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Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia
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ABSTRACT:
Over 100 genetic loci harbor schizophrenia associated variants, yet how these common

variants confer risk is uncertain. The CommonMind Consortium has sequenced dorsolateral
prefrontal cortex RNA from schizophrenia cases (n=258) and control subjects (n=279), creating
the largest publicly available resource to date of gene expression and its genetic regulation; ~5
times larger than the latest release of GTEx. Using this resource, we find that ~20% of the
schizophrenia risk loci have common variants that could explain regulation of brain gene
expression. In five loci, these variants modulate expression of a single gene: FURIN, TSNARE1,
CNTN4, CLCN3 or SNAP91. Experimentally altered expression of three of them, FURIN,
TSNARE1, and CNTN4, perturbs the proliferation and apoptotic index of neural progenitors and
leads to neuroanatomical deficits in zebrafish. Furthermore, shRNA mediated knock-down of
FURIN in neural progenitor cells derived from human induced pluripotent stem cells produces
abnormal neural migration. Although 4.2% of genes (N = 693) display significant differential
expression between cases and controls, 44% show some evidence for differential expression.
All fold changes are < 1.33, and an independent cohort yields similar differential expression for
these 693 genes (r = 0.58). These findings are consistent with schizophrenia being highly
polygenic, as has been reported in investigations of common and rare genetic variation. Co-
expression analyses identify a gene module that shows enrichment for genetic associations and
is thus relevant for schizophrenia. Taken together, these results pave the way for mechanistic

interpretations of genetic liability for schizophrenia and other brain diseases.
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93 The human brain is complicated and not well understood. Seemingly straightforward
94  fundamental information such as which genes are expressed therein and what functions they
95 perform are only partially characterized. To overcome these obstacles, we established the

96 CommonMind Consortium (CMC; www.synpase.org/CMC), a public-private partnership to

97  generate functional genomic data in brain samples obtained from autopsies of cases with and
98  without severe psychiatric disorders. The CMC is the largest existing collection of collaborating
99  brain banks and includes over 1,150 samples. A wide spectrum of data is being generated on
100 these samples including regional gene expression, epigenomics (cell-type specific histone
101 modifications and open chromatin), whole genome sequencing, and somatic mosaicism.
102
103 Schizophrenia (SCZ), affecting roughly 0.7% of adults, is a severe psychiatric disorder
104  characterized by abnormalities in thought and cognition (7). Despite a century of evidence
105 establishing its genetic basis, only recently have specific genetic risk factors been conclusively
106 identified, including rare copy number variants (2) and >100 common variants (3). However,
107  there is not a one-to-one Mendelian mapping between these SCZ risk alleles and diagnosis.
108 Instead, SCZ is truly complex and appears to result from a myriad of genetic variants exerting
109 small effects on disease risk (4, 5), conforming closely to a classical polygenic model (6). The
110 available data are incomplete but implicate synaptic components, including calcium channel
111 subunits and post-synaptic elements (5, 7-9). A consequence of polygenic inheritance is that the
112  small effect sizes of individual variants complicate characterization of the biological processes
113 they influence, both at the level of particular genes and pathways.
114
115 Post-mortem gene expression studies of SCZ cases suggest subtle abnormalities in
116 multiple brain regions including the prefrontal and temporal cortices, hippocampus, and several
117  specific cell types (70). More than 50 gene expression studies of SCZ cases and controls have
118 been reported, often of overlapping samples and mostly of modest scale (prior RNA sequencing
119  studies evaluated only 5-31 cases, Supplementary data file 1). Results are often inconsistent
120 and there are few replicated findings. These studies are probably underpowered to detect subtle
121  effects that might be expected to arise as a result of this complex disease and within tightly
122  regulated brain tissue (771), among other limitations of existing microarray-based gene
123  expression studies (12, 13).
124
125 RNA sequencing can accurately detect transcription at the gene and isoform level (74-
126  20). We sequenced a cohort of SCZ and control subjects that is an order of magnitude larger
127  than prior RNA sequencing studies. By applying state-of-the-art analytic methods and including

128 genome-wide characterization of common variants, we generated a rich resource of the
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129  genetics of gene expression in the brain. This resource can serve as a useful catalogue of
130 regulatory variants underlying the molecular basis of SCZ and other brain disorders. We use
131  this resource to identify: (a) specific effects on gene expression of genetic variants previously
132 implicated in risk; (b) genes showing a significant difference in expression between SCZ cases
133  and controls; and (c) coordinated expression of genes implicated in SCZ. Our results shed light
134  on the subtle effects expected from the polygenic nature of SCZ risk and thus substantially
135 refine our understanding of the neurobiology of SCZ.

136

137 Samples and sequencing

138 We generated RNA sequence data from post-mortem human dorsolateral prefrontal
139 cortex (DLPFC; Brodmann areas 9 and 46) from brain banks at the Icahn School of Medicine at
140  Mount Sinai, the University of Pennsylvania, and the University of Pittsburgh. To control for
141 batch effects, multiple randomization steps were introduced and DNA and RNA isolation and
142  library preparation were performed at one site (Supplementary Fig. 1A). Samples were
143  genotyped on the lllumina Infinium HumanOmniExpressExome array (958,178 SNPs) and
144  imputed using standard techniques with the 1000 Genomes Project as reference data (27).
145 These genotypes were then used to detect SNPs that have an effect on gene expression
146  (eQTLs, expression quantitative trait loci), to estimate ancestry of the samples, and to ensure
147  sample identity across DNA and RNA experiments. Ethnicity was similar between cases and
148 controls (Caucasian 80.7%, African-American 14.7%, Hispanic 7.7%, East Asian 0.6%,
149  Supplementary Figs. 1B, C). As expected (3), SCZ cases inherited an increased number of
150  common variant alleles previously associated with SCZ risk (p = 1.6 x 10, Supplementary Fig.
151 1D).

