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Abstract 
 
Cryo-EM has revealed many challenging yet exciting macromolecular assemblies 
at near-atomic resolution (3-4.5Å), providing biological phenomena with 
molecular descriptions. However, at these resolutions accurately positioning 
individual atoms remains challenging and may be error-prone. Manually refining 
thousands of amino acids – typical in a macromolecular assembly – is tedious 
and time-consuming. We present an automated method that can improve the 
atomic details in models manually built in near-atomic-resolution cryo-EM maps. 
Applying the method to three systems recently solved by cryo-EM, we are able to 
improve model geometry while maintaining or improving the fit-to-density. 
Backbone placement errors are automatically detected and corrected, and the 
refinement shows a large radius of convergence. The results demonstrate the 
method is amenable to structures with symmetry, of very large size, and 
containing RNA as well as covalently bound ligands. The method should 
streamline the cryo-EM structure determination process, providing accurate and 
unbiased atomic structure interpretation of such maps.  
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Introduction 
 
Advances in direct electron detectors as well as better image analysis algorithms 
have led cryo-electron microscopy (cryo-EM) to achieve near-atomic resolution 
(3-4.5 Å) using single-particle analysis [1-3]. Cryo-EM reconstructions at these 
resolutions, where individual β-strands are resolvable, and bulky sidechains are 
somewhat visible, make it possible to build an all-atom model directly from such 
maps [4,5]. Although sequence can be registered, density maps at this range of 
resolution do not grant enough information to precisely assign coordinates for 
each atom in the structure, from which molecular interactions for a biochemical 
process is captured. Furthermore, such model building and refinement is 
challenging and error prone [6,7]. Determination of detailed atomic interactions 
from these sparse sources of data is desirable, however, the inherent ambiguity 
in the data makes identifying these interactions extremely difficult, even for 
experts.  
 
Model-building into a cryo-EM map at near-atomic resolution generally involves 
manually building a model into the map using a graphical user interface tool [8] 
followed by refinement with software repurposed from X-ray crystallography 
[9,10]. This process requires identification of key amino acid sidechains to 
register stretches of sequence within the map (possibly aided by the topology 
from a homologous structure), followed by extension of these short fragments of 
sequence to form one or more fully connected protein chains. At near-atomic 
resolution, this manual model-building and refinement can be error prone owing 
to: a) the density may not be of sufficient resolution to uniquely identify sidechain 
rotamers, even for bulky aromatic residues, making it difficult to accurately 
determine sidechain-sidechain or sidechain-backbone interactions; b) for regions 
of non-regular secondary structure (turns or loops) or with poor local resolution, it 
may be difficult to accurately position backbone atoms; and c) in these same 
regions, precise sequence registration may also be error prone. Getting these 
atomic interactions correct is crucial for understanding detailed atomic 
mechanisms of proteins, designing drugs with a very specific shape 
complementarity, and for understanding subtle conformational changes of a 
protein. A structure refinement procedure that can automatically improve the 
atomic details of a model from such density data is thus very much desired. 
 
In this manuscript, we develop a three-stage approach for automatically refining 
manually traced cryo-EM models (Figure 1). While previously we have developed 
an iterative local rebuilding tool capable of refining homology models into near-
atomic-resolution cryo-EM maps [11], several advances were required for 
extending this tool to successfully refine hand-built models. Our new approach 
includes a method for automatically detecting and correcting problematic 
residues in hand-built models without overfitting, a model-selection method for 
identifying models with good agreement to the density data and with physically 
realistic geometry, a voxel-size refinement method for correcting errors in 
calibrating the magnification scaling factor of a microscope, a novel sidechain-
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optimization method to correct sidechain placement errors in very large systems, 
and a way to estimate uncertainty in a refined model. These methods, combined, 
allow to correct backbone errors that significantly deviate from the starting model, 
but may still assign a high degree of confidence to these regions in the refined 
model.  
 
Finally, we apply this approach to three recently solved cryo-EM single particle 
reconstructions at near-atomic resolution: the TRPV1 channel at 3.4-Å resolution 
(TRPV1) [12], the F420-reducing [NiFe] hydrogenase (Frh) at 3.4-Å resolution 
[13], and the large subunit of mitochondrial ribosome at 3.4-Å resolution 
(mitoribosome) [14]. We show that in all three cases of diverse and large 
systems, we are able to automatically refine models to high-quality (as assessed 
by MolProbity), while maintaining or improving agreement to the density data. 
Significantly, in the case of TRPV1, we newly identify a biological relevant atomic 
interaction – a disulfide bond – not built in the originally deposited model, but 
supported in the literature. In the case of Frh, we show our refinement procedure 
led to 13.2% fit-to-density improvement mainly through optimization of the voxel 
size. Finally, in the case of mitoribosome, we show significant improvement in 
model geometry: the number of “Ramachandran favored” residues increases by 
5%, and Molprobity [15] score improvement is observed in all 48 protein chains. 
 
 
Results 
 
An overview of our refinement approach is shown schematically in Figure 1 (and 
is fully described in Methods). Broadly, the approach proceeds in three stages. In 
the first stage, we identify problematic residues by assessing local model-strain 
and local agreement to density data. These regions are rebuilt against a 
“training” half-map using fragment-based Monte Carlo sampling with many 
independent trajectories followed by all-atom refinement. Secondly, the best 
subset of these independent trajectories are selected by identifying a subset of 
stereochemically correct models with best agreement to an independent 
“validation” half-map, to prevent overfitting. Finally, models are further optimized 
in the full-reconstruction with a weight optimally scaled between experimental 
data and the forcefield using the “validation” half map. Our approach adopts and 
improves upon our previous work on refining cryo-EM structures from distant 
homology structures [11], in which a similar fragment-based backbone rebuilding 
strategy is employed. However, several critical improvements were necessary in 
extending our previous work to successfully refine hand-traced models, larger 
complexes, and a more diverse set of systems.  
 
