection plate and incubated for several days
793 at 30°C. G418 selection plates were created by adding G418 to the molten YES agar to
794 a concentration of 200 mg L⁻¹ before it was poured.

795

796 Newly created strains were authenticated by genomic DNA extraction with the DNeasy
797 Blood & Tissue Kit (QIAGEN) following the manufacturer's instructions, followed by

798 PCR of integration junctions and Sanger sequencing. Confirmation PCR was performed
799 with a program of 94°C for 2 minutes, 30 cycles of 94°C for 1 minute, 62°C for 1 minute
800 and 72°C for 3.5 minutes, then 72°C for 5 minutes. The PCR products were
801 electrophoresed in a gel containing 2% agarose and FloroSafe DNA Stain in Tris-
802 acetate-EDTA, at 100 Volts for 1 hour, then visualised in a G:Box (Syngene). For
803 sequencing, overlapping PCR fragments were created with the above cycle, purified
804 with the QIAquick PCR Purification Kit (QIAGEN) with water used for the final elution,
805 before the fragments and the sequencing primers were sent for Sanger sequencing (Bio
806 Basic Asia Pacific Pte Ltd, Singapore).

807

808 **Analysis of cells exiting G0**

809 Wild-type, yFS240, and Rpb1-eGFP cells were prepared as G0 cultures as described
810 above. For the 0-minute G0 exit, 1 mL of wild-type cells was directly subjected to the
811 immunofluorescence-microscopy procedure above; 1 mL of yFS240 cells was directly
812 subjected to the nascent-RNA-detection procedure above; 1 mL of Rpb1-eGFP cells
813 was directly imaged by confocal fluorescence microscopy; and 25 mL of wild-type cells
814 was pelleted in preparation for the immunoblot procedure above, all without changing
815 the culture medium. For 30 minute, 2 hour, 4 hour, and 6 hour G0 exit, either 1 mL or 25
816 mL of G0 cells was pelleted, then resuspended in an equal volume of YES and
817 incubated for the respective duration at 30°C before being subjected to the above
818 procedures. For the 24-hour G0 exit, either 50 µL of cells was inoculated in 5 mL of
819 YES, then incubated 24 hours at 30°C before 1 mL of this culture was directly imaged or
820 subjected to the immunofluorescence-microscopy or nascent-RNA-detection

821 procedures; or 250 μ L of cells was inoculated in 25 mL of YES, then incubated 24 hours
822 at 30°C before all 25 mL of this culture was pelleted in preparation for the immunoblot
823 procedure. All RNA labelling with 5-EU was performed for 10 minutes so that, for
824 example, the “30 minute G0 exit” sample was first incubated for 30 minutes in YES,
825 then an additional 10 minutes in YES plus 5-EU, followed by fixation for treatment with
826 the Click-iT RNA Alexa Fluor 488 Imaging Kit.

827

828 **Fluorescence microscopy of living cells**

829 Cells were first grown to log phase (proliferating) or subjected to nitrogen starvation,
830 with TSA treatment when needed (G0 and TSA-G0). A thin pad agar made from 2% w/v
831 agar in YES (proliferating) or EMM-N (G0 and TSA-G0) medium was prepared and
832 spread on a glass slide before 5 μ L of cell culture was applied to the coverslip and
833 pressed against the agar pad, which was trimmed to the size of the coverslip. Samples
834 were imaged with an Olympus FV3000 Confocal Laser Scanning Microscope using a
835 60x objective lens. Images were captured as Z-stacks thick enough to image the GFP
836 signals from all of the nuclei at each stage position. To capture the moment the nuclei
837 have just divided, time-lapse imaging was performed with intervals of 10 minutes for 3
838 hours for nucleus size measurement, and with intervals of 30 minutes for 19 hours for
839 G0 exit. These time-lapse data were captured by collecting Z-stacks with Z-drift
840 compensation at each interval. Time-lapse imaging was not performed on most G0 and
841 TSA-G0 cells for nucleus size measurement because time-lapse-imaging tests did not
842 detect any changes in nucleus morphology in these cells during the 3 hours of time-
843 lapse imaging.

844

845 **Nucleus volume measurement**

846 Z-stacks of Nup97-eGFP cells were analysed in FIJI (Schindelin et al., 2012). To
847 facilitate the estimation of nuclear volume, spherical nuclei were chosen for analysis;
848 elongated and irregularly shaped nuclei were excluded. For each nucleus in the Z-stack,
849 the Z-slice where the nucleus appears the largest was chosen. The oval selection tool
850 was used to select a circular area extending from the centre of the Nup97-eGFP (green
851 channel) signal from one end of the nucleus to the centre of the Nup97-eGFP signal on
852 the opposite end, after which the diameter of the circle was recorded. For proliferating
853 cells, a time-lapse Z-stack was analysed. Nuclei that had just divided were identified as
854 G1 nuclei for nucleus volume analysis as described above. After all nucleus diameters
855 were recorded, their volumes were calculated from the sphere volume formula $4/3 \times \pi \times$
856 $(\text{diameter} / 2)^3$.

857

858 **Cryo FIB milling**

859 Proliferating, G1-arrested, G0 and TSA-G0 cells were first plunge-frozen with a Vitrobot,
860 Mark IV (TFS) operated at the respective growth or arrest temperatures (37°C for G1-
861 arrested cells, 30°C for proliferating, G0 and TSA-G0 cells) with 100% relative humidity.
862 Cells were centrifuged at 5,000 $\times g$, the supernatant was removed, then the cells were
863 resuspended in a small volume of the same medium such that the new OD₆₀₀ was 2.5
864 for proliferating and G1-arrested cells, and 4.0 for G0 and TSA-G0 cells. Four μl of cells
865 at OD₆₀₀ = 2.5 or 4.0 was pipetted onto the carbon side of an electron microscopy grid,
866 manually blotted from the other side of the grid with a filter paper (Whatman, Grade 1)

867 for 1 – 2 seconds, then plunged into 37% ethane/63% propane cooled by liquid nitrogen
868 (Tivol et al., 2008).

869

870 Grids were milled with a FEI Helios dual-beam electron microscope following the
871 protocol of Medeiros and Böck (Medeiros et al., 2018). The samples were inserted into
872 the microscope at –158°C using a PolarPrep 2000 Cryo Transfer System (Quorum
873 Technologies, Laughton, UK), then coated with organoplatinum with a gas injection
874 system. The organoplatinum was warmed to 33.85°C and then “Flow” in the xT
875 microscope control GUI was set to “Open” for 15 or 20 seconds, as in the “cold-
876 deposition” method (Hayles et al., 2007). Cells were located on the grid, then milled to
877 generate a 100 to 150 nm thick, 15 µm wide lamella near the centre of a cell, starting
878 with 2.8 nA beam current rough milling, followed by 0.46 nA intermediate milling, and
879 ending with 48 pA for the final polishing step.

880

881 **Electron cryotomography**

882 Tilt series of cryolamellae were collected on a Titan Krios (TFS) operated at 300 kV,
883 and equipped with a VPP (TFS), a K3 direct detection camera (AMETEK, Berwyn, PA),
884 and a Gatan imaging filter (AMETEK) operated in zero-loss mode with a slit width of 20
885 eV. Detailed imaging parameters for lamellae are shown in **Table S5**. Images were
886 captured as super-resolution movie frames at a 1.7 Å pixel size, using SerialEM
887 (Mastronarde, 2005). Movies were aligned with IMOD alignframes (Mastronarde, 1997).
888 The tilt series were automatically coarse aligned using the IMOD program *Etomo*
889 running in batch-tomography mode (Kremer et al., 1996; Mastronarde, 1997;

890 Mastronarde and Held, 2017). Tilt series alignment was done in eTomo by patch
891 tracking.

892

893 Contrast-transfer function compensation was done for the few defocus phase-contrast
894 images, but not for the VPP images. To suppress the high-spatial-frequency noise, the
895 tilt series were binned 4 times and low-pass filtered with Etomo 2-D filter parameters $\mu =$
896 0.35, and $\sigma = 0.05$ for a 6.8 Å pixel size. Crytomograms were reconstructed by
897 weighted back projection using the default Etomo parameters, then trimmed in 3-D to
898 exclude features outside the field of interest. The additional details of each analysed tilt
899 series are in **Table S6**.

900

901 **Template matching**

902 Template matching was done using the PEET package (Particle Estimation for Electron
903 Tomography) (Heumann, 2023; Heumann et al., 2011; Nicastro et al., 2006). A rounded
904 5 nm radius, 6 nm thick cylinder was used as a template. This template was enclosed
905 with a cylindrical mask of 6.1 nm height and 5.4 nm radius, smoothed by convolution
906 with a Gaussian of standard deviation of 0.68 nm. A cubic search grid with a 11 nm
907 spacing was generated with the PEET program *gridInit*. Because this grid extended into
908 the cytoplasm, a nucleus-enclosing boundary model was created within the same grid
909 model file. This boundary model was drawn along the nuclear envelope at the “top” and
910 “bottom” of the crytomogram. The search points outside the nucleus were excluded
911 with the IMOD command:
912 `clipmodel -bound 2 original.mod new.mod`

913 Template-matching hits that were within 6 nm of each other were considered as
914 duplicates. One of the duplicates was automatically removed.

915

916 **Classification analysis of nucleosome-like particles**

917 All scripts prefixed by ot_ are available at <https://github.com/anaphaze/ot-tools>.
918 Classification was done with RELION 3.0 (REgularised LIkelihood OptimisatioN)
919 (Kimanis et al., 2016; Zivanov et al., 2018), using the subtomogram-analysis routines
920 (Bharat et al., 2015). The nucleosome-like particles' centres of mass were converted
921 from a PEET .mod file to a text file with the IMOD program *model2point*. These
922 positions were then read into RELION to extract subtomograms with a 24.4 nm box
923 size.

924

925 Our previous studies showed that some canonical nucleosomes are lost during 2-D
926 classification (Cai et al., 2018a; Tan et al., 2023), so we exclusively used direct 3-D
927 classification here to maximise the number of detected canonical nucleosomes. A
928 rounded 10 nm wide, 6 nm thick cylinder was used as a reference map, and a smooth
929 cylinder of the same dimensions and a cosine-shaped edge was used as a reference
930 mask, both created with *bediting*, the latter with *relion_mask_create* used as well. All
931 nucleosome-like particles identified in PEET were subjected to 3-D classification with
932 100 classes, an experimental image mask diameter of 120 Å, a resolution cutoff of 20 Å,
933 and 4 translational search steps.

934

935 **Fourier power spectrum analysis**

936 Tomographic slices were generated from 18 central slices, then imported into FIJI
937 (Schindelin et al., 2012). A 800×800 pixel box of a region of the tomographic slice of
938 the chromatin inside the nucleus (to exclude the nucleolar densities) was selected, then
939 the Fourier Transform was generated using the FFT tool. The Radial Profile Angle
940 plugin (Carl, 2020) was used to generate the rotationally averaged (1-D) power
941 spectrum. The data was analysed and plotted with Excel (Microsoft Inc., Redmond,
942 WA): the x axis has units of inverse nanometers according to the formula $1 / (2 \times 0.68$
943 nm) \times (radius in pixels) / 512, where $1 / (2 \times 0.68$ nm) is the Nyquist limited resolution
944 for data that has a pixel size of 0.68 nm.

945

946 To compare the nuclear power spectra from different cell types, we first normalised
947 each spectrum by calculating the average of all amplitude values in the spectrum up to
948 a resolution cutoff of 5 nm, then dividing each amplitude value by this average. After
949 normalisation, the power spectra of all analysed tomograms of a given sample type
950 were averaged at each spacing to produce the mean. The error bars represent the
951 standard deviation of the amplitude values at each spacing.

952

953 **Megacomplex analysis**

954 To facilitate megacomplex picking, cryotomograms were binned twofold in 3-D with the
955 IMOD program *binvol*. Each cryotomogram was opened with the 3dmod *slicer* tool set to
956 ~ 30 nm thick tomographic slices. Nuclear particles that were (1) larger than 15 nm and
957 (2) outside the nucleolus were manually picked as “scattered” contour points.

958

959 To estimate the chromatin volume, a “closed” contour was drawn around the chromatin
960 position at the central slice of the crytomogram. The area within this contour was
961 calculated using the IMOD command:

962 imodinfo -F model.mod

963 This method reports the contour’s “Cylinder Volume”, defined in this case as Area \times
964 pixel_size³, with Area expressed in voxels and pixel_size expressed in nanometers.
965 This area was then multiplied by the tomogram thickness (in voxels) to estimate the
966 volume.

967

968 **Data sharing**

969 One proliferating cell, G1 cell, G0 cell and TSA-G0 cell lamella crytomogram each has
970 been deposited as EMDB entry EMD-0875. All the tilt series and crytomograms
971 presented in this paper were deposited as EMPIAR (Iudin et al., 2016) entry EMPIAR-
972 10339. We focused our efforts on the highest-contrast cryo-ET data that contained
973 nuclear positions, leaving a large number of tilt series unanalysed. These surplus tilt-
974 series and many corresponding crytomograms will be deposited with our yeast
975 surplus-data (Gan et al., 2019) entry EMPIAR-10227.

976

977 **Figure preparation and statistics**

978 Image format interconversion and contrast adjustments were applied to the entire field
979 of view using FIJI (Schindelin et al., 2012) or Adobe Photoshop (Adobe Systems, San
980 Jose, CA). Student’s t-tests were done with Google sheets (Alphabet Inc., Mountain
981 View, CA). Plots of the rotationally average power spectra were made with Excel

982 (Microsoft Inc., Redmond, WA). Gardner-Altman estimation statistics plots (Ho et al.,
983 2019) were made with the Estimation Statistics website (Claridge-Chang and Assam,
984 2023).

985

986 **Contributions and Notes**

987 ZYT, SC - project design, experiments, analysis, writing; SAP, XN - project design,
988 experiments; JS - training; LG - project design, experiments, analysis, writing, training.

989

990 The authors declare no conflicts of interest.

991

992 **ACKNOWLEDGEMENTS**

993 We thank the CBIS microscopy staff for support and training. We thank Mohan
994 Balasubramanian for strains MBY99 (972 h-) and MBY165 (*cdc10-129*); Makoto Ohira
995 and Nick Rhind for sharing and advising on the use of the TK-hENT strain yFS240;
996 Duane Loh for advice on Fourier analysis; and Claris Chong and Jon Chen for
997 comments. This work was supported by a Singapore Ministry of Education T2
998 MOE2019-T2-2-045 and a T1 R-154-000-B42-114 grant.

999

1000 REFERENCES

1001 **Allen, C., Buttner, S., Aragon, A. D., Thomas, J. A., Meirelles, O., Jaetao, J. E., Benn, D.,**
1002 **Ruby, S. W., Veenhuis, M., Madeo, F. and Werner-Washburne, M.** (2006). Isolation of
1003 quiescent and nonquiescent cells from yeast stationary-phase cultures. *J Cell Biol* **174**, 89-
1004 100. doi:10.1083/jcb.200604072

1005 **Asano, S., Fukuda, Y., Beck, F., Aufderheide, A., Forster, F., Danev, R. and Baumeister,**
1006 **W.** (2015). Proteasomes. A molecular census of 26S proteasomes in intact neurons. *Science*
1007 **347**, 439-42. doi:10.1126/science.1261197

1008 **Aves, S. J., Durkacz, B. W., Carr, A. and Nurse, P.** (1985). Cloning, sequencing and
1009 transcriptional control of the *Schizosaccharomyces pombe* cdc10 'start' gene. *EMBO J* **4**,
1010 457-63.

1011 **Bauerlein, F. J. B. and Baumeister, W.** (2021). Towards Visual Proteomics at High Resolution.
1012 *J Mol Biol* **433**, 167187. doi:10.1016/j.jmb.2021.167187

1013 **Bharat, T. A., Russo, C. J., Lowe, J., Passmore, L. A. and Scheres, S. H.** (2015). Advances
1014 in Single-Particle Electron Cryomicroscopy Structure Determination applied to Sub-tomogram
1015 Averaging. *Structure* **23**, 1743-53. doi:10.1016/j.str.2015.06.026

1016 **Bohning, J. and Bharat, T. A. M.** (2021). Towards high-throughput *in situ* structural biology
1017 using electron cryotomography. *Prog Biophys Mol Biol* **160**, 97-103.
1018 doi:10.1016/j.pbiomolbio.2020.05.010

1019 **Cai, S., Böck, D., Pilhofer, M. and Gan, L.** (2018a). The *in situ* structures of mono-, di-, and
1020 trinucleosomes in human heterochromatin. *Mol Biol Cell* **29**, 2450-2457.
1021 doi:10.1091/mbc.E18-05-0331

1022 **Cai, S., Chen, C., Tan, Z. Y., Huang, Y., Shi, J. and Gan, L.** (2018b). Cryo-ET reveals the
1023 macromolecular reorganization of *S. pombe* mitotic chromosomes *in vivo*. *Proc Natl Acad Sci*
1024 *U S A* **115**, 10977-10982. doi:10.1073/pnas.1720476115

1025 **Carl, P.** (2020). Radial Profile Extended, vol. 2023.

1026 **Chen, C., Lim, H. H., Shi, J., Tamura, S., Maeshima, K., Surana, U. and Gan, L.** (2016).
1027 Budding yeast chromatin is dispersed in a crowded nucleoplasm *in vivo*. *Mol Biol Cell* **27**,
1028 3357-3368. doi:10.1091/mbc.E16-07-0506

1029 **Chen, D., Dundr, M., Wang, C., Leung, A., Lamond, A., Misteli, T. and Huang, S.** (2005).
1030 Condensed mitotic chromatin is accessible to transcription factors and chromatin structural
1031 proteins. *J Cell Biol* **168**, 41-54. doi:10.1083/jcb.200407182

1032 **Chen, J. K., Liu, T., Cai, S., Ruan, W., Ng, C. T., Shi, J., Surana, U. and Gan, L.** (2023).
1033 Nanoscale analysis of human G1 and metaphase chromatin *in situ*. *bioRxiv*,
1034 2023.07.31.551204. doi:10.1101/2023.07.31.551204

1035 **Claridge-Chang, A. and Assam, P.** (2023). ESTIMATION STATISTICS, vol. 2023.

1036 **Costello, G., Rodgers, L. and Beach, D.** (1986). Fission yeast enters the stationary phase G0
1037 state from either mitotic G1 or G2. *Current genetics* **11**, 119-125.

1038 **Cucinotta, C. E., Dell, R. H., Braceros, K. C. and Tsukiyama, T.** (2021). RSC primes the
1039 quiescent genome for hypertranscription upon cell-cycle re-entry. *eLife* **10**.
1040 doi:10.7554/eLife.67033

1041 **Eltsov, M., MacLellan, K. M., Maeshima, K., Frangakis, A. S. and Dubochet, J.** (2008).
1042 Analysis of cryo-electron microscopy images does not support the existence of 30-nm
1043 chromatin fibers in mitotic chromosomes *in situ*. *Proc Natl Acad Sci U S A* **105**, 19732-7.
1044 doi:10.1073/pnas.0810057105

1045 **Forsburg, S. L.** (1999). The best yeast? *Trends Genet* **15**, 340-4.

1046 **Fukuda, Y., Laugks, U., Lucic, V., Baumeister, W. and Danev, R.** (2015). Electron
1047 cryotomography of vitrified cells with a Volta phase plate. *J Struct Biol* **190**, 143-54.
1048 doi:10.1016/j.jsb.2015.03.004

1049 **Gan, L., Ladinsky, M. S. and Jensen, G. J.** (2013). Chromatin in a marine picoeukaryote is a
1050 disordered assemblage of nucleosomes. *Chromosoma* **122**, 377-86. doi:10.1007/s00412-
1051 013-0423-z

1052 **Gan, L., Ng, C. T., Chen, C. and Cai, S.** (2019). A collection of yeast cellular electron
1053 cryotomography data. *Gigascience* **8**. doi:10.1093/gigascience/giz077

1054 **Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison, C. A., 3rd and Smith, H.**
1055 O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat*
1056 *Methods* **6**, 343-5. doi:10.1038/nmeth.1318

1057 **Harlen, K. M. and Churchman, L. S.** (2017). The code and beyond: transcription regulation by
1058 the RNA polymerase II carboxy-terminal domain. *Nat Rev Mol Cell Biol* **18**, 263-273.
1059 doi:10.1038/nrm.2017.10

1060 **Hayles, M. F., Stokes, D. J., Phifer, D. and Findlay, K. C.** (2007). A technique for improved
1061 focused ion beam milling of cryo-prepared life science specimens. *J Microsc* **226**, 263-9.
1062 doi:10.1111/j.1365-2818.2007.01775.x

1063 **Heumann, J. M.** (2023). PEET: University of Colorado Boulder.

1064 **Heumann, J. M., Hoenger, A. and Mastronarde, D. N.** (2011). Clustering and variance maps
1065 for cryo-electron tomography using wedge-masked differences. *J Struct Biol* **175**, 288-99.
1066 doi:10.1016/j.jsb.2011.05.011

1067 **Heun, P., Laroche, T., Shimada, K., Furrer, P. and Gasser, S. M.** (2001). Chromosome
1068 dynamics in the yeast interphase nucleus. *Science* **294**, 2181-6.
1069 doi:10.1126/science.1065366

1070 **Hiraoka, Y., Toda, T. and Yanagida, M.** (1984). The NDA3 gene of fission yeast encodes beta-
1071 tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome
1072 movement in mitosis. *Cell* **39**, 349-58.

1073 **Ho, J., Tumkaya, T., Aryal, S., Choi, H. and Claridge-Chang, A.** (2019). Moving beyond P
1074 values: data analysis with estimation graphics. *Nat Methods* **16**, 565-566.
1075 doi:10.1038/s41592-019-0470-3

1076 **Hodson, J. A., Bailis, J. M. and Forsburg, S. L.** (2003). Efficient labeling of fission yeast
1077 *Schizosaccharomyces pombe* with thymidine and BUdR. *Nucleic Acids Res* **31**, e134.

1078 **Hsiung, C. C., Morrissey, C. S., Udugama, M., Frank, C. L., Keller, C. A., Baek, S.,**
1079 **Giardine, B., Crawford, G. E., Sung, M. H., Hardison, R. C. and Blobel, G. A.** (2015).
1080 Genome accessibility is widely preserved and locally modulated during mitosis. *Genome Res*
1081 **25**, 213-25. doi:10.1101/gr.180646.114

1082 **Hylton, R. K. and Swulius, M. T.** (2021). Challenges and triumphs in cryo-electron
1083 tomography. *iScience* **24**, 102959. doi:10.1016/j.isci.2021.102959

1084 **Iudin, A., Korir, P. K., Salavert-Torres, J., Kleywegt, G. J. and Patwardhan, A.** (2016).
1085 EMPIAR: a public archive for raw electron microscopy image data. *Nat Methods* **13**, 387-8.
1086 doi:10.1038/nmeth.3806

1087 **Jao, C. Y. and Salic, A.** (2008). Exploring RNA transcription and turnover in vivo by using click
1088 chemistry. *Proc Natl Acad Sci U S A* **105**, 15779-84. doi:10.1073/pnas.0808480105

1089 **Kieffer-Kwon, K. R., Nimura, K., Rao, S. S. P., Xu, J., Jung, S., Pekowska, A., Dose, M.,**
1090 **Stevens, E., Mathe, E., Dong, P. et al.** (2017). Myc Regulates Chromatin Decompaction
1091 and Nuclear Architecture during B Cell Activation. *Mol Cell* **67**, 566-578 e10.
1092 doi:10.1016/j.molcel.2017.07.013

1093 **Kimanius, D., Forsberg, B. O., Scheres, S. H. and Lindahl, E.** (2016). Accelerated cryo-EM
1094 structure determination with parallelisation using GPUs in RELION-2. *eLife* **5**.
1095 doi:10.7554/eLife.18722

1096 **Kimata, Y., Matsuyama, A., Nagao, K., Furuya, K., Obuse, C., Yoshida, M. and Yanagida,**
1097 **M.** (2008). Diminishing HDACs by drugs or mutations promotes normal or abnormal sister
1098 chromatid separation by affecting APC/C and adherin. *J Cell Sci* **121**, 1107-18.
1099 doi:10.1242/jcs.024224

1100 Kimura, M., Ishiguro, A. and Ishihama, A. (1997). RNA polymerase II subunits 2, 3, and 11
1101 form a core subassembly with DNA binding activity. *J Biol Chem* **272**, 25851-5.
1102 doi:10.1074/jbc.272.41.25851

1103 Komarnitsky, P., Cho, E. J. and Buratowski, S. (2000). Different phosphorylated forms of
1104 RNA polymerase II and associated mRNA processing factors during transcription. *Genes*
1105 *Dev* **14**, 2452-60.

