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Abstract 30 

The gut microbiota is a complex consortium of microorganisms with the ability to 31 

influence important aspects of host health and development. Harnessing this ‘microbial 32 

organ’ for biomedical applications requires clarifying the degree to which host and 33 

bacterial factors act alone or in combination to govern the stability of specific lineages. 34 

To address this we combined bacteriological manipulation and light sheet fluorescence 35 

microscopy to monitor the dynamics of a defined two-species microbiota within the 36 

vertebrate gut. We observed that the interplay between each population and the gut 37 

environment produced distinct spatiotemporal patterns. Consequently, one species 38 

dominates while the other experiences dramatic collapses that are well fit by a 39 

stochastic mathematical model. Modeling revealed that bacterial competition could only 40 

partially explain the observed phenomena, suggesting that a host factor is also 41 

important in shaping the community. We hypothesized the host determinant to be gut 42 

motility, and tested this mechanism by measuring colonization in hosts with enteric 43 

nervous system dysfunction due to mutation in the Hirschsprung disease locus ret. In 44 

mutant hosts we found reduced gut motility and, confirming our hypothesis, robust 45 

coexistence of both bacterial species. This study provides evidence that host-mediated 46 

spatial structuring and stochastic perturbation of communities along with bacterial 47 

competition drives population dynamics within the gut. In addition, this work highlights 48 

the capacity of the enteric nervous system to affect stability of gut microbiota 49 

constituents, demonstrating that the ‘gut-brain axis’ is bidirectional. Ultimately, these 50 

findings will help inform disease mitigation strategies focused on engineering the 51 

intestinal ecosystem.  52 
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INTRODUCTION 53 

Trillions of microbial cells representing hundreds of species make up the human 54 

intestinal microbiota. This multispecies symbiont supports activities as diverse as host 55 

development, nutrient acquisition, immune system education, neural function, and 56 

defense against pathogens [1-5]. Changes in microbiota diversity and functional 57 

composition have been linked with a variety of human disorders, including obesity, 58 

colon cancer, opportunistic infection, and inflammatory bowel disease [6, 7]. A major 59 

goal of host-microbe systems biology is to clarify the ecological factors that determine 60 

microbiota integrity by meshing experimental techniques and quantitative modeling. 61 

Insights derived from such efforts will inspire the design of novel therapeutic strategies 62 

for microbiota-associated diseases.  63 

An unresolved question is whether the host and microbiota function 64 

independently or together to govern the dynamics and stability of individual bacterial 65 

lineages. Addressing this requires identifying the interactions that arise within the 66 

spatially complex and heterogeneous environment of the vertebrate gut. However, 67 

progress toward this goal has been hindered due to the technical limitations associated 68 

with directly observing intestinal communities. Typical interrogation of vertebrate 69 

intestinal microbiota involves phylogenetic profiling of fecal material using high-70 

throughput sequencing of 16S ribosomal RNA (rRNA) genes. This technique is blind to 71 

the spatial structure of microbial communities, which is known in general to strongly 72 

influence interactions [8-10] and has recently been predicted to be important for 73 

microbiota stability [11]. Sequencing-based studies also have low sensitivity to temporal 74 

structure owing to both experimental and analytic constraints. Experimentally, 75 
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metagenomic time-series data remain rare and cannot reach the sampling frequencies 76 

necessary to capture interactions occurring at the timescales of microbial division or 77 

intestinal flux. Analytically, sequencing data yield only relative, rather than absolute, 78 

taxonomic abundances, which severely confounds the inference of interaction networks 79 

[12, 13]. Furthermore, such methods to date have employed deterministic Lotka-80 

Volterra models [12, 14, 15] that, even with noise terms representing measurement 81 

error, neglect the possibility of fundamentally stochastic or discontinuous interactions 82 

among constituents. 83 

Because our knowledge of the factors that shape interactions within host-84 

associated ecosystems is incomplete, contemporary theoretical models have been 85 

forced to rely on assumptions that may not realistically mirror microbe-microbe and 86 

host-microbe relationships. For example, biochemical and physical inputs from the 87 

animal host that likely act on microbial constituents are often ignored [16]. It is important 88 

to unravel the extent to which microbiota integrity is simply an intrinsic property of the 89 

microbes, which could be recapitulated in vitro with co-culture experiments or in silico 90 

with bacterial metabolic network models, or an emergent property of the host-microbe 91 

system. Developing accurate accounts of the ecological interactions that manifest within 92 

the gut will require model systems that enable manipulation of microbial colonization 93 

and measurement methods that can characterize microbial populations in vivo with high 94 

spatial and temporal resolution [17]. 95 

Toward this end, we employ here larval zebrafish as a model vertebrate host 96 

coupled with light sheet fluorescence microscopy (LSFM) [18] as a minimally invasive 97 

interrogation method to examine population dynamics within a defined gut microbiota. 98 
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Zebrafish larvae are highly amenable to gnotobiotic techniques and can be reared 99 

germ-free (GF) in large numbers [19]. At four days post-fertilization (dpf) larvae possess 100 

an open and functional digestive tract that is permissive to microbial colonization, the 101 

timing of which is controlled by adding bacteria to the water column. Importantly, larval 102 

zebrafish share many physiological traits with humans, including aspects of innate 103 

immunity, neurological development, and intestinal function [20]. Therefore, interactions 104 

between zebrafish and their microbial symbionts are expected to reflect analogous 105 

interactions that occur in other vertebrates. LSFM, combined with the optical 106 

transparency of larval zebrafish, enables three-dimensional visualization of the entire 107 

intestine with single-bacterium resolution, rapid image acquisition to avoid blurring due 108 

to intestinal motility, and extended live imaging with low phototoxicity [21, 22]. This 109 

experimental setup provides an unprecedented opportunity to investigate ecological 110 

interactions within the vertebrate intestine at a range of spatial and temporal scales. 111 

With this model system we found that an apparent competitive interaction 112 

between two species native to the zebrafish gut, Aeromonas veronii and Vibrio 113 

cholerae, is characterized by sudden and catastrophic collapses of the Aeromonas 114 

population, which appear to be driven by mechanical forces related to host intestinal 115 

motility. The differential behavior of these two species can be explained by their distinct 116 

biogeography and community architecture within the intestine. Further mapping of 117 

Aeromonas-Vibrio dynamics motivated a quantitative stochastic model with parameters 118 

that could be independently derived from traditional abundance measurements and 119 

image-based time-series analysis. Ultimately, this model allowed us to predict the 120 

consequences of altering the host environment through genetic disruption of the enteric 121 
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nervous system (ENS) via a mutation in ret, a gene locus associated with human 122 

Hirschsprung disease (OMIM 164761), which stabilized the Aeromonas population and 123 

neutralized competition with Vibrio. This work reveals a synergy between bacterial 124 

competition and host-mediated spatial structuring of microbiota in determining 125 

population dynamics and stability—a feature that is likely mirrored in more complex 126 

host-microbe systems such as the human gut.   127 
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RESULTS 128 

Aeromonas and Vibrio exhibit an apparent competitive interaction in the zebrafish 129 

gut. 130 

The intestinal microbiota of larval zebrafish is dominated by bacterial lineages 131 

belonging to the Gammaproteobacteria [23, 24]. In a prior investigation we found that 132 

two representative isolates native to the zebrafish intestinal tract, Aeromonas veronii 133 

strain ZOR0001, hereafter referred to as Aeromonas, and a Vibrio strain, ZWU0020, 134 

similar in 16S rRNA gene sequence to Vibrio cholerae and hereafter referred to as 135 

Vibrio, exhibit an apparent negative interaction in GF larval zebrafish, with populations 136 

of Aeromonas that were several orders of magnitude lower in di-associations with Vibrio 137 

than in mono-associations [25]. Interestingly, only a modest suppression was observed 138 

in in vitro competition experiments [25]. To begin to untangle the importance of host and 139 

bacterial factors in facilitating the in vivo interaction between Aeromonas and Vibrio, we 140 

used a succession assay in which GF larval zebrafish were first colonized by 141 

Aeromonas to high abundance, and then challenged by invading populations of Vibrio 142 

(Fig 1A). 143 

  144 
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 145 

Fig 1. Aeromonas and Vibrio exhibit an apparent competitive interaction within 146 

the larval zebrafish intestine. (A) Graphical overview of succession schemes used to 147 

characterize Aeromonas-Vibrio interactions. Aeromonas is allowed to colonize GF 148 

larvae at 4 dpf followed by addition of Vibrio to the water column at 5 or 6 dpf for 24 or 149 