Identification of backbone errors using local strain. In previous work [11], 
local fit to density is used to identify residues in a distant homology model to 
rebuilt. However, unlike remote homology models, hand-traced models typically 
fit the data very well, but are incorrect geometrically (strain). Consequently, a key 
improvement is to make use of model strain as a criterion in selecting regions to 
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refine. Moreover, when the previous approach was applied to the de novo hand-
traced models from cryo-EM maps, we observed that – following all-atom 
refinement – in incorrect regions, the models still fit the density well, but did so by 
introducing strain in the nearby bond angles and torsions. This often occurred in 
near Cβ atom of aromatic residues, where strain was introduced to fit the 
sidechain into density (Supplemental Figure 1). We reasoned that in these 
strained residues, the backbone was incorrect; by correcting the backbone we 
would be able to fit a non-strained sidechain into density. Thus, local strain can 
serve as an indicator to identify regions to refine to improve both the fit-to-density 
and model geometry. We developed an error predictor by constructing a function 
(see Methods) that assesses both local model-map agreement as well as local 
model-strain. Using a training dataset composed of error-containing models of a 
cryo-EM map in which the structure has been determined by X-ray 
crystallography (Supplemental Figure 2), we show that the new error predictor 
offers better discrimination of incorrectly versus correctly placed backbone, with 
an AUPRC (area under precision-recall curve) of 0.80 versus 0.76 using density 
alone (Supplemental Figure 2). In cases where models are hand-built into 
density, we expect this strain term to play an even larger role, as fit-to-data is 
expected to have larger influence on the initially constructed model. 
 
Better treatment of sidechain density. Recent works have shown that certain 
sidechains – particularly negatively charged amino acids (Glu/Asp) – tend to 
suffer from radiation damage and thus appear weaker in single-particle 
reconstructions [16,17]. Moreover, density from certain bulky sidechains, for 
example, Lys and Arg, tends to be less well-defined than their backbone density. 
This missing density dramatically affects the convergence of conformational 
sampling during structure refinement, where sidechains tend to be fit into density 
corresponding to backbone atoms. To compensate for this, we downweigh the 
contributions of sidechains which are less resolved in cryo-EM density. Down-
weighing factors for each amino acid were determined by comparing the average 
per-amino-acid real-space B-factor on two cryo-EM reconstructions with known 
high-resolution crystal structures (20S proteasome [1] and β-galactosidase [16]), 
where the ratio of backbone and sidechain average B-factors was used to derive 
the scaling factors. Supplemental Table 1 shows the computed scalefactors used 
in our refinement method. 
 
Local sidechain refinement for large complexes. When our previous all-atom 
refinement approach was applied to very large complexes (800+ residues), we 
observed many instances where sidechains were not properly optimized into 
density (Supplemental Figure 3). It was hypothesized that this was due to the 
convergence of sidechain optimization, as the number of possible sidechain 
states expands exponentially with the number of residues present in a protein. 
Here, we opted to treat this global optimization problem as a series of smaller 
local optimization problems, repeatedly optimizing overlapping regions of ~20-
100 residues until all residues in a protein are visited at least once. This 
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approach resolved this sidechain fitting issue, as shown in Supplemental Figure 
3 (right panel). 
 
Voxel size refinement. The voxel size of a cryo-EM reconstruction is determined 
by the physical pixel size on the detector scaled by a magnification factor. 
However, the magnification factor may be determined with some inaccuracy, 
leading to errors in deciding the voxel size of the resulting single-particle 
reconstruction. This is especially error prone when a reconstruction has no 
known macromolecular structures can be fit in to calibrate the voxel size. Here, 
we develop a voxel size refinement strategy, which scales the voxel size of the 
map to maximize model-map real-space correlation coefficient. During 
refinement we alternate structure refinement and map voxel-size refinement with 
several cycles iteratively until the voxel size converges (Figure 1). The approach 
is fully described in the Methods section.  
 
The role of independent reconstruction in structure refinement. In our 
previous approaches, we have used independent reconstructions (“validation” 
half-map) for both model selection [11] and for determination of the balance 
between model geometry and fit-to-data during refinement [18]. In this 
manuscript, we use independent reconstructions in the same manner during the 
first two stages of refinement (Figure 1). However, at the very last stage we 
perform several steps in the context of the full reconstruction, due to the 
additional sidechain details that may be only present in the full reconstruction. As 
shown in Figure 1, for the best 10 sampled models selected from the stage 2, we 
perform a final all-atom and atomic B-factor refinement against the complete 
reconstruction. Using two independent halves of the data (training/validation half-
maps), the weight on the use of full-reconstruction data is optimized (see 
Methods and Supplemental Figure 3), and that weight is used in refinement 
against the full reconstruction. Following refinement against the full 
reconstruction, model geometry is verified (using MolProbity [15]) to ensure it is 
not worsening during refinement against the full reconstruction. This confers 
additional sensitivity during model selection. 
 
Evaluation of refined models with Molprobity and EMRinger. Models are 
evaluated for geometric quality using Molprobity [15], which compares summary 
statistics of an all-atom model to those from high-resolution crystal structures.  In 
addition to using MolProbity to assess model quality, we further validate the 
Rosetta-refined models with EMRinger [19], as an independent source to validate 
both model geometry and density-fit at sidechain level. EMRinger samples 
density around Cγ atoms as they are rotated about the χ1 dihedral angle, and 
identifies the angle which presents peak density for the Cγ; based on prior 
statistical and chemical information, this position should generally fall into the 
rotamer distribution of χ1, with angles of 60, 180, and 300 degrees. The 
distribution of measured peak angles at various signal-to-noise cutoffs is 
integrated into the EMRinger score, which reports on backbone model-to-map 
agreement using side chain geometry. 
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Application to TRPV1. We first applied our new refinement approach to the 
recently determined 3.4-Å cryo-EM reconstruction of the TRPV1 channel in the 
apo form [12]. Half-maps were reconstructed by subdividing particles into two 
sets randomly, with one used for initial model rebuilding and refinement, and the 
other used for validation. The deposited model (PDB id: 3J5P) was used as input 
to the protocol described previously. All refinement was carried out using the 
native C4 symmetry. All input files are included as Supplemental Data File 1. 
 
The results of refinement are indicated in Figures 2 and 3, and Table 1. The 
refined model improves both model quality and model-data agreement compared 
to the deposited model: the MolProbity score improves from 3.81 to 1.45, the fit-
to-data (integrated Fourier shell correlation from 10 to 3.4Å) improves from 0.641 
to 0.647, and the EMRinger score improves from 0.65 to 2.34. Figure 2A–B 
compares the refined model and the deposited model, colored with model 
violations reported by MolProbity. Figure 2C shows that our refined model – in 
addition to improving geometry – also improves the fit to the experimental data. 
Figure 3A illustrates the convergence of our refined ensemble, showing the 10 
selected refined structures, the average model colored by per residue structural 
variation, and the refined B-factors. Both of these measures provide unique 
insights on assessing the local confidence of the refined models, in which 
structural variance shows the allowed local conformations that satisfy the density 
data, whereas B-factors assess the local resolution of the density data at 
different regions of a model.  
 
