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Abstract

The gut microbiota is a complex consortium of microorganisms with the ability to
influence important aspects of host health and development. Harnessing this ‘microbial
organ’ for biomedical applications requires clarifying the degree to which host and
bacterial factors act alone or in combination to govern the stability of specific lineages.
To address this we combined bacteriological manipulation and light sheet fluorescence
microscopy to monitor the dynamics of a defined two-species microbiota within the
vertebrate gut. We observed that the interplay between each population and the gut
environment produced distinct spatiotemporal patterns. Consequently, one species
dominates while the other experiences dramatic collapses that are well fit by a
stochastic mathematical model. Modeling revealed that bacterial competition could only
partially explain the observed phenomena, suggesting that a host factor is also
important in shaping the community. We hypothesized the host determinant to be gut
motility, and tested this mechanism by measuring colonization in hosts with enteric
nervous system dysfunction due to mutation in the Hirschsprung disease locus ret. In
mutant hosts we found reduced gut motility and, confirming our hypothesis, robust
coexistence of both bacterial species. This study provides evidence that host-mediated
spatial structuring and stochastic perturbation of communities along with bacterial
competition drives population dynamics within the gut. In addition, this work highlights
the capacity of the enteric nervous system to affect stability of gut microbiota
constituents, demonstrating that the ‘gut-brain axis’ is bidirectional. Ultimately, these
findings will help inform disease mitigation strategies focused on engineering the

intestinal ecosystem.
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INTRODUCTION

Trillions of microbial cells representing hundreds of species make up the human
intestinal microbiota. This multispecies symbiont supports activities as diverse as host
development, nutrient acquisition, immune system education, neural function, and
defense against pathogens [1-5]. Changes in microbiota diversity and functional
composition have been linked with a variety of human disorders, including obesity,
colon cancer, opportunistic infection, and inflammatory bowel disease [6, 7]. A major
goal of host-microbe systems biology is to clarify the ecological factors that determine
microbiota integrity by meshing experimental techniques and quantitative modeling.
Insights derived from such efforts will inspire the design of novel therapeutic strategies
for microbiota-associated diseases.

An unresolved question is whether the host and microbiota function
independently or together to govern the dynamics and stability of individual bacterial
lineages. Addressing this requires identifying the interactions that arise within the
spatially complex and heterogeneous environment of the vertebrate gut. However,
progress toward this goal has been hindered due to the technical limitations associated
with directly observing intestinal communities. Typical interrogation of vertebrate
intestinal microbiota involves phylogenetic profiling of fecal material using high-
throughput sequencing of 16S ribosomal RNA (rRNA) genes. This technique is blind to
the spatial structure of microbial communities, which is known in general to strongly
influence interactions [8-10] and has recently been predicted to be important for
microbiota stability [11]. Sequencing-based studies also have low sensitivity to temporal

structure owing to both experimental and analytic constraints. Experimentally,
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metagenomic time-series data remain rare and cannot reach the sampling frequencies
necessary to capture interactions occurring at the timescales of microbial division or
intestinal flux. Analytically, sequencing data yield only relative, rather than absolute,
taxonomic abundances, which severely confounds the inference of interaction networks
[12, 13]. Furthermore, such methods to date have employed deterministic Lotka-
Volterra models [12, 14, 15] that, even with noise terms representing measurement
error, neglect the possibility of fundamentally stochastic or discontinuous interactions
among constituents.

Because our knowledge of the factors that shape interactions within host-
associated ecosystems is incomplete, contemporary theoretical models have been
forced to rely on assumptions that may not realistically mirror microbe-microbe and
host-microbe relationships. For example, biochemical and physical inputs from the
animal host that likely act on microbial constituents are often ignored [16]. It is important
to unravel the extent to which microbiota integrity is simply an intrinsic property of the
microbes, which could be recapitulated in vitro with co-culture experiments or in silico
with bacterial metabolic network models, or an emergent property of the host-microbe
system. Developing accurate accounts of the ecological interactions that manifest within
the gut will require model systems that enable manipulation of microbial colonization
and measurement methods that can characterize microbial populations in vivo with high
spatial and temporal resolution [17].

Toward this end, we employ here larval zebrafish as a model vertebrate host
coupled with light sheet fluorescence microscopy (LSFM) [18] as a minimally invasive

interrogation method to examine population dynamics within a defined gut microbiota.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

Zebrafish larvae are highly amenable to gnotobiotic techniques and can be reared
germ-free (GF) in large numbers [19]. At four days post-fertilization (dpf) larvae possess
an open and functional digestive tract that is permissive to microbial colonization, the
timing of which is controlled by adding bacteria to the water column. Importantly, larval
zebrafish share many physiological traits with humans, including aspects of innate
immunity, neurological development, and intestinal function [20]. Therefore, interactions
between zebrafish and their microbial symbionts are expected to reflect analogous
interactions that occur in other vertebrates. LSFM, combined with the optical
transparency of larval zebrafish, enables three-dimensional visualization of the entire
intestine with single-bacterium resolution, rapid image acquisition to avoid blurring due
to intestinal motility, and extended live imaging with low phototoxicity [21, 22]. This
experimental setup provides an unprecedented opportunity to investigate ecological
interactions within the vertebrate intestine at a range of spatial and temporal scales.
With this model system we found that an apparent competitive interaction
between two species native to the zebrafish gut, Aeromonas veronii and Vibrio
cholerae, is characterized by sudden and catastrophic collapses of the Aeromonas
population, which appear to be driven by mechanical forces related to host intestinal
motility. The differential behavior of these two species can be explained by their distinct
biogeography and community architecture within the intestine. Further mapping of
Aeromonas-Vibrio dynamics motivated a quantitative stochastic model with parameters
that could be independently derived from traditional abundance measurements and
image-based time-series analysis. Ultimately, this model allowed us to predict the

consequences of altering the host environment through genetic disruption of the enteric
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nervous system (ENS) via a mutation in ret, a gene locus associated with human
Hirschsprung disease (OMIM 164761), which stabilized the Aeromonas population and
neutralized competition with Vibrio. This work reveals a synergy between bacterial
competition and host-mediated spatial structuring of microbiota in determining
population dynamics and stability—a feature that is likely mirrored in more complex

host-microbe systems such as the human gut.
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RESULTS
Aeromonas and Vibrio exhibit an apparent competitive interaction in the zebrafish
gut.

The intestinal microbiota of larval zebrafish is dominated by bacterial lineages
belonging to the Gammaproteobacteria [23, 24]. In a prior investigation we found that
two representative isolates native to the zebrafish intestinal tract, Aeromonas veronii
strain ZOR0001, hereafter referred to as Aeromonas, and a Vibrio strain, ZWU0020,
similar in 16S rRNA gene sequence to Vibrio cholerae and hereafter referred to as
Vibrio, exhibit an apparent negative interaction in GF larval zebrafish, with populations
of Aeromonas that were several orders of magnitude lower in di-associations with Vibrio
than in mono-associations [25]. Interestingly, only a modest suppression was observed
in in vitro competition experiments [25]. To begin to untangle the importance of host and
bacterial factors in facilitating the in vivo interaction between Aeromonas and Vibrio, we
used a succession assay in which GF larval zebrafish were first colonized by
Aeromonas to high abundance, and then challenged by invading populations of Vibrio

(Fig 1A).
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Fig 1. Aeromonas and Vibrio exhibit an apparent competitive interaction within
the larval zebrafish intestine. (A) Graphical overview of succession schemes used to
characterize Aeromonas-Vibrio interactions. Aeromonas is allowed to colonize GF
larvae at 4 dpf followed by addition of Vibrio to the water column at 5 or 6 dpf for 24 or
48 hours prior to enumeration of abundances by dissection and serial plating
techniques. (B, left) Aeromonas abundances after different mono-association durations
and (B, right) Aeromonas and Vibrio abundances after different Vibrio challenge

periods. Statistical significance of Aeromonas abundances after Vibrio challenge
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compared to respective mono-association reference populations (i.e. ‘5-6’ vs. ‘4-6’; ‘6-7’
vs. ‘4-7’; ‘5-7’ vs. ‘4-7’) was determined by an unpaired t-test. (C) Time course analysis
of Aeromonas and Vibrio abundances determined by dissection and plating at three-
hour intervals over a 12-hour period starting at 6 dpf. Additionally plotted are an
Aeromonas mono-association reference population and 24 hour Aeromonas and Vibrio
populations previously plotted in 1B (‘4-6’ and ‘6-7’, respectively). Statistical significance
of Aeromonas abundances to the mono-association reference population (ref.) was
determined by an unpaired t-test. CFU=colony-forming units; ***=p<0.0001; ns=not
significant; N>19/condition. Gray and black dashed lines in panels B and C denote limits

of quantification and detection, respectively.