48 hours prior to enumeration of abundances by dissection and serial plating 150 

techniques. (B, left) Aeromonas abundances after different mono-association durations 151 

and (B, right) Aeromonas and Vibrio abundances after different Vibrio challenge 152 

periods. Statistical significance of Aeromonas abundances after Vibrio challenge 153 
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compared to respective mono-association reference populations (i.e. ‘5-6’ vs. ‘4-6’; ‘6-7’ 154 

vs. ‘4-7’; ‘5-7’ vs. ‘4-7’) was determined by an unpaired t-test. (C) Time course analysis 155 

of Aeromonas and Vibrio abundances determined by dissection and plating at three-156 

hour intervals over a 12-hour period starting at 6 dpf. Additionally plotted are an 157 

Aeromonas mono-association reference population and 24 hour Aeromonas and Vibrio 158 

populations previously plotted in 1B (‘4-6’ and ‘6-7’, respectively). Statistical significance 159 

of Aeromonas abundances to the mono-association reference population (ref.) was 160 

determined by an unpaired t-test. CFU=colony-forming units; ***=p<0.0001; ns=not 161 

significant; N>19/condition. Gray and black dashed lines in panels B and C denote limits 162 

of quantification and detection, respectively. 163 

 164 

We first enumerated total bacterial abundance by gut dissection and standard 165 

plating techniques. In mono-associations beginning at 4 dpf and extending 24, 48, or 72 166 

hours Aeromonas populations consistently reach 104 colony-forming units (CFU) per 167 

host (Fig 1B). In contrast, challenge of established Aeromonas populations with Vibrio 168 

over various 24 or 48 hour temporal windows leads to dramatically lower Aeromonas 169 

abundance as well as increased host-to-host variation and frequent extinction events 170 

(Fig 1B). Under these conditions Vibrio exhibits only modest deviations in abundance 171 

compared to mono-association (S1A and S1B Fig). Of note, Aeromonas populations are 172 

not destabilized upon self-challenge by newly introduced Aeromonas, and Vibrio does 173 

not induce collapses in established Vibrio populations (S1C and S1D Fig). These results 174 

indicate that subsequent waves of colonizing bacteria alone do not account for the 175 

observed competitive interaction and that it is inter-specific in nature. We also verified 176 
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that competition between Aeromonas and Vibrio is dependent on the host environment, 177 

as there was not an appreciable difference between their abundances during in vitro 178 

mono- and co-culture experiments (S1E Fig). To determine if the abundance of Vibrio 179 

correlates with a reduction of Aeromonas populations in vivo, we performed a time 180 

course experiment in which zebrafish were sacrificed and assayed every 3 hours for 12 181 

hours after inoculation with Vibrio. We found that Vibrio rapidly infiltrates Aeromonas-182 

colonized intestines and steadily increases in number over the 12-hour assay period 183 

(Fig 1C). Surprisingly, we did not detect a concomitant decline in Aeromonas, implying 184 

that Aeromonas populations do not merely respond proportionally to the abundance of 185 

Vibrio (Fig 1C).  186 

 187 

Aeromonas population dynamics are altered during Vibrio challenge. 188 

To further explore the interactions driving Aeromonas-Vibrio competition, we 189 

turned to LSFM. Imaging fluorescently marked variants of each species during mono-190 

association revealed that they have noticeably different intestinal biogeographies and 191 

behavior (Fig 2). Populations of Vibrio largely comprise planktonic, highly motile cells 192 

that appear capable of sampling all available regions within the intestine (S1, S2, and 193 

S3 Movie). Quantifying the bacterial density along the anterior-posterior axis (Methods), 194 

we find that Vibrio is most abundant in the anterior bulb (Fig 2B and 2C), with an 195 

overabundance within several micrometers of the epithelial wall that may be the result 196 

of hydrodynamic interactions (S2 Fig) [26]. In contrast, Aeromonas is most abundant in 197 

the midgut and largely takes the form of dense, non-motile clusters with a smaller 198 

subpopulation of motile individuals (Fig 2D and 2E; S4 and S5 Movie). 199 
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 200 

Fig 2. Vibrio and Aeromonas have distinct community architectures and 201 

biogeographies within the larval zebrafish intestine. (A) A larval zebrafish at 5 dpf; 202 

the intestine is highlighted by phenol red dye via microgavage [61]. Scale bar: 500 µm. 203 

(B) A maximum intensity projection (MIP) of Vibrio in the larval intestine. Scale bar: 100 204 

µm. (C) The probability density of Vibrio along the intestinal axis. From (B) and (C), we 205 

see that Vibrio is predominantly localized in the anterior bulb. (D) MIP of Aeromonas in 206 

the larval intestine. Scale bar: 100 µm. (E) The probability density of Aeromonas along 207 

the intestinal axis. (D) and (E) show that Aeromonas is predominantly localized in the 208 

midgut, with a smaller population in the anterior bulb. 209 

 210 
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To identify the temporal dynamics of the two-member community, we performed 211 

in vivo live imaging experiments using LSFM starting approximately 2 hours following 212 

the challenge of established Aeromonas populations with Vibrio. Three-dimensional 213 

images spanning the intestine were obtained for each species for durations of roughly 214 

12-15 hours at 20-minute intervals, which is shorter than each species’ approximate 215 

one-hour doubling time (Methods). Fig 3A shows maximum intensity projections of 216 

Aeromonas and Vibrio in a representative larval zebrafish intestine at three time points 217 

spanning a four-hour interval (S6 Movie). The abundance of each species over several 218 

hours is plotted in Fig 3B and 3C for two fish, representative of twelve fish that we 219 

examined. Similar population abundance plots for all zebrafish are provided in S3 Fig. 220 

We found that Vibrio populations smoothly expand and exhibit a growth rate of 0.8 ± 0.3 221 

hr.-1 (mean ± std. dev.), similar to that derived from plating data (0.60 ± 0.22 hr.-1, Fig 222 

1C). Strikingly, growth of Aeromonas populations is sporadically interrupted by dramatic 223 

collapse events, dropping in abundance by multiple orders of magnitude within an hour 224 

(Fig 3A, 3B, and 3C). 225 

  226 



 

 14 

 227 

Fig 3. Aeromonas populations experience collapse events during Vibrio challenge 228 

and mono-association. (A) MIPs of Aeromonas (magenta) and Vibrio (cyan) in a larval 229 

zebrafish intestine. Scale bar: 200 µm. The fish was initially colonized at 4 dpf with 230 

Aeromonas, challenged 24 hours later by inoculation with Vibrio, and then imaged every 231 

20 minutes for 14 hours. The times indicated denote hours post-challenge. In all 232 
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images, the region shown spans about 80% of the intestine, with the anterior on the left. 233 

Image contrast in both color channels is enhanced for clarity. Yellow dotted line roughly 234 

indicates the lumenal boundary. As time progresses, the anterior growth of Vibrio as 235 

well as abrupt changes in the Aeromonas distribution (arrows) are evident.  (B,C) Total 236 

bacterial abundance, derived from image data, for Aeromonas and Vibrio in two 237 

representative fish inoculated and challenged as in panel A, as a function of time 238 

following the Vibrio inoculation. Sharp drops of over an order of magnitude in the 239 

Aeromonas population, but not the Vibrio population, are evident. (D,E) Total 240 

abundance for Aeromonas in mono-associations as a function of time post-inoculation, 241 

in two representative fish. Collapses are also observed, though in general the 242 

populations recover to approximately pre-collapse levels. (F) The ratio, f, of the post-243 

collapse to the pre-collapse population for Aeromonas challenged by Vibrio, which span 244 

many orders of magnitude (horizontal axis). At the same time points, the Vibrio 245 

populations are essentially unchanged, with ratios of post- to pre-collapse populations 246 

close to one (vertical axis). (G) Characteristics of Aeromonas population collapses. 247 

Circles and bars indicate the mean and standard deviation, respectively, of f and pc, the 248 

rate of collapse occurrence, for both mono-associations and Aeromonas challenged by 249 

Vibrio. The dashed line at f = 0.1 indicates the threshold for identification of collapses. 250 

 251 

To determine if Aeromonas collapses occur in the absence of Vibrio, we 252 

examined live imaging data of Aeromonas mono-associations over a similar time frame. 253 

We detected clear instances of Aeromonas population collapses under these conditions 254 

(Fig 3D and 3E). However, in contrast to Vibrio-associated collapses, Aeromonas was 255 
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found to consistently recover from collapses during mono-association. Additionally, 256 

Aeromonas collapse events associated with mono-association were smaller and more 257 

uniform. Defining collapses as events in which the population decreases by at least a 258 

factor of ten within one hour, and assigning their magnitude f as the ratio of the 259 

population after collapse to that before, we find that for Aeromonas challenged by 260 

Vibrio, log10(f) = -1.9 ± 1.0 (mean ± std. dev.) (Fig 3F and 3G). The ratio of the Vibrio 261 

population before and after Aeromonas collapse events within the same fish is 262 

approximately 1 (Fig 3F), corroborating observations from imaging and plating data that 263 

