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Abstract

Phylogenetic methods have shown great promise in understanding the development of
broadly neutralizing antibody lineages (bNAbs). However, mutational process for
generating these lineages — somatic hypermutation (SHM) — is biased by hotspot
motifs, which violates important assumptions in most phylogenetic substitution
models. Here, we develop a modified GY94-type substitution model which partially
accounts for this context-dependency while preserving independence of sites in
calculation. This model shows a substantially better fit to three well-characterized
bNAD lineages than the standard GY94 model. We show through simulations that
accounting for this can lead to reduced bias of other substitution parameters, and more
accurate ancestral state reconstructions. We further explore other implications of this
model; namely, that the number of hotspot motifs — and therefore likely the mutation

rate in general — is expected to decay over time in individual bNAD lineages.


https://doi.org/10.1101/055517
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/055517; this version posted May 26, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Introduction

Recent advances in sequencing technology are giving an unprecedented view into the
genetic diversity of the immune system during infection, especially for chronic
infections caused by viruses. Broadly neutralizing antibody (bNAD) lineages, which
produce B cell receptors (BCRs) capable of binding a wide range of viral epitopes, are
of particular interest (Haynes et al. 2012). Within such lineages, all B cells descend
from a shared common ancestor and are capable of rapid sequence evolution through
the processes of somatic hypermutation (SHM) and clonal selection. For chronically
infecting viruses such as HIV-1, this co-evolutionary process may continue for years
(Wu et al. 2015). Because immunoglobulin gene sequences from bNAb lineages
undergo rapid molecular evolution, selection and diversification, they would appear to
be suitable for evolutionary and phylogenetic analysis, and these methods have
already been applied to various immunological questions such as inferring the
ancestral sequences of bNADb lineages (Sok et al. 2013; Hoehn et al. 2016). These
intermediate ancestors are of particular interest because they may act as targets for

stimulation by vaccines (Haynes et al. 2012).

However, the biology of mutation and selection during somatic hypermutation is
different from that which occurs in the germline, and therefore it is unlikely that
standard phylogenetic techniques will be directly applicable to studying bNAb
lineages without suffering some bias and error. One of the most important
assumptions of likelihood-based phylogenetics is that evolutionary changes at
different nucleotide or codon sites are assumed to be statistically independent.

Without this assumption, likelihood calculations rapidly become computationally
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impractical as the length and number of sequences increases (Felsenstein 1981).
Unfortunately, in contrast to germline mutations, somatic hypermutation of BCR
sequences is driven by a specific enzyme, called activation induced cytodine
deaminase (AID), which targets defined “hotspot” sequence motifs that are usually 2-
3bp long (Yaari et al. 2013). This specificity clearly violates the assumption of
independent evolution among sites. Furthermore, because hotspot motifs are, by
definition, more mutable than non-hotspot motifs, we propose that their frequency
within a B-cell lineage may decrease over time as they are replaced with more stable
motifs. These changes will not be inherited because the mutational process is somatic.
This effect may have a number of consequences on molecular evolutionary inference,
for example it may render inappropriate the common practice of estimating
equilibrium frequencies from the sequences themselves. At present it is unknown how
the violation of these assumptions might affect phylogenetic inference of BCR
sequences in practice, and the problem of ameliorating such effects remains an open

1SSue.

This work has two main aims. The first is to analyse BCR evolution in three
previously-published and long-lived bNAD lineages in HIV-1 infected patients. This
analysis confirms our prediction of a decay of certain hotspot motifs through time.
Our second aim is to develop and introduce a new substitution model that can
partially account for this effect. The model is a modification of the GY94 (Goldman
and Yang 1994) codon substitution model. Although only an approximation, our new
model can detect and quantify the effect of AID-mediated somatic hypermutation on
BCR sequences whist preserving the assumption of independence among codon sites

to maintain computational feasibility. This model shows a significantly better fit than
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the standard GY 94 model to all three bNAb lineages from HIV-1 patients. Through
simulations, we further show that this model reduces bias in the estimation of other
evolutionary parameters we and explore its potential applications, such as improved

ancestral state reconstruction.
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Methods

