

1 *Title:*

2 **Genome reduction in an abundant and ubiquitous soil bacterial lineage**

3

4 *Author affiliation:*

5 Tess E Brewer^{1, 2}, Kim M Handley³, Paul Carini¹, Jack A Gilbert^{4, 5}, Noah Fierer^{1, 6, *}

6

7 ¹Cooperative Institute for Research in Environmental Sciences, University of
8 Colorado, Boulder, CO 80309; ²Department of Molecular, Cellular, and
9 Developmental Biology, University of Colorado, Boulder, CO 80309;

10 ³School of Biological Sciences, The University of Auckland, Auckland 1142, New
11 Zealand; ⁴Department of Ecology and Evolution, The University of Chicago,
12 Chicago, IL 60637; ⁵Argonne National Laboratory, Institute for Genomic and
13 Systems Biology, Argonne, IL 60439; ⁶Department of Ecology and Evolutionary
14 Biology, University of Colorado, Boulder, CO 80309

15

16 **Corresponding author:*

17 Noah Fierer

18 noah.fierer@colorado.edu

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45 **Abstract**

46

47 Although bacteria within the *Verrucomicrobia* phylum are pervasive in soils
48 around the world, they are underrepresented in both isolate collections and
49 genomic databases. Here we describe a single verrucomicrobial phylotype
50 within the class *Spartobacteria* that is not closely related to any previously
51 described taxa. We examined >1000 soils and found this spartobacterial
52 phylotype to be ubiquitous and consistently one of the most abundant soil
53 bacterial phylotypes, particularly in grasslands, where it was typically the most
54 abundant phylotype. We reconstructed a nearly complete genome of this
55 phylotype from a soil metagenome for which we propose the provisional name
56 'Candidatus Udaeobacter copiosus'. The *Ca. U. copiosus* genome is unusually
57 small for soil bacteria, estimated to be only 2.81 Mbp compared to the predicted
58 effective mean genome size of 4.74 Mbp for soil bacteria. Metabolic
59 reconstruction suggests that *Ca. U. copiosus* is an aerobic
60 chemoorganoheterotroph with numerous amino acid and vitamin auxotrophies.
61 The large population size, relatively small genome and multiple putative
62 auxotrophies characteristic of *Ca. U. copiosus* suggests that it may be
63 undergoing streamlining selection to minimize cellular architecture, a
64 phenomenon previously thought to be restricted to aquatic bacteria. Although
65 many soil bacteria need relatively large, complex genomes to be successful in
66 soil, *Ca. U. copiosus* appears to have identified an alternate strategy, sacrificing
67 metabolic versatility for efficiency to become dominant in the soil environment.

68

69 **Introduction**

70

71 Soils harbor massive amounts of undescribed microbial diversity. For example,
72 more than 120,000 unique bacterial and archaeal taxa were found in surface
73 soils of Central Park in New York City, of which only ~15% had 16S rRNA gene
74 sequences matching those contained in reference databases and <1% had
75 representative genome sequence information (1). This undescribed soil microbial
76 diversity is not evenly distributed across the tree of life. For example,
77 *Acidobacteria* and *Verrucomicrobia*, two of the more abundant bacterial phyla
78 found in soil (2, 3), represent only 0.08% and 0.06% of all cultured bacterial
79 isolates in the Ribosomal Database Project (RDP, 4) and only 0.08% and 0.14%
80 of publicly-available bacterial genomes found in Integrated Microbial Genomes
81 (IMG, 5), respectively. Although the ecology and genomic attributes of abundant
82 soil taxa are beginning to be described (6), we still lack basic information on the
83 vast majority of soil microbes. These knowledge gaps highlight that a huge
84 fraction of living biomass in terrestrial systems remains undescribed (7) and that
85 we are only beginning to identify the influence of specific microbes on soil
86 biogeochemistry and fertility.

87

88 For this study, we focus our exploration of undescribed microbial diversity on
89 the *Verrucomicrobia* phylum. Although *Verrucomicrobia* are generally recognized

90 as being among the most numerically abundant taxa in soil (2, 3), we know very
91 little about the ecological or genomic attributes that contribute to their success.
92 The phylum *Verrucomicrobia* is highly diverse and its members possess a broad
93 range of metabolic capabilities. For example, members of the class
94 *Methylacidiphilae* are nitrogen-fixing acidophiles capable of methane oxidation
95 (8) while *Akkermansia muciniphila* of the class *Verrucomicrobiae* is a mucin-
96 degrading resident of the human gut linked to reduced host obesity (9).
97 However, the dominant *Verrucomicrobia* found in soil typically belong to the
98 class *Spartobacteria*. For example, while *Verrucomicrobia* accounted for >50%
99 of all bacterial 16S rRNA gene sequences in tallgrass prairie soils in the United
100 States, >75% of these sequences were assigned to the class *Spartobacteria*
101 (10). Currently, the class *Spartobacteria* contains only a single described and
102 sequenced isolate, *Chthoniobacter flavus*, a slow-growing aerobic
103 chemoorganoheterotroph capable of using common components of plant
104 biomass for growth (11, 12). While *Spartobacteria* are prevalent in soils, they
105 have also been observed in marine systems ('*Spartobacteria baltica*', 13) and as
106 nematode symbionts (genus *Xiphinematobacter*, 14).
107

108 Here we report the distribution of a dominant *Spartobacteria* lineage, compiling
109 data from both amplicon and shotgun metagenomic 16S rRNA gene surveys to
110 quantify its relative abundance across >1000 unique soils. We assembled a
111 near-complete genome of this lineage from a single soil where it was
112 exceptionally abundant. These results provide our first glimpse into the
113 phylogeny, ecology, and potential physiological traits of a dominant soil
114 *Verrucomicrobia* and suggest that members of this group are efficient at
115 growing and persisting in the low resource conditions common in many soil
116 microenvironments.
117

118 Results and Discussion

119

120 ***Distribution of the dominant Verrucomicrobia in soil***

121 A single spartobacterial clade dominates bacterial communities found in a wide
122 range of soil types across the globe. One phylotype from this group of
123 *Spartobacteria* represented up to 31% of total 16S rRNA gene sequences
124 recovered from prairie soils (10). This phylotype shares 99% 16S rRNA gene
125 sequence identity with a ribosomal clone named 'Da101', first described in 1998
126 as a particularly abundant 16S rRNA sequence recovered from a grassland soil
127 in the Netherlands (15). To determine if the Da101 phylotype (termed 'Da101'
128 herein) is abundant in other soils, we re-analyzed amplicon 16S rRNA gene
129 sequence data obtained from >1000 soils representing a wide range of soil and
130 site characteristics (Table S1). We found that Da101 was on average ranked
131 within the top two most abundant bacterial phylotypes in each study (Fig. 1). In
132 over 70% of the soils analyzed Da101 was within the top ten most abundant
133 phylotypes. Interestingly, phylotypes belonging to the same family as Da101

134 (Chthoniobacteraceae) were also found within the top 5 most abundant
135 phylotypes of several studies (Fig. 1).

136
137 As some 16S rRNA gene PCR primer sets can misestimate the relative
138 abundance of *Verrucomicrobia* (3, 16), we investigated whether the apparent
139 numerical dominance of Da101 in the amplicon datasets was a product of PCR
140 primer biases. To do so, we quantified the abundance of Da101 16S rRNA
141 genes within 75 previously published soil shotgun metagenomes (17, 18). The
142 relative abundance of Da101 in amplicon data was reasonably well correlated
143 with the relative abundance of Da101 determined from shotgun metagenomic
144 data ($P<0.0001$, $p=0.50$). Confirming the amplicon-based results (Fig. 1), we
145 found that Da101 was among the most abundant phylotypes observed in the
146 soil bacterial communities characterized via shotgun metagenomic sequencing
147 (Fig. S1). Thus, we conclude that the numerical dominance of Da101 in soils is
148 not simply a product of primer biases.

