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Abstract

Cryo-EM has revealed many challenging yet exciting macromolecular assemblies
at near-atomic resolution (3-4.5A), providing biological phenomena with
molecular descriptions. However, at these resolutions accurately positioning
individual atoms remains challenging and may be error-prone. Manually refining
thousands of amino acids — typical in a macromolecular assembly — is tedious
and time-consuming. We present an automated method that can improve the
atomic details in models manually built in near-atomic-resolution cryo-EM maps.
Applying the method to three systems recently solved by cryo-EM, we are able to
improve model geometry while maintaining or improving the fit-to-density.
Backbone placement errors are automatically detected and corrected, and the
refinement shows a large radius of convergence. The results demonstrate the
method is amenable to structures with symmetry, of very large size, and
containing RNA as well as covalently bound ligands. The method should
streamline the cryo-EM structure determination process, providing accurate and
unbiased atomic structure interpretation of such maps.
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Introduction

Advances in direct electron detectors as well as better image analysis algorithms
have led cryo-electron microscopy (cryo-EM) to achieve near-atomic resolution
(3-4.5 A) using single-particle analysis [1-3]. Cryo-EM reconstructions at these
resolutions, where individual B-strands are resolvable, and bulky sidechains are
somewhat visible, make it possible to build an all-atom model directly from such
maps [4,5]. Although sequence can be registered, density maps at this range of
resolution do not grant enough information to precisely assign coordinates for
each atom in the structure, from which molecular interactions for a biochemical
process is captured. Furthermore, such model building and refinement is
challenging and error prone [6,7]. Determination of detailed atomic interactions
from these sparse sources of data is desirable, however, the inherent ambiguity
in the data makes identifying these interactions extremely difficult, even for
experts.

Model-building into a cryo-EM map at near-atomic resolution generally involves
manually building a model into the map using a graphical user interface tool [8]
followed by refinement with software repurposed from X-ray crystallography
[9,10]. This process requires identification of key amino acid sidechains to
register stretches of sequence within the map (possibly aided by the topology
from a homologous structure), followed by extension of these short fragments of
sequence to form one or more fully connected protein chains. At near-atomic
resolution, this manual model-building and refinement can be error prone owing
to: a) the density may not be of sufficient resolution to uniquely identify sidechain
rotamers, even for bulky aromatic residues, making it difficult to accurately
determine sidechain-sidechain or sidechain-backbone interactions; b) for regions
of non-regular secondary structure (turns or loops) or with poor local resolution, it
may be difficult to accurately position backbone atoms; and c) in these same
regions, precise sequence registration may also be error prone. Getting these
atomic interactions correct is crucial for understanding detailed atomic
mechanisms of proteins, designing drugs with a very specific shape
complementarity, and for understanding subtle conformational changes of a
protein. A structure refinement procedure that can automatically improve the
atomic details of a model from such density data is thus very much desired.

In this manuscript, we develop a three-stage approach for automatically refining
manually traced cryo-EM models (Figure 1). While previously we have developed
an iterative local rebuilding tool capable of refining homology models into near-
atomic-resolution cryo-EM maps [11], several advances were required for
extending this tool to successfully refine hand-built models. Our new approach
includes a method for automatically detecting and correcting problematic
residues in hand-built models without overfitting, a model-selection method for
identifying models with good agreement to the density data and with physically
realistic geometry, a voxel-size refinement method for correcting errors in
calibrating the magnification scaling factor of a microscope, a novel sidechain-
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optimization method to correct sidechain placement errors in very large systems,
and a way to estimate uncertainty in a refined model. These methods, combined,
allow to correct backbone errors that significantly deviate from the starting model,
but may still assign a high degree of confidence to these regions in the refined
model.

Finally, we apply this approach to three recently solved cryo-EM single particle
reconstructions at near-atomic resolution: the TRPV1 channel at 3.4-A resolution
(TRPV1) [12], the F420-reducing [NiFe] hydrogenase (Frh) at 3.4-A resolution
[13], and the large subunit of mitochondrial ribosome at 3.4-A resolution
(mitoribosome) [14]. We show that in all three cases of diverse and large
systems, we are able to automatically refine models to high-quality (as assessed
by MolProbity), while maintaining or improving agreement to the density data.
Significantly, in the case of TRPV1, we newly identify a biological relevant atomic
interaction — a disulfide bond — not built in the originally deposited model, but
supported in the literature. In the case of Frh, we show our refinement procedure
led to 13.2% fit-to-density improvement mainly through optimization of the voxel
size. Finally, in the case of mitoribosome, we show significant improvement in
model geometry: the number of “Ramachandran favored” residues increases by
5%, and Molprobity [15] score improvement is observed in all 48 protein chains.

Results

An overview of our refinement approach is shown schematically in Figure 1 (and
is fully described in Methods). Broadly, the approach proceeds in three stages. In
the first stage, we identify problematic residues by assessing local model-strain
and local agreement to density data. These regions are rebuilt against a
“training” half-map using fragment-based Monte Carlo sampling with many
independent trajectories followed by all-atom refinement. Secondly, the best
subset of these independent trajectories are selected by identifying a subset of
stereochemically correct models with best agreement to an independent
“‘validation” half-map, to prevent overfitting. Finally, models are further optimized
in the full-reconstruction with a weight optimally scaled between experimental
data and the forcefield using the “validation” half map. Our approach adopts and
improves upon our previous work on refining cryo-EM structures from distant
homology structures [11], in which a similar fragment-based backbone rebuilding
strategy is employed. However, several critical improvements were necessary in
extending our previous work to successfully refine hand-traced models, larger
complexes, and a more diverse set of systems.

Identification of backbone errors using local strain. In previous work [11],
local fit to density is used to identify residues in a distant homology model to
rebuilt. However, unlike remote homology models, hand-traced models typically
fit the data very well, but are incorrect geometrically (strain). Consequently, a key
improvement is to make use of model strain as a criterion in selecting regions to
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refine. Moreover, when the previous approach was applied to the de novo hand-
traced models from cryo-EM maps, we observed that — following all-atom
refinement — in incorrect regions, the models still fit the density well, but did so by
introducing strain in the nearby bond angles and torsions. This often occurred in
near C atom of aromatic residues, where strain was introduced to fit the
sidechain into density (Supplemental Figure 1). We reasoned that in these
strained residues, the backbone was incorrect; by correcting the backbone we
would be able to fit a non-strained sidechain into density. Thus, local strain can
serve as an indicator to identify regions to refine to improve both the fit-to-density
and model geometry. We developed an error predictor by constructing a function
(see Methods) that assesses both local model-map agreement as well as local
model-strain. Using a training dataset composed of error-containing models of a
cryo-EM map in which the structure has been determined by X-ray
crystallography (Supplemental Figure 2), we show that the new error predictor
offers better discrimination of incorrectly versus correctly placed backbone, with
an AUPRC (area under precision-recall curve) of 0.80 versus 0.76 using density
alone (Supplemental Figure 2). In cases where models are hand-built into
density, we expect this strain term to play an even larger role, as fit-to-data is
expected to have larger influence on the initially constructed model.