Multiple Sequence Alignment
Heavy chain sequences from the three bNADb lineages presented in (Wu et al. 2015)

were downloaded from GenBank (http://www.ncbi.nlm.nih.gov/genbank/). The

lineage of greatest duration was VRCO1, which was sampled over 15 years (Wu et al.
2015), followed by CAP256, which was sampled over four years (Doria-Rose et al.
2014), and CH103, which was sampled over three years (Liao et al. 2013). Sequences
from each bNAD lineage were translated into amino acids, aligned to their putative
germline V gene segment using IgBlast (Ye et al. 2013), and then re-translated back
into codons. Putative germline segment assignments (V4-59*01 for CH103, V3-
30*18 for CAP256, and V1-2*01 for VRCO1) were obtained from bNAber (Eroshkin
et al. 2013) and sequences were obtained from the IMGT V-Quest human reference
set (Lefranc and Lefranc 2001). Because of considerable uncertainty in D and J
germline assignments for each lineage, only the V segment was used. Insertions
relative to the germline sequence were removed, so that all sequences within each
lineage were aligned to the same germline sequence. When this was done, the 3’
nucleotide of the region joined together from the removal of the insertion was
converted into an N to avoid creating false motifs. To keep results consistent between
lineages, only nucleotide positions from the beginning of the first framework region
(FWR1) to the end of FWR3 were used. Sampling dates of each sequence were
extracted from the sequence ID tags provided on GenBank. When these were not

available the sequence was excluded.

Hotspot decay in bNAb lineages
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The “hotspot frequency” of each sequence was defined as the number of hotspot
motifs divided by the possible number of hotspot motifs in that sequence, and was
calculated for trimer (WRC/GYW) and dimer (WA/TW) motifs separately (Yaari et
al. 2013), where W=A or T, Y = A or G, and R =T or C, as per the [UPAC
nucleotide ambiguity codes. Hence an example trimer motif might be ATC, and its
reverse complement GAT. The underlined base in each of these motifs experiences
increased AID mediated mutability. Trimers and dimers with non-ACGT characters
were excluded from this calculation. Changes in hotspot frequency values through
time were analysed using linear regression and correlation. Because the date of
infection was not known for VRCO1, germline IGHV sequences were not included in
these calculations. Importantly, because the sequences within each B-cell lineage are
phylogenetically related, they are partially correlated due to shared common ancestry
and are not independent data points, hence p-values from standard correlation and
regressions tests are not reliable. However, the regression can still be an unbiased
measure of trends in sequence change over time (see (Drummond et al. 2003) for

discussion). Regressions of hotspot frequency through time are shown in Figure 1.

In the absence of a suitable hypothesis test based on regression, we developed a
simulation-based significance test for the association between hotspot frequency and
time in bNAD lineages. The null model for this test is a substitution model (GY94)
that does not explicitly model the decay of hotspot motifs and which is used to
estimate a maximum likelihood phylogenetic tree. Multiple data sets were simulated
under this null model, using the same sample sizes and sampling times as the three
empirical bNAD data sets. The significance of the difference between the null model

and the observed data is calculated as the proportion of simulated datasets with a
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greater negative correlation between hotspot frequency and time than in the observed

data set. Results for these tests are shown in Table 1.

Maximum likelihood phylogenetic trees and substitution model parameters for each
of the three bNADb lineages were estimated using the GY94 model and empirical
codon frequencies using codonPhyML (Gil et al. 2013). Trees were re-rooted so as to
place the germline sequence as an outgroup with a branch length of zero, effectively
making it the universal common ancestor (UCA) of the lineage. For each bNAb
lineage, we then simulated 100 sequence data sets down the corresponding ML tree
using the GY94 model, starting with the corresponding germline sequence at the root
and using the fitted substitution model parameters. Simulations were performed using

the PAML evolver program (Yang 2007).

To ascertain whether the observed effects were general, or specific to known hotspot
motifs, we repeated the above regression and simulation tests for non-hotspot motifs.
To do this, we randomly assigned non-hotspot nucleotide motifs as “hotspots” whilst
keeping the number of trimer and dimer hotspots the same (eight and three,
respectively). This analysis was then repeated for 100 such random allocations. These

results are summarized in Supplemental File 1.

