
 

 

 

 

Modelling the decay of hotspot motifs in broadly neutralizing antibody lineages 

 

Kenneth B Hoehn1,2, Gerton Lunter2, and Oliver G Pybus1 

1 Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, 

UK 
2 Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, 

Oxford, OX3 7BN, UK 

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 26, 2016. ; https://doi.org/10.1101/055517doi: bioRxiv preprint 

https://doi.org/10.1101/055517
http://creativecommons.org/licenses/by/4.0/


Abstract 

 

Phylogenetic methods have shown great promise in understanding the development of 

broadly neutralizing antibody lineages (bNAbs). However, mutational process for 

generating these lineages – somatic hypermutation (SHM) – is biased by hotspot 

motifs, which violates important assumptions in most phylogenetic substitution 

models. Here, we develop a modified GY94-type substitution model which partially 

accounts for this context-dependency while preserving independence of sites in 

calculation. This model shows a substantially better fit to three well-characterized 

bNAb lineages than the standard GY94 model. We show through simulations that 

accounting for this can lead to reduced bias of other substitution parameters, and more 

accurate ancestral state reconstructions. We further explore other implications of this 

model; namely, that the number of hotspot motifs – and therefore likely the mutation 

rate in general – is expected to decay over time in individual bNAb lineages.  
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Introduction 

 

Recent advances in sequencing technology are giving an unprecedented view into the 

genetic diversity of the immune system during infection, especially for chronic 

infections caused by viruses. Broadly neutralizing antibody (bNAb) lineages, which 

produce B cell receptors (BCRs) capable of binding a wide range of viral epitopes, are 

of particular interest (Haynes et al. 2012). Within such lineages, all B cells descend 

from a shared common ancestor and are capable of rapid sequence evolution through 

the processes of somatic hypermutation (SHM) and clonal selection. For chronically 

infecting viruses such as HIV-1, this co-evolutionary process may continue for years 

(Wu et al. 2015). Because immunoglobulin gene sequences from bNAb lineages 

undergo rapid molecular evolution, selection and diversification, they would appear to 

be suitable for evolutionary and phylogenetic analysis, and these methods have 

already been applied to various immunological questions such as inferring the 

ancestral sequences of bNAb lineages (Sok et al. 2013; Hoehn et al. 2016). These 

intermediate ancestors are of particular interest because they may act as targets for 

stimulation by vaccines (Haynes et al. 2012). 

 

However, the biology of mutation and selection during somatic hypermutation is 

different from that which occurs in the germline, and therefore it is unlikely that 

standard phylogenetic techniques will be directly applicable to studying bNAb 

lineages without suffering some bias and error. One of the most important 

assumptions of likelihood-based phylogenetics is that evolutionary changes at 

different nucleotide or codon sites are assumed to be statistically independent. 

Without this assumption, likelihood calculations rapidly become computationally 
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impractical as the length and number of sequences increases (Felsenstein 1981). 

Unfortunately, in contrast to germline mutations, somatic hypermutation of BCR 

sequences is driven by a specific enzyme, called activation induced cytodine 

deaminase (AID), which targets defined “hotspot” sequence motifs that are usually 2-

3bp long (Yaari et al. 2013). This specificity clearly violates the assumption of 

independent evolution among sites. Furthermore, because hotspot motifs are, by 

definition, more mutable than non-hotspot motifs, we propose that their frequency 

within a B-cell lineage may decrease over time as they are replaced with more stable 

motifs. These changes will not be inherited because the mutational process is somatic. 

This effect may have a number of consequences on molecular evolutionary inference, 

for example it may render inappropriate the common practice of estimating 

equilibrium frequencies from the sequences themselves. At present it is unknown how 

the violation of these assumptions might affect phylogenetic inference of BCR 

sequences in practice, and the problem of ameliorating such effects remains an open 

issue. 

 

This work has two main aims. The first is to analyse BCR evolution in three 

previously-published and long-lived bNAb lineages in HIV-1 infected patients. This 

analysis confirms our prediction of a decay of certain hotspot motifs through time. 

Our second aim is to develop and introduce a new substitution model that can 

partially account for this effect. The model is a modification of the GY94 (Goldman 

and Yang 1994) codon substitution model. Although only an approximation, our new 

model can detect and quantify the effect of AID-mediated somatic hypermutation on 

BCR sequences whist preserving the assumption of independence among codon sites 

to maintain computational feasibility. This model shows a significantly better fit than 
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the standard GY94 model to all three bNAb lineages from HIV-1 patients. Through 

simulations, we further show that this model reduces bias in the estimation of other 

evolutionary parameters we and explore its potential applications, such as improved 

ancestral state reconstruction. 
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Methods 

 

Multiple Sequence Alignment 

Heavy chain sequences from the three bNAb lineages presented in (Wu et al. 2015) 

were downloaded from GenBank (http://www.ncbi.nlm.nih.gov/genbank/). The 

lineage of greatest duration was VRC01, which was sampled over 15 years (Wu et al. 