149
150 Despite Da101 being one of the most abundant phylotypes found in soil, its
151 proportional abundance can vary significantly across soil types (Fig. 1 and S1).
152 We used metadata associated with each soil sample to determine which of the
153 measured soil and site characteristics best predicted the relative abundance of
154 Da101. We found that Da101 was significantly more abundant in grassland soils
155 than in forest soils ($P<0.0001$, two tailed t test, Fig. S2); on average, Da101 is six
156 times more abundant in grassland soils. These findings suggest that the soils in
157 which Da101 excels do not overlap with those forest soils dominated by non-
158 symbiotic *Bradyrhizobium* taxa (6). Across the grassland soils included in our
159 meta-analysis, the relative abundance of Da101 was positively correlated with
160 both soil microbial biomass ($P<0.0001$, $p=0.57$, Fig. S3), and aboveground plant
161 biomass ($P<0.0001$, $p=0.47$, Fig. S3). Together, these results indicate that
162 Da101 prefers soils receiving elevated amounts of labile carbon inputs. We did
163 not identify any consistent correlations between the abundance of Da101 and
164 other prokaryotic or eukaryotic taxa, suggesting that Da101 is unlikely to be a
165 part of an obligate pathogenic or symbiotic relationship.

166
167 **Diversity of soil *Verrucomicrobia***

168 We determined the phylogenetic placement of Da101 and other soil
169 *Verrucomicrobia* by assembling near full-length 16S rRNA gene sequences from
170 six distinct grassland soils collected from multiple continents (Fig. 2, Table S2)
171 using EMIRGE (19). Although we were able to assemble representative 16S
172 rRNA gene sequences from all verrucomicrobial classes except
173 *Methylacidiphilae*, 93% of verrucomicrobial sequences fell within the
174 *Spartobacteria* class and 87% of these fell within the Da101 clade. These
175 phylogenetic analyses confirm that Da101 belongs to the *Spartobacteria* class
176 (Fig. 2). However, within the *Spartobacteria* class, the Da101 clade is clearly
177 distinct from the clade containing *Chthoniobacter flavus* (11, 12), as Da101
178 shares only 92% 16S rRNA gene sequence identity with *C. flavus*. These findings

179 indicate that Da101 is likely a representative of a new verrucomicrobial genus.
180 We propose the candidate genus name ‘*Candidatus Udaeobacter*’ for the Da101
181 clade; the proposed name combines Udaeus (‘of the earth’, Greek) with bacter
182 (rod or staff, Greek), and like *Chthoniobacter* refers to one of the Spartoi of the
183 Cadmus myth. We recommend the provisional name ‘*Candidatus Udaeobacter*
184 *copiosus*’ for the Da101 phylotype, which refers to its numerical dominance in
185 soil.

186

187 ***Draft genome of ‘Candidatus Udaeobacter copiosus’ recovered from***
188 ***metagenomic data***

189 Despite their ubiquity and abundance in soil, there is no genomic data currently
190 available for any representative of the ‘*Candidatus Udaeobacter*’ clade.
191 Typically, soil hyper-diversity confounds the assembly of genomes from
192 metagenomes (20), requiring single-cell analysis or laboratory isolation to
193 produce an assembled genome. However, we leveraged the sheer abundance
194 of *Ca. U. copiosus* in an individual soil to obtain a nearly complete genome from
195 shotgun metagenomic data. We deeply sequenced a soil where *Ca. U. copiosus*
196 accounted for >30% of 16S rRNA gene sequences and assembled a draft
197 genome from the resulting metagenome. We used GC content, coverage,
198 tetranucleotide frequencies, and the phylogenetic affiliation of predicted proteins
199 to bin assembled contigs, resulting in a draft *Ca. U. copiosus* genome with 238
200 contigs. The draft genome is 2.65 Mbp in size, has a GC content of 54%, and
201 encodes for 3,042 predicted proteins, 67% of which could be assigned to Pfam
202 protein families (21) by the IMG annotation pipeline (5). We estimate that the full
203 *Ca. U copiosus* genome is 2.81 Mbp in length based on the recovery of 94% of
204 single copy housekeeping genes (34 of 36 genes, Table S3) that are commonly
205 used to estimate genome completion (22). The *Ca. U. copiosus* genome shares
206 only 69.3% average nucleotide identity (23) with the genome of its closest
207 sequenced relative *C. flavus*, further supporting its proposed placement as the
208 distinct genus ‘*Candidatus Udaeobacter*’. Additionally, the *Ca. U copiosus* 16S
209 rRNA gene has 100% identity to the Da101 phylotype sequence, indicating that
210 this genome is indeed a representative of the aforementioned dominant Da101
211 clade.

212

213 *Ca. U. copiosus* has a particularly small genome size compared to *C. flavus*
214 (2.81 Mbp to 8.80 Mbp, predicted genome sizes). To see how the genome of
215 *Ca. U. copiosus* compares to other soil bacteria, we compiled data from 378 soil
216 bacteria with finished or permanent draft genome sequences in IMG whose 16S
217 rRNA gene sequences matched the 16S rRNA gene amplicon sequences
218 obtained by Leff et al. (2015) with at least 99% identity. Nearly all (99%) of these
219 378 genomes came from cultivated taxa. We estimated the genome
220 completeness for each of the 378 taxa using the same method as for *Ca. U.*
221 *copiosus* and found the mean estimated genome size of these taxa to be $5.28 \pm$
222 2.15 Mbp (mean \pm SD), which is nearly identical to metagenomic based
223 estimates of mean genome size for soil microbes (24). Strikingly, the 2.81 Mbp

224 genome of *Ca. U. copiosus* is ~50% smaller than the mean genome size of
225 these 378 taxa and only 13% of these genomes were smaller than the genome
226 of *Ca. U. copiosus*.
227
228 Although soil bacteria with larger genomes tend to be more common in soil, *Ca.*
229 *U. copiosus* is a notable exception to this pattern. We linked the genome size of
230 each of the matched IMG bacterial genomes with the average abundance of
231 their corresponding amplicon sequence from Leff et al. (2015) and found that
232 genome size is positively correlated with average relative abundance ($P < 0.001$,
233 $p=0.37$, Fig. 3). That is, bacteria with large genomes tend to comprise a
234 significantly larger proportion of soil bacterial communities. On average, the
235 genomes of soil prokaryotes are larger than those inhabiting aquatic
236 ecosystems (25) or the human gut (26). These relatively large genomes are
237 thought to provide soil-dwelling bacteria with a more diverse genetic inventory
238 to enhance survival in conditions where resources are diverse, but sparse (27,
239 28). However, the *Ca. U. copiosus* genome has a conspicuously reduced
240 genome given its numerical abundance (Fig. 3). This suggests that *Ca. U.*
241 *copiosus* occupies a niche space that does not require expansive functional
242 diversity and points to an alternative route to success for soil bacteria. These
243 results also suggest that abundant, uncultivated soil bacteria may have smaller
244 genomes than the cultivated taxa that represent the vast majority of available
245 genomic data. A similar pattern has been observed in aquatic systems where
246 uncultivated taxa often have smaller genomes than cultivated taxa (29). Because
247 the majority of available genomic information is derived from cultivated bacterial
248 taxa, the lack of genomic information from bacteria with reduced genomes likely
249 stems from challenges associated with culturing taxa with reduced genomes
250 (25).
251
252 Metabolic reconstruction of the *Ca. U. copiosus* genome points to an aerobic
253 chemoorganoheterotrophic lifestyle with the capacity to use a limited range of
254 carbon substrates for growth including glucose, pyruvate, and chitobiose.
255 Glycogen/starch synthesis and utilization genes were identified (*glgABCP* and
256 *amyA*), suggesting that *Ca. U. copiosus* has the capacity to store surplus carbon
257 as glycogen or starch. Glycogen metabolism has been demonstrated in other
258 *Verrucomicrobia* (30). Genes encoding for the complete biosynthesis of vitamins
259 B_2 , B_3 , B_5 (from valine) and B_6 were recovered. Full biosynthetic pathways for *de*
260 *novo* synthesis of alanine, aspartate, asparagine, glutamate, glutamine and
261 proline were also present. Nearly complete pathways were recovered for
262 glycine, threonine and methionine biosynthesis. Genes encoding for the
263 conversion of methionine to cysteine were present as the only apparent route to
264 cysteine biosynthesis. The only putative serine biosynthesis pathway is via the
265 transamination of pyruvate. Genes indicative of autotrophic metabolism (for
266 example, RuBisCO, ATP citrate lyase) were not identified. Additionally, genes
267 indicative of methanotrophy (*pmo*), methylotrophy (*mxaF* or *xoxF*), ammonia
268 (*amo*) or nitrite oxidation (*nxr*) were absent.