A codon substitution model for phylogenies undergoing somatic hypermutation
In order to represent the molecular evolution of long-lived B cell lineages more
accurately, we develop a new substitution model that models the effects of motif-
specific mutation across the BCR. This model, named the HLP16 model, is a

modification of the GY94 substitution model. Specifically, we add to the GY94
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model an additional parameter, /, which represents the additional increase in relative
substitution rate of a hotspot mutation. Explicitly modelling the full context
dependence of hotspot motifs would make likelihood calculations computationally
infeasible. Instead, we weight 4 by b;;, which is the probability that the mutation from
codon i to codon j was a hotspot mutation, averaged across all possible combinations
of codons on the 5’ and 3’ flanks of the target codon. A “hotspot mutation” is defined
as a mutation occurring within the underlined base of the trimer motif WRC/GYW.
Because we did not find a significant decay of dimer hotspot motifs through time (see
Figure 1 and Table 1), our model only includes trimer hotspots. However, dimers or
other motifs could easily be added with additional values of / and b;; for each new

motif.

In the HLP16 model, each entry q;; in the Markov rate matrix Q is defined by:
m; = Equilibrium frequency of codon j

k = Transition/transversion mutation relative rate ratio

® = nonsynonymous to synonymous mutation relative rate ratio

h = Increased mutability due to trimer hotspot motifs (WRC/GYW)

b;; = Probability that mutation from i to j occurred in a trimer hotspot

(0 [ = j > 1 nucleotide change
T; + b;jh [ = J synonymous transverion
qij = 3 k(nj + bijh) [ = J synonymous transition (1)

w(nj + b; jh) [ = j nonsynonymous transversion

gwk(nj + b; jh) [ = J nonsynonymous transition

The values of b;; are calculated by marginalizing over all possible 5* and 3’ flanking
sense codons as follows:

bij = k=1 Zan=1 T Tl (0, ), k, m) )
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Where [ is the indicator function:

1 codon sequence kim — kjm is a hotspot mutation
0 otherwise

1G,j,km) = {
This model, though an approximation, has several useful properties. Perhaps most
importantly, because codon changes are still modelled independently of each other,
likelihood can still be calculated using Felsenstein’s pruning algorithm, which greatly
improves computational time (Felsenstein 1981). The model also has the intuitive
property that, if hospots are subjected to no additional mutability compared to other
motifs, then 4 = 0 and the model simplifies to the GY94 model. Thus the GY94 model
is a special case of the HLP16 model. Further, mutations that could have not occurred
instantaneously within a hotspot motif reduce to their GY94 values before Q matrix

normalization.

In contrast to most substitution models, the relative substitution rate parameters in the
Q matrix of the HLP16 model are not necessarily symmetric. A Q matrix with
symmetric rate parameters is useful because it likelihood calculations can be
undertaken on an unrooted tree, which can then be rooted by any of its tips. In the
case of B cell lineage evolution, it is necessary to root the lineage phylogeny at the
germline sequence during parameter optimization, and pruning algorithm likelihood

calculations are required to always begin at the root node.

We modified the source code of codonPhyML (Gil et al. 2013) to implement the rate
matrix in equation 1, and to estimate the additional parameter 4 using maximum
likelihood, alongside the other model parameters. Specifically, we optimize o, k, m;

(using the CF3X4 model) and the vector of phylogeny branch lengths. Performing all
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likelihood calculations from the root node slowed computation substantially, therefore
in this work we applied the HLP16 model to a fixed tree topology, and we leave the
problem of co-estimating topology for future work. For each data set, the tree
topology used was that inferred using the standard GY94 model in codonPhyML,
which was subsequently re-rooted to place the germline sequence at the universal

common ancestor.

Because the GY94 model is a special case of the HLP16 model (i.e. when /4 = 0) the
two models are nested and can be compared using a likelihood ratio test. Let max
L(HLP16) and max L(GY94) be the maximum likelihoods obtained under the HLP16
and GY94 models, respectively. The likelihood ratio statistic is then 2*( max
L(HLP16) / max L(GY94) ) and approximately chi-squared distributed with one
degree of freedom (Huelsenbeck and Rannala 1997). For each bNAb dataset, the
value max L(HLP16) is calculated by optimising /4 together with the other model
parameters, whereas the value max L(GY94) is calculated by constraining #=0 whilst

optimising all other model parameters.