Vibrio is resistant to the perturbations that affect Aeromonas. We found that during 264 

Aeromonas mono-associations the magnitude of collapse events was about half of that 265 

observed in the presence of Vibrio, log10(f) = -1.6 ± 0.4 (Fig 3G). We also detected a 266 

greater rate of Aeromonas collapses during Vibrio challenge. Estimating the collapse 267 

probability per unit time, pc, as the total number of collapses in all fish divided by the 268 

total observation time, we find pc = 0.10 ± 0.03 hr.-1 during Vibrio challenge and pc = 269 

0.04 ± 0.01 hr.-1 during Aeromonas mono-associations (Fig 3G), where the uncertainties 270 

are estimated by assuming an underlying Poisson process. 271 

 272 

Aeromonas and Vibrio are differentially resistant to intestinal motility.  273 

We next inspected the spatial structure and dynamics of each species to uncover 274 

clues regarding possible factors driving Aeromonas collapses. A conspicuous feature of 275 

the larval zebrafish intestine, like most animal intestines, is that it undergoes periodic 276 

contractions that propagate along its length. We found that Vibrio populations, being 277 

made up of motile, planktonic individuals, are almost completely unaffected by the 278 
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mechanics of intestinal motility (Fig 4A). Like a liquid filling its container, populations of 279 

Vibrio quickly adapt to the contracting and expanding space with surprisingly little 280 

change in their distribution (Fig 4B; S3 Movie). In contrast, the rigid and largely non-281 

motile clusters of Aeromonas, localized to the narrow midgut, are strongly affected by 282 

intestinal contractions (Fig 4C and 4D; S7 Movie). These observations support the 283 

hypothesis that forces exerted on this two-member community by intestinal motility give 284 

rise to rare and stochastic expulsion of Aeromonas while leaving Vibrio unperturbed. 285 

Corroborating this notion, we indeed observe posterior transport of Aeromonas in 286 

collapse events during live imaging experiments (Fig 3A; S6 Movie). 287 

 288 

 289 

Fig 4. Aeromonas and Vibrio exhibit different dynamics within the zebrafish 290 

intestine. (A) An optical section of Vibrio mono-associated with a larval zebrafish, 291 

showing the anterior bulb region. The population consists of discrete, highly motile 292 

individuals. (B) A montage of images from a time-series of Vibrio in the bulb, during 293 

which the overall distribution of the population remains stable. Time between frames: 1 294 

second. (C) An optical section of the midgut of Aeromonas mono-associated with a 295 

larval zebrafish. Dense clusters are evident. (D) A montage of images from a time-296 

series of Aeromonas in the midgut, during which the overall distribution of the 297 

population changes considerably. Time between frames: 1 second. Scale bars: 50 µm. 298 
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 299 

Aeromonas collapses occur with or without the presence of Vibrio, but these 300 

collapses have different significance in the two cases for the overall Aeromonas 301 

abundance. One can imagine several possible explanations for this. We first asked 302 

whether the growth rate of Aeromonas post-collapse is lower if Vibrio is present. The 303 

data show that this is not the case. Mono-associated Aeromonas have a post-collapse 304 

growth rate of 0.74 ± 0.1 hr.-1 (mean ± std. dev., N=5 collapses), whereas Vibrio-305 

challenged Aeromonas have 0.64 ± 0.2 hr.-1 (N=4 collapses). We next asked whether 306 

the presence of Vibrio leads to changes in the mechanics of intestinal motility. To test 307 

this, we imaged intestinal motility in larval zebrafish using differential interference 308 

contrast microscopy (DIC) [27] and calculated the dominant period and amplitude of 309 

intestinal contractions. Comparing GF fish with Vibrio or Aeromonas mono-associated 310 

fish, or fish in which Aeromonas is challenged after 24 hours by Vibrio, there is no 311 

notable difference in period or amplitude (S4 Fig). The consequences of intestinal 312 

motility on Aeromonas collapse properties are clearly different in the mono-association 313 

and challenge cases, however, as indicated by changes in collapse magnitudes and 314 

rates (f and pc). We also note that during challenge experiments, the gross spatial 315 

distribution of Vibrio is similar to its distribution during mono-association, while there is 316 

considerable broadening in the spatial distribution of Aeromonas when challenged (S5 317 

Fig). Finally, a conceptually minimal model of interaction is that with Vibrio present, the 318 

resources available to Aeromonas post-collapse are less than with Vibrio absent, 319 

thereby placing a limit on its potential for recovery. We assess this possibility 320 
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quantitatively below by estimating carrying capacities, and we also examine the 321 

synergistic consequences of changes to the carrying capacity and collapse properties. 322 

 323 

Synergy between stochastic collapse events and competition with Vibrio 324 

underlies Aeromonas population dynamics. 325 

Thus far our data suggest that Aeromonas is susceptible to stochastic 326 

disturbances mediated by host intestinal motility, and that its recovery from these 327 

disturbances is altered in the presence of Vibrio. If this is the case, we should be able to 328 

build a quantitative model that reflects these data, explains the high variance observed 329 

in plating assays (Fig 1), and offers insights into the differential outcomes between 330 

mono-association and challenge experiments. The model we construct is illustrated 331 

schematically in Fig 5. Consider a bacterial species exhibiting logistic growth, with 332 

growth rate r and carrying capacity K (Fig 5A and 5B); in other words, the population N 333 

grows with time t according to:  334 

𝑑𝑁(𝑡)
𝑑𝑡 = 𝑟𝑁 𝑡 1−

𝑁(𝑡)
𝐾 . 

Superimposed on this are rare collapses, during which the population drops to f times 335 

its pre-collapse value, where f is between 0 and 1, and after which it resumes logistic 336 

growth (Fig 5C). The collapses are stochastic and modeled as Poisson processes; i.e. 337 

they occur at random with some probability per unit time pc (Fig 5D). This model arises 338 

in many ecological contexts, and some of its mathematical properties have been 339 

explored in various studies [28]. Of course, this model incorporates stochastic 340 

population collapses by construction, and so does not predict them from first principles. 341 

However, the parameter values that emerge from fitting such a model to the data can, 342 
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as shown below, yield quantitative insights into the mechanisms underlying the 343 

observed dynamics that are not evident from mere visual inspection of the raw data. 344 

 345 

 346 

Fig 5. Schematic of a model of growth punctuated by collapses. (A) The model is 347 

based on simple logistic growth, which is characterized by two parameters, the growth 348 

rate, r, and carrying capacity, K. (B) We also include a parameter characterizing 349 

variability in the carrying capacity. Stochastic collapses are governed by two 350 

parameters: (C) the fraction of the population remaining after a collapse, f, and (D) the 351 

probability per unit time of a collapse, pc. 352 

 353 

Simulating ensembles of populations that exhibit the above dynamics, we 354 

examine the mean and, importantly, the standard deviation of the population at discrete 355 

terminal time points, as these are statistics that allow direct comparison to results from 356 

plating assays. As shown in detail in the Supporting Text (S1 Text), the apparent 357 

dependence of the model on the parameters, r, K, pc, and f, collapses to two effective 358 
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parameters. The growth rate, r, is both independently known and irrelevant for the 359 

conditions considered, and the dynamics depend on the combination z = -pc log10(f) 360 

rather than on pc and f independently. Values of the two remaining relevant parameters, 361 

K and z, which characterize the carrying capacity and the collapse dynamics, 362 

respectively, determine the model predictions for the mean and variance of populations. 363 

A grid search through the (K, z) space for the values that minimize the distance 364 

between the predicted and observed Aeromonas population statistics gives the best-fit 365 

model parameters. Additional details and discussion are provided in the Supporting Text 366 

(S1 Text). It is important to note that because our imaging data revealed that 367 

Aeromonas is often in a state of experiencing or recovering from collapse events, the 368 

observed population is likely never close to K, and thus we cannot simply use the mean 369 

of the bacterial abundance to estimate K. Rather, we must use a model to infer the 370 

carrying capacity that would yield the observed populations. 371 

Using Aeromonas abundance data obtained by gut dissection and plating 24 372 

hours post Vibrio challenge (Fig 1B, ‘6-7’), we find best-fit parameters log10(K) = 3.2 ± 373 