Better treatment of sidechain density. Recent works have shown that certain
sidechains — particularly negatively charged amino acids (Glu/Asp) — tend to
suffer from radiation damage and thus appear weaker in single-particle
reconstructions [16,17]. Moreover, density from certain bulky sidechains, for
example, Lys and Arg, tends to be less well-defined than their backbone density.
This missing density dramatically affects the convergence of conformational
sampling during structure refinement, where sidechains tend to be fit into density
corresponding to backbone atoms. To compensate for this, we downweigh the
contributions of sidechains which are less resolved in cryo-EM density. Down-
weighing factors for each amino acid were determined by comparing the average
per-amino-acid real-space B-factor on two cryo-EM reconstructions with known
high-resolution crystal structures (20S proteasome [1] and B-galactosidase [16]),
where the ratio of backbone and sidechain average B-factors was used to derive
the scaling factors. Supplemental Table 1 shows the computed scalefactors used
in our refinement method.

Local sidechain refinement for large complexes. \When our previous all-atom
refinement approach was applied to very large complexes (800+ residues), we
observed many instances where sidechains were not properly optimized into
density (Supplemental Figure 3). It was hypothesized that this was due to the
convergence of sidechain optimization, as the number of possible sidechain
states expands exponentially with the number of residues present in a protein.
Here, we opted to treat this global optimization problem as a series of smaller
local optimization problems, repeatedly optimizing overlapping regions of ~20-
100 residues until all residues in a protein are visited at least once. This
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approach resolved this sidechain fitting issue, as shown in Supplemental Figure
3 (right panel).

Voxel size refinement. The voxel size of a cryo-EM reconstruction is determined
by the physical pixel size on the detector scaled by a magnification factor.
However, the magnification factor may be determined with some inaccuracy,
leading to errors in deciding the voxel size of the resulting single-particle
reconstruction. This is especially error prone when a reconstruction has no
known macromolecular structures can be fit in to calibrate the voxel size. Here,
we develop a voxel size refinement strategy, which scales the voxel size of the
map to maximize model-map real-space correlation coefficient. During
refinement we alternate structure refinement and map voxel-size refinement with
several cycles iteratively until the voxel size converges (Figure 1). The approach
is fully described in the Methods section.

The role of independent reconstruction in structure refinement. In our
previous approaches, we have used independent reconstructions (“validation”
half-map) for both model selection [11] and for determination of the balance
between model geometry and fit-to-data during refinement [18]. In this
manuscript, we use independent reconstructions in the same manner during the
first two stages of refinement (Figure 1). However, at the very last stage we
perform several steps in the context of the full reconstruction, due to the
additional sidechain details that may be only present in the full reconstruction. As
shown in Figure 1, for the best 10 sampled models selected from the stage 2, we
perform a final all-atom and atomic B-factor refinement against the complete
reconstruction. Using two independent halves of the data (training/validation half-
maps), the weight on the use of full-reconstruction data is optimized (see
Methods and Supplemental Figure 3), and that weight is used in refinement
against the full reconstruction. Following refinement against the full
reconstruction, model geometry is verified (using MolProbity [15]) to ensure it is
not worsening during refinement against the full reconstruction. This confers
additional sensitivity during model selection.

Evaluation of refined models with Molprobity and EMRinger. Models are
evaluated for geometric quality using Molprobity [15], which compares summary
statistics of an all-atom model to those from high-resolution crystal structures. In
addition to using MolProbity to assess model quality, we further validate the
Rosetta-refined models with EMRinger [19], as an independent source to validate
both model geometry and density-fit at sidechain level. EMRinger samples
density around Cy atoms as they are rotated about the x4 dihedral angle, and
identifies the angle which presents peak density for the Cy; based on prior
statistical and chemical information, this position should generally fall into the
rotamer distribution of x1 with angles of 60, 180, and 300 degrees. The
distribution of measured peak angles at various signal-to-noise cutoffs is
integrated into the EMRinger score, which reports on backbone model-to-map
agreement using side chain geometry.
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Application to TRPV1. We first applied our new refinement approach to the
recently determined 3.4-A cryo-EM reconstruction of the TRPV1 channel in the
apo form [12]. Half-maps were reconstructed by subdividing particles into two
sets randomly, with one used for initial model rebuilding and refinement, and the
other used for validation. The deposited model (PDB id: 3J5P) was used as input
to the protocol described previously. All refinement was carried out using the
native C4 symmetry. All input files are included as Supplemental Data File 1.

The results of refinement are indicated in Figures 2 and 3, and Table 1. The
refined model improves both model quality and model-data agreement compared
to the deposited model: the MolProbity score improves from 3.81 to 1.45, the fit-
to-data (integrated Fourier shell correlation from 10 to 3.4A) improves from 0.641
to 0.647, and the EMRinger score improves from 0.65 to 2.34. Figure 2A-B
compares the refined model and the deposited model, colored with model
violations reported by MolProbity. Figure 2C shows that our refined model — in
addition to improving geometry — also improves the fit to the experimental data.
Figure 3A illustrates the convergence of our refined ensemble, showing the 10
selected refined structures, the average model colored by per residue structural
variation, and the refined B-factors. Both of these measures provide unique
insights on assessing the local confidence of the refined models, in which
structural variance shows the allowed local conformations that satisfy the density
data, whereas B-factors assess the local resolution of the density data at
different regions of a model.

Closer inspection of the refined models identified a disulfide linkage (C386-C390)
that was not built in the deposited model (Figure 3B). This disulfide has
previously been identified and characterized in the literature as playing an
important role in response to oxidative stress for the TRPV1 channel [20]; this,
combined with our models better explaining a tube of density unaccounted for in
the deposited model, lets us speculate that this disulfide bond is present in the
cryo-EM reconstruction. This motion also illustrates the magnitude of
conformational change that may be captured by our protocol; our Monte Carlo
backbone sampling strategy allows refinement to overcome energy barriers that
other methods using density minimization alone cannot. Despite the magnitude
of these changes, the conformational ensemble is well converged in this region
(Figure 3B, right panel) providing further confidence in our refined model.

Refinement of highly-liganded complexes: application to the F4:-reducing
[NiFe] hydrogenase complex. As our next test of the approach, we wanted to
illustrate model refinement of a complex with large numbers of ligands, some of
which are covalently bound, all in a system with high-order point symmetry. For
this, we chose the 3.4-A reconstruction of F4o-reducing [NiFe] hydrogenase
complex, where the asymmetric unit contains 3 protein chains which feature with
a [NiFe] cluster, two metal ions, and four [4Fe4S] clusters covalently bound to
cysteine sidechains, and an FAD. The complex is a dodecamer with tetrahedral
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symmetry, with 12 copies of a 902-residue molecule of three protein chains. We
used the -auto_setup_metals option of Rosetta (full input files are included as
Supplemental Data File 2) to maintain covalent linkages between protein and
ligand during refinement. The results of refinement are indicated in Figure 5 and
Table 1, where the MolProbity score improves from 3.97 to 1.60, the iFSC
improves from 0.659 to 0.746, and the EMRinger score improves from 0.31 to
2.34.