We evaluated the performance of the HLP16 model by simulating data sets under
different values of 4 and testing how accurately 4 and other model parameters were
inferred. The following procedure we used to generate the simulated data sets:
(1) We randomly subsampled each bNADb lineage to 99 sequences, plus the
single germline sequence at the root. Subsampling was necessary to make the
large number of replicates computationally feasible.
(2) We estimated a maximum likelihood phylogeny for each subsampled

bNAD lineage data set using the standard GY94 model. During estimation we
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optimised w, k, m;, branch lengths and the tree topology. The resulting ML tree
was re-rooted at the germline sequence with a branch length of zero.
(3) For each value of % investigated (0, 0.05, 0.1, and 0.3), we simulated 10
alignments along each of these trees. Simulations were undertaken using the
estimated values of o, k and &, obtained in step (2) for the corresponding
bNAD lineage datra set. Starting (root) sequences were generated randomly
from equilibrium frequencies.
(4) For each of the replicates defined in step (3), we performed three different
ML calculations: (i) # was optimised using ML (with /4 as the MLE estimate
of h), (i1) & was fixed to zero, and (iii) £ was fixed to the true value used in
simulation (/). These three values enable us to test both type 1 and type 2
error rates, by determining whether / was significantly different to /. or Ay
respectively. Statistical significance was determined using the chi-squared
approximation to the likelihood ratio statistic, as described above. In all
calculations, the tree topology was fixed to that inferred from step (2).
(5) For each data set and for each set of simulations under a particular value of
h, we estimated / and then calculated the properties of this estimator as
follows:
1.  Bias in estimation: (Mean[ﬁ] — Nirye)
ii.  Variance in estimation: Variance[/]
iii.  Type I error rate: The proportion of simulated data sets in which
hirie Was outside of the 95% confidence interval for A.
iv.  Type 2 error rate: The proportion of simulated data sets in which 4

> 0, but failed to reject the null hypothesis (4).
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Biased mutation during somatic hypermutation has been shown to give false
signatures of natural selection using approaches that compare the expected number of
replacement and silent mutations under a null model of somatic hypermutation
(Dunn-Walters and Spencer 1998), and it is possible that the HLP16 model could
partially reduce this bias. To test this, and to explore whether the HLP16 model
improved the estimation of other evolutionary parameters, we compared the
percentage error under the HLP16 and GY94 models of estimates of (i) o, (ii) k, (iii)
tree length (sum of all branch lengths) and (iv) the ratio of internal to external branch

lengths. These results are provided in Supplemental Figure 2.

The fact that bNAD lineages are clearly not in equilibrium when they are sampled
(Figure 1) has interesting implications for the use of Markov substitution models.
Typically, it is assumed that nucleotide or codon frequencies are at equilibrium at the
time of sampling, and empirical codon frequencies are often to estimate equilibrium
frequencies. In the case of long-lived B cell lineages, however, sampled sequences are
almost certainly not in equilibrium and do not converge to an equilibrium because the
changes are somatic and not inherited, thus making empirical codon frequencies
inaccurate. For this reason, it is necessary to optimize equilibrium frequency using
ML rather than use empirical codon frequencies. To test how this might affect
estimation of 4, we repeated the simulation procedure above using empirical
equilibrium frequencies from each data set. These results are included in

Supplemental File 3.

Because the HLP16 model is a mean field approximation to context dependency of

hotspot mutations, it is unlikely to fully account for the context dependency of
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somatic hypermutation. To test how this may affect analyses, we repeated our
simulation procedure using a model that fully accounts for the context dependence of
adjacent codon sites. In this forward simulation procedure, because the 3’ and 5’
flanking codons of each site are known, we create a B matrix for each site in each
sequence with b;; equal to either 1 or 0 depending on whether the substitution was or
was not in a hotspot mutation. This process begins at the root sequence, calculates a
separate Q matrix at each site in the sequence, and simulates two descendant

sequences down the tree until all tips are filled.

One of the key application of molecular phylogenetics to BCR sequence data is the
reconstruction of ancestral sequences within a B-cell lineage (Kepler 2013). Ancestral
state reconstruction is an implicit part of the phylogenetic likelihood calculation when
nucleotide or codon substitution models are used. For each simulation replicate, and
for each of the three likelihood calculations described in step (3) above, we computed
the most likely codon at each codon position at each internal node in the tree. These
ancestral sequences were then used to compare the accuracy of reconstructions under
the HLP16 model with those obtained using the GY94 model. In each simulation
replicate, accuracy of ancestral sequence reconstruction was measured by calculating
the mean pairwise nucleotide or amino acid difference between the predicted and true

sequences at each node.
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Results