269
270 Genes encoding for the biosynthesis of all branched-chain (isoleucine, leucine
271 and valine) and aromatic (tryptophan, tyrosine and phenylalanine) amino acids
272 were conspicuously absent from the *Ca. U. copiosus* genome. Additionally, the
273 biosynthetic pathways for arginine and histidine were also absent. These eight
274 amino acids are among the most energetically expensive to make (Fig S4, 31),
275 suggesting that their acquisition from the environment offers *Ca. U. copiosus* an
276 energetic savings relative to taxa that synthesize them *de novo*. In contrast, *Ca.*
277 *U. copiosus* does have the complete suite of genes for the biosynthesis of those
278 amino acids that are energetically less expensive to make (including alanine,
279 aspartate, and glutamate, Fig. S4). The absence of branched-chain amino acid
280 synthesis pathways in the *Ca. U. copiosus* genome is consistent with previous
281 observations that these genes are underrepresented in natural populations of
282 soil *Verrucomicrobia* (10). Although *Ca. U. copiosus* lacks many amino acid
283 synthesis pathways, numerous genes encoding for peptide transport,
284 degradation and recycling were identified. For example, when scaled for
285 genome size, *Ca. U. copiosus* encodes four times as many putative peptide and
286 amino acid transporters as *C. flavus* (1.5% of genome to 0.37%) and twice as
287 many predicted proteases (6.5% of genome versus 3.2%). *Ca. U. copiosus* also
288 encodes for all components of the bacterial proteasome. Proteasomal
289 degradation is critical for amino acid recycling under starvation conditions in
290 mycobacteria (32). The enrichment of peptide transport and degradation
291 systems in the *Ca. U. copiosus* genome suggest that at least some of the amino
292 acids *Ca. U. copiosus* cannot synthesize are available directly from the soil
293 environment or by indirect associations with other soil biota.
294 In addition to these likely amino acid auxotrophies, *Ca. U. copiosus* has several
295 putative B-vitamin or B-vitamin precursor requirements. For example, the entire
296 vitamin B₁₂ synthesis pathway was absent in *Ca. U. copiosus*, despite the
297 presence of three genes encoding vitamin B₁₂-dependent proteins (methionine
298 synthase, ribonucleotide reductase, and methylmalonyl-CoA mutase). Vitamin
299 B₁₂ auxotrophies are relatively common in soil (33), making it likely that
300 exogenous vitamin B₁₂ is generally available to many soil bacteria. Genes
301 encoding for the complete vitamin B₁ biosynthetic pathway was complete
302 except for the 4-amino-3-hydroxymethyl-2 methylpyrimidine (HMP) synthase
303 (*thiC*), encoding the first step in B₁ biosynthesis. The absence of this gene, in the
304 presence of the remainder of the B₁ synthesis pathway, was recently linked to
305 an obligate HMP requirement in marine bacteria (34).
306
307 The abundance and cosmopolitan distribution of *Ca. U. copiosus* (Fig. 1),
308 together with its small genome size relative to other soil microbes (Fig. 3),
309 suggest that it is undergoing streamlining selection to minimize genome size.
310 The genome-streamlining hypothesis proposes that, in large bacterial
311 populations, reduced genome complexity is a trait under natural selection,
312 especially in environments where nutrients are sparse and can periodically limit
313 growth (25). All contemporary free-living organisms with streamlined genomes

314 inhabit aquatic environments (25, 35). However, compared to these aquatic
315 environments, soils are more heterogeneous (36), have higher overall microbial
316 diversity (37), and slower carbon turnover (38). Therefore, the functional
317 complexity required by soil microbes to succeed within a given niche is likely
318 large relative to that required by aquatic microbes. This means that the effects
319 of genome streamlining are likely to be most evident (i.e., result in smaller
320 genomes) in aquatic environments and that we might expect genome reduction
321 to be relatively uncommon across soil taxa. This expectation is consistent with
322 the fact that, on average, the genomes of aquatic microbes are smaller than
323 their terrestrial counterparts (25). However, the small genome and numerous
324 putative auxotrophies of *Ca. U. copiosus* show that genome streamlining is not
325 unique to aquatic organisms and that genome streamlining may also confer a
326 selective growth advantage in the soil environment.
327

328 Genome streamlining in *Ca. U. copiosus* has resulted in reduced catabolic and
329 biosynthetic capacity, and thus a loss of metabolic versatility. The absence of
330 multiple costly amino acid and vitamin biosynthetic pathways from the *Ca. U.*
331 *copiosus* genome implies that these compounds can be acquired from the soil
332 environment. Several studies have shown that free amino acids are present in
333 soil (39, 40), although oligopeptides are reported to be more abundant in
334 grasslands and may be assimilated with kinetics similar to free amino acids (41).
335 The enrichment of proteases and amino acid and peptide importers in the *Ca. U.*
336 *copiosus* genome suggests that it is well equipped to assimilate this fraction of
337 soil organic matter. Dispensing the capacity to synthesize costly amino acids
338 and vitamins likely provides *Ca. U. copiosus* a growth advantage in resource
339 limiting conditions when competition for labile carbon is high. Alternatively,
340 many of the putative amino acid auxotrophies described here are involved in
341 synergistic growth (42) and may be supplied by other microbes as common
342 community goods (43). Based on the few spartobacterial isolates that have been
343 cultivated (11), culture-independent studies (10, 44), and the genomic data
344 presented here, we speculate that *Ca. U. copiosus* is a small, oligotrophic soil
345 bacterium that reduces its requirement for soil organic carbon by acquiring
346 costly amino acids and vitamins from the environment.
347

348 **Conclusions**

349 Whereas successful soil microbes are predicted to have large genomes (27, 28,
350 Fig. 3), *Ca. U. copiosus* has a small genome, indicating that, similar to aquatic
351 microbes, minimization of cellular architecture can also represent a successful
352 strategy for soil microbes. We do not know if other uncultivated abundant soil
353 taxa also contain streamlined genomes because pre-existing genome databases
354 are preferentially biased towards cultivated isolates. For example, only 4.5% of
355 bacterial genomes in IMG are from uncultivated taxa (accessed April 2016).
356 Bacteria encoding for greater metabolic versatility likely have larger genomes
357 and therefore may be easier to culture in the laboratory (29). On the other hand,
358 specific and combinatorial nutrient requirements such as those described for

359 Ca. U. copiosus, present a complex problem for researchers attempting to
360 cultivate microbes with reduced genomes (45). Although Ca. U. copiosus has
361 not yet been grown in the laboratory, cultivation is clearly a crucial next step to
362 describing this organism, using the information described here to ‘tailor’ a
363 growth medium specifically for Ca. U. copiosus and related microbes. Such an
364 approach will undoubtedly improve our ability to describe and study the majority
365 of soil microbes, even dominant soil microbes like Ca. U. copiosus, which
366 remain difficult to cultivate under laboratory conditions.

367

368 **Materials and Methods**

369

370 ***Estimating the abundances and distributions of Verrucomicrobia in soil***

371 While five abundant *Verrucomicrobia* phylotypes were described in Fierer et al.
372 (2013), a single phylotype with 99% identity to the clone Da101 (15) was clearly
373 dominant. We searched previously published soil datasets for representative
374 sequences with 100% identity to this Da101 phylotype, including 31 soils from
375 United States native tallgrass prairies (10), 64 soils from matched forest and
376 grassland sites across North America (46), 595 soils collected from Central Park
377 in New York City (1), 367 grassland soils collected from North America, Europe,
378 Australia, and Africa (17), and a cross-biome collection of 11 desert and non-
379 desert soils from across the globe (18). We also included a dataset from a
380 grassland terrace near Boulder, Colorado (105.23W, 40.12N, Table Mountain)
381 where 30 soils were collected from a depth of 25 cm within a 100m² area on
382 28Jan15. Amplicon sequences and associated metadata from this study are
383 available at <https://dx.doi.org/10.6084/m9.figshare.3363505.v3>. Collectively
384 these datasets represent 1097 unique soil samples collected from a wide range
385 of ecosystem and soil types.

386

387 For all samples, DNA was extracted with the MoBio PowerSoil kit and the V4
388 region of the 16S rRNA gene was amplified in triplicate with the 515f/806r primer
389 pair. After normalization to equimolar concentrations, amplicons were
390 sequenced on an Illumina MiSeq (151bp paired end) at the University of
391 Colorado BioFrontiers Institute Next-Gen Sequencing Core Facility. Sequences
392 were processed as described previously (17). In brief, we used a combination of
393 QIIME (47) and UPARSE (48) to quality-filter, remove singletons, and merge
394 paired reads. Sequences were assembled into phylotypes at the 97% identity
395 level using UCLUST (49). Taxonomy was assigned using the Greengenes 13_8
396 database (50) and the Ribosomal Database Project classifier (4) and each
397 dataset was rarefied independently (Table S1).