152

153 RNA sequencing was performed after depleting ribosomal RNA (rRNA). Following
154  quality control, there were 258 SCZ cases and 279 controls. Fifty-five cases with affective
155  disorder were included to increase power to detect eQTLs. The median number of paired end
156 reads per sample was 41.6 million, with low numbers of rRNA reads (Supplementary Fig. 2).
157  Following data normalization, 16,423 genes (based on Ensembl models) were expressed at
158 levels sufficient for analysis, of which 14,222 were protein coding. Validation using PCR showed
159  high correlation (r > 0.5) with normalized expression from RNA-seq for the majority of genes
160 assessed (Supplementary Fig. 3). Gene expression measurement can be influenced by a
161 number of variables; some are well documented (e.g., RNA integrity (RIN) and post-mortem
162 interval (PMI)), but others may be unknown. We investigated known covariates by standard
163  model selection procedures to find a good statistical model (Supplementary Fig. 4). Covariates

164  for RIN, library batch, institution (brain bank), diagnosis, age of death, genetic ancestry, PMI,
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165 and sex together explained a substantial fraction (0.42) of the average variance of gene
166  expression, and were thus employed to adjust the data for all analyses.

167

168 Generation of a brain eQTL resource

169 To identify eQTLs, gene expression data from European-ancestry subjects (n=467) were
170  adjusted for known and hidden variables detected by surrogate variable analysis (SVA)
171 conditional on diagnosis but excluding ancestry (Supplementary Fig. 2 and 4). Adjusted
172  expression levels were then fit to imputed SNP genotypes, covarying for ancestry and diagnosis,
173  using an additive linear model implemented in MatrixEQTL (22). The model identified 2,154,331
174  significant cis-eQTLs, (i.e., within 1 Mb of a gene) at a false discovery rate (FDR) < 5%, for
175 13,137 (80%) of 16,423 genes. Many eQTLs for the same gene were highly correlated, due to
176 linkage disequilibrium, and 32.8% of eQTL SNPs (“eSNPs”) predict expression of more than
177  one gene. Cis-eSNPs were enriched within genic elements and non-coding RNAs, particularly
178  within 100 kb of the transcription start and end sites (23), and depleted in intergenic regions (Fig.
179 1A, B). As defined by GTEx (24), an “eGene” is a gene with at least one significant eSNP after
180  strict correction for multiple marker testing for that gene. There were 8,427 eGenes at FDR <
181 5%, or 18 eGenes discovered per sample, consistent with a prediction from GTEx. We
182  examined the enrichment of max-eQTLs (defined as the most significant eSNP per gene, if any)
183 in predicted enhancer sequences derived from the Roadmap Epigenomics Consortium and
184 ENCODE across 98 human tissues and cell lines (25). Cis-eQTLs were enriched for enhancer
185 sequences present in brain tissues (Kolmogorov-Smirnov (KS) test versus non-brain: D =1, p =
186 4.5 x 10°), and the strongest enrichment is observed in DLPFC enhancers (Z = 9.5) (Fig. 1C).
187

188 To assess the utility of our much larger brain dataset, we compared previously reported
189 DLPFC eQTLs to CMC-derived eQTL, estimating the proportion of non-null hypotheses (174) in
190 CMC (26) and the number of additional eQTL found in CMC that were not detected in the other
191  studies. GTEx v6 is the largest public dataset of eQTLs from DLPFC tissue (n = 92) assayed by
192 RNA-seq; its replication in CMC is m; = 0.98. Considering microarray-based eQTLs from the
193  Harvard Brain Bank (27), BrainCloud (28), NIH (29), and the UK Brain Expression Consortium
194 (UKBEC) (30), we estimated 7, to be 0.75, 0.70, 0.79, and 0.93, respectively, indicating that our
195  results captured most eQTLs found in other independent samples. Replication was somewhat
196 lower for a recent meta-analysis that included mixed several distinct brain regions (37) (m; =
197  0.62), and for eQTLs detected in blood (17, = 0.54) (32). We also derived eQTL for 279 DLPFC
198 samples as part of the NIMH Human Brain Collection Core (HBCC) microarray data and found
199 replication m; = 0.77. Moreover, concordance of the direction of allelic effect was high, with 93%
200 of eQTL showing the same direction of effect when intersecting CMC eQTL (FDR < 5%) with
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201  even a liberally defined set of HBCC eQTL (FDR < 20%). In addition to containing the vast
202  majority of eQTL found in the literature, the CMC sample finds a substantial number of genes
203  with previously undetected eQTL (Table 1).

204

205 The patterns of results should be different for “trans-eQTLs”, i.e., SNPs correlated with
206  expression of a gene beyond 1 Mb of its genomic location. Trans-eQTLs incur a greater penalty
207  for multiple testing, require greater power for detection, and are thus more susceptible to false
208 positives and less likely to replicate than cis-eQTL. Nevertheless, the data supported 45,453
209 significant trans-eQTL at FDR < 5%, of which 20,288 were also cis- eQTL SNPs for local genes,
210  and 34% predicted expression of more than one distant gene. The proportion of trans eQTL in
211 CMC that replicate in HBCC is 18.6% (both FDR < 5%). The proportion of HBCC trans eQTL
212  that replicate in CMC is 29.7%. Enrichment of trans-eQTLs with brain enhancers was not
213 observed (data not shown), though enrichment in genic regions and depletion in intergenic
214  regions was observed, particularly when restricting to trans eQTL = 10 Mb from the gene
215 location. We used similar techniques to derive isoform expression quantitative trait loci
216  (isoQTLs). Those results are described in Supplementary Information.