0.5 and z = 0.13 ± 0.05 hr.-1, the latter providing a constraint on pc and f together. We 374 

can independently estimate pc and f from imaging-derived data (Fig 3). As noted 375 

previously, for Aeromonas challenged by Vibrio, we find pc = 0.10 ± 0.03 hr.-1 and 376 

log10(f) = -1.9 ± 0.3 (mean ± std. error), yielding z = 0.19 ± 0.06 hr.-1, which is consistent 377 

with the plating-derived value. The agreement between the separately determined 378 

measures of z is remarkable, as it indicates that the statistical properties inferred from 379 

an ensemble of populations at a discrete time point are consistent with the properties 380 

inferred from the temporal dynamics within individual hosts. As expected, log10(K) is 381 
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greater than the observed mean Aeromonas abundance at 24 hours, since the model-382 

derived K represents an upper bound for the population in the absence of any 383 

stochastic collapses or Vibrio competition. As another test of consistency, we note that 384 

simulating our stochastic model for 48 hours post-challenge using the best-fit 385 

parameters determined from plating experiments 24 hours post-challenge predicts a 386 

mean and standard deviation of log10(population+1) of 1.3 ± 0.3 and 1.5 ± 0.2, 387 

respectively, in agreement with the observed plating values of 1.7 ± 0.3 and 1.6 ± 0.3 388 

(Fig 1B). All of these assessments support the conclusion that the observed population 389 

dynamics are governed by a mechanism of stochastic collapse.  390 

 We can also apply this model to Aeromonas mono-association data. Here, the 391 

variance of the plating-derived populations is small (Fig 1B), likely due to comparatively 392 

rare and/or weak collapses as discussed earlier. For reasons described in detail in the 393 

Supporting Text, this hinders robust determination of z, though K remains well fit. We 394 

find that z = 0.01 ±  0.01 hr.-1 and log10(K) = 4.2 ± 0.1. From live imaging data, pc = 0.04 395 

± 0.01 hr.-1 and log10(f) = -1.6 ± 0.2, from which z = 0.06 ± 0.02 hr.-1 (S1 Text). Our 396 

identification of thresholds is, by construction, only sensitive to collapses of a factor of 397 

10 or more in magnitude (i.e. log10(f) ≤ -1), so our estimate of f, and therefore z, is 398 

biased toward larger values. 399 

 The above analysis yields insights into the nature of the competition between 400 

Aeromonas and Vibrio that are not obvious from simple visual inspection of the data. 401 

The carrying capacity (K) experienced by Aeromonas, as estimated by our model, is 402 

only one order of magnitude lower in the presence of Vibrio (log10(K) = 3.2 ± 0.5) than 403 

when Vibrio is absent (log10(K) = 4.2 ± 0.1). However, the observed abundance of 404 
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Aeromonas is suppressed by more than two orders of magnitude: 405 

mean(log10(population+1)) = 1.7 ± 0.3 and 4.1 ± 0.1 when challenged by Vibrio and 406 

mono-associated, respectively (Fig 1B). These results suggest that the combined effect 407 

of stochastic collapses, which are likely driven by the host environment, and a reduced 408 

carrying capacity, as a result of competition with Vibrio, has a far greater influence on 409 

population dynamics than either mechanism would provide alone. 410 

  411 

Mutant hosts lacking enteric nervous system function stabilize Aeromonas in the 412 

face of Vibrio challenge. 413 

Together, our experimental data and quantitative predictions indicate that a 414 

synergy between competition with Vibrio and host-mediated stochastic disturbances 415 

underlies the destabilization of Aeromonas populations within the larval zebrafish 416 

intestine. Our model predicts that if the host factor intestinal motility were reduced, 417 

Aeromonas populations would be more stable despite the presence of Vibrio. To test 418 

this hypothesis, we carried out succession assays in mutant zebrafish hosts essentially 419 

lacking a functional enteric nervous system (ENS) because of disruption of the gene 420 

encoding the Ret tyrosine kinase, which is critical for ENS development [29]. Using DIC 421 

microscopy to assess intestinal motility, we found that ret mutant larvae (ret-/-) still 422 

exhibit rhythmic contractions, but with different characteristics than wild-type (ret+/+) and 423 

heterozygous siblings (ret+/-) (S8 and S9 Movie). Because we observed that ret+/+ and 424 

ret+/- animals are phenotypically similarity with regard to gut motility and that the 425 

ret1hu2846 mutant allele is recessive we further designate ret+/+ and ret+/- as ‘wild type’. 426 

Computational analysis of time-series DIC images allows quantification of the 427 
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displacement of intestinal tissue during contractile waves (Methods). The average peak 428 

amplitude of longitudinal contractions is greater in wild-type than in ret mutant larvae, 429 

and in both genotypes declines with age (Fig 6A). At 6 dpf a considerable fraction of ret 430 

mutant larvae show low amplitudes, similar to the quiescent state observed in both 431 

genotypes at 7 dpf (Fig 6A). Though the amplitude of intestinal contractions might not 432 

be directly related to the magnitude or rate of Aeromonas collapse events, it is 433 

reasonable to expect some monotonic relationship between the two, as they both reflect 434 

intestinal activity. Therefore, we would expect to observe stabilization of Vibrio-435 

challenged Aeromonas populations in ret mutant hosts only during challenge periods 436 

starting at 6 dpf when the difference in intestinal motility between the genotypes is 437 

greatest. Indeed, Vibrio challenge of established Aeromonas populations between 5 and 438 

6 dpf yielded the same decrease in Aeromonas abundance in both ret mutant hosts and 439 

wild types (Fig 6B). In contrast, Aeromonas populations were significantly stabilized 440 

during Vibrio challenge from 6 to 7 dpf in ret mutant hosts and in fact were statistically 441 

indistinguishable from a reference Aeromonas mono-association (Fig 6B). These results 442 

provide strong evidence that ENS-driven intestinal motility contributes to the shaping of 443 

this model two-member community by facilitating their apparent competitive interaction. 444 

  445 
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 446 

Fig 6. Intestinal motility and bacterial competition are altered in ret mutant 447 

zebrafish hosts. (A) Amplitudes of periodic contraction along the intestine for wild-type 448 

and ret mutant zebrafish at various ages. Circles indicate medians and bars indicate 449 

first and third quartiles. (B) GF wild-type and ret heterozygous hosts (wt) were raised 450 

together with ret homozygous mutant hosts (ret) and colonized at 4 dpf with 451 

Aeromonas. At 5 (left) or 6 (right) dpf Vibrio was added to the water column for 24 hours 452 

prior to whole gut dissection and serial plating to enumerate bacterial abundances. 453 

Additionally plotted are respective Aeromonas mono-association reference (ref.) 454 

populations from Fig 1B (left, ‘4-6’; right, ‘4-7’). The difference between Aeromonas 455 

abundance during challenge and mono-association was determined by an unpaired t-456 

test. CFU=colony-forming units; ***=p<0.0001; ns=not significant; N>18/condition. Gray 457 

and black dashed lines denote limits of quantification and detection, respectively.   458 
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DISCUSSION 459 

A better understanding of the factors that influence the dynamics and stability of host-460 

associated microbial communities would allow insights into their assembly [30-32], 461 

fluctuations during periods of normal health [12, 14, 15, 33, 34], and responses to 462 

perturbation [35, 36], as well as aid the development of diagnostic and treatment 463 

strategies for human diseases [17]. Building a working knowledge of these processes 464 

has been impeded by the technical difficulties associated with examining bacterial 465 

populations within their native host environments. In humans, the approach generally 466 

taken has been to infer inter-species interactions from coarsely sampled sequencing-467 

based metagenomic time-series experiments performed on fecal samples [12-14, 34, 468 

37]. However, such procedures largely disregard spatial information and generally 469 

assume particular functional forms for interactions (e.g. deterministic Lotka-Volterra 470 

dynamics [12, 14, 15]). Moreover, measurement noise and missing information about 471 

absolute abundances in metagenomic data place severe limits on the quantitative 472 

determination of interaction strengths, even if the models are accurate descriptors of the 473 

microbial systems [12]. Therefore, basic questions regarding inter-species competition 474 

in the intestine, particularly the extent to which it is determined by the microbes 475 

themselves, properties of the host environment, or a combination of the two, remain 476 

largely unanswered. 477 

 For these reasons we set out to investigate bacterial population dynamics within 478 

the vertebrate intestine using a combination of absolute abundance measurements, 479 

time-series imaging, and quantitative modeling. Though our system is minimal, 480 

consisting of two bacterial species and a larval zebrafish host, it has revealed factors we 481 
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expect to be of broad relevance to other animal-associated microbiota. Most notably, in 482 

this model system the emergence of the apparent competition between Aeromonas and 483 

Vibrio is driven in large part by the physical activity of the host, namely the motility of the 484 

intestine. In mutant zebrafish hosts that have reduced intestinal motility due to mutation 485 

of the gene ret, which impairs ENS development and function, competition between 486 

these bacterial species is offset (Fig 6). Motility and mass transport are, of course, key 487 

attributes of animal intestinal tracts. The finding that the mechanical nature of the host 488 

environment has a major role in shaping bacterial communities suggests that models of 489 

microbiota based on in vitro competition assays or modeling of metabolic networks [16, 490 