Upon using EMRinger to evaluate the deposited model, we found a notably poor
EMRinger score (0.31) for the symmetric complex, which contrasted with a much
better score of 1.31 for its asymmetric unit (as the deposited model), indicating a
high variance of density fit in different subunits. This result suggested the need
for voxel-size refinement on this target. Our refinement yielded notably different
voxel size than that of the deposited reconstruction: the refined model converged
on 1.326A voxel size compared to 1.320A in the deposited map. The refined
model shows better subjective agreement to the density data (Figure 4A): the
deposited model clearly exposes the structure out of the density globally (Figure
4A, left panel) and locally (Figure 4A, middle and right panels), while the refined
model clearly embeds its structure into the density. The refined model
additionally shows better quantitative agreement to the density data (Figure 4B)
and better geometry (Figure 4C): voxel-size refinement within Rosetta improved
the fit-to-density and EMRinger score, compared to refinement without voxel-size
refinement. The final model improved fit to data (integrated FSC from 10 to 3.4A)
by 13.2%, compared to the deposited symmetric complex (Table 1).

Refinement of large complexes: application to the mitochondrial ribosome
large subunit. Finally, we wanted to test the ability of our refinement to scale to
large asymmetric macromolecular assemblies, more typical of cryo-EM single
particle reconstruction. To do so, we considered refining models against the
previously published 3.4-A cryo-EM reconstruction of the large subunit of the
human mitochondrial ribosome [14]. The deposited model had been previously
refined with REFMAC [9], and consists of 48 chains with 8998 amino acids
assigned and 1628 nucleic acid bases.

In order to make conformational sampling tractable, we used a slightly modified
strategy from that shown in Figure 1 (full input files are included as Supplemental
Data File 3). The first two steps of the protocol (error identification and backbone
rebuilding) were carried out on each protein chain individually, while the third
step was carried out on the fully assembled complex. Model selection was
carried out on each individual chain; each selected model was refined as a
complete assembly, with the top model of each chain refined together, the
second selected model for each chain refined together, and so on. Nucleic acids
were not refined but were included as rigid bodies to accurately recapitulate
protein/RNA interactions.
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The results of refinement are indicated in Figure 5 and Table 1. Several large-
scale conformational changes again appear in converged models; these models
show better geometry, fit to density and fewer unexplained regions of density.
The backbone geometry improvements are in particular noticeable in proteins
with B-sheet containing domains. Unlike other refinement procedures
(phenix.real_space [10] and REFMAC [9]), which require manual input of
secondary structure restraints determined either from an initial model or
homologous protein structure to maintain backbone geometry during refinement,
in our approach the Rosetta forcefield is able to optimize hydrogen bond
geometry in secondary structures without requiring a priori knowledge of
secondary structures. This is particularly powerful in refining de novo structures
where secondary structure is ambiguous due to poor local resolution. Figure 5C
illustrates an example (chain k) of this from the case of mitoribosome, where a -
sheet not present in the original model is identified, the backbone geometry is
improved, and the model fits the density much better than the deposited model
(Figure B, left panel, red arrow); the refinement also shows a large radius of
convergence.

The refined model ribosome model has 1.50 MolProbity score, 0.725 iFSC, and
2.40 EMRIinger score. The largest improvements tend to occur in regions of low
local resolution (~5A assessed by ResMap from the original paper) on the
periphery of the complex. Looking at the results on individual chains, as indicated
in Figure 5A and Supplemental Table 2, the MolProbity score improves on all 48
protein chains, which in part is from the much improved backbone geometry
assessed by the Ramachandran favored term in MolProbity (Figure A, right panel
and Supplemental Table 2). Our Monte Carlo backbone sampling can correct
these incorrect backbone placements, which often require significant
compensating conformational changes. EMRinger score is also consistently
improved (Supplemental Figure. 4), particularly in regions where

the deposited model scores poorly.

Discussion

In this manuscript, we develop a method for improving atomic details of manually
traced models from 3-4.5A resolution cryo-EM density. We show the applicability
of the approach, by applying it to three systems: a membrane protein, an
asymmetric macromolecular assembly containing large numbers of protein
chains and RNAs, and a highly symmetric system with a large number of ligands.
In all cases, we show that we are able to significantly improve model geometry
while maintaining or improving agreement to the density data. We show that
model convergence can be used to suggest local model uncertainty in addition to
B-factors. Finally, we also show that our models also recover structure features
that are supported in the literature, or in much better local agreement with the
density data.
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Unlike other approaches [9,21], our approach can automatically perform large-
scale backbone reorganization, correcting backbone placement errors common
in these 3-4.5A resolution datasets. Two features of our refinement approach
regarding the use of prior information are critical in the success of this large-scale
refinement. First, the use a physically realistic forcefield throughout refinement
handles the under-constrained nature of refinement at these resolutions, by using
chemical “domain knowledge” learned from high-resolution crystal structures to
implicitly fill in the missing information in the data. Second, our fragment-based
rebuilding which explicitly samples the most likely backbone conformations given
a short stretch of sequence also uses prior information gather from high-
resolution protein structures, further restricting conformation space, and filling in
additional information not present in the data.

Finally, an open question is on what way structure refinement can be further
improved, particularly as refinement extends to even lower resolutions (worse
than 5A). Enhancing the predicting power of the Rosetta modeling methods is the
key to to push the resolution limit of the current refinement method further. This
can be achieved through: 1) improving the energy function (forcefield) used in
refinement, and 2) improvements in conformational sampling methodology,
particularly for systems where secondary structure prediction is poor. Further
improvements in the role of B-factor sharpening and the effect on refinement are
necessary, as well as better predictors of local model error. Finally, structure
refinement in maps with highly heterogeneous local resolution remains
challenging, where a single set of refinement parameters cannot readily be
applied at all regions. Methodological improvements that that allow adjustment of
parameters based on local map quality will be essential to accurately refine
structures from such maps. In our effort to enable automated structure
refinement on large macromolecular assemblies, we hope this method can be a
valuable tool for determining atomic accuracy structures from near-atomic-
resolution cryo-EM data.