We first enumerated total bacterial abundance by gut dissection and standard
plating techniques. In mono-associations beginning at 4 dpf and extending 24, 48, or 72
hours Aeromonas populations consistently reach 10* colony-forming units (CFU) per
host (Fig 1B). In contrast, challenge of established Aeromonas populations with Vibrio
over various 24 or 48 hour temporal windows leads to dramatically lower Aeromonas
abundance as well as increased host-to-host variation and frequent extinction events
(Fig 1B). Under these conditions Vibrio exhibits only modest deviations in abundance
compared to mono-association (S1A and S1B Fig). Of note, Aeromonas populations are
not destabilized upon self-challenge by newly introduced Aeromonas, and Vibrio does
not induce collapses in established Vibrio populations (S1C and S1D Fig). These results
indicate that subsequent waves of colonizing bacteria alone do not account for the

observed competitive interaction and that it is inter-specific in nature. We also verified
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that competition between Aeromonas and Vibrio is dependent on the host environment,
as there was not an appreciable difference between their abundances during in vitro
mono- and co-culture experiments (S1E Fig). To determine if the abundance of Vibrio
correlates with a reduction of Aeromonas populations in vivo, we performed a time
course experiment in which zebrafish were sacrificed and assayed every 3 hours for 12
hours after inoculation with Vibrio. We found that Vibrio rapidly infiltrates Aeromonas-
colonized intestines and steadily increases in number over the 12-hour assay period
(Fig 1C). Surprisingly, we did not detect a concomitant decline in Aeromonas, implying
that Aeromonas populations do not merely respond proportionally to the abundance of

Vibrio (Fig 1C).

Aeromonas population dynamics are altered during Vibrio challenge.

To further explore the interactions driving Aeromonas-Vibrio competition, we
turned to LSFM. Imaging fluorescently marked variants of each species during mono-
association revealed that they have noticeably different intestinal biogeographies and
behavior (Fig 2). Populations of Vibrio largely comprise planktonic, highly motile cells
that appear capable of sampling all available regions within the intestine (S1, S2, and
S3 Movie). Quantifying the bacterial density along the anterior-posterior axis (Methods),
we find that Vibrio is most abundant in the anterior bulb (Fig 2B and 2C), with an
overabundance within several micrometers of the epithelial wall that may be the result
of hydrodynamic interactions (S2 Fig) [26]. In contrast, Aeromonas is most abundant in
the midgut and largely takes the form of dense, non-motile clusters with a smaller

subpopulation of motile individuals (Fig 2D and 2E; S4 and S5 Movie).

11
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Fig 2. Vibrio and Aeromonas have distinct community architectures and
biogeographies within the larval zebrafish intestine. (A) A larval zebrafish at 5 dpf;
the intestine is highlighted by phenol red dye via microgavage [61]. Scale bar: 500 pm.
(B) A maximum intensity projection (MIP) of Vibrio in the larval intestine. Scale bar: 100
pum. (C) The probability density of Vibrio along the intestinal axis. From (B) and (C), we
see that Vibrio is predominantly localized in the anterior bulb. (D) MIP of Aeromonas in
the larval intestine. Scale bar: 100 um. (E) The probability density of Aeromonas along
the intestinal axis. (D) and (E) show that Aeromonas is predominantly localized in the

midgut, with a smaller population in the anterior bulb.
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To identify the temporal dynamics of the two-member community, we performed
in vivo live imaging experiments using LSFM starting approximately 2 hours following
the challenge of established Aeromonas populations with Vibrio. Three-dimensional
images spanning the intestine were obtained for each species for durations of roughly
12-15 hours at 20-minute intervals, which is shorter than each species’ approximate
one-hour doubling time (Methods). Fig 3A shows maximum intensity projections of
Aeromonas and Vibrio in a representative larval zebrafish intestine at three time points
spanning a four-hour interval (S6 Movie). The abundance of each species over several
hours is plotted in Fig 3B and 3C for two fish, representative of twelve fish that we
examined. Similar population abundance plots for all zebrafish are provided in S3 Fig.
We found that Vibrio populations smoothly expand and exhibit a growth rate of 0.8 + 0.3
hr.”" (mean = std. dev.), similar to that derived from plating data (0.60 + 0.22 hr.”, Fig
1C). Strikingly, growth of Aeromonas populations is sporadically interrupted by dramatic
collapse events, dropping in abundance by multiple orders of magnitude within an hour

(Fig 3A, 3B, and 3C).
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228 Fig 3. Aeromonas populations experience collapse events during Vibrio challenge
229 and mono-association. (A) MIPs of Aeromonas (magenta) and Vibrio (cyan) in a larval
230  zebrafish intestine. Scale bar: 200 um. The fish was initially colonized at 4 dpf with

231  Aeromonas, challenged 24 hours later by inoculation with Vibrio, and then imaged every

232 20 minutes for 14 hours. The times indicated denote hours post-challenge. In all
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images, the region shown spans about 80% of the intestine, with the anterior on the left.
Image contrast in both color channels is enhanced for clarity. Yellow dotted line roughly
indicates the lumenal boundary. As time progresses, the anterior growth of Vibrio as
well as abrupt changes in the Aeromonas distribution (arrows) are evident. (B,C) Total
bacterial abundance, derived from image data, for Aeromonas and Vibrio in two
representative fish inoculated and challenged as in panel A, as a function of time
following the Vibrio inoculation. Sharp drops of over an order of magnitude in the
Aeromonas population, but not the Vibrio population, are evident. (D,E) Total
abundance for Aeromonas in mono-associations as a function of time post-inoculation,
in two representative fish. Collapses are also observed, though in general the
populations recover to approximately pre-collapse levels. (F) The ratio, f, of the post-
collapse to the pre-collapse population for Aeromonas challenged by Vibrio, which span
many orders of magnitude (horizontal axis). At the same time points, the Vibrio
populations are essentially unchanged, with ratios of post- to pre-collapse populations
close to one (vertical axis). (G) Characteristics of Aeromonas population collapses.
Circles and bars indicate the mean and standard deviation, respectively, of fand p., the
rate of collapse occurrence, for both mono-associations and Aeromonas challenged by

Vibrio. The dashed line at f = 0.1 indicates the threshold for identification of collapses.