217

218 eQTL signatures at SCZ risk loci point to specific genes

219 A hallmark of polygenic inheritance is that individual SNPs confer small effects on risk.
220  For some risk SNPs, perhaps the majority, their impact could be mediated through effects on
221  gene expression. Indeed, GWAS SNPs associated with SCZ risk occur more often than
222  expected by chance in cis-regulatory functional genomic elements, such as enhancers or eQTL
223 SNPs (7, 33-35). Yet, GWAS loci typically contain many genes, and SNPs therein are often
224  highly correlated via linkage disequilibrium, so that assigning a biological role for a particular risk
225 SNP has been difficult. Here, we leverage CMC-derived eQTL to relate SCZ risk variants to
226  expression of specific genes.

227

228 Of the 108 SCZ GWAS loci previously reported (7), 73 harbor cis-eQTL SNPs for one or
229 more genes (FDR < 5%). However, the simple presence of an eQTL does not imply disease
230 causality (36). We used Sherlock (37), a Bayesian approach that prioritizes consistency
231 between disease association and eQTL signatures in GWAS loci, to identify genes likely to
232  contribute to SCZ etiology. While Sherlock evaluated genes across the genome, we only
233  evaluated genes within the 108 SCZ GWAS loci because SNPs in these loci showed genome-
234  wide significant association with SCZ; thus, in essence, we fine mapped these loci. The results
235 suggested that GWAS risk and eQTL association signals co-localized for 84 genes in 30 of

236 these loci (adjusted p < 0.05; Supplementary Fig. 5A, data file 2). After removing genes where
7
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237 additional evaluation indicated lack of consistency (Supplementary Fig. 6B), there were 33
238 genes highlighted in 18 of the 108 GWAS loci (data file 2). Genes found to have variants
239 affecting risk for autism are often found enriched for variation affecting risk for SCZ; indeed,
240 compared to other genes with eQTL in the GWAS loci, these 33 genes are more enriched for
241  nonsynonymous de novo mutations in autism (fold enrichment = 2.4, pcorrected = 0.03), although
242  not for SCZ, intellectual disability, or epilepsy.

243 Repeating the analyses using isoform-level eQTLs (isoQTL) identified nine genes in
244  eight GWAS loci, with all but three genes already identified in the gene-level analysis (data file
245  2). Combining the gene and isoform data, 20 of 108 GWAS loci (19%) had evidence suggesting
246 that mis-regulated gene expression could, in part, explain the genetic association with
247  schizophrenia: 18 cis-QTL loci (cis-eQTL for 33 genes + 2 genes with cis-isoQTL), one locus
248 implicated only by cis-isoQTL (SNX79), and one trans-eQTL association for IMMP1L at a
249  GWAS locus on chr7. We discuss other genes identified by Sherlock in the Supplement.

250

251 Of the 19 GWAS loci harboring SCZ-associated cis-eQTLs, eight involved only a single
252  gene (i.e., no additional gene with relaxed adjusted Sherlock p < 0.5): furin (FURIN, down-
253  regulated by risk allele), t-SNARE domain containing 1 (TSNARE1, up), contactin 4 (CNTN4,
254  up), voltage-sensitive chloride channel 3 (CLCN3, up), synaptosomal-associated protein of 91
255 kDa (SNAP91, up), ENSGO00000259946 (up), ENSG00000253553 (down), and the
256 ENST00000528555 isoform of sorting nexin 19 (SNX719, down) (Fig. 2 and Supplementary Fig.
257 5B and 6A). For functional follow-up, we focused on the five single-gene loci encoding known
258 proteins implicated at the gene level. First, we replicated these eQTL in the Religious Orders
259  Study and Memory and Aging Project (ROS/MAP) (38), with unpublished human DLPFC RNA
260 sequencing data (n=461). The most significant GWAS SNP was also a significant eQTL with the
261  same direction of effect as in CMC for FURIN (rs4702: p = 1 x 10°), CLCN3 (rs10520163: p = 9
262  x 10°), and SNAP91 (rs3798869: p = 3 x 10™); TSNARE1 (rs4129585: p = 0.057) and CNTN4
263  (rs17194490: p = 0.07) also had alleles in the same direction of effect as in CMC but did not
264  reach significance.

265

266 CLCN3, SNAP91, and TSNARE1 are direct synaptic components, and CNTN4 and
267 FURIN play roles in neurodevelopment. Specifically, CLCN3 (or CIC-3) is a brain-expressed
268 chloride channel, where it appears to control fast excitatory glutamatergic transmission (39).
269 SNAP91 is enriched in the presynaptic terminal of neurons where it regulates clathrin-coated
270 vesicles, the major means of vesicle recycling at the presynaptic membrane. TSNARE1 plays
271 key roles in docking, priming, and fusion of synaptic vesicles with the presynaptic membrane in

272 neurons, thus synchronizing neurotransmitter release into the synaptic cleft. CNTN4 is a
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273  member of the contactin extracellular cell matrix protein family responsible for development of
274  neurons including network plasticity (40). It plays a key role in olfactory axon guidance (47), and
275 there is evidence for association of copy number variants overlapping CNTN4 with autism (42).
276  FURIN processes precursor proteins to mature forms, including brain-derived neurotrophic
277  factor (BDNF) (43, 44), a key molecule in brain development whose down-modulation has been
278 hypothesized as related to schizophrenia (45), and BDNF and FURIN are up-regulated in
279  astrocytes in response to stress (43).

