

1 **Host Gut Motility and Bacterial Competition Drive Instability in a Model**
2 **Intestinal Microbiota**

4 **Short title:** Dynamics and Stability of Gut Microbiota

5
6 Travis J. Wiles^{1,6}, Matthew Jemielita^{2,4,6}, Ryan P. Baker², Brandon H. Schlomann²,
7 Savannah L. Logan², Julia Ganz^{3,5}, Ellie Melancon³, Judith S. Eisen³, Karen Guillemain¹,
8 Raghubeer Parthasarathy^{2,7}

9
10 ¹Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA

11 ²Department of Physics, University of Oregon, Eugene, OR 97403, USA

12 ³Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA

13 ⁴present address: Department of Molecular Biology, Princeton University, Princeton, NJ
14 08544

15 ⁵present address: Department of Integrative Biology, Michigan State University, East
16 Lansing, MI 48824

17 ⁶Co-first author

18 ⁷Corresponding author: raghu@uoregon.edu

20 **CONTENTS**

21

22 3..... Abstract

23 4..... Introduction

24 8..... Results

25 26..... Discussion

26 31..... Methods

27 37..... Acknowledgements

28 38..... References

29 48..... Supporting Information

30 **Abstract**

31 The gut microbiota is a complex consortium of microorganisms with the ability to
32 influence important aspects of host health and development. Harnessing this ‘microbial
33 organ’ for biomedical applications requires clarifying the degree to which host and
34 bacterial factors act alone or in combination to govern the stability of specific lineages.
35 To address this we combined bacteriological manipulation and light sheet fluorescence
36 microscopy to monitor the dynamics of a defined two-species microbiota within the
37 vertebrate gut. We observed that the interplay between each population and the gut
38 environment produced distinct spatiotemporal patterns. Consequently, one species
39 dominates while the other experiences dramatic collapses that are well fit by a
40 stochastic mathematical model. Modeling revealed that bacterial competition could only
41 partially explain the observed phenomena, suggesting that a host factor is also
42 important in shaping the community. We hypothesized the host determinant to be gut
43 motility, and tested this mechanism by measuring colonization in hosts with enteric
44 nervous system dysfunction due to mutation in the Hirschsprung disease locus *ret*. In
45 mutant hosts we found reduced gut motility and, confirming our hypothesis, robust
46 coexistence of both bacterial species. This study provides evidence that host-mediated
47 spatial structuring and stochastic perturbation of communities along with bacterial
48 competition drives population dynamics within the gut. In addition, this work highlights
49 the capacity of the enteric nervous system to affect stability of gut microbiota
50 constituents, demonstrating that the ‘gut-brain axis’ is bidirectional. Ultimately, these
51 findings will help inform disease mitigation strategies focused on engineering the
52 intestinal ecosystem.

53 **INTRODUCTION**

54 Trillions of microbial cells representing hundreds of species make up the human
55 intestinal microbiota. This multispecies symbiont supports activities as diverse as host
56 development, nutrient acquisition, immune system education, neural function, and
57 defense against pathogens [1-5]. Changes in microbiota diversity and functional
58 composition have been linked with a variety of human disorders, including obesity,
59 colon cancer, opportunistic infection, and inflammatory bowel disease [6, 7]. A major
60 goal of host-microbe systems biology is to clarify the ecological factors that determine
61 microbiota integrity by meshing experimental techniques and quantitative modeling.
62 Insights derived from such efforts will inspire the design of novel therapeutic strategies
63 for microbiota-associated diseases.

64 An unresolved question is whether the host and microbiota function
65 independently or together to govern the dynamics and stability of individual bacterial
66 lineages. Addressing this requires identifying the interactions that arise within the
67 spatially complex and heterogeneous environment of the vertebrate gut. However,
68 progress toward this goal has been hindered due to the technical limitations associated
69 with directly observing intestinal communities. Typical interrogation of vertebrate
70 intestinal microbiota involves phylogenetic profiling of fecal material using high-
71 throughput sequencing of 16S ribosomal RNA (rRNA) genes. This technique is blind to
72 the spatial structure of microbial communities, which is known in general to strongly
73 influence interactions [8-10] and has recently been predicted to be important for
74 microbiota stability [11]. Sequencing-based studies also have low sensitivity to temporal
75 structure owing to both experimental and analytic constraints. Experimentally,

76 metagenomic time-series data remain rare and cannot reach the sampling frequencies
77 necessary to capture interactions occurring at the timescales of microbial division or
78 intestinal flux. Analytically, sequencing data yield only relative, rather than absolute,
79 taxonomic abundances, which severely confounds the inference of interaction networks
80 [12, 13]. Furthermore, such methods to date have employed deterministic Lotka-
81 Volterra models [12, 14, 15] that, even with noise terms representing measurement
82 error, neglect the possibility of fundamentally stochastic or discontinuous interactions
83 among constituents.

84 Because our knowledge of the factors that shape interactions within host-
85 associated ecosystems is incomplete, contemporary theoretical models have been
86 forced to rely on assumptions that may not realistically mirror microbe-microbe and
87 host-microbe relationships. For example, biochemical and physical inputs from the
88 animal host that likely act on microbial constituents are often ignored [16]. It is important
89 to unravel the extent to which microbiota integrity is simply an intrinsic property of the
90 microbes, which could be recapitulated *in vitro* with co-culture experiments or *in silico*
91 with bacterial metabolic network models, or an emergent property of the host-microbe
92 system. Developing accurate accounts of the ecological interactions that manifest within
93 the gut will require model systems that enable manipulation of microbial colonization
94 and measurement methods that can characterize microbial populations *in vivo* with high
95 spatial and temporal resolution [17].

96 Toward this end, we employ here larval zebrafish as a model vertebrate host
97 coupled with light sheet fluorescence microscopy (LSFM) [18] as a minimally invasive
98 interrogation method to examine population dynamics within a defined gut microbiota.

99 Zebrafish larvae are highly amenable to gnotobiotic techniques and can be reared
100 germ-free (GF) in large numbers [19]. At four days post-fertilization (dpf) larvae possess
101 an open and functional digestive tract that is permissive to microbial colonization, the
102 timing of which is controlled by adding bacteria to the water column. Importantly, larval
103 zebrafish share many physiological traits with humans, including aspects of innate
104 immunity, neurological development, and intestinal function [20]. Therefore, interactions
105 between zebrafish and their microbial symbionts are expected to reflect analogous
106 interactions that occur in other vertebrates. LSFM, combined with the optical
107 transparency of larval zebrafish, enables three-dimensional visualization of the entire
108 intestine with single-bacterium resolution, rapid image acquisition to avoid blurring due
109 to intestinal motility, and extended live imaging with low phototoxicity [21, 22]. This
110 experimental setup provides an unprecedented opportunity to investigate ecological
111 interactions within the vertebrate intestine at a range of spatial and temporal scales.

112 With this model system we found that an apparent competitive interaction
113 between two species native to the zebrafish gut, *Aeromonas veronii* and *Vibrio*
114 *cholerae*, is characterized by sudden and catastrophic collapses of the *Aeromonas*
115 population, which appear to be driven by mechanical forces related to host intestinal
116 motility. The differential behavior of these two species can be explained by their distinct
117 biogeography and community architecture within the intestine. Further mapping of
118 *Aeromonas-Vibrio* dynamics motivated a quantitative stochastic model with parameters
119 that could be independently derived from traditional abundance measurements and
120 image-based time-series analysis. Ultimately, this model allowed us to predict the
121 consequences of altering the host environment through genetic disruption of the enteric

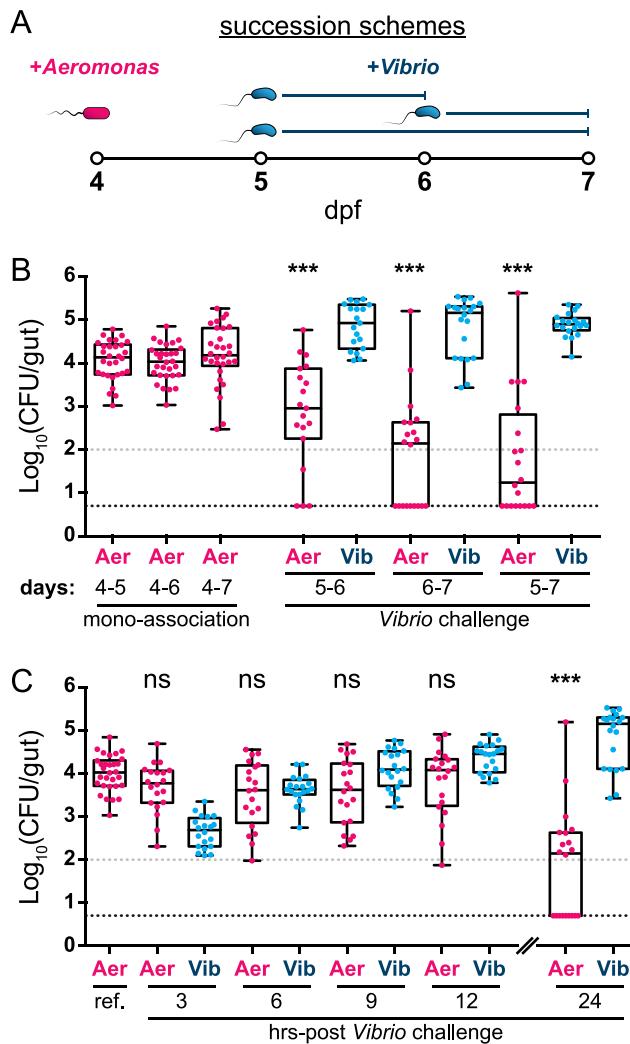
122 nervous system (ENS) via a mutation in *ret*, a gene locus associated with human
123 Hirschsprung disease (OMIM 164761), which stabilized the *Aeromonas* population and
124 neutralized competition with *Vibrio*. This work reveals a synergy between bacterial
125 competition and host-mediated spatial structuring of microbiota in determining
126 population dynamics and stability—a feature that is likely mirrored in more complex
127 host-microbe systems such as the human gut.

128 **RESULTS**

129 ***Aeromonas* and *Vibrio* exhibit an apparent competitive interaction in the zebrafish**
130 ***gut.***

131 The intestinal microbiota of larval zebrafish is dominated by bacterial lineages
132 belonging to the Gammaproteobacteria [23, 24]. In a prior investigation we found that
133 two representative isolates native to the zebrafish intestinal tract, *Aeromonas veronii*
134 strain ZOR0001, hereafter referred to as *Aeromonas*, and a *Vibrio* strain, ZWU0020,
135 similar in 16S rRNA gene sequence to *Vibrio cholerae* and hereafter referred to as
136 *Vibrio*, exhibit an apparent negative interaction in GF larval zebrafish, with populations
137 of *Aeromonas* that were several orders of magnitude lower in di-associations with *Vibrio*
138 than in mono-associations [25]. Interestingly, only a modest suppression was observed
139 in *in vitro* competition experiments [25]. To begin to untangle the importance of host and
140 bacterial factors in facilitating the *in vivo* interaction between *Aeromonas* and *Vibrio*, we
141 used a succession assay in which GF larval zebrafish were first colonized by
142 *Aeromonas* to high abundance, and then challenged by invading populations of *Vibrio*
143 (Fig 1A).

144



145

146 **Fig 1. *Aeromonas* and *Vibrio* exhibit an apparent competitive interaction within**
 147 **the larval zebrafish intestine.** (A) Graphical overview of succession schemes used to
 148 characterize *Aeromonas*-*Vibrio* interactions. *Aeromonas* is allowed to colonize GF
 149 larvae at 4 dpf followed by addition of *Vibrio* to the water column at 5 or 6 dpf for 24 or
 150 48 hours prior to enumeration of abundances by dissection and serial plating
 151 techniques. (B, left) *Aeromonas* abundances after different mono-association durations
 152 and (B, right) *Aeromonas* and *Vibrio* abundances after different *Vibrio* challenge
 153 periods. Statistical significance of *Aeromonas* abundances after *Vibrio* challenge

154 compared to respective mono-association reference populations (i.e. '5-6' vs. '4-6'; '6-7'
155 vs. '4-7'; '5-7' vs. '4-7') was determined by an unpaired t-test. (C) Time course analysis
156 of *Aeromonas* and *Vibrio* abundances determined by dissection and plating at three-
157 hour intervals over a 12-hour period starting at 6 dpf. Additionally plotted are an
158 *Aeromonas* mono-association reference population and 24 hour *Aeromonas* and *Vibrio*
159 populations previously plotted in 1B ('4-6' and '6-7', respectively). Statistical significance
160 of *Aeromonas* abundances to the mono-association reference population (ref.) was
161 determined by an unpaired t-test. CFU=colony-forming units; ***=p<0.0001; ns=not
162 significant; N>19/condition. Gray and black dashed lines in panels B and C denote limits
163 of quantification and detection, respectively.

164

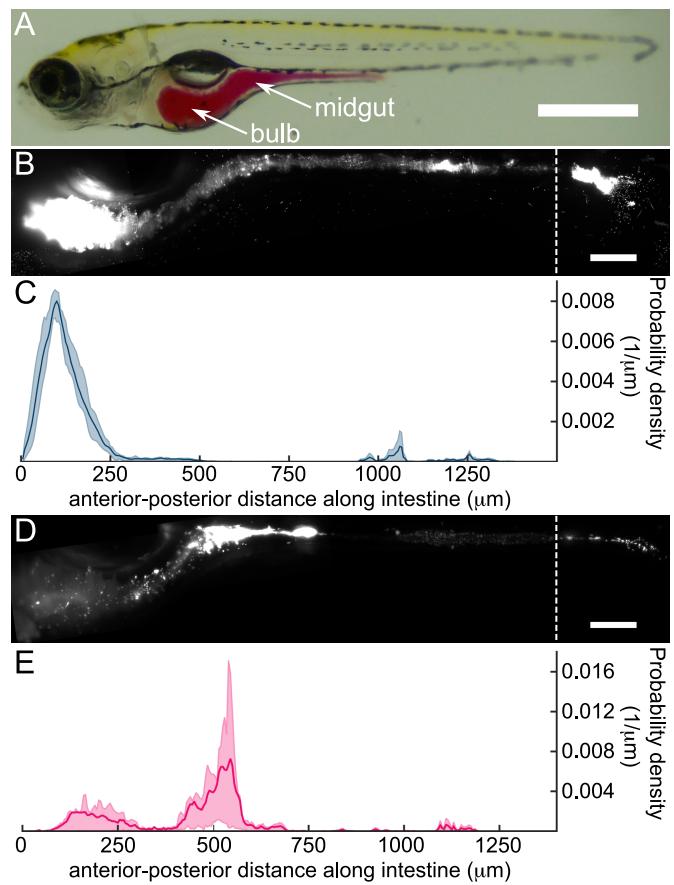
165 We first enumerated total bacterial abundance by gut dissection and standard
166 plating techniques. In mono-associations beginning at 4 dpf and extending 24, 48, or 72
167 hours *Aeromonas* populations consistently reach 10^4 colony-forming units (CFU) per
168 host (Fig 1B). In contrast, challenge of established *Aeromonas* populations with *Vibrio*
169 over various 24 or 48 hour temporal windows leads to dramatically lower *Aeromonas*
170 abundance as well as increased host-to-host variation and frequent extinction events
171 (Fig 1B). Under these conditions *Vibrio* exhibits only modest deviations in abundance
172 compared to mono-association (S1A and S1B Fig). Of note, *Aeromonas* populations are
173 not destabilized upon self-challenge by newly introduced *Aeromonas*, and *Vibrio* does
174 not induce collapses in established *Vibrio* populations (S1C and S1D Fig). These results
175 indicate that subsequent waves of colonizing bacteria alone do not account for the
176 observed competitive interaction and that it is inter-specific in nature. We also verified

177 that competition between *Aeromonas* and *Vibrio* is dependent on the host environment,
178 as there was not an appreciable difference between their abundances during *in vitro*
179 mono- and co-culture experiments (S1E Fig). To determine if the abundance of *Vibrio*
180 correlates with a reduction of *Aeromonas* populations *in vivo*, we performed a time
181 course experiment in which zebrafish were sacrificed and assayed every 3 hours for 12
182 hours after inoculation with *Vibrio*. We found that *Vibrio* rapidly infiltrates *Aeromonas*-
183 colonized intestines and steadily increases in number over the 12-hour assay period
184 (Fig 1C). Surprisingly, we did not detect a concomitant decline in *Aeromonas*, implying
185 that *Aeromonas* populations do not merely respond proportionally to the abundance of
186 *Vibrio* (Fig 1C).