To determine if Aeromonas collapses occur in the absence of Vibrio, we
examined live imaging data of Aeromonas mono-associations over a similar time frame.
We detected clear instances of Aeromonas population collapses under these conditions

(Fig 3D and 3E). However, in contrast to Vibrio-associated collapses, Aeromonas was
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found to consistently recover from collapses during mono-association. Additionally,
Aeromonas collapse events associated with mono-association were smaller and more
uniform. Defining collapses as events in which the population decreases by at least a
factor of ten within one hour, and assigning their magnitude f as the ratio of the
population after collapse to that before, we find that for Aeromonas challenged by
Vibrio, log1o(f) = -1.9 £ 1.0 (mean = std. dev.) (Fig 3F and 3G). The ratio of the Vibrio
population before and after Aeromonas collapse events within the same fish is
approximately 1 (Fig 3F), corroborating observations from imaging and plating data that
Vibrio is resistant to the perturbations that affect Aeromonas. We found that during
Aeromonas mono-associations the magnitude of collapse events was about half of that
observed in the presence of Vibrio, logo(f) = -1.6 + 0.4 (Fig 3G). We also detected a
greater rate of Aeromonas collapses during Vibrio challenge. Estimating the collapse
probability per unit time, p., as the total number of collapses in all fish divided by the
total observation time, we find p. = 0.10 + 0.03 hr.™ during Vibrio challenge and p. =
0.04 +0.01 hr.”" during Aeromonas mono-associations (Fig 3G), where the uncertainties

are estimated by assuming an underlying Poisson process.

Aeromonas and Vibrio are differentially resistant to intestinal motility.

We next inspected the spatial structure and dynamics of each species to uncover
clues regarding possible factors driving Aeromonas collapses. A conspicuous feature of
the larval zebrafish intestine, like most animal intestines, is that it undergoes periodic
contractions that propagate along its length. We found that Vibrio populations, being

made up of motile, planktonic individuals, are almost completely unaffected by the

16



279  mechanics of intestinal motility (Fig 4A). Like a liquid filling its container, populations of
280  Vibrio quickly adapt to the contracting and expanding space with surprisingly little

281  change in their distribution (Fig 4B; S3 Movie). In contrast, the rigid and largely non-
282  motile clusters of Aeromonas, localized to the narrow midgut, are strongly affected by
283  intestinal contractions (Fig 4C and 4D; S7 Movie). These observations support the

284  hypothesis that forces exerted on this two-member community by intestinal motility give
285  rise to rare and stochastic expulsion of Aeromonas while leaving Vibrio unperturbed.
286  Corroborating this notion, we indeed observe posterior transport of Aeromonas in

287  collapse events during live imaging experiments (Fig 3A; S6 Movie).

288

289

290 Fig 4. Aeromonas and Vibrio exhibit different dynamics within the zebrafish

291 intestine. (A) An optical section of Vibrio mono-associated with a larval zebrafish,

292 showing the anterior bulb region. The population consists of discrete, highly motile

293  individuals. (B) A montage of images from a time-series of Vibrio in the bulb, during
294 which the overall distribution of the population remains stable. Time between frames: 1
295  second. (C) An optical section of the midgut of Aeromonas mono-associated with a
296 larval zebrafish. Dense clusters are evident. (D) A montage of images from a time-

297  series of Aeromonas in the midgut, during which the overall distribution of the

298  population changes considerably. Time between frames: 1 second. Scale bars: 50 um.
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Aeromonas collapses occur with or without the presence of Vibrio, but these
collapses have different significance in the two cases for the overall Aeromonas
abundance. One can imagine several possible explanations for this. We first asked
whether the growth rate of Aeromonas post-collapse is lower if Vibrio is present. The
data show that this is not the case. Mono-associated Aeromonas have a post-collapse
growth rate of 0.74 + 0.1 hr.”" (mean = std. dev., N=5 collapses), whereas Vibrio-
challenged Aeromonas have 0.64 + 0.2 hr.”" (N=4 collapses). We next asked whether
the presence of Vibrio leads to changes in the mechanics of intestinal motility. To test
this, we imaged intestinal motility in larval zebrafish using differential interference
contrast microscopy (DIC) [27] and calculated the dominant period and amplitude of
intestinal contractions. Comparing GF fish with Vibrio or Aeromonas mono-associated
fish, or fish in which Aeromonas is challenged after 24 hours by Vibrio, there is no
notable difference in period or amplitude (S4 Fig). The consequences of intestinal
motility on Aeromonas collapse properties are clearly different in the mono-association
and challenge cases, however, as indicated by changes in collapse magnitudes and
rates (fand p.). We also note that during challenge experiments, the gross spatial
distribution of Vibrio is similar to its distribution during mono-association, while there is
considerable broadening in the spatial distribution of Aeromonas when challenged (S5
Fig). Finally, a conceptually minimal model of interaction is that with Vibrio present, the
resources available to Aeromonas post-collapse are less than with Vibrio absent,

thereby placing a limit on its potential for recovery. We assess this possibility
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quantitatively below by estimating carrying capacities, and we also examine the

synergistic consequences of changes to the carrying capacity and collapse properties.

Synergy between stochastic collapse events and competition with Vibrio
underlies Aeromonas population dynamics.

Thus far our data suggest that Aeromonas is susceptible to stochastic
disturbances mediated by host intestinal motility, and that its recovery from these
disturbances is altered in the presence of Vibrio. If this is the case, we should be able to
build a quantitative model that reflects these data, explains the high variance observed
in plating assays (Fig 1), and offers insights into the differential outcomes between
mono-association and challenge experiments. The model we construct is illustrated
schematically in Fig 5. Consider a bacterial species exhibiting logistic growth, with
growth rate r and carrying capacity K (Fig 5A and 5B); in other words, the population N
grows with time f according to:

dN(¢)
dt

) (1 _ M)

K

Superimposed on this are rare collapses, during which the population drops to ftimes
its pre-collapse value, where fis between 0 and 1, and after which it resumes logistic
growth (Fig 5C). The collapses are stochastic and modeled as Poisson processes; i.e.
they occur at random with some probability per unit time p. (Fig 5D). This model arises
in many ecological contexts, and some of its mathematical properties have been
explored in various studies [28]. Of course, this model incorporates stochastic
population collapses by construction, and so does not predict them from first principles.

However, the parameter values that emerge from fitting such a model to the data can,

19



343  as shown below, yield quantitative insights into the mechanisms underlying the

344  observed dynamics that are not evident from mere visual inspection of the raw data.
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347  Fig 5. Schematic of a model of growth punctuated by collapses. (A) The model is
348  based on simple logistic growth, which is characterized by two parameters, the growth
349  rate, r, and carrying capacity, K. (B) We also include a parameter characterizing

350  variability in the carrying capacity. Stochastic collapses are governed by two

351  parameters: (C) the fraction of the population remaining after a collapse, f, and (D) the
352  probability per unit time of a collapse, pc.

353

354 Simulating ensembles of populations that exhibit the above dynamics, we

355 examine the mean and, importantly, the standard deviation of the population at discrete
356  terminal time points, as these are statistics that allow direct comparison to results from
357  plating assays. As shown in detail in the Supporting Text (S1 Text), the apparent

358 dependence of the model on the parameters, r, K, pc, and f, collapses to two effective
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parameters. The growth rate, r, is both independently known and irrelevant for the
conditions considered, and the dynamics depend on the combination z = -p. log1o(f)
rather than on p; and findependently. Values of the two remaining relevant parameters,
K and z, which characterize the carrying capacity and the collapse dynamics,
respectively, determine the model predictions for the mean and variance of populations.
A grid search through the (K, z) space for the values that minimize the distance
between the predicted and observed Aeromonas population statistics gives the best-fit
model parameters. Additional details and discussion are provided in the Supporting Text
(S1 Text). It is important to note that because our imaging data revealed that
Aeromonas is often in a state of experiencing or recovering from collapse events, the
observed population is likely never close to K, and thus we cannot simply use the mean
of the bacterial abundance to estimate K. Rather, we must use a model to infer the
carrying capacity that would yield the observed populations.