2015), followed by CAP256, which was sampled over four years (Doria-Rose et al. 

2014), and CH103, which was sampled over three years (Liao et al. 2013). Sequences 

from each bNAb lineage were translated into amino acids, aligned to their putative 

germline V gene segment using IgBlast (Ye et al. 2013), and then re-translated back 

into codons. Putative germline segment assignments (V4-59*01 for CH103, V3-

30*18 for CAP256, and V1-2*01 for VRC01) were obtained from bNAber (Eroshkin 

et al. 2013) and sequences were obtained from the IMGT V-Quest human reference 

set (Lefranc and Lefranc 2001). Because of considerable uncertainty in D and J 

germline assignments for each lineage, only the V segment was used. Insertions 

relative to the germline sequence were removed, so that all sequences within each 

lineage were aligned to the same germline sequence. When this was done, the 3’ 

nucleotide of the region joined together from the removal of the insertion was 

converted into an N to avoid creating false motifs. To keep results consistent between 

lineages, only nucleotide positions from the beginning of the first framework region 

(FWR1) to the end of FWR3 were used. Sampling dates of each sequence were 

extracted from the sequence ID tags provided on GenBank. When these were not 

available the sequence was excluded. 

 

Hotspot decay in bNAb lineages 
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The “hotspot frequency” of each sequence was defined as the number of hotspot 

motifs divided by the possible number of hotspot motifs in that sequence, and was 

calculated for trimer (WRC/GYW) and dimer (WA/TW) motifs separately (Yaari et 

al. 2013), where W = A or T, Y = A or G, and R = T or C, as per the IUPAC 

nucleotide ambiguity codes. Hence an example trimer motif might be ATC, and its 

reverse complement GAT. The underlined base in each of these motifs experiences 

increased AID mediated mutability. Trimers and dimers with non-ACGT characters 

were excluded from this calculation. Changes in hotspot frequency values through 

time were analysed using linear regression and correlation. Because the date of 

infection was not known for VRC01, germline IGHV sequences were not included in 

these calculations. Importantly, because the sequences within each B-cell lineage are 

phylogenetically related, they are partially correlated due to shared common ancestry 

and are not independent data points, hence p-values from standard correlation and 

regressions tests are not reliable. However, the regression can still be an unbiased 

measure of trends in sequence change over time (see (Drummond et al. 2003) for 

discussion). Regressions of hotspot frequency through time are shown in Figure 1. 

 

In the absence of a suitable hypothesis test based on regression, we developed a 

simulation-based significance test for the association between hotspot frequency and 

time in bNAb lineages. The null model for this test is a substitution model (GY94) 

that does not explicitly model the decay of hotspot motifs and which is used to 

estimate a maximum likelihood phylogenetic tree. Multiple data sets were simulated 

under this null model, using the same sample sizes and sampling times as the three 

empirical bNAb data sets. The significance of the difference between the null model 

and the observed data is calculated as the proportion of simulated datasets with a 
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greater negative correlation between hotspot frequency and time than in the observed 

data set. Results for these tests are shown in Table 1. 

 

Maximum likelihood phylogenetic trees and substitution model parameters for each 

of the three bNAb lineages were estimated using the GY94 model and empirical 

codon frequencies using codonPhyML (Gil et al. 2013). Trees were re-rooted so as to 

place the germline sequence as an outgroup with a branch length of zero, effectively 

making it the universal common ancestor (UCA) of the lineage. For each bNAb 

lineage, we then simulated 100 sequence data sets down the corresponding ML tree 

using the GY94 model, starting with the corresponding germline sequence at the root 

and using the fitted substitution model parameters. Simulations were performed using 

the PAML evolver program (Yang 2007). 

 

To ascertain whether the observed effects were general, or specific to known hotspot 

motifs, we repeated the above regression and simulation tests for non-hotspot motifs. 

To do this, we randomly assigned non-hotspot nucleotide motifs as “hotspots” whilst  

keeping the number of trimer and dimer hotspots the same (eight and three, 

respectively). This analysis was then repeated for 100 such random allocations. These 

results are summarized in Supplemental File 1. 