Decay of hotspot motifs in bNAb lineages

All three bNAD lineages showed a negative correlation between trimer hotspot
content and time. However, no such decline was seen in dimer motifs (Table 1,
Figure 1). To test whether the patters of hotspot decay observed were significantly
different from those expected under a standard reversible codon substitution model
that does not explicitly account for hypermutation at hotspot motifs, we implemented
a significance test that compares the correlation between hotspot motif frequency and
time in simulated data sets generated under the null phylogenetic model. All three B
cell lineages showed a significantly greater negative correlation between trimer
hotspot content and time than expected under the null model (Table 1). In all cases,
the frequency of dimer motifs showed no significant change through time.
Furthermore, we repeated these analyses with randomly-chosen non-hotspot motifs
taking the place of the real, known hotspot motifs. This latter analysis demonstrates
that the significant decline detected was specific to known hotspot motifs, as declines

of similar degree were rarely observed in non-hotspots (Supplemental File 1).

A codon substitution model for phylogenies undergoing somatic hypermutation

All three bNAD lineages showed a significant improvement in likelihood under the
HLP16 model compared to the GY94 model. The maximum likelihood values of / for
the three data sets were 4 = 0.0345, 0.032, and 0.0339, for CH103, CAP256, and
VRCOI, respectively. In each case the simpler GY94 model (£=0) could be rejected
using the likelihood ratio test (p < 1x107for all three lineages). These results are

summarized in Table 2. While the absolute values of /4 may appear small, it is
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important to remember that / is added to the equilibrium frequencies before being
multiplied by other factors (see equation 1). Because the average equilibrium
frequency is approximately 1/61 = 0.016, a / value of 0.034 represents up to a three-

fold increase in the relative rate for hotspot mutations (depending on the values of b;)).

Our implementation of the HLP16 mode proved to be a robust ML estimator of /
when it was applied to simulated bNAD lineages (Table 3). Mean / values were very
close to their true 4 values, with low bias (maximum 9.3x107) and variability
(maximum 7.6x10™). None of the 120 data sets simulated with > 0 failed to reject
the null hypothesis that # = 0. Further, our method incorrectly rejected the true value
of h in 4.2% of analyses, which is approximately as expected given an alpha value of
0.05. Performance of inference was highly consistent across the three bNAb
phylogenies used to generate simulated alignments. We found that using empirical
equilibrium frequencies decreased the efficiency of parameter estimation, with higher
bias and type 2 error rates than when ML equilibrium frequencies were used. See
Methods for some discussion of why empirical codon frequencies are unlikely to be

suitable for long-lived B-cell lineage phylogenies (Supplemental File 3).

Incorporating and estimating the parameter 4 in the HLP16 model appears to have
generally improved the estimation of other model parameters, in comparison to the
GY94 model (Figure 2, Supplemental File 2). The clearest improvement was seen in
the tree length parameter; when # is large, the GY94 model substantially
underestimates tree length for simulations based on the VRCO1 lineage phylogeny
(mean percentage error up to -0.4) and there are clear biases for the simulations based

on other phylogenies (Supplemental File 2) as well. The bias was effectively absent
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when 4 = 0 and increased as % increased. In contrast, the HLP16 model did not lead to
underestimation of tree length as /4 increases. Analyses of simulated data sets also
showed that in some cases the GY94 model progressively overestimates the ®
parameter as the true value of / increases; this bias was clear in simulations based on
the most diverse B-cell lineage (VRCO01) but was not obvious in simulations based on
the CAP256 and CH103 lineages that were sampled for a shorter duration. Again, the

HLP16 model was able to estimate ® accurately under all values of 4.

Repeating our simulation analysis on data sets simulated under a model that fully
accounts for the context dependence of hotspot mutations showed expected decreases
in accuracy relative to simulations under the approximate model. Inference of / was
generally underestimated in simulations where 4 > 0, and statistics such as tree size
and internal/external branch length ratios were biased as well under large values of 4.
However, the HLP16 model showed consistently equal or better performance in all of
these categories compared to the standard GY94 model, showing both a significantly
higher likelihood in all data sets in which 4 > 0, and generally equal or better
inference of other parameters and tree statistics. Importantly, these biases and losses
in accuracy were primarily seen for large values of 4 (> 0.05), many times larger than
the / values we inferred from bNADb lineages. Further, values of / tended to be
underestimated in these simulations, indicating that our estimates of / from bNAb

lineages are likely conservative.