Closer inspection of the refined models identified a disulfide linkage (C386-C390) 
that was not built in the deposited model (Figure 3B). This disulfide has 
previously been identified and characterized in the literature as playing an 
important role in response to oxidative stress for the TRPV1 channel [20]; this, 
combined with our models better explaining a tube of density unaccounted for in 
the deposited model, lets us speculate that this disulfide bond is present in the 
cryo-EM reconstruction. This motion also illustrates the magnitude of 
conformational change that may be captured by our protocol; our Monte Carlo 
backbone sampling strategy allows refinement to overcome energy barriers that 
other methods using density minimization alone cannot. Despite the magnitude 
of these changes, the conformational ensemble is well converged in this region 
(Figure 3B, right panel) providing further confidence in our refined model. 
 
Refinement of highly-liganded complexes: application to the F420-reducing 
[NiFe] hydrogenase complex. As our next test of the approach, we wanted to 
illustrate model refinement of a complex with large numbers of ligands, some of 
which are covalently bound, all in a system with high-order point symmetry. For 
this, we chose the 3.4-Å reconstruction of F420-reducing [NiFe] hydrogenase 
complex, where the asymmetric unit contains 3 protein chains which feature with 
a [NiFe] cluster, two metal ions, and four [4Fe4S] clusters covalently bound to 
cysteine sidechains, and an FAD. The complex is a dodecamer with tetrahedral 
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symmetry, with 12 copies of a 902-residue molecule of three protein chains. We 
used the -auto_setup_metals option of Rosetta (full input files are included as 
Supplemental Data File 2) to maintain covalent linkages between protein and 
ligand during refinement. The results of refinement are indicated in Figure 5 and 
Table 1, where the MolProbity score improves from 3.97 to 1.60, the iFSC 
improves from 0.659 to 0.746, and the EMRinger score improves from 0.31 to 
2.34. 
 
Upon using EMRinger to evaluate the deposited model, we found a notably poor 
EMRinger score (0.31) for the symmetric complex, which contrasted with a much 
better score of 1.31 for its asymmetric unit (as the deposited model), indicating a 
high variance of density fit in different subunits. This result suggested the need 
for voxel-size refinement on this target. Our refinement yielded notably different 
voxel size than that of the deposited reconstruction: the refined model converged 
on 1.326Å voxel size compared to 1.320Å in the deposited map.  The refined 
model shows better subjective agreement to the density data (Figure 4A): the 
deposited model clearly exposes the structure out of the density globally (Figure 
4A, left panel) and locally (Figure 4A, middle and right panels), while the refined 
model clearly embeds its structure into the density. The refined model 
additionally shows better quantitative agreement to the density data (Figure 4B) 
and better geometry (Figure 4C): voxel-size refinement within Rosetta improved 
the fit-to-density and EMRinger score, compared to refinement without voxel-size 
refinement. The final model improved fit to data (integrated FSC from 10 to 3.4Å) 
by 13.2%, compared to the deposited symmetric complex (Table 1). 
 
Refinement of large complexes: application to the mitochondrial ribosome 
large subunit. Finally, we wanted to test the ability of our refinement to scale to 
large asymmetric macromolecular assemblies, more typical of cryo-EM single 
particle reconstruction. To do so, we considered refining models against the 
previously published 3.4-Å cryo-EM reconstruction of the large subunit of the 
human mitochondrial ribosome [14]. The deposited model had been previously 
refined with REFMAC [9], and consists of 48 chains with 8998 amino acids 
assigned and 1628 nucleic acid bases.  
 
In order to make conformational sampling tractable, we used a slightly modified 
strategy from that shown in Figure 1 (full input files are included as Supplemental 
Data File 3). The first two steps of the protocol (error identification and backbone 
rebuilding) were carried out on each protein chain individually, while the third 
step was carried out on the fully assembled complex. Model selection was 
carried out on each individual chain; each selected model was refined as a 
complete assembly, with the top model of each chain refined together, the 
second selected model for each chain refined together, and so on. Nucleic acids 
were not refined but were included as rigid bodies to accurately recapitulate 
protein/RNA interactions. 
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The results of refinement are indicated in Figure 5 and Table 1. Several large-
scale conformational changes again appear in converged models; these models 
show better geometry, fit to density and fewer unexplained regions of density. 
The backbone geometry improvements are in particular noticeable in proteins 
with β-sheet containing domains. Unlike other refinement procedures 
(phenix.real_space [10] and REFMAC [9]), which require manual input of 
secondary structure restraints determined either from an initial model or 
homologous protein structure to maintain backbone geometry during refinement, 
in our approach the Rosetta forcefield is able to optimize hydrogen bond 
geometry in secondary structures without requiring a priori knowledge of 
secondary structures. This is particularly powerful in refining de novo structures 
where secondary structure is ambiguous due to poor local resolution. Figure 5C 
illustrates an example (chain k) of this from the case of mitoribosome, where a β-
sheet not present in the original model is identified, the backbone geometry is 
improved, and the model fits the density much better than the deposited model 
(Figure B, left panel, red arrow); the refinement also shows a large radius of 
convergence. 
 
The refined model ribosome model has 1.50 MolProbity score, 0.725 iFSC, and 
2.40 EMRinger score. The largest improvements tend to occur in regions of low 
local resolution (~5Å assessed by ResMap from the original paper) on the 
periphery of the complex. Looking at the results on individual chains, as indicated 
in Figure 5A and Supplemental Table 2, the MolProbity score improves on all 48 
protein chains, which in part is from the much improved backbone geometry 
assessed by the Ramachandran favored term in MolProbity (Figure A, right panel 
and Supplemental Table 2). Our Monte Carlo backbone sampling can correct 
these incorrect backbone placements, which often require significant 
compensating conformational changes. EMRinger score is also consistently 
improved (Supplemental Figure. 4), particularly in regions where 
the deposited model scores poorly. 
 