280

281 The major histocompatibility complex (MHC / human leukocyte antigen / HLA) region is
282  consistently most highly associated with SCZ, but it is a difficult region to dissect for causal
283  variation because of its unusually high linkage disequilibrium and gene density (>200 DLPFC-
284  expressed genes in chr6:25-36 Mb). Nevertheless, only five genes in this locus were ranked
285  highly by Sherlock and passed evaluation for concordance of associations (data file 2): C4A,
286 HCG17, VARS2, HLA-DMB, and BRD2. Consistent with recent work identifying structural
287  variation of the C4 genes as partly mediating the genetic MHC association, resulting in higher
288  expression and perhaps driving pathological synapse loss in schizophrenia (46), we found a
289  strong correlation between the risk alleles for SCZ and up-regulation of expression of C4A
290 (complement component 4A; Spearman’s p = 0.66, p < 107°).

291

292  Functional dissection of genes highlighted by eQTL in common risk loci

293 Our results point to a number of genes worthy of follow-up, and we sought an assay that
294  was rapid and amenable to over- and under-expression. Manipulation of zebrafish embryos fits
295 these requirements, especially for evaluation of anatomical phenotypes of early development,
296 such as head and brain size (or area). Perturbing expression of one or more genes in zebrafish
297 has been used to identify genes contributing to neuropsychiatric disorders (47-49). Therefore,
298 we asked whether suppression or overexpression of the corresponding gene within each of the
299 five SCZ risk loci could identify key proteins that regulate brain development. To evaluate the
300 four genes up-regulated by risk alleles in the GWAS loci, we injected 200pg of human capped
301  mRNA encoding TSNARE1, CNTN4, SNAP91, or CLCN3 in 1-8 cell stage embryos (n = 60 per
302 experiment, at least two biological replicates performed). At 3 days post-fertilization (dpf), we
303 assessed the area of the head that contains the forebrain and midbrain structures (Fig. 3A, B).
304 Relative to control embryos, overexpression of TSNARE1 or CNTN4 resulted in a significant
305 decrease in head size, 9.5% (p < 0.001) and 3.5% (p = 0.018), respectively, while SNAP91 or
306 CLCN3 showed no statistically significant effect (Fig. 3A, B). Body length and somitic structures
307  were similar across all embryos, suggesting that our observations were unlikely due to gross
308 developmental delay. For FURIN, we sought to mimic the transcriptional down-regulation in

9
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309 human brains associated with SCZ risk. A reciprocal BLAST search of the zebrafish genome
310 revealed a FURIN ortholog with two potential paralogs; both copies were expressed at ~40-60
311  counts per million reads in mRNA from heads of 3 dpf zebrafish embryos (50). We depleted
312 furin_a, the isoform most closely resembling the human ortholog, using a splice blocking
313  morpholino (sbMQO) that almost completely extinguished expression of the endogenous
314  message by triggering the inclusion of intron 7 (Supplementary Fig. 7). Suppression of furin_a
315 led to a 24% decrease in head size (Fig. 3A, B); this observation was replicated with a second
316  sbMO targeting exon 5 (data not shown). Importantly, expression of human FURIN mRNA could
317 rescue the phenotype induced by either morpholino, providing evidence for specificity
318  (Supplementary Fig. 7E).

319

320 Given a potential role for FURIN, TSNARE1, and CNTN4 during neurogenesis, we
321  asked whether the decrease in head size could be attributed to changes in cell proliferation
322  and/or apoptosis. Overexpression of CNTN4 and suppression of furin_a led to a 9.8% (p =
323 0.003) and a 29.8% (p < 0.001) decrease, respectively, in proliferating cells marked by
324  phospho-histone3 (PH3), and overexpression of TSNARE1 led to a 9.5% increase (p = 0.018) in
325  proliferating cells (=20 per experiment; Fig. 3C, D). Next, we wondered how more proliferating
326 cells nevertheless resulted in a smaller head size phenotype for the case of TSNARE1. To test
327 the possibility that cells exiting cell cycle experience a higher apoptotic index, we performed
328 TUNEL staining on injected embryos, and determined that modulation of all three target genes
329 led to a significant increase in apoptotic cells in the head region corresponding to our head size
330 measurements (n=20 per experiment; p < 0.001; Fig. 3E, F). Taken together, the data support
331 the hypothesis that changes in FURIN, TSNARE1, and CNTN4 expression levels induce subtle
332  neuroanatomical variation in multiple brain regions.

333

334 Depletion of furin in our in vivo zebrafish model had the largest impact on head size.
335 Thus we further tested the impact of FURIN knockdown in human neural progenitor cells
336  (NPCs) capable of differentiating into mixed populations of post-mitotic neurons and astrocytes
337 (51, 52). Neurosphere outgrowth is a well-established neural migration assay measuring the
338 distance NPCs migrate away from the neurosphere (53). NPCs were differentiated from human
339 induced pluripotent stem cells (hiPSCs) reprogrammed from human fibroblasts using sendai
340 viral vectors (54). Pairwise isogenic comparisons were conducted in 307 neurospheres from
341  three independent unaffected controls. We measured migration of DAPI-positive nuclei from
342  pLKO.1 non-hairpin-PURO control neurospheres (n = 147) and LV-FURIN shRNA-PURO
343  (shRNA-FURIN) knockdown neurospheres (n = 160). FURIN knockdown in the hiPSC NPCs
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344  resulted in significantly decreased total radial migration for all three individuals (C1: 1.16-fold
345  decrease, p < 0.0017; C2: 1.23-fold, p < 3 x 10°%; C3: 1.22-fold, p < 2 x 10®) (Fig. 4).