We also found that the HLP16 model provided more accurate reconstructions of
ancestral sequences than the GY94 model in most simulations (Supplemental File 4).

As expected, the level of improvement increased as the true value of / increased.
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Sequence reconstructions under the two models were fairly similar for internal nodes
near the root and the tree tips, and the improvement under the HLP16 model was most
marked for internal nodes in the basal third of the phylogeny. Typically, we would
expect the uncertainty in ancestral state reconstruction to increase as we move from
the tree tips towards the root, but B-cell lineages are unusual in that the root sequence

is also known as it corresponds to the germline sequence.

While true ancestral sequences are not available for the three bNAb lineages,
ancestral state reconstructions we did observe differences between sequences
reconstructed from HLP16 and GY94 models. For each lineage we compared these
models by calculating the mean amino acid difference between the predicted ancestral
sequences at all internal nodes of each tree. Performing this ancestral state
reconstruction on each of the three bNAb lineages showed a mean of 0.31, 0.62, and
0.35 amino acid sequence difference across all internal nodes with most differences

also concentrated near the upper-middle of the tree (Supplemental File 4).
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Discussion

Molecular phylogenetics has already been used in a variety of applications in the
study BCR genetic diversity and the molecular evolution of B cell lineages (Kepler
2013; Sok et al. 2013; Kepler et al. 2014). However, the process of somatic
hypermutation is known to operate in ways that violate fundamental assumptions of
most phylogenetic substitution models. Here, we demonstrate that failing to account
for the violation of these assumptions has tangible effects on phylogenetic inference
and parameter estimation from sets of sequences from long-lived bNAb lineages. We
develop and implement a new codon substitution model (HLP16) that, whilst only an

approximation, is capable of mitigating these effects.

Perhaps the most salient difference between standard substitutions models and the
biology of somatic hypermutation is the context dependency of mutation in BCRs.
This has long been known to give false signature of selection in BCRs (Dunn-Walters
and Spencer 1998). This effect was observed in our own simulations (Supplemental
File 2) in which failing to account for the increased rate of substitution at hotspot
motifs led to overestimation of the ® (dn/ds) parameter. A variety of empirical models
have been developed to characterize biased hotspot motifs at di, tri, penta, and

heptamer levels (Smith et al. 1996; Yaari et al. 2013; Elhanati et al. 2015).

Some approaches have been developed to study the substitution process in BCR data
in the context of biased mutation. Some of these are non-phylogenetic in nature (e.g.
Hershberg et al. 2008; Yaari et al. 2012) and focus on the expected number of

germline to tip replacement mutations regions in comparison to a null model. Kepler
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et al (Kepler et al. 2014) developed a non-linear regression model approach that,
combined with an empirical model of mutation rate at each site, allowed the authors
to test for both selection, and the interaction between mutation and selection, in
shaping BCR genetic diversity. The substitution model detailed in McCoy et al
(McCoy et al. 2015) is perhaps the most similar to the new model introduced in this
study, as it is ultimately derived from probabilistic reversible substitution models.
This was accomplished by comparing values of o inferred from a given data set to

those inferred from out of frame rearrangements.

The HLP16 codon substitution model detailed here is a relatively straightforward
modification of the widely used GY94 model. Although the HLP16 model is slower
to compute than the simpler, reversible model on which it is based, we have found
that it is usable, and almost certainly statistically preferable, to the GY94 model when
applied to any BCR data set whose diversity may have been shaped by somatic
hypermutation. Further, the HLP16 model does not rely on an empirical model to
incorporate the effect of biased mutation, but instead attempts to explicitly model the
context-dependent mutational process by estimating the parameter 4 and equilibrium
codon frequencies directly from the data. It should be noted, however, that the HLP16
model is a mean-field approximation and does not capture the full context of motif
driven evolution. Therefore we do not expect it to fully disentangle interaction
between selection and biased mutation, and estimated values of ® should be
interpreted carefully. In addition to correcting biases in parameter estimation,
simulation analyses reveal that the HLP16 model produces different, and more

accurate, ancestral state reconstructions than the standard GY94 model.
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Another common assumption in phylogenetic analysis is that the codons or
nucleotides sampled for analysis are at their equilibrium frequencies. Because our
hotspot model has asymmetric relative rates between codons, which are a function of
h, then it seems likely that codon frequencies will change across a B-cell lineage
when / is significantly above zero. This is a result of the decline in the number of
hotspots through time (Figure 1). We dealt with this problem by estimating
equilibrium frequencies by maximum likelihood within the model. This showed
improvement, both in maximum likelihood values and in parameter estimation, over
using empirical codon frequencies to approximate equilibrium frequencies. However,
it is not yet clear if this is the most efficient or the most effective way of dealing with

this problem of sequence disequilibrium.