 
Discussion 
 
In this manuscript, we develop a method for improving atomic details of manually 
traced models from 3-4.5Å resolution cryo-EM density. We show the applicability 
of the approach, by applying it to three systems: a membrane protein, an 
asymmetric macromolecular assembly containing large numbers of protein 
chains and RNAs, and a highly symmetric system with a large number of ligands. 
In all cases, we show that we are able to significantly improve model geometry 
while maintaining or improving agreement to the density data. We show that 
model convergence can be used to suggest local model uncertainty in addition to 
B-factors. Finally, we also show that our models also recover structure features 
that are supported in the literature, or in much better local agreement with the 
density data. 
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Unlike other approaches [9,21], our approach can automatically perform large-
scale backbone reorganization, correcting backbone placement errors common 
in these 3-4.5Å resolution datasets. Two features of our refinement approach 
regarding the use of prior information are critical in the success of this large-scale 
refinement. First, the use a physically realistic forcefield throughout refinement 
handles the under-constrained nature of refinement at these resolutions, by using 
chemical “domain knowledge” learned from high-resolution crystal structures to 
implicitly fill in the missing information in the data. Second, our fragment-based 
rebuilding which explicitly samples the most likely backbone conformations given 
a short stretch of sequence also uses prior information gather from high-
resolution protein structures, further restricting conformation space, and filling in 
additional information not present in the data. 
 
Finally, an open question is on what way structure refinement can be further 
improved, particularly as refinement extends to even lower resolutions (worse 
than 5Å). Enhancing the predicting power of the Rosetta modeling methods is the 
key to to push the resolution limit of the current refinement method further. This 
can be achieved through: 1) improving the energy function (forcefield) used in 
refinement, and 2) improvements in conformational sampling methodology, 
particularly for systems where secondary structure prediction is poor. Further 
improvements in the role of B-factor sharpening and the effect on refinement are 
necessary, as well as better predictors of local model error. Finally, structure 
refinement in maps with highly heterogeneous local resolution remains 
challenging, where a single set of refinement parameters cannot readily be 
applied at all regions. Methodological improvements that that allow adjustment of 
parameters based on local map quality will be essential to accurately refine 
structures from such maps. In our effort to enable automated structure 
refinement on large macromolecular assemblies, we hope this method can be a 
valuable tool for determining atomic accuracy structures from near-atomic-
resolution cryo-EM data. 
 
 
Methods 
 
Preparing maps for refinement. Split maps were provided by the original 
authors. One map was randomly chosen for refinement, and the other was used 
for validation. In all, cases a B-factor of -100 was applied to the map used for 
refinement using the “image_handler” tool in RELION [3]. The maps were 
subsequently filtered to the user-refined resolution. In the case of the 
mitochondrial ribosome, segmented maps were prepared using a custom 
Rosetta application and the deposited structure to guide segmentation: 

 
density_tools.default.linuxgccrelease -s 3j7y0.pdb -mapfile EMD-2762.mrc -
mask_radius 2 -maskonly  
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Some steps of the protocol also made use of the full reconstruction. As with the 
training map, these were sharpened using a B-factor of -90 with a low-pass filter 
to 3Å. 
 
Preparing structures for refinement. In the case of TRPV1, residues 111-202 
in the Ankryin repeat domain from the deposited model did not have visible 
density, and so were delete proior to refinement. Furthermore, automatic 
refinement as applied in two stages due to the highly heterogeneity between the 
trans-membrane domain and the Ankryin repeat domain. The trans-membrane 
domain (residue 234-586) was first refined in the density masked using the 
deposited model. In the case of the mitoribosome, residues from chain t and 
chain f, in which atoms are assigned to residues “UNK,” were removed from all 
the refinement process, as well as data analyses or results comparisons. In the 
case of Frh, refinement of ligands received special treatment: refinement started 
using protein only, with constraints maintaining ligand site geometry. Later, 
ligands were added back on and rerefined. 
 
Algorithm for model rebuilding. Model rebuilding generally follows the 
procedure from our previous work [11], with a few key changes highlighted 
below. Rebuilding starts from the deposited structure, which is first conservatively 
refined using one macrocycle of the Rosetta relax protocol to trigger local strain 
on sidechains, which iterates four cycles Monte Carlo rotamer optimization with 
all-atom minimization, ramping the weight on van der Waals repulsion in each 
cycle. Minimization is carried out in Cartesian space, with a term enforcing ideal 
bond angles, bond lengths, and planarity [22]. 
 
Following Cartesian minimization, the worst residues are selected using the 
following equation to evaluate the quality of the model at residue i: 
 

!!""#"(!) = !!"#$ ∙ !!"#$(!) + !!"!#$%& ∙ !!!"#$%&(!) + !!"#$%$ ∙ !!"#$%$(!) + !!"#" ∙ !!"#"(!)  
 
Four different terms appear in this equation, two of which assess a model’s 
agreement to data, two of which assess a model’s local strain. The first two, !!"#$(!)  
and !!!"#$%&(!) , assess the model-map agreement of the backbone and sidechain 
atoms of each residue, computing the real-space correlation coefficient in a 
region around a residue, and converting that to a Z-score compared to the entire 
model. For the former term, an absolute correlation coefficient is computed; for 
the latter term, the correlation is normalized with respect to residues nearby 
(those within 10 Å of residue i). The latter term is specifically added to deal with 
maps that have significant diversity in local resolution. 
 
The second two terms, !!"#$%$(!)  and !!"#"(!) , assess a model’s strain following 
model refinement. The motivation for these terms is that in cases where the 
model was built incorrectly into density, it will be energetically unfavorable. 
Following an initial refinement, these incorrect portions will either be move away 
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from the data, or will introduce model strain to maintain the favorable agreement 
to the data, depending upon the balance of forces between the two. These terms 
compare the per-residue bond geometry term, and the per-residue 
Ramachandran energy, respectively, to that over the entire structure, and 
compute a Z-score for each residue.  
 
For each of the four terms, a Z-score is computed and is summed together, with 
a particular weight for each term. The weights were tuned using a 3.3-Å cryo-EM 
map dataset with known high-resolution structure (the 20S proteasome [1]), 
where a set of ~500 error-containing models was used as the training data. The 
results of this tuning process are shown in Supplemental Figure 1. The final 
weights selected were !!"#$=0.45, !!"!#$%&=0.05, !!"#$%$=0.15, !!"#"=0.35. 
 