 

A codon substitution model for phylogenies undergoing somatic hypermutation 

In order to represent the molecular evolution of long-lived B cell lineages more 

accurately, we develop a new substitution model that models the effects of motif-

specific mutation across the BCR. This model, named the HLP16 model, is a 

modification of the GY94 substitution model. Specifically, we add to the GY94 
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model an additional parameter, h, which represents the additional increase in relative 

substitution rate of a hotspot mutation. Explicitly modelling the full context 

dependence of hotspot motifs would make likelihood calculations computationally 

infeasible. Instead, we weight h by bij, which is the probability that the mutation from 

codon i to codon j was a hotspot mutation, averaged across all possible combinations 

of codons on the 5’ and 3’ flanks of the target codon. A “hotspot mutation” is defined 

as a mutation occurring within the underlined base of the trimer motif WRC/GYW. 

Because we did not find a significant decay of dimer hotspot motifs through time (see 

Figure 1 and Table 1), our model only includes trimer hotspots. However, dimers or 

other motifs could easily be added with additional values of h and bij for each new 

motif.  

 

In the HLP16 model, each entry qij in the Markov rate matrix Q is defined by: 

πj = Equilibrium frequency of codon j 

k = Transition/transversion mutation relative rate ratio 

ω = nonsynonymous to synonymous mutation relative rate ratio 

h = Increased mutability due to trimer hotspot motifs (WRC/GYW) 

bij = Probability that mutation from i to j occurred in a trimer hotspot 

qij = 

  0                                                        𝑖 → 𝑗 > 1  𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒  𝑐ℎ𝑎𝑛𝑔𝑒                                              
𝜋! + 𝑏!"ℎ                            𝑖 → 𝑗  𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠  𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑖𝑜𝑛                                    
𝑘 𝜋! + 𝑏!"ℎ                   𝑖 → 𝑗  𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠  𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛                                              
𝜔 𝜋! + 𝑏!"ℎ               𝑖 → 𝑗  𝑛𝑜𝑛𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠  𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑖𝑜𝑛                  
𝜔𝑘 𝜋! + 𝑏!"ℎ           𝑖 → 𝑗  𝑛𝑜𝑛𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠  𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛                              

  (1) 

 

The values of bij are calculated by marginalizing over all possible 5’ and 3’ flanking 

sense codons as follows: 

𝑏!" =    𝜋!!"
!!!

!"
!!! 𝜋!𝐼(𝑖, 𝑗, 𝑘,𝑚)    (2) 
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Where I is the indicator function: 

𝐼 𝑖, 𝑗, 𝑘,𝑚 = 1                𝑐𝑜𝑑𝑜𝑛  𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒  𝑘𝑖𝑚 → 𝑘𝑗𝑚  𝑖𝑠  𝑎  ℎ𝑜𝑡𝑠𝑝𝑜𝑡  𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                                                                                

 

 

This model, though an approximation, has several useful properties. Perhaps most 

importantly, because codon changes are still modelled independently of each other, 

likelihood can still be calculated using Felsenstein’s pruning algorithm, which greatly 

improves computational time (Felsenstein 1981). The model also has the intuitive 

property that, if hospots are subjected to no additional mutability compared to other 

motifs, then h = 0 and the model simplifies to the GY94 model. Thus the GY94 model 

is a special case of the HLP16 model. Further, mutations that could have not occurred 

instantaneously within a hotspot motif reduce to their GY94 values before Q matrix 

normalization. 

 

In contrast to most substitution models, the relative substitution rate parameters in the 

Q matrix of the HLP16 model are not necessarily symmetric. A Q matrix with 

symmetric rate parameters is useful because it likelihood calculations can be 

undertaken on an unrooted tree, which can then be rooted by any of its tips. In the 

case of B cell lineage evolution, it is necessary to root the lineage phylogeny at the 

germline sequence during parameter optimization, and pruning algorithm likelihood 

calculations are required to always begin at the root node. 

We modified the source code of codonPhyML (Gil et al. 2013) to implement the rate 

matrix in equation 1, and to estimate the additional parameter h using maximum 

likelihood, alongside the other model parameters. Specifically, we optimize ω, k, πj 

(using the CF3X4 model) and the vector of phylogeny branch lengths. Performing all 
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likelihood calculations from the root node slowed computation substantially, therefore 

in this work we applied the HLP16 model to a fixed tree topology, and we leave the 

problem of co-estimating topology for future work. For each data set, the tree 

topology used was that inferred using the standard GY94 model in codonPhyML, 

which was subsequently re-rooted to place the germline sequence at the universal 

common ancestor.  