We suggest that this decay of hotspot motifs in bNAb lineages may have important
implications for our understanding of host-virus coevolution. More specifically, we
propose that the loss of hotspot motifs will lead to a decrease in sequence mutability,
and therefore a decline in overall rate of evolution over time for a given lineage. Two
important pieces of this hypothesis — lower mutability from loss of hotspot motifs,
and decline in mutation rate over time in bNAD lineages — have already been explored
separately. Wei et al. (2015) showed experimentally that a decrease in the number of
hotspot motifs in a BCR sequence leads to a decrease in the overall mutation rate in
that sequence. Further, a landmark study (Wu et al. 2015) showed multiple pieces of
evidence that evolutionary rate in the same three bNAb lineages analysed here
declines over time, a clear violation of standard clock rate models. The decay of
hotspot motifs may at least partially explain this inferred slowdown in mutation rate.

Whilst we do not directly test here the hypothesis that a decay of hotspot motifs over
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time leads to decrease in overall BCR evolutionary rate, we do show that hotspot
motifs decay within three bNADb lineages in HIV-1 infected individuals, which
provides an empirical link between the ideas of biased mutation and the inferred

decrease in substitution rate.

This hypothesis has an important corollary. If the slowdown in mutation rate over
time, arising from hotspot decay, is an intrinsic property of activated B cell lineages,
then BCR sequence divergence from a germline ancestor (and thus affinity
maturation) must be fundamentally and intrinsically constrained. Consequently, while
BCR lineages may be able to rapidly evolve binding affinity and co-evolve with
pathogens for an initial period after activation, over longer periods of time B-cell
lineages will fail to keep up with the rapid evolution of chronically infecting viruses
such as HIV-1, due to the exhaustion of available BCR hotspot motifs. This would
suggest using a single bNAb lineage against chronic viruses may be a losing strategy,
and that utilizing multiple bNAD lineages (e.g. Gao et al. 2014) would be better suited
to long-term coevolution with chronic viruses. From an evolutionary perspective, this
hypermutation-driven “senescence” of B-cell lineages may be ultimately adaptive,
because the fitness benefits of rapid short-term BCR sequence evolution accruing
from acute infections would likely outweigh the costs of BCR hotspot motif

exhaustion in the context of chronic infections.

Some of our findings are circumstantial support other hypotheses that may be
interesting to test in future research. We observed that the relationship between
hotspot frequency and time is stronger in the younger lineages (correlation = -0.48

and -0.5; for CH103 and CAP256), than in VRCO1 (-0.33). This is consistent with the
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notion that the decline in the divergence rate of bNAD lineages is fastest early in the
development of the B cell lineage, and slows down as the lineage ages. Interestingly,
we returned a very similar estimates of / (~0.03) for all three bNAb lineages tested,
despite the fact that they had been evolved for different periods of time and other
evolutionary parameter estimates (e.g. omega and kappa) varied among lineages. This
may indicate that mutational bias arising from hotspot motifs is consistent across time

scales and individuals.

Because our model conforms to certain limitations, such as independent change
among codon sites, it cannot fully account for the effects of targeted SHM. Other
properties of SHM are excluded in the model’s current form but may be possible to
integrate. The most obvious property, and perhaps the easiest to accommodate, is the
fact that other hotspots (e.g RGYW/WRCY, DGYW/ WRCH) and even cold spots
(e.g. SYC) besides those explored here have been identified (Zhang et al. 2001;
Rogozin and Diaz 2004; Peled et al. 2008). These may be accommodated by
including a separate 4 parameter for each hotspot, and by modifying the indicator
function to account for those hotspot or coldspot motifs. It is not clear how to best
model the interaction between overlapping hotspot motifs, but both the inclusion of
additional motifs, and the model of interaction between them may be tested through a
likelihood ratio test. Another important issue is that BCR sequences are highly
partitioned into framework (FWR) and complementary-determining (CDR) regions.
These are known to be under different types and degrees of selection (Yaari et al.
2012; Yaari et al. 2015), so an obvious next step is to use a site-partition model to
allow omega to vary between these two regions. While other analyses have already

shown an interaction between region, mutability, and selection (Kepler et al. 2014), it
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would be interesting to test this hypothesis in this framework by allowing 4 to vary

between region partitions as well.
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Authors’ note