346

347 Gene expression is subtly disrupted in schizophrenia

348 We next evaluated whether SCZ cases versus controls differed in their expression levels
349  per gene. Following normalization of read counts for each gene, a weighted linear regression
350 adjusting for known covariates was performed (Supplementary Figs. 2 and 4). Analysis of the
351 distribution of p-values for the 16,423 genes was tested for a mixture of disease-associated and
352 null distributions (26) and suggests that approximately 44% of genes are perturbed in SCZ; this
353 excess of low p-values disappears when case and control labels are permuted (55). While
354  polygenic inheritance, where many genes are affected but to a small degree (7) (56), could
355  explain this result, treatment and environmental factors also likely play a role. Without imposing
356  a threshold on the magnitude of fold change in mean expression between SCZ and controls, we
357 find 693 genes to be differentially expressed after correction for multiple testing (FDR < 5%),
358 332 up-regulated and 361 down-regulated (Fig. 5A, data file 3). All had modest fold changes
359 (Fig. 5B), with a mean of 1.09 and range 1.03-1.33 (inverting down-regulated expression ratios).
360 As expected, hierarchical clustering of the differentially expressed genes showed case-control
361 distinctions but were independent of institution, sex, age at death, ethnicity, and RIN (Fig. 5A).
362 We examined differential expression in an independent sample, the NIMH Human Brain
363 Collection Core (HBCC), which generated DLPFC gene expression data using Illumina
364 HumanHT-12_V4 Beadchip microarrays from 131 SCZ cases and 176 controls. Though these
365 arrays differ from RNA-seq in their capture features, there was high correlation of test statistics
366 for differential expression in CMC compared to HBCC for the differentially expressed genes also
367 present in the HBCC data (480 of 693), Pearson correlation r = 0.58 (p < 10'®); the correlation
368  remains high (r = 0.28, p < 107°) across all 10,928 genes common to both platforms after QC

369 (Fig. 5C).
370
371 The differential expression observed here is smaller than that reported in earlier studies

372 (data file 1), but it is consistent with plausible models for average differential gene expression
373  and the polygenic inheritance of SCZ (Supplementary Text, with meta-analysis of earlier studies
374  Supplementary Fig. 8). Consider, for example, a gene for which the major determinant of
375 differential expression is the case-control difference in allele frequency at an eQTL SNP. For
376 that gene, the expected magnitude of differential expression fold change will be on the order of

377 the allele frequency differences seen in the recent large Psychiatric Genomic Consortium SCZ
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378  genetic association study (~1-2%) (7), precisely what is observed in the CMC data. Such
379 modeling can also explain the difference between earlier studies and CMC results; because
380 earlier studies tend to be far smaller in sample size, their larger differential expression is
381  consistent with either the well-known “Winner’'s Curse” (57) or false positives that may occur in
382  smaller samples. Finally, our results imply a need for thousands of samples to ensure 80%
383 statistical power to observe differential expression between cases and controls for the genes
384  implicated at SCZ-associated eQTL, e.g., the five genes of interest above.

385

386 The most highly up-regulated protein-coding gene is tachykinin receptor 3 (TACR3, NK3
387  receptor, 1.24-fold, Fig. 5D). NK3 antagonists have been tested in SCZ and other CNS diseases
388  (58). Moreover, rat and human studies have suggested a role for the NK3 receptor in memory
389 and cognition (59), both key impairments of schizophrenia (60). Insulin-like growth factor 2
390 (IGF2), the most strongly down-regulated gene (1.33-fold, Fig. 5D), can rescue neurogenesis
391  and cognitive deficits in certain mouse models of schizophrenia (67). Also included among the
392 top 100 differentially expressed genes are the alpha 5 subunit of the GABA A receptor
393 (GABRAS5) (62) and calbindin (CALB7) (63), genes previously reported as differentially
394  expressed in cortical tissue from schizophrenia patients, suggesting GABAergic interneuron
395  dysfunction (64).

396

397 We identified 239 isoforms differentially expressed between SCZ cases and controls: 94
398  up-regulated and 145 down-regulated. These isoforms derive from 223 genes, which are
399 enriched, as expected, for overlap with the 693 differentially expressed genes (p = 2 x 107",
400 Fisher's exact test), and 136 are differentially expressed at both the gene and isoform levels
401  (Supplementary Fig. 9). No obvious unifying biological theme emerges from this set of genes
402 and isoforms on the basis of pathway enrichment analysis (data file 4). An assessment of the
403 impact of age at death or cell type proportions suggests that these variables do not explain
404  significant differential expression (Supplementary Fig. 10). Although analyses of experiments
405 performed using either monkeys or rodents indicate that genes whose expression are affected
406 by antipsychotics are often the same as those we find altered in individuals with SCZ, the
407 impact of antipsychotic drugs nevertheless tends to be significantly in the opposite direction of
408 that observed in the SCZ subjects (Supplementary Table 2). Thus, our analyses find that genes
409 highlighted by the contrast of SCZ cases versus control subjects do not largely trace their
410 differential expression to antipsychotic medications, although intriguingly they do suggest a
411 mechanism for the efficacy of these drugs (65).

412

413 Brain co-expression networks capture SCZ associations
12
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414 Coordinated expression of genes is critical to brain development and function. One
415  expectation of polygenic inheritance of disease is that this coordination may be subtly altered in
416 individuals with SCZ. To assess this, we applied weighted gene co-expression network analysis
417 (WGCNA) (66) to the matrix of pairwise gene co-expression values. WGCNA recovers a
418 network that consists of nodes (genes) and edges connecting nodes (i.e., the degree of co-
419  expression for a pair of genes, measured as their correlation after transformation by raising the
420 value to a power B that results in an overall scale-free topology). WGCNA divides the network
421 into subnetworks called modules, or clusters of genes with more highly correlated expression.
422