 

Because the GY94 model is a special case of the HLP16 model  (i.e. when h = 0) the 

two models are nested and can be compared using a likelihood ratio test. Let max 

L(HLP16) and max L(GY94) be the maximum likelihoods obtained under the HLP16 

and GY94 models, respectively. The likelihood ratio statistic is then 2*( max 

L(HLP16) / max L(GY94) ) and approximately chi-squared distributed with one 

degree of freedom (Huelsenbeck and Rannala 1997). For each bNAb dataset, the 

value max L(HLP16) is calculated by optimising h together with the other model 

parameters, whereas the value max L(GY94) is calculated by constraining h=0 whilst 

optimising all other model parameters. 

 

We evaluated the performance of the HLP16 model by simulating data sets under 

different values of h and testing how accurately h and other model parameters were 

inferred. The following procedure we used to generate the simulated data sets: 

(1) We randomly subsampled each bNAb lineage to 99 sequences, plus the 

single germline sequence at the root. Subsampling was necessary to make the 

large number of replicates computationally feasible. 

(2) We estimated a maximum likelihood phylogeny for each subsampled 

bNAb lineage data set using the standard GY94 model. During estimation we 
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optimised ω, k, πj, branch lengths and the tree topology. The resulting ML tree 

was re-rooted at the germline sequence with a branch length of zero. 

(3) For each value of h investigated (0, 0.05, 0.1, and 0.3), we simulated 10 

alignments along each of these trees. Simulations were undertaken using the 

estimated values of ω, k and πj, obtained in step (2) for the corresponding 

bNAb lineage datra set. Starting (root) sequences were generated randomly 

from equilibrium frequencies. 

(4) For each of the replicates defined in step (3), we performed three different 

ML calculations: (i) h was optimised using ML (with ĥ as the MLE estimate 

of h), (ii) h was fixed to zero, and (iii) h was fixed to the true value used in 

simulation (htrue). These three values enable us to test both type 1 and type 2 

error rates, by determining whether ĥ was significantly different to htrue or h0 

respectively. Statistical significance was determined using the chi-squared 

approximation to the likelihood ratio statistic, as described above. In all 

calculations, the tree topology was fixed to that inferred from step (2). 

(5) For each data set and for each set of simulations under a particular value of 

h, we estimated ĥ and then calculated the properties of this estimator as 

follows: 

i. Bias in estimation: (Mean[ĥ] – htrue)  

ii. Variance in estimation: Variance[ĥ]  

iii. Type 1 error rate: The proportion of simulated data sets in which 

htrue was outside of the 95% confidence interval for ĥ.  

iv. Type 2 error rate: The proportion of simulated data sets in which h 

> 0, but failed to reject the null hypothesis (h0). 
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Biased mutation during somatic hypermutation has been shown to give false 

signatures of natural selection using approaches that compare the expected number of 

replacement and silent mutations under a null model of somatic hypermutation 

(Dunn-Walters and Spencer 1998), and it is possible that the HLP16 model could 

partially reduce this bias. To test this, and to explore whether the HLP16 model 

improved the estimation of other evolutionary parameters, we compared the 

percentage error under the HLP16 and GY94 models of estimates of (i) ω, (ii) k, (iii) 

tree length (sum of all branch lengths) and (iv) the ratio of internal to external branch 

lengths. These results are provided in Supplemental Figure 2.  

 

The fact that bNAb lineages are clearly not in equilibrium when they are sampled 

(Figure 1) has interesting implications for the use of Markov substitution models. 

Typically, it is assumed that nucleotide or codon frequencies are at equilibrium at the 

time of sampling, and empirical codon frequencies are often to estimate equilibrium 

frequencies. In the case of long-lived B cell lineages, however, sampled sequences are 

almost certainly not in equilibrium and do not converge to an equilibrium because the 

changes are somatic and not inherited, thus making empirical codon frequencies 

inaccurate. For this reason, it is necessary to optimize equilibrium frequency using 

ML rather than use empirical codon frequencies. To test how this might affect 

estimation of h, we repeated the simulation procedure above using empirical 

equilibrium frequencies from each data set. These results are included in 

Supplemental File 3. 

 

Because the HLP16 model is a mean field approximation to context dependency of 

hotspot mutations, it is unlikely to fully account for the context dependency of 
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somatic hypermutation. To test how this may affect analyses, we repeated our 

simulation procedure using a model that fully accounts for the context dependence of 

adjacent codon sites. In this forward simulation procedure, because the 3’ and 5’ 

flanking codons of each site are known, we create a B matrix for each site in each 

sequence with bij equal to either 1 or 0 depending on whether the substitution was or 

was not in a hotspot mutation. This process begins at the root sequence, calculates a 

separate Q matrix at each site in the sequence, and simulates two descendant 

sequences down the tree until all tips are filled. 