After computing this weighted Z-score for each residue, all residues with a score 
below some target value (see the next section on iteration for specific values) are 
selected for local rebuilding. Local rebuilding uses the iterative fragment-based 
approach previously published [11]. In our new approach, a residue is randomly 
chosen from the pool tagged for rebuilding from the previous step. Given the 
local sequence around this selected residue, a set of 25 protein backbone 
conformations from high-resolution structures with similar local sequence and 
predicted secondary structure is sampled. Each sampled backbone is refined – 
as an isolated fragment – into density using the following three step procedure: 
a) the backbone only is minimized in torsion space using a simplified energy 
function, b) sidechain rotamers are optimized into density, and c) both backbone 
and sidechain are minimized in torsion space using a simplified energy function. 
Constraints on the ends of each fragment ensure the local region is reasonable 
in the context of the entire backbone. Of the 25 sampled fragments, the best is 
selected by fit to density. Finally, the replaced fragment is minimized in the 
context of the complete structure. This process is run as a Monte Carlo 
trajectory. 
 
Iterative rebuilding and all-atom refinement. Model rebuilding and all atom 
refinement are run iteratively, as shown in Figure 1. Four separate 200-step 
Monte Carlo trajectories are run with increasing coverage of predicting errors but 
sacrificing the accuracy of the predictions. This is done with the Z-score cutoff 
increased in each step, following the schedule shown in Supplemental Figure 2: 
first residues with Z<-0.5 are selected for fragment-based rebuilding, followed by 
-0.3, -0.1, and finally Z<0. Between each cycle, a single iteration of Relax is run, 
in the same manner as the pre-refinement step. At the start of each stage, !!""#"(!)  
of a model is re-evaluated as above to avoid refining fixed errors from the 
previous stage, and residues predicted to be in error are selected. Finally, an 
additional 200 step Monte Carlo trajectory is run with the !!""#"(!)  computing solely 
from !!"#"(!)  to ensure the favorable Ramachandran geometry in models. 
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Pre-proline Ramachandran potential. Following early experiments, a new term 
was added to Rosetta that enforces a distinct pre-proline Ramachandran 
potential, replacing the original 20 different potentials: 
 

!!"#" = !(!! ,!!|!!!) 
 
With 40 different potentials conditioned on the sequence identity of the C-
terminal adjacent residue: 
 

!!"#" = !(!! ,!!|!!! , !"_!"#!!!) 
 
This potential was trained using the Richardson 8000 set of high-resolution 
crystal structures [15], and smoothed using adaptive kernel density estimates, as 
with the original Ramachandran potential [23]. They are included in the released 
Rosetta with the energy term rama_prepro (using the same weight as the 
Rosetta term rama). Supplemental Figure 6 illustrates the resulting potentials. 
For all experiments in this manuscript, this term replaced the default 
Ramachandran score term in Rosetta. 
 
Local relax. Following our four cycles of refinement, we run a modified version of 
Relax, which we call LocalRelax. Modifications were made following the 
observation that – when applied to very large complexes (800+ residues) – we 
observed many instances where sidechains were not properly optimized into 
density, even though the density was very clear. Supplemental Figure 3 shows 
several such cases. 
 
In LocalRelax, small overlapping regions of ~20-100 residues (discontinuous in 
sequence space) are selected for optimization repeatedly, until the entire protein 
has been optimized at least once. The approach is based upon the idea of 
neighbor residues, where residue neighbors are defined as all residues with a 
Cβ-Cβ distance less than 8Å. We first find the residue ri with the most residue 
neighbors. Then we optimize the neighbors of ri, and the neighbors-of-neighbors 
of ri: the neighbors are allowed to optimize both sidechain and backbone 
conformation, while the neighbors-of-neighbors may only optimize sidechain 
conformation. This optimization is performed via Monte Carlo sampling of 
sidechain rotamers, followed by Cartesian minimization of all movable atoms. 
Following this, all neighbors of ri (as well as ri) are marked as visited, and the 
process repeats, selected a new ri as the unmarked residue with the most 
neighbors. This process continues until all residues are marked.  In total, 4 cycles 
of this procedure are carried out, increasing the weight on van der Waals 
repulsion in each cycle. Finally, following coordinate refinement with LocalRelax, 
we fit atomic B-factors following the scheme of our previous paper [11]. 
 
Sidechain rescaling. We compute a scalefactor associated with each sidechain, 
that describes how much contribution to the density score each sidechain 
contributes. The values were computing using the 3.3-Å reconstruction of the 
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20S proteasome [1] and the 3.2-Å reconstruction of β-galactosidase [16]. Models 
were refined into the density and real-space atomic B-factors were fit for each 
atom. We then converted the atomic B-factors to scale factors using the following 
transformation: 
 

!"#$%!! ≈
1

!! ! 
 
Scales were normalized such that the scale for all backbone atoms was equal to 
1. To prevent overfitting, each sidechain was grouped into one of three classes, 
and all sidechains within a given group were given the average scalefactor of the 
group. Finally, while maintaining the ratio of these three groups with respect to 
one another, we scaled the relative contribution of backbone versus sidechain 
density, and selected the best values based on free FSC following refinement. 
The final values range from 0.66 to 0.78, and are tabulated in Supplemental 
Table 1. 
 
Voxel size refinement. To optimize the voxel size of a map used to refine the 
model, we fix the model coordinates, and compute the model density. We then 
refine the voxel size v=[vx,vy,vz] and the origin o=[ox,oy,oz] of the map density – 
fixing these parameters in the model density – to maximize the real-space 
correlation coefficient between the two: 
 

!! !, ! = !!(!) ∙ !!(!!,! ! )− !!(!) ∙ !!(!!,! ! )

!!! ! + !!! !!,! !
!/!  

!!,!(!,!, !) = !! + ! !! , !! + ! !! , !! + ! !!  
 
Here, ρo refers to the experimental map and ρc to the map derived from the 
model, while σo and σc refer to the standard deviations over the corresponding 
density maps. Sums are taken over the entire map. Off-grid density values are 
computed using cubic splines to interpolate the calculated density map. This 
function is optimized with respect to the voxel size paramters using l-BFGS 
minimization; analytic derivatives are computed for CC with respect to v and o, 
and the same cubic splines are used to calculate derivatives with respect to the 
calculated map. 
 
Voxel size may be refined isotropically or anisotropically (either 4 or 6 total 
parameters); all experiments in this manuscript treated this refinement 
isotropically (that is, all three axes are scaled together).  
 