1106 Kornberg, R. D. (1974). Chromatin structure: a repeating unit of histones and DNA. *Science*
1107 **184**, 868-71. doi:10.1126/science.184.4139.868

1108 Koyama, M., Nagakura, W., Tanaka, H., Kujirai, T., Chikashige, Y., Haraguchi, T., Hiraoka,
1109 Y. and Kurumizaka, H. (2017). In vitro reconstitution and biochemical analyses of the
1110 Schizosaccharomyces pombe nucleosome. *Biochem Biophys Res Commun* **482**, 896-901.
1111 doi:10.1016/j.bbrc.2016.11.130

1112 Kremer, J. R., Mastronarde, D. N. and McIntosh, J. R. (1996). Computer visualization of
1113 three-dimensional image data using IMOD. *J Struct Biol* **116**, 71-6.
1114 doi:10.1006/jsb.1996.0013

1115 Kruhlak, M. J., Hendzel, M. J., Fischle, W., Bertos, N. R., Hameed, S., Yang, X. J., Verdin,
1116 E. and Bazett-Jones, D. P. (2001). Regulation of global acetylation in mitosis through loss of
1117 histone acetyltransferases and deacetylases from chromatin. *J Biol Chem* **276**, 38307-19.
1118 doi:10.1074/jbc.M100290200

1119 Lee, S., Lim, W. A. and Thorn, K. S. (2013). Improved blue, green, and red fluorescent protein
1120 tagging vectors for *S. cerevisiae*. *PLoS One* **8**, e67902. doi:10.1371/journal.pone.0067902

1121 Liang, K., Woodfin, A. R., Slaughter, B. D., Unruh, J. R., Box, A. C., Rickels, R. A., Gao, X.,
1122 Haug, J. S., Jaspersen, S. L. and Shilatifard, A. (2015). Mitotic Transcriptional Activation:
1123 Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis. *Mol*
1124 *Cell* **60**, 435-45. doi:10.1016/j.molcel.2015.09.021

1125 Luger, K., Dechassa, M. L. and Tremethick, D. J. (2012). New insights into nucleosome and
1126 chromatin structure: an ordered state or a disordered affair? *Nat Rev Mol Cell Biol* **13**, 436-
1127 47. doi:10.1038/nrm3382

1128 Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. and Richmond, T. J. (1997).
1129 Crystal structure of the nucleosome core particle at 2.8 Å resolution. *Nature* **389**, 251-60.
1130 doi:10.1038/38444

1131 Maeshima, K., Ide, S. and Babokhov, M. (2019). Dynamic chromatin organization without the
1132 30-nm fiber. *Curr Opin Cell Biol* **58**, 95-104. doi:10.1016/j.ceb.2019.02.003

1133 Marescal, O. and Cheeseman, I. M. (2020). Cellular Mechanisms and Regulation of
1134 Quiescence. *Dev Cell* **55**, 259-271. doi:10.1016/j.devcel.2020.09.029

1135 Marguerat, S., Schmidt, A., Codlin, S., Chen, W., Aebersold, R. and Bahler, J. (2012).
1136 Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and
1137 quiescent cells. *Cell* **151**, 671-83. doi:10.1016/j.cell.2012.09.019

1138 Mastronarde, D. N. (1997). Dual-axis tomography: an approach with alignment methods that
1139 preserve resolution. *J Struct Biol* **120**, 343-52. doi:10.1006/jsb.1997.3919

1140 Mastronarde, D. N. (2005). Automated electron microscope tomography using robust prediction
1141 of specimen movements. *J Struct Biol* **152**, 36-51. doi:10.1016/j.jsb.2005.07.007

1142 Mastronarde, D. N. and Held, S. R. (2017). Automated tilt series alignment and tomographic
1143 reconstruction in IMOD. *J Struct Biol* **197**, 102-113. doi:10.1016/j.jsb.2016.07.011

1144 McKnight, J. N., Boerma, J. W., Breeden, L. L. and Tsukiyama, T. (2015). Global Promoter
1145 Targeting of a Conserved Lysine Deacetylase for Transcriptional Shutoff during Quiescence
1146 Entry. *Mol Cell* **59**, 732-43. doi:10.1016/j.molcel.2015.07.014

1147 Medeiros, J. M., Bock, D., Weiss, G. L., Kooger, R., Wepf, R. A. and Pilhofer, M. (2018).
1148 Robust workflow and instrumentation for cryo-focused ion beam milling of samples for
1149 electron cryotomography. *Ultramicroscopy* **190**, 1-11. doi:10.1016/j.ultramic.2018.04.002

1150 **Mews, P., Zee, B. M., Liu, S., Donahue, G., Garcia, B. A. and Berger, S. L.** (2014). Histone
1151 methylation has dynamics distinct from those of histone acetylation in cell cycle reentry from
1152 quiescence. *Mol Cell Biol* **34**, 3968-80. doi:10.1128/MCB.00763-14

1153 **Millar, C. B. and Grunstein, M.** (2006). Genome-wide patterns of histone modifications in
1154 yeast. *Nat Rev Mol Cell Biol* **7**, 657-66. doi:10.1038/nrm1986

1155 **Mochida, S. and Yanagida, M.** (2006). Distinct modes of DNA damage response in *S. pombe*
1156 G0 and vegetative cells. *Genes Cells* **11**, 13-27. doi:10.1111/j.1365-2443.2005.00917.x

1157 **Murray, J. M., Watson, A. T. and Carr, A. M.** (2016). Transformation of *Schizosaccharomyces*
1158 *pombe*: Lithium Acetate/ Dimethyl Sulfoxide Procedure. *Cold Spring Harb Protoc* **2016**, pdb
1159 prot090969. doi:10.1101/pdb.prot090969

1160 **Neumann, F. R. and Nurse, P.** (2007). Nuclear size control in fission yeast. *J Cell Biol* **179**,
1161 593-600. doi:10.1083/jcb.200708054

1162 **Ng, C. T. and Gan, L.** (2020). Investigating eukaryotic cells with cryo-ET. *Mol Biol Cell* **31**, 87-
1163 100. doi:10.1091/mbc.E18-05-0329

1164 **Nicastro, D., Schwartz, C., Pierson, J., Gaudette, R., Porter, M. E. and McIntosh, J. R.**
1165 (2006). The molecular architecture of axonemes revealed by cryoelectron tomography.
1166 *Science* **313**, 944-8. doi:10.1126/science.1128618

1167 **Nurse, P., Thuriaux, P. and Nasmyth, K.** (1976). Genetic control of the cell division cycle in
1168 the fission yeast *Schizosaccharomyces pombe*. *Mol Gen Genet* **146**, 167-78.

1169 **Oliva, A., Rosebrock, A., Ferrezuelo, F., Pyne, S., Chen, H., Skiena, S., Futcher, B. and**
1170 **Leatherwood, J.** (2005). The cell cycle-regulated genes of *Schizosaccharomyces pombe*.
1171 *PLoS Biol* **3**, e225. doi:10.1371/journal.pbio.0030225

1172 **Oomen, M. E. and Dekker, J.** (2017). Epigenetic characteristics of the mitotic chromosome in
1173 1D and 3D. *Crit Rev Biochem Mol Biol* **52**, 185-204. doi:10.1080/10409238.2017.1287160

1174 **Palozola, K. C., Donahue, G., Liu, H., Grant, G. R., Becker, J. S., Cote, A., Yu, H., Raj, A.**
1175 **and Zaret, K. S.** (2017). Mitotic transcription and waves of gene reactivation during mitotic
1176 exit. *Science* **358**, 119-122. doi:10.1126/science.aal4671

1177 **Peng, X., Karuturi, R. K., Miller, L. D., Lin, K., Jia, Y., Kondu, P., Wang, L., Wong, L. S., Liu,**
1178 **E. T., Balasubramanian, M. K. and Liu, J.** (2005). Identification of cell cycle-regulated
1179 genes in fission yeast. *Mol Biol Cell* **16**, 1026-42. doi:10.1091/mbc.E04-04-0299

1180 **Prescott, D. M. and Bender, M. A.** (1962). Synthesis of RNA and protein during mitosis in
1181 mammalian tissue culture cells. *Exp Cell Res* **26**, 260-8.

1182 **Robinson, P. J., An, W., Routh, A., Martino, F., Chapman, L., Roeder, R. G. and Rhodes, D.**
1183 (2008). 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker
1184 histone eviction. *J Mol Biol* **381**, 816-25. doi:10.1016/j.jmb.2008.04.050

1185 **Rundlett, S. E., Carmen, A. A., Kobayashi, R., Bavykin, S., Turner, B. M. and Grunstein, M.**
1186 (1996). HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that
1187 regulate silencing and transcription. *Proc Natl Acad Sci U S A* **93**, 14503-8.

1188 **Ruskin, A. I., Yu, Z. and Grigorieff, N.** (2013). Quantitative characterization of electron
1189 detectors for transmission electron microscopy. *J Struct Biol* **184**, 385-93.
1190 doi:10.1016/j.jsb.2013.10.016

1191 **Rustici, G., Mata, J., Kivinen, K., Lio, P., Penkett, C. J., Burns, G., Hayles, J., Brazma, A.,**
1192 **Nurse, P. and Bahler, J.** (2004). Periodic gene expression program of the fission yeast cell
1193 cycle. *Nat Genet* **36**, 809-17. doi:10.1038/ng1377

1194 **Sajiki, K., Hatanaka, M., Nakamura, T., Takeda, K., Shimanuki, M., Yoshida, T., Hanyu, Y.,**
1195 **Hayashi, T., Nakaseko, Y. and Yanagida, M.** (2009). Genetic control of cellular quiescence
1196 in *S. pombe*. *J Cell Sci* **122**, 1418-29. doi:10.1242/jcs.046466

1197 **Scheffer, M. P., Eltsov, M. and Frangakis, A. S.** (2011). Evidence for short-range helical order
1198 in the 30-nm chromatin fibers of erythrocyte nuclei. *Proc Natl Acad Sci U S A* **108**, 16992-7.
1199 doi:10.1073/pnas.1108268108

1200 **Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,**
1201 **Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B. et al.** (2012). Fiji: an open-source
1202 platform for biological-image analysis. *Nat Methods* **9**, 676-82. doi:10.1038/nmeth.2019

1203 **Schur, F. K.** (2019). Toward high-resolution *in situ* structural biology with cryo-electron
1204 tomography and subtomogram averaging. *Curr Opin Struct Biol* **58**, 1-9.
1205 doi:10.1016/j.sbi.2019.03.018

1206 **Shimanuki, M., Chung, S. Y., Chikashige, Y., Kawasaki, Y., Uehara, L., Tsutsumi, C.,**
1207 **Hatanaka, M., Hiraoka, Y., Nagao, K. and Yanagida, M.** (2007). Two-step, extensive
1208 alterations in the transcriptome from G0 arrest to cell division in *Schizosaccharomyces*
1209 *pombe*. *Genes Cells* **12**, 677-92. doi:10.1111/j.1365-2443.2007.01079.x

1210 **Shogren-Knaak, M., Ishii, H., Sun, J. M., Pazin, M. J., Davie, J. R. and Peterson, C. L.**
1211 (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions.
1212 *Science* **311**, 844-7. doi:10.1126/science.1124000

1213 **Sinha, I., Wiren, M. and Ekwall, K.** (2006). Genome-wide patterns of histone modifications in
1214 fission yeast. *Chromosome Res* **14**, 95-105. doi:10.1007/s10577-005-1023-4

1215 **Sivakumar, S., Porter-Goff, M., Patel, P. K., Benoit, K. and Rhind, N.** (2004). *In vivo* labeling
1216 of fission yeast DNA with thymidine and thymidine analogs. *Methods* **33**, 213-9.
1217 doi:10.1016/j.ymeth.2003.11.016

1218 **Su, S. S., Tanaka, Y., Samejima, I., Tanaka, K. and Yanagida, M.** (1996). A nitrogen
1219 starvation-induced dormant G0 state in fission yeast: the establishment from uncommitted
1220 G1 state and its delay for return to proliferation. *J Cell Sci* **109** (Pt 6), 1347-57.

1221 **Swygert, S. G., Lin, D., Portillo-Ledesma, S., Lin, P. Y., Hunt, D. R., Kao, C. F., Schlick, T.,**
1222 **Noble, W. S. and Tsukiyama, T.** (2021). Local chromatin fiber folding represses
1223 transcription and loop extrusion in quiescent cells. *eLife* **10**. doi:10.7554/eLife.72062

1224 **Tan, Z. Y., Cai, S., Noble, A. J., Chen, J. K., Shi, J. and Gan, L.** (2023). Heterogeneous non-
1225 canonical nucleosomes predominate in yeast cells *in situ*. *eLife* **12**. doi:10.7554/eLife.87672

1226 **Tanaka, K. and Kanbe, T.** (1986). Mitosis in the fission yeast *Schizosaccharomyces pombe* as
1227 revealed by freeze-substitution electron microscopy. *J Cell Sci* **80**, 253-68.

1228 **Taylor, J. H.** (1960). Nucleic acid synthesis in relation to the cell division cycle. *Ann N Y Acad*
1229 *Sci* **90**, 409-21.

1230 **Teves, S. S., An, L., Bhargava-Shah, A., Xie, L., Darzacq, X. and Tjian, R.** (2018). A stable
1231 mode of bookmarking by TBP recruits RNA polymerase II to mitotic chromosomes. *eLife* **7**.
1232 doi:10.7554/eLife.35621

1233 **Teves, S. S., An, L., Hansen, A. S., Xie, L., Darzacq, X. and Tjian, R.** (2016). A dynamic
1234 mode of mitotic bookmarking by transcription factors. *eLife* **5**. doi:10.7554/eLife.22280

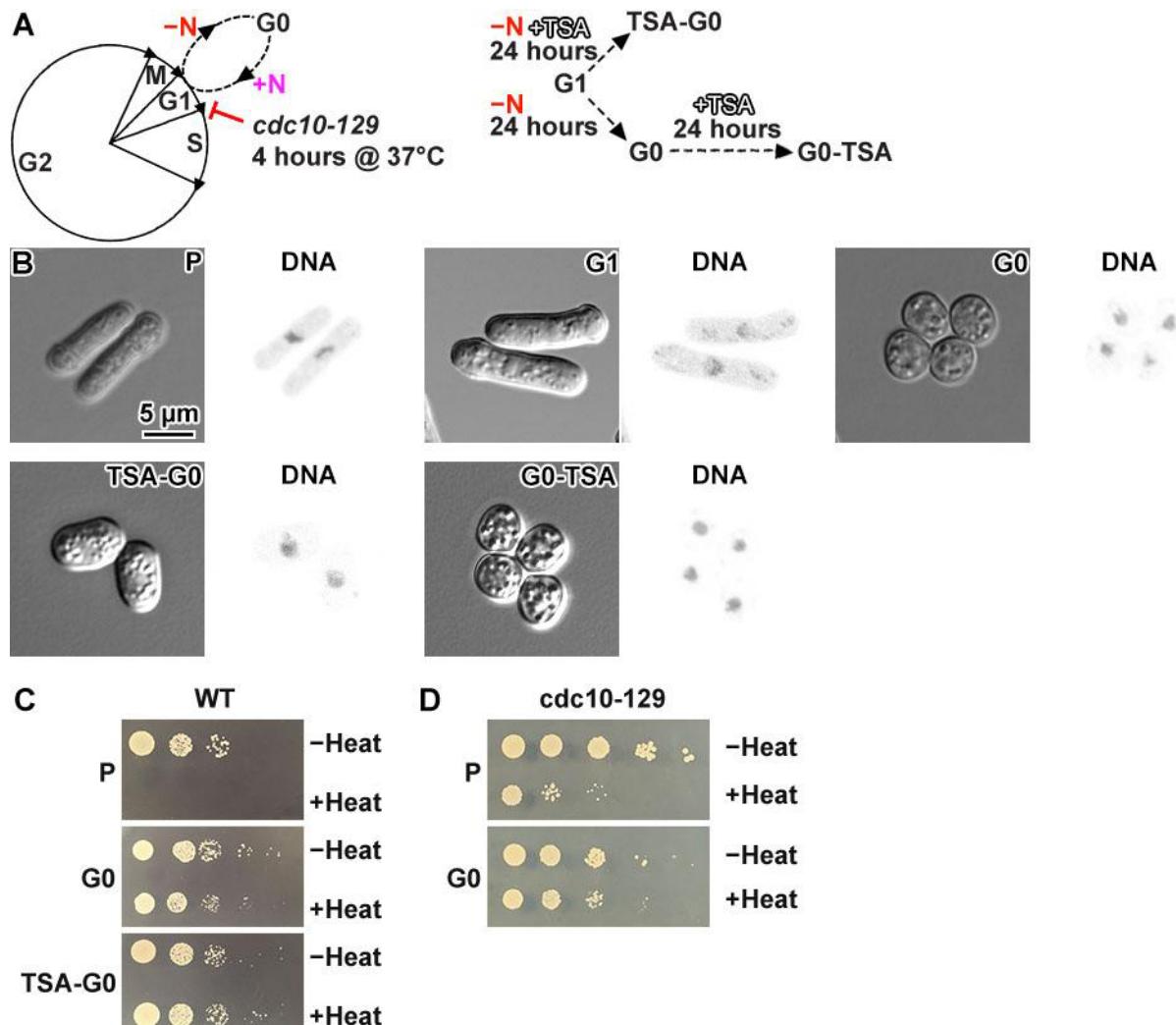
1235 **Tivol, W. F., Briegel, A. and Jensen, G. J.** (2008). An improved cryogen for plunge freezing.
1236 *Microsc Microanal* **14**, 375-9. doi:10.1017/S1431927608080781

1237 **Tollervey, D., Tessars, G. and Luhrmann, R.** (1990). Immunoprecipitation distinguishes non-
1238 overlapping groups of snRNPs in *Schizosaccharomyces pombe*. *Nucleic Acids Res* **18**,
1239 5207-12. doi:10.1093/nar/18.17.5207

1240 **Toth, K. F., Knoch, T. A., Wachsmuth, M., Frank-Stohr, M., Stohr, M., Bacher, C. P., Muller,**
1241 **G. and Rippe, K.** (2004). Trichostatin A-induced histone acetylation causes decondensation
1242 of interphase chromatin. *J Cell Sci* **117**, 4277-87. doi:10.1242/jcs.01293

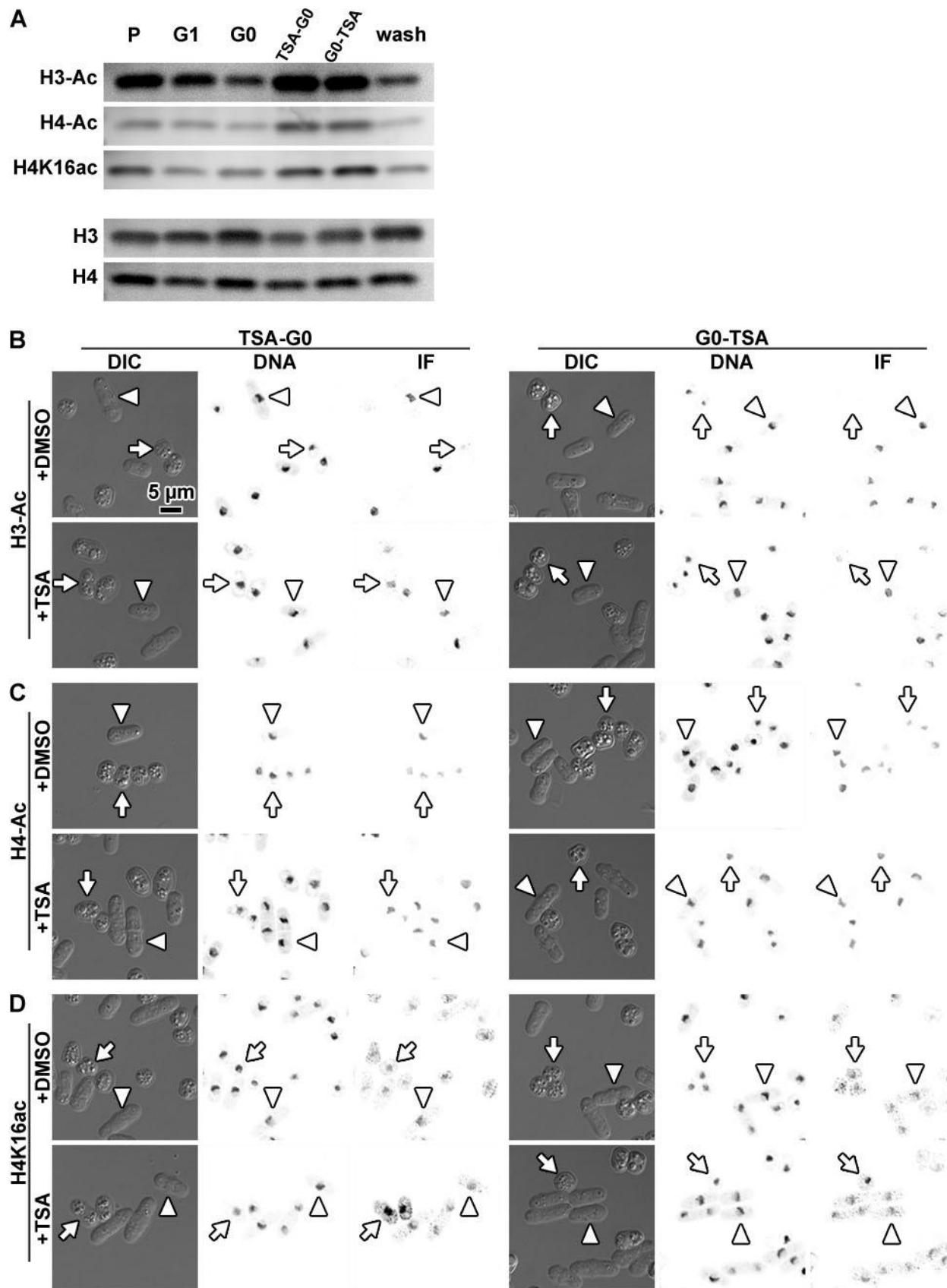
1243 **Tse, C., Sera, T., Wolffe, A. P. and Hansen, J. C.** (1998). Disruption of higher-order folding by
1244 core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA
1245 polymerase III. *Mol Cell Biol* **18**, 4629-38.

1246 **Varberg, J. M., Unruh, J. R., Bestul, A. J., Khan, A. A. and Jaspersen, S. L.** (2022).
1247 Quantitative analysis of nuclear pore complex organization in *Schizosaccharomyces pombe*.
1248 *Life Sci Alliance* **5**. doi:10.26508/lsa.202201423


1249 **Verschoor, A., Warner, J. R., Srivastava, S., Grassucci, R. A. and Frank, J.** (1998). Three-
1250 dimensional structure of the yeast ribosome. *Nucleic Acids Res* **26**, 655-61.
1251 doi:10.1093/nar/26.2.655

1252 **Warner, J. R.** (1999). The economics of ribosome biosynthesis in yeast. *Trends Biochem Sci*
1253 **24**, 437-40.

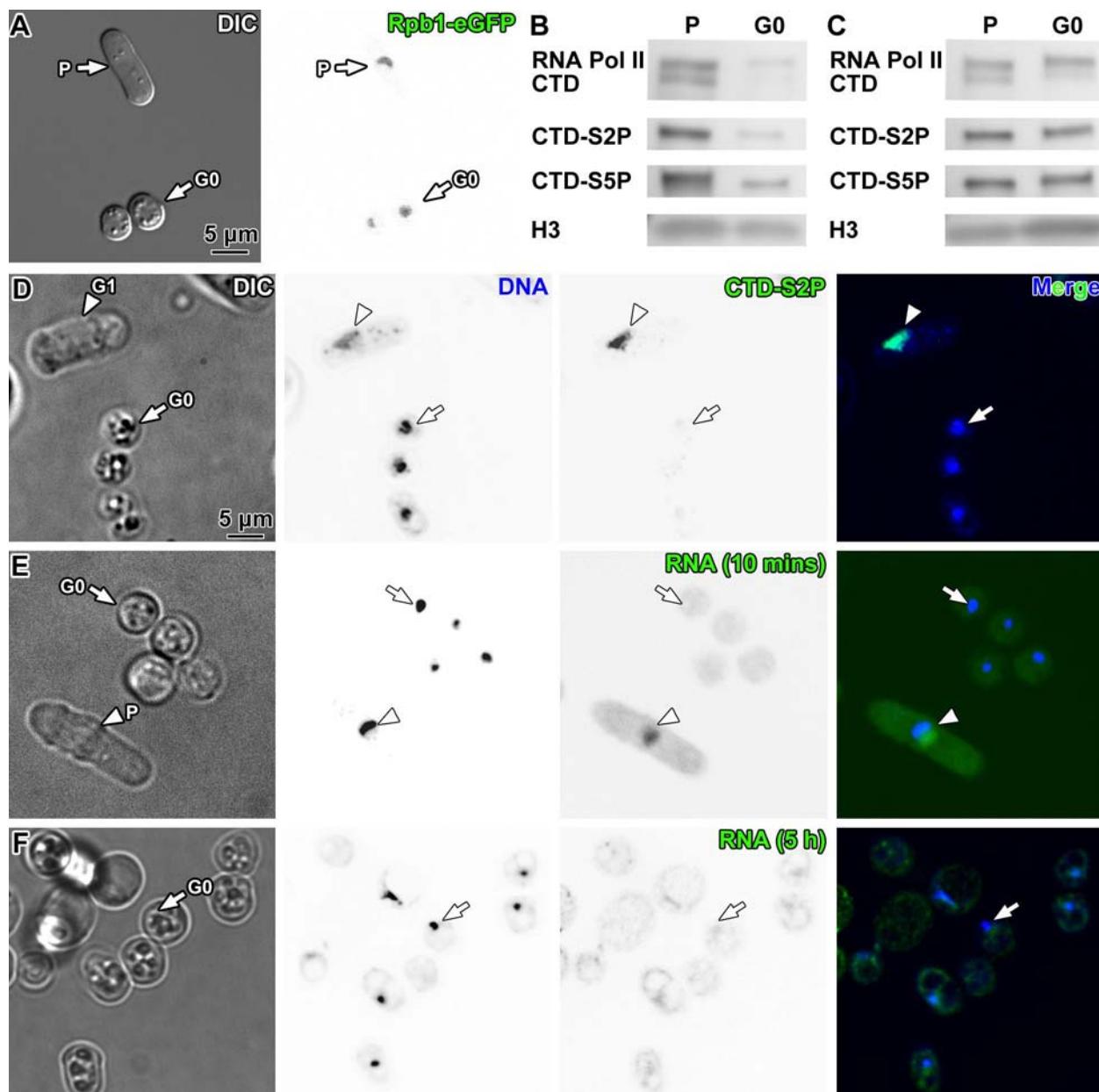
1254 **White, C. L., Suto, R. K. and Luger, K.** (2001). Structure of the yeast nucleosome core particle
1255 reveals fundamental changes in internucleosome interactions. *EMBO J* **20**, 5207-18.
1256 doi:10.1093/emboj/20.18.5207


1257 **Zahedi, Y., Durand-Dubief, M. and Ekwall, K.** (2020). High-Throughput Flow Cytometry
1258 Combined with Genetic Analysis Brings New Insights into the Understanding of Chromatin
1259 Regulation of Cellular Quiescence. *Int J Mol Sci* **21**. doi:10.3390/ijms21239022

1260 **Zivanov, J., Nakane, T., Forsberg, B. O., Kimanius, D., Hagen, W. J., Lindahl, E. and**
1261 **Scheres, S. H.** (2018). New tools for automated high-resolution cryo-EM structure
1262 determination in RELION-3. *eLife* **7**. doi:10.7554/eLife.42166

Figure 1. Overview of *S. pombe* cells in proliferative and G0 states

1263
1264 (A) Left: Schematic of the *S. pombe* cell cycle: G1 phase, S phase, G2 phase, and
1265 Mitosis (M). Entry to and exit from G0 is shown with the dashed line and depends on the
1266 availability of nitrogen (-N / +N). The *cdc10-129* strain arrests in G1 at 37°C. Right:
1267 Flowchart illustrating different regimes of TSA treatment. To generate TSA-G0 cells,
1268 cells are treated with TSA while they are being starved of nitrogen. To generate G0-TSA
1269 cells, G0 cells are treated with TSA. (B) Differential interference contrast (DIC, left) and
1270 fluorescence (right, DNA) images of DAPI-stained proliferating (P) cells (most in G2
1271 phase), cells arrested at G1, G0 cells, TSA-treated cells – either treated while they were
1272 entering G0 (TSA-G0) or treated after they were already in G0 (G0-TSA). (C) Spot tests
1273 of proliferating, G0 and TSA-G0 wild type cells after a 30-minute incubation in their
1274 respective growth media (YES for proliferating, EMM-N for G0 and TSA-G0), with and
1275 without heat stress. (D) Spot tests of proliferating and G0 *cdc10-129* cells after a 30-
1276 minute incubation in their respective growth media (YES for proliferating, EMM-N for
1277 G0). The -Heat and +Heat conditions are, respectively, 30°C and 48°C.