 

One of the key application of molecular phylogenetics to BCR sequence data is the 

reconstruction of ancestral sequences within a B-cell lineage (Kepler 2013). Ancestral 

state reconstruction is an implicit part of the phylogenetic likelihood calculation when 

nucleotide or codon substitution models are used. For each simulation replicate, and 

for each of the three likelihood calculations described in step (3) above, we computed 

the most likely codon at each codon position at each internal node in the tree. These 

ancestral sequences were then used to compare the accuracy of reconstructions under 

the HLP16 model with those obtained using the GY94 model. In each simulation 

replicate, accuracy of ancestral sequence reconstruction was measured by calculating 

the mean pairwise nucleotide or amino acid difference between the predicted and true 

sequences at each node.  
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Results 

 

Decay of hotspot motifs in bNAb lineages 

All three bNAb lineages showed a negative correlation between trimer hotspot 

content and time. However, no such decline was seen in dimer motifs (Table 1, 

Figure 1). To test whether the patters of hotspot decay observed were significantly 

different from those expected under a standard reversible codon substitution model 

that does not explicitly account for hypermutation at hotspot motifs, we implemented 

a significance test that compares the correlation between hotspot motif frequency and 

time in simulated data sets generated under the null phylogenetic model. All three B 

cell lineages showed a significantly greater negative correlation between trimer 

hotspot content and time than expected under the null model (Table 1). In all cases, 

the frequency of dimer motifs showed no significant change through time. 

Furthermore, we repeated these analyses with randomly-chosen non-hotspot motifs 

taking the place of the real, known hotspot motifs. This latter analysis demonstrates 

that the significant decline detected was specific to known hotspot motifs, as declines 

of similar degree were rarely observed in non-hotspots (Supplemental File 1). 

 

A codon substitution model for phylogenies undergoing somatic hypermutation 

All three bNAb lineages showed a significant improvement in likelihood under the 

HLP16 model compared to the GY94 model. The maximum likelihood values of h for 

the three data sets were ĥ = 0.0345, 0.032, and 0.0339, for CH103, CAP256, and 

VRC01, respectively. In each case the simpler GY94 model (h=0) could be rejected 

using the likelihood ratio test (p < 1x10-50for all three lineages). These results are 

summarized in Table 2. While the absolute values of ĥ may appear small, it is 
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important to remember that h is added to the equilibrium frequencies before being 

multiplied by other factors (see equation 1). Because the average equilibrium 

frequency is approximately 1/61 = 0.016, a h value of 0.034 represents up to a three-

fold increase in the relative rate for hotspot mutations (depending on the values of bij). 

 

Our implementation of the HLP16 mode proved to be a robust ML estimator of h 

when it was applied to simulated bNAb lineages (Table 3). Mean ĥ values were very 

close to their true h values, with low bias (maximum 9.3x10-3) and variability 

(maximum 7.6x10-4). None of the 120 data sets simulated with h > 0 failed to reject 

the null hypothesis that h = 0. Further, our method incorrectly rejected the true value 

of h in 4.2% of analyses, which is approximately as expected given an alpha value of 

0.05. Performance of inference was highly consistent across the three bNAb 

phylogenies used to generate simulated alignments. We found that using empirical 

equilibrium frequencies decreased the efficiency of parameter estimation, with higher 

bias and type 2 error rates than when ML equilibrium frequencies were used. See 

Methods for some discussion of why empirical codon frequencies are unlikely to be 

suitable for long-lived B-cell lineage phylogenies (Supplemental File 3). 

 

Incorporating and estimating the parameter h in the HLP16 model appears to have 

generally improved the estimation of other model parameters, in comparison to the 

GY94 model (Figure 2, Supplemental File 2). The clearest improvement was seen in 

the tree length parameter; when h is large, the GY94 model substantially 

underestimates tree length for simulations based on the VRC01 lineage phylogeny 

(mean percentage error up to -0.4) and there are clear biases for the simulations based 

on other phylogenies (Supplemental File 2) as well. The bias was effectively absent 
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when h = 0 and increased as h increased. In contrast, the HLP16 model did not lead to 

underestimation of tree length as h increases. Analyses of simulated data sets also 

showed that in some cases the GY94 model progressively overestimates the ω 

parameter as the true value of h increases; this bias was clear in simulations based on 

the most diverse B-cell lineage (VRC01) but was not obvious in simulations based on 

the CAP256 and CH103 lineages that were sampled for a shorter duration. Again, the 

HLP16 model was able to estimate ω accurately under all values of h.  

 

Repeating our simulation analysis on data sets simulated under a model that fully 

accounts for the context dependence of hotspot mutations showed expected decreases 

in accuracy relative to simulations under the approximate model. Inference of ĥ was 

generally underestimated in simulations where h > 0, and statistics such as tree size 

and internal/external branch length ratios were biased as well under large values of h. 