423 We constructed gene co-expression networks separately from control individuals and
424  SCZ cases (data file 5), since we wished to assess disease-dependent changes in co-
425  expression for modules of interest (27). The co-expression network generated from the controls
426  consisted of 35 modules each containing between 30 and 1,900 genes, along with ~3,600
427  unclustered genes (data file S5). Four modules stand out in harboring an excess of differentially
428 expressed genes (Fig. 6A, data file 6). Of these, however, only one (M2c) shows association
429  with differential expression (OR = 2.3, p = 1 x 10"®) and multiple prior genetic associations with
430 SCZ; the latter encompasses genes in GWAS loci (FE [fold-enrichment] = 1.36, p = 0.04), rare
431 CNV (FE = 1.52, p = 0.051), and rare nonsynonymous variants (FE = 1.18, p = 2 x 10

432  (Supplementary table 3). Given its apparent relevance to SCZ risk, we tested if the co-

433  expression pattern for M2c was perturbed in SCZ samples relative to controls. We used two
434  categories of network-based preservation statistics: (a) testing whether highly connected nodes
435 in a module remain as highly connected (“density”), or (b) testing for differences in the overall
436  connectivity pattern in a module (“connectivity”). The M2c module exhibits a loss of density in
437  the SCZ cases (permutation Z = -1.79, one-tailed p = 0.037, Fig. 6B) but no loss of connectivity.
438 The loss of density replicates in the HBCC cohort (Z = -3.02, p = 0.003), indicating that the
439 regulatory coordination of genes in this module is disrupted in SCZ. The dysregulation of M2c in
440 SCZis not due to medication effect or clinical and technical confounds (See Supplement).

441

442 Consistent with prior studies of the brain transcriptome (27, 67-70), we find gene co-
443  expression to be organized into modules of distinct cellular and functional categories (data file
444 7). In particular, the M2c module is enriched for multiple categories, including axon guidance,
445  postsynaptic membrane, transmission across chemical synapses, and voltage-gated potassium
446 channel complexes (Fig. 6C). Gene sets identified in prior genetic studies that highlighted
447  certain neurobiological functions are also enriched in the M2c module, including the activity-
448 regulated cytoskeleton-associated (ARC) protein complex, targets of fragile X mental retardation

449  protein (FMRP), neuronal markers, post-synaptic density (PSD) proteins, and NMDA receptors

13


https://doi.org/10.1101/052209
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/052209; this version posted May 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

450 (Fig. 6A). Overall, our results point to the M2c module of ~1400 genes that possess functions
451 related to synaptic transmission as being enriched for differential expression, overlapping SCZ
452  genetic signal, and with some genes having less dense co-expression in SCZ cases.

453

454  Conclusions

455 The findings reported here by the CommonMind Consortium (CMC) represent a unique
456  resource to understand brain function, basic neuroscience, and brain diseases at the molecular
457 level. They include a comprehensive compilation of gene expression patterns, together with
458 intensive evaluation of eQTLs across the genome. The expertise and support to produce and
459 analyze these data required a consortium of brain banks, pharmaceutical companies, a
460 foundation, academic centers, and the NIMH, and this work represents the first phase of our
461 ongoing project. All results are available through the CommonMind Knowledge Portal

462 (www.synapse.org/CMC) with a searchable database of eQTLs and other visualizations

463  (https://shiny.synapse.org/users/ssiebert/cmc_eqtl_query/). Both alone, and in combination with

464  other datasets such as GTEx, the CMC data will empower future studies of disease and the
465  brain.

466

467 We used these data to understand more about the genetics and molecular etiology of
468 SCZ. Our analyses had two fundamental goals: to identify mechanisms that underlie genetic risk,
469 and to describe differences in gene expression and co-expression related to disease. By
470 intersecting transcriptomics and genetics, we elucidated important aspects of the genetic control
471  of transcription and found that 20 of the 108 SCZ GWAS risk variants alter expression of one or
472 more genes. Prior analyses using older brain eQTL datasets pointed to only three such
473  associations (3). We demonstrated that experimental manipulation of three of five genes for
474  which GWAS variants alter expression had an impact on neuroanatomical and developmental
475  attributes in model systems. We also detected replicable differences in gene expression in SCZ
476 that point to subtle but broad disruption in transcription, which is consistent with the polygenic
477 nature of SCZ genetics and possibly other disease-related factors. This study paves the way for
478  connecting genetic influences on cellular function with changes in macroscopic circuits of the

479  brain that may ultimately lead to disease.

480
481 ONLINE METHODS

482  Postmortem human brain samples were collected for schizophrenia or schizoaffective disorder

483 (n=258) cases, control subjects (n=279), and cases with affective disorders (n=55), from three
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484  brain banks: Mount Sinai NIH Brain Bank and Tissue Repository, University of Pittsburgh NIH
485 NeuroBioBank Brain and Tissue Repository, and University of Pennsylvania Brain Bank of
486  Psychiatric illnesses and Alzheimer’s Disease Core Center. DNA and RNA were extracted from
487  dorsolateral prefontal cortex (Brodmann areas 9/46) tissue. DNA was genotyped using the
488  lllumina Infinium HumanOmniExpressExome chip, and QC was performed using PLINK. rRNA
489 was depleted from total RNA using Ribo-Zero Magnetic Gold kit, a DNA sequencing library was
490 prepared using the TruSeq RNA Sample Preparation Kit, and the library was subjected to
491  paired-end sequencing on lllumina HiSeq sequencers. The RAPID pipeline used TopHat for
492  alignment of reads to human reference genome hg19 guided by Ensembl v70 gene models,
493 followed by gene-level quantification using HTSeq and isoform-level abundance estimation
494  using MISO. The gene-level expression matrix was normalized to log(counts per million) using
495 voom, known covariates (encompassing sample ascertainment and quality, experimental
496 parameters, and individual ancestry) were selected for adjustment, surrogate variables were
497  extracted to explain additional variance (for eQTL only), and covariates were adjusted using
498 linear modeling, with voom-derived regression weights. Expression quantitative trait loci (eQTL)
499  were detected across all genetically-inferred Caucasian samples using MatrixEQTL, controlling
500 for sample ancestry and diagnosis. eQTL associations were compared using Sherlock to
501 genome-wide associations (GWAS) for schizophrenia, to functionally fine-map associated
502 disease loci for causal genes. Sherlock disease gene predictions were additionally filtered for
503 strict concordance between the genetic association with expression and disease.
504  Overexpression or morpholino-driven suppression of expression in zebrafish was performed for
505 5 genes prioritized by Sherlock, followed by assessment of differences in head size, neural
506 proliferation, and apoptosis. To test the effect of FURIN knockdown, neural migration was
507 assayed in neural progenitor cells (NPCs) differentiated from human induced pluripotent stem
508 cells (hiPSCs) reprogrammed from human fibroblasts from control individuals. Limma-based
509 linear regression was used for schizophrenia case-control differential expression analysis, and
510 differentially expressed genes were tested for enrichment in schizophrenia genetics, and with
511 Bonferroni multiple test correction for other gene sets using standard approaches. Gene co-
512  expression networks were constructed using WCGNA separately for schizophrenia cases and
513 controls, co-expression modules were extracted, and case and control modules were contrasted
514  for differential co-expression using a permutation-based approach. Module genes were tested