187

188 ***Aeromonas* population dynamics are altered during *Vibrio* challenge.**

189 To further explore the interactions driving *Aeromonas*-*Vibrio* competition, we
190 turned to LSF. Imaging fluorescently marked variants of each species during mono-
191 association revealed that they have noticeably different intestinal biogeographies and
192 behavior (Fig 2). Populations of *Vibrio* largely comprise planktonic, highly motile cells
193 that appear capable of sampling all available regions within the intestine (S1, S2, and
194 S3 Movie). Quantifying the bacterial density along the anterior-posterior axis (Methods),
195 we find that *Vibrio* is most abundant in the anterior bulb (Fig 2B and 2C), with an
196 overabundance within several micrometers of the epithelial wall that may be the result
197 of hydrodynamic interactions (S2 Fig) [26]. In contrast, *Aeromonas* is most abundant in
198 the midgut and largely takes the form of dense, non-motile clusters with a smaller
199 subpopulation of motile individuals (Fig 2D and 2E; S4 and S5 Movie).



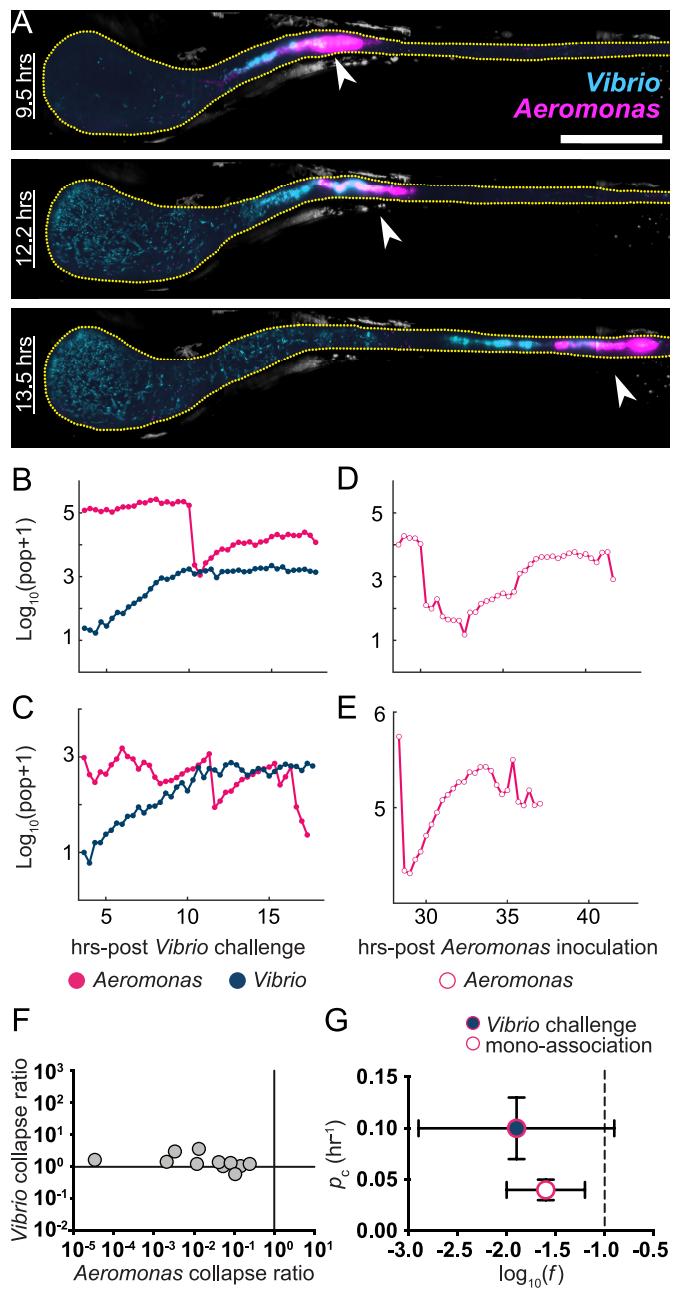
200

201 **Fig 2. *Vibrio* and *Aeromonas* have distinct community architectures and**
 202 **biogeographies within the larval zebrafish intestine.** (A) A larval zebrafish at 5 dpf;
 203 the intestine is highlighted by phenol red dye via microgavage [61]. Scale bar: 500 μ m.
 204 (B) A maximum intensity projection (MIP) of *Vibrio* in the larval intestine. Scale bar: 100
 205 μ m. (C) The probability density of *Vibrio* along the intestinal axis. From (B) and (C), we
 206 see that *Vibrio* is predominantly localized in the anterior bulb. (D) MIP of *Aeromonas* in
 207 the larval intestine. Scale bar: 100 μ m. (E) The probability density of *Aeromonas* along
 208 the intestinal axis. (D) and (E) show that *Aeromonas* is predominantly localized in the
 209 midgut, with a smaller population in the anterior bulb.

210

211 To identify the temporal dynamics of the two-member community, we performed
212 *in vivo* live imaging experiments using LSFM starting approximately 2 hours following
213 the challenge of established *Aeromonas* populations with *Vibrio*. Three-dimensional
214 images spanning the intestine were obtained for each species for durations of roughly
215 12-15 hours at 20-minute intervals, which is shorter than each species' approximate
216 one-hour doubling time (Methods). Fig 3A shows maximum intensity projections of
217 *Aeromonas* and *Vibrio* in a representative larval zebrafish intestine at three time points
218 spanning a four-hour interval (S6 Movie). The abundance of each species over several
219 hours is plotted in Fig 3B and 3C for two fish, representative of twelve fish that we
220 examined. Similar population abundance plots for all zebrafish are provided in S3 Fig.
221 We found that *Vibrio* populations smoothly expand and exhibit a growth rate of 0.8 ± 0.3
222 hr.^{-1} (mean \pm std. dev.), similar to that derived from plating data ($0.60 \pm 0.22 \text{ hr.}^{-1}$, Fig
223 1C). Strikingly, growth of *Aeromonas* populations is sporadically interrupted by dramatic
224 collapse events, dropping in abundance by multiple orders of magnitude within an hour
225 (Fig 3A, 3B, and 3C).

226



227

228 **Fig 3. Aeromonas populations experience collapse events during *Vibrio* challenge**
 229 **and mono-association.** (A) MIPs of *Aeromonas* (magenta) and *Vibrio* (cyan) in a larval
 230 zebrafish intestine. Scale bar: 200 μm . The fish was initially colonized at 4 dpf with
 231 *Aeromonas*, challenged 24 hours later by inoculation with *Vibrio*, and then imaged every
 232 20 minutes for 14 hours. The times indicated denote hours post-challenge. In all

233 images, the region shown spans about 80% of the intestine, with the anterior on the left.
234 Image contrast in both color channels is enhanced for clarity. Yellow dotted line roughly
235 indicates the luminal boundary. As time progresses, the anterior growth of *Vibrio* as
236 well as abrupt changes in the *Aeromonas* distribution (arrows) are evident. (B,C) Total
237 bacterial abundance, derived from image data, for *Aeromonas* and *Vibrio* in two
238 representative fish inoculated and challenged as in panel A, as a function of time
239 following the *Vibrio* inoculation. Sharp drops of over an order of magnitude in the
240 *Aeromonas* population, but not the *Vibrio* population, are evident. (D,E) Total
241 abundance for *Aeromonas* in mono-associations as a function of time post-inoculation,
242 in two representative fish. Collapses are also observed, though in general the
243 populations recover to approximately pre-collapse levels. (F) The ratio, f , of the post-
244 collapse to the pre-collapse population for *Aeromonas* challenged by *Vibrio*, which span
245 many orders of magnitude (horizontal axis). At the same time points, the *Vibrio*
246 populations are essentially unchanged, with ratios of post- to pre-collapse populations
247 close to one (vertical axis). (G) Characteristics of *Aeromonas* population collapses.
248 Circles and bars indicate the mean and standard deviation, respectively, of f and p_c , the
249 rate of collapse occurrence, for both mono-associations and *Aeromonas* challenged by
250 *Vibrio*. The dashed line at $f = 0.1$ indicates the threshold for identification of collapses.
251
252 To determine if *Aeromonas* collapses occur in the absence of *Vibrio*, we
253 examined live imaging data of *Aeromonas* mono-associations over a similar time frame.
254 We detected clear instances of *Aeromonas* population collapses under these conditions
255 (Fig 3D and 3E). However, in contrast to *Vibrio*-associated collapses, *Aeromonas* was

256 found to consistently recover from collapses during mono-association. Additionally,
257 *Aeromonas* collapse events associated with mono-association were smaller and more
258 uniform. Defining collapses as events in which the population decreases by at least a
259 factor of ten within one hour, and assigning their magnitude f as the ratio of the
260 population after collapse to that before, we find that for *Aeromonas* challenged by
261 *Vibrio*, $\log_{10}(f) = -1.9 \pm 1.0$ (mean \pm std. dev.) (Fig 3F and 3G). The ratio of the *Vibrio*
262 population before and after *Aeromonas* collapse events within the same fish is
263 approximately 1 (Fig 3F), corroborating observations from imaging and plating data that
264 *Vibrio* is resistant to the perturbations that affect *Aeromonas*. We found that during
265 *Aeromonas* mono-associations the magnitude of collapse events was about half of that
266 observed in the presence of *Vibrio*, $\log_{10}(f) = -1.6 \pm 0.4$ (Fig 3G). We also detected a
267 greater rate of *Aeromonas* collapses during *Vibrio* challenge. Estimating the collapse
268 probability per unit time, p_c , as the total number of collapses in all fish divided by the
269 total observation time, we find $p_c = 0.10 \pm 0.03 \text{ hr.}^{-1}$ during *Vibrio* challenge and $p_c =$
270 $0.04 \pm 0.01 \text{ hr.}^{-1}$ during *Aeromonas* mono-associations (Fig 3G), where the uncertainties
271 are estimated by assuming an underlying Poisson process.

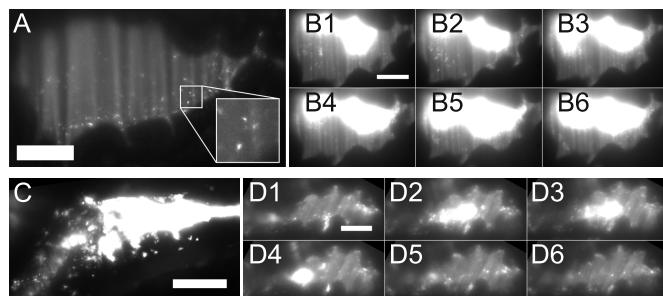
272

273 ***Aeromonas* and *Vibrio* are differentially resistant to intestinal motility.**

274 We next inspected the spatial structure and dynamics of each species to uncover
275 clues regarding possible factors driving *Aeromonas* collapses. A conspicuous feature of
276 the larval zebrafish intestine, like most animal intestines, is that it undergoes periodic
277 contractions that propagate along its length. We found that *Vibrio* populations, being
278 made up of motile, planktonic individuals, are almost completely unaffected by the

279 mechanics of intestinal motility (Fig 4A). Like a liquid filling its container, populations of
280 *Vibrio* quickly adapt to the contracting and expanding space with surprisingly little
281 change in their distribution (Fig 4B; S3 Movie). In contrast, the rigid and largely non-
282 motile clusters of *Aeromonas*, localized to the narrow midgut, are strongly affected by
283 intestinal contractions (Fig 4C and 4D; S7 Movie). These observations support the
284 hypothesis that forces exerted on this two-member community by intestinal motility give
285 rise to rare and stochastic expulsion of *Aeromonas* while leaving *Vibrio* unperturbed.
286 Corroborating this notion, we indeed observe posterior transport of *Aeromonas* in
287 collapse events during live imaging experiments (Fig 3A; S6 Movie).

288



289

290 **Fig 4. *Aeromonas* and *Vibrio* exhibit different dynamics within the zebrafish**
291 **intestine.** (A) An optical section of *Vibrio* mono-associated with a larval zebrafish,
292 showing the anterior bulb region. The population consists of discrete, highly motile
293 individuals. (B) A montage of images from a time-series of *Vibrio* in the bulb, during
294 which the overall distribution of the population remains stable. Time between frames: 1
295 second. (C) An optical section of the midgut of *Aeromonas* mono-associated with a
296 larval zebrafish. Dense clusters are evident. (D) A montage of images from a time-
297 series of *Aeromonas* in the midgut, during which the overall distribution of the
298 population changes considerably. Time between frames: 1 second. Scale bars: 50 μ m.