Refinement against the full reconstruction and model selection. The 
previously described protocol was run to generate 5000 independent trajectories. 
From these 5000 models, a set of 10 representative models is chosen, following 
the protocol outlined in Figure 1. We want our optimized models to 
simultaneously be optimal in terms of: a) independent map agreement, b) 
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physically realistic geometry, and c) agreement to the full reconstruction. The 
latter is necessary, as the full reconstruction often features details not present in 
the independent half maps. 
 
Independent-map FSCs were computed against the validation map – subject to 
the same sharpening scheme as the training map – using the ComputeFSC 
mover in Rosetta. The integrated FSC between 10Å and the reported resolution 
(3.4Å in all cases) of the map was used to assess agreement with the 
independent map. The script computes FSC after masking the map with a mask 
computed from the model and filtered to 12Å with the command line: 
 
density_tools.exe -in:file:s model.pdb -mapfile validation_map.mrc -mask_radius 
12 -nresbins 50 -lowres 10 -hires 3.4 -verbose 
 
In the case of the mitochondrial ribsosome, each segmented domain map was 
evaluated separately. Of the 1000 generated models, the top 50 by independent 
map agreement are selected. 
 
Next, we want to identify the models from this subset that are the most physically 
realistic. To do this, all 50 models are rescored with MolProbity [15], and the top 
10 are selected. While computing similar features to the Rosetta energy, its 
slightly different implementation makes it a somewhat orthogonal measure for 
structure evaluation. 
 
Finally, we want to use features from the full reconstruction to further improve the 
model, particularly bulky sidechains that may not be visible in the half-map 
reconstructions. However, when refining against the full reconstruction we need 
to be careful not to overfit to the full reconstruction, as we no longer have an 
independent map with which to evaluate overfitting. We use two ideas to avoid 
overfitting in this case. First, we do not perform any fragment based rebuilding 
with the full map, and instead only perform two cycles of LocalRelax and B-factor 
refinement with the full map. Second, we use halfmaps to determine the optimal 
fit-to-density weight when refining against the full map.  The weight is selected 
using the following relation where the weight is chosen to maximize the following: 
 

! = !"#!"## − 0.004 ∙ !! 
 
Here, Ei is the per-residue energy, and is included as additional regularization to 
avoid overfitting.  The value of 0.004 was chosen to normalize the two based on 
the relative dynamic ranges of both terms. 
  
The top 10 models from the previous selection are subject to refinement against 
the full map. The final model is then taken as the model with best integrated-FSC 
against the full reconstruction. Local deviation over all ten models is used to 
estimate model uncertainty. The per-residue structural variance of ensemble 
models is calculated using Theseus with the default command line [24]. 
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Assembly of the mitochondrial ribosome. In the case of the mitochondrial 
ribosome, we refine separate models for each protein subunit. A final assembly 
step combines the full model. In this final assembly step, all subunits, plus the 
deposited nucleic acid chains are combined in a single model, and are subject to 
2 cycles of LocalRelax against the full reconstruction. 
 
EMRinger score calculation. For each of the five models following model 
selection, EMringer was run using the command: 
 

 phenix.emringer MODEL.pdb MAP.ccp4 
 
To calculate per-chain EMRinger scores, pdb files were first segmented by chain 
ID and then emringer scores were calculated against the segmented pdb files. A 
script is included to automate the PDB segmentation and calculation of 
EMRinger scores.  
 
EMRinger scores can be compared absolutely between structures, although 
model size and local resolution variation are sources of noise for the EMRinger 
score. Scores below one are indicators of suboptimal model to map agreement 
for structures better than 4-Å resolution, while a score around zero indicates no 
improvement beyond randomness. 
 
Availability 
 
All methods described are available as part of Rosetta, using weekly releases 
after week X, 2016. The Rosetta XML files and flags for running all the 
refinements discussed in this manuscript are included as Supplemental Data 
Files 1-3. The scripts and the tutorial used for running the method described here 
is available now at the website of the corresponding author 
(https://faculty.washington.edu/dimaio/files/density_tutorial_sept15_2.pdf). 
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Figure Legends 
 
Figure 1. An overview of the three stages of automated refinement. (Left) In 
stage 1, problematic regions are predicted using a newly developed error 
predictor judging on local strain in the model and poor local density fit. These 
selected regions are subject to iterative fragment-based rebuilding with in a 
Monte Carlo sampling trajectory. Refinement in this stage is restricted to using 
one-half of the data, referred to as the training map. (Middle) In stage 2, the best 
models from the ~5000 independent Monte Carlo trajectories are selected. 
Models are selected based on: agreement to the validation map (independently 
constructed from the other half of the data), then by model geometry as 
assessed by MolProbity, and finally, based on agreement to the full 
reconstruction. At this point, the selected models should in general have good fit-
to-density and good geometry without overfitting to the data. (Right) In stage 3, 
using the 10 best models selected, we then optimize against the full 
reconstruction. Two half maps are used for choosing the optimal density weight 
to refine structures using full-reconstruction. Finally, these top 10 models are 
optimized (without large scale backbone rebuilding) into the full-reconstruction, 
which alternates with voxel size refinement iteratively. Finally, these models are 
subject to B-factor refinement. 
 
 
Figure 2. Refinement of the apo TRPV1 channel (EMD-5778) shows 
improved fit-to-density and model quality. (A) A comparison of the deposited 
and Rosetta-refined models, as assessed by MolProbity. Residues reported as 
violations are colored using the key shown in the far right. Blue open arrows 
indicate that hydrogen-bond geometry of a β-hairpin was automatically detected 
and improved in the Rosetta refined model. (B) An overlay the asymmetric unit of 
the deposited (pink) and Rosetta-refined (green) model indicates the magnitude 
of conformational changes that are explored by our refinement approach. (C) The 
agreement of models to map assessed by Fourier space correlation (Y-axis) at 
each resolution shell (X-axis), where the reported resolution (3.4Å) is depicted in 
a dashed line colored in orange. The deposited model is shown in the curve with 
pink color, while the Rosetta refined model is shown in the curve colored in 
green. 
 
 
Figure 3. Refinement of the TRPV1 channel identifies a previously 
unmodelled disulfide bond. (A) An overview of the entire structure, estimating 
local model uncertainty in two ways: local structural diversity and refined B-
factors. Local structure diversity is indicated by showing an overlay of the top 10 
Rosetta models (left), the average model colored by per residue deviation 
(middle), and the refined per-atom B-factors (right). The orange square shows 
the location of a newly identified disulfide bond (C386-C390) revealed by our 
refinement protocol. (B) A zoomed-in view of the disulfide linkage (C386-C390) 
identified by the automated method. Note that the sidechain coordinates of C390 
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were unassigned in the deposited model; for presentation, the sidechain atoms of 
C390 were optimally added by Rosetta based on the deposited backbone torsion 
angles of C390. 
  