515 for enrichment in disease genetics and other gene sets.
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567 Figure 1. Enrichment of cis-eQTLs in regulatory and other genomic elements.

568 (A) Enrichments of cis-eQTLs compared to all eQTLs in sequence-defined elements according
569 to the Ensembl annotations implemented in the ANNOVAR (Annotate Variation, version 2014-
570 07-14; Ensembl annotation) software (77). The y-axis illustrates the proportion of SNPs that
571 belong to each category for significant cis-eQTLs (at FDR 5%) compared to all eSNPs that were
572  considered for cis-interactions (within 1 Mb from expressed genes). The following categories are
573 illustrated in the figure: exonic; intronic; upstream (variant overlaps 1 kb region upstream of
574  transcription start site); downstream (variant overlaps 1 kb region downstream of transcription
575 end site); UTR3 (variant overlaps a 3' untranslated region); splicing (variant is within 2 bp of a
576  splicing junction); ncRNA (variant overlaps a transcript without coding annotation in the gene
577  definition followed by additional annotation for exonic, intronic, variants as described above);
578 intergenic. (%) and (*) indicate significant depletion or enrichment for certain genic categories of
579 cis-eQTLs compared to all eSNPs, respectively. (B) Enrichment of cis-eQTLs as a function of
580 distance from the transcription start and end sites. (C) Enrichment of “max-cis-eQTLs” (single
581 most associated eSNP per gene) within enhancer sequences across 98 human tissues and cell
582 lines. Each bar represents the Z score for the overlap of max-cis-eQTLs with each enhancer
583 compared to 1,000 sets of random SNPs matched with the max-cis-eQTLs, in terms of allele
584 frequency, gene density, distance from the transcription start site, and density of tagSNPs due
585 to linkage disequilibrium. Brain (red) shows significantly higher enrichment for eQTLs compared
586  to non-brain tissues and cell lines (p = 4.5 x 10°®) and the strongest enrichment is observed in
587 DLPFC enhancers.
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Figure 2. Overlap of GWAS for schizophrenia with eQTL in the DLPFC.

(A) eQTL association profiles across two representative SCZ GWAS loci on chromosomes 15
and 4, respectively. SNP-level associations are plotted for the SCZ GWAS (gray), and cis-eQTL
association profiles for genes with Sherlock peorrected < 0.5 (or RTC > 0.9) are plotted in colors as
correspondingly noted at the top of the graphic; listed on top are Sherlock p-values, with
Sherlock peorected £ 0.05 highlighted in bold. For each additional gene in the region with an
eQTL, the single eSNP with minimal eQTL p-value (“max-eQTL”) is marked by a black point
(corresponding genes names are located above the chromosome marker bar). Locations of
regional protein-coding genes and non-coding RNAs with gene symbols that did not bear any
eQTL (either expressed genes without detected eQTL, or genes with below-threshold
expression) are depicted in gray as denoted. Vertical dotted lines mark recombination hotspot
boundaries, and horizontal dotted lines denote the thresholds for eQTL and GWAS significance,
as well as the ceiling imposed for visualization purposes. Association betas (effect sizes) are
plotted for SNP alleles associated with SCZ risk, with the gray band corresponding to increased
risk of SCZ in the locus. The red bands mark the estimated direction and magnitude of the effect
of the risk genotypes on expression of the corresponding gene (FURIN and CLCNS3,
respectively), where values above the bolded 0 line mark up-regulation (CLCN3) and below the
line down-regulation (FURIN). (B) For each of FURIN and CLCNS3, the underlying association of
expression with SCZ risk allele (cis-eQTL) is plotted for the GWAS index SNP in the respective
locus from (A), where the shape corresponds to diagnosis. Association betas and p-values, for
eQTL and GWAS, are as listed.
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Figure 3. Neuroanatomical phenotypes upon suppression or overexpression of genes at SCZ
risk loci.
(A) Suppression of furin_a or overexpression of TSNARE1 or CNTN4 resulted in a smaller head

size phenotype. Representative head size images per treatment condition are shown, and the
area of the head quantified is depicted by the dashed white lines in the control image. (B)
Quantification of head size phenotype in each treatment condition as compared to control
embryos. (C) Representative images of PH3 staining assessing proliferation phenotypes.
Dashed blue lines depict the area included in the quantification of cell counts. (D) Quantification
of PH3-labeled cells with respect to each treatment condition. (E) Representative images of
TUNEL staining per condition marking cells undergoing apoptosis. Area quantified is depicted
within the dashed blue lines. (F) Cell counts of apoptotic cells in each treatment condition as

compared to controls. Error bars are s.e., *p <0.05, **p <0.005, ***p < 0.0005; MO - morpholino.
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Figure 4. Decreasing FURIN expression in human NPCs perturbs neural migration.