299

300 *Aeromonas* collapses occur with or without the presence of *Vibrio*, but these
301 collapses have different significance in the two cases for the overall *Aeromonas*
302 abundance. One can imagine several possible explanations for this. We first asked
303 whether the growth rate of *Aeromonas* post-collapse is lower if *Vibrio* is present. The
304 data show that this is not the case. Mono-associated *Aeromonas* have a post-collapse
305 growth rate of $0.74 \pm 0.1 \text{ hr.}^{-1}$ (mean \pm std. dev., $N=5$ collapses), whereas *Vibrio*-
306 challenged *Aeromonas* have $0.64 \pm 0.2 \text{ hr.}^{-1}$ ($N=4$ collapses). We next asked whether
307 the presence of *Vibrio* leads to changes in the mechanics of intestinal motility. To test
308 this, we imaged intestinal motility in larval zebrafish using differential interference
309 contrast microscopy (DIC) [27] and calculated the dominant period and amplitude of
310 intestinal contractions. Comparing GF fish with *Vibrio* or *Aeromonas* mono-associated
311 fish, or fish in which *Aeromonas* is challenged after 24 hours by *Vibrio*, there is no
312 notable difference in period or amplitude (S4 Fig). The consequences of intestinal
313 motility on *Aeromonas* collapse properties are clearly different in the mono-association
314 and challenge cases, however, as indicated by changes in collapse magnitudes and
315 rates (f and p_c). We also note that during challenge experiments, the gross spatial
316 distribution of *Vibrio* is similar to its distribution during mono-association, while there is
317 considerable broadening in the spatial distribution of *Aeromonas* when challenged (S5
318 Fig). Finally, a conceptually minimal model of interaction is that with *Vibrio* present, the
319 resources available to *Aeromonas* post-collapse are less than with *Vibrio* absent,
320 thereby placing a limit on its potential for recovery. We assess this possibility

321 quantitatively below by estimating carrying capacities, and we also examine the
322 synergistic consequences of changes to the carrying capacity and collapse properties.

323

324 **Synergy between stochastic collapse events and competition with *Vibrio***
325 **underlies *Aeromonas* population dynamics.**

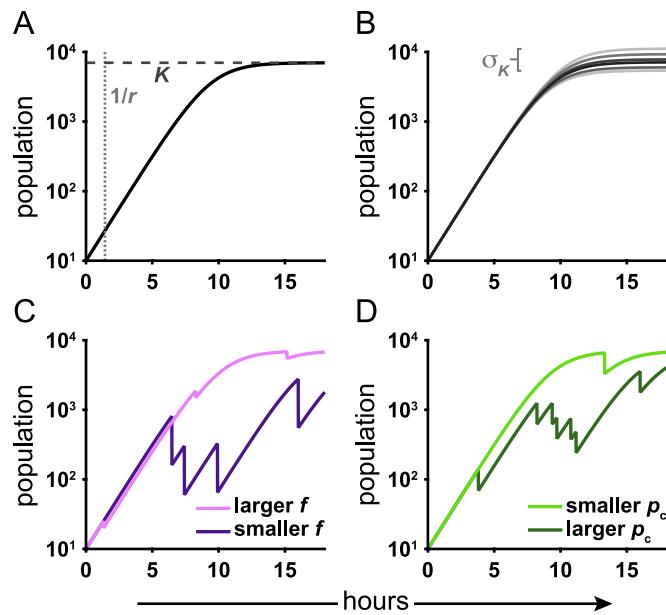
326 Thus far our data suggest that *Aeromonas* is susceptible to stochastic
327 disturbances mediated by host intestinal motility, and that its recovery from these
328 disturbances is altered in the presence of *Vibrio*. If this is the case, we should be able to
329 build a quantitative model that reflects these data, explains the high variance observed
330 in plating assays (Fig 1), and offers insights into the differential outcomes between
331 mono-association and challenge experiments. The model we construct is illustrated
332 schematically in Fig 5. Consider a bacterial species exhibiting logistic growth, with
333 growth rate r and carrying capacity K (Fig 5A and 5B); in other words, the population N
334 grows with time t according to:

$$\frac{dN(t)}{dt} = rN(t) \left(1 - \frac{N(t)}{K}\right).$$

335 Superimposed on this are rare collapses, during which the population drops to f times
336 its pre-collapse value, where f is between 0 and 1, and after which it resumes logistic
337 growth (Fig 5C). The collapses are stochastic and modeled as Poisson processes; i.e.
338 they occur at random with some probability per unit time p_c (Fig 5D). This model arises
339 in many ecological contexts, and some of its mathematical properties have been
340 explored in various studies [28]. Of course, this model incorporates stochastic
341 population collapses by construction, and so does not predict them from first principles.
342 However, the parameter values that emerge from fitting such a model to the data can,

343 as shown below, yield quantitative insights into the mechanisms underlying the
344 observed dynamics that are not evident from mere visual inspection of the raw data.

345



346

347 **Fig 5. Schematic of a model of growth punctuated by collapses.** (A) The model is
348 based on simple logistic growth, which is characterized by two parameters, the growth
349 rate, r , and carrying capacity, K . (B) We also include a parameter characterizing
350 variability in the carrying capacity. Stochastic collapses are governed by two
351 parameters: (C) the fraction of the population remaining after a collapse, f , and (D) the
352 probability per unit time of a collapse, p_c .

353

354 Simulating ensembles of populations that exhibit the above dynamics, we
355 examine the mean and, importantly, the standard deviation of the population at discrete
356 terminal time points, as these are statistics that allow direct comparison to results from
357 plating assays. As shown in detail in the Supporting Text (S1 Text), the apparent
358 dependence of the model on the parameters, r , K , p_c , and f , collapses to two effective

359 parameters. The growth rate, r , is both independently known and irrelevant for the
360 conditions considered, and the dynamics depend on the combination $z = -p_c \log_{10}(f)$
361 rather than on p_c and f independently. Values of the two remaining relevant parameters,
362 K and z , which characterize the carrying capacity and the collapse dynamics,
363 respectively, determine the model predictions for the mean and variance of populations.
364 A grid search through the (K, z) space for the values that minimize the distance
365 between the predicted and observed *Aeromonas* population statistics gives the best-fit
366 model parameters. Additional details and discussion are provided in the Supporting Text
367 (S1 Text). It is important to note that because our imaging data revealed that
368 *Aeromonas* is often in a state of experiencing or recovering from collapse events, the
369 observed population is likely never close to K , and thus we cannot simply use the mean
370 of the bacterial abundance to estimate K . Rather, we must use a model to infer the
371 carrying capacity that would yield the observed populations.

372 Using *Aeromonas* abundance data obtained by gut dissection and plating 24
373 hours post *Vibrio* challenge (Fig 1B, '6-7'), we find best-fit parameters $\log_{10}(K) = 3.2 \pm$
374 0.5 and $z = 0.13 \pm 0.05 \text{ hr.}^{-1}$, the latter providing a constraint on p_c and f together. We
375 can *independently* estimate p_c and f from imaging-derived data (Fig 3). As noted
376 previously, for *Aeromonas* challenged by *Vibrio*, we find $p_c = 0.10 \pm 0.03 \text{ hr.}^{-1}$ and
377 $\log_{10}(f) = -1.9 \pm 0.3$ (mean \pm std. error), yielding $z = 0.19 \pm 0.06 \text{ hr.}^{-1}$, which is consistent
378 with the plating-derived value. The agreement between the separately determined
379 measures of z is remarkable, as it indicates that the statistical properties inferred from
380 an ensemble of populations at a discrete time point are consistent with the properties
381 inferred from the temporal dynamics within individual hosts. As expected, $\log_{10}(K)$ is

382 greater than the observed mean *Aeromonas* abundance at 24 hours, since the model-
383 derived K represents an upper bound for the population in the absence of any
384 stochastic collapses or *Vibrio* competition. As another test of consistency, we note that
385 simulating our stochastic model for 48 hours post-challenge using the best-fit
386 parameters determined from plating experiments 24 hours post-challenge predicts a
387 mean and standard deviation of $\log_{10}(\text{population}+1)$ of 1.3 ± 0.3 and 1.5 ± 0.2 ,
388 respectively, in agreement with the observed plating values of 1.7 ± 0.3 and 1.6 ± 0.3
389 (Fig 1B). All of these assessments support the conclusion that the observed population
390 dynamics are governed by a mechanism of stochastic collapse.

391 We can also apply this model to *Aeromonas* mono-association data. Here, the
392 variance of the plating-derived populations is small (Fig 1B), likely due to comparatively
393 rare and/or weak collapses as discussed earlier. For reasons described in detail in the
394 Supporting Text, this hinders robust determination of z , though K remains well fit. We
395 find that $z = 0.01 \pm 0.01 \text{ hr.}^{-1}$ and $\log_{10}(K) = 4.2 \pm 0.1$. From live imaging data, $p_c = 0.04$
396 $\pm 0.01 \text{ hr.}^{-1}$ and $\log_{10}(f) = -1.6 \pm 0.2$, from which $z = 0.06 \pm 0.02 \text{ hr.}^{-1}$ (S1 Text). Our
397 identification of thresholds is, by construction, only sensitive to collapses of a factor of
398 10 or more in magnitude (i.e. $\log_{10}(f) \leq -1$), so our estimate of f , and therefore z , is
399 biased toward larger values.

400 The above analysis yields insights into the nature of the competition between
401 *Aeromonas* and *Vibrio* that are not obvious from simple visual inspection of the data.
402 The carrying capacity (K) experienced by *Aeromonas*, as estimated by our model, is
403 only one order of magnitude lower in the presence of *Vibrio* ($\log_{10}(K) = 3.2 \pm 0.5$) than
404 when *Vibrio* is absent ($\log_{10}(K) = 4.2 \pm 0.1$). However, the observed abundance of

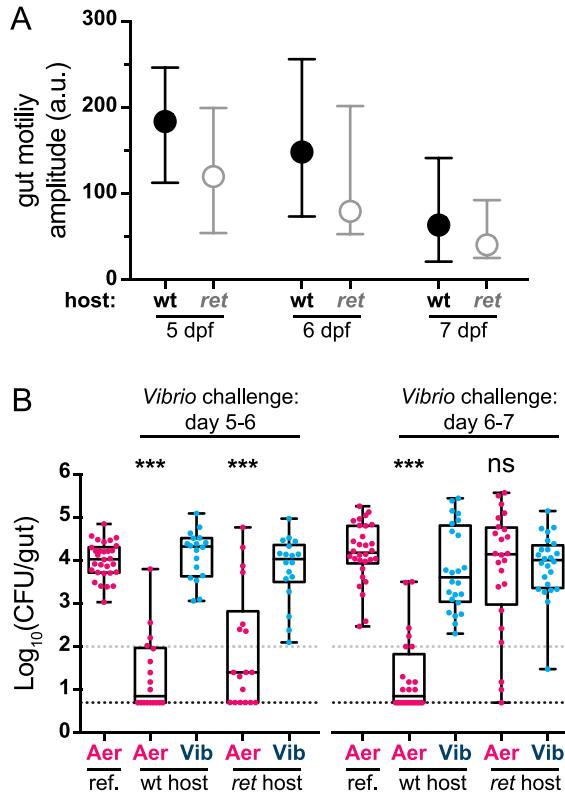
405 *Aeromonas* is suppressed by more than two orders of magnitude:
406 $\text{mean}(\log_{10}(\text{population}+1)) = 1.7 \pm 0.3$ and 4.1 ± 0.1 when challenged by *Vibrio* and
407 mono-associated, respectively (Fig 1B). These results suggest that the combined effect
408 of stochastic collapses, which are likely driven by the host environment, and a reduced
409 carrying capacity, as a result of competition with *Vibrio*, has a far greater influence on
410 population dynamics than either mechanism would provide alone.

411

412 **Mutant hosts lacking enteric nervous system function stabilize *Aeromonas* in the**
413 **face of *Vibrio* challenge.**

414 Together, our experimental data and quantitative predictions indicate that a
415 synergy between competition with *Vibrio* and host-mediated stochastic disturbances
416 underlies the destabilization of *Aeromonas* populations within the larval zebrafish
417 intestine. Our model predicts that if the host factor intestinal motility were reduced,
418 *Aeromonas* populations would be more stable despite the presence of *Vibrio*. To test
419 this hypothesis, we carried out succession assays in mutant zebrafish hosts essentially
420 lacking a functional enteric nervous system (ENS) because of disruption of the gene
421 encoding the *Ret* tyrosine kinase, which is critical for ENS development [29]. Using DIC
422 microscopy to assess intestinal motility, we found that *ret* mutant larvae (*ret*^{-/-}) still
423 exhibit rhythmic contractions, but with different characteristics than wild-type (*ret*^{+/+}) and
424 heterozygous siblings (*ret*^{+/+}) (S8 and S9 Movie). Because we observed that *ret*^{+/+} and
425 *ret*^{-/-} animals are phenotypically similar with regard to gut motility and that the
426 *ret1*^{hu2846} mutant allele is recessive we further designate *ret*^{+/+} and *ret*^{-/-} as ‘wild type’.
427 Computational analysis of time-series DIC images allows quantification of the

428 displacement of intestinal tissue during contractile waves (Methods). The average peak
429 amplitude of longitudinal contractions is greater in wild-type than in *ret* mutant larvae,
430 and in both genotypes declines with age (Fig 6A). At 6 dpf a considerable fraction of *ret*
431 mutant larvae show low amplitudes, similar to the quiescent state observed in both
432 genotypes at 7 dpf (Fig 6A). Though the amplitude of intestinal contractions might not
433 be directly related to the magnitude or rate of *Aeromonas* collapse events, it is
434 reasonable to expect some monotonic relationship between the two, as they both reflect
435 intestinal activity. Therefore, we would expect to observe stabilization of *Vibrio*-
436 challenged *Aeromonas* populations in *ret* mutant hosts only during challenge periods
437 starting at 6 dpf when the difference in intestinal motility between the genotypes is
438 greatest. Indeed, *Vibrio* challenge of established *Aeromonas* populations between 5 and
439 6 dpf yielded the same decrease in *Aeromonas* abundance in both *ret* mutant hosts and
440 wild types (Fig 6B). In contrast, *Aeromonas* populations were significantly stabilized
441 during *Vibrio* challenge from 6 to 7 dpf in *ret* mutant hosts and in fact were statistically
442 indistinguishable from a reference *Aeromonas* mono-association (Fig 6B). These results
443 provide strong evidence that ENS-driven intestinal motility contributes to the shaping of
444 this model two-member community by facilitating their apparent competitive interaction.
445



446

447 **Fig 6. Intestinal motility and bacterial competition are altered in *ret* mutant**

448 **zebrafish hosts.** (A) Amplitudes of periodic contraction along the intestine for wild-type
 449 and *ret* mutant zebrafish at various ages. Circles indicate medians and bars indicate
 450 first and third quartiles. (B) GF wild-type and *ret* heterozygous hosts (wt) were raised
 451 together with *ret* homozygous mutant hosts (*ret*) and colonized at 4 dpf with
 452 *Aeromonas*. At 5 (left) or 6 (right) dpf *Vibrio* was added to the water column for 24 hours
 453 prior to whole gut dissection and serial plating to enumerate bacterial abundances.
 454 Additionally plotted are respective *Aeromonas* mono-association reference (ref.)
 455 populations from Fig 1B (left, '4-6'; right, '4-7'). The difference between *Aeromonas*
 456 abundance during challenge and mono-association was determined by an unpaired t-
 457 test. CFU=colony-forming units; ***=p<0.0001; ns=not significant; N>18/condition. Gray
 458 and black dashed lines denote limits of quantification and detection, respectively.