Using Aeromonas abundance data obtained by gut dissection and plating 24
hours post Vibrio challenge (Fig 1B, ‘6-7’), we find best-fit parameters log1o(K) = 3.2 £
0.5and z=0.13+0.05 hr.”, the latter providing a constraint on p. and f together. We
can independently estimate p; and f from imaging-derived data (Fig 3). As noted
previously, for Aeromonas challenged by Vibrio, we find p; = 0.10 £ 0.03 hr.”" and
log1o(f) =-1.9 £ 0.3 (mean = std. error), yielding z=0.19 + 0.06 hr.”", which is consistent
with the plating-derived value. The agreement between the separately determined
measures of z is remarkable, as it indicates that the statistical properties inferred from
an ensemble of populations at a discrete time point are consistent with the properties

inferred from the temporal dynamics within individual hosts. As expected, l10g1o(K) is
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382  greater than the observed mean Aeromonas abundance at 24 hours, since the model-
383 derived K represents an upper bound for the population in the absence of any

384  stochastic collapses or Vibrio competition. As another test of consistency, we note that
385  simulating our stochastic model for 48 hours post-challenge using the best-fit

386  parameters determined from plating experiments 24 hours post-challenge predicts a
387 mean and standard deviation of logio(population+1) of 1.3 £ 0.3 and 1.5 £ 0.2,

388  respectively, in agreement with the observed plating values of 1.7 £+ 0.3 and 1.6 + 0.3
389  (Fig 1B). All of these assessments support the conclusion that the observed population
390 dynamics are governed by a mechanism of stochastic collapse.

391 We can also apply this model to Aeromonas mono-association data. Here, the
392 variance of the plating-derived populations is small (Fig 1B), likely due to comparatively
393  rare and/or weak collapses as discussed earlier. For reasons described in detail in the
394  Supporting Text, this hinders robust determination of z, though K remains well fit. We
395 find that z=0.01 = 0.01 hr.”" and log1o(K) = 4.2 + 0.1. From live imaging data, p. = 0.04
396  +0.01 hr.”" and log1o(f) = -1.6 £ 0.2, from which z = 0.06 + 0.02 hr.” (S1 Text). Our

397 identification of thresholds is, by construction, only sensitive to collapses of a factor of
398 10 or more in magnitude (i.e. log1o(f) < -1), so our estimate of f, and therefore z, is

399 biased toward larger values.

400 The above analysis yields insights into the nature of the competition between
401  Aeromonas and Vibrio that are not obvious from simple visual inspection of the data.
402  The carrying capacity (K) experienced by Aeromonas, as estimated by our model, is
403  only one order of magnitude lower in the presence of Vibrio (log1o(K) = 3.2 £ 0.5) than

404  when Vibrio is absent (log1o(K) = 4.2 £ 0.1). However, the observed abundance of
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Aeromonas is suppressed by more than two orders of magnitude:
mean(logio(population+1)) = 1.7 £ 0.3 and 4.1 £ 0.1 when challenged by Vibrio and
mono-associated, respectively (Fig 1B). These results suggest that the combined effect
of stochastic collapses, which are likely driven by the host environment, and a reduced
carrying capacity, as a result of competition with Vibrio, has a far greater influence on

population dynamics than either mechanism would provide alone.

Mutant hosts lacking enteric nervous system function stabilize Aeromonas in the
face of Vibrio challenge.

Together, our experimental data and quantitative predictions indicate that a
synergy between competition with Vibrio and host-mediated stochastic disturbances
underlies the destabilization of Aeromonas populations within the larval zebrafish
intestine. Our model predicts that if the host factor intestinal motility were reduced,
Aeromonas populations would be more stable despite the presence of Vibrio. To test
this hypothesis, we carried out succession assays in mutant zebrafish hosts essentially
lacking a functional enteric nervous system (ENS) because of disruption of the gene
encoding the Ret tyrosine kinase, which is critical for ENS development [29]. Using DIC
microscopy to assess intestinal motility, we found that ret mutant larvae (ret”) still

**) and

exhibit rhythmic contractions, but with different characteristics than wild-type (ret
heterozygous siblings (ret”") (S8 and S9 Movie). Because we observed that ref”* and
ret”” animals are phenotypically similarity with regard to gut motility and that the

+/+

ret1"?84¢ mutant allele is recessive we further designate ret

and ret"" as ‘wild type’.

Computational analysis of time-series DIC images allows quantification of the
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displacement of intestinal tissue during contractile waves (Methods). The average peak
amplitude of longitudinal contractions is greater in wild-type than in ret mutant larvae,
and in both genotypes declines with age (Fig 6A). At 6 dpf a considerable fraction of ret
mutant larvae show low amplitudes, similar to the quiescent state observed in both
genotypes at 7 dpf (Fig 6A). Though the amplitude of intestinal contractions might not
be directly related to the magnitude or rate of Aeromonas collapse events, it is
reasonable to expect some monotonic relationship between the two, as they both reflect
intestinal activity. Therefore, we would expect to observe stabilization of Vibrio-
challenged Aeromonas populations in ret mutant hosts only during challenge periods
starting at 6 dpf when the difference in intestinal motility between the genotypes is
greatest. Indeed, Vibrio challenge of established Aeromonas populations between 5 and
6 dpf yielded the same decrease in Aeromonas abundance in both ret mutant hosts and
wild types (Fig 6B). In contrast, Aeromonas populations were significantly stabilized
during Vibrio challenge from 6 to 7 dpf in ref mutant hosts and in fact were statistically
indistinguishable from a reference Aeromonas mono-association (Fig 6B). These results
provide strong evidence that ENS-driven intestinal motility contributes to the shaping of

this model two-member community by facilitating their apparent competitive interaction.

24



446

447

448

449

450

451

452

453

454

455

456

457

458

>

300 -

N

(=]

o
1

gut motiliy
amplitude (a.u.)
S

0 :

1 ] 1 ] ] 1
host: wt ret wt ret wt ret

5 dpf 6 dpf 7 dpf
B Vibrio challenge: Vibrio challenge:
day 5-6 day 6-7
6- *kk *kk *kk ns

6

Log,,(CFU/gut)
w

ref. wthost rethost ref. wthost rethost

Fig 6. Intestinal motility and bacterial competition are altered in ret mutant
zebrafish hosts. (A) Amplitudes of periodic contraction along the intestine for wild-type
and ret mutant zebrafish at various ages. Circles indicate medians and bars indicate
first and third quartiles. (B) GF wild-type and ret heterozygous hosts (wt) were raised
together with ret homozygous mutant hosts (ret) and colonized at 4 dpf with
Aeromonas. At 5 (left) or 6 (right) dpf Vibrio was added to the water column for 24 hours
prior to whole gut dissection and serial plating to enumerate bacterial abundances.
Additionally plotted are respective Aeromonas mono-association reference (ref.)
populations from Fig 1B (left, ‘4-6’; right, ‘4-7’). The difference between Aeromonas
abundance during challenge and mono-association was determined by an unpaired t-
test. CFU=colony-forming units; ***=p<0.0001; ns=not significant; N>18/condition. Gray

and black dashed lines denote limits of quantification and detection, respectively.
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DISCUSSION
A better understanding of the factors that influence the dynamics and stability of host-
associated microbial communities would allow insights into their assembly [30-32],
fluctuations during periods of normal health [12, 14, 15, 33, 34], and responses to
perturbation [35, 36], as well as aid the development of diagnostic and treatment
strategies for human diseases [17]. Building a working knowledge of these processes
has been impeded by the technical difficulties associated with examining bacterial
populations within their native host environments. In humans, the approach generally
taken has been to infer inter-species interactions from coarsely sampled sequencing-
based metagenomic time-series experiments performed on fecal samples [12-14, 34,
37]. However, such procedures largely disregard spatial information and generally
assume particular functional forms for interactions (e.g. deterministic Lotka-Volterra
dynamics [12, 14, 15]). Moreover, measurement noise and missing information about
absolute abundances in metagenomic data place severe limits on the quantitative
determination of interaction strengths, even if the models are accurate descriptors of the
microbial systems [12]. Therefore, basic questions regarding inter-species competition
in the intestine, particularly the extent to which it is determined by the microbes
themselves, properties of the host environment, or a combination of the two, remain
largely unanswered.