(A) FURIN expression reduction achieved by lentiviral (LV)-FURIN shRNA-PURO, relative to
LV-non-hairpin-PURO control. (B) Representative images of the hiPSC NPC neurosphere
outgrowth assay after 48 hours of migration, following transduction with LV-FURIN shRNA-
PURO and LV-non-hairpin-PURO control. The average distance between the radius of the inner
neurosphere (dense aggregate of nuclei) and outer circumference of cells (white dashed line)

was calculated. DAPI-stained nuclei (blue), scale bar 100 u m. (C) Across hiPSC NPCs

generated from three controls, average radial neurosphere migration following transduction with
LV-FURIN shRNA-PURO (red bars) or LV-non-hairpin-PURO (gray bars). Error bars are s.e.,
*p<0.05, **p < 0.01, ***p < 0.001.
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Figure 5. Differential expression between schizophrenia cases and controls in the DLPFC.

(A) For the N = 693 genes differentially expressed at FDR < 5%, bivariate clustering of

individuals (columns) and genes (rows) depicts the case-control differences, as marked by the
red-blue horizontal colorbar at top (‘Diagnosis’). The expression for an individual (converted to a
z-score per gene) is marked in red if it is higher than other individuals, and green if lower than
others; thus, the top half of the plot consists of genes up-regulated in cases versus controls
(green in top left; red in top middle), and the bottom half of down-regulated genes (red in bottom
left; green in bottom middle). In addition to the horizontal colorbar marking case-control status
for each sample, additional colorbars denote brain bank (‘Institution’), gender, reported ancestry
(‘Ethnicity’), age of death, and RNA quality (‘RIN’); note that the latter two use a continuous-
values color scale (with low, medium, and high as colored), and minimum and maximum values
are given in parentheses. (B) Distribution of fold-change of differential expression for 693
differentially expressed genes. Case:control fold-changes for up-regulated genes are plotted in
red pointing upwards, and control:case fold-changes for down-regulated genes in green facing
down. (C) Binned density scatter plot comparing the t-statistics for case versus control
differential expression between the independent HBCC replication cohort assayed on
microarrays and the CommonMind RNA-seq data; correlation between the statistics is 0.28. (D)
For the 10 significantly differentially expressed genes with the largest fold changes (5 up- and 5
down-regulated), the distributions of normalized and adjusted gene expression in cases (red)

versus controls (blue).
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Figure 6. Co-expression network analysis in control DLPFC samples.

(A) Control-derived modules were ranked by enrichment with differentially expressed genes
(DEG); number of genes in each module is given in parentheses. Among the 4 modules with
strongest overlap (marked in blue), only the M2c module genes are strongly enriched for
multiples lines of prior genetic evidence. The enrichment of each module with SCZ genetics, cell
type-specific markers, neuronal proteome sets, and FMRP targets is depicted at right. Note the
lack of enrichment of M2c with common variants for Alzheimer’s disease (AD) and rheumatoid
arthritis (RA) (B) Topological overlap matrix of the differentially connected M2c module in
controls (upper right triangle) and SCZ cases (lower left triangle) in the CMC (left) and HBCC
(right) cohorts. (C) Circle plot showing connection strengths for the top 50 hub genes of the M2c
module, where node size corresponds to intramodular connectivity and nodes are ordered
clockwise based on connectivity. Pie chart: SCZ susceptibility genes based on GWAS PGC2-
SCZ (green), CNV (orange) or de novo (cyan) studies; Genes that belong in the NMDA (black)
or mGIuR5 (yellow) signalling pathway; Genes that are differentially expressed in schizophrenia
vs. controls at FDR < 5% (red).
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Table 1: Overlaps and differences between CMC and other publicly available eQTL resources

Comparison cohort eQTL genes compared to CMC

eQTL
Genes w/
Proportion  Unique eQTLin CMC
Number  of non-null Genes eQTL Genes Genes but not in
Study PMID/GEO  of cis hypotheses with Expressed in with eQTL comparison

Cohort Sample Size  ID/dbGaP ID eQTL (m1) inCMC  eQTL CcMC in CMC cohort
Blood eQTL 2494 twins 24728292 9640* 0.54 9533 8108 6794 5052
Brain Cloud 108 GSE30272 374223 0.7 6199 5386 4666 7180
Brain Meta- 424 25290266 3520%** 0.62 3503 2806 2507 9339
analysis
GTEx PFC 92 25954002 173026 0.98 1922 1326 1284 11853
HBCC 279 phs000979.v1l.p1 788338 0.77 7514 6785 5862 7275
HBTRC 146 GSE44772 531400 0.75 6473 5186 4555 7291
NIH 145 GSE15745 105735 0.79 2127 2057 1851 9995
UKBEC 134 25174004 52593 0.93 808 618 546 11300
UNION 1573706 0.7 16568 12644 10544 2593

* Best eQTL per probeset reported

** Best eQTL per gene reported

FDR = 5% used to define eQTL in all cohorts. eQTL for Brain Cloud, HBCC, HBTRC, NIH and UKBEC were computed as described in the
supplement. eQTL for the Blood cohort, Brain Meta-analysis and GTEx were downloaded from public resources. All eQTL resources
represent prefrontal or frontal cortex except the Blood cohort (peripheral blood) and the Brain Meta-analysis (meta-analysis across
multiple brain regions). The UNION set was derived by including all unique eQTL from all 8 cohorts.
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