38] will, by themselves, be insufficient for predicting and accurately describing 491 

community structure and dynamics. This is in line with the recent observation that 492 

dietary alteration of intestinal transit in a murine model can lead to compositional shifts 493 

in the gut microbiota [39]. Moreover, it provides a mechanism by which host genotype 494 

can influence community composition. Corroborating this notion, human patients with 495 

Hirschsprung disease, which is a gastrointestinal motility disorder commonly associated 496 

with mutation of ret, have been found to harbor dysbiotic microbial communities [40, 41]. 497 

The differential susceptibility of our two model bacterial species to intestinal 498 

motility can be explained by their distinct community architectures. Highly motile Vibrio 499 

are relatively unaffected by intestinal contractions, which is in contrast to the large, non-500 

motile aggregates of Aeromonas (Fig 4). Earlier observations of a related A. veronii 501 

strain showed higher growth rates for aggregated bacteria compared to planktonic [21], 502 

suggesting a tradeoff between enhanced growth and resistance to population level 503 

perturbations. In general, we suspect that the spatial structure of microbial communities 504 
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within the intestine will be an important determinant of their dynamics and a key 505 

consideration for the generation of successful predictive models.  506 

We are able to construct a quantitative model of the observed Aeromonas 507 

dynamics that consists of growth punctuated by stochastic collapses. Data derived from 508 

gut dissection, in which many fish are sampled at a single time point, can be fit to the 509 

model to determine its two relevant parameters, the bacterial carrying capacity, K, and a 510 

factor that characterizes the collapses, z. In itself, this is trivial. However, we can also 511 

determine z from independent, and quite different, data, namely image-based time-512 

series of individual fish. The two measures agree, which provides strong support for the 513 

proposed stochastic-collapse-driven model of inter-species competition. Furthermore, 514 

the fit of the model to the data reveals that the impact of Vibrio on Aeromonas 515 

populations is twofold: reducing the overall carrying capacity and increasing sensitivity 516 

to physical perturbations—the combined effect of the two being much greater than 517 

either alone. More generally, our analysis provides evidence that quantitative, data-518 

based models of interactions among species within the gut are possible, and that 519 

stochastic, rather than purely deterministic, dynamics can play a major role in shaping 520 

the composition of and competition within intestinal bacterial communities. It is 521 

interesting to note that recent metagenomic analyses of human intestinal microbiota 522 

have uncovered signatures of sudden shifts in species composition, the origins of which 523 

remain unknown [15, 42], perhaps indicating stochastic dynamics are widespread in 524 

natural intestinal systems. 525 

From an ecological perspective, it is unsurprising that the physical environment 526 

and stochastic perturbations influence species abundance; these concepts are 527 



 

 29 

mainstays of our understanding of macroscopic multi-species communities [43]. A rich 528 

literature describes various stochastic population models and the characteristics, such 529 

as extinction probabilities, that emerge from them [44-47]. As shown here, it is likely that 530 

such models will in general be useful for providing a conceptual and predictive 531 

framework for understanding inter-species bacterial competition. Again mirroring well-532 

established ecological concepts, we can frame our understanding of Vibrio and 533 

Aeromonas dynamics in the intestine as a study of these species’ differential resistance 534 

and resilience to environmental perturbations. Aeromonas during mono-association is 535 

not resistant to disturbances related to intestinal motility, but it is resilient, able to grow 536 

to high abundances despite sporadic collapses. Vibrio, in contrast, is highly resistant to 537 

perturbations; it shows smooth growth unfazed by the environmental perturbations that 538 

affect Aeromonas (Fig 3). In the presence of Vibrio, both the resistance and resilience of 539 

Aeromonas are compromised, as the magnitude of collapses is greater and the carrying 540 

capacity to which to recover is diminished.  541 

While ecological concepts can help us characterize microbial dynamics, data on 542 

microbial systems can, conversely, enhance our understanding of ecological theory. 543 

The fast generation time and high degree of reproducibility of microbial systems have 544 

allowed a variety of tests of ecological models in recent years, illuminating issues such 545 

as game-theoretic aspects of cheating [48], early warning indicators of population 546 

collapses [49], and the statistical structure of number fluctuations [50]. Although 547 

theoretical treatments of population collapses and extinction events are abundant in the 548 

ecological literature, real data with which to test them remain sparse [51], in part due to 549 

the challenges of performing high-precision field studies. We expect, therefore, that data 550 
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of the sort presented here, which yield collapse statistics as well as fits to stochastic 551 

models, will have utility in contexts far removed from microbiota research.  552 

Aeromonas population collapses are well described by stochastic dynamics, but 553 

the underlying mechanism by which Vibrio compromises resistance and resilience of 554 

Aeromonas remains to be elucidated. Several possibilities exist, and are the focus of 555 

ongoing investigation. Vibrio may disrupt the adhesive properties of sessile bacterial 556 

communities by secreting mucinases [52], or alter the rheological properties of the 557 

intestinal environment [53]. More directly, Vibrio may kill Aeromonas via secreted 558 

factors acting as bacteriocins or contact-mediated killing through the Type VI secretion 559 

system [54-56]. Intriguingly, it is unclear whether, in the context of a larger 560 

metacommunity composed of many fish in a shared aqueous environment, Aeromonas 561 

is actually at a competitive disadvantage compared to Vibrio. Expulsions of Aeromonas 562 

could benefit this species by aiding dispersal and subsequent colonization of other 563 

hosts. This may, in fact, explain the observation that species of Vibrio and Aeromonas 564 

are both highly represented among conventionally raised zebrafish [31].  565 

The combination of gnotobiotic manipulation and imaging-based analyses can be 566 

further elaborated in larval zebrafish, both by increasing the diversity of monitored 567 

microbial species and by examining interactions with particular aspects of the host such 568 

as its immune system [25]. As illustrated here, we expect that such studies will yield 569 

additional insights into the factors that drive the dynamics of complex, natural host-570 

associated microbiota.  571 
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METHODS 572 

Ethics statement 573 

All experiments with zebrafish were done in accordance with protocols approved by the 574 

University of Oregon Institutional Animal Care and Use Committee and following 575 

standard protocols [57]. 576 

 577 

Gnotobiotic techniques 578 

Wild-type AB or ret mutant (ret1hu2846, ZFIN ID: ZDB-ALT-070315-12) zebrafish were 579 

derived GF and colonized with bacterial strains as previously described [19]. Briefly, 580 

fertilized eggs from adult mating pairs were harvested and incubated in sterile embryo 581 

media (EM) containing 100 µg/ml ampicillin, 5 µg/ml kanamycin, and 250 µg/ml 582 

amphotericin B for ~6 hour. Embryos were then washed in EM containing 0.003% 583 

sodium hypochlorite followed by EM containing 0.1% polyvinylpyrrolidone–iodine. 584 

Sterilized embryos were distributed into T25 tissue culture flasks containing 15 ml sterile 585 

EM at a density of one embryo per ml and incubated at 28-30°C prior to bacterial 586 

colonization. Embryos were sustained on yolk-derived nutrients and not fed during 587 

experiments. 588 

 589 

Bacterial strains 590 

Aeromonas (ZOR0001, PRJNA205571) and Vibrio (ZWU0020, PRJNA205585) were 591 

isolated from the zebrafish intestinal tract and described previously [24]. Fluorescently 592 

marked derivatives used in imaging experiments were engineered with an established 593 

Tn7 transposon-based approach [58]. Briefly, a cassette containing the constitutively 594 
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active synthetic promoter Ptac cloned upstream of genes encoding dTomato or 595 

superfolder GFP was chromosomally inserted at the attTn7 locus to generate 596 

Aeromonas attTn7::Ptac-dTomato and Vibrio attTn7::Ptac-sfGFP. Strains expressing 597 

fluorescent proteins did not exhibit overt fitness defects in vitro or in vivo. Prior to 598 

colonization at designated time points, bacterial strains were grown overnight in Luria 599 

Broth (LB) shaking at 30°C. Bacterial cultures were prepared for inoculation by pelleting 600 

for two minutes at 7,000 x g and washing once in sterile embryo medium (EM). An 601 

inoculum of 106 CFU/ml was used across experiments for each bacterial strain and 602 

added directly to the water column. 603 

 604 

Culture-based quantification of bacterial populations 605 

Dissection of larval guts was done as described previously [19]. Dissected guts were 606 

harvested and placed in a 1.6 ml tube containing 500 µl sterile 0.7% saline and ~100 µl 607 

0.5 mm zirconium oxide beads (Next Advance, Averill Park, NY). Guts were then 608 

homogenized using a bullet blender tissue homogenizer (Next Advance, Averill Park, 609 