For these reasons we set out to investigate bacterial population dynamics within
the vertebrate intestine using a combination of absolute abundance measurements,
time-series imaging, and quantitative modeling. Though our system is minimal,

consisting of two bacterial species and a larval zebrafish host, it has revealed factors we
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expect to be of broad relevance to other animal-associated microbiota. Most notably, in
this model system the emergence of the apparent competition between Aeromonas and
Vibrio is driven in large part by the physical activity of the host, namely the motility of the
intestine. In mutant zebrafish hosts that have reduced intestinal motility due to mutation
of the gene ret, which impairs ENS development and function, competition between
these bacterial species is offset (Fig 6). Motility and mass transport are, of course, key
attributes of animal intestinal tracts. The finding that the mechanical nature of the host
environment has a major role in shaping bacterial communities suggests that models of
microbiota based on in vitro competition assays or modeling of metabolic networks [16,
38] will, by themselves, be insufficient for predicting and accurately describing
community structure and dynamics. This is in line with the recent observation that
dietary alteration of intestinal transit in a murine model can lead to compositional shifts
in the gut microbiota [39]. Moreover, it provides a mechanism by which host genotype
can influence community composition. Corroborating this notion, human patients with
Hirschsprung disease, which is a gastrointestinal motility disorder commonly associated
with mutation of ret, have been found to harbor dysbiotic microbial communities [40, 41].
The differential susceptibility of our two model bacterial species to intestinal
motility can be explained by their distinct community architectures. Highly motile Vibrio
are relatively unaffected by intestinal contractions, which is in contrast to the large, non-
motile aggregates of Aeromonas (Fig 4). Earlier observations of a related A. veronii
strain showed higher growth rates for aggregated bacteria compared to planktonic [21],
suggesting a tradeoff between enhanced growth and resistance to population level

perturbations. In general, we suspect that the spatial structure of microbial communities
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within the intestine will be an important determinant of their dynamics and a key
consideration for the generation of successful predictive models.

We are able to construct a quantitative model of the observed Aeromonas
dynamics that consists of growth punctuated by stochastic collapses. Data derived from
gut dissection, in which many fish are sampled at a single time point, can be fit to the
model to determine its two relevant parameters, the bacterial carrying capacity, K, and a
factor that characterizes the collapses, z. In itself, this is trivial. However, we can also
determine z from independent, and quite different, data, namely image-based time-
series of individual fish. The two measures agree, which provides strong support for the
proposed stochastic-collapse-driven model of inter-species competition. Furthermore,
the fit of the model to the data reveals that the impact of Vibrio on Aeromonas
populations is twofold: reducing the overall carrying capacity and increasing sensitivity
to physical perturbations—the combined effect of the two being much greater than
either alone. More generally, our analysis provides evidence that quantitative, data-
based models of interactions among species within the gut are possible, and that
stochastic, rather than purely deterministic, dynamics can play a major role in shaping
the composition of and competition within intestinal bacterial communities. It is
interesting to note that recent metagenomic analyses of human intestinal microbiota
have uncovered signatures of sudden shifts in species composition, the origins of which
remain unknown [15, 42], perhaps indicating stochastic dynamics are widespread in
natural intestinal systems.

From an ecological perspective, it is unsurprising that the physical environment

and stochastic perturbations influence species abundance; these concepts are
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mainstays of our understanding of macroscopic multi-species communities [43]. A rich
literature describes various stochastic population models and the characteristics, such
as extinction probabilities, that emerge from them [44-47]. As shown here, it is likely that
such models will in general be useful for providing a conceptual and predictive
framework for understanding inter-species bacterial competition. Again mirroring well-
established ecological concepts, we can frame our understanding of Vibrio and
Aeromonas dynamics in the intestine as a study of these species’ differential resistance
and resilience to environmental perturbations. Aeromonas during mono-association is
not resistant to disturbances related to intestinal motility, but it is resilient, able to grow
to high abundances despite sporadic collapses. Vibrio, in contrast, is highly resistant to
perturbations; it shows smooth growth unfazed by the environmental perturbations that
affect Aeromonas (Fig 3). In the presence of Vibrio, both the resistance and resilience of
Aeromonas are compromised, as the magnitude of collapses is greater and the carrying
capacity to which to recover is diminished.

While ecological concepts can help us characterize microbial dynamics, data on
microbial systems can, conversely, enhance our understanding of ecological theory.
The fast generation time and high degree of reproducibility of microbial systems have
allowed a variety of tests of ecological models in recent years, illuminating issues such
as game-theoretic aspects of cheating [48], early warning indicators of population
collapses [49], and the statistical structure of number fluctuations [50]. Although
theoretical treatments of population collapses and extinction events are abundant in the
ecological literature, real data with which to test them remain sparse [51], in part due to

the challenges of performing high-precision field studies. We expect, therefore, that data
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of the sort presented here, which yield collapse statistics as well as fits to stochastic
models, will have utility in contexts far removed from microbiota research.

Aeromonas population collapses are well described by stochastic dynamics, but
the underlying mechanism by which Vibrio compromises resistance and resilience of
Aeromonas remains to be elucidated. Several possibilities exist, and are the focus of
ongoing investigation. Vibrio may disrupt the adhesive properties of sessile bacterial
communities by secreting mucinases [52], or alter the rheological properties of the
intestinal environment [53]. More directly, Vibrio may kill Aeromonas via secreted
factors acting as bacteriocins or contact-mediated killing through the Type VI secretion
system [54-56]. Intriguingly, it is unclear whether, in the context of a larger
metacommunity composed of many fish in a shared aqueous environment, Aeromonas
is actually at a competitive disadvantage compared to Vibrio. Expulsions of Aeromonas
could benefit this species by aiding dispersal and subsequent colonization of other
hosts. This may, in fact, explain the observation that species of Vibrio and Aeromonas
are both highly represented among conventionally raised zebrafish [31].

The combination of gnotobiotic manipulation and imaging-based analyses can be
further elaborated in larval zebrafish, both by increasing the diversity of monitored
microbial species and by examining interactions with particular aspects of the host such
as its immune system [25]. As illustrated here, we expect that such studies will yield
additional insights into the factors that drive the dynamics of complex, natural host-

associated microbiota.
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METHODS

Ethics statement

All experiments with zebrafish were done in accordance with protocols approved by the
University of Oregon Institutional Animal Care and Use Committee and following

standard protocols [57].

Gnotobiotic techniques

Wild-type AB or ret mutant (ret1"?%#°, ZFIN ID: ZDB-ALT-070315-12) zebrafish were
derived GF and colonized with bacterial strains as previously described [19]. Briefly,
fertilized eggs from adult mating pairs were harvested and incubated in sterile embryo
media (EM) containing 100 ug/ml ampicillin, 5 pyg/ml kanamycin, and 250 pg/ml
amphotericin B for ~6 hour. Embryos were then washed in EM containing 0.003%
sodium hypochlorite followed by EM containing 0.1% polyvinylpyrrolidone—iodine.
Sterilized embryos were distributed into T25 tissue culture flasks containing 15 ml sterile
EM at a density of one embryo per ml and incubated at 28-30°C prior to bacterial
colonization. Embryos were sustained on yolk-derived nutrients and not fed during

experiments.