 
Figure 4. Refinement of the F420-reducing [NiFe] hydrogenase (EMD-2513) 
identifies changes to voxel size. (A) An illustration comparing the deposited 
and Rosetta refined models and maps. Under the same contour level (0.065), the 
deposited model (pink) shifts the entire complex out of the deposited density map 
with 1.320Å voxel size; the refined model (blue) – with 1.326Å voxel size – shows 
much better agreement between model and map, with much more of the model 
enclosed at the same contour level. The middle and left panel shows a zoomed-
in view of two regions in the deposited and Rosetta refined models/maps, 
corresponding to the helix and the sheet indicated by the orange and cyan 
squares on the left panel. (B) Model-map agreement – as assessed by Fourier 
shell correlation (Y-axis) as a function of resolution (X-axis) – quantifies this 
improvement following voxel size refinement. The pink curve corresponds to the 
deposited model; the green curve corresponds to a model refined by Rosetta into 
the density map with fixed voxel size (matching the deposited value of 1.320Å); 
the blue line represents a model refined by Rosetta with alternate structure 
coordinate refinement and map voxel size optimization. (C) Model quality as 
assessed by MolProbity and EMRinger. The X-axis shows methods used to 
evaluate the models, while the Y-axis shows the scores under each criterion. 
 
 
Figure 5. Refinement of the large subunit of the human mitochondrial 
ribosome (EMD-2762) shows improvements to all subunits. (A) Scatterplots 
of model quality of each of the 48 protein chains compare the deposited (X-axis) 
and Rosetta (Y-axis) models using MolProbity. On the left, the MolProbity score 
of all 48 protein chains are compared, where lower values indicate better model 
geometry. On the right, the percentage of “Ramachandran favored” residues are 
compared on each chain, with higher values preferable. (B) An evaluation of the 
fit-to-density of each protein chain. On the left, we compare the Fourier shell 
correlation (FSC) of each chain before and after refinement; we integrate the 
FSC from 10Å to 3.4Å. Higher values indicate better agreement with the data. 
The largest improvement, chain k, is indicated by the red arrow. On the right, the 
full FSC curve is shown, with the deposited model shown in pink, and the 
Rosetta refined model shown in green; the reported map resolution (3.4Å) is 
indicated in the dashed orange line. (C) A zoomed-in view indicating the large 
radius of convergence of the refinement of chain k. The left panel shows the 
density for chain k is in a region of relatively low local resolution. 
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Supplemental Figure 1. A closeup view of model strain indicating errors in 
density-optimized TRPV1 models using the previous Rosetta approach. 
Both insets show two regions of models refined by the previous approach, where 
strain can indicate errors in models. In both cases, phenylalanine sidechains fit 
the density well, but both show geometric strain around the Cβ atom. The type of 
strain (as evaluated by MolProbity) is indicated by model color, using the key on 
the right. 
 
 
Supplemental Figure 2. Incorporating model strain improves error 
detection. Guided by the 3.3-Å 20S proteasome reconstruction, we evaluated 
500 models against the high-resolution crystal structure. We plot here the 
precision (y-axis) and recall of predicting which residues were incorrectly placed 
(RMS > 1Å). Using density alone (pink line) is outperformed by using a 
combination of density and model strain (blue line). Our refinement approach 
considers four points on this curve when picking density + model strain cutoffs, 
indicated on the plot with "Stage1-4". 
 
Supplemental Figure 3. Local relax shows better placement of sidechains 
for large systems. In the case of mitoribosome, refinement of a particularly well-
resolved region in the map (left) led to sidechains clearly misaligned with the 
density (middle). This was due to the poor convergence of our Monte Carlo 
sidechain placing approach when applied to systems with >1000 residues. Our 
alternative approach, LocalRelax, which instead performs many local sidechain 
optimizations, correctly places sidechains consistent with density (right). 
 
Supplemental Figure 3. Density weight optimization against halfmaps for 
Mitoribosome. Before refinement against the full reconstruction, we optimize the 
weight on the "fit-to-density" energy using half maps, to avoid overfitting. We plot 
several key metrics here as a function of weight on the fit-to-density score term 
(X-axis), including the FSC "overfitting" (FSCwork - FSCfree, top), the Rosetta 
energy (row 2), and several Molprobity model geometry terms (rows 3-6). In all 
cases, we see a sharp inflection point where overfitting increases and geometry 
gets notably worse. As a general rule-of-thumb, we use the weight maximizing 
FSCfree-0.04*per-residue-energy to capture this inflection point. 
 
 
Supplemental Figure 4. EMRinger analysis on refinement of the large 
subunit of the human mitochondrial ribosome. A scatterplot of model quality 
assessed by EMringer of each of the 48 protein chains compares the deposited 
(X-axis) and Rosetta (Y-axis) models. 
 
 
Supplemental Figure 5. Model geometry is improved with a separate pre-
proline potential. It was found that refined models initially had poor pre-proline 
geometry. Thus a new backbone torsional potential was created which 
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separately treats pre-proline and pre-non-proline residues. In the plot above we 
show the old potential (left), the new pre-non-proline potential (middle), and the 
pre-proline potential (right), for three different residue identities. The color 
indicates the unweighted energy values, using the key on the right. 
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Table 1. Structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta 
 EMD ID PDB ID Reported 

resolution 
[Å] 

Symmetry Number 
of 

residuesa 

MolProbityb EMRinger 
Scoreb 

iFSCc 

 Score Clashscore Rotamer 
outliers 

Ramachandran 
favored 

TRPV1 5778 3j5p 3.4 C4 489 (1956) 3.81 / 1.45   86.35 / 1.96 28.78 / 0.00 95.65 / 91.93 0.65 / 2.34 0.641 / 0.647 
Frh 2513 4ci0 3.4 T 902 (10716) 3.97 / 1.60 117.06 / 3.43 39.11 / 0.00 96.51 / 92.56 0.31 / 2.34 0.659 / 0.746 
Mitoribosome 2762 3j7y 3.4 N/A 8998 2.71 / 1.50     8.38 / 3.51   8.49 / 0.08 89.86 / 94.86 2.09 / 2.40 0.734 / 0.725 
a. Number of protein residues in the asymmetric unit and (the total residues) modelled. 
b. Scores from deposited (left) versus (/) Rosetta refined (right) model. 
c. Integrated Fourier shell correlation (iFSC) from 10–3.4Å. 
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Supplemental Table 1 
Sidechain scaling factors used in  
automated Rosetta structure  
refinement 
	