459 **DISCUSSION**

460 A better understanding of the factors that influence the dynamics and stability of host-
461 associated microbial communities would allow insights into their assembly [30-32],
462 fluctuations during periods of normal health [12, 14, 15, 33, 34], and responses to
463 perturbation [35, 36], as well as aid the development of diagnostic and treatment
464 strategies for human diseases [17]. Building a working knowledge of these processes
465 has been impeded by the technical difficulties associated with examining bacterial
466 populations within their native host environments. In humans, the approach generally
467 taken has been to infer inter-species interactions from coarsely sampled sequencing-
468 based metagenomic time-series experiments performed on fecal samples [12-14, 34,
469 37]. However, such procedures largely disregard spatial information and generally
470 assume particular functional forms for interactions (e.g. deterministic Lotka-Volterra
471 dynamics [12, 14, 15]). Moreover, measurement noise and missing information about
472 absolute abundances in metagenomic data place severe limits on the quantitative
473 determination of interaction strengths, even if the models are accurate descriptors of the
474 microbial systems [12]. Therefore, basic questions regarding inter-species competition
475 in the intestine, particularly the extent to which it is determined by the microbes
476 themselves, properties of the host environment, or a combination of the two, remain
477 largely unanswered.

478 For these reasons we set out to investigate bacterial population dynamics within
479 the vertebrate intestine using a combination of absolute abundance measurements,
480 time-series imaging, and quantitative modeling. Though our system is minimal,
481 consisting of two bacterial species and a larval zebrafish host, it has revealed factors we

482 expect to be of broad relevance to other animal-associated microbiota. Most notably, in
483 this model system the emergence of the apparent competition between *Aeromonas* and
484 *Vibrio* is driven in large part by the physical activity of the host, namely the motility of the
485 intestine. In mutant zebrafish hosts that have reduced intestinal motility due to mutation
486 of the gene *ret*, which impairs ENS development and function, competition between
487 these bacterial species is offset (Fig 6). Motility and mass transport are, of course, key
488 attributes of animal intestinal tracts. The finding that the mechanical nature of the host
489 environment has a major role in shaping bacterial communities suggests that models of
490 microbiota based on *in vitro* competition assays or modeling of metabolic networks [16,
491 38] will, by themselves, be insufficient for predicting and accurately describing
492 community structure and dynamics. This is in line with the recent observation that
493 dietary alteration of intestinal transit in a murine model can lead to compositional shifts
494 in the gut microbiota [39]. Moreover, it provides a mechanism by which host genotype
495 can influence community composition. Corroborating this notion, human patients with
496 Hirschsprung disease, which is a gastrointestinal motility disorder commonly associated
497 with mutation of *ret*, have been found to harbor dysbiotic microbial communities [40, 41].

498 The differential susceptibility of our two model bacterial species to intestinal
499 motility can be explained by their distinct community architectures. Highly motile *Vibrio*
500 are relatively unaffected by intestinal contractions, which is in contrast to the large, non-
501 motile aggregates of *Aeromonas* (Fig 4). Earlier observations of a related *A. veronii*
502 strain showed higher growth rates for aggregated bacteria compared to planktonic [21],
503 suggesting a tradeoff between enhanced growth and resistance to population level
504 perturbations. In general, we suspect that the spatial structure of microbial communities

505 within the intestine will be an important determinant of their dynamics and a key
506 consideration for the generation of successful predictive models.

507 We are able to construct a quantitative model of the observed *Aeromonas*
508 dynamics that consists of growth punctuated by stochastic collapses. Data derived from
509 gut dissection, in which many fish are sampled at a single time point, can be fit to the
510 model to determine its two relevant parameters, the bacterial carrying capacity, K , and a
511 factor that characterizes the collapses, z . In itself, this is trivial. However, we can also
512 determine z from independent, and quite different, data, namely image-based time-
513 series of individual fish. The two measures agree, which provides strong support for the
514 proposed stochastic-collapse-driven model of inter-species competition. Furthermore,
515 the fit of the model to the data reveals that the impact of *Vibrio* on *Aeromonas*
516 populations is twofold: reducing the overall carrying capacity and increasing sensitivity
517 to physical perturbations—the combined effect of the two being much greater than
518 either alone. More generally, our analysis provides evidence that quantitative, data-
519 based models of interactions among species within the gut are possible, and that
520 stochastic, rather than purely deterministic, dynamics can play a major role in shaping
521 the composition of and competition within intestinal bacterial communities. It is
522 interesting to note that recent metagenomic analyses of human intestinal microbiota
523 have uncovered signatures of sudden shifts in species composition, the origins of which
524 remain unknown [15, 42], perhaps indicating stochastic dynamics are widespread in
525 natural intestinal systems.

526 From an ecological perspective, it is unsurprising that the physical environment
527 and stochastic perturbations influence species abundance; these concepts are

528 mainstays of our understanding of macroscopic multi-species communities [43]. A rich
529 literature describes various stochastic population models and the characteristics, such
530 as extinction probabilities, that emerge from them [44-47]. As shown here, it is likely that
531 such models will in general be useful for providing a conceptual and predictive
532 framework for understanding inter-species bacterial competition. Again mirroring well-
533 established ecological concepts, we can frame our understanding of *Vibrio* and
534 *Aeromonas* dynamics in the intestine as a study of these species' differential resistance
535 and resilience to environmental perturbations. *Aeromonas* during mono-association is
536 not resistant to disturbances related to intestinal motility, but it is resilient, able to grow
537 to high abundances despite sporadic collapses. *Vibrio*, in contrast, is highly resistant to
538 perturbations; it shows smooth growth unfazed by the environmental perturbations that
539 affect *Aeromonas* (Fig 3). In the presence of *Vibrio*, both the resistance and resilience of
540 *Aeromonas* are compromised, as the magnitude of collapses is greater and the carrying
541 capacity to which to recover is diminished.

542 While ecological concepts can help us characterize microbial dynamics, data on
543 microbial systems can, conversely, enhance our understanding of ecological theory.
544 The fast generation time and high degree of reproducibility of microbial systems have
545 allowed a variety of tests of ecological models in recent years, illuminating issues such
546 as game-theoretic aspects of cheating [48], early warning indicators of population
547 collapses [49], and the statistical structure of number fluctuations [50]. Although
548 theoretical treatments of population collapses and extinction events are abundant in the
549 ecological literature, real data with which to test them remain sparse [51], in part due to
550 the challenges of performing high-precision field studies. We expect, therefore, that data

551 of the sort presented here, which yield collapse statistics as well as fits to stochastic
552 models, will have utility in contexts far removed from microbiota research.

553 *Aeromonas* population collapses are well described by stochastic dynamics, but
554 the underlying mechanism by which *Vibrio* compromises resistance and resilience of
555 *Aeromonas* remains to be elucidated. Several possibilities exist, and are the focus of
556 ongoing investigation. *Vibrio* may disrupt the adhesive properties of sessile bacterial
557 communities by secreting mucinases [52], or alter the rheological properties of the
558 intestinal environment [53]. More directly, *Vibrio* may kill *Aeromonas* via secreted
559 factors acting as bacteriocins or contact-mediated killing through the Type VI secretion
560 system [54-56]. Intriguingly, it is unclear whether, in the context of a larger
561 metacommunity composed of many fish in a shared aqueous environment, *Aeromonas*
562 is actually at a competitive disadvantage compared to *Vibrio*. Expulsions of *Aeromonas*
563 could benefit this species by aiding dispersal and subsequent colonization of other
564 hosts. This may, in fact, explain the observation that species of *Vibrio* and *Aeromonas*
565 are both highly represented among conventionally raised zebrafish [31].

566 The combination of gnotobiotic manipulation and imaging-based analyses can be
567 further elaborated in larval zebrafish, both by increasing the diversity of monitored
568 microbial species and by examining interactions with particular aspects of the host such
569 as its immune system [25]. As illustrated here, we expect that such studies will yield
570 additional insights into the factors that drive the dynamics of complex, natural host-
571 associated microbiota.

572 **METHODS**

573 **Ethics statement**

574 All experiments with zebrafish were done in accordance with protocols approved by the
575 University of Oregon Institutional Animal Care and Use Committee and following
576 standard protocols [57].

577

578 **Gnotobiotic techniques**

579 Wild-type AB or *ret* mutant (*ret1^{hu2846}*, ZFIN ID: ZDB-ALT-070315-12) zebrafish were
580 derived GF and colonized with bacterial strains as previously described [19]. Briefly,
581 fertilized eggs from adult mating pairs were harvested and incubated in sterile embryo
582 media (EM) containing 100 µg/ml ampicillin, 5 µg/ml kanamycin, and 250 µg/ml
583 amphotericin B for ~6 hour. Embryos were then washed in EM containing 0.003%
584 sodium hypochlorite followed by EM containing 0.1% polyvinylpyrrolidone–iodine.
585 Sterilized embryos were distributed into T25 tissue culture flasks containing 15 ml sterile
586 EM at a density of one embryo per ml and incubated at 28-30°C prior to bacterial
587 colonization. Embryos were sustained on yolk-derived nutrients and not fed during
588 experiments.

589

590 **Bacterial strains**

591 *Aeromonas* (ZOR0001, PRJNA205571) and *Vibrio* (ZWU0020, PRJNA205585) were
592 isolated from the zebrafish intestinal tract and described previously [24]. Fluorescently
593 marked derivatives used in imaging experiments were engineered with an established
594 Tn7 transposon-based approach [58]. Briefly, a cassette containing the constitutively

595 active synthetic promoter Ptac cloned upstream of genes encoding dTomato or
596 superfolder GFP was chromosomally inserted at the *attTn7* locus to generate
597 *Aeromonas attTn7::Ptac-dTomato* and *Vibrio attTn7::Ptac-sfGFP*. Strains expressing
598 fluorescent proteins did not exhibit overt fitness defects *in vitro* or *in vivo*. Prior to
599 colonization at designated time points, bacterial strains were grown overnight in Luria
600 Broth (LB) shaking at 30°C. Bacterial cultures were prepared for inoculation by pelleting
601 for two minutes at 7,000 x g and washing once in sterile embryo medium (EM). An
602 inoculum of 10⁶ CFU/ml was used across experiments for each bacterial strain and
603 added directly to the water column.

604

605 **Culture-based quantification of bacterial populations**

606 Dissection of larval guts was done as described previously [19]. Dissected guts were
607 harvested and placed in a 1.6 ml tube containing 500 µl sterile 0.7% saline and ~100 µl
608 0.5 mm zirconium oxide beads (Next Advance, Averill Park, NY). Guts were then
609 homogenized using a bullet blender tissue homogenizer (Next Advance, Averill Park,
610 NY) for ~25 seconds on power 4. Lysates were serially plated on tryptic soy agar (TSA)
611 and incubated overnight at 30°C prior to enumeration of CFU and determination of
612 bacterial load. Plots depicting culture-based quantification of bacterial populations show
613 the estimated limit of detection (5 bacteria/gut) as well as limit of quantification (100
614 bacteria/gut) and represent pooled data from a minimum of two independent
615 experiments.

616

617 **Light sheet microscopy**

618 Imaging was performed using a home-built light sheet fluorescence microscope, based
619 on the design of Keller et al. [18] and described in detail elsewhere [21, 22]. Briefly, a
620 laser beam is rapidly scanned with a galvanometer mirror and demagnified to provide a
621 thin sheet of excitation light. An objective lens mounted perpendicular to the sheet
622 captures fluorescence emission from the optical section, and the sample is scanned
623 along the detection coordinate to yield a three-dimensional image. To image the entire
624 extent of the intestine (approximately 1200x300x150 microns) we sequentially image
625 four sub-regions and computationally register the images after acquisition. The entire
626 volume of the intestine is imaged in less than 2 minutes in two colors, with a 1-micron
627 spacing between planes. Unless otherwise indicated in the text, all exposure times are
628 30 ms with an excitation laser power 5 mW, as measured between the theta-lens and
629 the excitation objective.

630

631 **Imaging-based quantification of bacterial populations**

632 The analysis pipeline used to estimate bacterial abundances from light sheet imaging is
633 described in [21]. In brief, we computationally identify both individual bacteria and
634 clusters of bacteria, and estimate the population of each cluster by dividing the total
635 fluorescence intensity by the average intensity of individual bacteria. As necessary,
636 objects that are falsely identified as bacterial clusters are manually removed. For
637 example, in Fig 3A an autofluorescent signal in the intestinal midgut in the *Vibrio*
638 channel was excluded from subsequent quantitative analysis. Additionally, individual
639 time points during time-series are removed if, determined by manual inspection, sample

640 drift or motion of bacterial clusters driven by intestinal motility makes it infeasible to
641 robustly estimate bacterial abundance.

642

643 **Identification of population collapse events**

644 Collapses in bacteria populations are objectively identified from time-series of total
645 bacterial abundance, such as those in Fig 3, by defining a collapse as a decrease in
646 population by at least a factor of 10 within one hour. Collapse events with pre-collapse
647 populations of less than 100 bacteria are discarded. These criteria were manually
648 validated by associating each identified collapse with a corresponding ejection of
649 bacteria from the gut observed in series of images.

650

651 **Imaging experiments**

652 Sample mounting is done as previously described [21]. Larval zebrafish were removed
653 from culture flasks and anaesthetized using 120 μ g/ml tricaine methanesulfonate
654 (Western Chemical, Ferndale, WA). Individual specimens were then briefly immersed in
655 0.5% agar (maximum temperature: 42° C) and drawn into a glass capillary, which was
656 then mounted onto a sample holder. The agar-embedded specimens were partially
657 extruded from the capillary so that the excitation and emission optical paths did not pass
658 through glass interfaces. The specimen holder can hold up to six samples, all of which
659 are immersed EM maintained at 28°C, with tricaine present as an anaesthetic. All long-
660 term imaging experiments were done overnight, beginning in the late afternoon.

661

662 **Measuring bacterial distance to epithelial wall**

663 Individual bacteria were identified using the same algorithms used for quantification of
664 bacterial abundance in the intestine. As we do not have a fluorescent marker for the
665 epithelial wall of the intestine, we use the extent of the autofluorescent mucus in images
666 as an estimate of the location of the epithelial wall. This extent is determined by active
667 contour segmentation using the Chan-Vese algorithm [59], using the implementation
668 provided in MATLAB. A user-defined region is used as the seed for the segmentation of
669 the first frame in the time-series, after which the segmentation of the previous frame is
670 used as the seed for the segmentation of the subsequent frame. We then define the
671 distance of each identified bacterium to the epithelial wall as the minimum distance
672 between the location of the bacterium and the segmented extent of the intestine.
673 Distributions of distances to the epithelial wall are constructed from all video frames and
674 confidence intervals are obtained using bootstrap resampling. A null model of a uniform
675 prediction is obtained by randomly distributing 1000 points for each time point in the
676 region defined by our intestinal segmentation. Confidence intervals are again obtained
677 through bootstrap resampling.