Bacterial strains

Aeromonas (ZOR0001, PRJNA205571) and Vibrio (ZWU0020, PRINA205585) were
isolated from the zebrafish intestinal tract and described previously [24]. Fluorescently
marked derivatives used in imaging experiments were engineered with an established

Tn7 transposon-based approach [58]. Briefly, a cassette containing the constitutively
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active synthetic promoter Ptac cloned upstream of genes encoding dTomato or
superfolder GFP was chromosomally inserted at the attTn7 locus to generate
Aeromonas attTn7::Ptac-dTomato and Vibrio attTn7::Ptac-sfGFP. Strains expressing
fluorescent proteins did not exhibit overt fithess defects in vitro or in vivo. Prior to
colonization at designated time points, bacterial strains were grown overnight in Luria
Broth (LB) shaking at 30°C. Bacterial cultures were prepared for inoculation by pelleting
for two minutes at 7,000 x g and washing once in sterile embryo medium (EM). An
inoculum of 10° CFU/ml was used across experiments for each bacterial strain and

added directly to the water column.

Culture-based quantification of bacterial populations

Dissection of larval guts was done as described previously [19]. Dissected guts were
harvested and placed in a 1.6 ml tube containing 500 pl sterile 0.7% saline and ~100 pl
0.5 mm zirconium oxide beads (Next Advance, Averill Park, NY). Guts were then
homogenized using a bullet blender tissue homogenizer (Next Advance, Averill Park,
NY) for ~25 seconds on power 4. Lysates were serially plated on tryptic soy agar (TSA)
and incubated overnight at 30°C prior to enumeration of CFU and determination of
bacterial load. Plots depicting culture-based quantification of bacterial populations show
the estimated limit of detection (5 bacteria/gut) as well as limit of quantification (100
bacteria/gut) and represent pooled data from a minimum of two independent

experiments.

Light sheet microscopy

32



618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

Imaging was performed using a home-built light sheet fluorescence microscope, based
on the design of Keller et al. [18] and described in detail elsewhere [21, 22]. Briefly, a
laser beam is rapidly scanned with a galvanometer mirror and demagnified to provide a
thin sheet of excitation light. An objective lens mounted perpendicular to the sheet
captures fluorescence emission from the optical section, and the sample is scanned
along the detection coordinate to yield a three-dimensional image. To image the entire
extent of the intestine (approximately 1200x300x150 microns) we sequentially image
four sub-regions and computationally register the images after acquisition. The entire
volume of the intestine is imaged in less than 2 minutes in two colors, with a 1-micron
spacing between planes. Unless otherwise indicated in the text, all exposure times are
30 ms with an excitation laser power 5 mW, as measured between the theta-lens and

the excitation objective.

Imaging-based quantification of bacterial populations

The analysis pipeline used to estimate bacterial abundances from light sheet imaging is
described in [21]. In brief, we computationally identify both individual bacteria and
clusters of bacteria, and estimate the population of each cluster by dividing the total
fluorescence intensity by the average intensity of individual bacteria. As necessary,
objects that are falsely identified as bacterial clusters are manually removed. For
example, in Fig 3A an autofluorescent signal in the intestinal midgut in the Vibrio
channel was excluded from subsequent quantitative analysis. Additionally, individual

time points during time-series are removed if, determined by manual inspection, sample
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640  drift or motion of bacterial clusters driven by intestinal motility makes it infeasible to

641  robustly estimate bacterial abundance.

642

643  ldentification of population collapse events

644  Collapses in bacteria populations are objectively identified from time-series of total

645  bacterial abundance, such as those in Fig 3, by defining a collapse as a decrease in
646  population by at least a factor of 10 within one hour. Collapse events with pre-collapse
647  populations of less than 100 bacteria are discarded. These criteria were manually

648  validated by associating each identified collapse with a corresponding ejection of

649  bacteria from the gut observed in series of images.

650

651 Imaging experiments

652  Sample mounting is done as previously described [21]. Larval zebrafish were removed
653  from culture flasks and anaesthetized using 120 pg/ml tricaine methanesulfonate

654  (Western Chemical, Ferndale, WA). Individual specimens were then briefly immersed in
655  0.5% agar (maximum temperature: 42° C) and drawn into a glass capillary, which was
656  then mounted onto a sample holder. The agar-embedded specimens were partially

657  extruded from the capillary so that the excitation and emission optical paths did not pass
658  through glass interfaces. The specimen holder can hold up to six samples, all of which
659 are immersed EM maintained at 28°C, with tricaine present as an anaesthetic. All long-
660  term imaging experiments were done overnight, beginning in the late afternoon.

661

662  Measuring bacterial distance to epithelial wall
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Individual bacteria were identified using the same algorithms used for quantification of
bacterial abundance in the intestine. As we do not have a fluorescent marker for the
epithelial wall of the intestine, we use the extent of the autofluorescent mucus in images
as an estimate of the location of the epithelial wall. This extent is determined by active
contour segmentation using the Chan-Vese algorithm [59], using the implementation
provided in MATLAB. A user-defined region is used as the seed for the segmentation of
the first frame in the time-series, after which the segmentation of the previous frame is
used as the seed for the segmentation of the subsequent frame. We then define the
distance of each identified bacterium to the epithelial wall as the minimum distance
between the location of the bacterium and the segmented extent of the intestine.
Distributions of distances to the epithelial wall are constructed from all video frames and
confidence intervals are obtained using bootstrap resampling. A null model of a uniform
prediction is obtained by randomly distributing 1000 points for each time point in the
region defined by our intestinal segmentation. Confidence intervals are again obtained

through bootstrap resampling.

Measuring intestinal motility

Larval intestinal motility was assessed from images captured using differential
interference contrast (DIC) microscopy, performed as previously described [27]. The
displacement field from frame to frame in time-series was determined using particle
image velocimetry (PIV) algorithms [60], which calculate the motions necessary for
regions in one frame to be mapped onto regions in another. We focused our analysis on

the frequency and amplitude of these motions, restricting our analysis to components of
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displacement along the intestinal axis. Fourier spectra of the displacements, averaged
over location in the intestine, yielded in all cases a clear peak whose frequency and
magnitude are indicative of the characteristic frequency and amplitude of intestinal

motility, respectively. This method is described in greater detail in a forthcoming paper.
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SUPPORTING INFORMATION
S1 Text. Stochastic Collapse Model

We describe a simple model of growth and collapse behavior and examine its
predictions for population sizes. We also fit the model to experimental data on bacterial
abundance.

1 The model

Consider a species with population N at time t that exhibits logistic growth, with
growth rate r and carrying capacity K:

dN = rN(l—%)dr , [Equation 1]

We superimpose on these dynamics events in which the population collapses to a value
f times its pre-collapse value, where fis between 0 and 1, after which it resumes logistic
growth. We model the timing of the collapses as a Poisson process: collapses are
uncorrelated and stochastic, occurring with a probability per unit time p.. Formally, one
can write this as a stochastic differential equation:

dN = rN(l—%)dt—(l—f)NdM , [Equation 2]

where dM is a Poisson process of unit step. (In other words, dM =1 with probability p.dt,
and dM = 0 with probability 1 - p.dt.) N dM refers to N immediately before the collapse.
An illustration of the roles of the parameters r, K, f, and p. is provided in Figure 5. As
noted in the main text, this model is not new; it has been invoked and studied in many
ecological contexts [S1]. However, the particular treatment presented here is, to the
best of our knowledge, novel, especially with respect to determining relevant
parameters for fits to experimental data. We determine statistical properties of the
model using numerical simulations. For infinite carrying capacity, these properties can
be calculated analytically, but for the biologically relevant case of finite carrying
capacity, exact solutions do not at present exist.

2 Simulations

The model described above is simple to simulate by numerical integration, which
yields the population x; at time t. Two typical x; are shown in Figure ST1, with
parameters as noted in the caption.
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Figure ST1. Two simulated populations exhibiting stochastic
collapses, with f = 102, p. = 0.05 hr.”", r = 1 hr.”", and K
drawn from a log-normal distribution with mean 10* and a
standard deviation of half a decade. (We plot the population
plus one so that zero values are evident on the logarithmic
scale.)