NY) for ~25 seconds on power 4. Lysates were serially plated on tryptic soy agar (TSA) 610 

and incubated overnight at 30°C prior to enumeration of CFU and determination of 611 

bacterial load. Plots depicting culture-based quantification of bacterial populations show 612 

the estimated limit of detection (5 bacteria/gut) as well as limit of quantification (100 613 

bacteria/gut) and represent pooled data from a minimum of two independent 614 

experiments.   615 

 616 

Light sheet microscopy 617 
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Imaging was performed using a home-built light sheet fluorescence microscope, based 618 

on the design of Keller et al. [18] and described in detail elsewhere [21, 22]. Briefly, a 619 

laser beam is rapidly scanned with a galvanometer mirror and demagnified to provide a 620 

thin sheet of excitation light. An objective lens mounted perpendicular to the sheet 621 

captures fluorescence emission from the optical section, and the sample is scanned 622 

along the detection coordinate to yield a three-dimensional image. To image the entire 623 

extent of the intestine (approximately 1200x300x150 microns) we sequentially image 624 

four sub-regions and computationally register the images after acquisition. The entire 625 

volume of the intestine is imaged in less than 2 minutes in two colors, with a 1-micron 626 

spacing between planes. Unless otherwise indicated in the text, all exposure times are 627 

30 ms with an excitation laser power 5 mW, as measured between the theta-lens and 628 

the excitation objective. 629 

 630 

Imaging-based quantification of bacterial populations 631 

The analysis pipeline used to estimate bacterial abundances from light sheet imaging is 632 

described in [21]. In brief, we computationally identify both individual bacteria and 633 

clusters of bacteria, and estimate the population of each cluster by dividing the total 634 

fluorescence intensity by the average intensity of individual bacteria. As necessary, 635 

objects that are falsely identified as bacterial clusters are manually removed. For 636 

example, in Fig 3A an autofluorescent signal in the intestinal midgut in the Vibrio 637 

channel was excluded from subsequent quantitative analysis. Additionally, individual 638 

time points during time-series are removed if, determined by manual inspection, sample 639 



 

 34 

drift or motion of bacterial clusters driven by intestinal motility makes it infeasible to 640 

robustly estimate bacterial abundance.	
  641 

 642 

Identification of population collapse events 643 

Collapses in bacteria populations are objectively identified from time-series of total 644 

bacterial abundance, such as those in Fig 3, by defining a collapse as a decrease in 645 

population by at least a factor of 10 within one hour. Collapse events with pre-collapse 646 

populations of less than 100 bacteria are discarded. These criteria were manually 647 

validated by associating each identified collapse with a corresponding ejection of 648 

bacteria from the gut observed in series of images. 649 

  650 

Imaging experiments 651 

Sample mounting is done as previously described [21]. Larval zebrafish were removed 652 

from culture flasks and anaesthetized using 120 µg/ml tricaine methanesulfonate 653 

(Western Chemical, Ferndale, WA). Individual specimens were then briefly immersed in 654 

0.5% agar (maximum temperature: 42° C) and drawn into a glass capillary, which was 655 

then mounted onto a sample holder. The agar-embedded specimens were partially 656 

extruded from the capillary so that the excitation and emission optical paths did not pass 657 

through glass interfaces. The specimen holder can hold up to six samples, all of which 658 

are immersed EM maintained at 28°C, with tricaine present as an anaesthetic. All long-659 

term imaging experiments were done overnight, beginning in the late afternoon.  660 

 661 

Measuring bacterial distance to epithelial wall 662 
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Individual bacteria were identified using the same algorithms used for quantification of 663 

bacterial abundance in the intestine. As we do not have a fluorescent marker for the 664 

epithelial wall of the intestine, we use the extent of the autofluorescent mucus in images 665 

as an estimate of the location of the epithelial wall. This extent is determined by active 666 

contour segmentation using the Chan-Vese algorithm [59], using the implementation 667 

provided in MATLAB. A user-defined region is used as the seed for the segmentation of 668 

the first frame in the time-series, after which the segmentation of the previous frame is 669 

used as the seed for the segmentation of the subsequent frame. We then define the 670 

distance of each identified bacterium to the epithelial wall as the minimum distance 671 

between the location of the bacterium and the segmented extent of the intestine. 672 

Distributions of distances to the epithelial wall are constructed from all video frames and 673 

confidence intervals are obtained using bootstrap resampling. A null model of a uniform 674 

prediction is obtained by randomly distributing 1000 points for each time point in the 675 

region defined by our intestinal segmentation. Confidence intervals are again obtained 676 

through bootstrap resampling. 677 

 678 

Measuring intestinal motility 679 

Larval intestinal motility was assessed from images captured using differential 680 

interference contrast (DIC) microscopy, performed as previously described [27]. The 681 

displacement field from frame to frame in time-series was determined using particle 682 

image velocimetry (PIV) algorithms [60], which calculate the motions necessary for 683 

regions in one frame to be mapped onto regions in another. We focused our analysis on 684 

the frequency and amplitude of these motions, restricting our analysis to components of 685 
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displacement along the intestinal axis. Fourier spectra of the displacements, averaged 686 

over location in the intestine, yielded in all cases a clear peak whose frequency and 687 

magnitude are indicative of the characteristic frequency and amplitude of intestinal 688 

motility, respectively. This method is described in greater detail in a forthcoming paper.  689 
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SUPPORTING INFORMATION 907 

S1 Text. Stochastic Collapse Model 908 

We describe a simple model of growth and collapse behavior and examine its 909 
predictions for population sizes. We also fit the model to experimental data on bacterial 910 
abundance. 911 
 912 
1 The model 913 

 914 
Consider a species with population N at time t that exhibits logistic growth, with 915 

growth rate r and carrying capacity K: 916 

 dN = rN 1− N
K

⎛
⎝⎜

⎞
⎠⎟ dt  ,   [Equation 1] 917 

We superimpose on these dynamics events in which the population collapses to a value 918 
f times its pre-collapse value, where f is between 0 and 1, after which it resumes logistic 919 
growth. We model the timing of the collapses as a Poisson process: collapses are 920 
uncorrelated and stochastic, occurring with a probability per unit time pc. Formally, one 921 
can write this as a stochastic differential equation: 922 

 dN = rN 1− N
K

⎛
⎝⎜

⎞
⎠⎟ dt − (1− f )N dM  ,   [Equation 2] 923 

where dM is a Poisson process of unit step. (In other words, dM =1 with probability pcdt, 924 
and dM = 0 with probability 1 - pcdt.) N dM refers to N immediately before the collapse. 925 
An illustration of the roles of the parameters r, K, f, and pc is provided in Figure 5. As 926 
noted in the main text, this model is not new; it has been invoked and studied in many 927 
ecological contexts [S1]. However, the particular treatment presented here is, to the 928 
best of our knowledge, novel, especially with respect to determining relevant 929 
parameters for fits to experimental data. We determine statistical properties of the 930 
model using numerical simulations. For infinite carrying capacity, these properties can 931 
be calculated analytically, but for the biologically relevant case of finite carrying 932 
capacity, exact solutions do not at present exist. 933 
 934 
2 Simulations 935 

 936 
 The model described above is simple to simulate by numerical integration, which 937 

yields the population xt at time t. Two typical xt are shown in Figure ST1, with 938 
parameters as noted in the caption. 939 

 940 
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 941 
Figure ST1. Two simulated populations exhibiting stochastic 942 
collapses, with f = 10-2, pc = 0.05 hr.-1, r = 1 hr.-1, and K 943 
drawn from a log-normal distribution with mean 104 and a 944 
standard deviation of half a decade. (We plot the population 945 
plus one so that zero values are evident on the logarithmic 946 
scale.) 947 

 948 
The model has four parameters, r, K, f, and pc, and a boundary condition set by x0 (the 949 
initial population). The value of x0 is irrelevant for the experimental conditions 950 
considered: the populations start from a small value and grow rapidly. In our simulations 951 
x0 is taken to be 10. 952 

The growth rate, r, is known from measurements. Moreover, the model dynamics 953 
are fairly insensitive to r, since the experimental timescales of ~10 hours are 954 
considerably larger than the timescale set by the growth rate (1/r ~ 1 hour). 955 