678

679 **Measuring intestinal motility**

680 Larval intestinal motility was assessed from images captured using differential
681 interference contrast (DIC) microscopy, performed as previously described [27]. The
682 displacement field from frame to frame in time-series was determined using particle
683 image velocimetry (PIV) algorithms [60], which calculate the motions necessary for
684 regions in one frame to be mapped onto regions in another. We focused our analysis on
685 the frequency and amplitude of these motions, restricting our analysis to components of

686 displacement along the intestinal axis. Fourier spectra of the displacements, averaged
687 over location in the intestine, yielded in all cases a clear peak whose frequency and
688 magnitude are indicative of the characteristic frequency and amplitude of intestinal
689 motility, respectively. This method is described in greater detail in a forthcoming paper.

690 **ACKNOWLEDGEMENTS**

691 We thank Michael Taormina (University of Oregon) for experimental advice, and
692 Brendan Bohannan (University of Oregon) and Pankaj Mehta (Boston University) for
693 critical readings of the manuscript. For providing the zebrafish knockout allele *ret1-*
694 *hu2846* we thank the Hubrecht laboratory and the Sanger Institute Zebrafish Mutation
695 Project. This material is based upon work supported by the National Science
696 Foundation under grant no. 1427957. Research reported in this publication was also
697 supported by the National Institutes of Health, including the National Institute of General
698 Medical Sciences (P50GM09891), the National Institute of Child Health and Human
699 Development (P01HD22486), and the National Institute of Allergy and Infectious
700 Diseases (F32AI112094). The content is solely the responsibility of the authors and
701 does not necessarily represent the official views of the National Institutes of Health. We
702 also acknowledge support from Research Corporation and the Gordon and Betty Moore
703 Foundation.

704 **REFERENCES**

705 1. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering
706 the intestinal microbiota during a critical developmental window has lasting metabolic
707 consequences. *Cell*. 2014;158(4):705-21. doi: 10.1016/j.cell.2014.05.052. PubMed
708 PMID: 25126780; PubMed Central PMCID: PMC4134513.

709 2. Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, et al.
710 Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish.
711 *Cell Host Microbe*. 2012;12(3):277-88. doi: 10.1016/j.chom.2012.08.003. PubMed
712 PMID: 22980325; PubMed Central PMCID: PMC3517662.

713 3. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune
714 responses during health and disease. *Nat Rev Immunol*. 2009;9(5):313-23. doi:
715 10.1038/nri2515. PubMed PMID: 19343057; PubMed Central PMCID: PMC4095778.

716 4. Goyal MS, Venkatesh S, Milbrandt J, Gordon JI, Raichle ME. Feeding the brain
717 and nurturing the mind: Linking nutrition and the gut microbiota to brain development.
718 *Proc Natl Acad Sci U S A*. 2015;112(46):14105-12. doi: 10.1073/pnas.1511465112.
719 PubMed PMID: 26578751; PubMed Central PMCID: PMC4655552.

720 5. McKenney PT, Pamer EG. From Hype to Hope: The Gut Microbiota in Enteric
721 Infectious Disease. *Cell*. 2015;163(6):1326-32. doi: 10.1016/j.cell.2015.11.032. PubMed
722 PMID: 26638069; PubMed Central PMCID: PMC4672394.

723 6. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut
724 microbiota metabolic interactions. *Science*. 2012;336(6086):1262-7. doi:
725 10.1126/science.1223813. PubMed PMID: 22674330.

726 7. Lawley TD, Walker AW. Intestinal colonization resistance. *Immunology*.
727 2013;138(1):1-11. doi: 10.1111/j.1365-2567.2012.03616.x. PubMed PMID: 23240815;
728 PubMed Central PMCID: PMC3533696.

729 8. Rainey PB, Travisano M. Adaptive radiation in a heterogeneous environment.
730 *Nature*. 1998;394(6688):69-72. doi: 10.1038/27900. PubMed PMID: 9665128.

731 9. Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF. Defined spatial structure
732 stabilizes a synthetic multispecies bacterial community. *Proc Natl Acad Sci U S A*.
733 2008;105(47):18188-93. doi: 10.1073/pnas.0807935105. PubMed PMID: 19011107;
734 PubMed Central PMCID: PMC2587551.

735 10. Hol FJ, Galajda P, Nagy K, Woolthuis RG, Dekker C, Keymer JE. Spatial
736 structure facilitates cooperation in a social dilemma: empirical evidence from a bacterial
737 community. *PLoS One*. 2013;8(10):e77042. doi: 10.1371/journal.pone.0077042.
738 PubMed PMID: 24167557; PubMed Central PMCID: PMC3805552.

739 11. Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks,
740 competition, and stability. *Science*. 2015;350(6261):663-6. doi:
741 10.1126/science.aad2602. PubMed PMID: 26542567.

742 12. Fisher CK, Mehta P. Identifying keystone species in the human gut microbiome
743 from metagenomic timeseries using sparse linear regression. *PLoS One*.
744 2014;9(7):e102451. doi: 10.1371/journal.pone.0102451. PubMed PMID: 25054627;
745 PubMed Central PMCID: PMC4108331.

746 13. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data.
747 *PLoS Comput Biol*. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. PubMed
748 PMID: 23028285; PubMed Central PMCID: PMC3447976.

749 14. Stein RR, Bucci V, Toussaint NC, Buffie CG, Ratsch G, Pamer EG, et al.
750 Ecological modeling from time-series inference: insight into dynamics and stability of
751 intestinal microbiota. *PLoS Comput Biol.* 2013;9(12):e1003388. doi:
752 10.1371/journal.pcbi.1003388. PubMed PMID: 24348232; PubMed Central PMCID:
753 PMC3861043.

754 15. Trosvik P, de Muinck EJ, Stenseth NC. Biotic interactions and temporal dynamics
755 of the human gastrointestinal microbiota. *ISME J.* 2015;9(3):533-41. doi:
756 10.1038/ismej.2014.147. PubMed PMID: 25148482; PubMed Central PMCID:
757 PMC4331571.

758 16. Levy R, Borenstein E. Metabolic modeling of species interaction in the human
759 microbiome elucidates community-level assembly rules. *Proc Natl Acad Sci U S A.*
760 2013;110(31):12804-9. doi: 10.1073/pnas.1300926110. PubMed PMID: 23858463;
761 PubMed Central PMCID: PMC3732988.

762 17. Fischbach MA, Segre JA. Signaling in Host-Associated Microbial Communities.
763 *Cell.* 2016;164(6):1288-300. doi: 10.1016/j.cell.2016.02.037. PubMed PMID: 26967294.

764 18. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH. Reconstruction of zebrafish early
765 embryonic development by scanned light sheet microscopy. *Science.*
766 2008;322(5904):1065-9. doi: 10.1126/science.1162493. PubMed PMID: 18845710.

767 19. Milligan-Myhre K, Charette JR, Phenicie RT, Stephens WZ, Rawls JF, Guillemin
768 K, et al. Study of host-microbe interactions in zebrafish. *Methods Cell Biol.* 2011;105:87-
769 116. doi: 10.1016/B978-0-12-381320-6.00004-7. PubMed PMID: 21951527.

770 20. Dooley K, Zon LI. Zebrafish: a model system for the study of human disease.
771 *Curr Opin Genet Dev.* 2000;10(3):252-6. PubMed PMID: 10826982.

772 21. Jemielita M, Taormina MJ, Burns AR, Hampton JS, Rolig AS, Guillemin K, et al.
773 Spatial and temporal features of the growth of a bacterial species colonizing the
774 zebrafish gut. *MBio*. 2014;5(6). doi: 10.1128/mBio.01751-14. PubMed PMID: 25516613;
775 PubMed Central PMCID: PMC4271548.

776 22. Taormina MJ, Jemielita M, Stephens WZ, Burns AR, Troll JV, Parthasarathy R,
777 et al. Investigating bacterial-animal symbioses with light sheet microscopy. *Biol Bull*.
778 2012;223(1):7-20. PubMed PMID: 22983029; PubMed Central PMCID: PMC3952068.

779 23. Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin
780 K, et al. Evidence for a core gut microbiota in the zebrafish. *ISME J*. 2011;5(10):1595-
781 608. doi: 10.1038/ismej.2011.38. PubMed PMID: 21472014; PubMed Central PMCID:
782 PMC3176511.

783 24. Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, et al.
784 The composition of the zebrafish intestinal microbial community varies across
785 development. *ISME J*. 2015. doi: 10.1038/ismej.2015.140. PubMed PMID: 26339860.

786 25. Rolig AS, Parthasarathy R, Burns AR, Bohannan BJ, Guillemin K. Individual
787 Members of the Microbiota Disproportionately Modulate Host Innate Immune
788 Responses. *Cell Host Microbe*. 2015;18(5):613-20. doi: 10.1016/j.chom.2015.10.009.
789 PubMed PMID: 26567512.

790 26. Drescher K, Dunkel J, Cisneros LH, Ganguly S, Goldstein RE. Fluid dynamics
791 and noise in bacterial cell-cell and cell-surface scattering. *Proc Natl Acad Sci U S A*.
792 2011;108(27):10940-5. doi: 10.1073/pnas.1019079108. PubMed PMID: 21690349;
793 PubMed Central PMCID: PMC3131322.

794 27. Baker RP, Taormina MJ, Jemielita M, Parthasarathy R. A combined light sheet
795 fluorescence and differential interference contrast microscope for live imaging of
796 multicellular specimens. *J Microsc.* 2015;258(2):105-12. doi: 10.1111/jmi.12220.
797 PubMed PMID: 25611324; PubMed Central PMCID: PMC4401621.

798 28. Hanson FB, Tuckwell HC. Logistic growth with random density independent
799 disasters. *Theoretical Population Biology.* 1981;19(1):Pages 1-18.

800 29. Heanue TA, Pachnis V. Ret isoform function and marker gene expression in the
801 enteric nervous system is conserved across diverse vertebrate species. *Mech Dev.*
802 2008;125(8):687-99. doi: 10.1016/j.mod.2008.04.006. PubMed PMID: 18565740.

803 30. Sonnenburg JL, Angenent LT, Gordon JI. Getting a grip on things: how do
804 communities of bacterial symbionts become established in our intestine? *Nat Immunol.*
805 2004;5(6):569-73. doi: 10.1038/ni1079. PubMed PMID: 15164016.

806 31. Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al.
807 Contribution of neutral processes to the assembly of gut microbial communities in the
808 zebrafish over host development. *ISME J.* 2015. doi: 10.1038/ismej.2015.142. PubMed
809 PMID: 26296066.

810 32. Shafquat A, Joice R, Simmons SL, Huttenhower C. Functional and phylogenetic
811 assembly of microbial communities in the human microbiome. *Trends Microbiol.*
812 2014;22(5):261-6. doi: 10.1016/j.tim.2014.01.011. PubMed PMID: 24618403; PubMed
813 Central PMCID: PMC4008634.

814 33. Rajilic-Stojanovic M, Heilig HG, Tims S, Zoetendal EG, de Vos WM. Long-term
815 monitoring of the human intestinal microbiota composition. *Environ Microbiol.* 2012. doi:
816 10.1111/j.1462-2920.12023. PubMed PMID: 23286720.

817 34. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh
818 J, et al. Moving pictures of the human microbiome. *Genome Biol.* 2011;12(5):R50. doi:
819 10.1186/gb-2011-12-5-r50. PubMed PMID: 21624126; PubMed Central PMCID:
820 PMC3271711.

821 35. Allison SD, Martiny JB. Colloquium paper: resistance, resilience, and redundancy
822 in microbial communities. *Proc Natl Acad Sci U S A.* 2008;105 Suppl 1:11512-9. doi:
823 10.1073/pnas.0801925105. PubMed PMID: 18695234; PubMed Central PMCID:
824 PMC2556421.

825 36. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of
826 the human distal gut microbiota to repeated antibiotic perturbation. *Proc Natl Acad Sci U*
827 *S A.* 2011;108 Suppl 1:4554-61. doi: 10.1073/pnas.1000087107. PubMed PMID:
828 20847294; PubMed Central PMCID: PMC3063582.

829 37. Faust K, Raes J. Microbial interactions: from networks to models. *Nat Rev*
830 *Microbiol.* 2012;10(8):538-50. doi: 10.1038/nrmicro2832. PubMed PMID: 22796884.

831 38. Kligord N, Segre D. Environments that induce synthetic microbial ecosystems.
832 *PLoS Comput Biol.* 2010;6(11):e1001002. doi: 10.1371/journal.pcbi.1001002. PubMed
833 PMID: 21124952; PubMed Central PMCID: PMC2987903.

834 39. Kashyap PC, Marcabal A, Ursell LK, Larauche M, Duboc H, Earle KA, et al.
835 Complex interactions among diet, gastrointestinal transit, and gut microbiota in
836 humanized mice. *Gastroenterology.* 2013;144(5):967-77. doi:
837 10.1053/j.gastro.2013.01.047. PubMed PMID: 23380084; PubMed Central PMCID:
838 PMC3890323.

839 40. Frykman PK, Nordenskjold A, Kawaguchi A, Hui TT, Granstrom AL, Cheng Z, et
840 al. Characterization of Bacterial and Fungal Microbiome in Children with Hirschsprung
841 Disease with and without a History of Enterocolitis: A Multicenter Study. *PLoS One.*
842 2015;10(4):e0124172. doi: 10.1371/journal.pone.0124172. PubMed PMID: 25909773;
843 PubMed Central PMCID: PMC4409062.

844 41. Gosain A, Brinkman AS. Hirschsprung's associated enterocolitis. *Curr Opin
845 Pediatr.* 2015;27(3):364-9. doi: 10.1097/MOP.0000000000000210. PubMed PMID:
846 25944307; PubMed Central PMCID: PMC4451822.

847 42. David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC,
848 Perrotta A, et al. Host lifestyle affects human microbiota on daily timescales. *Genome
849 Biol.* 2014;15(7):R89. doi: 10.1186/gb-2014-15-7-r89. PubMed PMID: 25146375;
850 PubMed Central PMCID: PMC4405912.

851 43. Sousa WP. The Role of Disturbance in Natural Communities. *Annual Review of
852 Ecology and Systematics.* 1984;15: 353-91. doi:
853 10.1146/annurev.es.15.110184.002033.

854 44. Ovaskainen O, Meerson B. Stochastic models of population extinction. *Trends
855 Ecol Evol.* 2010;25(11):643-52. doi: 10.1016/j.tree.2010.07.009. PubMed PMID:
856 20810188.

857 45. Melbourne BA, Hastings A. Extinction risk depends strongly on factors
858 contributing to stochasticity. *Nature.* 2008;454(7200):100-3. doi: 10.1038/nature06922.
859 PubMed PMID: 18596809.