398

399 As PCR primer biases can misestimate the relative abundances of
400 *Verrucomicrobia* (3,16), we also estimated the abundances of the Da101
401 phylotype directly from shotgun metagenomic data. We used Metaxa2 with
402 default settings (51) to extract bacterial 16S rRNA gene sequences from shotgun
403 metagenomic data compiled from previous analyses of 75 different soils (data
from 17, 18). Extracted 16S rRNA gene fragments were matched to GreenGenes

404 full-length sequences at 99% ID using the usearch7 command usearch_global.
405 The matched Greengenes sequences were then clustered and assigned
406 taxonomy as described above.
407

408 ***Describing the phylogenetic diversity of soil Verrucomicrobia***

409 We reconstructed near-full length 16S rRNA gene sequences to construct a
410 phylogeny of soil *Verrucomicrobia* from six soil samples (see Table S2) that were
411 selected to represent geographically distinct grasslands with a range of
412 verrucomicrobial abundances. We extracted DNA from each of these soils as
413 described previously (17) and used the 27f/1392r primer pair (52) to amplify near
414 full-length 16S rRNA genes as described in (19). The amplicons were sheared
415 using the Covaris M220 (Covaris, Woburn, MA) and the 16S rRNA gene libraries
416 were prepared using TruSeq DNA LT library preparation kits (Illumina, San
417 Diego, CA). Samples were pooled and sequenced on an Illumina MiSeq
418 (2x300bp) at the University of Colorado Next Generation Sequencing Facility.
419

420 After quality filtering of sequences, near full length SSU sequences were
421 reconstructed using EMIRGE (19). After 40 iterations, sequences were merged
422 into phylotypes with $\geq 97\%$ similarity. Reconstructed sequences were trimmed
423 to 1200 bp and all sequences were further clustered at 95% identity due to gaps
424 in some assemblies. Full-length 16S rRNA sequences from named
425 verrucomicrobial isolates were aligned along with the reconstructed sequences
426 using PyNAST (53). A UPGMA tree was constructed using the R packages
427 seqnir and phangorn and visualized with GraPhlAn (R 3.2.2, version 0.9.7).
428

429 ***Assembly and annotation of a genome from the dominant soil***
430 ***Verrucomicrobial phylotype***

431 We assembled the genome of '*Candidatus Udaeobacter copiosus*' from a
432 metagenome of a U.S. prairie soil sample (NTP21, Hayden, IA) estimated to have
433 particularly high abundances of bacteria within the Da101 clade (10).
434 Fragmented DNA extracted from this soil was prepared for sequencing using
435 WaferGen's PrepX ILM DNA library Kit (WaferGen Biosystems Inc, Fremont, CA)
436 and the Apollo 324 Automated Library Prep System for library generation. The
437 library was sequenced on one Illumina HiSeq2000 lane (2x101 bp), yielding 17
438 Gb of sequence with an average paired-end insert size of 345 bp. Low quality
439 reads were trimmed using Sickle v. 1.29 with a quality score threshold of Q=3,
440 or removed if trimmed to < 80 bp long (<https://github.com/najoshi/sickle>). The
441 sequences were assembled using IDBA_ud v. 1.1.0 (54) with a kmer range of 40
442 to 70 and step size of 15. To improve recovery of the most abundant
443 *Verrucomicrobia*, the genome was selectively re-assembled using Velvet with a
444 kmer size of 59, and expected kmer coverage of 11.5 (range 7.5 to 15.5). To bin
445 contigs ≥ 2 kb long, genes and protein sequences were predicted using Prodigal
446 v. 2.60 in metagenomics mode (55). For each contig, we determined the GC
447 content, coverage, and the phylogenetic affiliation based on the best hit for each
448 predicted protein in the Uniref90 database (Sept-2013, 56) following ublast

449 searches (49). We also constructed emergent self-organizing maps (ESOM)
450 using tetranucleotide frequencies of 5 kb DNA fragments (57). A combination of
451 these approaches were used to identify the genome. The draft genome was
452 uploaded to IMG for annotation under the taxon ID 2651869889.

453
454 No rRNA genes were annotated by IMG, so we used Metaxa with default
455 settings on the unassembled sequences to extract any 16S rRNA genes. Metaxa
456 recovered two ~500 bp 16S rRNA gene fragments at 23-29x coverage which
457 aligned to separate regions of the full-length 16S rRNA gene from the closest
458 related verrucomicrobial genome (*C. flavus*). Because these two rRNA gene
459 fragments have the same coverage as the genome and align to separate regions
460 of one 16S rRNA gene, it is likely that the sequences encode a single rRNA
461 operon.

462
463 **Acknowledgements:** Funding to support this work was provided by grants from
464 the National Science Foundation to N.F. (DEB0953331, EAR1331828), and a
465 Visiting Postdoctoral Fellowship award to P.C. from the Cooperative Institute for
466 Research in Environmental Sciences.

467
468
469 **References**
470

- 471 1. Ramirez KS et al. (2014) Biogeographic patterns in below-ground diversity in
472 New York City's Central Park are similar to those observed globally. *Proc R Soc
473 B* 281(1795):20141988.
- 474 2. Janssen PH. (2006) Identifying the dominant soil bacterial taxa in libraries of
475 16S rRNA and 16S rRNA genes. *Appl Environ Microbiol* 72(3):1719–28.
- 476 3. Bergmann GT et al. (2011) The under-recognized dominance of
477 Verrucomicrobia in soil bacterial communities. *Soil Biol Biochem* 43(7):1450-5.
- 478 4. Wang, Q, Garrity GM, Tiedje JM, and Cole JR. (2007) Naïve Bayesian
479 Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial
480 Taxonomy. *Appl Environ Microbiol* 73(16):5261-7.
- 481 5. Markowitz VM et al. (2014) IMG 4 version of the Integrated Microbial
482 Genomes comparative analysis system. *Nucleic Acids Res* 42:D560–7.
- 483 6. VanNlsberghe, D et al. (2015) Non-symbiotic Bradyrhizobium ecotypes
484 dominate North American forest soils. *ISME J* 9(11):2435-41.
- 485 7. Fierer, N., M.S. Strickland, D. Liptzin, M.A. Bradford, C.C. Cleveland. (2009)
486 Global patterns in belowground communities. *Ecol Lett* 12(11):1238-49.

494 8. Dunfield PF et al. (2007) Methane oxidation by an extremely acidophilic
495 bacterium of the phylum Verrucomicrobia. *Nature* 450(7171):879–82.

496

497 9. Everard A et al. (2013) Cross-talk between *Akkermansia muciniphila* and
498 intestinal epithelium controls diet-induced obesity. *Proc Natl Acad Sci USA*
499 110(22):9066-71

500

501 10. Fierer N et al. (2013) Reconstructing the microbial diversity and function of
502 pre-agricultural tallgrass prairie soils in the United States. *Science* 342(6158):
503 621-4.

504

505 11. Sangwan P, Chen X, Hugenholtz P and Janssen PH. (2004) *Chthoniobacter*
506 *flavus* gen. nov., sp. nov., the First Pure-Culture Representative of Subdivision
507 Two, *Spartobacteria* classis nov., of the Phylum *Verrucomicrobia*. *Appl Environ*
508 *Microbiol* 70(10):5875–81.

509

510 12. Kant R, van Passel MWJ, Palva A, et al. (2011) Genome Sequence of
511 *Chthoniobacter flavus* Ellin428, an Aerobic Heterotrophic Soil Bacterium. *J*
512 *Bacteriol* 193(11):2902-3.

513

514 13. Herlemann DPR et al. (2013) Metagenomic De Novo Assembly of an Aquatic
515 Representative of the Verrucomicrobial Class Spartobacteria. *mBio* 4(3):e00569-
516 12

517

518 14. Vandekerckhove TT, Willems A, Gillis M, Coomans A. (2000) Occurrence of
519 novel verrucomicrobial species, endosymbiotic and associated with
520 parthenogenesis in *Xiphinema americanum*-group species (Nematoda,
521 Longidoridae). *Int J Syst Evol Microbiol* 50:2197–205.

522

523 15. Felske A, Akkermans ADL. (1998) Prominent occurrence of ribosomes from
524 an uncultured bacterium of the Verrucomicrobiales cluster in grassland
525 soils. *Lett Appl Microbiol* 26(3):219–23.