The key determinants of the population statistics, therefore, are the collapse 956 
properties (pc and f) and the carrying capacity, K. The carrying capacity may exhibit 957 
considerable variation between fish. Typically, the final populations of Aeromonas in 958 
mono-associations are found to be approximately log-normally distributed (Figure ST2), 959 
as is commonly the case for species abundances, and so in simulations we draw K from 960 
log-normal distributions. In other words, log10(K) for a given simulation is drawn from a 961 
Gaussian distribution with some mean value and standard deviation σK, where σK is 962 
typically 0.5, discussed further below. We note that in the absence of collapse (e.g. pc = 963 
0 or f=1) this model is completely deterministic, and the variance in final bacterial 964 
populations between fish is solely due to the variance in K. 965 
 For particular parameter values, we simulate many instances of the above 966 
dynamics (typically 1,000 to 10,000) and examine the statistical properties of the final 967 
population, xt, assessed at t = 24 hours. For the values used in Figure ST1 above, for 968 
example, the mean and standard deviation of the final xt are (6.4  ± 11.5) × 103. The 969 
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distributions span orders of magnitude, including zero, so it is useful to consider the 970 
mean and standard deviation of log10(xt+1), similar to a geometric mean. For these 971 
parameters, this gives a mean and standard deviation of log10(xt+1) of 2.8 ± 1.5. We will 972 
define y as 973 
 y = log10 (xt +1)  ,   [Equation 3] 974 

for notational simplicity. 975 
 976 

 977 
Figure ST2. Histogram of the final population of Aeromonas 978 
mono-associated with larval zebrafish at 4 dpf and assessed 979 
at days 5, 6, or 7 dpf by plating of dissected gut contents and 980 
counting of colony forming units. 981 

 982 
3 Parameters and Fits 983 
3.1 Dependence on pc and f 984 
 985 
 We can vary the model parameters to determine the relationship between the 986 
mean and the variance of the final population, which will allow direct comparison 987 
between our model and measurements of bacterial abundance (e.g. Figure 1). The 988 
dependence of the mean and standard deviation (std.) of y on pc and f is plotted in 989 
Figure ST3. We can intuitively understand its behavior: for small pc or f near 1, the 990 
properties of xt are largely set by the mean and variance of the carrying capacity. 991 
However, as pc increases (or f decreases), the mean of xt decreases, because larger 992 
collapses are more likely to occur, and the standard deviation of xt increases, because 993 
the stochastic collapses play a more significant role in the dynamics. For still larger pc 994 
(or smaller f), the final population becomes more uniformly small, because the 995 
population is dominated by very frequent collapses and cannot grow appreciably.  996 

Treating f as a random, rather than a fixed, parameter has little effect on the 997 
behavior of the model. Drawing f from a beta distribution, chosen because it is 998 
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continuous, spans [0, 1], and has two parameters that can be mapped onto a mean and 999 
variance, gives the curve shown in Figure ST4. The mean collapse magnitude is chosen 1000 
over the same range as f in Figure ST3, and for each mean f, several f values are 1001 
drawn from a beta distribution with standard deviations relative to the mean spanning [0, 1002 
0.8]. All the resulting population characteristics are plotted in Figure ST4; the resulting 1003 
curve is nearly identical to that of Figure ST3. 1004 
 1005 

 

Figure ST3. The mean and 
standard deviation of 
simulated populations at t = 
24 hrs., with   r = 0.8 hr.-1 
and K drawn from a log-
normal distribution with 
mean 104 and a standard 
deviation of half a decade. 
Blue crosses: pc is fixed at = 
0.1 hr.-1, and f varies 
between 10-4 and   10-0.3. 
Red circles:  f is fixed at   10-

2 and pc varies between 10-2 
and 10-0.7 hr.-1. Each point is 
calculated from 10,000 
simulated runs.    

 1006 
 

 

Figure ST4. The mean and 
standard deviation of simulated 
populations at      t = 24 hrs., with r 
= 1 hr.-1 and K drawn from a log-
normal distribution with mean 104 
and a standard deviation of half a 
decade. The collapse probability pc 
is fixed at = 0.1 hr.-1, and f is drawn 
from a beta distribution with mean 
between 10-4 and 10-0.3, and 
relative standard deviation between 
0 and 80%. Each point is calculated 
from 1,000 simulated runs. 
 

 1007 
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Remarkably, at fixed K, nearly identical curves result from varying either pc or f 1008 
(Figure ST3), suggesting that at least over the parameter ranges and timescales 1009 
relevant to our experiments, these two parameters can be subsumed into one effective 1010 
variable. Considering particular values of mean(y) and std(y), where y is the logarithm of 1011 
the population as defined above, we can search for the best-fit values of (pc, f ), i.e. the 1012 
parameters that minimize the squared Euclidean distance, χ2, between the measured 1013 
and simulated (mean(y), std(y)). Using, for concreteness, the values determined from 1014 
gut dissection and plating experiments of Aeromonas abundance 24 hours after 1015 
challenge by Vibrio, namely (mean(y), std(y)) = (1.68 ± 0.34, 1.50 ± 0.24), we find, as 1016 
expected, the best-fit contours describe a curve in the (pc, f) space (Figure ST5a). 1017 
Empirically, we find that this curve is represented by –pc log10(f) ≈ constant (Figure 1018 
ST5b). 1019 

Fitting experimental data to this model of logistic growth with stochastic collapses 1020 
reduces, therefore, to a two parameter fit to the carrying capacity, K, and a parameter 1021 
describing the collapse properties, denoted as z: 1022 
 z = − pc log10 ( f )  ,   [Equation 4] 1023 

To the best of our knowledge, this effective collapse of the two stochastic 1024 
parameters into one effective parameter, z, has not been previously reported. We do 1025 
not have a mathematically exact theory for its occurrence, but simply present it as an 1026 
empirical result from our numerical simulations.  1027 
 1028 

 1029 
Figure ST5. (A) Squared distance, χ2, between the measured and 1030 
simulated (mean(y), std(y)) for values derived from Aeromonas 1031 
abundance 24 hours after challenge by Vibrio, namely (mean(y), std(y)) = 1032 
(1.68 ± 0.34, 1.50 ± 0.24), as a function of model parameters pc and f. The 1033 
carrying capacity is drawn from a log-normal distribution with mean 103.7 1034 
and standard deviation 0.5 decades. At each value of (pc, f), 1000 runs are 1035 
simulated to determine mean(y) and std(y). The optimal parameters 1036 
(darkest blue) sweep out a curve in the parameter space. (B) The optimal 1037 
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pc and f are related by –pc log10(f) ≈ constant over the range of parameters 1038 
examined. 1039 

 1040 
3.2 Parameter fits: Aeromonas challenged by Vibrio 1041 
 1042 

Again using the Aeromonas 24-hour post-challenge abundance data (Figure 1), 1043 
(mean(y), std(y)) = (1.68 ± 0.34, 1.50 ± 0.24), contours of χ2 are shown in Figure ST6. 1044 
The best-fit parameter values are: 1045 

z = -pclog10(f) = 0.13 ±  0.05 hr.-1,  1046 
log10(K) = 3.2 ± 0.5 1047 

In the simulations, K is drawn from a log-normal distribution with width 0.5 decades; the 1048 
fit is insensitive to this width, since the variance in the final population is much greater 1049 
than 0.5. The uncertainties in z and K are estimated from simulations spanning the 1050 
experimental uncertainties in mean(y) and std(y). 1051 
 In the main text, we compare these plating-derived measures of the collapse 1052 
parameters pc and f to those determined from live imaging. 1053 

 

 

Figure ST6. Contours of χ2, the 
distance between simulated 
(mean(y), std(y)) and the measured 
value from di-association 
experiments (1.68, 1.50), for a 
range of z and K. The fit has a clear 
minimum at z = 0.13 hr.-1 and       
log10(K) = 3.2. 
 

 1054 
3.3 Parameter fits: Aeromonas alone 1055 
 1056 

Similarly, we can determine the parameter values that best match Aeromonas 1057 
mono-association data, (mean(y), std(y)) = (4.1 ± 0.08, 0.61 ± 0.05), where these values 1058 
are from plating data at both 5 and 6 days post-fertilization. Because std(y) is low, i.e. 1059 
the data map onto the lower right corner of the curve of Figures ST3-4, it is unclear 1060 
whether the variance in y is due mainly to variance in K or to the stochasticity of 1061 
collapses, and we have no independent measure of the variance in K. Considering K 1062 
drawn from log-normal distributions of various widths, we find best-fit values of z = -1063 
pclog10(f) spanning roughly z = 0.01 ±  0.01 hr.-1, i.e. z is poorly constrained. Contours of 1064 
χ2 are shown in Figure ST7. Despite this uncertainty, K is well-constrained to be 1065 
approximately log10(K) = 4.2 ± 0.1. The significance of this is discussed in the main text. 1066 
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 1067 

 

 

Figure ST7. Contours of χ2, the 
squared distance between 
simulated (mean(y), std(y)) and the 
measured value from mono-
association experiments (4.1, 0.6), 
for a range of z and K, with K drawn 
from log-normal distributions of 
width 0.1 decades. 
 