860 46. Allen LJ, Allen EJ. A comparison of three different stochastic population models
861 with regard to persistence time. *Theor Popul Biol.* 2003;64(4):439-49. PubMed PMID:
862 14630481.

863 47. Lande R. Risks of Population Extinction from Demographic and Environmental
864 Stochasticity and Random Catastrophes. *The American Naturalist.* 1993;142(6):911-27.

865 48. Gore J, Youk H, van Oudenaarden A. Snowdrift game dynamics and facultative
866 cheating in yeast. *Nature.* 2009;459(7244):253-6. doi: 10.1038/nature07921. PubMed
867 PMID: 19349960; PubMed Central PMCID: PMC2888597.

868 49. Dai L, Vorselen D, Korolev KS, Gore J. Generic indicators for loss of resilience
869 before a tipping point leading to population collapse. *Science.* 2012;336(6085):1175-7.
870 doi: 10.1126/science.1219805. PubMed PMID: 22654061.

871 50. Frentz Z, Kuehn S, Leibler S. Strongly Deterministic Population Dynamics in
872 Closed Microbial Communities. *Physical Review X.* 2015;5(4):041014.

873 51. Carpenter SR, Cole JJ, Pace ML, Batt R, Brock WA, Cline T, et al. Early
874 warnings of regime shifts: a whole-ecosystem experiment. *Science.*
875 2011;332(6033):1079-82. doi: 10.1126/science.1203672. PubMed PMID: 21527677.

876 52. Szabady RL, Yanta JH, Halladin DK, Schofield MJ, Welch RA. TagA is a
877 secreted protease of *Vibrio cholerae* that specifically cleaves mucin glycoproteins.
878 *Microbiology.* 2011;157(Pt 2):516-25. doi: 10.1099/mic.0.044529-0. PubMed PMID:
879 20966091; PubMed Central PMCID: PMC3090133.

880 53. Celli JP, Turner BS, Afdhal NH, Keates S, Ghiran I, Kelly CP, et al. *Helicobacter*
881 *pylori* moves through mucus by reducing mucin viscoelasticity. *Proc Natl Acad Sci U S*

882 A. 2009;106(34):14321-6. doi: 10.1073/pnas.0903438106. PubMed PMID: 19706518;
883 PubMed Central PMCID: PMC2732822.

884 54. Wexler AG, Bao Y, Whitney JC, Bobay LM, Xavier JB, Schofield WB, et al.
885 Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proc
886 Natl Acad Sci U S A. 2016. doi: 10.1073/pnas.1525637113. PubMed PMID: 26957597.

887 55. Basler M, Mekalanos JJ. Type 6 secretion dynamics within and between bacterial
888 cells. Science. 2012;337(6096):815. doi: 10.1126/science.1222901. PubMed PMID:
889 22767897; PubMed Central PMCID: PMC3557511.

890 56. Basler M, Ho BT, Mekalanos JJ. Tit-for-tat: type VI secretion system
891 counterattack during bacterial cell-cell interactions. Cell. 2013;152(4):884-94. doi:
892 10.1016/j.cell.2013.01.042. PubMed PMID: 23415234; PubMed Central PMCID:
893 PMC3616380.

894 57. Westerfield M. The zebrafish book. A guide for the laboratory use of zebrafish
895 (*Danio rerio*). 4th ed: University of Oregon Press, Eugene; 2000.

896 58. Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, et
897 al. A *Tn7*-based broad-range bacterial cloning and expression system. Nat Methods.
898 2005;2(6):443-8. doi: 10.1038/nmeth765. PubMed PMID: 15908923.

899 59. Chan TFV, L.A. Active Contours Without Edges. IEEE Transactions on Image
900 Processing. 2001;10(2):266-77. doi: 10.1109/83.902291.

901 60. Thielicke WS, E.J. PIVlab – Towards User-friendly, Affordable and Accurate
902 Digital Particle Image Velocimetry in MATLAB. Journal of Open Research Software.
903 2014;2(1). doi: <http://doi.org/10.5334/jors.bl>.

904 61. Cocchiaro JL, Rawls JF. Microgavage of zebrafish larvae. *J Vis Exp.*
905 2013;(72):e4434. doi: 10.3791/4434. PubMed PMID: 23463135; PubMed Central
906 PMCID: PMC3605733.

907

SUPPORTING INFORMATION

908 **S1 Text. Stochastic Collapse Model**

909 We describe a simple model of growth and collapse behavior and examine its
 910 predictions for population sizes. We also fit the model to experimental data on bacterial
 911 abundance.

912

913 **1 The model**

914

915 Consider a species with population N at time t that exhibits logistic growth, with
 916 growth rate r and carrying capacity K :

$$917 \quad dN = rN \left(1 - \frac{N}{K}\right) dt, \quad [\text{Equation 1}]$$

918 We superimpose on these dynamics events in which the population collapses to a value
 919 f times its pre-collapse value, where f is between 0 and 1, after which it resumes logistic
 920 growth. We model the timing of the collapses as a Poisson process: collapses are
 921 uncorrelated and stochastic, occurring with a probability per unit time p_c . Formally, one
 922 can write this as a stochastic differential equation:

$$923 \quad dN = rN \left(1 - \frac{N}{K}\right) dt - (1-f)N dM, \quad [\text{Equation 2}]$$

924 where dM is a Poisson process of unit step. (In other words, $dM = 1$ with probability $p_c dt$,
 925 and $dM = 0$ with probability $1 - p_c dt$.) $N dM$ refers to N immediately before the collapse.
 926 An illustration of the roles of the parameters r , K , f , and p_c is provided in Figure 5. As
 927 noted in the main text, this model is not new; it has been invoked and studied in many
 928 ecological contexts [S1]. However, the particular treatment presented here is, to the
 929 best of our knowledge, novel, especially with respect to determining relevant
 930 parameters for fits to experimental data. We determine statistical properties of the
 931 model using numerical simulations. For infinite carrying capacity, these properties can
 932 be calculated analytically, but for the biologically relevant case of finite carrying
 933 capacity, exact solutions do not at present exist.

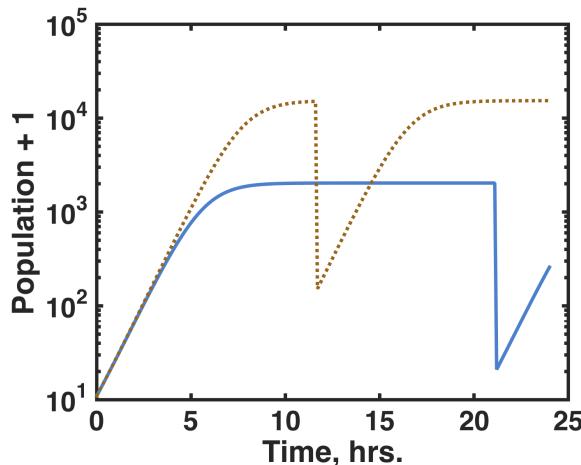
934

935 **2 Simulations**

936

937 The model described above is simple to simulate by numerical integration, which
 938 yields the population x_t at time t . Two typical x_t are shown in Figure ST1, with
 939 parameters as noted in the caption.

940



941
942
943
944
945
946
947
948

Figure ST1. Two simulated populations exhibiting stochastic collapses, with $f = 10^{-2}$, $p_c = 0.05 \text{ hr.}^{-1}$, $r = 1 \text{ hr.}^{-1}$, and K drawn from a log-normal distribution with mean 10^4 and a standard deviation of half a decade. (We plot the population plus one so that zero values are evident on the logarithmic scale.)

949 The model has four parameters, r , K , f , and p_c , and a boundary condition set by x_0 (the
950 initial population). The value of x_0 is irrelevant for the experimental conditions
951 considered: the populations start from a small value and grow rapidly. In our simulations
952 x_0 is taken to be 10.

953 The growth rate, r , is known from measurements. Moreover, the model dynamics
954 are fairly insensitive to r , since the experimental timescales of ~ 10 hours are
955 considerably larger than the timescale set by the growth rate ($1/r \sim 1$ hour).

956 The key determinants of the population statistics, therefore, are the collapse
957 properties (p_c and f) and the carrying capacity, K . The carrying capacity may exhibit
958 considerable variation between fish. Typically, the final populations of *Aeromonas* in
959 mono-associations are found to be approximately log-normally distributed (Figure ST2),
960 as is commonly the case for species abundances, and so in simulations we draw K from
961 log-normal distributions. In other words, $\log_{10}(K)$ for a given simulation is drawn from a
962 Gaussian distribution with some mean value and standard deviation σ_K , where σ_K is
963 typically 0.5, discussed further below. We note that in the absence of collapse (e.g. $p_c =$
964 0 or $f=1$) this model is completely deterministic, and the variance in final bacterial
965 populations between fish is solely due to the variance in K .

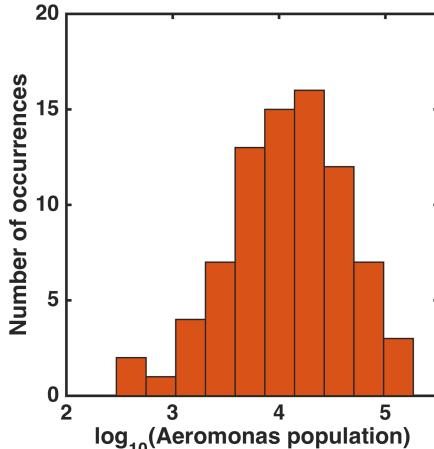
966 For particular parameter values, we simulate many instances of the above
967 dynamics (typically 1,000 to 10,000) and examine the statistical properties of the final
968 population, x_t , assessed at $t = 24$ hours. For the values used in Figure ST1 above, for
969 example, the mean and standard deviation of the final x_t are $(6.4 \pm 11.5) \times 10^3$. The

970 distributions span orders of magnitude, including zero, so it is useful to consider the
971 mean and standard deviation of $\log_{10}(x_t+1)$, similar to a geometric mean. For these
972 parameters, this gives a mean and standard deviation of $\log_{10}(x_t+1)$ of 2.8 ± 1.5 . We will
973 define y as

974
$$y = \log_{10}(x_t + 1) , \quad [Equation 3]$$

975 for notational simplicity.

976



977
978 **Figure ST2.** Histogram of the final population of *Aeromonas*
979 mono-associated with larval zebrafish at 4 dpf and assessed
980 at days 5, 6, or 7 dpf by plating of dissected gut contents and
981 counting of colony forming units.

982

983 **3 Parameters and Fits**

984 **3.1 Dependence on p_c and f**

985

986 We can vary the model parameters to determine the relationship between the
987 mean and the variance of the final population, which will allow direct comparison
988 between our model and measurements of bacterial abundance (e.g. Figure 1). The
989 dependence of the mean and standard deviation (std.) of y on p_c and f is plotted in
990 Figure ST3. We can intuitively understand its behavior: for small p_c or f near 1, the
991 properties of x_t are largely set by the mean and variance of the carrying capacity.
992 However, as p_c increases (or f decreases), the mean of x_t decreases, because larger
993 collapses are more likely to occur, and the standard deviation of x_t increases, because
994 the stochastic collapses play a more significant role in the dynamics. For still larger p_c
995 (or smaller f), the final population becomes more uniformly small, because the
996 population is dominated by very frequent collapses and cannot grow appreciably.

997

998 Treating f as a random, rather than a fixed, parameter has little effect on the
behavior of the model. Drawing f from a beta distribution, chosen because it is

continuous, spans $[0, 1]$, and has two parameters that can be mapped onto a mean and variance, gives the curve shown in Figure ST4. The mean collapse magnitude is chosen over the same range as f in Figure ST3, and for each mean f , several f values are drawn from a beta distribution with standard deviations relative to the mean spanning $[0, 0.8]$. All the resulting population characteristics are plotted in Figure ST4; the resulting curve is nearly identical to that of Figure ST3.

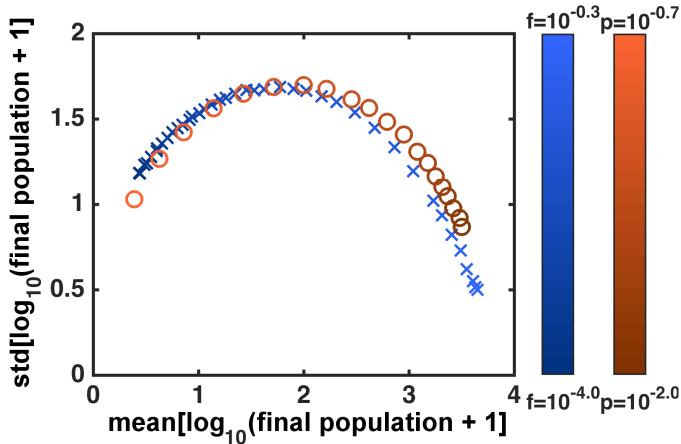


Figure ST3. The mean and standard deviation of simulated populations at $t = 24$ hrs., with $r = 0.8$ hr. $^{-1}$ and K drawn from a log-normal distribution with mean 10^4 and a standard deviation of half a decade. Blue crosses: p_c is fixed at $= 0.1$ hr. $^{-1}$, and f varies between 10^{-4} and $10^{-0.3}$. Red circles: f is fixed at 10^{-2} and p_c varies between 10^{-2} and $10^{-0.7}$ hr. $^{-1}$. Each point is calculated from 10,000 simulated runs.

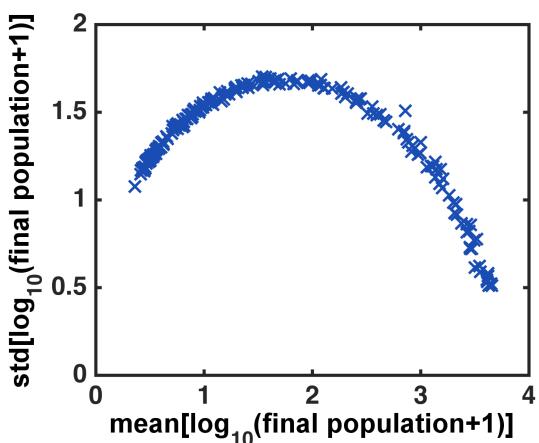


Figure ST4. The mean and standard deviation of simulated populations at $t = 24$ hrs., with $r = 1$ hr. $^{-1}$ and K drawn from a log-normal distribution with mean 10^4 and a standard deviation of half a decade. The collapse probability p_c is fixed at $= 0.1$ hr. $^{-1}$, and f is drawn from a beta distribution with mean between 10^{-4} and $10^{-0.3}$, and relative standard deviation between 0 and 80%. Each point is calculated from 1,000 simulated runs.