Methods

Preparing maps for refinement. Split maps were provided by the original
authors. One map was randomly chosen for refinement, and the other was used
for validation. In all, cases a B-factor of -100 was applied to the map used for
refinement using the “image_handler” tool in RELION [3]. The maps were
subsequently filtered to the user-refined resolution. In the case of the
mitochondrial ribosome, segmented maps were prepared using a custom
Rosetta application and the deposited structure to guide segmentation:

density_tools.default.linuxgccrelease -s 3j7y0.pdb -mapfile EMD-2762.mrc -
mask_radius 2 -maskonly
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Some steps of the protocol also made use of the full reconstruction. As with the
training map, these were sharpened using a B-factor of -90 with a low-pass filter
to 3A.

Preparing structures for refinement. In the case of TRPV1, residues 111-202
in the Ankryin repeat domain from the deposited model did not have visible
density, and so were delete proior to refinement. Furthermore, automatic
refinement as applied in two stages due to the highly heterogeneity between the
trans-membrane domain and the Ankryin repeat domain. The trans-membrane
domain (residue 234-586) was first refined in the density masked using the
deposited model. In the case of the mitoribosome, residues from chain t and
chain f, in which atoms are assigned to residues “UNK,” were removed from all
the refinement process, as well as data analyses or results comparisons. In the
case of Frh, refinement of ligands received special treatment: refinement started
using protein only, with constraints maintaining ligand site geometry. Later,
ligands were added back on and rerefined.

Algorithm for model rebuilding. Model rebuilding generally follows the
procedure from our previous work [11], with a few key changes highlighted
below. Rebuilding starts from the deposited structure, which is first conservatively
refined using one macrocycle of the Rosetta relax protocol to trigger local strain
on sidechains, which iterates four cycles Monte Carlo rotamer optimization with
all-atom minimization, ramping the weight on van der Waals repulsion in each
cycle. Minimization is carried out in Cartesian space, with a term enforcing ideal
bond angles, bond lengths, and planarity [22].

Following Cartesian minimization, the worst residues are selected using the
following equation to evaluate the quality of the model at residue i

@ _ L 7@ . 7@ 7@ L 7@
Zerror_Wdens ngns+chldens Zlcldens+wbonded Zbondgd+wrama Zrama

Four different terms appear in this equation, two of which assess a model’s
agreement to data, two of which assess a model’s local strain. The first two, Z 0

dens
and Zl(gdens, assess the model-map agreement of the backbone and sidechain

atoms of each residue, computing the real-space correlation coefficient in a
region around a residue, and converting that to a Z-score compared to the entire
model. For the former term, an absolute correlation coefficient is computed; for
the latter term, the correlation is normalized with respect to residues nearby
(those within 10 A of residue /). The latter term is specifically added to deal with
maps that have significant diversity in local resolution.

The second two terms, Zl(fo)nded and z\). ., assess a model’s strain following
model refinement. The motivation for these terms is that in cases where the
model was built incorrectly into density, it will be energetically unfavorable.
Following an initial refinement, these incorrect portions will either be move away
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from the data, or will introduce model strain to maintain the favorable agreement
to the data, depending upon the balance of forces between the two. These terms
compare the per-residue bond geometry term, and the per-residue
Ramachandran energy, respectively, to that over the entire structure, and
compute a Z-score for each residue.

For each of the four terms, a Z-score is computed and is summed together, with
a particular weight for each term. The weights were tuned using a 3.3-A cryo-EM
map dataset with known high-resolution structure (the 20S proteasome [1]),
where a set of ~500 error-containing models was used as the training data. The
results of this tuning process are shown in Supplemental Figure 1. The final
weights selected were w;,.,:=0.45, W;14ens=0-05, Wyondaea=0-15, Wy qma=0.35.

After computing this weighted Z-score for each residue, all residues with a score
below some target value (see the next section on iteration for specific values) are
selected for local rebuilding. Local rebuilding uses the iterative fragment-based
approach previously published [11]. In our new approach, a residue is randomly
chosen from the pool tagged for rebuilding from the previous step. Given the
local sequence around this selected residue, a set of 25 protein backbone
conformations from high-resolution structures with similar local sequence and
predicted secondary structure is sampled. Each sampled backbone is refined —
as an isolated fragment — into density using the following three step procedure:
a) the backbone only is minimized in torsion space using a simplified energy
function, b) sidechain rotamers are optimized into density, and c) both backbone
and sidechain are minimized in torsion space using a simplified energy function.
Constraints on the ends of each fragment ensure the local region is reasonable
in the context of the entire backbone. Of the 25 sampled fragments, the best is
selected by fit to density. Finally, the replaced fragment is minimized in the
context of the complete structure. This process is run as a Monte Carlo
trajectory.

Iterative rebuilding and all-atom refinement. Model rebuilding and all atom
refinement are run iteratively, as shown in Figure 1. Four separate 200-step
Monte Carlo trajectories are run with increasing coverage of predicting errors but
sacrificing the accuracy of the predictions. This is done with the Z-score cutoff
increased in each step, following the schedule shown in Supplemental Figure 2:
first residues with Z<-0.5 are selected for fragment-based rebuilding, followed by
-0.3, -0.1, and finally Z<0. Between each cycle, a single iteration of Relax is run,

in the same manner as the pre-refinement step. At the start of each stage, zg?m
of a model is re-evaluated as above to avoid refining fixed errors from the
previous stage, and residues predicted to be in error are selected. Finally, an

additional 200 step Monte Carlo trajectory is run with the Zé?mr computing solely
from Zﬁil)ma to ensure the favorable Ramachandran geometry in models.
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Pre-proline Ramachandran potential. Following early experiments, a new term
was added to Rosetta that enforces a distinct pre-proline Ramachandran
potential, replacing the original 20 different potentials:

Erama = P((pi' l/JilAAi)

With 40 different potentials conditioned on the sequence identity of the C-
terminal adjacent residue:

Erama = P((pi' lpilAAiJ is—pr0i+1)

This potential was trained using the Richardson 8000 set of high-resolution
crystal structures [15], and smoothed using adaptive kernel density estimates, as
with the original Ramachandran potential [23]. They are included in the released
Rosetta with the energy term rama_prepro (using the same weight as the
Rosetta term rama). Supplemental Figure 6 illustrates the resulting potentials.
For all experiments in this manuscript, this term replaced the default
Ramachandran score term in Rosetta.

Local relax. Following our four cycles of refinement, we run a modified version of
Relax, which we call LocalRelax. Modifications were made following the
observation that — when applied to very large complexes (800+ residues) — we
observed many instances where sidechains were not properly optimized into
density, even though the density was very clear. Supplemental Figure 3 shows
several such cases.