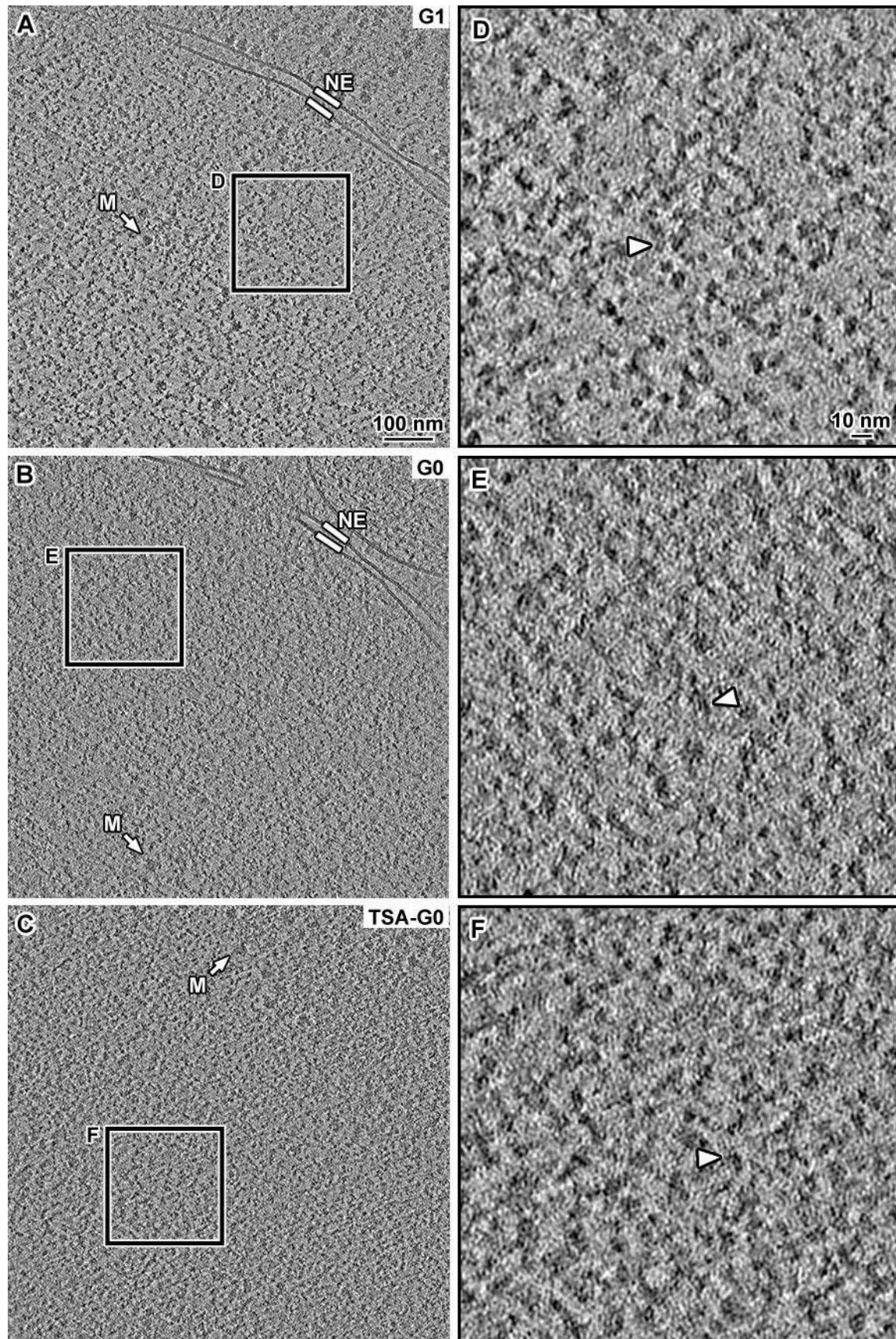


1279
1280

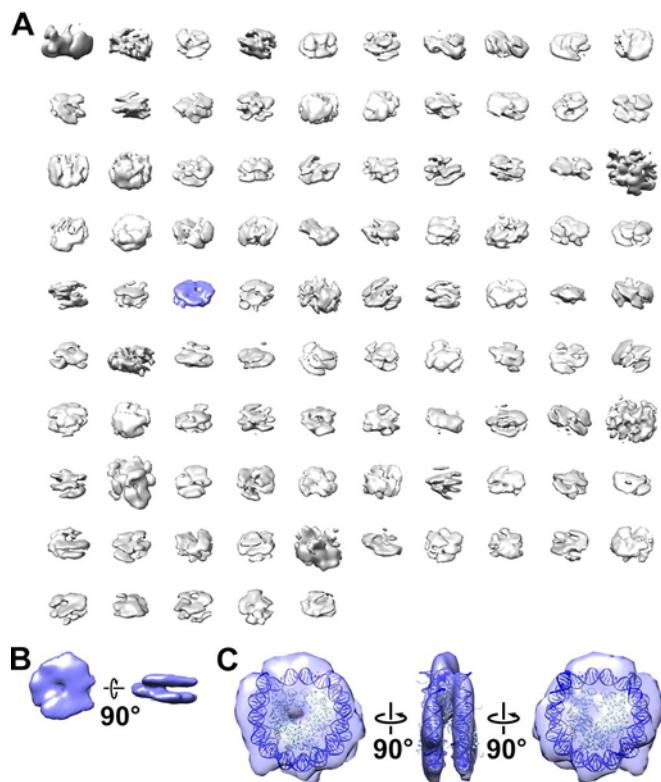
Figure 2. Histone H3 acetylation levels decrease in G0.

1281 (A) Immunoblots of *S. pombe* lysates from wild-type proliferating (P), *cdc10-129* G1,
1282 and wild-type G0 cells. The G0 cells were either untreated (G0), incubated with TSA in
1283 EMM–N for 24 hours (TSA-G0), incubated 24 hours in EMM–N followed by 24 hours of
1284 EMM–N plus TSA (G0-TSA), or treated with EMM–N plus TSA for 24 hours followed by
1285 TSA washout and then incubated an additional 24 hours in EMM–N (wash). TSA was
1286 used at 20 µg/mL TSA final concentration, with DMSO as the carrier such that the final
1287 concentration of DMSO in the culture is 0.1%. Loading controls were done with
1288 antibodies against the H3 or H4 C-terminus. The uncropped immunoblots are shown in
1289 Figure S29. G0 cells were subjected to immunofluorescence imaging to detect (B) H3-
1290 Ac, (C) H4-Ac, and (D) H4K16ac. The G0 cells were treated with DMSO (+DMSO) or
1291 TSA (+TSA). “TSA-G0” and “G0-TSA” denote TSA treatment during or 24 hours after
1292 G0 entry, respectively, like in the immunoblot experiment. To ensure the cells were
1293 processed in similar conditions, the G0 and proliferating cells were first fixed separately,
1294 then mixed together for immunofluorescence processing. The proliferating cells serve
1295 as a common reference. In each subpanel, a representative G0 cell is indicated by an
1296 arrow and a representative proliferating cell is indicated by an arrowhead.

1297

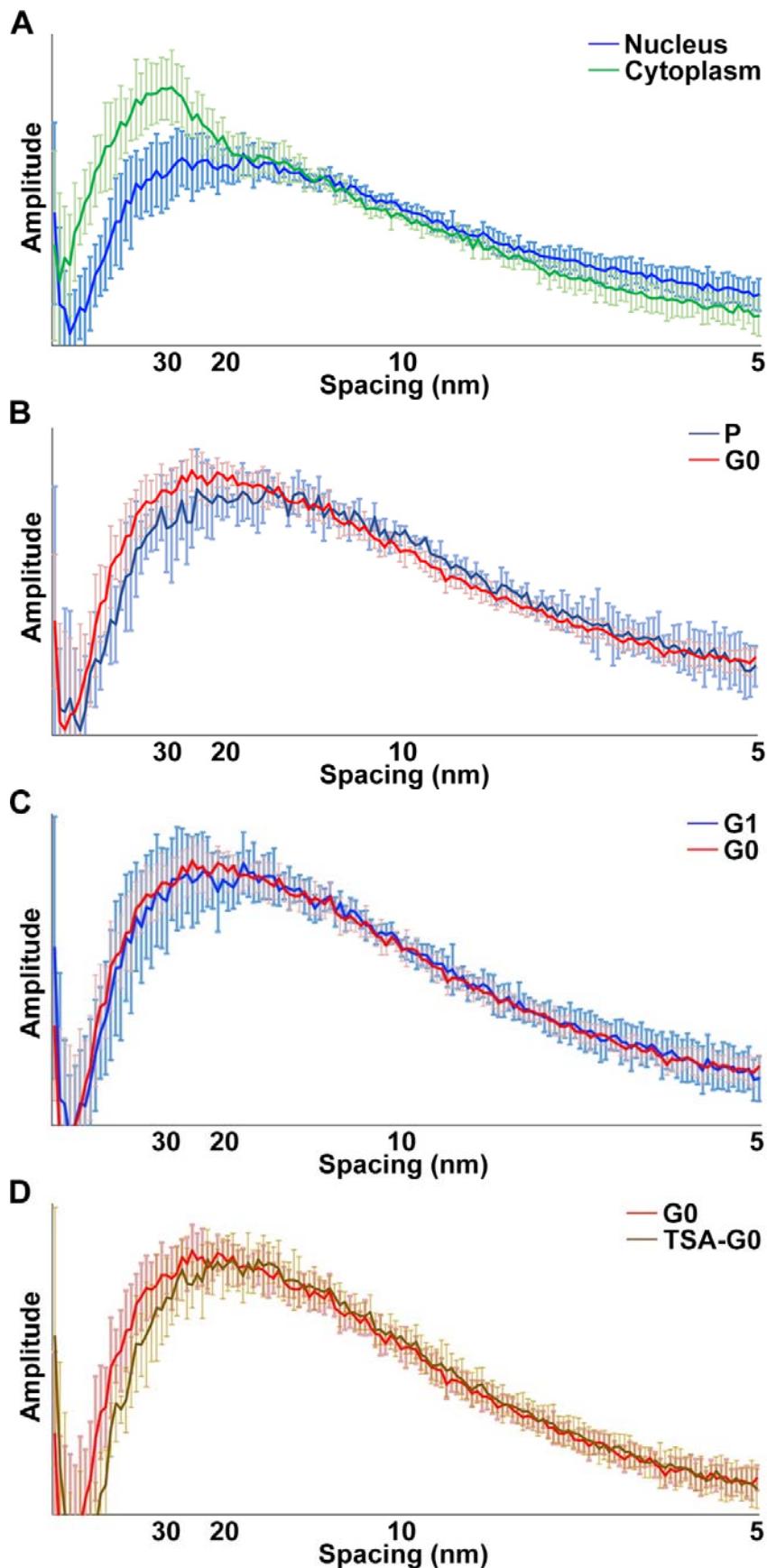

1298

1299


Figure 3. Transcription and RNApII levels are lower in G0 cells.

1300 Fluorescence microscopy analysis of transcription in interphase and G0 cells. (A)
1301 Differential interference contrast (DIC) (left) and eGFP (right) live-cell fluorescence
1302 microscopy images of Rpb1-eGFP in proliferating (P) and G0 states, in a strain where
1303 the *rpb1* gene is tagged with eGFP. Interphase cells were mixed into G0 cell culture just
1304 before imaging. A proliferating cell and a G0 cell are indicated. (B) Immunoblots of
1305 lysates from proliferating (P) and G0 wild type cells, using an α -CTD antibody, an α -
1306 CTD-S2P antibody and an α -CTD-S5P antibody. Loading controls were done with an
1307 antibody against the H3 C-terminus. (C) Immunoblots of the same lysates and
1308 antibodies as part B, with loading calibrated to have equal α -CTD signal. Uncropped
1309 immunoblots are shown in Figure S29. Columns, left to right for parts D-F: differential
1310 interference contrast (DIC), DAPI fluorescence (DNA), Alexa Fluor 488 fluorescence

1311 (CTD, CTD-S2P, and RNA), and merge. (D) Detection of elongating RNA polymerase II
1312 with the anti-CTD-S2P antibody. One G1 cell is indicated by an arrowhead and a G0
1313 cell by an arrow. (E) Strain yFS240 G0 and proliferating (P) cells were incubated with 5-
1314 EU and subjected to the Click-iT 5-EU-detection assay, which ligates Alexa Fluor 488 to
1315 5-EU. A proliferating cell is indicated by an arrowhead and a G0 cell by an arrow. To
1316 increase the visibility of the weak 5-EU signal, the contrast was adjusted for the entire
1317 field of view, resulting in a higher apparent background. (F) G0 cells were incubated
1318 with 5-EU for 5 hours, then subjected to Click-iT 5-EU detection as in panel E. One G0
1319 cell is indicated by an arrow. The two larger cells in the upper left are probably dead or
1320 dying as a result of prolonged 5-EU exposure.


1322 **Figure 4. G1, G0 and TSA-G0 cells have dense nucleoplasm.**
1323 (A) Volta cryotomographic slice (12 nm) of the nucleus in a G1-arrested *cdc10-129* cell.
1324 The nuclear envelope (NE) and a megacomplex (M) are indicated. (B) Volta
1325 cryotomographic slice (12 nm) of a nucleus in a wild-type G0 cell treated with 0.1%
1326 DMSO during G0 entry. The nuclear envelope (NE) and a megacomplex (M) are
1327 indicated. (C) Volta cryotomographic slice (12 nm) of the nucleus in a G0 cell treated
1328 with 20 μ g/mL TSA during G0 entry. (D, E and F) Four-fold enlargements of the regions
1329 boxed in panels A, B and C, respectively. Nucleosome-like densities are indicated by
1330 arrowheads. Larger fields of view of G1, G0 and TSA-G0 nuclei are available in
1331 supplemental figures S15, S19 and S22 respectively.

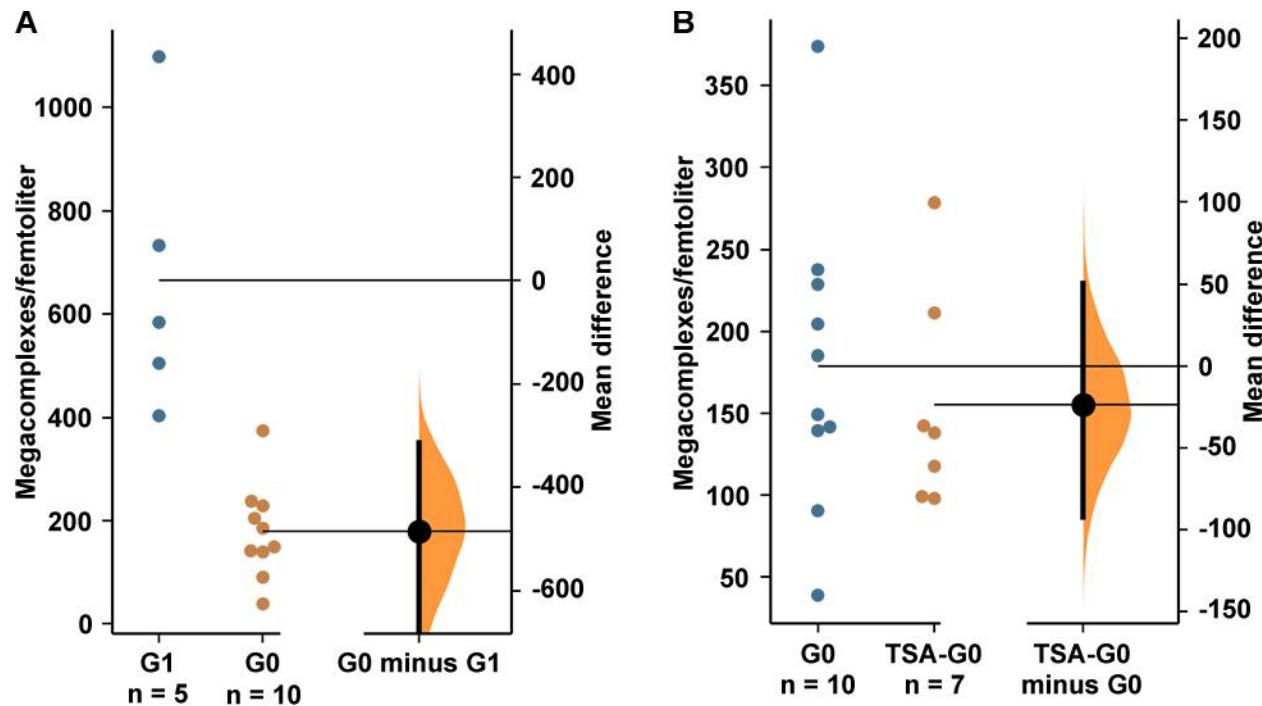
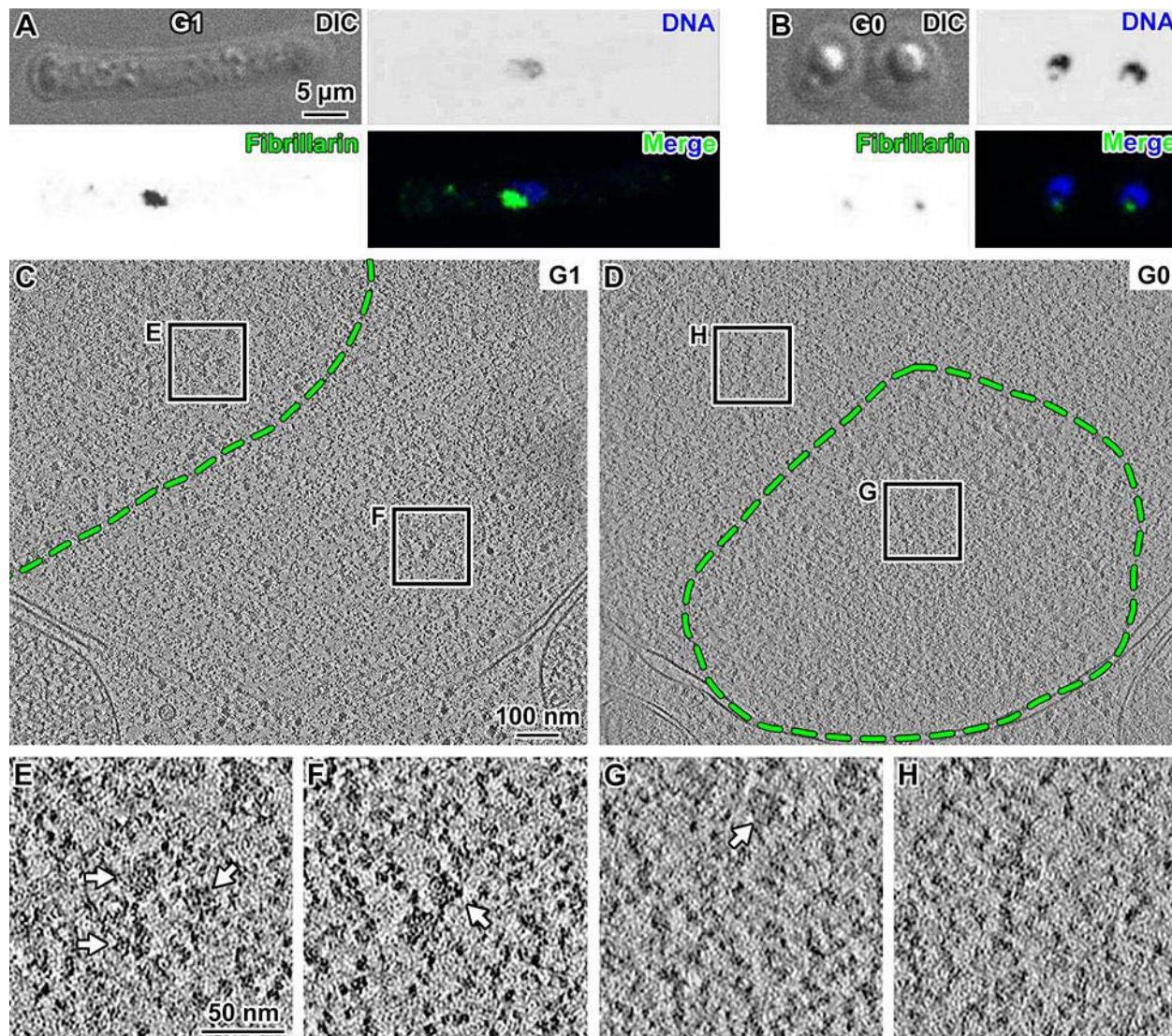
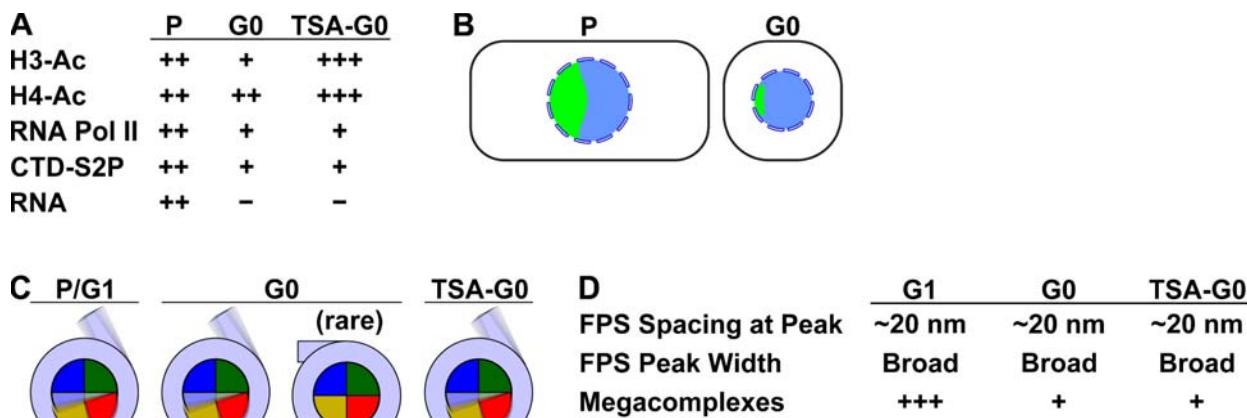

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343

Figure 5. A class average that partially resembles the canonical nucleosome is detected in DMSO-G0 cells *in situ*.