The model has four parameters, r, K, f, and p.;, and a boundary condition set by x, (the
initial population). The value of xp is irrelevant for the experimental conditions
considered: the populations start from a small value and grow rapidly. In our simulations
Xo is taken to be 10.

The growth rate, r, is known from measurements. Moreover, the model dynamics
are fairly insensitive to r, since the experimental timescales of ~10 hours are
considerably larger than the timescale set by the growth rate (1/r ~ 1 hour).

The key determinants of the population statistics, therefore, are the collapse
properties (p. and f) and the carrying capacity, K. The carrying capacity may exhibit
considerable variation between fish. Typically, the final populations of Aeromonas in
mono-associations are found to be approximately log-normally distributed (Figure ST2),
as is commonly the case for species abundances, and so in simulations we draw K from
log-normal distributions. In other words, log1o(K) for a given simulation is drawn from a
Gaussian distribution with some mean value and standard deviation ok, where ok is
typically 0.5, discussed further below. We note that in the absence of collapse (e.g. pc =
0 or =1) this model is completely deterministic, and the variance in final bacterial
populations between fish is solely due to the variance in K.

For particular parameter values, we simulate many instances of the above
dynamics (typically 1,000 to 10,000) and examine the statistical properties of the final
population, x:;, assessed at t = 24 hours. For the values used in Figure ST1 above, for
example, the mean and standard deviation of the final x; are (6.4 + 11.5) x 10°. The
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distributions span orders of magnitude, including zero, so it is useful to consider the
mean and standard deviation of logio(xi+1), similar to a geometric mean. For these
parameters, this gives a mean and standard deviation of log1o(xi+1) of 2.8 + 1.5. We will
define y as

y=log,,(x,+1) , [Equation 3]
for notational simplicity.

20

-
o

Number of occurrences
P =

0
2 3 4 5

Iogw(Aeromonas population)

Figure ST2. Histogram of the final population of Aeromonas
mono-associated with larval zebrafish at 4 dpf and assessed
at days 5, 6, or 7 dpf by plating of dissected gut contents and
counting of colony forming units.

3 Parameters and Fits
3.1 Dependence on p. and f

We can vary the model parameters to determine the relationship between the
mean and the variance of the final population, which will allow direct comparison
between our model and measurements of bacterial abundance (e.g. Figure 1). The
dependence of the mean and standard deviation (std.) of y on p. and f is plotted in
Figure ST3. We can intuitively understand its behavior: for small p; or f near 1, the
properties of x; are largely set by the mean and variance of the carrying capacity.
However, as p. increases (or f decreases), the mean of x; decreases, because larger
collapses are more likely to occur, and the standard deviation of x; increases, because
the stochastic collapses play a more significant role in the dynamics. For still larger p
(or smaller f), the final population becomes more uniformly small, because the
population is dominated by very frequent collapses and cannot grow appreciably.

Treating f as a random, rather than a fixed, parameter has little effect on the
behavior of the model. Drawing f from a beta distribution, chosen because it is
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continuous, spans [0, 1], and has two parameters that can be mapped onto a mean and
variance, gives the curve shown in Figure ST4. The mean collapse magnitude is chosen
over the same range as f in Figure ST3, and for each mean f, several f values are
drawn from a beta distribution with standard deviations relative to the mean spanning [0,
0.8]. All the resulting population characteristics are plotted in Figure ST4; the resulting
curve is nearly identical to that of Figure ST3.
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Remarkably, at fixed K, nearly identical curves result from varying either p. or f
(Figure ST3), suggesting that at least over the parameter ranges and timescales
relevant to our experiments, these two parameters can be subsumed into one effective
variable. Considering particular values of mean(y) and std(y), where y is the logarithm of
the population as defined above, we can search for the best-fit values of (pc, f), i.e. the
parameters that minimize the squared Euclidean distance, xz, between the measured
and simulated (mean(y), std(y)). Using, for concreteness, the values determined from
gut dissection and plating experiments of Aeromonas abundance 24 hours after
challenge by Vibrio, namely (mean(y), std(y)) = (1.68 + 0.34, 1.50 + 0.24), we find, as
expected, the best-fit contours describe a curve in the (p., f) space (Figure ST5a).
Empirically, we find that this curve is represented by —p. logio(f) = constant (Figure
ST5b).

Fitting experimental data to this model of logistic growth with stochastic collapses
reduces, therefore, to a two parameter fit to the carrying capacity, K, and a parameter
describing the collapse properties, denoted as z:

z=-p.log,(f) [Equation 4]

To the best of our knowledge, this effective collapse of the two stochastic
parameters into one effective parameter, z, has not been previously reported. We do
not have a mathematically exact theory for its occurrence, but simply present it as an
empirical result from our numerical simulations.

A s B =
£ 0.2} 00 ]
A. 4 o Og~ 00~ ~0-995 0
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::S 3 E
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Figure ST5. (A) Squared distance, %, between the measured and
simulated (mean(y), std(y)) for values derived from Aeromonas
abundance 24 hours after challenge by Vibrio, namely (mean(y), std(y)) =
(1.68 £ 0.34, 1.50 £ 0.24), as a function of model parameters p. and f. The
carrying capacity is drawn from a log-normal distribution with mean 10%’
and standard deviation 0.5 decades. At each value of (pc, f), 1000 runs are
simulated to determine mean(y) and std(y). The optimal parameters
(darkest blue) sweep out a curve in the parameter space. (B) The optimal
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pc and f are related by —p. log1o(f) = constant over the range of parameters
examined.

3.2 Parameter fits: Aeromonas challenged by Vibrio

Again using the Aeromonas 24-hour post-challenge abundance data (Figure 1),
(mean(y), std(y)) = (1.68 + 0.34, 1.50 + 0.24), contours of % are shown in Figure ST6.
The best-fit parameter values are:

z = -pdogio(f) =0.13 + 0.05 hr.™,

log1o(K) =3.2+0.5
In the simulations, K is drawn from a log-normal distribution with width 0.5 decades; the
fit is insensitive to this width, since the variance in the final population is much greater
than 0.5. The uncertainties in z and K are estimated from simulations spanning the
experimental uncertainties in mean(y) and std(y).

In the main text, we compare these plating-derived measures of the collapse
parameters p; and f to those determined from live imaging.

0.3

Figure ST6. Contours of %, the
distance between simulated
(mean(y), std(y)) and the measured
value from di-association
experiments (1.68, 1.50), for a
range of z and K. The fit has a clear
minimum at z = 0.13 hr.' and

|Og10(K) =3.2.