In LocalRelax, small overlapping regions of ~20-100 residues (discontinuous in
sequence space) are selected for optimization repeatedly, until the entire protein
has been optimized at least once. The approach is based upon the idea of
neighbor residues, where residue neighbors are defined as all residues with a
CB-CB distance less than 8A. We first find the residue r; with the most residue
neighbors. Then we optimize the neighbors of r;, and the neighbors-of-neighbors
of r: the neighbors are allowed to optimize both sidechain and backbone
conformation, while the neighbors-of-neighbors may only optimize sidechain
conformation. This optimization is performed via Monte Carlo sampling of
sidechain rotamers, followed by Cartesian minimization of all movable atoms.
Following this, all neighbors of r; (as well as r;) are marked as visited, and the
process repeats, selected a new r; as the unmarked residue with the most
neighbors. This process continues until all residues are marked. In total, 4 cycles
of this procedure are carried out, increasing the weight on van der Waals
repulsion in each cycle. Finally, following coordinate refinement with LocalRelax,
we fit atomic B-factors following the scheme of our previous paper [11].

Sidechain rescaling. We compute a scalefactor associated with each sidechain,
that describes how much contribution to the density score each sidechain
contributes. The values were computing using the 3.3-A reconstruction of the
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20S proteasome [1] and the 3.2-A reconstruction of B-galactosidase [16]. Models
were refined into the density and real-space atomic B-factors were fit for each
atom. We then converted the atomic B-factors to scale factors using the following
transformation:

scaleAA =~ W

Scales were normalized such that the scale for all backbone atoms was equal to
1. To prevent overfitting, each sidechain was grouped into one of three classes,
and all sidechains within a given group were given the average scalefactor of the
group. Finally, while maintaining the ratio of these three groups with respect to
one another, we scaled the relative contribution of backbone versus sidechain
density, and selected the best values based on free FSC following refinement.
The final values range from 0.66 to 0.78, and are tabulated in Supplemental
Table 1.

Voxel size refinement. To optimize the voxel size of a map used to refine the
model, we fix the model coordinates, and compute the model density. We then
refine the voxel size v=[v,,v,,v,] and the origin o=[oy,0y,0,] of the map density —
fixing these parameters in the model density — to maximize the real-space
correlation coefficient between the two:

. Z Po (2) ’ pc(fv,o (-7?)) - Z Po (3?) ’ Z pc(iv,o(f))
- 1/2

(53 + 02 (10 @)
Iho(x,y,2) = (0x + x/ay,0, +y/a,,0, +2z/a,)

CC(v,0)

Here, p, refers to the experimental map and p. to the map derived from the
model, while 0, and o refer to the standard deviations over the corresponding
density maps. Sums are taken over the entire map. Off-grid density values are
computed using cubic splines to interpolate the calculated density map. This
function is optimized with respect to the voxel size paramters using I-BFGS
minimization; analytic derivatives are computed for CC with respect to v and o,
and the same cubic splines are used to calculate derivatives with respect to the
calculated map.

Voxel size may be refined isotropically or anisotropically (either 4 or 6 total
parameters); all experiments in this manuscript treated this refinement
isotropically (that is, all three axes are scaled together).

Refinement against the full reconstruction and model selection. The
previously described protocol was run to generate 5000 independent trajectories.
From these 5000 models, a set of 10 representative models is chosen, following
the protocol outlined in Figure 1. We want our optimized models to
simultaneously be optimal in terms of: a) independent map agreement, b)
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physically realistic geometry, and c) agreement to the full reconstruction. The
latter is necessary, as the full reconstruction often features details not present in
the independent half maps.

Independent-map FSCs were computed against the validation map — subject to
the same sharpening scheme as the training map — using the ComputeFSC
mover in Rosetta. The integrated FSC between 10A and the reported resolution
(3.4A in all cases) of the map was used to assess agreement with the
independent map. The script computes FSC after masking the map with a mask
computed from the model and filtered to 12A with the command line:

density_tools.exe -in:file:s model.pdb -mapfile validation_map.mrc -mask_radius
12 -nresbins 50 -lowres 10 -hires 3.4 -verbose

In the case of the mitochondrial ribsosome, each segmented domain map was
evaluated separately. Of the 1000 generated models, the top 50 by independent
map agreement are selected.

Next, we want to identify the models from this subset that are the most physically
realistic. To do this, all 50 models are rescored with MolProbity [15], and the top
10 are selected. While computing similar features to the Rosetta energy, its
slightly different implementation makes it a somewhat orthogonal measure for
structure evaluation.

Finally, we want to use features from the full reconstruction to further improve the
model, particularly bulky sidechains that may not be visible in the half-map
reconstructions. However, when refining against the full reconstruction we need
to be careful not to overfit to the full reconstruction, as we no longer have an
independent map with which to evaluate overfitting. We use two ideas to avoid
overfitting in this case. First, we do not perform any fragment based rebuilding
with the full map, and instead only perform two cycles of LocalRelax and B-factor
refinement with the full map. Second, we use halfmaps to determine the optimal
fit-to-density weight when refining against the full map. The weight is selected
using the following relation where the weight is chosen to maximize the following:

U = FSCyyee — 0.004 - E

Here, E; is the per-residue energy, and is included as additional regularization to
avoid overfitting. The value of 0.004 was chosen to normalize the two based on
the relative dynamic ranges of both terms.

The top 10 models from the previous selection are subject to refinement against
the full map. The final model is then taken as the model with best integrated-FSC
against the full reconstruction. Local deviation over all ten models is used to
estimate model uncertainty. The per-residue structural variance of ensemble
models is calculated using Theseus with the default command line [24].
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Assembly of the mitochondrial ribosome. In the case of the mitochondrial
ribosome, we refine separate models for each protein subunit. A final assembly
step combines the full model. In this final assembly step, all subunits, plus the
deposited nucleic acid chains are combined in a single model, and are subject to
2 cycles of LocalRelax against the full reconstruction.

EMRinger score calculation. For each of the five models following model
selection, EMringer was run using the command:

phenix.emringer MODEL.pdb MAP.ccp4

To calculate per-chain EMRinger scores, pdb files were first segmented by chain
ID and then emringer scores were calculated against the segmented pdb files. A
script is included to automate the PDB segmentation and calculation of
EMRinger scores.

EMRinger scores can be compared absolutely between structures, although
model size and local resolution variation are sources of noise for the EMRinger
score. Scores below one are indicators of suboptimal model to map agreement
for structures better than 4-A resolution, while a score around zero indicates no
improvement beyond randomness.

Availability

All methods described are available as part of Rosetta, using weekly releases
after week X, 2016. The Rosetta XML files and flags for running all the
refinements discussed in this manuscript are included as Supplemental Data
Files 1-3. The scripts and the tutorial used for running the method described here
is available now at the website of the corresponding author
(https://faculty.washington.edu/dimaio/files/density_tutorial_sept15_2.pdf).