526

527 16. Guo J, Cole JR, Zhang Q, Brown CT, Tiedje JM. (2016) Microbial community
528 analysis with ribosomal gene fragments from shotgun metagenomes. *Appl*
529 *Environ Microbiol* 82(1):157–66.

530

531 17. Leff, JW et al. (2015) Consistent responses of soil microbial communities to
532 elevated nutrient inputs in grasslands across the globe. *Proc Natl Acad Sci USA*
533 112(35):10967-72.

534

535 18. Fierer N et al. (2012) Cross-biome metagenomic analyses of soil microbial
536 communities and their functional attributes. *Proc Natl Acad Sci USA*
537 109(52):21390–5.

538

539 19. Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF. (2011) EMIRGE:
540 reconstruction of full-length ribosomal genes from microbial community short
541 read sequencing data. *Genome Biol* 12:R44.

542

543 20. Howe AC et al. (2014) Tackling soil diversity with the assembly of large,
544 complex metagenomes. *Proc Natl Acad Sci USA* 111(13):4904–9.

545

546 21. Finn RD et al. (2016) The Pfam protein families database: towards a more
547 sustainable future. *Nucleic Acids Res* 44(D1):D279-85.

548

549 22. Ciccarelli FD et al. (2006) Toward Automatic Reconstruction of a Highly
550 Resolved Tree of Life. *Science* 311(5765):1283-7.

551

552 23. Varghese NJ et al. (2015) Microbial species delineation using whole genome
553 sequences. *Nucleic Acids Res* 10.1093.

554

555 24. Raes J, Korbel JO, Lercher MJ, von Mering C, Bork P. (2007). Prediction of
556 effective genome size in metagenomic samples. *Genome Biol* 8(1):R10.

557

558 25. Giovannoni SJ, Thrash JC, Temperton B. (2014) Implications of streamlining
559 theory for microbial ecology. *ISME J* 8:1553-65.

560

561 26. Nayfach S, Pollard KS. (2015) Average genome size estimation improves
562 comparative metagenomics and sheds light on the functional ecology of the
563 human microbiome. *Genome Biol* 16(1):51.

564

565 27. Konstantinidis KT, Tiedje JM. (2003) Trends between gene content and
566 genome size in prokaryotic species with larger genomes. *Proc Natl Acad Sci*
567 *USA* 101(9):3160-5.

568

569 28. Barberán A et al. (2014) Why are some microbes more ubiquitous than
570 others? Predicting the habitat breadth of soil bacteria. *Ecol Lett* 17(7):794–802.

571

572 29. Button DK, Robertson, BR. (2001) Determination of DNA content of aquatic
573 bacteria by flow cytometry. *Appl Environ Microbiol* 67(4):1636-45.

574

575 30. Khadem AF et al. (2012) Genomic and Physiological Analysis of Carbon
576 Storage in the Verrucomicrobial Methanotroph “Ca. Methylacidiphilum
577 Fumariolicum” SolV. *Front Microbiol* 3:345.

578

579 31. Akashi H, and Gojobori T (2002) Metabolic efficiency and amino acid
580 composition in the proteomes of *Escherichia coli* and *Bacillus subtilis*. *Proc Natl*
581 *Acad Sci USA* 99(6):3695-3700.

582

583 32. Elharar Y et al. (2014) Survival of mycobacteria depends on proteasome-
584 mediated amino acid recycling under nutrient limitation. *EMBO J* 33(16):1802-
585 14.

586

587 33. Lochhead, AG. (1958) Soil bacteria and growth promoting substances.
588 *Bacteriol Rev* 22(3):145-53.

589

590 34. Carini P et al. (2014) Discovery of a SAR11 growth requirement for thiamin's
591 pyrimidine precursor and its distribution in the Sargasso Sea. *ISME J* 8:1727-38.

592

593 35. Kantor RS et al. (2013) Small Genomes and Sparse Metabolisms of
594 Sediment-Associated Bacteria from Four Candidate Phyla. *mBio* 4(5):e00708-
595 13.

596

597 36. Vos M, Wolf AB, Jennings SJ, Kowalchuk GA. (2013) Micro-scale
598 determinants of bacterial diversity in soil. *FEMS Microbiol Rev* 37(6):936-54.

599

600 37. Fierer N, Lennon JT. (2011) The generation and maintenance of diversity in
601 microbial communities. *Am J Bot* 98(3):439-48.

602

603 38. Giovannoni SJ, Vergin VL. (2012) Seasonality in Ocean Microbial
604 Communities. *Science* 335(6069):671-6.

605

606 39. Friedel JK, Scheller E. (2002) Composition of hydrolysable amino acids in
607 soil organic matter and soil microbial biomass. *Soil Bio Biochem* 34(3):315-25.

608

609 40. Sauheitl L, Glaser B, Dippold M, Lieber K, Weigelt A (2010) Amino acid
610 fingerprint of a grassland soil reflect changes in plant species richness. *Plant
611 Soil* 334(1):353-63.

612

613 41. Farrell M et al. (2013) Oligopeptides Represent a Preferred Source of
614 Organic N Uptake: A Global Phenomenon? *Ecosystems* 16(1):133-45.

615

616 42. Mee MT, Collins JJ, Church GM, Wang HH (2014) Syntrophic exchange in
617 synthetic microbial communities. *Proc Natl Acad Sci USA* 111(20):E2149-
618 E2156.

619

620 43. Morris JJ, Lenski RE, Zinser ER (2012) The Black Queen Hypothesis:
621 Evolution of dependencies through adaptive gene loss. *mBio* 3(2):e00036-12.

622

623 44. Portillo, M.C., J.W. Leff, C.L. Lauber, N. Fierer. (2013) Cell size distributions
624 of soil bacterial and archaeal taxa. *Appl Environ Microbiol* 79(24):7610-7617.

625

626 45. Carini P, et al. (2013) Nutrient requirements for growth of the extreme
627 oligotroph 'Candidatus Pelagibacter ubique' HTCC1062 on a defined medium.
628 *ISME J* 7(3):592-602.

629

630 46. Crowther, TW et al. (2014) Predicting the responsiveness of soil biodiversity
631 to deforestation: a cross-biome study. *Glob Chang Biol* 20(9):2983-94.

632

633 47. Caporaso JG et al. (2010) QIIME allows analysis of high-throughput
634 community sequencing data. *Nat Methods* 7(5):335-336.

635

636 48. Edgar RC (2013) UPARSE: highly accurate phylotype sequences from
637 microbial amplicon reads. *Nat Methods* 10(10):996-8

638

639 49. Edgar, RC (2010) Search and clustering orders of magnitude faster than
640 BLAST. *Bioinformatics* 26(19):2460-1.

641

642 50. DeSantis, T.Z et al. (2006) Greengenes, a Chimera-Checked 16S rRNA Gene
643 Database and Workbench Compatible with ARB. *Appl Environ Microbiol*
644 72(7):5069-72.

645

646 51. Bengtsson-Palme J et al. (2015) Metaxa2: improved identification and
647 taxonomic classification of small and large subunit rRNA in metagenomic data.
648 *Mol Ecol Resour* 15(6):1403-14.

649

650 52. Miller CS et al. (2013) Short-Read Assembly of Full-Length 16S Amplicons
651 Reveals Bacterial Diversity in Subsurface Sediments. *PLoS ONE* 8(2):e56018.

652

653 53. Caporaso JG et al. (2010) PyNAST: a flexible tool for aligning sequences to a
654 template alignment. *Bioinformatics* 26(2):266-7

655

656 54. Peng Y, Leung HCM, Yiu SM, Chin FYL. (2012) IDBA-UD: a de novo
657 assembler for single-cell and metagenomic sequencing data with highly uneven
658 depth. *Bioinformatics* 28(11):1420-8.