1006

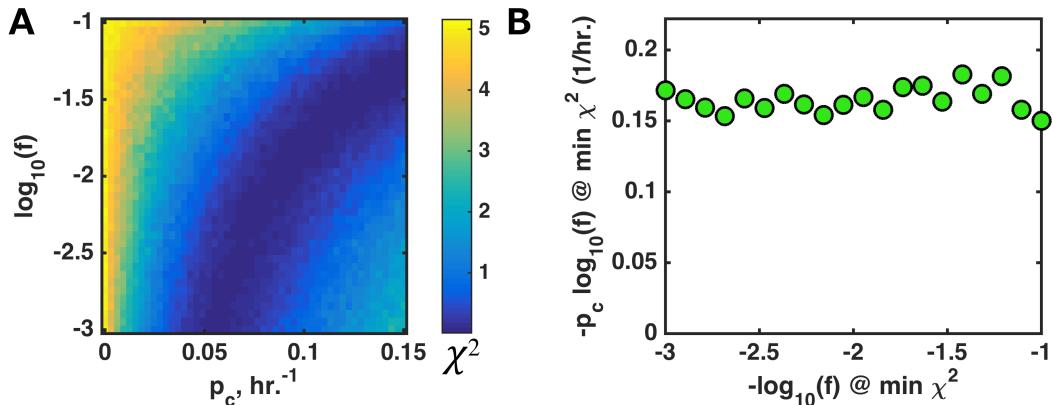
1007

1008 Remarkably, at fixed K , nearly identical curves result from varying either p_c or f
1009 (Figure ST3), suggesting that at least over the parameter ranges and timescales
1010 relevant to our experiments, these two parameters can be subsumed into one effective
1011 variable. Considering particular values of $\text{mean}(y)$ and $\text{std}(y)$, where y is the logarithm of
1012 the population as defined above, we can search for the best-fit values of (p_c, f) , i.e. the
1013 parameters that minimize the squared Euclidean distance, χ^2 , between the measured
1014 and simulated $(\text{mean}(y), \text{std}(y))$. Using, for concreteness, the values determined from
1015 gut dissection and plating experiments of *Aeromonas* abundance 24 hours after
1016 challenge by *Vibrio*, namely $(\text{mean}(y), \text{std}(y)) = (1.68 \pm 0.34, 1.50 \pm 0.24)$, we find, as
1017 expected, the best-fit contours describe a curve in the (p_c, f) space (Figure ST5a).
1018 Empirically, we find that this curve is represented by $-p_c \log_{10}(f) \approx \text{constant}$ (Figure
1019 ST5b).

1020 Fitting experimental data to this model of logistic growth with stochastic collapses
1021 reduces, therefore, to a two parameter fit to the carrying capacity, K , and a parameter
1022 describing the collapse properties, denoted as z :

1023
$$z = -p_c \log_{10}(f) , \quad [\text{Equation 4}]$$

1024 To the best of our knowledge, this effective collapse of the two stochastic
1025 parameters into one effective parameter, z , has not been previously reported. We do
1026 not have a mathematically exact theory for its occurrence, but simply present it as an
1027 empirical result from our numerical simulations.



1029 **Figure ST5.** (A) Squared distance, χ^2 , between the measured and
1030 simulated $(\text{mean}(y), \text{std}(y))$ for values derived from *Aeromonas*
1031 abundance 24 hours after challenge by *Vibrio*, namely $(\text{mean}(y), \text{std}(y)) =$
1032 $(1.68 \pm 0.34, 1.50 \pm 0.24)$, as a function of model parameters p_c and f . The
1033 carrying capacity is drawn from a log-normal distribution with mean $10^{3.7}$
1034 and standard deviation 0.5 decades. At each value of (p_c, f) , 1000 runs are
1035 simulated to determine $\text{mean}(y)$ and $\text{std}(y)$. The optimal parameters
1036 (darkest blue) sweep out a curve in the parameter space. (B) The optimal
1037

1038 p_c and f are related by $-p_c \log_{10}(f) \approx \text{constant}$ over the range of parameters
 1039 examined.

1040

1041 **3.2 Parameter fits: *Aeromonas* challenged by *Vibrio***

1042

1043 Again using the *Aeromonas* 24-hour post-challenge abundance data (Figure 1),
 1044 $(\text{mean}(y), \text{std}(y)) = (1.68 \pm 0.34, 1.50 \pm 0.24)$, contours of χ^2 are shown in Figure ST6.
 1045 The best-fit parameter values are:

1046 $z = -p_c \log_{10}(f) = 0.13 \pm 0.05 \text{ hr.}^{-1}$,

1047 $\log_{10}(K) = 3.2 \pm 0.5$

1048 In the simulations, K is drawn from a log-normal distribution with width 0.5 decades; the
 1049 fit is insensitive to this width, since the variance in the final population is much greater
 1050 than 0.5. The uncertainties in z and K are estimated from simulations spanning the
 1051 experimental uncertainties in $\text{mean}(y)$ and $\text{std}(y)$.

1052 In the main text, we compare these plating-derived measures of the collapse
 1053 parameters p_c and f to those determined from live imaging.

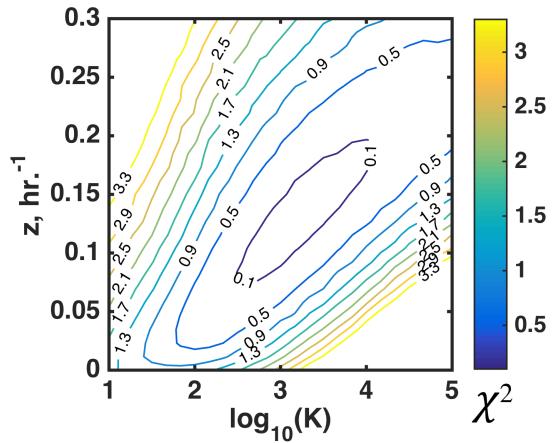


Figure ST6. Contours of χ^2 , the distance between simulated $(\text{mean}(y), \text{std}(y))$ and the measured value from di-association experiments (1.68, 1.50), for a range of z and K . The fit has a clear minimum at $z = 0.13 \text{ hr.}^{-1}$ and $\log_{10}(K) = 3.2$.

1054

1055 **3.3 Parameter fits: *Aeromonas* alone**

1056

1057 Similarly, we can determine the parameter values that best match *Aeromonas*
 1058 mono-association data, $(\text{mean}(y), \text{std}(y)) = (4.1 \pm 0.08, 0.61 \pm 0.05)$, where these values
 1059 are from plating data at both 5 and 6 days post-fertilization. Because $\text{std}(y)$ is low, i.e.
 1060 the data map onto the lower right corner of the curve of Figures ST3-4, it is unclear
 1061 whether the variance in y is due mainly to variance in K or to the stochasticity of
 1062 collapses, and we have no independent measure of the variance in K . Considering K
 1063 drawn from log-normal distributions of various widths, we find best-fit values of $z = -$
 1064 $p_c \log_{10}(f)$ spanning roughly $z = 0.01 \pm 0.01 \text{ hr.}^{-1}$, i.e. z is poorly constrained. Contours of
 1065 χ^2 are shown in Figure ST7. Despite this uncertainty, K is well-constrained to be
 1066 approximately $\log_{10}(K) = 4.2 \pm 0.1$. The significance of this is discussed in the main text.

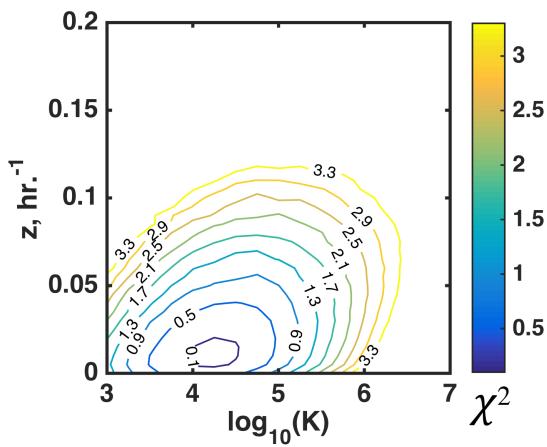


Figure ST7. Contours of χ^2 , the squared distance between simulated ($\text{mean}(y)$, $\text{std}(y)$) and the measured value from mono-association experiments (4.1, 0.6), for a range of z and K , with K drawn from log-normal distributions of width 0.1 decades.

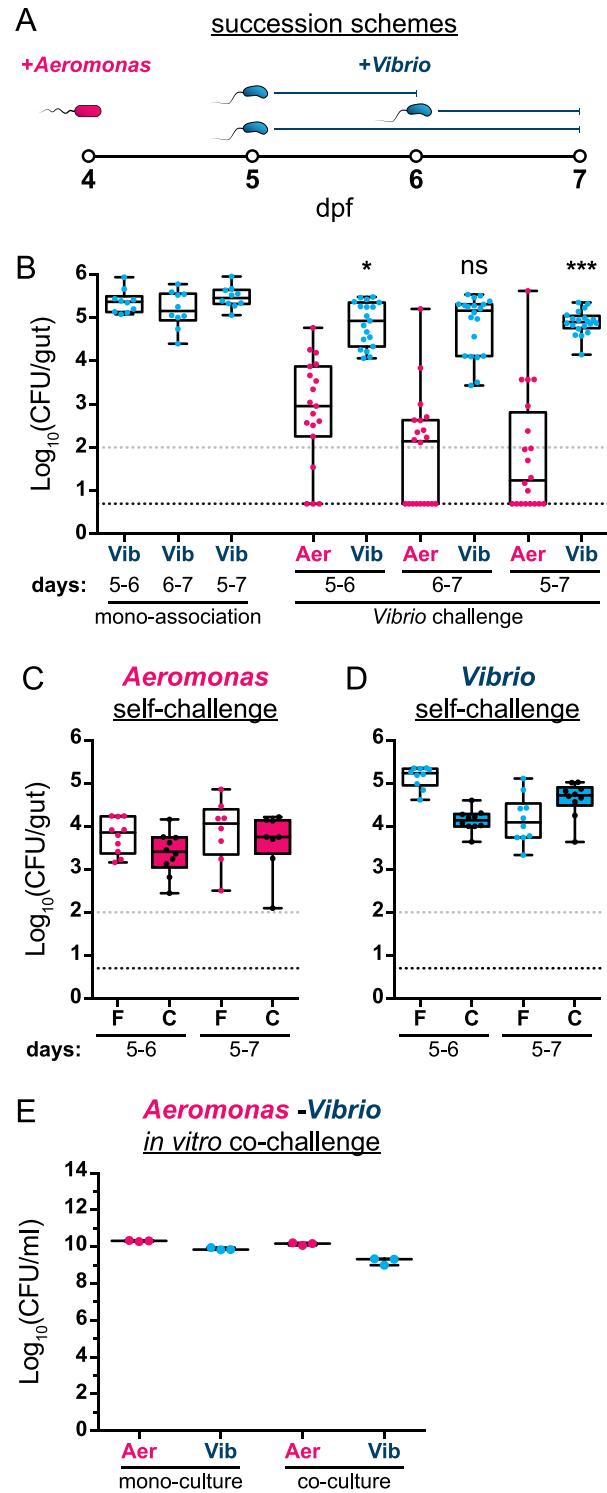
1069 **SUPPORTING REFERENCES**

1070

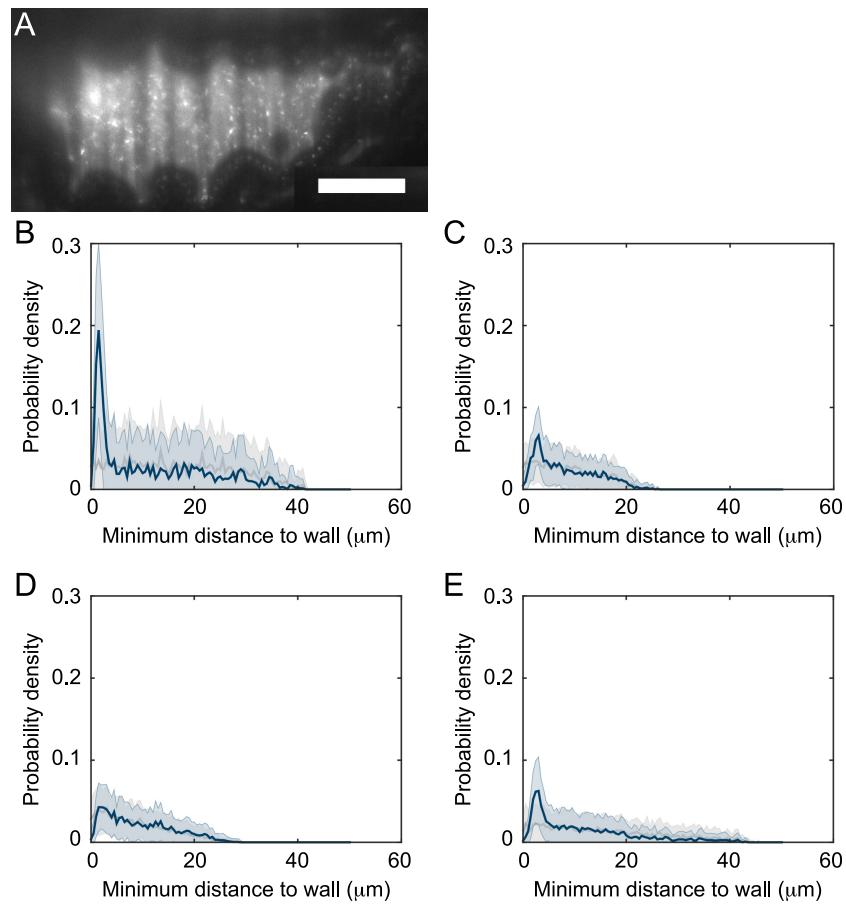
1071 S1. Hanson FB, Tuckwell HC. Logistic growth with random density independent
1072 disasters. *Theoretical population biology*. 1981;19(1):Pages 1-18.