Acknowledgements

The authors thank Drs. Alan Brown, Alexy Amunts and Venki Ramakrishnan for
sharing the half maps of mitoribosomal large subunit (EMD-2762) with us; the
author especially thank Dr. Alan Brown on providing helpful comments on the
Rosetta refined mitoribosome, in which the suggestions led to the new
development on better optimizing sidechains in very large protein complexes.
The author thanks Dr. Metteo Allegretti and Janet Vonck for sharing the half
maps of Frh (EMD-2513) with us. The authors thank Dr. Erhu Cao for
commenting on the refined TRPV1 model initially. The authors thank Dr. Vikram
Mulligan for helping on using the “-auto_setup _metals” module he developed on
facilitating ligand setup in modeling Frh using Rosetta.


https://doi.org/10.1101/050286
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/050286; this version posted April 26, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Contributions

R.Y.-R.W. performed the research. R.Y.-R.W. and F.D. developed the method
and prepared the manuscript. R.Y.-R.W., Y.S. and F.D. conceived and designed
the research. F.D. supervised the research. B.A.B and J.S.F. performed the
EMringer analysis. Y.C. provided the TRPV1 half-map data set with various b-
factor sharpening, and analyzed and interpreted the results on the TRPV1
refinement. All authors edited the manuscript.


https://doi.org/10.1101/050286
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/050286; this version posted April 26, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

References

1. Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard
DA, Cheng Y: Electron counting and beam-induced motion correction
enable near-atomic-resolution single-particle cryo-em. Nature
methods (2013) 10(6):584-590.

2. Bai XC, Fernandez IS, McMullan G, Scheres SH: Ribosome structures
to near-atomic resolution from thirty thousand cryo-em particles.
eLife (2013) 2(e00461.

3. Scheres SH: A bayesian view on cryo-em structure determination.

Journal of molecular biology (2012) 415(2):406-418.

4. Kudryashev M, Wang RY, Brackmann M, Scherer S, Maier T, Baker D,
DiMaio F, Stahlberg H, Egelman EH, Basler M: Structure of the type vi
secretion system contractile sheath. Cell (2015) 160(5):952-962.

5. Wang RY, Kudryashev M, Li X, Egelman EH, Basler M, Cheng Y, Baker
D, DiMaio F: De novo protein structure determination from near-
atomic-resolution cryo-em maps. Nature methods (2015) 12(4):335-
338.

6. DelLaBarre B, Brunger AT: Considerations for the refinement of low-
resolution crystal structures. Acta crystallographica Section D,
Biological crystallography (2006) 62(Pt 8):923-932.

7. Brunger AT, DelLaBarre B, Davies JM, Weis WI: X-ray structure
determination at low resolution. Acta crystallographica Section D,
Biological crystallography (2009) 65(Pt 2):128-133.

8. Emsley P, Lohkamp B, Scott WG, Cowtan K: Features and development
of coot. Acta crystallographica Section D, Biological crystallography
(2010) 66(Pt 4):486-501.

9. Brown A, Long F, Nicholls RA, Toots J, Emsley P, Murshudov G: Tools
for macromolecular model building and refinement into electron
cryo-microscopy reconstructions. Acta crystallographica Section D,
Biological crystallography (2015) 71(Pt 1):136-153.

10. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW,
Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD:
Towards automated crystallographic structure refinement with
phenix.Refine. Acta crystallographica Section D, Biological
crystallography (2012) 68(Pt 4):352-367.

11. DiMaio F, Song Y, Li X, Brunner MJ, Xu C, Conticello V, Egelman E,
Marlovits TC, Cheng Y, Baker D: Atomic-accuracy models from 4.5-a


https://doi.org/10.1101/050286
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/050286; this version posted April 26, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

aCC-BY-NC-ND 4.0 International license.

cryo-electron microscopy data with density-guided iterative local
refinement. Nature methods (2015) 12(4):361-365.

Liao M, Cao E, Julius D, Cheng Y: Structure of the trpv1 ion channel
determined by electron cryo-microscopy. Nature (2013)
504(7478):107-112.

Allegretti M, Mills DJ, McMullan G, Kuhlbrandt W, Vonck J: Atomic model
of the f420-reducing [nife] hydrogenase by electron cryo-microscopy
using a direct electron detector. eLife (2014) 3(e01963.

Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G,
Scheres SH, Ramakrishnan V: Structure of the large ribosomal subunit
from human mitochondria. Science (2014) 346(6210):718-722.

Chen VB, Arendall WB, 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral
GJ, Murray LW, Richardson JS, Richardson DC: Molprobity: All-atom
structure validation for macromolecular crystallography. Acta
crystallographica Section D, Biological crystallography (2010) 66(Pt 1):12-
21.

Bartesaghi A, Matthies D, Banerjee S, Merk A, Subramaniam S:
Structure of beta-galactosidase at 3.2-a resolution obtained by cryo-
electron microscopy. Proceedings of the National Academy of Sciences
of the United States of America (2014) 111(32):11709-11714.

Campbell MG, Veesler D, Cheng A, Potter CS, Carragher B: 2.8 a
resolution reconstruction of the thermoplasma acidophilum 20s
proteasome using cryo-electron microscopy. elLife (2015) 4(

DiMaio F, Zhang J, Chiu W, Baker D: Cryo-em model validation using
independent map reconstructions. Protein science : a publication of the
Protein Society (2013) 22(6):865-868.

Barad BA, Echols N, Wang RY, Cheng Y, DiMaio F, Adams PD, Fraser
JS: Emringer: Side chain-directed model and map validation for 3d
cryo-electron microscopy. Nature methods (2015) 12(10):943-946.

Chuang HH, Lin S: Oxidative challenges sensitize the capsaicin
receptor by covalent cysteine modification. Proceedings of the
National Academy of Sciences of the United States of America (2009)
106(47):20097-20102.

Headd JJ, Echols N, Afonine PV, Grosse-Kunstleve RW, Chen VB,
Moriarty NW, Richardson DC, Richardson JS, Adams PD: Use of
knowledge-based restraints in phenix.Refine to improve
macromolecular refinement at low resolution. Acta crystallographica
Section D, Biological crystallography (2012) 68(Pt 4):381-390.


https://doi.org/10.1101/050286
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/050286; this version posted April 26, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

22. Conway P, Tyka MD, DiMaio F, Konerding DE, Baker D: Relaxation of
backbone bond geometry improves protein energy landscape
modeling. Protein science : a publication of the Protein Society (2014)
23(1):47-55.

23. Ting D, Wang G, Shapovalov M, Mitra R, Jordan MI, Dunbrack RL, Jr.:
Neighbor-dependent ramachandran probability distributions of
amino acids developed from a hierarchical dirichlet process model.
PLoS computational biology (2010) 6(4):e1000763.