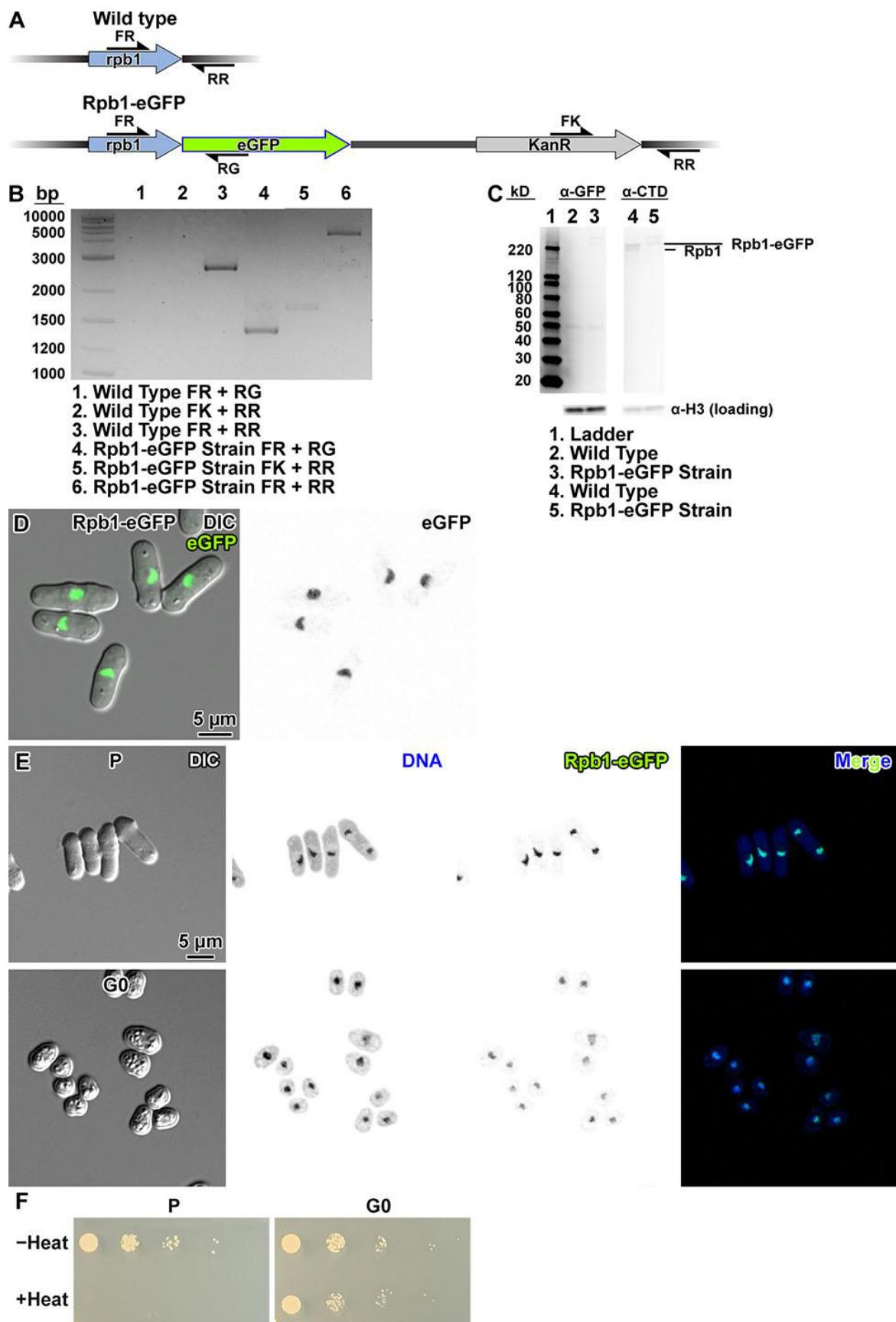
(A) Class averages (3-D) of nucleosome-like particles in Volta phase plate (VPP) cryotomograms of DMSO-G0 cryolamellae. The class shaded blue partially resembles a canonical nucleosome. Five classes have no contributing particles. (B) Refined density of candidate nucleosomes observed in DMSO-G0 cryolamellae. (C) Refined density of the candidate G0 *S. pombe* nucleosome class with the crystal structure of the *Saccharomyces cerevisiae* nucleosome (PDB 1ID3) (White et al., 2001) docked. The histones and DNA are light and dark blue respectively. The *S. cerevisiae* nucleosome was used because the crystal structure of the *S. pombe* nucleosome has not been determined. For more details of the workflow, see Figure S26.



1345 **Figure 6. *S. pombe* nuclei do not have large packing differences in various states.**
1346 Average 1-D Fourier power spectra comparing (A) G1 nuclei (blue) and G1 cytoplasm
1347 (green); (B) proliferating (dark blue) and G0 (red) nuclei; (C) G1 (blue) and G0 (red)
1348 nuclei; (D) G0 (red) and TSA-G0 (brown) nuclei. For each spacing value, the normalised
1349 amplitudes are plotted; see Methods. Error bars indicate the standard deviation at each
1350 spacing.


1351
1352 **Figure 7. G0 and TSA-G0 cells have fewer megacomplexes in their nucleoplasm**
1353 than G1.

1354 Gardner-Altman plots of (A) the mean difference between G1 and G0 megacomplex
1355 concentrations in the nucleoplasm, and (B) the mean difference between G0 and TSA-
1356 G0 megacomplex concentrations in the nucleoplasm. In each plot, both groups of
1357 samples are plotted on the left axes; the mean difference is plotted on a floating axis on
1358 the right as a bootstrap sampling distribution. The mean difference is depicted as a dot;
1359 the 95% confidence interval is indicated by the ends of the vertical error bar (Ho et al.,
1360 2019).


Figure 8. G0 nuclear megacomplexes are predominantly nucleolar.

(A and B) Immunofluorescence detection of nucleoli in G1 and G0 cells. DAPI (blue) marks DNA and anti-fibrillarin antibody (green) marks the nucleolus. It is unknown what the origin of the small gap between the G0 cells' fibrillarin and DNA signals is. (C and D) Volta cryotomographic slices (12 nm) of a G1 and a G0 cell, respectively. The region enclosed by the green dashed line denotes the approximate nucleolar boundary. (E and F) Four-fold enlargements of the G1 nucleolar and chromatin regions boxed in panel C. (G and H) Four-fold enlargements of the G0 nucleolar and chromatin regions boxed in panel G. Example megacomplexes are indicated by arrows in panels E, F, and G.

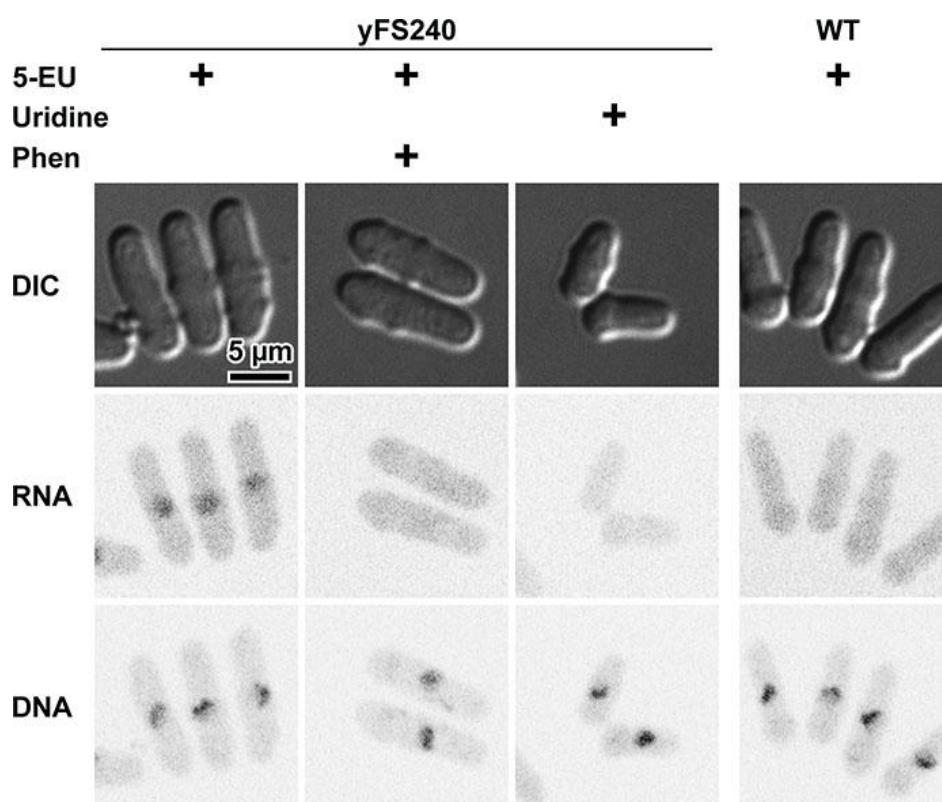
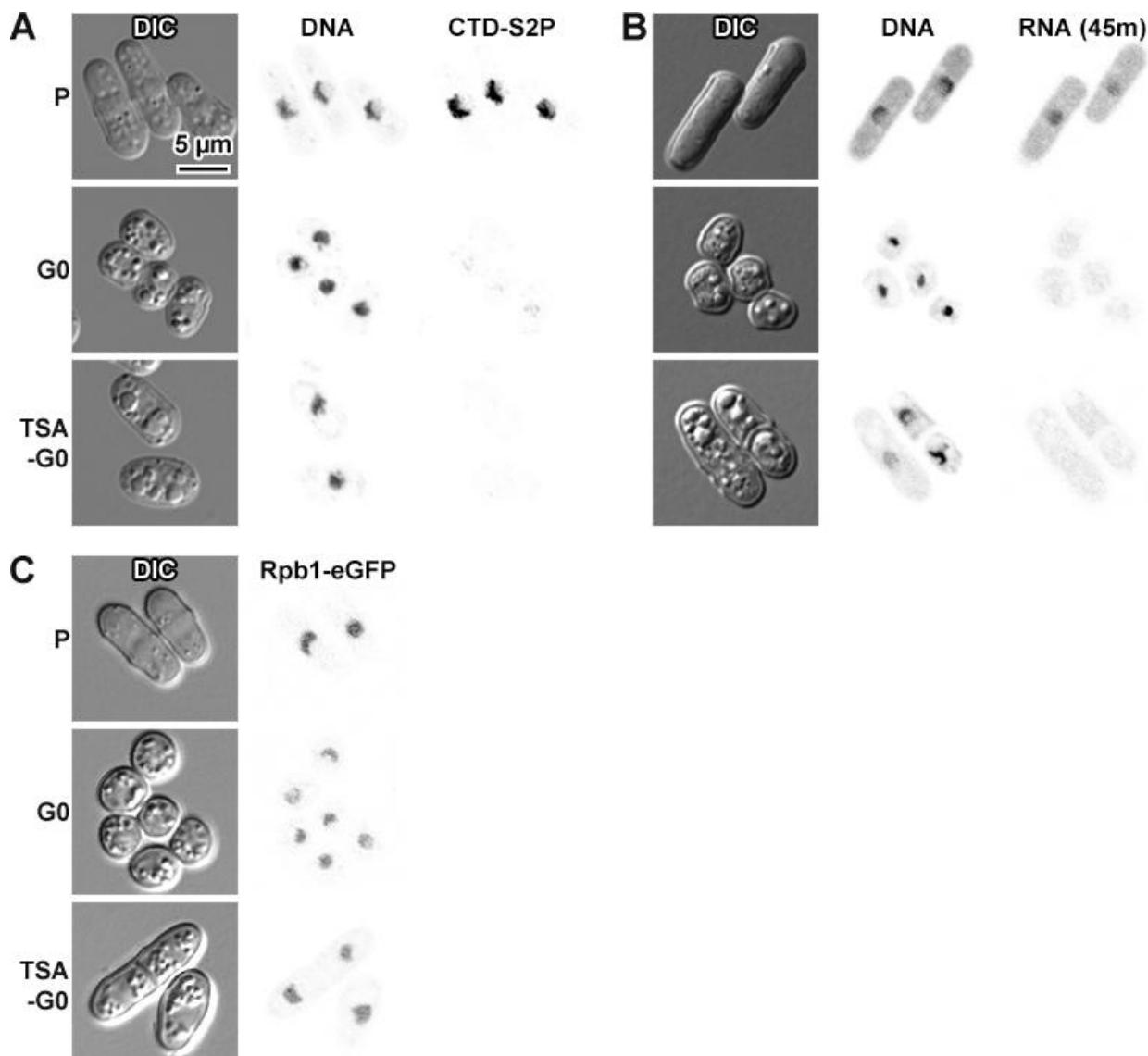


Figure 9: Summary of nuclear phenotypes in G0, G0-like, and proliferative cells.

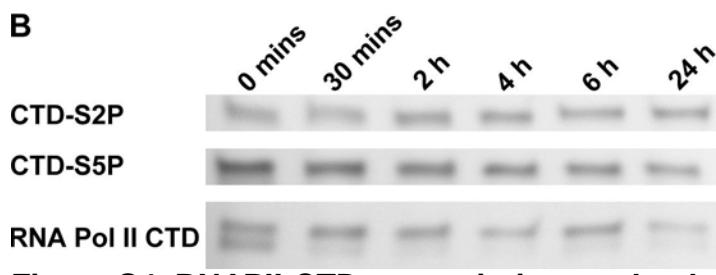
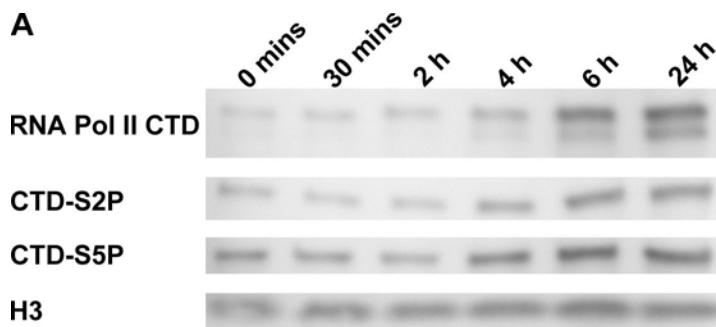
1372
1373 (A) Histone acetylation levels (H3-Ac and H4-Ac) are downregulated in G0 cells
1374 compared to proliferating (P) cells and upregulated in G0 cells treated with a histone-
1375 deacetylase inhibitor (TSA-G0). RNA Polymerase II levels and activity and transcription
1376 levels (RNA) are downregulated in G0 cells compared to proliferating cells and are
1377 uncorrelated with changes in G0 histone acetylation. (B) Cartoon of the cytological
1378 differences between proliferating (P) and G0 cells. Aside from having a smaller nucleus
1379 (blue circle), G0 cells have a disproportionately smaller nucleolus (green). (C)
1380 Schematics of DNA (light blue) and histones (shaded pie slices) in the nucleosome disc
1381 view. The cartoons only illustrate the 145 – 147 bp of “core” DNA. Majority of
1382 nucleosomes in G1, G0 and TSA-G0 are heterogeneous. The blurred appearance
1383 represents a large range of positions and orientations that protein and DNA components
1384 adopt inside cells, which would result in the absence of a class average resembling a
1385 canonical nucleosome; the blurring does not represent molecular motions.
1386 Nucleosomes with a structure resembling the canonical nucleosome are a minority
1387 conformation in G0, and even then, they have more unwrapped DNA than true
1388 canonical nucleosomes. (D) Fourier power spectrum (FPS) peak spacing and width are
1389 similar across G1, G0 and TSA-G0 cells. Megacomplex concentrations are higher in G1
1390 cells than in G0 and TSA-G0 cells.

1393 **Figure S1. Construction of Rpb1-eGFP strain.**
1394 (A) Map of the *rpb1* locus in the parent (wild-type) *S. pombe* strain MBY99 and the
1395 Rpb1-eGFP strain (LGSP0001). Primers used for PCR verification are indicated with the
1396 half arrow symbols. (B) Agarose gel of PCR amplicons expected from wild-type (control)
1397 and from Rpb1-eGFP genomic DNA, in which the *rpb1* locus is tagged with eGFP. (C)
1398 Immunoblot analysis of Rpb1-eGFP. The α -eGFP antibody correctly detected the Rpb1-
1399 eGFP fusion protein in the newly created strain (lane 3), but not in the wild type (lane 2,
1400 negative control) in the uncropped α -eGFP immunoblot. The α -CTD antibody detected
1401 the larger Rpb1-eGFP in the Rpb1-eGFP strain (lane 5) and the smaller unfused Rpb1
1402 in the wild type (lane 4) in the α -CTD immunoblot. The H3 loading control is shown for
1403 each antibody because each antibody was imaged at a different exposure. Uncropped
1404 immunoblots are shown in Figure S29. (D) Differential interference contrast (DIC) and
1405 GFP fluorescence confocal microscopy images of Rpb1-eGFP cells. In the left panel, a
1406 merge of the DIC channel and the eGFP fluorescence channel is shown. In the right
1407 panel, eGFP signals are rendered with inverted contrast. (E) Fluorescence microscopy
1408 analysis of Rpb1-eGFP in interphase (P) and G0, in the Rpb1-eGFP strain. Columns,
1409 left to right: differential interference contrast (DIC), DAPI fluorescence (DNA) rendered
1410 in inverse contrast, eGFP fluorescence (Rpb1-eGFP) rendered in inverse contrast, and
1411 merge of the two fluorescence channels. Cells were fixed with formaldehyde. (F) Spot
1412 tests of proliferating (P) and G0 cells of the Rpb1-eGFP strain after a 30-minute
1413 incubation in YES and EMM-N respectively, with and without heat stress.
1414

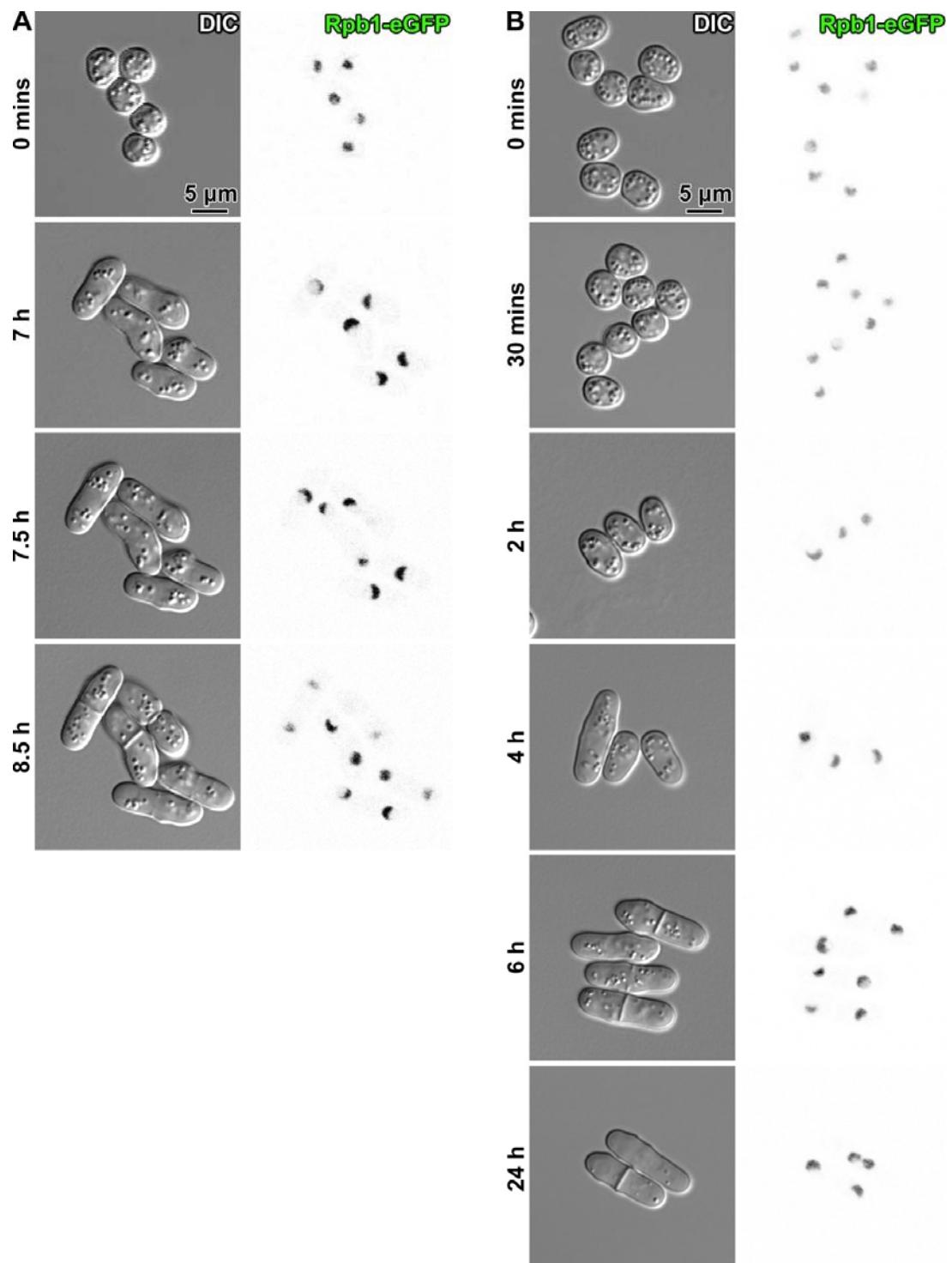

1415
1416 **Figure S2. Controls for 5-EU RNA labelling.**

1417 Proliferating yFS240 or wild-type cells incubated 10 minutes with 5-EU, uridine, or 5-EU
1418 plus the transcription inhibitor phenanthroline (Phen). The cells were then labelled with
1419 Alexa Fluor 488 and counterstained with DAPI.

1420



1421

1422



1423
1424 **Figure S3. TSA treatment during G0 entry does not affect transcriptional**
1425 **repression.**

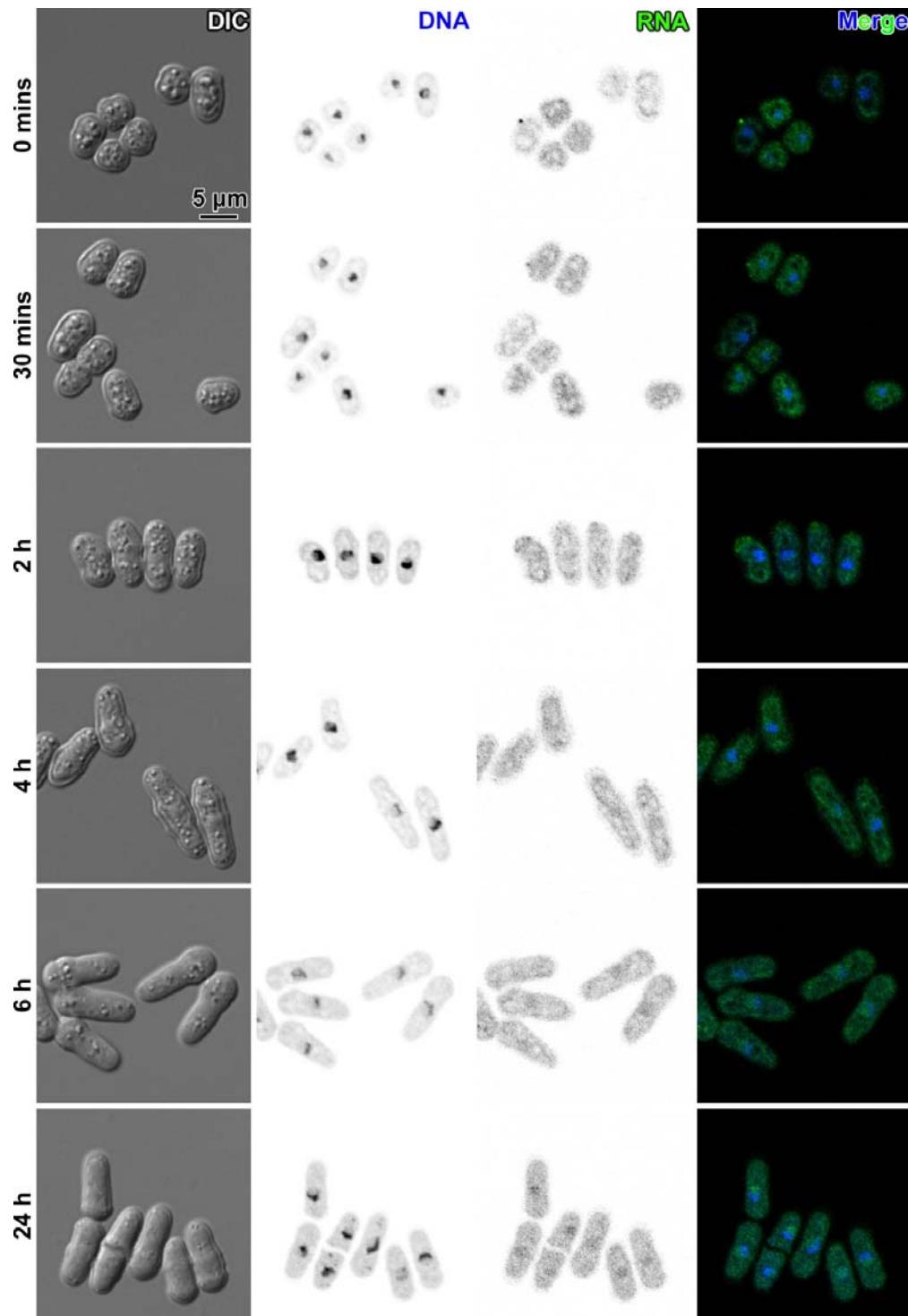
1426 (A) DIC and fluorescence microscopy of proliferating (P), G0, and TSA-G0 wild-type
1427 cells. The cells were stained for DNA with DAPI and immunostained for RNA
1428 polymerase II with CTD-S2P. (B) DIC and fluorescence microscopy of proliferating (P),
1429 G0, and TSA-G0 *yFS240* cells. The cells were incubated with 5-EU for 45 minutes to
1430 increase the amount of 5-EU incorporated into RNA. Nascent RNA was then ligated to
1431 Alexa Fluor 488 for fluorescence detection. (C) DIC and fluorescence microscopy of
1432 proliferating (P), G0 and TSA-G0 *Rpb1-eGFP* cells. The cells were unfixed and
1433 unstained; the fluorescence signal is from cell-expressed *Rpb1-eGFP*.