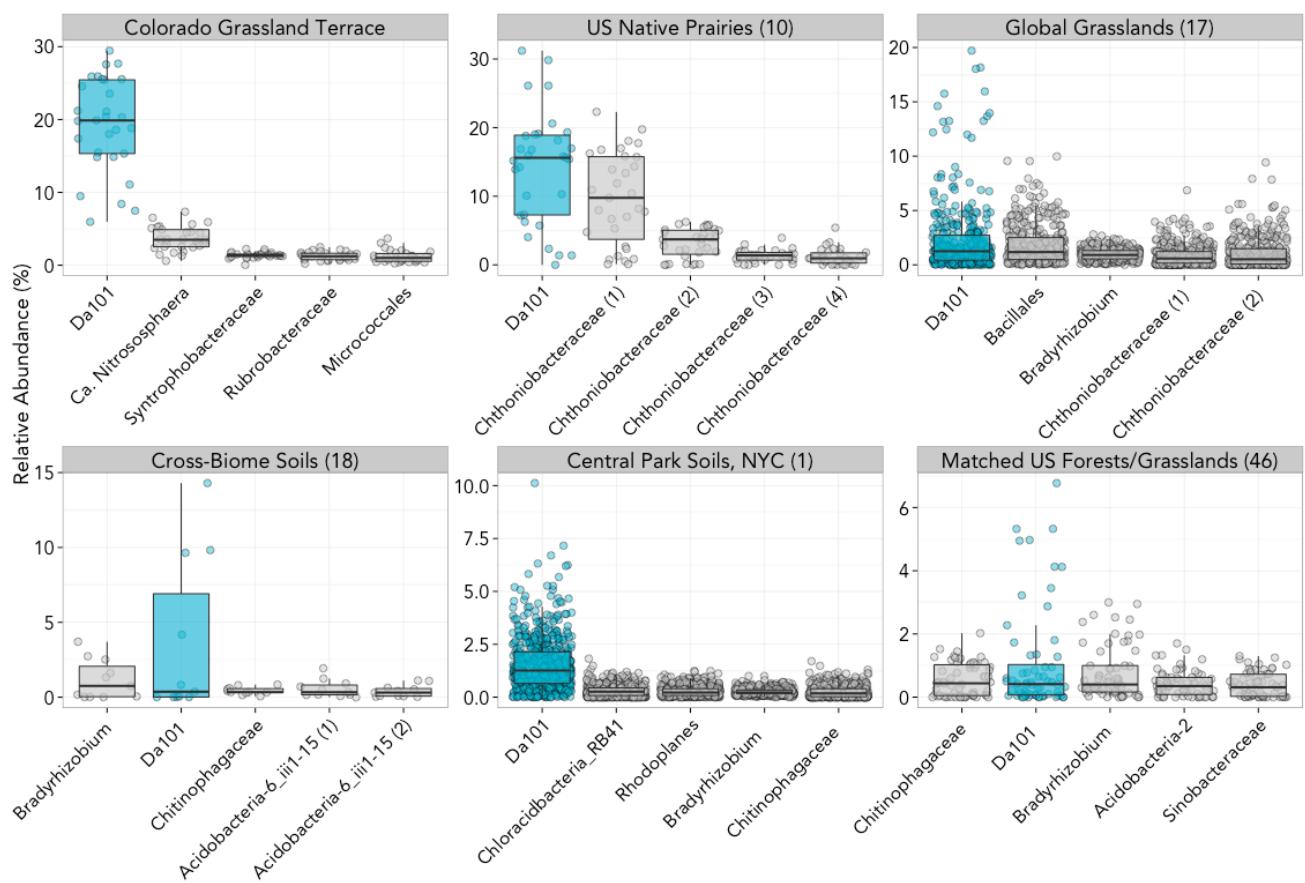
659

660 55. Hyatt D, et al. (2010) Prodigal: prokaryotic gene recognition and translation
661 initiation site identification. *BMC Bioinformatics* 11:119.

662

663 56. Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH (2007) UniRef:
664 comprehensive and non-redundant UniProt reference clusters. *Bioinformatics*
665 23(10):1282-8.

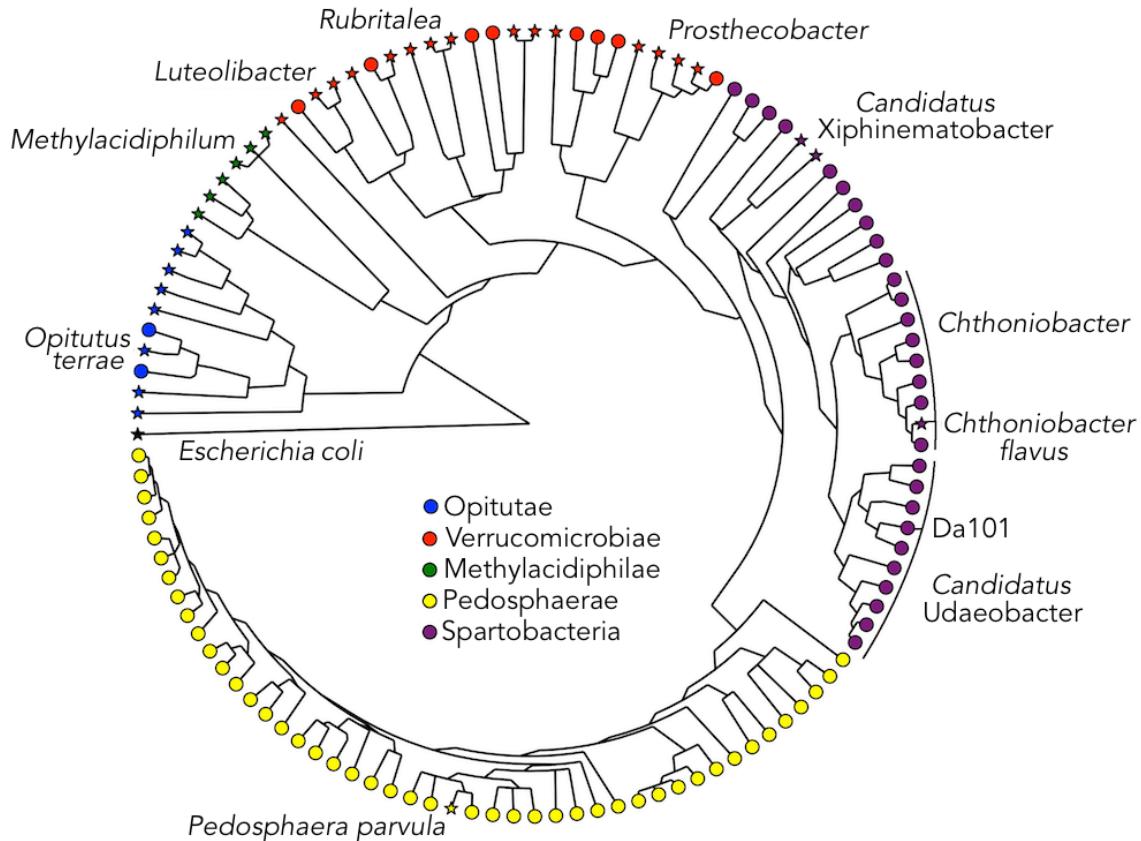
666


667 57. Dick GJ, et al. (2009) Community-wide analysis of microbial genome
668 sequence signatures. *Genome Biol* 10(8):R85.