24. Theobald DL, Wuttke DS: Accurate structural correlations from
maximum likelihood superpositions. PLoS computational biology
(2005) preprint(2008):e43.


https://doi.org/10.1101/050286
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/050286; this version posted April 26, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Figure Legends

Figure 1. An overview of the three stages of automated refinement. (Left) In
stage 1, problematic regions are predicted using a newly developed error
predictor judging on local strain in the model and poor local density fit. These
selected regions are subject to iterative fragment-based rebuilding with in a
Monte Carlo sampling trajectory. Refinement in this stage is restricted to using
one-half of the data, referred to as the training map. (Middle) In stage 2, the best
models from the ~5000 independent Monte Carlo trajectories are selected.
Models are selected based on: agreement to the validation map (independently
constructed from the other half of the data), then by model geometry as
assessed by MolProbity, and finally, based on agreement to the full
reconstruction. At this point, the selected models should in general have good fit-
to-density and good geometry without overfitting to the data. (Right) In stage 3,
using the 10 best models selected, we then optimize against the full
reconstruction. Two half maps are used for choosing the optimal density weight
to refine structures using full-reconstruction. Finally, these top 10 models are
optimized (without large scale backbone rebuilding) into the full-reconstruction,
which alternates with voxel size refinement iteratively. Finally, these models are
subject to B-factor refinement.

Figure 2. Refinement of the apo TRPV1 channel (EMD-5778) shows
improved fit-to-density and model quality. (A) A comparison of the deposited
and Rosetta-refined models, as assessed by MolProbity. Residues reported as
violations are colored using the key shown in the far right. Blue open arrows
indicate that hydrogen-bond geometry of a 3-hairpin was automatically detected
and improved in the Rosetta refined model. (B) An overlay the asymmetric unit of
the deposited (pink) and Rosetta-refined (green) model indicates the magnitude
of conformational changes that are explored by our refinement approach. (C) The
agreement of models to map assessed by Fourier space correlation (Y-axis) at
each resolution shell (X-axis), where the reported resolution (3.4A) is depicted in
a dashed line colored in orange. The deposited model is shown in the curve with
pink color, while the Rosetta refined model is shown in the curve colored in
green.

Figure 3. Refinement of the TRPV1 channel identifies a previously
unmodelled disulfide bond. (A) An overview of the entire structure, estimating
local model uncertainty in two ways: local structural diversity and refined B-
factors. Local structure diversity is indicated by showing an overlay of the top 10
Rosetta models (left), the average model colored by per residue deviation
(middle), and the refined per-atom B-factors (right). The orange square shows
the location of a newly identified disulfide bond (C386-C390) revealed by our
refinement protocol. (B) A zoomed-in view of the disulfide linkage (C386-C390)
identified by the automated method. Note that the sidechain coordinates of C390
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were unassigned in the deposited model; for presentation, the sidechain atoms of
C390 were optimally added by Rosetta based on the deposited backbone torsion
angles of C390.

Figure 4. Refinement of the F42-reducing [NiFe] hydrogenase (EMD-2513)
identifies changes to voxel size. (A) An illustration comparing the deposited
and Rosetta refined models and maps. Under the same contour level (0.065), the
deposited model (pink) shifts the entire complex out of the deposited density map
with 1.320A voxel size; the refined model (blue) — with 1.326A voxel size — shows
much better agreement between model and map, with much more of the model
enclosed at the same contour level. The middle and left panel shows a zoomed-
in view of two regions in the deposited and Rosetta refined models/maps,
corresponding to the helix and the sheet indicated by the orange and cyan
squares on the left panel. (B) Model-map agreement — as assessed by Fourier
shell correlation (Y-axis) as a function of resolution (X-axis) — quantifies this
improvement following voxel size refinement. The pink curve corresponds to the
deposited model; the green curve corresponds to a model refined by Rosetta into
the density map with fixed voxel size (matching the deposited value of 1.320A);
the blue line represents a model refined by Rosetta with alternate structure
coordinate refinement and map voxel size optimization. (C) Model quality as
assessed by MolProbity and EMRinger. The X-axis shows methods used to
evaluate the models, while the Y-axis shows the scores under each criterion.

Figure 5. Refinement of the large subunit of the human mitochondrial
ribosome (EMD-2762) shows improvements to all subunits. (A) Scatterplots
of model quality of each of the 48 protein chains compare the deposited (X-axis)
and Rosetta (Y-axis) models using MolProbity. On the left, the MolProbity score
of all 48 protein chains are compared, where lower values indicate better model
geometry. On the right, the percentage of “Ramachandran favored” residues are
compared on each chain, with higher values preferable. (B) An evaluation of the
fit-to-density of each protein chain. On the left, we compare the Fourier shell
correlation (FSC) of each chain before and after refinement; we integrate the
FSC from 10A to 3.4A. Higher values indicate better agreement with the data.
The largest improvement, chain k, is indicated by the red arrow. On the right, the
full FSC curve is shown, with the deposited model shown in pink, and the
Rosetta refined model shown in green; the reported map resolution (3.4A) is
indicated in the dashed orange line. (C) A zoomed-in view indicating the large
radius of convergence of the refinement of chain k. The left panel shows the
density for chain k is in a region of relatively low local resolution.
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Supplemental Figure 1. A closeup view of model strain indicating errors in
density-optimized TRPV1 models using the previous Rosetta approach.
Both insets show two regions of models refined by the previous approach, where
strain can indicate errors in models. In both cases, phenylalanine sidechains fit
the density well, but both show geometric strain around the Cf atom. The type of
strain (as evaluated by MolProbity) is indicated by model color, using the key on
the right.

Supplemental Figure 2. Incorporating model strain improves error
detection. Guided by the 3.3-A 20S proteasome reconstruction, we evaluated
500 models against the high-resolution crystal structure. We plot here the
precision (y-axis) and recall of predicting which residues were incorrectly placed
(RMS > 1A). Using density alone (pink line) is outperformed by using a
combination of density and model strain (blue line). Our refinement approach
considers four points on this curve when picking density + model strain cutoffs,
indicated on the plot with "Stage1-4".

Supplemental Figure 3. Local relax shows better placement of sidechains
for large systems. In the case of mitoribosome, refinement of a particularly well-
resolved region in the map (left) led to sidechains clearly misaligned with the
density (middle). This was due to the poor convergence of our Monte Carlo
sidechain placing approach when applied to systems with >1000 residues. Our
alternative approach, LocalRelax, which instead performs many local sidechain
optimizations, correctly places sidechains consistent with density (right).

Supplemental Figure 3. Density weight optimization against halfmaps for
Mitoribosome. Before refinement against the full reconstruction, we optimize the
weight on the "fit-to-density" energy using half maps, to avoid overfitting. We plot
several key metrics here as a function of weight on the fit-to-density score term
(X-axis), including the FSC "overfitting" (FSCwork - FSCfree, top), the Rosetta
energy (row 2), and several Molprobity model geometry terms (rows 3-6). In all
cases, we see a sharp inflection point where overfitting increases and geometry
gets notably worse. As a general rule-of-thumb, we use the weight maximizing
FSCfree-0.04*per-residue-energy to capture this inflection point.

Supplemental Figure 4. EMRinger analysis on refinement of the large
subunit of the human mitochondrial ribosome. A scatterplot of model quality
assessed by EMringer of each of the 48 protein chains compares the deposited
(X-axis) and Rosetta (Y-axis) models.