1434
1435 **Figure S4. RNAPII-CTD transcription marker levels in whole-cell lysates do not**
1436 **markedly increase after G0 cells are switched to nutrient-rich medium.**
1437 (A) Immunoblots of lysates from G0 wild type cells 0 minutes, 30 minutes, 2 hours, 4
1438 hours, 6 hours or 24 hours after being transferred to YES medium, using a pan-CTD
1439 antibody, an α -CTD-S2P antibody and an α -CTD-S5P antibody. Loading controls were
1440 done with a H3 antibody (lower row). (B) Immunoblots of another batch of lysates from
1441 G0 wild type cells 0 minutes, 30 minutes, 2 hours, 4 hours, 6 hours or 24 hours after
1442 being transferred to YES medium, using an α -CTD-S2P antibody and an α -CTD-S5P
1443 antibody. Loading controls were done with a pan-CTD antibody (lower row). Uncropped
1444 immunoblots are shown in Figure S29.
1445

1446
1447
1448

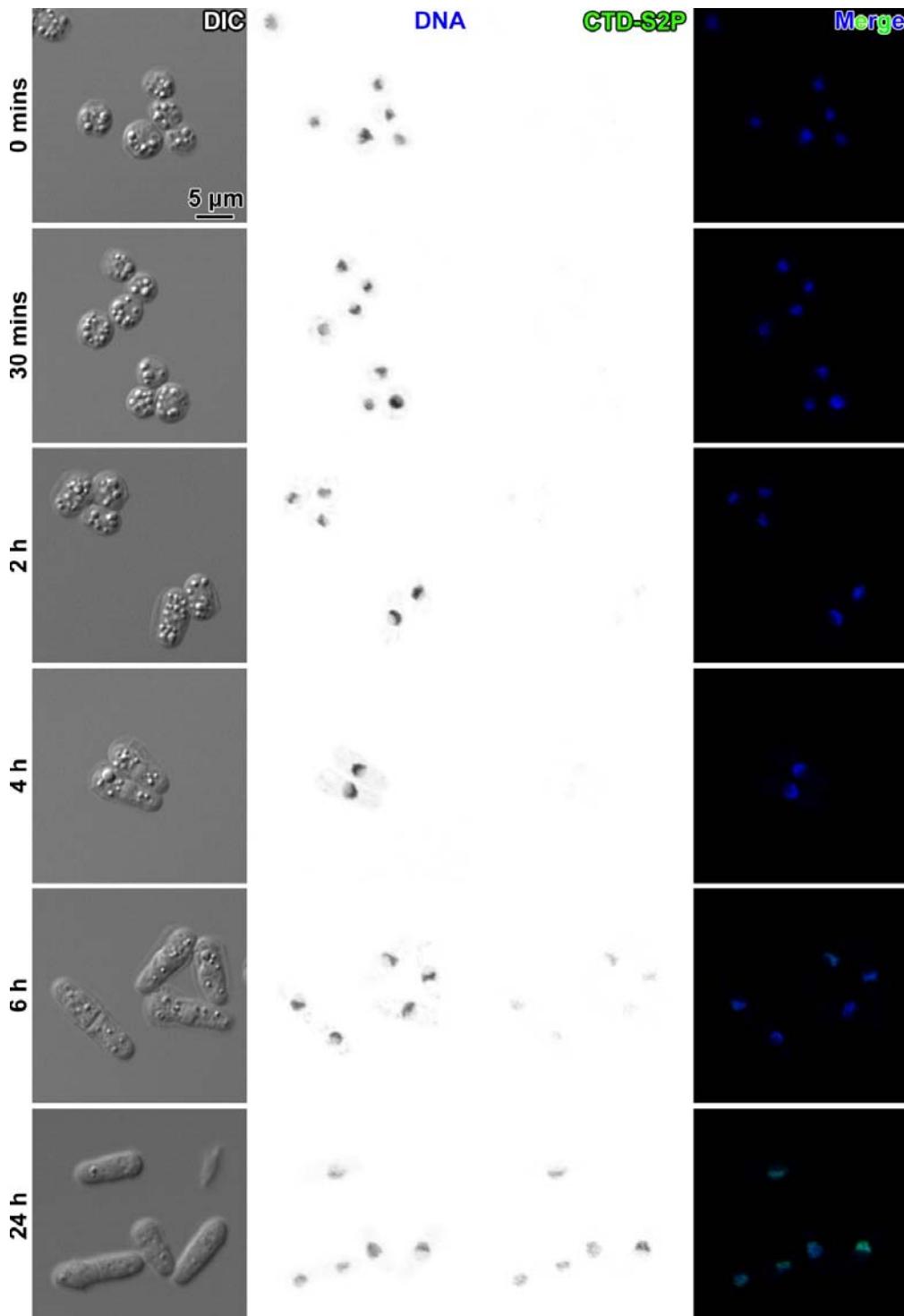
Figure S5. RNAPII does not exhibit observable changes within 6 hours after G0 cells are subjected to nutrient-rich medium.

1449 Fluorescence microscopy analysis of RNAPII content in cells after Rpb1-eGFP G0 cells
1450 are exposed to nutrient-rich medium. Columns, left to right: differential interference
1451 contrast (DIC) and eGFP fluorescence (Rpb1-eGFP). (A) Select samples from time-
1452 lapse images of a single group of cells imaged immediately after deposition on a YES
1453 agar pad (0 mins), just before (7 h), and just after (7.5 h) one of the cells finishes


1454 nuclear division, and just after all five of the cells finish nuclear division (8.5 h). See
1455 Movie S1 for the full set of time-lapse images. (B) Different groups of cells collected
1456 from liquid culture at different time points.

1457

1458 **Movie S1. Time-lapse fluorescence microscopy of Rpb1-eGFP cells exiting G0,
1459 deposited on an agar pad.**

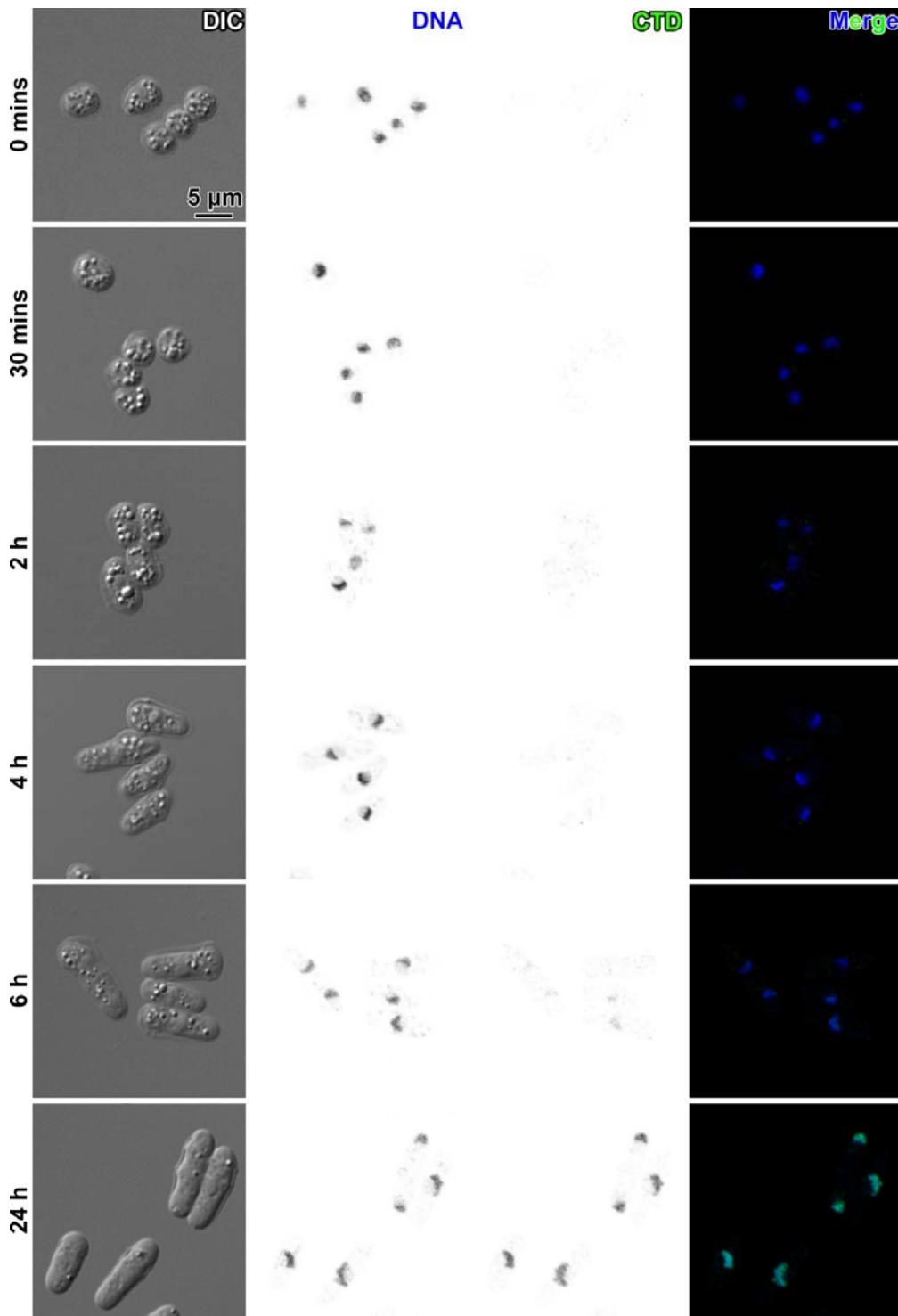

1460 The images on the left are differential interference contrast (DIC), the images on the
1461 right are eGFP fluorescence (Rpb1-eGFP). The interval between each frame is 30
1462 minutes.

1463


1464
1465 **Figure S6. Nascent RNA transcripts are observable 6 hours after G0 cells are**
1466 **subjected to nutrient-rich medium.**

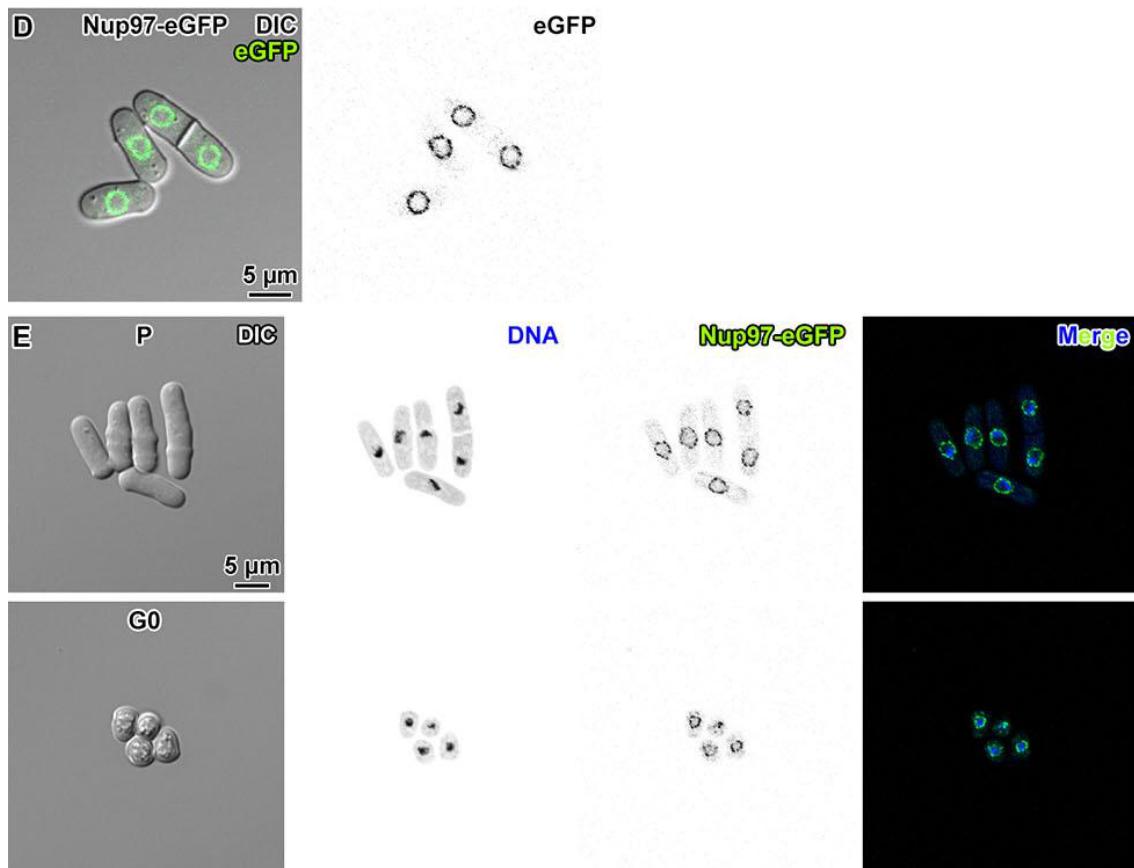
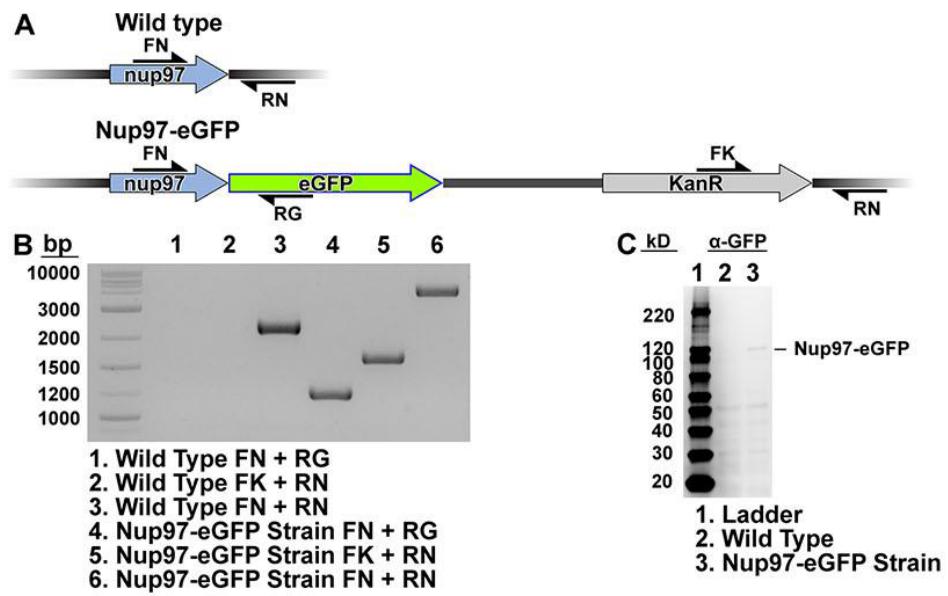
1467 Fluorescence microscopy analysis of RNA content in cells after yFS240 G0 cells are
1468 exposed to nutrient-rich medium. Columns, left to right: differential interference contrast
1469 (DIC), DAPI fluorescence (DNA), Alexa Fluor 488 fluorescence (RNA) and merge.
1470

1471
1472 **Figure S7. RNAPII-CTD-S2P levels increase 6 hours after G0 cells are subjected to**
1473 **nutrient-rich medium.**


1474 Fluorescence microscopy analysis of RNAPII-CTD-S2P content in cells after wild-type
1475 G0 cells are exposed to nutrient-rich medium. Columns, left to right: differential
1476 interference contrast (DIC), DAPI fluorescence (DNA), Alexa Fluor 488
1477 immunofluorescence (CTD-S2P) and merge.

1479
1480
1481
1482
1483
1484
1485
1486

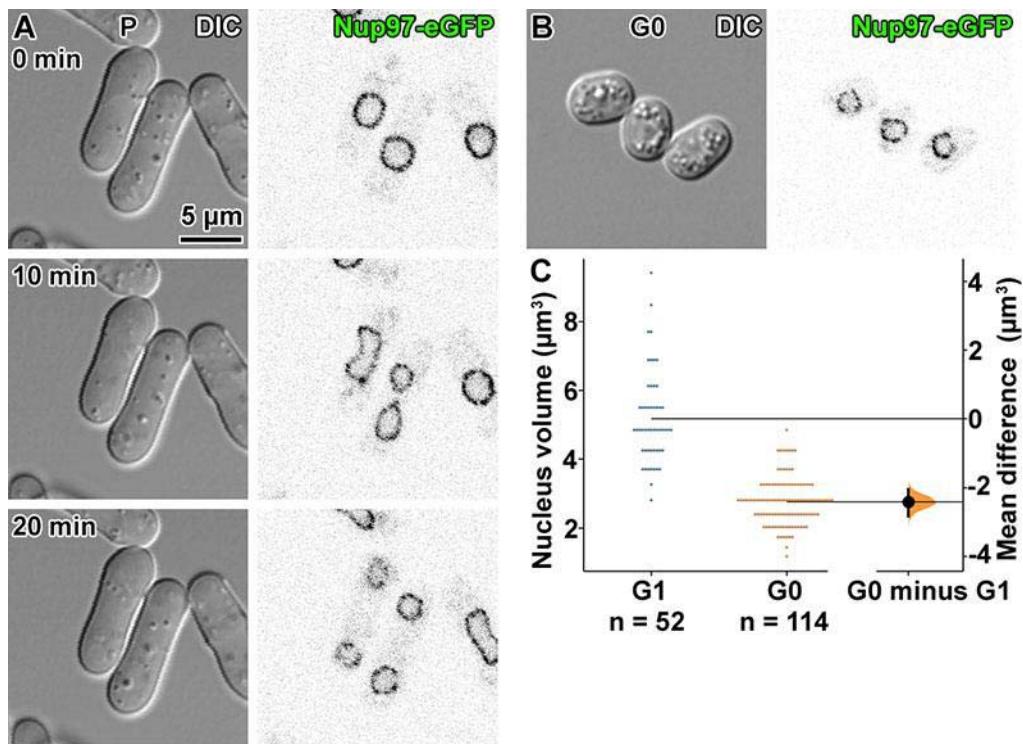
Figure S8. RNAPII-CTD-S5P levels increase 4 hours after G0 cells are changed into nutrient-rich medium.



Fluorescence microscopy analysis of RNAPII-CTD-S5P content in cells after wild-type G0 cells are exposed to nutrient-rich medium. Columns, left to right: differential interference contrast (DIC), DAPI fluorescence (DNA), Alexa Fluor 488 immunofluorescence (CTD-S5P) and merge.

1487
1488 **Figure S9. RNAPII CTDs become more detectable 6 hours after G0 cells are**
1489 **changed into nutrient-rich medium.**

1490 Fluorescence microscopy analysis of RNAPII content in cells after wild-type G0 cells are
1491 exposed to nutrient-rich medium. Columns, left to right: differential interference contrast
1492 (DIC), DAPI fluorescence (DNA), Alexa Fluor 488 immunofluorescence (CTD) and
1493 merge.

1494



1495

1496 **Figure S10. Construction of Nup97-eGFP strain.**

1497 (A) Map of the *nup97* locus in the parent (wild-type) *S. pombe* strain MBY99 and the
1498 Nup97-eGFP strain LGSP0002. Primers used for PCR verification are indicated with the
1499 half arrow symbols. (B) Agarose gel of PCR amplicons expected from wild-type (control)
1500 and from Nup1-eGFP genomic DNA, in which the *nup97* locus is tagged with eGFP. (C)
1501 Immunoblot analysis of the Nup97-eGFP. The α -eGFP antibody correctly detected the
1502 Nup97-eGFP fusion protein in the newly created strain (lane 3), but not in the wild type
1503 (lane 2, negative control) in the uncropped α -eGFP immunoblot. (D) Differential
1504 interference contrast (DIC) and eGFP fluorescence confocal microscopy images of live
1505 Nup97-eGFP cells. In the left panel, a merge of the DIC channel and the eGFP
1506 fluorescence channel is shown. In the right panel, eGFP signals are rendered with
1507 inverted contrast. (E) Fluorescence microscopy analysis of Nup97-eGFP in interphase
1508 (P) and G0, in the Nup97-eGFP strain. Left to right: differential interference contrast
1509 (DIC), DAPI fluorescence (DNA) rendered in inverse contrast, eGFP fluorescence
1510 (Nup97-eGFP) rendered in inverse contrast, and merge of the two fluorescence
1511 channels. Cells were fixed with formaldehyde. (F) Spot tests of proliferating (P) and G0
1512 cells of the Nup97-eGFP strain after a 30-minute incubation in YES and EMM-N
1513 respectively, with and without heat stress.

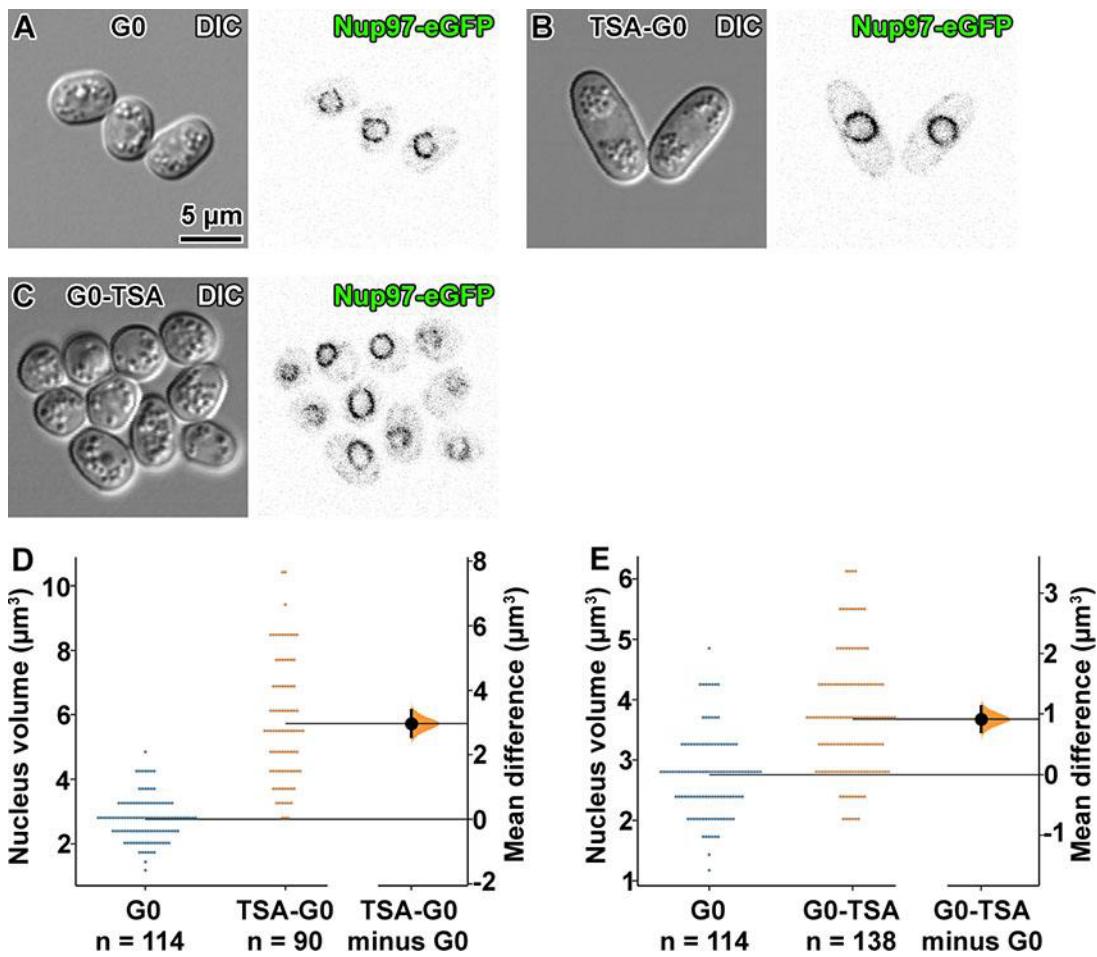
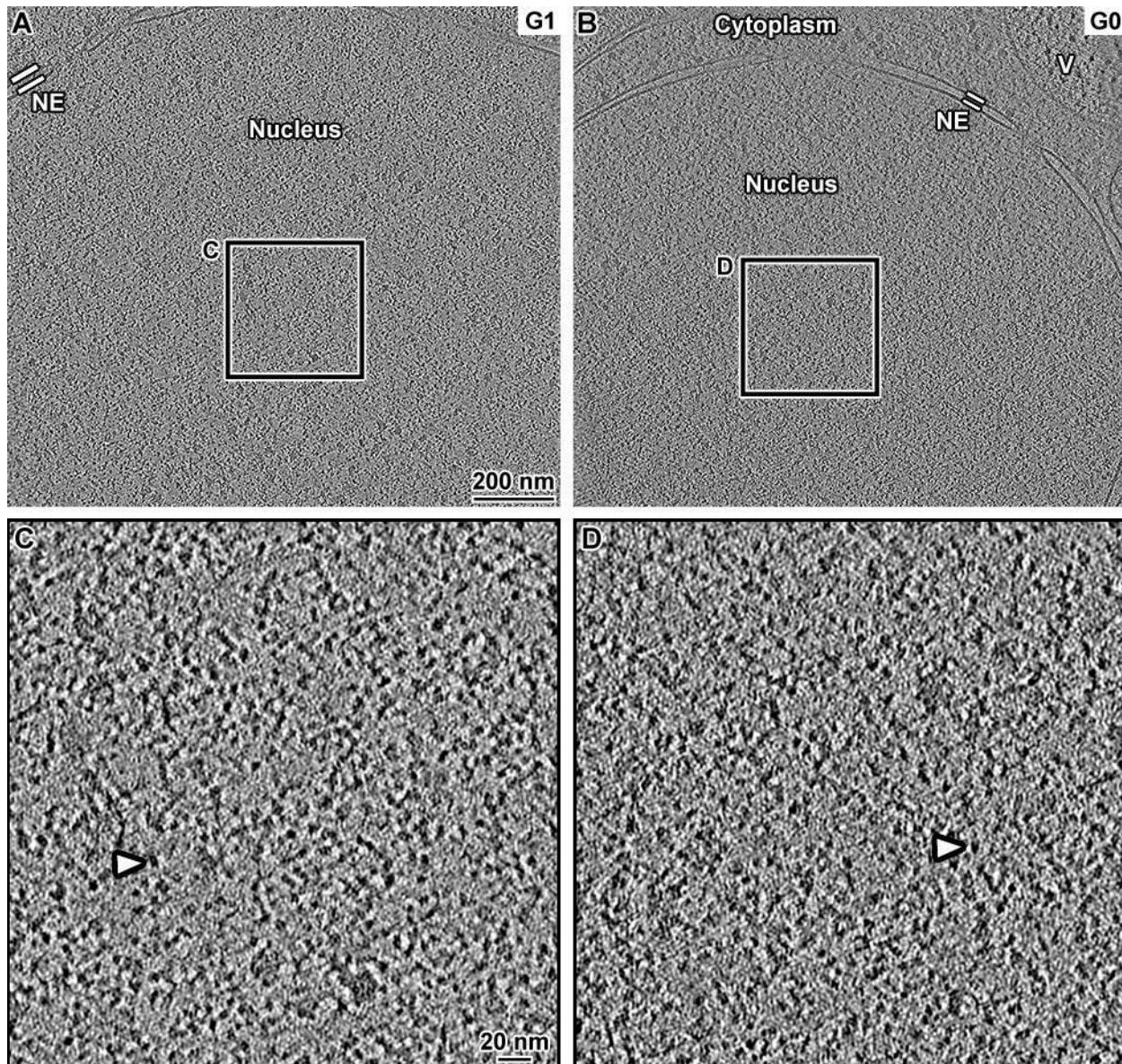
1514