669

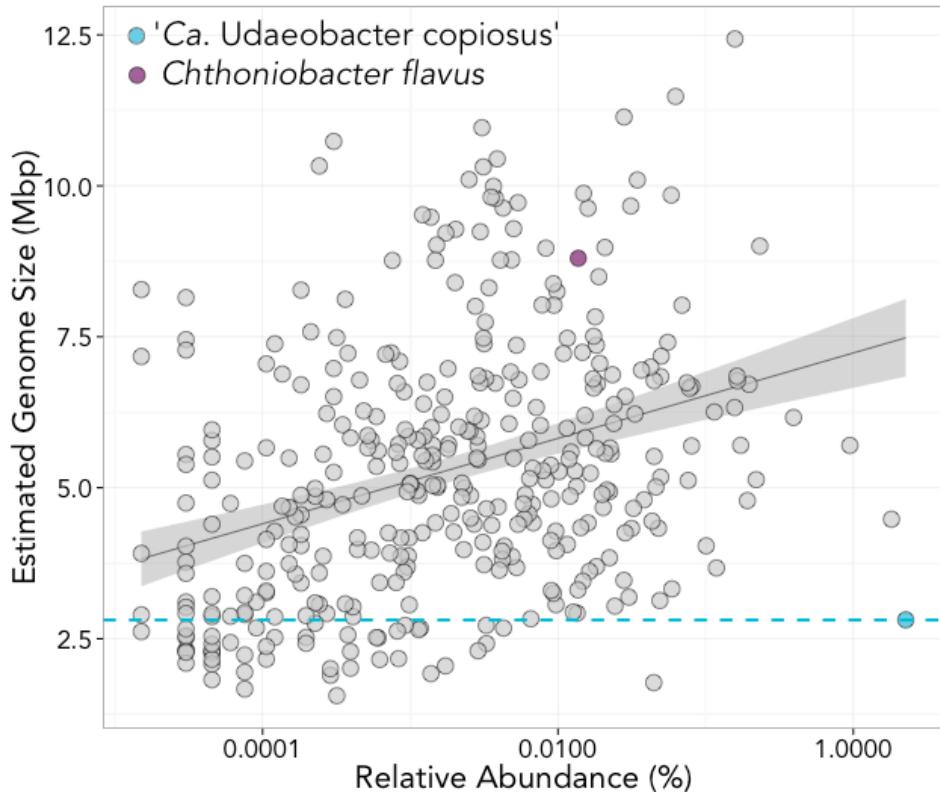
670

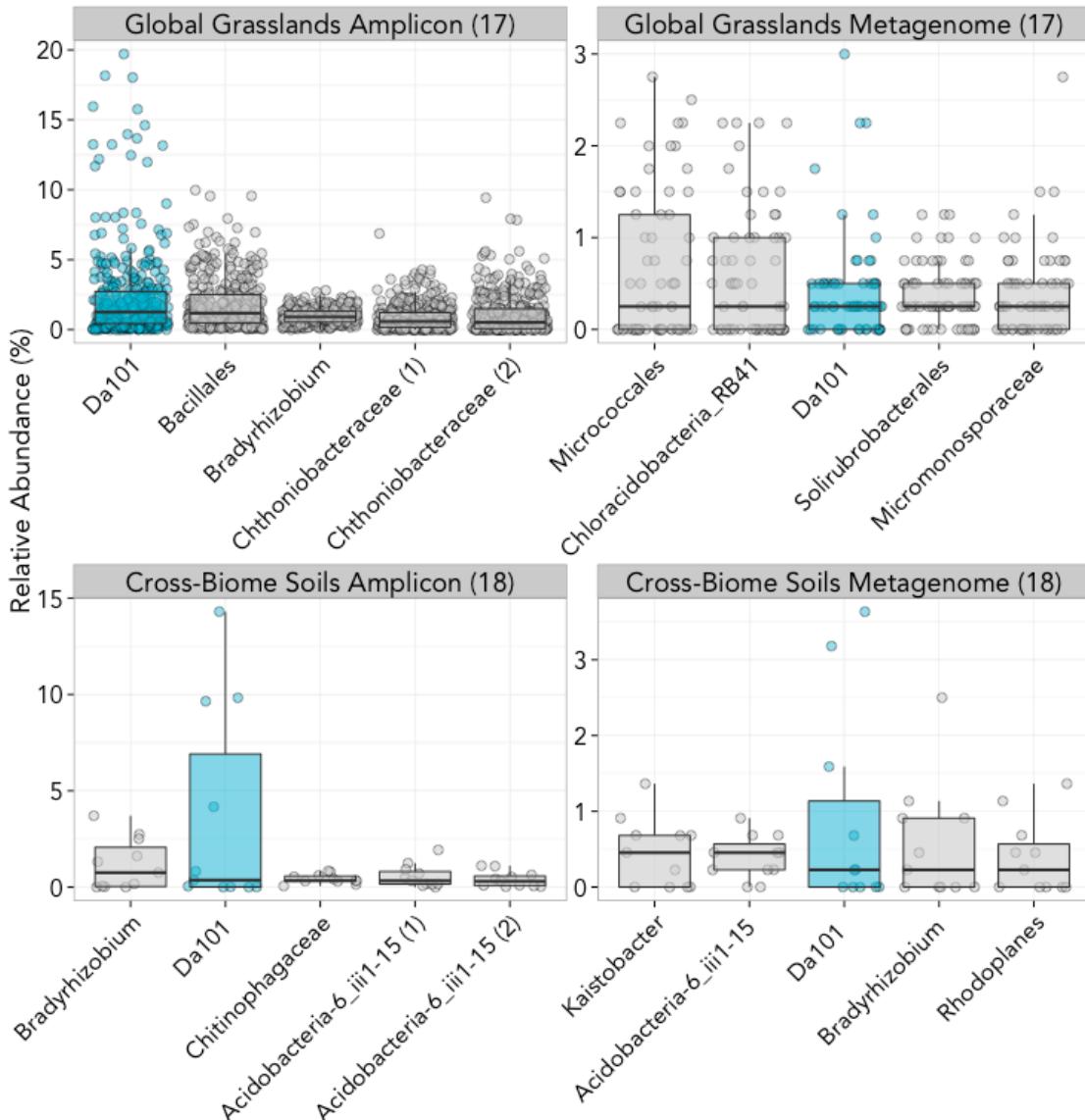
671 **Figures**


672

673

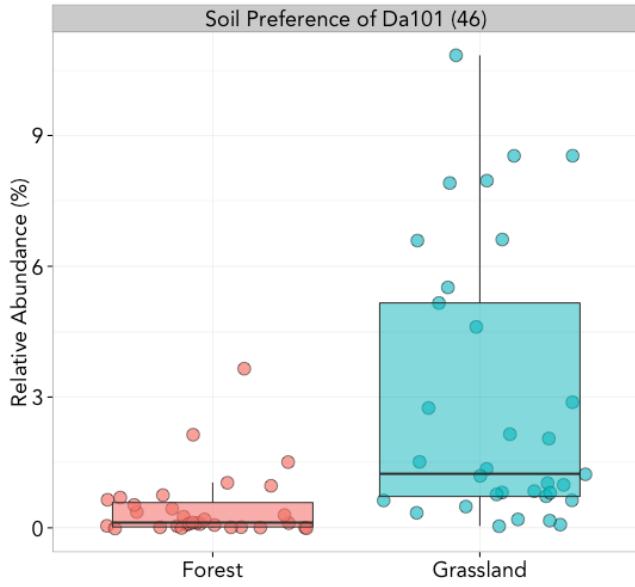
674 Fig. 1. Da101 is, on average, one of the most abundant bacterial phylotypes
675 found across >1000 soils collected from a wide range of soil and ecosystem
676 types across the globe. The Da101 phylotype is indicated in blue while other
677 abundant taxa are indicated in grey. Taxa are listed on the x-axis in order of
678 their rank abundance (taxa on the left are the most abundant). Data comes from
679 (10) Fierer et al. 2013, (17) Leff et al. 2015, (18) Fierer et al. 2012, (1) Ramirez et
680 al. 2014, and (46) Crowther et al. 2014. Further details on each of these studies
681 are provided in Table S1.