After this manuscript was written, a paper by Sheng et al (2016) was published, on
May 18", which also explores the hypothesis that decline in mutation rate in bNAb
lineages may be the result of hotspot motif loss. We were unaware of Sheng et al.’s

manuscript whilst our work was undertaken.

Sheng Z, Schramm CA, Connors M, Morris L, Mascola JR, Kwong PD, Shapiro L.
2016. Effects of Darwinian Selection and Mutability on Rate of Broadly Neutralizing

Antibody Evolution during HIV-1 Infection. PLOS Comput Biol 12:¢1004940.
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Tables

Table 1: Hotspot motif decay in three bNAD lineages.

Trimer motifs: WRC/GYW Dimer motifs: WA/TW
B-cell

Observed P Observed P
lineage Observed/simulated Observed/simulated

correlation value | correlation value
CH103 -0.48 -11.33 0.00 0.09 0.46 0.29
CAP256 -0.50 -11.77 0.00 0.33 0.84 0.30
VRCO01 -0.33 5.50 0.02 0.11 0.70 0.39

The “Observed correlation” column shows the correlation between hotspot frequency and time. The
next column shows how these values compare to the mean of the same values from 100 simulations
under the null model. The third column shows the p value — the proportion of simulated data sets that

had a lower correlation than observed data sets.

Table 2: Maximum likelihood estimates of /2 and likelihood ratio tests

B-cell . Log-likelihood
Mean h 2*LR p value
lineage hyvie hy
CH103 0.0345 -14918.9 -15031.5 2252 <1x10™°
CAP256 0.0322 -37622.1 -37913.8 583.4 <1x10™°
VRCO1 0.0339 -44011.2 443393 656.2 <1x10™

Significance was determined using the likelihood ratio test under a chi-squared distribution with one

degree of freedom.
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Table 3: Analyses of data sets simulated using different phylogenies and values of A

1§1§:§e h Mean / Bias Variability Type 1 error | Type 2 error
0.30 0.309 9.3E-03 7.6E-04 0.00 0.00
CH103 0.10 0.098 -1.8E-03 3.9E-05 0.00 0.00
0.05 0.050 4.6E-04 2.9E-05 0.00 0.00
0.00 0.001 6.5E-04 9.0E-07 - 0.00
0.30 0.303 2.6E-03 5.7E-04 0.00 0.10
0.10 0.105 5.3E-03 6.9E-05 0.00 0.10
CAP256 0.05 0.051 8.9E-04 3.9E-05 0.00 0.10
0.00 0.001 1.2E-03 3.2E-06 - 0.10
0.30 0.297 -3.0E-03 4.6E-04 0.00 0.00
VRCOI 0.10 0.099 -8.8E-04 7.9E-05 0.00 0.10
0.05 0.051 9.6E-04 1.1E-05 0.00 0.00
0.00 0.000 3.0E-04 3.0E-07 - 0.00

Type 1 error rate shows the proportion of data sets that incorrectly failed to reject the null hypothesis of
h = 0. Type 2 error rate shows the proportion of data sets that rejected the true value of 4 shown in the
first column. Mean type 2 error rate across all simulations was 0.042. Both of these hypothesis tests

used an alpha value of 0.05.
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Figure 1: Decrease in frequency of trimer and dimer hotspot motifs in three bNAb lineages. Red line

shown is least square regression.
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Figure 2: Percentage error in parameter estimation compared to true values for the VRCO1 B cell
lineage. Estimates obtained under the GY94 are in orange (4=0) and estimates obtained under the
HLP16 model are in blue (% estimated using maximum likelihood). The edges and centers of boxplots
show the 1%, 2™, and 3™ quartiles, while the whiskers show range. Equivalent results for B cell lineages

CH103 and CAP256 are shown in Supplemental File 2.
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