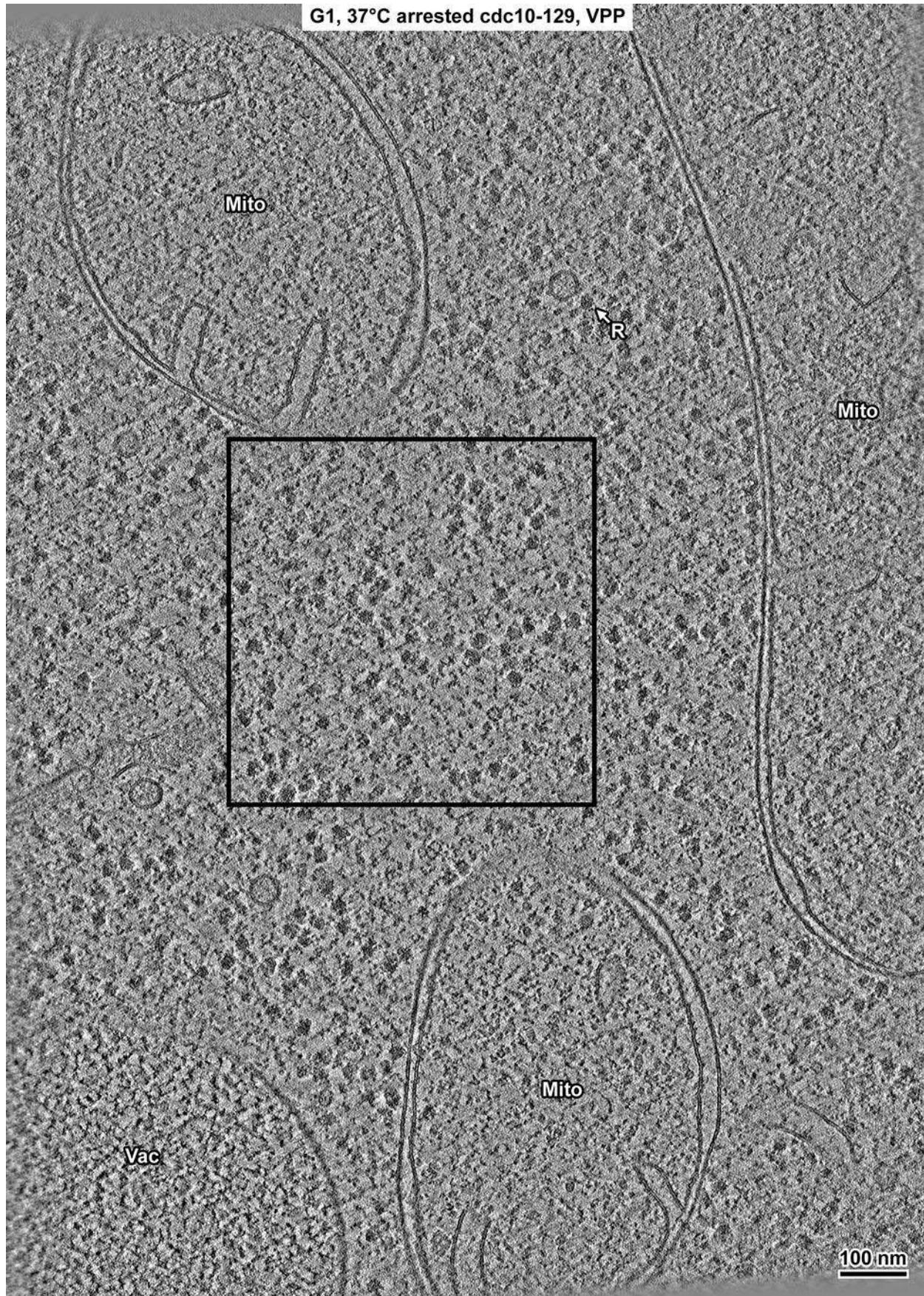
Figure S11. G0 Nup97-eGFP cells have smaller nuclei than G1 Nup97-eGFP cells.

(A) Differential interference contrast (DIC) (left) and eGFP fluorescence (right) confocal fluorescence microscopy images of proliferating Nup97-eGFP cells just before (0 minutes), during (10 minutes), and just after (20 minutes) nuclear division. G1 nucleus sizes were determined from the nuclei that had just divided. See Movie S2 for the time-lapse images. (B) DIC and eGFP fluorescence confocal fluorescence microscopy images of G0 Nup97-eGFP cells. (C) Gardner-Altman plot of the mean difference between G1 and G0 nucleus volumes. Both groups are plotted on the left axes; the mean difference is plotted on a floating axis on the right. The mean difference is depicted as a dot; the 95% confidence interval is indicated by the ends of the vertical error bar (Ho et al., 2019).

Movie S2. Time-lapse fluorescence microscopy of proliferating Nup97-eGFP cells, deposited on an agar pad.

The images on the left are differential interference contrast (DIC), the images on the right are eGFP fluorescence (Nup97-eGFP). The interval between each frame is 10 minutes.


Figure S12. G0 Nup97-eGFP cells treated with TSA have larger nuclei than untreated G0 Nup97-eGFP cells.

(A) Differential interference contrast (DIC) (left) and eGFP fluorescence (right) confocal fluorescence microscopy images of G0 Nup97-eGFP cells. (B) DIC and eGFP fluorescence confocal fluorescence microscopy images of TSA-G0 Nup97-eGFP cells. (C) DIC and eGFP fluorescence confocal fluorescence microscopy images of G0-TSA Nup97-eGFP cells. Gardner-Altman plot of (D) the mean difference between G0 and TSA-G0 nucleus volumes, and (E) the mean difference between G0 and G0-TSA nucleus volumes. In each plot, both groups are plotted on the left axes; the mean difference is plotted on a floating axis on the right. The mean difference is depicted as a dot; the 95% confidence interval is indicated by the ends of the vertical error bar (Ho et al., 2019).

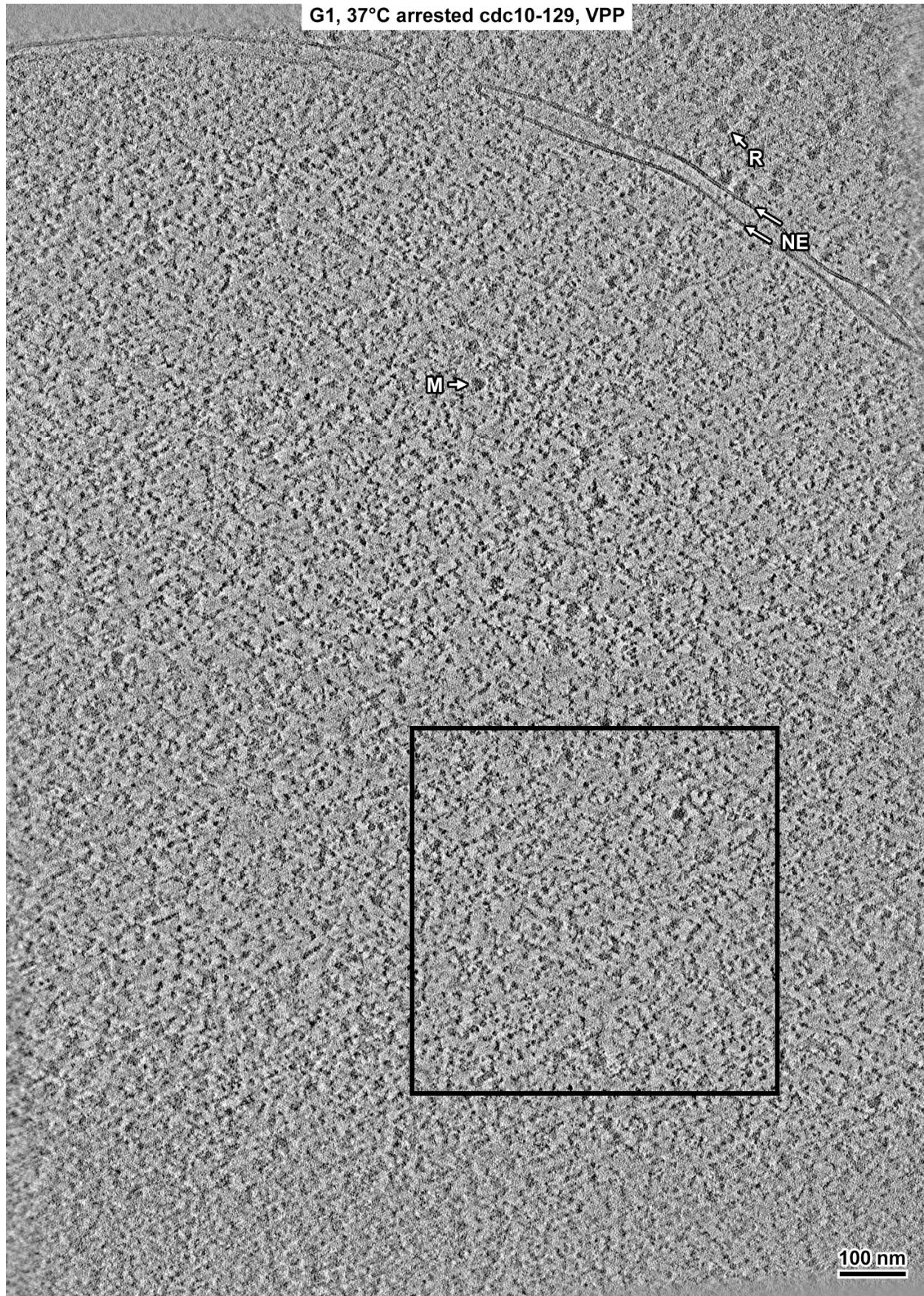
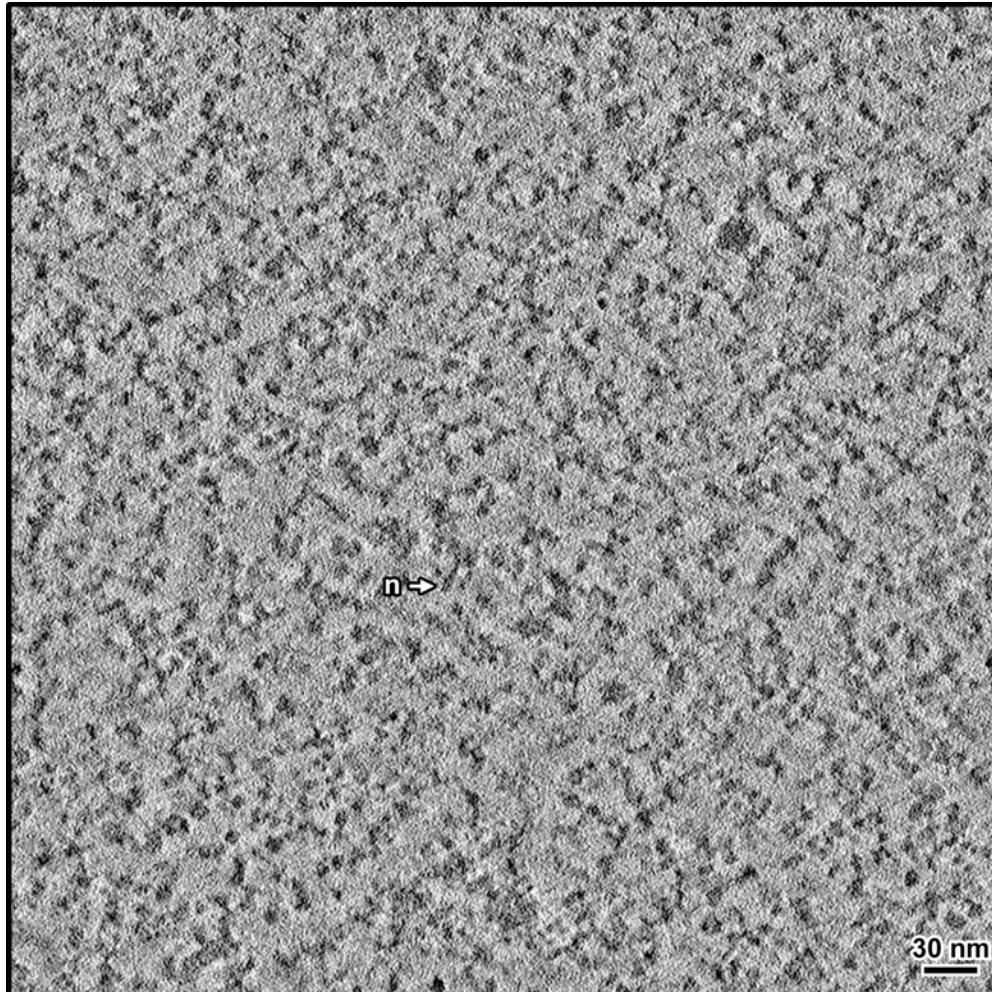
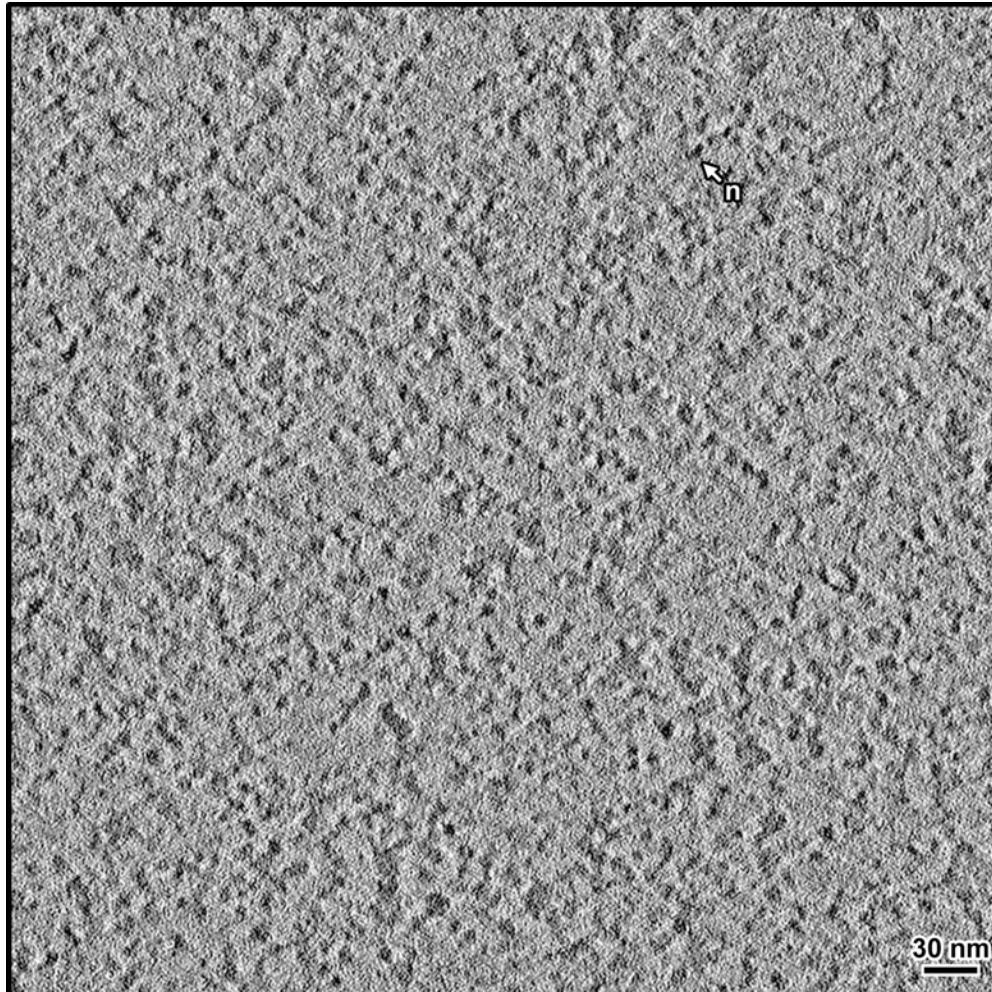


Figure S13. G0 cells have a denser nucleoplasm than G1 cells.

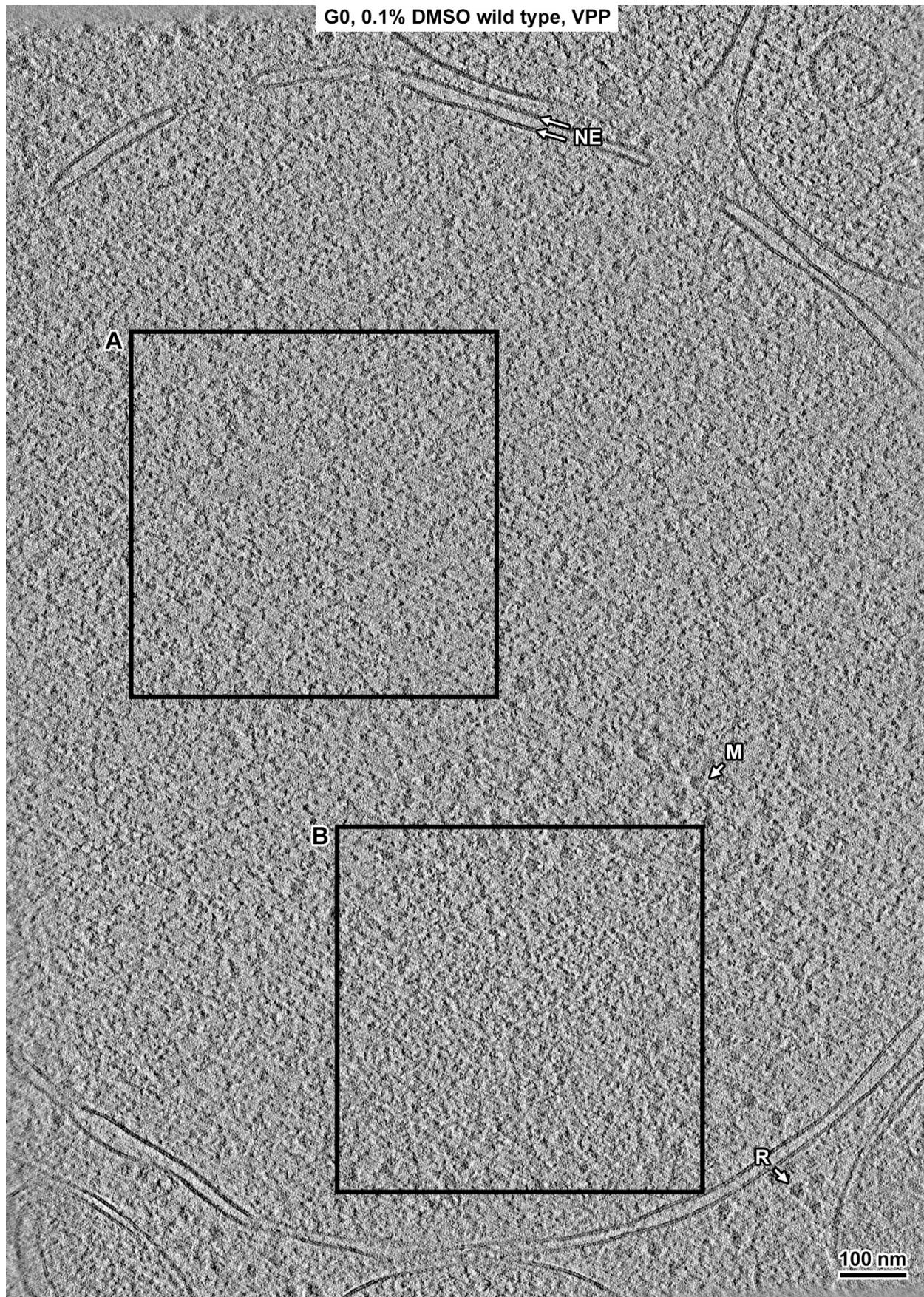

Defocus phase-contrast cryotomographic slices (12 nm) of a G1-arrested (A) and a G0 (B) cell, imaged with defocus contrast. NE: nuclear envelope. (C and D) Four-fold enlargements of the regions boxed in panels A and B, respectively. Nucleosome-like densities are indicated by arrowheads.

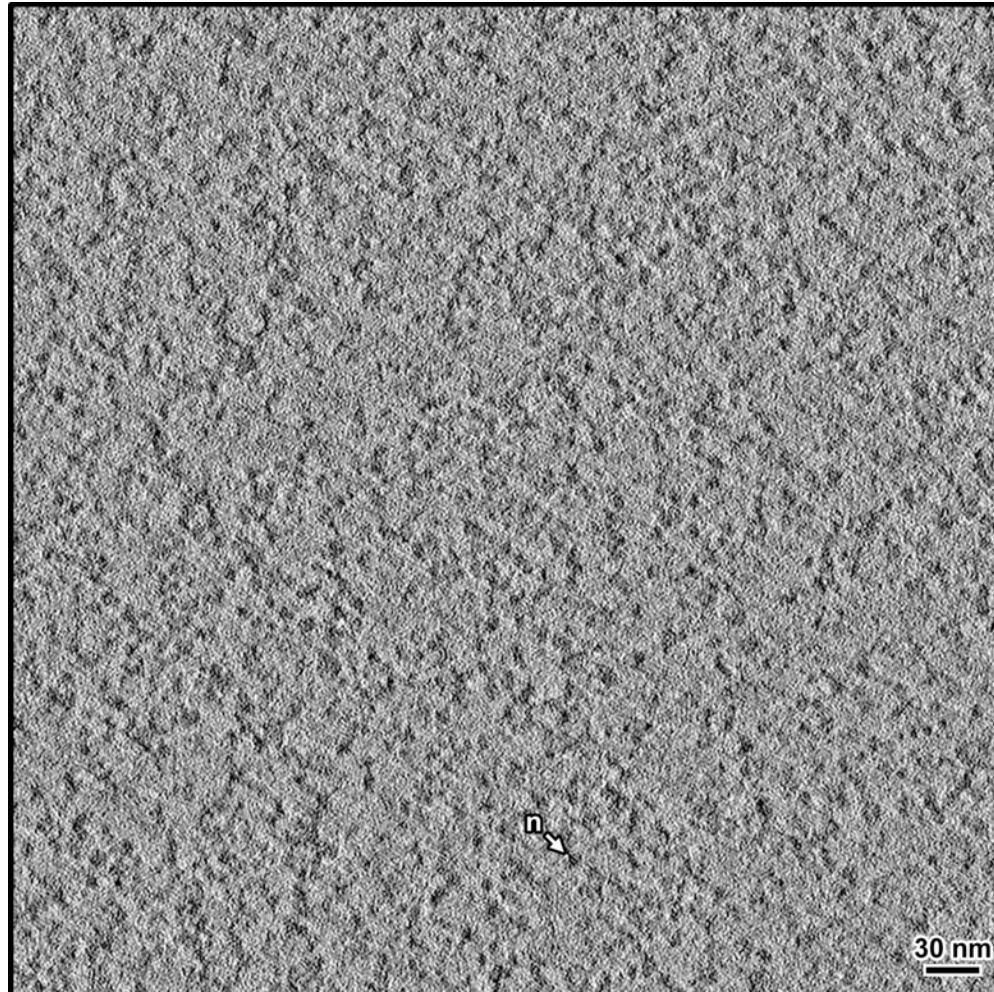
1555 **Figure S14. Overview of a G1 cytoplasm cryolamella**
1556 Volta cryotomographic slice (12 nm) of a ribosome-rich region of the cytoplasm in a G1-
1557 arrested *cdc10-129* cell cryolamella. The vacuoles (Vac), mitochondria (Mito), and a
1558 ribosome (R) are indicated. The boxed region was used for Fourier power spectrum
1559 analysis in Figures 6 and S28.
1560

1562 **Figure S15. Overview of a G1 nucleus cryolamella**
1563 Volta cryotomographic slice (12 nm) of the nucleus in a G1-arrested *cdc10-129* cell
1564 cryolamella. Some non-chromatin features are indicated: nuclear envelope (NE),
1565 megacomplex (M), and ribosome (R). The boxed region is shown with twofold
1566 enlargement in Figure S16, and was used for Fourier power spectrum analysis in Figure
1567 6.