1073

1074



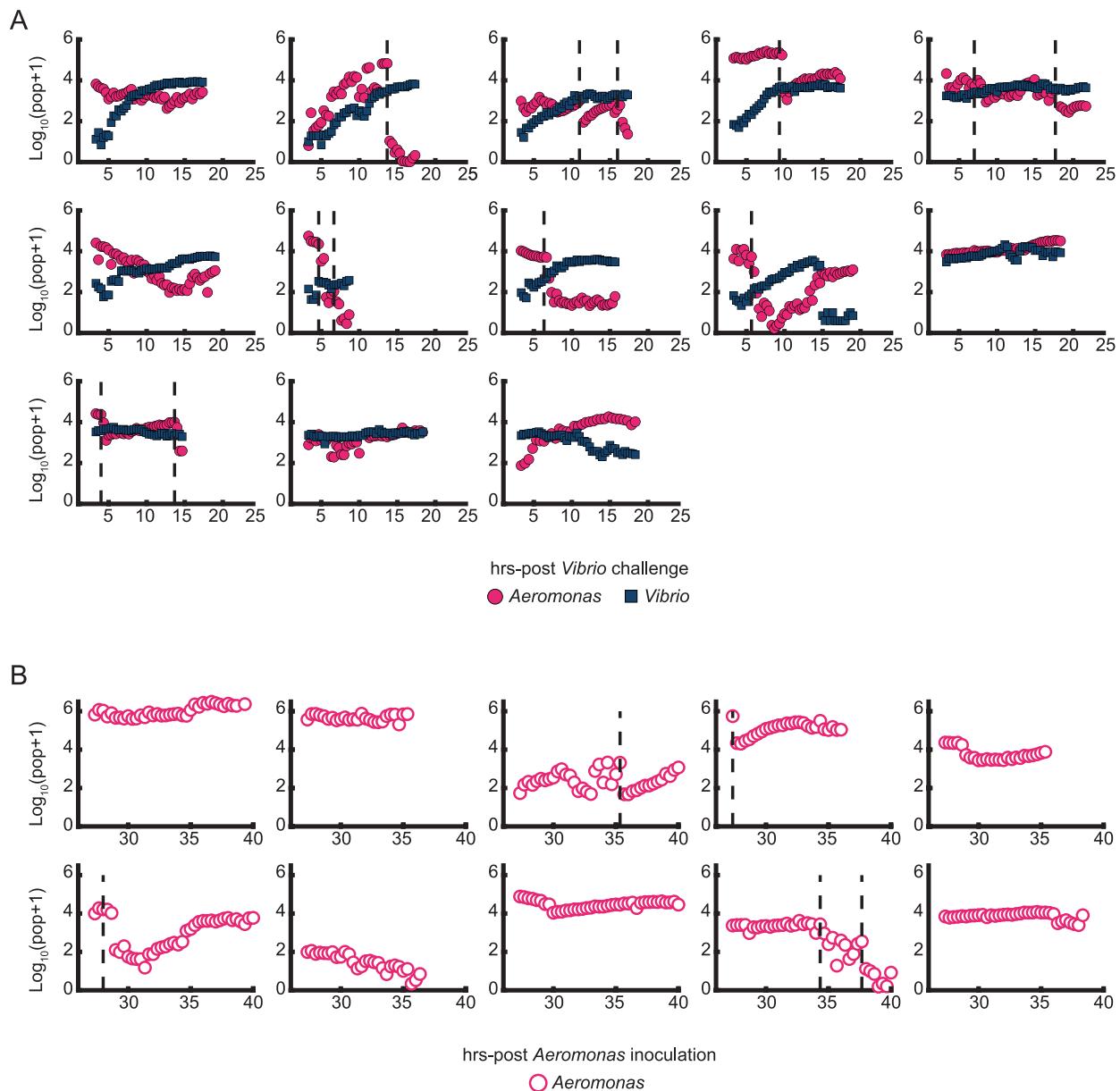
1076 **S1 Fig. *Aeromonas* and *Vibrio* exhibit an apparent competitive interaction within**
1077 **the larval zebrafish intestine.** (A) Graphical overview of succession schemes used to
1078 characterize *Aeromonas*-*Vibrio* interactions. *Aeromonas* is allowed to colonize GF
1079 larvae at 4 dpf followed by addition of *Vibrio* to the water column at 5 or 6 dpf for 24 or
1080 48 hours prior to enumeration of abundances by dissection and serial plating. (B, left)
1081 *Vibrio* abundances after different mono-association durations and (B, right) *Aeromonas*
1082 and *Vibrio* abundances after different *Vibrio* challenge periods. Statistical significance of
1083 *Vibrio* abundances after *Vibrio* challenge compared to respective mono-association
1084 reference populations (i.e. '5-6' vs. '5-6'; '6-7' vs. '6-7'; '5-7' vs. '5-7') was determined by
1085 an unpaired t-test. *=p<0.05; **=p<0.0001; ns=not significant; N>10/condition. Founder
1086 populations 'F' of (C) *Aeromonas* and (D) *Vibrio* were mono-associated with GF larvae
1087 on day 4 post-fertilization and challenged by fluorescently marked self populations 'C' at
1088 5 dpf for 24hrs ('5-6') or 48hrs ('5-7'). Dissection and serial plating was done to
1089 enumerate founder and challenger populations. Counting of bacterial colonies was done
1090 on a fluorescent stereomicroscope. (E) *Aeromonas* and *Vibrio* were inoculated into LB
1091 broth either individually or 1:1 and grown overnight with shaking at 30°C prior to
1092 enumeration by serial plating. CFU=colony-forming units. Gray and black dashed lines
1093 in panels B, C, and D denote limit of quantification and detection, respectively.
1094



1095

1096 **S2 Fig. Space filling properties of *Vibrio* within the zebrafish gut.** (A) Single optical
 1097 plane of 6 dpf larval zebrafish inoculated at 4 dpf with GFP-labeled *Vibrio*. Scale bar: 50
 1098 μm. (B-E) Blue curves: Spatial distribution of bacteria with respect to the approximate
 1099 extent of the intestinal epithelial wall. Gray curves: prediction from a null model of
 1100 uniform space filling. Each panel represents an individual fish with panel B being from
 1101 the same specimen in panel A.

1102

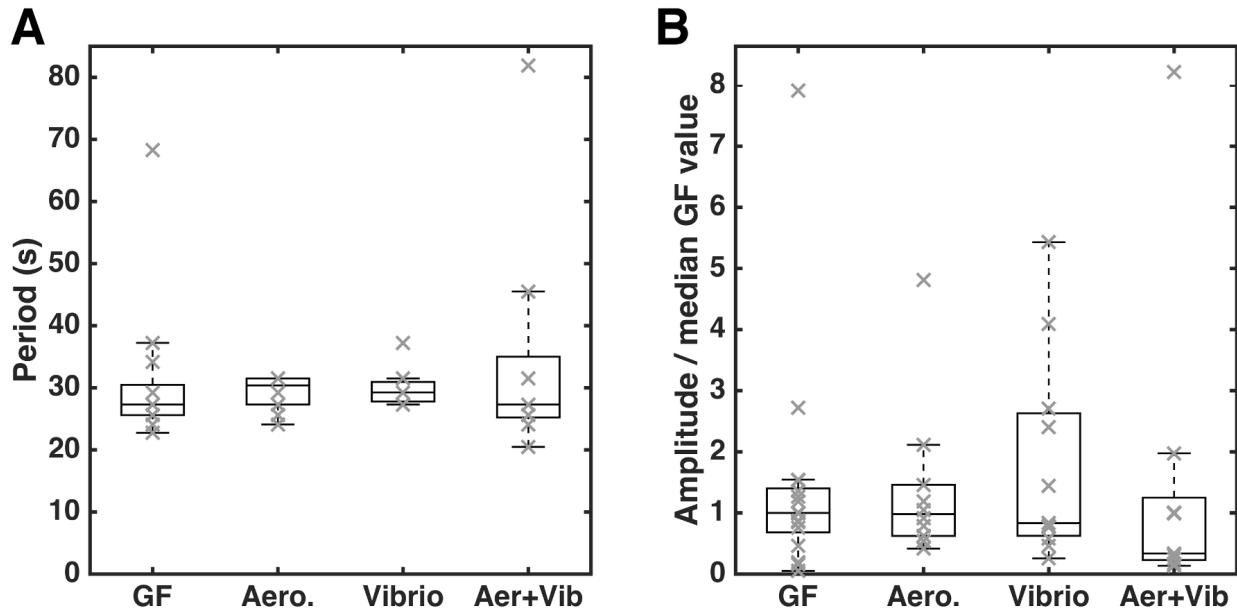


1103

1104 **S3 Fig. Collapses of *Aeromonas* populations within the zebrafish gut. (A)** Total
 1105 bacterial abundance derived from imaging data for *Aeromonas* and *Vibrio* for all imaged
 1106 fish ($N=13$) initially inoculated for 24 hours with *Aeromonas* and then challenged by
 1107 *Vibrio*. Plots represent individual larvae and are plotted as a function of time following
 1108 *Vibrio* inoculation. (B) Total bacterial abundance derived from imaging data for fish
 1109 inoculated for 24 hours with *Aeromonas* alone ($N=10$). Plots represent individual larvae

1110 and are plotted as a function of time following *Aeromonas* inoculation. (A and B) Vertical
1111 dashed lines indicate sharp drops of over an order of magnitude within an hour of the
1112 *Aeromonas* population.

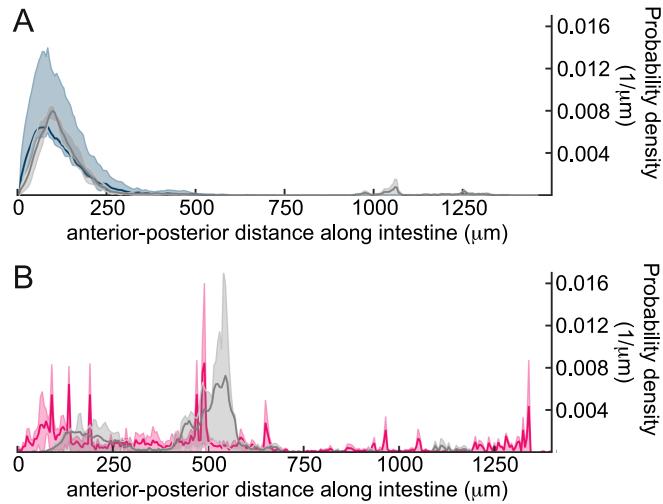
1113



1114

1115 **S4 Fig. Characteristics of zebrafish gut motility at 6 dpf for fish with different**
 1116 **bacterial colonization histories.** GF = germ-free; Aero = mono-association with
 1117 *Aeromonas* from 4 dpf; Vibrio = mono-association with *Vibrio* from 4 dpf; Aer+Vib =
 1118 mono-associated with *Aeromonas* at 4 dpf and challenged with *Vibrio* at 5 dpf. (A) The
 1119 characteristic period of gut motility, identified as the inverse of the frequency of the peak
 1120 signal in a Fourier spectrum of gut motion amplitudes, averaged over all positions. All
 1121 conditions give very similar periodicity of gut motion. (B) The characteristic amplitude of
 1122 gut motility, identified as magnitude of the peak signal in a Fourier spectrum of gut
 1123 motion amplitudes. There is considerable variability between fish clutches, and so the
 1124 amplitudes are normalized by the median of the germ-free fish in each batch. All
 1125 conditions show large variance, with no significant difference evident between the
 1126 various conditions. In A and B, gray "X"s are from individual fish; boxes indicate the first
 1127 to third quartiles, and the horizontal bars in boxes indicates the median value.

1128



1129

1130 **S5 Fig. Spatial distribution of *Aeromonas* and *Vibrio* during mono-association or**
 1131 **challenge experiments.** (A) Spatial distribution of *Vibrio*, quantified as the probability
 1132 density along the gut, for 6 dpf fish mono-associated at 5 dpf with GFP-labeled *Vibrio*
 1133 (gray) or inoculated at 4 dpf with dTomato-labeled *Aeromonas* and challenged at 5 dpf
 1134 with GFP-labeled *Vibrio* (blue). (B) Probability density of *Aeromonas* in 6 dpf fish mono-
 1135 associated at 5 dpf with dTomato-labeled *Aeromonas* (gray) or inoculated at 4 dpf with
 1136 dTomato-labeled *Aeromonas* and challenged at 5 dpf with GFP-labeled *Vibrio*
 1137 (magenta). The blue and magenta spatial distributions are drawn from the same fish.
 1138 *N*=10 for both conditions.

1139

1140 **Supporting Movie Captions**

1141 **S1 Movie. Example of the motile and planktonic behavior of *Vibrio* in the zebrafish**

1142 **gut.** Live imaging of a single optical plane in the intestinal midgut of a 6 dpf larval

1143 zebrafish inoculated at 4 dpf with GFP-labeled *Vibrio*. Scale bar: 50 μ m.

1144

1145 **S2 Movie. Example of *Vibrio* space filling properties.** Three-dimensional scan

1146 through the intestinal bulb of a 5 dpf larval zebrafish inoculated at 4 dpf with GFP-

1147 labeled *Vibrio*. Scale bar: 50 μ m.

1148

1149 **S3 Movie. Example of *Vibrio* resistance to intestinal contractions.** Time-series is of

1150 a single optical plane in the intestinal bulb of a 6 dpf larval zebrafish inoculated at 4 dpf

1151 with GFP-labeled *Vibrio*. A subpopulation of *Vibrio* can be seen aggregating in the

1152 anterior bulb despite repeated intestinal contractions. Scale bar: 50 μ m. Movie was

1153 recorded at 1 frame per second.

1154

1155 **S4 Movie. Example of the non-motile and clustered behavior of *Aeromonas* in the**

1156 **zebrafish gut.** Live imaging of a single optical plane in the intestinal midgut of a 6 dpf

1157 larval zebrafish inoculated at 4 dpf with dTomato-labeled *Aeromonas*. Scale bar: 50 μ m.

1158

1159 **S5 Movie. Spatial distribution of *Aeromonas* in the zebrafish gut.** Three-

1160 dimensional scan through the intestinal bulb and midgut of a 5 dpf larval zebrafish

1161 inoculated at 4 dpf with dTomato-labeled *Aeromonas*. Bacterial clusters, individual

1162 bacteria (circled), and autofluorescent signals from intestinal mucus (gray haze) are
1163 indicated. Scale bar: 50 μ m.

1164

1165 **S6 Movie. Example of an *Aeromonas* collapse event during *Vibrio* challenge.**

1166 Time-series is of maximum intensity projections of images taken from the same larval
1167 zebrafish shown in Fig 3A. The fish was initially colonized at 4 dpf with *Aeromonas*
1168 (magenta), challenged 24 hours later by inoculation with *Vibrio* (cyan), and then imaged
1169 every 20 minutes for 14 hours. Times indicate hours post-challenge. The region shown
1170 spans about 80% of the intestine, with the anterior on the left. Image contrast in both
1171 color channels is enhanced for clarity. Yellow dotted line roughly indicates the luminal
1172 boundary of the intestine; the two bacterial fluorescence channels are overlaid inside
1173 this region. Scale bar: 200 μ m.

1174

1175 **S7 Movie. Example of *Aeromonas* sensitivity to intestinal contractions.** Time-
1176 series is of a single optical plane in the intestinal midgut of a 6 dpf larval zebrafish
1177 inoculated at 4 dpf with dTomato-labeled *Aeromonas*. Scale bar: 50 μ m. Movie was
1178 recorded at 1 frame per second.

1179

1180 **S8 Movie. Example of intestinal motility in a wild-type larval zebrafish.** Differential
1181 interference contrast (DIC) microscopy video of intestinal motility in a conventionally
1182 raised 6 dpf wild-type larval zebrafish. Scale bar: 50 μ m.

1183

1184 **S9 Movie. Example of intestinal motility in a *ret* mutant larval zebrafish.** Differential
1185 interference contrast (DIC) microscopy video of intestinal motility in a conventionally
1186 raised 6 dpf *ret* mutant larval zebrafish. Scale bar: 50 μ m.