However, the HLP16 model showed consistently equal or better performance in all of 

these categories compared to the standard GY94 model, showing both a significantly 

higher likelihood in all data sets in which h > 0, and generally equal or better 

inference of other parameters and tree statistics. Importantly, these biases and losses 

in accuracy were primarily seen for large values of h ( > 0.05), many times larger than 

the ĥ values we inferred from bNAb lineages. Further, values of h tended to be 

underestimated in these simulations, indicating that our estimates of ĥ from bNAb 

lineages are likely conservative. 

 

We also found that the HLP16 model provided more accurate reconstructions of 

ancestral sequences than the GY94 model in most simulations (Supplemental File 4). 

As expected, the level of improvement increased as the true value of h increased. 
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Sequence reconstructions under the two models were fairly similar for internal nodes 

near the root and the tree tips, and the improvement under the HLP16 model was most 

marked for internal nodes in the basal third of the phylogeny. Typically, we would 

expect the uncertainty in ancestral state reconstruction to increase as we move from 

the tree tips towards the root, but B-cell lineages are unusual in that the root sequence 

is also known as it corresponds to the germline sequence.  

 

While true ancestral sequences are not available for the three bNAb lineages, 

ancestral state reconstructions we did observe differences between sequences 

reconstructed from HLP16 and GY94 models. For each lineage we compared these 

models by calculating the mean amino acid difference between the predicted ancestral 

sequences at all internal nodes of each tree. Performing this ancestral state 

reconstruction on each of the three bNAb lineages showed a mean of 0.31, 0.62, and 

0.35 amino acid sequence difference across all internal nodes with most differences 

also concentrated near the upper-middle of the tree (Supplemental File 4). 
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Discussion 

 

Molecular phylogenetics has already been used in a variety of applications in the 

study BCR genetic diversity and the molecular evolution of B cell lineages (Kepler 

2013; Sok et al. 2013; Kepler et al. 2014). However, the process of somatic 

hypermutation is known to operate in ways that violate fundamental assumptions of 

most phylogenetic substitution models. Here, we demonstrate that failing to account 

for the violation of these assumptions has tangible effects on phylogenetic inference 

and parameter estimation from sets of sequences from long-lived bNAb lineages. We 

develop and implement a new codon substitution model (HLP16) that, whilst only an 

approximation, is capable of mitigating these effects. 

 

Perhaps the most salient difference between standard substitutions models and the 

biology of somatic hypermutation is the context dependency of mutation in BCRs. 

This has long been known to give false signature of selection in BCRs (Dunn-Walters 

and Spencer 1998). This effect was observed in our own simulations (Supplemental 

File 2) in which failing to account for the increased rate of substitution at hotspot 

motifs led to overestimation of the ω (dn/ds) parameter. A variety of empirical models 

have been developed to characterize biased hotspot motifs at di, tri, penta, and 

heptamer levels (Smith et al. 1996; Yaari et al. 2013; Elhanati et al. 2015).  

 

Some approaches have been developed to study the substitution process in BCR data 

in the context of biased mutation. Some of these are non-phylogenetic in nature (e.g. 

Hershberg et al. 2008; Yaari et al. 2012) and focus on the expected number of 

germline to tip replacement mutations regions in comparison to a null model. Kepler 
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et al (Kepler et al. 2014) developed a non-linear regression model approach that, 

combined with an empirical model of mutation rate at each site, allowed the authors 

to test for both selection, and the interaction between mutation and selection, in 

shaping BCR genetic diversity. The substitution model detailed in McCoy et al 

(McCoy et al. 2015) is perhaps the most similar to the new model introduced in this 

study, as it is ultimately derived from probabilistic reversible substitution models. 

This was accomplished by comparing values of ω inferred from a given data set to 

those inferred from out of frame rearrangements. 

 

The HLP16 codon substitution model detailed here is a relatively straightforward 

modification of the widely used GY94 model. Although the HLP16 model is slower 

to compute than the simpler, reversible model on which it is based, we have found 

that it is usable, and almost certainly statistically preferable, to the GY94 model when 

applied to any BCR data set whose diversity may have been shaped by somatic 

hypermutation. Further, the HLP16 model does not rely on an empirical model to 

incorporate the effect of biased mutation, but instead attempts to explicitly model the 

context-dependent mutational process by estimating the parameter h and equilibrium 

codon frequencies directly from the data. It should be noted, however, that the HLP16 

model is a mean-field approximation and does not capture the full context of motif 