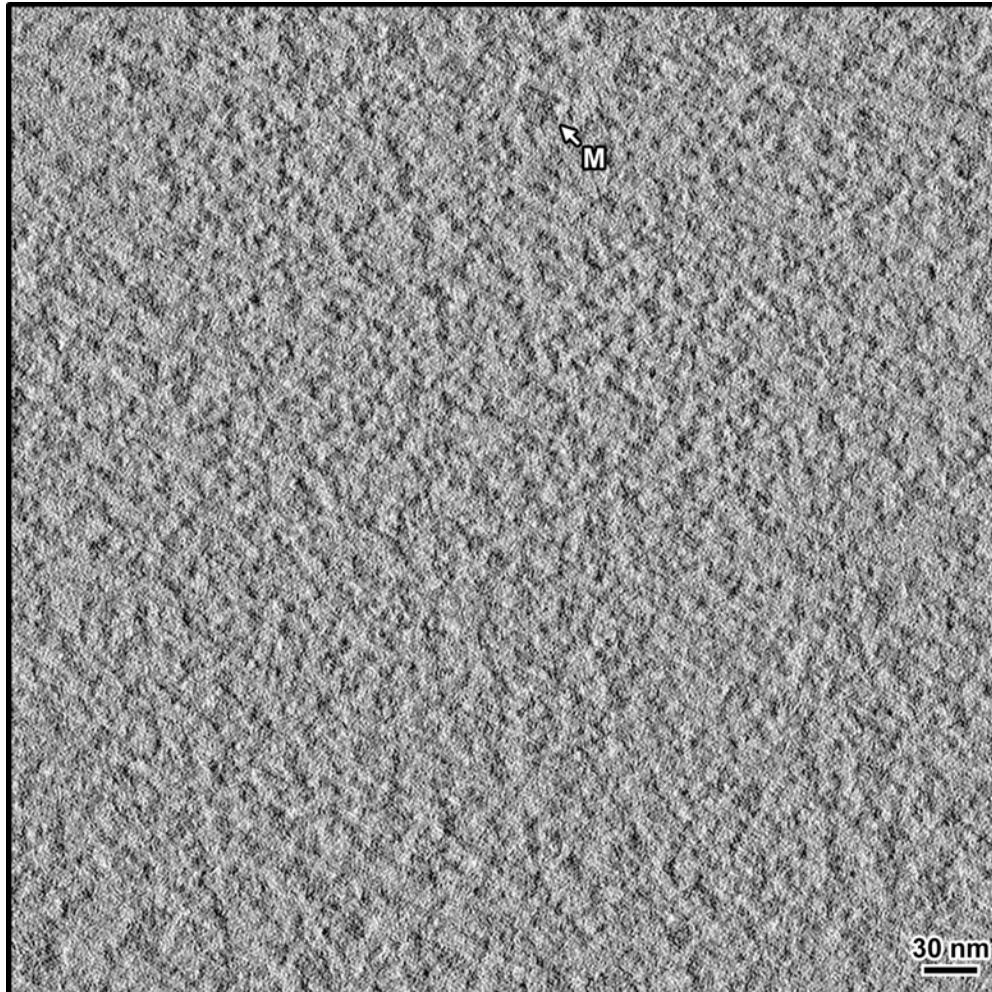


1568
1569
1570
1571
1572
1573


Figure S16. Twofold enlargement of selected region from G1 nucleus cryolamella
A region of a Volta cryotomographic slice (12 nm) of the nucleus in the G1-arrested *cdc10-129* cell from Figure S15, selected for Fourier power spectrum analysis in Figure 6. A nucleosome-like particle (n) is indicated.


1575 **Figure S17. Overview of a proliferating cell nucleus cryolamella**
1576 Volta cryotomographic slice (12 nm) of the nucleus in a proliferating cell cryolamella.
1577 Some non-chromatin features are indicated: nuclear envelope (NE), megacomplex (M),
1578 ribosome (R) and vacuole (Vac). The boxed region is shown with twofold enlargement
1579 in Figure S18, and was used for Fourier power spectrum analysis in Figure 6.

1580
1581 **Figure S18. Twofold enlargement of selected region from proliferating nucleus**
1582 **cryolamella**
1583 A region of a Volta cryotomographic slice (12 nm) of the nucleus in the proliferating cell
1584 from Figure S17, selected for Fourier power spectrum analysis in Figure 6. A
1585 nucleosome-like particle (n) is indicated.
1586


1588 **Figure S19. Overview of a G0 nucleus cryolamella**
1589 Volta cryotomographic slice (12 nm) of a nucleus cryolamella of a wild-type G0 cell
1590 treated with 0.1% DMSO during G0 entry. Some non-chromatin features are indicated:
1591 nuclear envelope (NE), megacomplex (M), and ribosome (R). The nucleoplasm boxed
1592 region (A) is shown with twofold enlargement in Figure S20, and was used for Fourier
1593 power spectrum analysis in Figures 6 and S28. The nucleolus boxed region (B) is
1594 shown with twofold enlargement in Figure S21, and was used for Fourier power
1595 spectrum analysis in Figure S28.

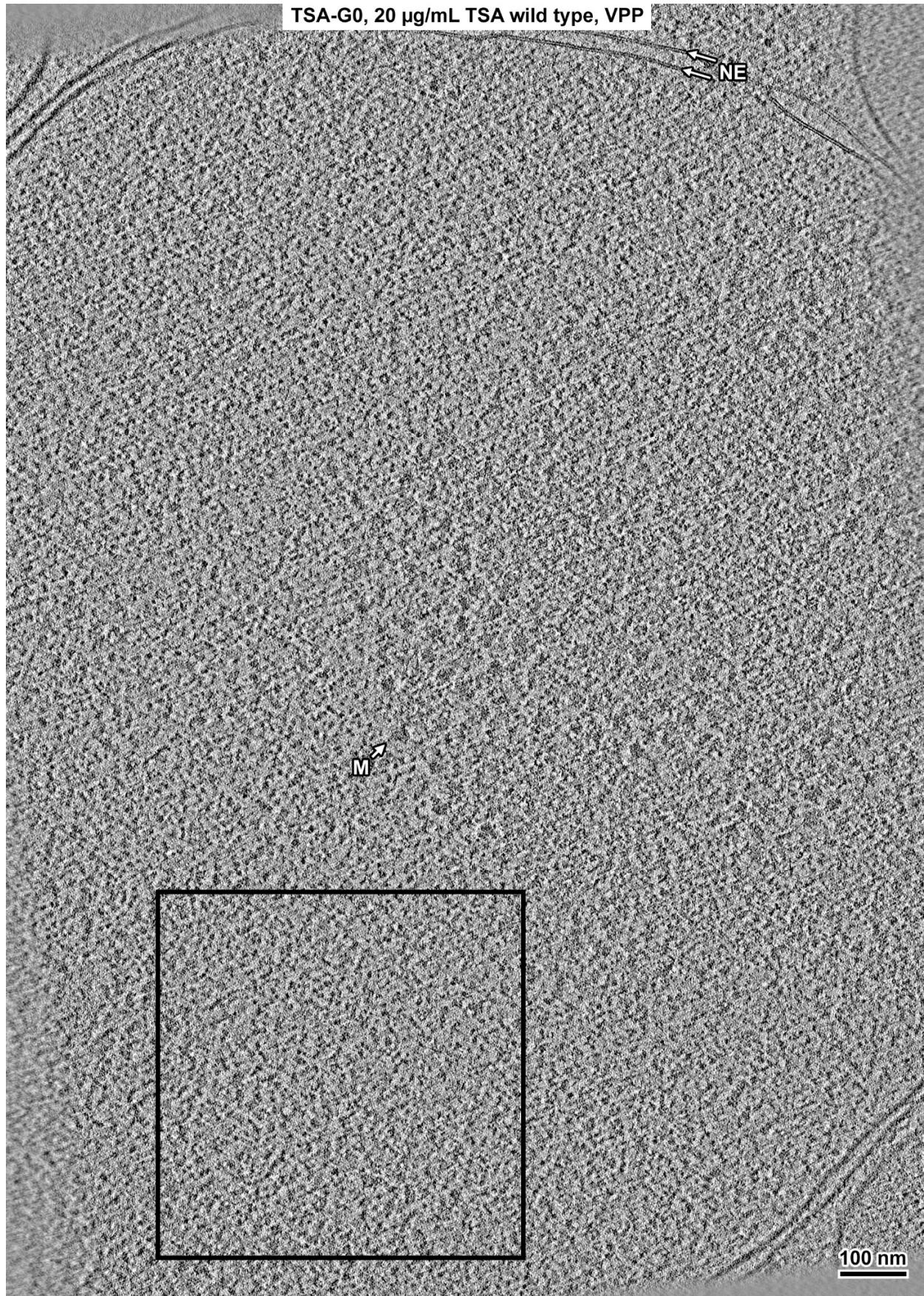
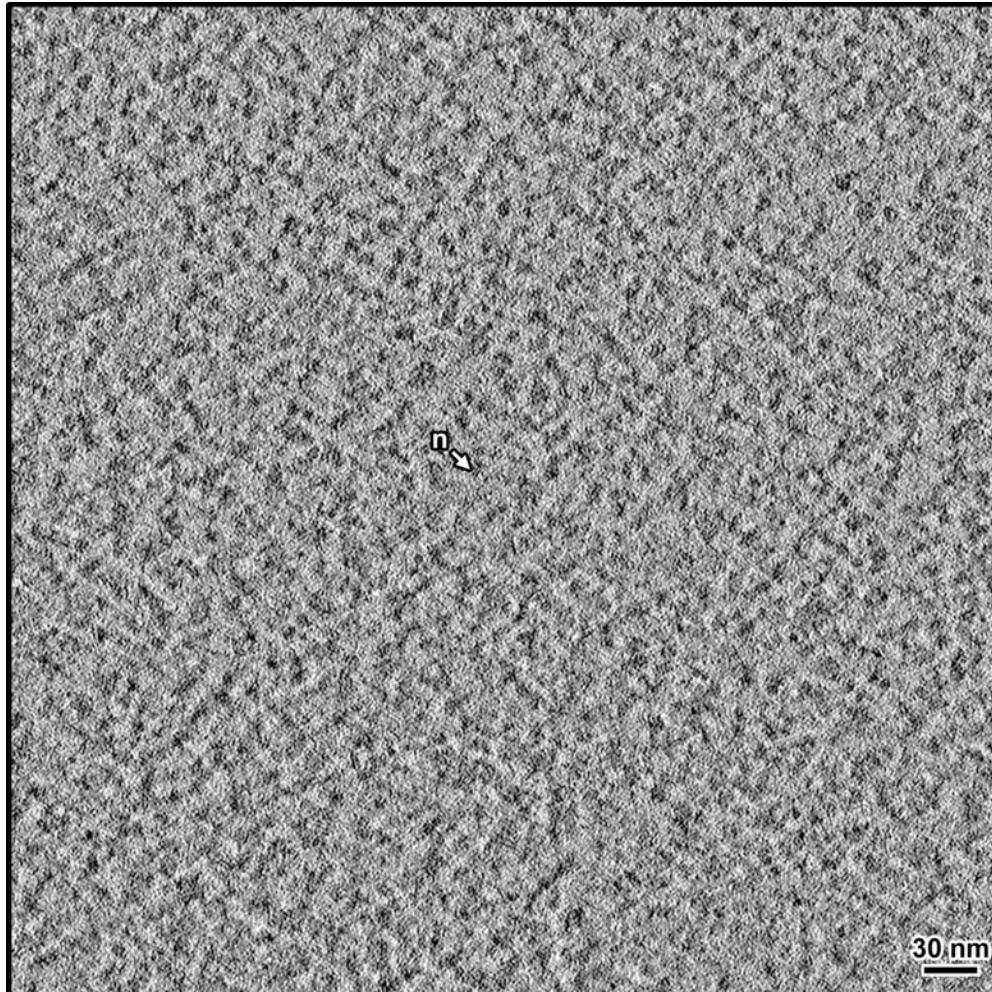
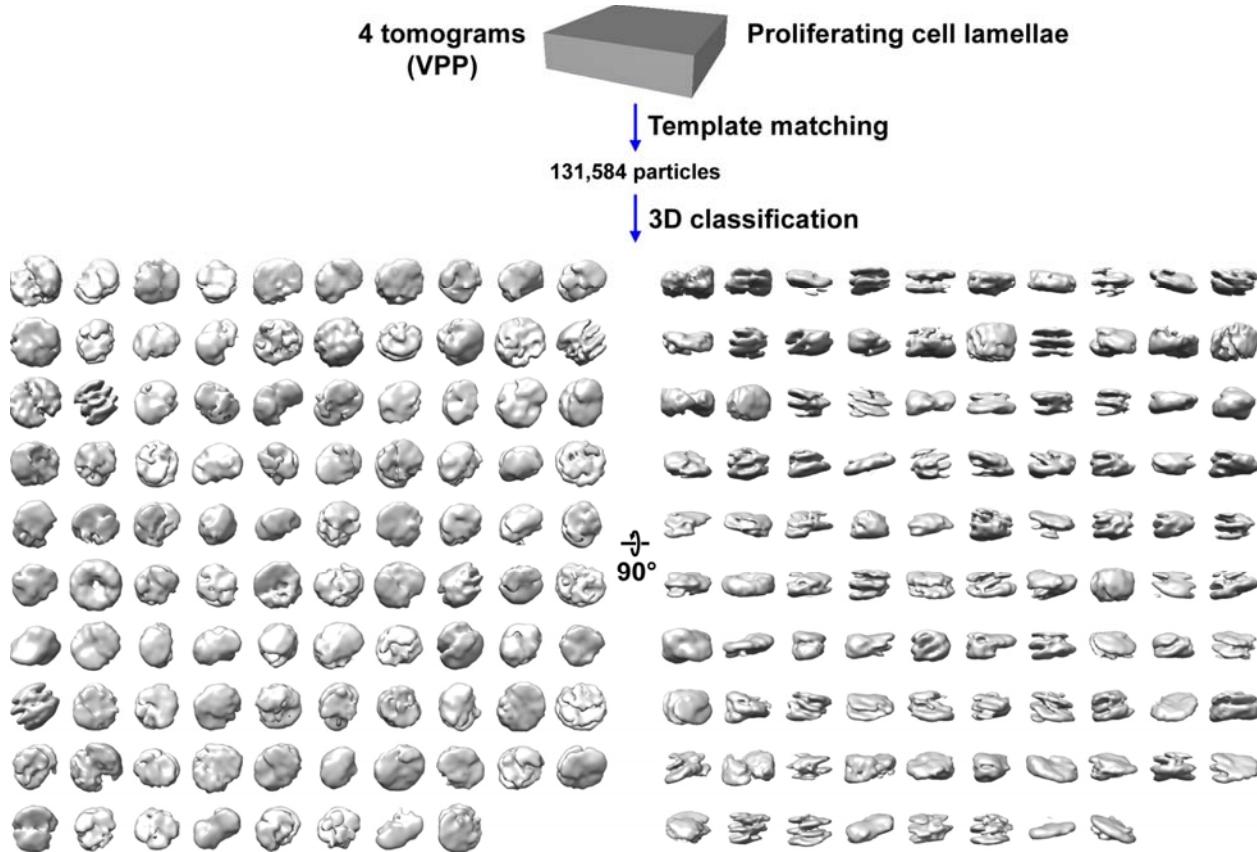

1596
1597
1598
1599
1600
1601
1602
1603

Figure S20. Twofold enlargement of selected nucleoplasm region from a G0 nucleus cryolamella

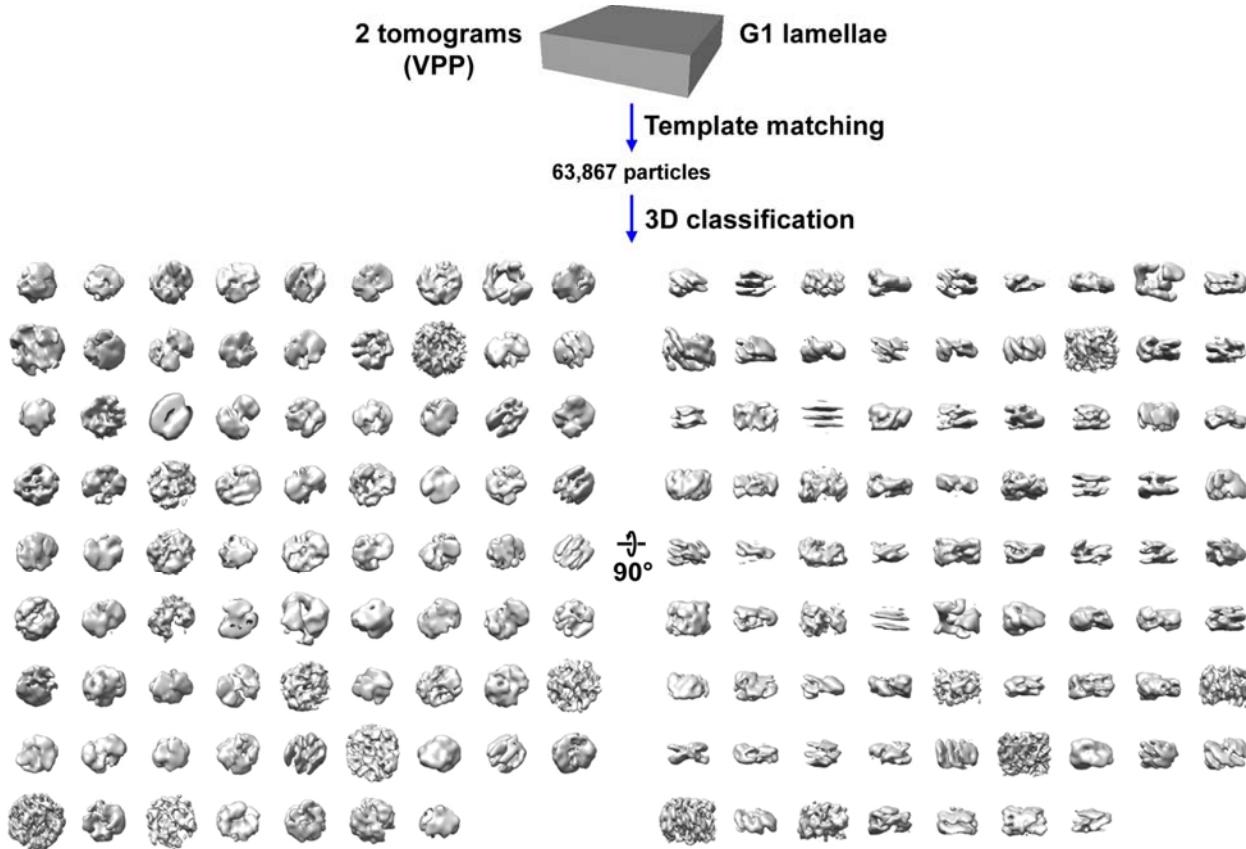

A region of a Volta cryotomographic slice (12 nm) of the nucleoplasm region of the nucleus in a wild-type G0 cell treated with 0.1% DMSO during G0 entry from Figure S19, selected for Fourier power spectrum analysis in Figures 6 and S28. A nucleosome-like particle (n) is indicated.

1604
1605 **Figure S21. Twofold enlargement of selected nucleolus region from a G0 nucleus**
1606 **cryolamella**
1607 A region of a Volta cryotomographic slice (12 nm) of the nucleolus in a wild-type G0 cell
1608 treated with 0.1% DMSO during G0 from Figure S20, selected for Fourier power
1609 spectrum analysis in Figure S28. A megacomplex (M) is indicated.
1610


1612 **Figure S22. Overview of a TSA-G0 nucleus cryolamella**
1613 Volta cryotomographic slice (12 nm) of a nucleus cryolamella of a wild-type G0 cell
1614 treated with 20 ng/µL TSA during G0 entry. Some non-chromatin features are indicated:
1615 nuclear envelope (NE) and megacomplex (M). The boxed region is shown with twofold
1616 enlargement in Figure S23, and was used for Fourier power spectrum analysis in Figure
1617 6.
1618

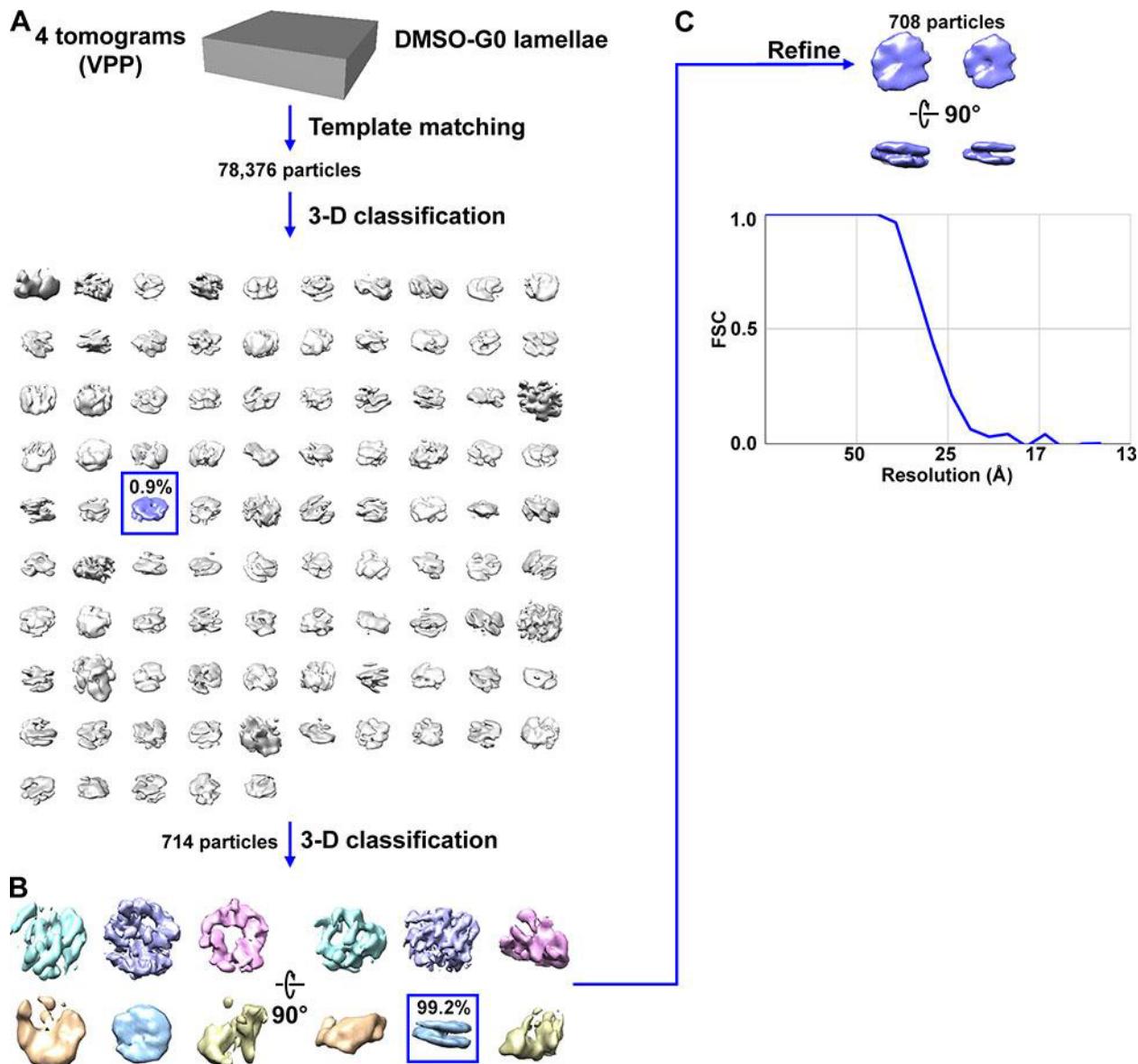
1619
1620
1621
1622
1623
1624
1625

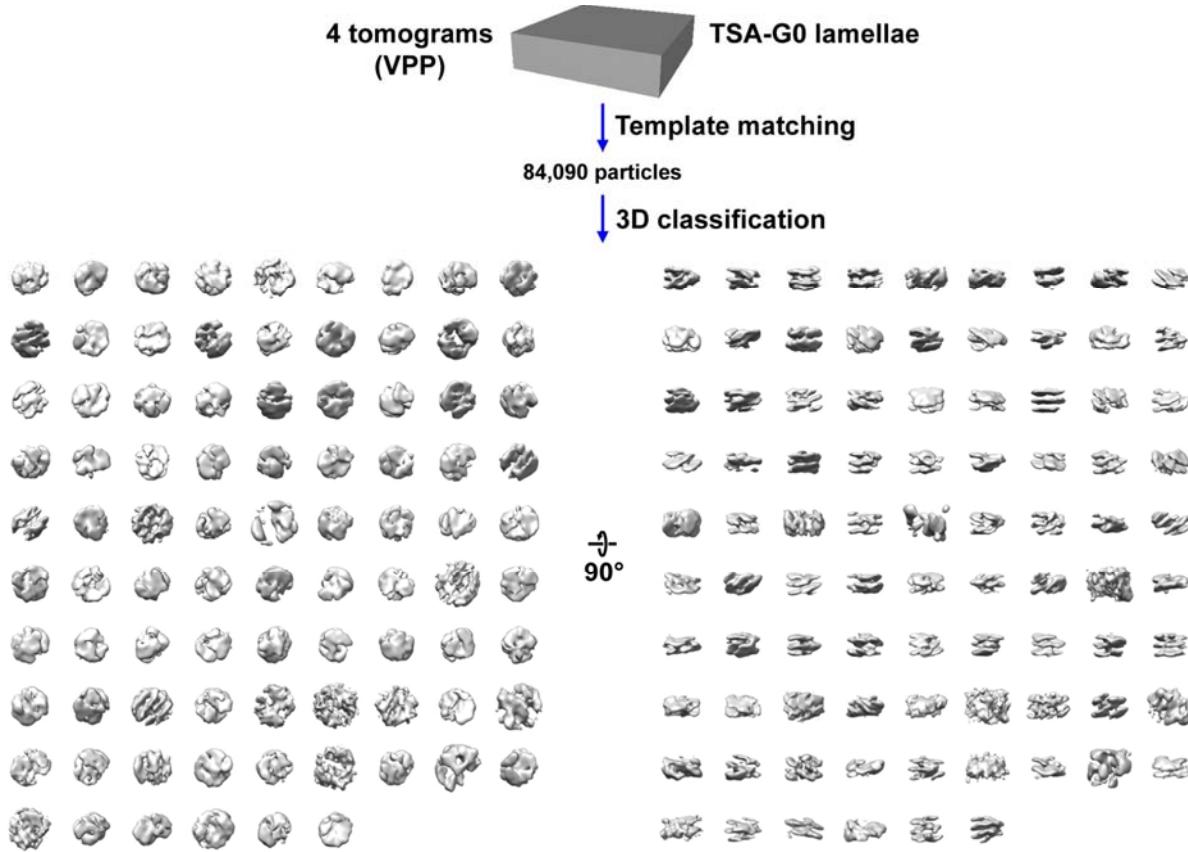
Figure S23. Twofold enlargement of selected region from TSA-G0 nucleus cryolamella


A region of a Volta cryotomographic slice (12 nm) of nucleus in a wild-type G0 cell treated with 20 ng/ μ L TSA during G0 entry from Figure S22, selected for Fourier power spectrum analysis in Figure 6. A nucleosome-like particle (n) is indicated.