682

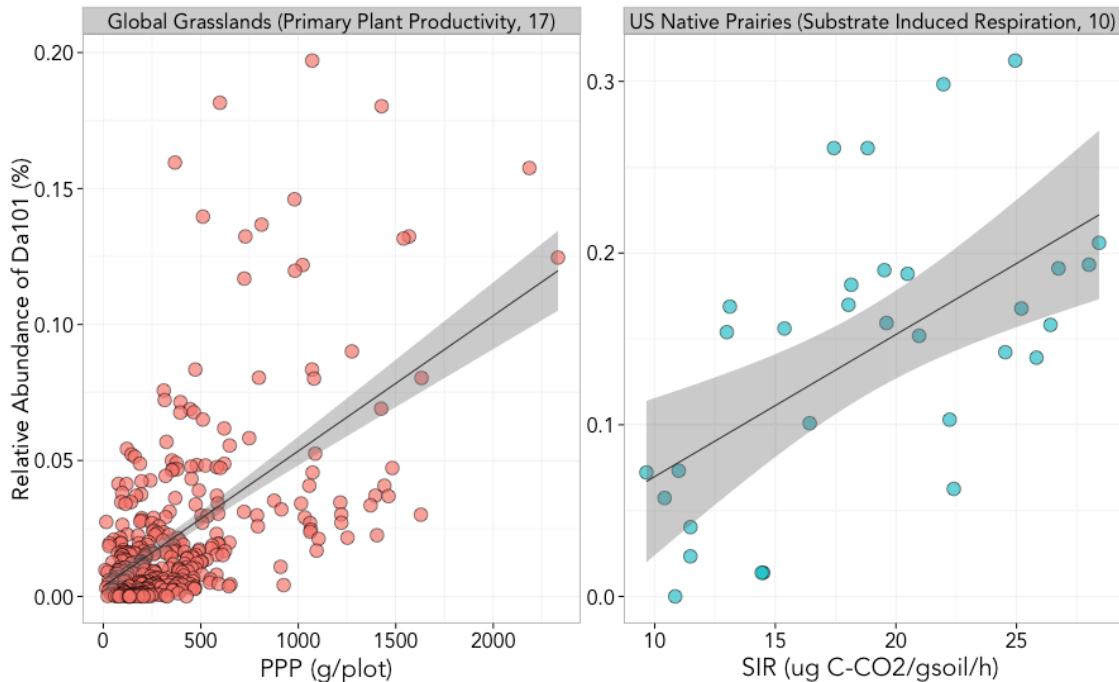

683

684

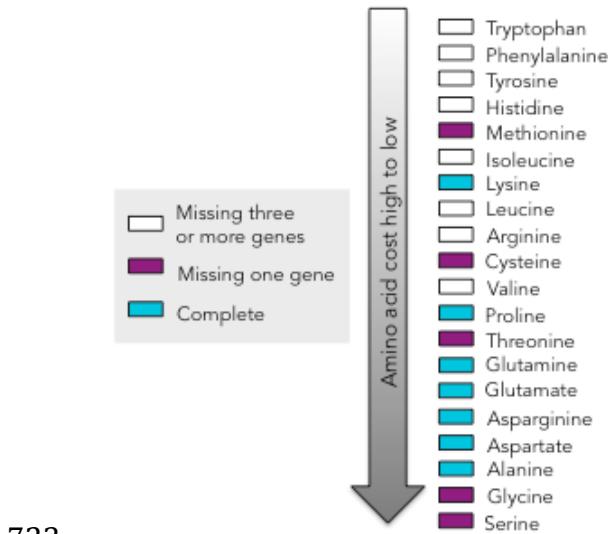
685 Fig. 2. Phylogenetic analyses of soil Verrucomicrobia. Stars denote 16S rRNA
686 gene sequences of named isolates while circles represent environmental 16S
687 rRNA gene sequences assembled from 6 soils using EMIRGE (Table S2). The
688 uncultivated verrucomicrobial phylotype Da101 falls within a cluster distinct from
689 cultivated *Spartobacteria*. The UPGMA phylogenetic tree was constructed using
690 1200bp verrucomicrobial 16S rRNA gene sequences and is rooted with a 16S
691 rRNA gene sequence from *Escherichia coli* K-12. Notable verrucomicrobial
692 isolates and genera are labeled. Colors indicate verrucomicrobial classes.



693
694 Fig. 3. 'Ca. Udaeobacter copiosus' has a reduced genome size compared to
695 other abundant soil bacteria. Points represent the estimated genome size and
696 relative abundances of 378 bacterial genomes obtained by matching 16S rRNA
697 gene sequences from (17) to 16S rRNA gene sequences extracted from
698 genomes in IMG at 99% sequence identity. Only genomes classified as
699 'permanent draft' or 'finished' status were used. Bacteria with larger genomes
700 tend to be more abundant ($p<0.0001$, $\rho=0.368$, Spearman correlation) with *Ca.*
701 *U. copiosus* (indicated in blue) being a notable exception to this pattern, as it
702 has a high relative abundance (2.26% of 16S rRNA sequences) but has a
703 relatively small genome.
704



705


706 Fig. S1: Da101 rank is similar in amplicon and metagenomic data. The top 5
707 phylotypes from two matched amplicon and metagenomic datasets (Leff et al.
708 2015 (17), Fierer et al. 2012 (18)) are shown in order of decreasing median rank.
709 Each point represents one sample within the corresponding dataset. Da101's
710 position is highlighted with blue while all other phylotypes are grey.
711

712
713 Fig. S2. Phylotype Da101 is more abundant in grasslands than forests;
714 $p < 0.0001$, two tailed t-test. Data is from Crowther et al. 2014 (46).
715
716

717
718 Fig. S3. The abundance of phylotype Da101 correlates with measures of
719 microbial and plant biomass in two separate studies: SIR $p < 0.001$ $\rho = 0.57$, PPP
720 $p < 0.0001$ $\rho = 0.47$, Spearman correlations. Data is from Fierer et al. 2013 (10) and
721 Leff et al. 2015 (17).
722

723
724

725 Fig. S4. 'Ca. Udaeobacter copiosus' lacks pathways to synthesize several
726 expensive amino acids, yet has partial or complete pathways for relatively
727 inexpensive amino acids. Cost of each of amino acid was estimated in *E. coli* by
728 number of high-energy phosphate bonds hydrolyzed (31).
729
730
731

Table S1: Descriptions of Datasets Used in this Study

	Fierer et al. 2012	Fierer et al. 2013	Crowther et al. 2014	Ramirez et al. 2014	Leff et al. 2015	Table Mountain, CO
REGION DESCRIPTION	Global cross-biome	U.S. native prairies	U.S. matched forest/grasslands	Central park, NYC	Global grasslands	CO Terrace
# SAMPLES	11	31	64	595	367	29
# SITES	11	31	11	1	25	1
METAGENOMIC DATA	11	-	-	-	87	-
ITS DATA	✗	✗	✓	✓	✓	✗
18S DATA	✗	✗	✗	✓	✗	✗
pH RANGE	4.1-9.5	5.8-7.9	4.0-8.1	3.9-8.4	4.4-8.2	-
MAT RANGE (°C)	-19-25	3.7-18.9	-3.2-22.8	13	0.3-18.4	11
MAP RANGE (mm)	100-4000	503-1148	287-3460	1016	262-1898	525
RAREFACTION DEPTH	15000	942	4000	5000	18000	11000

Table S2: Samples used to construct EMIRGE phylogeny

SAMPLE	DATASET	LOCATION	LATITUDE	LONGITUDE	DESCRIPTION
NTP21	Fierer et al. 2013	Hayden, IA	43.26	-92.23	Native prairie
NTP28	Fierer et al. 2013	Glynn Prairie, MN	44.15	-95.41	Native prairie
NN1182	Leff et al. 2015	Val Mustair, Switzerland	46.63	10.37	Alpine grassland
NN772	Leff et al. 2015	Msunduzi Municipality, South Africa	-29.67	30.40	Mesic grassland
TM25	New data set	Table Mountain, CO	40.01	-105.5	Grassland terrace
GG14	New data set	Gordon Gulch, CO	40.12	-105.2	Meadow

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

Table S3 'Candidatus Udaeobacter copiosus' genome has 34/36 single copy housekeeping genes

IMG GENE ID	COG/PFAM PRODUCT NAME	SEQUENCE LENGTH (BP)	COG/PFAM
2653240560	arginyl-tRNA synthetase	1737	COG0018
2653239845	DNA-directed RNA polymerase subunit alpha	1044	COG0202
2653239819	DNA-directed RNA polymerase subunit beta	2910	COG0085
2653240331	histidyl-tRNA synthetase	1239	COG0124
2653239579	Ribosome-binding ATPase GTP1/OBG family	1125	COG0012
2653241119	isoleucyl-tRNA synthetase	2748	COG0060
2653239815	large subunit ribosomal protein L1	702	COG0081
2653239810	large subunit ribosomal protein L11	429	COG0080
2653239936	large subunit ribosomal protein L13	438	COG0102
2653241207	large subunit ribosomal protein L14	366	COG0093
2653241203	large subunit ribosomal protein L16	426	COG0197
2653241213	large subunit ribosomal protein L18	375	COG0256
2653241195	large subunit ribosomal protein L3	726	COG0087
2653241210	large subunit ribosomal protein L5	573	COG0094
2653241212	large subunit ribosomal protein L6	540	COG0097
2653239619	leucyl-tRNA synthetase	2412	COG0495
2653242017	N6-L-threonylcarbamoyladenine synthase	1086	COG0533
2653241883	phenylalanyl-tRNA synthetase alpha chain	282	pfam01409
2653241216	preprotein translocase subunit SecY	1509	COG0201
2653241215	ribosomal protein L15	636	COG0200
2653241201	ribosomal protein L22	480	COG0091
2653241222	small subunit ribosomal protein S11	630	COG0100
2653241191	small subunit ribosomal protein S12	435	COG0048
2653241221	small subunit ribosomal protein S13	396	COG0099
2653241789	small subunit ribosomal protein S15	177	pfam00312
2653241206	small subunit ribosomal protein S17	297	COG0186
2653239969	small subunit ribosomal protein S2	702	COG0052
2653241202	small subunit ribosomal protein S3	690	COG0092
2653241223	small subunit ribosomal protein S4	612	COG0522
2653241214	small subunit ribosomal protein S5	564	COG0098
2653241192	small subunit ribosomal protein S7	474	COG0049
2653241211	small subunit ribosomal protein S8	399	COG0096
2653239935	small subunit ribosomal protein S9	396	COG0103
2653241990	valyl-tRNA synthetase	816	pfam00133