Supplemental Figure 5. Model geometry is improved with a separate pre-
proline potential. It was found that refined models initially had poor pre-proline
geometry. Thus a new backbone torsional potential was created which
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separately treats pre-proline and pre-non-proline residues. In the plot above we
show the old potential (left), the new pre-non-proline potential (middle), and the
pre-proline potential (right), for three different residue identities. The color
indicates the unweighted energy values, using the key on the right.
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Table 1. Structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta

EMDID PDBID Reported Symmetry Number MolProbity® EMRingber iFSC°®
resolution of Score Clashscore Rotamer Ramachandran Score
(Al residues outliers favored
TRPVA 5778 3j5p 3.4 C4 489 (1956) 3.81/1.45 86.35/1.96 28.78/0.00 95.65/91.93 0.65/2.34 0.641/0.647
Frh 2513 4ci0 3.4 T 902 (10716) 3.97/1.60 117.06/3.43 39.11/0.00 96.51/92.56 0.31/2.34 0.659/0.746
Mitoribosome 2762 3j7y 3.4 N/A 8998 2.71/1.50 8.38 /3.51 8.49/0.08 89.86 / 94.86 2.09/2.40 0.734/0.725

a. Number of protein residues in the asymmetric unit and (the total residues) modelled.
b. Scores from deposited (left) versus (/) Rosetta refined (right) model.
c. Integrated Fourier shell correlation (iFSC) from 10-3.4A.
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Supplemental Table 1
Sidechain scaling factors used in
automated Rosetta structure

refinement
. . Factor

Sidechain Raw data used
ARG 0.84 0.66
LYS 0.84 0.66
GLU 0.85 0.66
MET 0.87 0.66
ASP 0.88 0.66
CYS 0.87 0.71
GLN 0.89 0.71
HIS 0.91 0.71
ASN 0.91 0.71
THR 0.94 0.71
SER 0.95 0.71
TYR 0.95 0.78
TRP 0.96 0.78
ALA 0.97 0.78
PHE 0.98 0.78
PRO 0.98 0.78
ILE 0.99 0.78
LEU 0.99 0.78

VAL 1.00 0.78
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Supplemental Table 2. Mitoribosome per-chain refinement results

Chain MolProbity Ramachandran EMRinger
ID iFSC Score Favored Score
0 0.649 / 0.646 285 / 0.84 86.17 / 98.94 174 | 2.60
1 0.653 / 0.647 248 [ 0.77 92.00 / 96.00 086 [/ 275
2 0.711 / 0.688 1.81 / 0.84 97.56 / 95.12 168 / 4.15
3 0.730 / 0.698 211 / 1.06 9462 / 9462 311 / 5.09
4 0.707 / 0.653 229 / 0.50 100.00 / 100.00 432 / 4.40
5 0.696 / 0.688 276 / 1.31 89.40 / 94.02 280 / 2.68
6 0.593 / 0.563 249 / 1.39 87.54 / 90.73 254 [/ 220
7 0.648 / 0.637 227 |/ 0.98 9147 /| 9419 222 [/ 214
8 0.378 / 0.359 1.67 / 0.80 96.36 / 98.18 2.03 / 0.68
9 0.626 / 0.591 1.91 / 1.61 88.57 / 9238 225 /[ 219
D 0.708 / 0.689 217 [ 1.39 9487 / 93.16 350 / 411
E 0.733 / 0.712 258 / 1.35 90.54 / 9463 240 / 3.29
F 0.718 / 0.698 250 / 1.02 9194 / 9355 371 |/ 344
H 0.617 / 0.621 267 / 1.04 87.10 / 96.77 255 [ 279
I 0.454 / 0.527 268 / 094 92.86 / 9740 202 / 1.26
J 0.334 / 0.420 273 / 140 83.33 / 9275 -0.12 / 141
K 0.701 / 0.673 235 / 0.98 89.71 / 9486 204 / 361
L 0.715 / 0.701 242 | 118 88.50 / 9469 026 / 1.63
M 0.711 / 0.687 255 [ 147 89.82 / 9333 204 / 243
N 0.702 / 0.692 225 / 116 9163 / 92.61 253 [/ 289
O 0.704 / 0.691 291 / 1.23 88.67 / 96.67 155 / 3.10
P 0.675 / 0.659 272 / 0.99 89.15 / 9535 222 / 4.80
Q 0.704 / 0.694 276 / 097 89.50 / 96.00 290 / 3.86
R 0.704 / 0.687 231 / 0.95 9275 / 9565 419 /| 4.51
S 0.689 / 0.671 231 / 1.01 93.51 / 96.10 3.84 / 2.02
T 0.703 / 0.687 249 / 091 9268 / 96.95 279 /| 250
U 0.699 / 0.697 259 / 1.06 88.07 / 96.33 3.20 / 4.32
Vv 0.585 / 0.563 217 | 1.28 8798 / 9454 154 /| 193
w 0.703 / 0.691 261 / 0.95 97.14 / 96.19 382 / 6.28
X 0.672 / 0.656 256 / 0.50 9129 / 9834 212 |/ 1.74
Y 0.670 / 0.649 246 / 1.07 90.23 / 9598 298 / 3.46
Z 0.695 / 0.665 232 / 0.89 90.68 / 96.61 4.27 | 4.15
a 0.667 / 0.635 238 / 1.02 9459 / 97.30 108 / 531
b 0.690 / 0.658 246 / 091 85.62 / 93.84 242 | 248
C 0.683 / 0.685 251 / 0.83 87.82 |/ 9742 206 [/ 219
d 0.582 / 0.579 1.85 / 1.08 89.10 / 96.84 244 |/ 3.50
e 0.163 / 0.279 274 | 1.75 78.03 / 86.36 -0.03 / 1.44
f 0.561 / 0.510 231 [ 1.29 88.73 / 9437 205 / 0.62
g 0.681 / 0.653 231 [ 097 91.34 / 96.85 359 [/ 3.06
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h 0.526 / 0.517 243 | 1.06 8542 / 9479 176 /| 1.83
[ 0.703 / 0.686 281 [/ 1.20 85.11 / 9149 461 /| 3.76
] 0.666 / 0.663 208 / 0.97 95.18 / 9759 382 |/ 3.42
k 0.367 / 0.520 3.43 /| 0.74 78.05 / 98.78 336 / 2383
0 0.650 / 0.626 273 [ 0.80 86.96 / 9565 283 [/ 236
p 0.629 / 0.602 1.98 / 1.21 9241 / 9241 246 /| 1.55
q 0.546 / 0.551 1.82 / 0.66 9524 / 9841 240 / 240
r 0.663 / 0.646 3.00 / 1.03 89.29 / 9429 373 / 4.60
S 0.721 / 0.705 268 / 1.26 89.07 / 9344 220 / 1.49
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Figure 3
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Figure 5
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Supplemental Figure 5
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Supplemental Figure 6
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