1626
1627
1628
1629
1630
1631
1632
1633
1634
1635

Figure S24. Direct 3-D classification of proliferating cell cryolamellae densities.

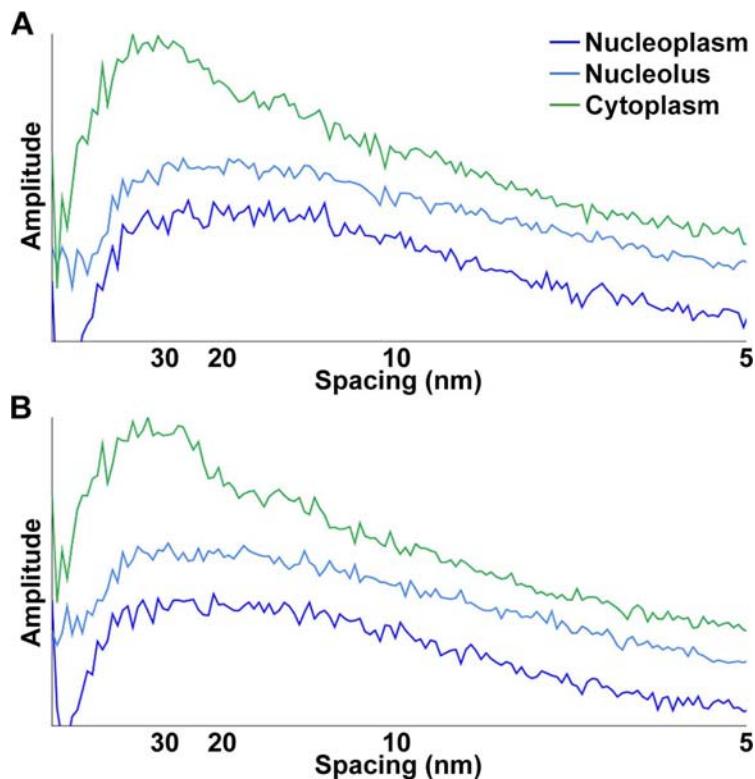

Tomograms of proliferating cell cryolamellae were template matched using a smooth 5 nm radius 6 nm thick cylindrical reference and a 5.4 nm radius 6.1 nm thick cylindrical mask. Direct 3-D class averaging (2-D classification was bypassed) was done using a smooth 5 nm radius 6 nm thick cylindrical reference and a 5 nm radius 6 nm thick cylindrical mask with a cosine-shaped edge, with 100 classes. None of the class averages (grey) of the nucleosome-like template-matching hits resembled a canonical nucleosome. Two classes have no contributing particles.



1636
1637

Figure S25. Direct 3-D classification of *cdc10-129* G1 cryolamellae densities.

1638 Tomograms of *cdc10-129* G1 cryolamellae were template matched using a smooth 5
1639 nm radius 6 nm thick cylindrical reference and a 5.4 nm radius 6.1 nm thick cylindrical
1640 mask. Direct 3-D class averaging (2-D classification was bypassed) was done using a
1641 smooth 5 nm radius 6 nm thick cylindrical reference and a 5 nm radius 6 nm thick
1642 cylindrical mask with a cosine-shaped edge, with 100 classes. None of the class
1643 averages (grey) of the nucleosome-like template-matching hits resembled a canonical
1644 nucleosome. Twenty-one classes have no contributing particles.



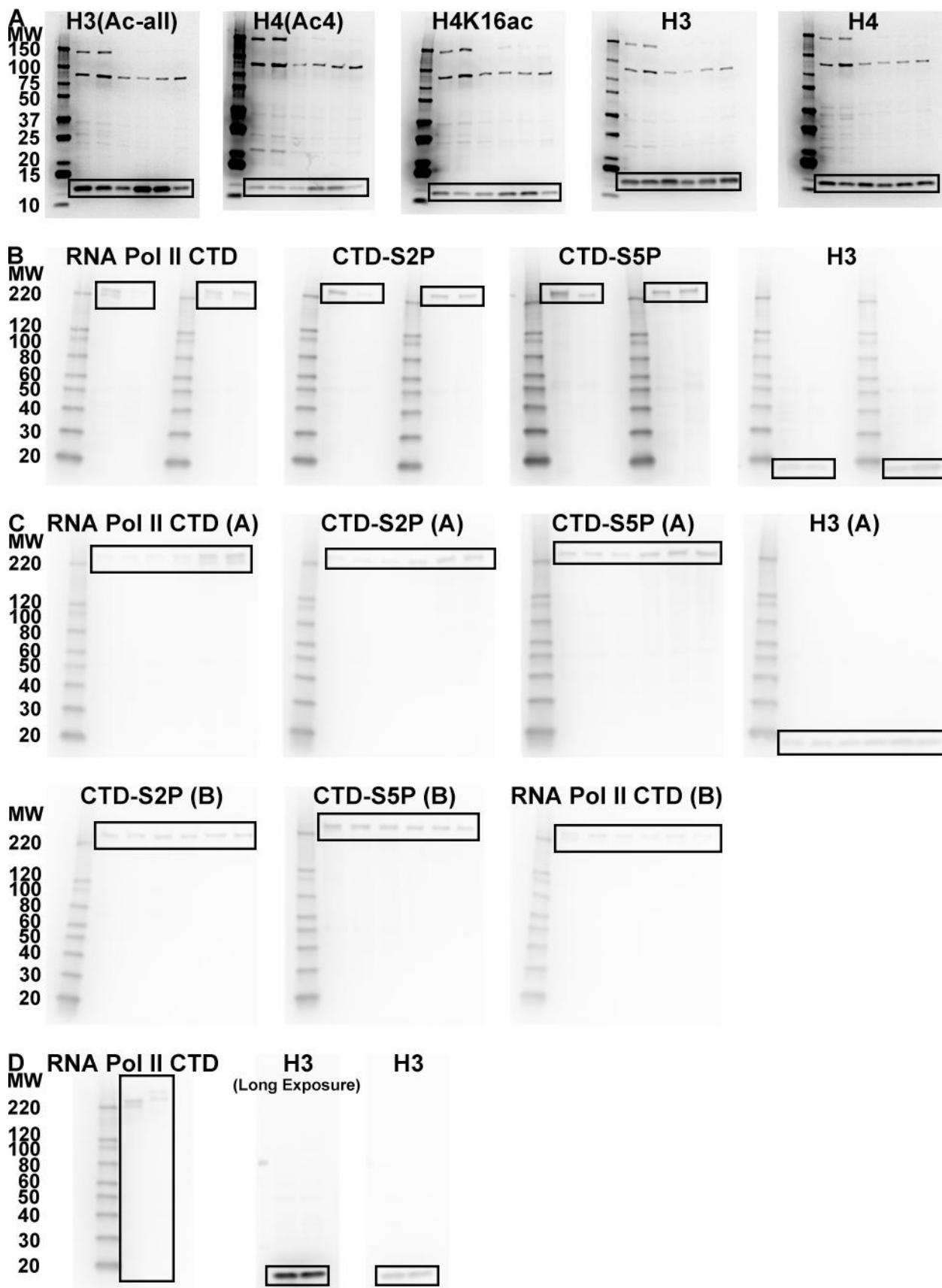

1658
1659
1660
1661
1662
1663
1664
1665
1666
1667

Figure S27. Direct 3-D classification of TSA-G0 cryolamellae densities.

Tomograms of TSA-G0 cryolamellae were template matched using a smooth 5 nm radius 6 nm thick cylindrical reference and a 5.4 nm radius 6.1 nm thick cylindrical mask. Direct 3-D class averaging (2-D classification was bypassed) was done using a smooth 5 nm radius 6 nm thick cylindrical reference and a 5 nm radius 6 nm thick cylindrical mask with a cosine-shaped edge, with 100 classes. None of the class averages (grey) of nucleosome-like template-matching hits resembled a canonical nucleosome. Thirteen classes have no contributing particles.

1668
1669 **Figure S28. G0 nucleoplasm and nucleolus power spectra are similar to each**
1670 **other, but do not have the 30 nm peak present in the cytoplasm power spectrum.**
1671 Rotationally averaged 1-D Fourier power spectra of chosen nucleoplasm (blue) and
1672 nucleolus (light blue) regions in the G0 tomogram analysed, with the Fourier power
1673 spectrum of a ribosome-rich cytoplasm region in a G1 tomogram (green) for
1674 comparison. Fourier analysis was done on Volta cryotomographic slices extracted at (A)
1675 12 nm and (B) 30 nm thickness. All power spectra for each thickness are plotted on the
1676 same graph, separated with arbitrary offsets for clarity.

1678 **Figure S29. Uncropped immunoblots.**

1679 For each immunoblot, the cropped bands are boxed at the bottom. (A) Immunoblots
1680 used in Figure 2A. The same molecular weight markers (MW, kilodaltons) were used for
1681 all 5 blots. Molecular weights are indicated to the left of the α -H3(Ac-all) blot. The
1682 detected high-molecular weight proteins (> 75 kilodaltons) are non-specifically bound by
1683 the StrepTactin-HRP conjugate. (B) Immunoblots used in Figures 3B and 3C. Molecular
1684 weight markers are different from those in part A, but the same across all 4 blots in this
1685 part. Molecular weights are indicated to the left of the α -CTD blot. For each antibody,
1686 the left set of lanes was loaded to have equal concentrations of H3, shown in Figure 3B,
1687 the right set of lanes was loaded to have equal concentrations of CTD, shown in Figure
1688 3C. (C) Immunoblots used in Figure S4. Molecular weight markers used are the same
1689 as those used in part B. Molecular weights are indicated to the left of the α -CTD blot
1690 used in Figure S4A and the α -S2P blot used in Figure S4B. (D) Immunoblots used in
1691 Figure S1C. Molecular weight markers used for the first blot in this part are the same as
1692 those used in part B. Molecular weights are indicated to the left of the α -CTD blot. The
1693 GFP immunoblot and one of the H3 loading controls were exposed for 40 seconds
1694 during imaging. Both H3 loading controls do not have molecular weight markers. The
1695 anti-GFP blots shown in Figures S1C and S10C are already uncropped.

1696 **Table S1. Strains used in this paper**

Strain	Parent	Genotype	Source
MBY99	--	972 <i>h-</i>	MB lab
MBY165	-	<i>cdc10-129</i>	MB lab
yFS240 (tk- – hENT1)	–	<i>h- leu1-32 ura4-D18 ade6-210 his7-366 pJL218 (his7 adh1:tk) pFS181 (leu1 adh1:hENT1)</i>	(Sivakumar et al., 2004)
LGSP0001	MBY99	972 <i>h- rpb1-eGFP-kanMX</i>	This paper
LGSP0002	MBY99	972 <i>h- nup97-eGFP-kanMX</i>	This paper

1697 MB lab = gift from Mohan Balasubramanian lab

1698

1699

Table S2. Confocal microscopy details

General

Instrument	Olympus FV3000
Pinhole	1 Airy unit
X, Y pixel	0.0800 [μm] for DAPI + eGFP, 0.0800 [μm] for DAPI + Alexa Fluor 488, 0.0874 [μm] for eGFP only, 0.0729 [μm] for DAPI only
Z pixel	0.4100 [μm] or 0.500 [μm]

Acquisition

Objective lens	UPLSAPO 60XO
Objective lens magnification	60x
Objective lens NA	1.35
Scan device	Galvano
Scan direction	One way
Dwell time	2.0 [$\mu\text{s pixel}^{-1}$]
Sequential mode	Line
Integration type	None
Integration count	0
Zoom	$\times 2.59$ for DAPI + eGFP, $\times 2.59$ for DAPI + Alexa Fluor 488, $\times 2.37$ for eGFP only, $\times 2.84$ for DAPI only

DAPI channel settings

Emission wavelength	461 [nm]
PMT voltage	400 – 550 [V]
C.A.	200 [μm] for DAPI + eGFP, 202 [μm] for DAPI + Alexa Fluor 488, 190 [μm] for DAPI only
Bits/pixel	12 [bits]
Laser wavelength	405 [nm]
Laser transmissivity	0.5 – 0.6 [%]
AOTF/AOM transmissivity	0.3 [%]
Laser ND filter	10 [%]
Detection wavelength	430 – 470 [nm]

eGFP channel settings

Emission wavelength	510 [nm]
PMT voltage	550 – 750 [V]
C.A.	200 [μm] for DAPI + eGFP, 210 [μm] for eGFP only
Bits/pixel	12 [bits]
Laser wavelength	488 [nm]
Laser transmissivity	0.5 [%]
AOTF/AOM transmissivity	0.3 [%]
Laser ND filter	10 [%]
Detection wavelength	500 – 600 [nm]

Alexa Fluor 488 channel settings

Emission wavelength	520 [nm]
PMT voltage	500 [V]
C.A.	202 [μm]
Bits/pixel	12 [bits]
Laser wavelength	499 [nm]

Laser transmissivity	0.04 – 3.5[%]
AOTF/AOM transmissivity	0.3 [%]
Laser ND filter	10 [%]
Detection wavelength	500 – 600 [nm]

DIC channel settings

PMT voltage	205 – 320 [V]
C.A.	200 [μ m] for DAPI + eGFP, 202 [μ m] for DAPI + Alexa Fluor 488, 210 [μ m] for eGFP only, 190 [μ m] for DAPI only
Bits/pixel	12 [bits]
Laser wavelength	488 [nm] if eGFP is used, 499 [nm] if Alexa Fluor 488 is used, 405 [nm] if only DAPI is used
Laser transmissivity	0.3 – 2 [%]
AOTF/AOM transmissivity	0.3 [%]
Laser ND filter	10 [%]

1700

1701 **Table S3. Antibodies used.**

Antigen	Primary antibody	Secondary antibody	Dilution	
			primary	secondary
Immunoblots				
H3 C-terminus	ab1791 (Abcam)	7074S (CST)	1:1000	1:5000
H4 C-terminus	ab10158 (Abcam)	7074S (CST)	1:1000	1:5000
Acetyl-H3	06-599 (Merck)	7074S (CST)	1:1000	1:5000
Acetyl-H4	06-866 (Merck)	7074S (CST)	1:1000	1:5000
H4K16ac	ab109463 (Abcam)	7074S (CST)	1:1000	1:5000
Pol II-CTD	ab26721 (Abcam)	7074S (CST)	1:1000	1:5000
Pol II-CTD-S2P	ab5095 (Abcam)	7074S (CST)	1:1000	1:5000
Pol II-CTD-S5P	ab5131 (Abcam)	7074S (CST)	1:1000	1:5000
eGFP	sc9996 (Santa Cruz)	7076S (CST)	1:1000	1:5000
Immunofluorescence				
Acetyl-H3	06-599 (Merck)	A11008 (Thermo)	1:500	1:500
Acetyl-H4	06-866 (Merck)	A11008 (Thermo)	1:500	1:500
H4K16ac	ab109463 (Abcam)	A11008 (Thermo)	1:100	1:500
Pol II-CTD	ab26721 (Abcam)	A11008 (Thermo)	1:1000	1:2000
Pol II-CTD-S2P	ab5095 (Abcam)	A11008 (Thermo)	1:1000	1:2000
Pol II-CTD-S5P	ab5131 (Abcam)	A11008 (Thermo)	1:1000	1:2000
Fibrillarin	NB300-269 (Novus)	A11001 (Thermo)	1:1000	1:2000

1702 CST = Cell Signaling Technology; Thermo = Thermo Fisher Scientific.

1703

1704 **Table S4 PCR primers, 5' → 3'**

Editing

nup97 5' HA F	ACCTTCTAGCTCAGTTGT
nup97 5' HA R	TTGGTACGACACCTGTGAATAGTCCTCGCCTTTGACATTGTC
	ATTCTATTCGCAGC
eGFP-KanMX F	ATGTCAAAAGGCGAGGAAC
nup97 eGFP-KanMX R	AAGTCAAGTAAACATAGAATAAACAAACCTTAAAAAAATAACAGT
	ATAGCGACCAGCATT
nup97 3' HA F	TTATTTTTAAGGTTGTTATTCTATGTTACTGACT
nup97 3' HA R	ACCAAGTGTGCTATCTCAT
rpb1 5' HA F	TGCGAGTGGAGAAAAGGAT
rpb1 5' HA R	AGTCCTCGCCTTTGACATAGATGGCTAGTAGGGGAA
rpb1 eGFP-KanMX R	GCATTGTCATCTCACACAACTAGCAGTATAGCGACCAGCATT
	C
rpb1 3' HA F	CTAGTTGTGAAGATGACAATG
rpb1 3' HA R	GCGTTAGTATCGAACGAGAAATTAAATTACTACAGACATT
	GGTTTT
pFA F	CTGTCGATTGATACTAACG
rpb1 pFA R	CATCCTTTCTCCACTCGCATCTAGTGTACCTAAATCGTAT

Confirmation

FN	TGCTTGTGGTCTTACGAG
RN	AGGACCTTGGAGCCTTTA
RG	ATAAGTTGCGTCCCCTCA
FK	CCTTATTTTGACGAGGGGA
5' rpb1-EGFP Validation Primer F	TCTTATTCCCTACTAGTCCC
5' rpb1-EGFP Validation Primer R	ATAAGTTGCGTCCCCTCA
3' rpb1-KanMX Validation Primer F	TCTTGTTCAGAACCTGTCATT
3' rpb1-KanMX Validation Primer R	AACGCACAAACCAAACACTAC
3' rpb1-BB Validation Primer F	CCGGTACTTGTAGTGATTGG
3' rpb1-BB Validation Primer R	ACGACTCACTATAGGGAGACC
5' rpb1-BB Validation Primer F	GGCTACAATTAAATACATAACCTTATGT
5' rpb1-BB Validation Primer R	TCAGATATTCCCTGCAATCAT
FR	TTTGGAACAGACGGCATA
RR	GGAGCATTAGGTGGGTA

Sequencing

FA1	CGGTGGTAAAGGTGGTAAAG
RA1	TCGTTCTGATAAACCCAGGT
RG	CCGTTCATATGATCTGGGT
Histone-GFP Seq R1.2	CTGACCTACAGGAAGAGTT
Histone-GFP Seq F2.1	CTGTCCTTTACCAAGACAAC
Histone-GFP Seq F2.2	CTCTTATTGACCACACCTCT
Histone-GFP Seq R2.2	CTTCTTGCAAGGAAGAACATG
Histone-GFP Seq F3.1	TCACATCACATCCGAACATA
FH	GACCATTGCTGTAATCGAC
RA2.2	CTGGACGAAGACGAAGTAAT
HAB2Del Seq R1	ATTACCCCTGTTATCCCTAGC
HAB2Del Seq R2	CAGGAGTACGGATAAAATGC
HAB2Del Seq R3	TATCGAATCGACAGCAGTAT

RK	CCTTATTTTGACGAGGGGA
RB2	ATTAACCGGGATTCACTGAC
FB1	ATGTCTGCTAAAGCCAAAA
RB1	AGTCAGCGACATCTGTCTTT
FT1	AAGCAAACAGCAAGAAAGTC
RT1	CTTCTGACAGCAAGGGTATT
FF1	ATGTCGGTAGAGGTAAAGG
RF1	ACACACGAAAATCCTGTGAT

1705

1706

Table S5. Lamella Cryo-EM imaging and analysis details.

EM grids	Quantifoil® R2/2
FIB-milling dual-beam microscope	Helios NanoLab 600 DualBeam
TEM imaging microscope	Titan Krios
Energy	300 keV
Camera: recording mode	K3: super-resolution
Tomography software	SerialEM
Calibrated pixel sizes, unbinned	3.4 Å
Defocus (nominal)	-0.5 or -1 μm
Cumulative dose	120 or 200 e ⁻ Å ⁻²
Dose fractionation	(1/cosine) ^{1/4}
Tilt range: scheme	-70° to +50°, dose symmetric
Tilt increment	2°
Tomogram processing & visualisation	IMOD 4.11
Template matching	PEET 1.15.1
Subtomogram classification & averaging	RELION 3.0.8
Analysis scripts	https://github.com/anaphaze/ot-tools
Figure creation and editing; t-tests	Adobe Photoshop and Illustrator; Google sheets

1707

1708 **Table S6. Cryotomogram details.**

Tomogram	Strain	State	Fig	Dose (e/Å ²)	Pixel size (Å)	Δf (μm)	Δtilt (°)	VPP	Thick (nm)	Rsd (nm)	Analysis
20230418_006	972h-	P		120	3.4	0	2	+	170	0.72	FPS
20230418_007	972h-	P	S17, S18	120	3.4	0	2	+	220-290	0.81	FPS
20230418_016	972h-	P		120	3.4	0	2	+	205-250	0.72	FPS
20230605_018	972h-	P		200	3.4	0	2	+	120	0.53	STA
20230605_021	972h-	P		200	3.4	0	2	+	95	0.65	STA
20230605_023	972h-	P		200	3.4	0	2	+	160	0.40	STA
20230605_028	972h-	P		200	3.4	0	2	+	140	0.60	STA
20220718_Defocus_009	cdc10-129	G1	S13	120	3.4	10-13	2	-	150	0.62	-
20220718_017	cdc10-129	G1		120	3.4	0	2	+	110	0.45	FPS
20221019_062	cdc10-129	G1		120	3.4	0	2	+	120	0.26	FPS
20221216_020	cdc10-129	G1		120	3.4	0	2	+	120	0.42	FPS
20221216_027	cdc10-129	G1		120	3.4	0	2	+	165	0.67	FPS
20230125_045	cdc10-129	G1	S14	120	3.4	0	2	+	160	0.83	FPS
20230125_050	cdc10-129	G1	4, S15, S16	120	3.4	0	2	+	110-175	0.49	STA, FPS
20230125_059	cdc10-129	G1		120	3.4	0	2	+	135	0.73	FPS
20230125_063	cdc10-129	G1	8	120	3.4	0	2	+	160	0.69	STA, FPS
20220608_batch32_ts_002	972h-	G0	S13	120	3.4	8-9	2	-	135	0.68	-
20221015_048	972h-	G0		120	3.4	0	2	+	115	0.83	FPS
20221019_010	972h-	G0		120	3.4	0	2	+	155	0.43	FPS
20221019_029	972h-	G0		120	3.4	0	2	+	135	0.43	STA, FPS
20230125_003	972h-	G0		120	3.4	0	2	+	150-200	0.91	FPS
20230125_015	972h-	G0		120	3.4	0	2	+	160	0.75	FPS
20230125_017	972h-	G0		120	3.4	0	2	+	135	0.64	STA, FPS
20230125_019	972h-	G0		120	3.4	0	2	+	140-185	0.98	FPS
20230125_028	972h-	G0	4, 8, S19, S20, S21	120	3.4	0	2	+	135-205	0.58	STA, FPS
20230125_033	972h-	G0		120	3.4	0	2	+	145	0.87	FPS
20230125_037	972h-	G0		120	3.4	0	2	+	100-130	0.70	STA, FPS
20230106_018	972h-	TSA-G0		120	3.4	0	2	+	95-155	0.79	STA, FPS
20230106_019	972h-	TSA-G0		120	3.4	0	2	+	145-180	0.98	STA, FPS
20230106_020	972h-	TSA-G0		120	3.4	0	2	+	145	0.58	STA, FPS
20230106_022	972h-	TSA-G0		120	3.4	0	2	+	140-190	0.87	FPS
20230106_025	972h-	TSA-G0	4, S22, S23	120	3.4	0	2	+	140-160	0.56	STA, FPS
20230106_032	972h-	TSA-G0		120	3.4	0	2	+	170-205	0.85	FPS
20230106_033	972h-	TSA-G0		120	3.4	0	2	+	185	0.45	FPS

1709

1710 P = unsynchronised proliferating. G1 = G1 phase. G0 = G0 after a 24-hour incubation in
 1711 EMM-N media. TSA-G0 = 24 hour incubation in EMM-N plus 2 μg mL⁻¹ TSA. Δf:
 1712 Nominal defocus used for VPP data; refined defocus used for defocus data. VPP =
 1713 Volta phase plate was used (+) or not used (-). Thick = lamellae thickness – some

1714 lamellae had a wedge-like profile and therefore a range of thicknesses. Rsd = alignment
1715 residual. For “Analysis”, STA = used for subtomogram classification and averaging, FPS
1716 = used for Fourier power spectrum analysis. The raw cryo-ET data and a tomogram of
1717 each dataset here was deposited in EMPIAR.
1718

1719 **SUPPLEMENTAL REFERENCES**

1720

1721 **Ho, J., Tumkaya, T., Aryal, S., Choi, H. and Claridge-Chang, A.** (2019). Moving beyond P
1722 values: data analysis with estimation graphics. *Nat Methods* **16**, 565-566.
1723 doi:10.1038/s41592-019-0470-3

1724 **Sivakumar, S., Porter-Goff, M., Patel, P. K., Benoit, K. and Rhind, N.** (2004). In vivo labeling
1725 of fission yeast DNA with thymidine and thymidine analogs. *Methods* **33**, 213-9.
1726 doi:10.1016/j.ymeth.2003.11.016

1727 **White, C. L., Suto, R. K. and Luger, K.** (2001). Structure of the yeast nucleosome core particle
1728 reveals fundamental changes in internucleosome interactions. *EMBO J* **20**, 5207-18.
1729 doi:10.1093/emboj/20.18.5207