driven evolution. Therefore we do not expect it to fully disentangle interaction 

between selection and biased mutation, and estimated values of ω should be 

interpreted carefully. In addition to correcting biases in parameter estimation, 

simulation analyses reveal that the HLP16 model produces different, and more 

accurate, ancestral state reconstructions than the standard GY94 model. 
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Another common assumption in phylogenetic analysis is that the codons or 

nucleotides sampled for analysis are at their equilibrium frequencies. Because our 

hotspot model has asymmetric relative rates between codons, which are a function of 

h, then it seems likely that codon frequencies will change across a B-cell lineage 

when h is significantly above zero. This is a result of the decline in the number of 

hotspots through time (Figure 1). We dealt with this problem by estimating 

equilibrium frequencies by maximum likelihood within the model. This showed 

improvement, both in maximum likelihood values and in parameter estimation, over 

using empirical codon frequencies to approximate equilibrium frequencies. However, 

it is not yet clear if this is the most efficient or the most effective way of dealing with 

this problem of sequence disequilibrium. 

 

We suggest that this decay of hotspot motifs in bNAb lineages may have important 

implications for our understanding of host-virus coevolution. More specifically, we 

propose that the loss of hotspot motifs will lead to a decrease in sequence mutability, 

and therefore a decline in overall rate of evolution over time for a given lineage. Two 

important pieces of this hypothesis – lower mutability from loss of hotspot motifs, 

and decline in mutation rate over time in bNAb lineages – have already been explored 

separately. Wei et al. (2015) showed experimentally that a decrease in the number of 

hotspot motifs in a BCR sequence leads to a decrease in the overall mutation rate in 

that sequence. Further, a landmark study (Wu et al. 2015) showed multiple pieces of 

evidence that evolutionary rate in the same three bNAb lineages analysed here 

declines over time, a clear violation of standard clock rate models. The decay of 

hotspot motifs may at least partially explain this inferred slowdown in mutation rate. 

Whilst we do not directly test here the hypothesis that a decay of hotspot motifs over 
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time leads to decrease in overall BCR evolutionary rate, we do show that hotspot 

motifs decay within three bNAb lineages in HIV-1 infected individuals, which 

provides an empirical link between the ideas of biased mutation and the inferred 

decrease in substitution rate. 

 

This hypothesis has an important corollary. If the slowdown in mutation rate over 

time, arising from hotspot decay, is an intrinsic property of activated B cell lineages, 

then BCR sequence divergence from a germline ancestor (and thus affinity 

maturation) must be fundamentally and intrinsically constrained. Consequently, while 

BCR lineages may be able to rapidly evolve binding affinity and co-evolve with 

pathogens for an initial period after activation, over longer periods of time B-cell 

lineages will fail to keep up with the rapid evolution of chronically infecting viruses 

such as HIV-1, due to the exhaustion of available BCR hotspot motifs. This would 

suggest using a single bNAb lineage against chronic viruses may be a losing strategy, 

and that utilizing multiple bNAb lineages (e.g. Gao et al. 2014) would be better suited 

to long-term coevolution with chronic viruses. From an evolutionary perspective, this 

hypermutation-driven “senescence” of B-cell lineages may be ultimately adaptive, 

because the fitness benefits of rapid short-term BCR sequence evolution accruing 

from acute infections would likely outweigh the costs of BCR hotspot motif 

exhaustion in the context of chronic infections.  

 

Some of our findings are circumstantial support other hypotheses that may be 

interesting to test in future research. We observed that the relationship between 

hotspot frequency and time is stronger in the younger lineages (correlation = -0.48 

and -0.5; for CH103 and CAP256), than in VRC01 (-0.33). This is consistent with the 
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notion that the decline in the divergence rate of bNAb lineages is fastest early in the 

development of the B cell lineage, and slows down as the lineage ages. Interestingly, 

we returned a very similar estimates of ĥ (~0.03) for all three bNAb lineages tested, 

despite the fact that they had been evolved for different periods of time and other 

evolutionary parameter estimates (e.g. omega and kappa) varied among lineages. This 

may indicate that mutational bias arising from hotspot motifs is consistent across time 

scales and individuals.  

 

Because our model conforms to certain limitations, such as independent change 

among codon sites, it cannot fully account for the effects of targeted SHM. Other 

properties of SHM are excluded in the model’s current form but may be possible to 

integrate. The most obvious property, and perhaps the easiest to accommodate, is the 

fact that other hotspots (e.g RGYW/WRCY, DGYW/ WRCH) and even cold spots 

(e.g. SYC) besides those explored here have been identified (Zhang et al. 2001; 

Rogozin and Diaz 2004; Peled et al. 2008). These may be accommodated by 

including a separate h parameter for each hotspot, and by modifying the indicator 

function to account for those hotspot or coldspot motifs. It is not clear how to best 

model the interaction between overlapping hotspot motifs, but both the inclusion of 

additional motifs, and the model of interaction between them may be tested through a 

likelihood ratio test. Another important issue is that BCR sequences are highly 

partitioned into framework (FWR) and complementary-determining (CDR) regions. 