0.25}

3.3 Parameter fits: Aeromonas alone

Similarly, we can determine the parameter values that best match Aeromonas
mono-association data, (mean(y), std(y)) = (4.1 £ 0.08, 0.61 £ 0.05), where these values
are from plating data at both 5 and 6 days post-fertilization. Because std(y) is low, i.e.
the data map onto the lower right corner of the curve of Figures ST3-4, it is unclear
whether the variance in y is due mainly to variance in K or to the stochasticity of
collapses, and we have no independent measure of the variance in K. Considering K
drawn from log-normal distributions of various widths, we find best-fit values of z = -
pclogio(f) spanning roughly z = 0.01 + 0.01 hr.™" i.e. z is poorly constrained. Contours of
x? are shown in Figure ST7. Despite this uncertainty, K is well-constrained to be
approximately log1o(K) = 4.2 £ 0.1. The significance of this is discussed in the main text.
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Figure ST7. Contours of %, the
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measured value from mono-
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for a range of z and K, with K drawn
from log-normal distributions of
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S1 Fig. Aeromonas and Vibrio exhibit an apparent competitive interaction within
the larval zebrafish intestine. (A) Graphical overview of succession schemes used to
characterize Aeromonas-Vibrio interactions. Aeromonas is allowed to colonize GF
larvae at 4 dpf followed by addition of Vibrio to the water column at 5 or 6 dpf for 24 or
48 hours prior to enumeration of abundances by dissection and serial plating. (B, left)
Vibrio abundances after different mono-association durations and (B, right) Aeromonas
and Vibrio abundances after different Vibrio challenge periods. Statistical significance of
Vibrio abundances after Vibrio challenge compared to respective mono-association
reference populations (i.e. ‘5-6’ vs. ‘5-6; ‘6-7’ vs. ‘6-7’; ‘5-7’ vs. ‘5-7’) was determined by
an unpaired t-test. *=p<0.05; ***=p<0.0001; ns=not significant; N>10/condition. Founder
populations ‘F’ of (C) Aeromonas and (D) Vibrio were mono-associated with GF larvae
on day 4 post-fertilization and challenged by fluorescently marked self populations ‘C’ at
5 dpf for 24hrs (‘5-6’) or 48hrs (‘5-7’). Dissection and serial plating was done to
enumerate founder and challenger populations. Counting of bacterial colonies was done
on a fluorescent stereomicroscope. (E) Aeromonas and Vibrio were inoculated into LB
broth either individually or 1:1 and grown overnight with shaking at 30°C prior to
enumeration by serial plating. CFU=colony-forming units. Gray and black dashed lines

in panels B, C, and D denote limit of quantification and detection, respectively.
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S2 Fig. Space filling properties of Vibrio within the zebrafish gut. (A) Single optical
plane of 6 dpf larval zebrafish inoculated at 4 dpf with GFP-labeled Vibrio. Scale bar: 50
um. (B-E) Blue curves: Spatial distribution of bacteria with respect to the approximate
extent of the intestinal epithelial wall. Gray curves: prediction from a null model of
uniform space filling. Each panel represents an individual fish with panel B being from

the same specimen in panel A.
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S3 Fig. Collapses of Aeromonas populations within the zebrafish gut. (A) Total
bacterial abundance derived from imaging data for Aeromonas and Vibrio for all imaged
fish (N=13) initially inoculated for 24 hours with Aeromonas and then challenged by
Vibrio. Plots represent individual larvae and are plotted as a function of time following
Vibrio inoculation. (B) Total bacterial abundance derived from imaging data for fish

inoculated for 24 hours with Aeromonas alone (N=10). Plots represent individual larvae
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1110  and are plotted as a function of time following Aeromonas inoculation. (A and B) Vertical
1111  dashed lines indicate sharp drops of over an order of magnitude within an hour of the
1112 Aeromonas population.
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S4 Fig. Characteristics of zebrafish gut motility at 6 dpf for fish with different
bacterial colonization histories. GF = germ-free; Aero = mono-association with
Aeromonas from 4 dpf; Vibrio = mono-association with Vibrio from 4 dpf; Aer+Vib =
mono-associated with Aeromonas at 4 dpf and challenged with Vibrio at 5 dpf. (A) The
characteristic period of gut motility, identified as the inverse of the frequency of the peak
signal in a Fourier spectrum of gut motion amplitudes, averaged over all positions. All
conditions give very similar periodicity of gut motion. (B) The characteristic amplitude of
gut motility, identified as magnitude of the peak signal in a Fourier spectrum of gut
motion amplitudes. There is considerable variability between fish clutches, and so the
amplitudes are normalized by the median of the germ-free fish in each batch. All
conditions show large variance, with no significant difference evident between the
various conditions. In A and B, gray “X”s are from individual fish; boxes indicate the first

to third quartiles, and the horizontal bars in boxes indicates the median value.
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1129

1130 S5 Fig. Spatial distribution of Aeromonas and Vibrio during mono-association or
1131 challenge experiments. (A) Spatial distribution of Vibrio, quantified as the probability
1132 density along the gut, for 6 dpf fish mono-associated at 5 dpf with GFP-labeled Vibrio
1133 (gray) or inoculated at 4 dpf with dTomato-labeled Aeromonas and challenged at 5 dpf
1134 with GFP-labeled Vibrio (blue). (B) Probability density of Aeromonas in 6 dpf fish mono-
1135  associated at 5 dpf with dTomato-labeled Aeromonas (gray) or inoculated at 4 dpf with
1136 dTomato-labeled Aeromonas and challenged at 5 dpf with GFP-labeled Vibrio

1137  (magenta). The blue and magenta spatial distributions are drawn from the same fish.
1138 N=10 for both conditions.
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Supporting Movie Captions
S1 Movie. Example of the motile and planktonic behavior of Vibrio in the zebrafish
gut. Live imaging of a single optical plane in the intestinal midgut of a 6 dpf larval

zebrafish inoculated at 4 dpf with GFP-labeled Vibrio. Scale bar: 50 ym.

S2 Movie. Example of Vibrio space filling properties. Three-dimensional scan
through the intestinal bulb of a 5 dpf larval zebrafish inoculated at 4 dpf with GFP-

labeled Vibrio. Scale bar: 50 pm.

S3 Movie. Example of Vibrio resistance to intestinal contractions. Time-series is of
a single optical plane in the intestinal bulb of a 6 dpf larval zebrafish inoculated at 4 dpf
with GFP-labeled Vibrio. A subpopulation of Vibrio can be seen aggregating in the
anterior bulb despite repeated intestinal contractions. Scale bar: 50 ym. Movie was

recorded at 1 frame per second.

S4 Movie. Example of the non-motile and clustered behavior of Aeromonas in the
zebrafish gut. Live imaging of a single optical plane in the intestinal midgut of a 6 dpf

larval zebrafish inoculated at 4 dpf with dTomato-labeled Aeromonas. Scale bar: 50 um.

S5 Movie. Spatial distribution of Aeromonas in the zebrafish gut. Three-

dimensional scan through the intestinal bulb and midgut of a 5 dpf larval zebrafish

inoculated at 4 dpf with dTomato-labeled Aeromonas. Bacterial clusters, individual
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bacteria (circled), and autofluorescent signals from intestinal mucus (gray haze) are

indicated. Scale bar: 50 ym.

S6 Movie. Example of an Aeromonas collapse event during Vibrio challenge.
Time-series is of maximum intensity projections of images taken from the same larval
zebrafish shown in Fig 3A. The fish was initially colonized at 4 dpf with Aeromonas
(magenta), challenged 24 hours later by inoculation with Vibrio (cyan), and then imaged
every 20 minutes for 14 hours. Times indicate hours post-challenge. The region shown
spans about 80% of the intestine, with the anterior on the left. Image contrast in both
color channels is enhanced for clarity. Yellow dotted line roughly indicates the lumenal
boundary of the intestine; the two bacterial fluorescence channels are overlaid inside

this region. Scale bar: 200 ym.

S7 Movie. Example of Aeromonas sensitivity to intestinal contractions. Time-
series is of a single optical plane in the intestinal midgut of a 6 dpf larval zebrafish
inoculated at 4 dpf with dTomato-labeled Aeromonas. Scale bar: 50 ym. Movie was

recorded at 1 frame per second.

S8 Movie. Example of intestinal motility in a wild-type larval zebrafish. Differential

interference contrast (DIC) microscopy video of intestinal motility in a conventionally

raised 6 dpf wild-type larval zebrafish. Scale bar: 50 ym.
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1184  S9 Movie. Example of intestinal motility in a ret mutant larval zebrafish. Differential
1185 interference contrast (DIC) microscopy video of intestinal motility in a conventionally

1186  raised 6 dpf ret mutant larval zebrafish. Scale bar: 50 ym.
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