  1068 
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S1 Fig. Aeromonas and Vibrio exhibit an apparent competitive interaction within 1076 

the larval zebrafish intestine. (A) Graphical overview of succession schemes used to 1077 

characterize Aeromonas-Vibrio interactions. Aeromonas is allowed to colonize GF 1078 

larvae at 4 dpf followed by addition of Vibrio to the water column at 5 or 6 dpf for 24 or 1079 

48 hours prior to enumeration of abundances by dissection and serial plating. (B, left) 1080 

Vibrio abundances after different mono-association durations and (B, right) Aeromonas 1081 

and Vibrio abundances after different Vibrio challenge periods. Statistical significance of 1082 

Vibrio abundances after Vibrio challenge compared to respective mono-association 1083 

reference populations (i.e. ‘5-6’ vs. ‘5-6’; ‘6-7’ vs. ‘6-7’; ‘5-7’ vs. ‘5-7’) was determined by 1084 

an unpaired t-test. *=p<0.05; ***=p<0.0001; ns=not significant; N>10/condition. Founder 1085 

populations ‘F’ of (C) Aeromonas and (D) Vibrio were mono-associated with GF larvae 1086 

on day 4 post-fertilization and challenged by fluorescently marked self populations ‘C’ at 1087 

5 dpf for 24hrs (‘5-6’) or 48hrs (‘5-7’). Dissection and serial plating was done to 1088 

enumerate founder and challenger populations. Counting of bacterial colonies was done 1089 

on a fluorescent stereomicroscope. (E) Aeromonas and Vibrio were inoculated into LB 1090 

broth either individually or 1:1 and grown overnight with shaking at 30°C prior to 1091 

enumeration by serial plating. CFU=colony-forming units. Gray and black dashed lines 1092 

in panels B, C, and D denote limit of quantification and detection, respectively.   1093 

  1094 
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 1095 

S2 Fig. Space filling properties of Vibrio within the zebrafish gut. (A) Single optical 1096 

plane of 6 dpf larval zebrafish inoculated at 4 dpf with GFP-labeled Vibrio. Scale bar: 50 1097 

µm. (B-E) Blue curves: Spatial distribution of bacteria with respect to the approximate 1098 

extent of the intestinal epithelial wall. Gray curves: prediction from a null model of 1099 

uniform space filling. Each panel represents an individual fish with panel B being from 1100 

the same specimen in panel A. 1101 

  1102 
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 1103 

S3 Fig. Collapses of Aeromonas populations within the zebrafish gut. (A) Total 1104 

bacterial abundance derived from imaging data for Aeromonas and Vibrio for all imaged 1105 

fish (N=13) initially inoculated for 24 hours with Aeromonas and then challenged by 1106 

Vibrio. Plots represent individual larvae and are plotted as a function of time following 1107 

Vibrio inoculation. (B) Total bacterial abundance derived from imaging data for fish 1108 

inoculated for 24 hours with Aeromonas alone (N=10). Plots represent individual larvae 1109 
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and are plotted as a function of time following Aeromonas inoculation. (A and B) Vertical 1110 

dashed lines indicate sharp drops of over an order of magnitude within an hour of the 1111 

Aeromonas population. 1112 

  1113 
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 1114 

S4 Fig. Characteristics of zebrafish gut motility at 6 dpf for fish with different 1115 

bacterial colonization histories. GF = germ-free; Aero = mono-association with 1116 

Aeromonas from 4 dpf; Vibrio = mono-association with Vibrio from 4 dpf; Aer+Vib = 1117 

mono-associated with Aeromonas at 4 dpf and challenged with Vibrio at 5 dpf. (A) The 1118 

characteristic period of gut motility, identified as the inverse of the frequency of the peak 1119 

signal in a Fourier spectrum of gut motion amplitudes, averaged over all positions. All 1120 

conditions give very similar periodicity of gut motion. (B) The characteristic amplitude of 1121 

gut motility, identified as magnitude of the peak signal in a Fourier spectrum of gut 1122 

motion amplitudes. There is considerable variability between fish clutches, and so the 1123 

amplitudes are normalized by the median of the germ-free fish in each batch. All 1124 

conditions show large variance, with no significant difference evident between the 1125 

various conditions. In A and B, gray “X”s are from individual fish; boxes indicate the first 1126 

to third quartiles, and the horizontal bars in boxes indicates the median value. 1127 

 1128 
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 1129 

S5 Fig. Spatial distribution of Aeromonas and Vibrio during mono-association or 1130 

challenge experiments. (A) Spatial distribution of Vibrio, quantified as the probability 1131 

density along the gut, for 6 dpf fish mono-associated at 5 dpf with GFP-labeled Vibrio 1132 

(gray) or inoculated at 4 dpf with dTomato-labeled Aeromonas and challenged at 5 dpf 1133 

with GFP-labeled Vibrio (blue). (B) Probability density of Aeromonas in 6 dpf fish mono-1134 

associated at 5 dpf with dTomato-labeled Aeromonas (gray) or inoculated at 4 dpf with 1135 

dTomato-labeled Aeromonas and challenged at 5 dpf with GFP-labeled Vibrio 1136 

(magenta). The blue and magenta spatial distributions are drawn from the same fish. 1137 

N=10 for both conditions. 1138 

  1139 
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Supporting Movie Captions 1140 

S1 Movie. Example of the motile and planktonic behavior of Vibrio in the zebrafish 1141 

gut. Live imaging of a single optical plane in the intestinal midgut of a 6 dpf larval 1142 

zebrafish inoculated at 4 dpf with GFP-labeled Vibrio. Scale bar: 50 µm. 1143 

 1144 

S2 Movie. Example of Vibrio space filling properties. Three-dimensional scan 1145 

through the intestinal bulb of a 5 dpf larval zebrafish inoculated at 4 dpf with GFP-1146 

labeled Vibrio. Scale bar: 50 µm. 1147 

 1148 

S3 Movie. Example of Vibrio resistance to intestinal contractions. Time-series is of 1149 

a single optical plane in the intestinal bulb of a 6 dpf larval zebrafish inoculated at 4 dpf 1150 

with GFP-labeled Vibrio. A subpopulation of Vibrio can be seen aggregating in the 1151 

anterior bulb despite repeated intestinal contractions. Scale bar: 50 µm. Movie was 1152 

recorded at 1 frame per second. 1153 

 1154 

S4 Movie. Example of the non-motile and clustered behavior of Aeromonas in the 1155 

zebrafish gut. Live imaging of a single optical plane in the intestinal midgut of a 6 dpf 1156 

larval zebrafish inoculated at 4 dpf with dTomato-labeled Aeromonas. Scale bar: 50 µm. 1157 

 1158 

S5 Movie. Spatial distribution of Aeromonas in the zebrafish gut. Three-1159 

dimensional scan through the intestinal bulb and midgut of a 5 dpf larval zebrafish 1160 

inoculated at 4 dpf with dTomato-labeled Aeromonas. Bacterial clusters, individual 1161 
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bacteria (circled), and autofluorescent signals from intestinal mucus (gray haze) are 1162 

indicated. Scale bar: 50 µm. 1163 

 1164 

S6 Movie. Example of an Aeromonas collapse event during Vibrio challenge. 1165 

Time-series is of maximum intensity projections of images taken from the same larval 1166 

zebrafish shown in Fig 3A. The fish was initially colonized at 4 dpf with Aeromonas 1167 

(magenta), challenged 24 hours later by inoculation with Vibrio (cyan), and then imaged 1168 

every 20 minutes for 14 hours. Times indicate hours post-challenge. The region shown 1169 

spans about 80% of the intestine, with the anterior on the left. Image contrast in both 1170 

color channels is enhanced for clarity. Yellow dotted line roughly indicates the lumenal 1171 

boundary of the intestine; the two bacterial fluorescence channels are overlaid inside 1172 

this region. Scale bar: 200 µm. 1173 

 1174 

S7 Movie. Example of Aeromonas sensitivity to intestinal contractions. Time-1175 

series is of a single optical plane in the intestinal midgut of a 6 dpf larval zebrafish 1176 

inoculated at 4 dpf with dTomato-labeled Aeromonas. Scale bar: 50 µm. Movie was 1177 

recorded at 1 frame per second. 1178 

 1179 

S8 Movie. Example of intestinal motility in a wild-type larval zebrafish. Differential 1180 

interference contrast (DIC) microscopy video of intestinal motility in a conventionally 1181 

raised 6 dpf wild-type larval zebrafish. Scale bar: 50 µm. 1182 

 1183 
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S9 Movie. Example of intestinal motility in a ret mutant larval zebrafish. Differential 1184 

interference contrast (DIC) microscopy video of intestinal motility in a conventionally 1185 

raised 6 dpf ret mutant larval zebrafish. Scale bar: 50 µm. 1186 