These are known to be under different types and degrees of selection (Yaari et al. 

2012; Yaari et al. 2015), so an obvious next step is to use a site-partition model to 

allow omega to vary between these two regions. While other analyses have already 

shown an interaction between region, mutability, and selection (Kepler et al. 2014), it 
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would be interesting to test this hypothesis in this framework by allowing h to vary 

between region partitions as well. 
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Authors’ note 
 
After this manuscript was written, a paper by Sheng et al (2016) was published, on 

May 18th, which also explores the hypothesis that decline in mutation rate in bNAb 

lineages may be the result of hotspot motif loss. We were unaware of Sheng et al.’s 

manuscript whilst our work was undertaken. 

 

Sheng Z, Schramm CA, Connors M, Morris L, Mascola JR, Kwong PD, Shapiro L. 

2016. Effects of Darwinian Selection and Mutability on Rate of Broadly Neutralizing 

Antibody Evolution during HIV-1 Infection. PLOS Comput Biol 12:e1004940. 
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Tables 

Table 1: Hotspot motif decay in three bNAb lineages. 

B-cell 

lineage 

Trimer motifs: WRC/GYW Dimer motifs: WA/TW 

Observed 

correlation 
Observed/simulated 

P 

value 

Observed 

correlation 
Observed/simulated 

P 

value 

CH103 -0.48 -11.33 0.00 0.09 0.46 0.29 

CAP256 -0.50 -11.77 0.00 0.33 0.84 0.30 

VRC01 -0.33 5.50 0.02 0.11 0.70 0.39 

The “Observed correlation” column shows the correlation between hotspot frequency and time. The 

next column shows how these values compare to the mean of the same values from 100 simulations 

under the null model. The third column shows the p value – the proportion of simulated data sets that 

had a lower correlation than observed data sets.  

 

Table 2: Maximum likelihood estimates of h and likelihood ratio tests  

B-cell 

lineage 
Mean ĥ 

Log-likelihood 
2*LR p value 

hMLE h0 

CH103 0.0345 -14918.9 -15031.5 225.2 <1x10-50 

CAP256 0.0322 -37622.1 -37913.8 583.4 <1x10-50 

VRC01 0.0339 -44011.2 -44339.3 656.2 <1x10-50 

Significance was determined using the likelihood ratio test under a chi-squared distribution with one 

degree of freedom.  
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Table 3: Analyses of data sets simulated using different phylogenies and values of h 

B cell 
lineage h Mean ĥ Bias Variability Type 1 error Type 2 error 

CH103 

0.30 0.309 9.3E-03 7.6E-04 0.00 0.00 
0.10 0.098 -1.8E-03 3.9E-05 0.00 0.00 
0.05 0.050 4.6E-04 2.9E-05 0.00 0.00 
0.00 0.001 6.5E-04 9.0E-07 - 0.00 

CAP256 

0.30 0.303 2.6E-03 5.7E-04 0.00 0.10 
0.10 0.105 5.3E-03 6.9E-05 0.00 0.10 
0.05 0.051 8.9E-04 3.9E-05 0.00 0.10 
0.00 0.001 1.2E-03 3.2E-06 - 0.10 

VRC01 

0.30 0.297 -3.0E-03 4.6E-04 0.00 0.00 
0.10 0.099 -8.8E-04 7.9E-05 0.00 0.10 
0.05 0.051 9.6E-04 1.1E-05 0.00 0.00 
0.00 0.000 3.0E-04 3.0E-07 - 0.00 

 

Type 1 error rate shows the proportion of data sets that incorrectly failed to reject the null hypothesis of 

h = 0. Type 2 error rate shows the proportion of data sets that rejected the true value of h shown in the 

first column. Mean type 2 error rate across all simulations was 0.042. Both of these hypothesis tests 

used an alpha value of 0.05. 
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Figures 

 

 

Figure 1: Decrease in frequency of trimer and dimer hotspot motifs in three bNAb lineages. Red line 

shown is least square regression.  
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Figure 2: Percentage error in parameter estimation compared to true values for the VRC01 B cell 

lineage. Estimates obtained under the GY94 are in orange (h=0) and estimates obtained under the 

HLP16 model are in blue (h estimated using maximum likelihood). The edges and centers of boxplots 

show the 1st, 2nd, and 3rd quartiles, while the whiskers show range. Equivalent results for B cell lineages 

CH103 and CAP256 are shown in Supplemental File 2. 
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