Sidechain Raw data Factor 

used 
ARG 0.84 0.66 
LYS 0.84 0.66 
GLU 0.85 0.66 
MET 0.87 0.66 
ASP 0.88 0.66 
CYS 0.87 0.71 
GLN 0.89 0.71 
HIS 0.91 0.71 
ASN 0.91 0.71 
THR 0.94 0.71 
SER 0.95 0.71 
TYR 0.95 0.78 
TRP 0.96 0.78 
ALA 0.97 0.78 
PHE 0.98 0.78 
PRO 0.98 0.78 
ILE 0.99 0.78 
LEU 0.99 0.78 
VAL 1.00 0.78 
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Supplemental Table 2. Mitoribosome per-chain refinement results		
Chain 
ID iFSC 

 

MolProbity 
Score 

Ramachandran 
Favored 

EMRinger 
Score 

0 
 

0.649 / 0.646 
 

2.85 / 0.84 
 

86.17 / 98.94 1.74 / 2.60 
1 

 
0.653 / 0.647 

 
2.48 / 0.77 

 
92.00 / 96.00 0.86 / 2.75 

2 
 

0.711 / 0.688 
 

1.81 / 0.84 
 

97.56 / 95.12 1.68 / 4.15 
3 

 
0.730 / 0.698 

 
2.11 / 1.06 

 
94.62 / 94.62 3.11 / 5.09 

4 
 

0.707 / 0.653 
 

2.29 / 0.50 
 

100.00 / 100.00 4.32 / 4.40 
5 

 
0.696 / 0.688 

 
2.76 / 1.31 

 
89.40 / 94.02 2.80 / 2.68 

6 
 

0.593 / 0.563 
 

2.49 / 1.39 
 

87.54 / 90.73 2.54 / 2.20 
7 

 
0.648 / 0.637 

 
2.27 / 0.98 

 
91.47 / 94.19 2.22 / 2.14 

8 
 

0.378 / 0.359 
 

1.67 / 0.80 
 

96.36 / 98.18 2.03 / 0.68 
9 

 
0.626 / 0.591 

 
1.91 / 1.61 

 
88.57 / 92.38 2.25 / 2.19 

D 
 

0.708 / 0.689 
 

2.17 / 1.39 
 

94.87 / 93.16 3.50 / 4.11 
E 

 
0.733 / 0.712 

 
2.58 / 1.35 

 
90.54 / 94.63 2.40 / 3.29 

F 
 

0.718 / 0.698 
 

2.50 / 1.02 
 

91.94 / 93.55 3.71 / 3.44 
H 

 
0.617 / 0.621 

 
2.67 / 1.04 

 
87.10 / 96.77 2.55 / 2.79 

I 
 

0.454 / 0.527 
 

2.68 / 0.94 
 

92.86 / 97.40 2.02 / 1.26 
J 

 
0.334 / 0.420 

 
2.73 / 1.40 

 
83.33 / 92.75 -0.12 / 1.41 

K 
 

0.701 / 0.673 
 

2.35 / 0.98 
 

89.71 / 94.86 2.04 / 3.61 
L 

 
0.715 / 0.701 

 
2.42 / 1.18 

 
88.50 / 94.69 0.26 / 1.63 

M 
 

0.711 / 0.687 
 

2.55 / 1.47 
 

89.82 / 93.33 2.04 / 2.43 
N 

 
0.702 / 0.692 

 
2.25 / 1.16 

 
91.63 / 92.61 2.53 / 2.89 

O 
 

0.704 / 0.691 
 

2.91 / 1.23 
 

88.67 / 96.67 1.55 / 3.10 
P 

 
0.675 / 0.659 

 
2.72 / 0.99 

 
89.15 / 95.35 2.22 / 4.80 

Q 
 

0.704 / 0.694 
 

2.76 / 0.97 
 

89.50 / 96.00 2.90 / 3.86 
R 

 
0.704 / 0.687 

 
2.31 / 0.95 

 
92.75 / 95.65 4.19 / 4.51 

S 
 

0.689 / 0.671 
 

2.31 / 1.01 
 

93.51 / 96.10 3.84 / 2.02 
T 

 
0.703 / 0.687 

 
2.49 / 0.91 

 
92.68 / 96.95 2.79 / 2.50 

U 
 

0.699 / 0.697 
 

2.59 / 1.06 
 

88.07 / 96.33 3.20 / 4.32 
V 

 
0.585 / 0.563 

 
2.17 / 1.28 

 
87.98 / 94.54 1.54 / 1.93 

W 
 

0.703 / 0.691 
 

2.61 / 0.95 
 

97.14 / 96.19 3.82 / 6.28 
X 

 
0.672 / 0.656 

 
2.56 / 0.50 

 
91.29 / 98.34 2.12 / 1.74 

Y 
 

0.670 / 0.649 
 

2.46 / 1.07 
 

90.23 / 95.98 2.98 / 3.46 
Z 

 
0.695 / 0.665 

 
2.32 / 0.89 

 
90.68 / 96.61 4.27 / 4.15 

a 
 

0.667 / 0.635 
 

2.38 / 1.02 
 

94.59 / 97.30 1.08 / 5.31 
b 

 
0.690 / 0.658 

 
2.46 / 0.91 

 
85.62 / 93.84 2.42 / 2.48 

c 
 

0.683 / 0.685 
 

2.51 / 0.83 
 

87.82 / 97.42 2.06 / 2.19 
d 

 
0.582 / 0.579 

 
1.85 / 1.08 

 
89.10 / 96.84 2.44 / 3.50 

e 
 

0.163 / 0.279 
 

2.74 / 1.75 
 

78.03 / 86.36 -0.03 / 1.44 
f 

 
0.561 / 0.510 

 
2.31 / 1.29 

 
88.73 / 94.37 2.05 / 0.62 

g 
 

0.681 / 0.653 
 

2.31 / 0.97 
 

91.34 / 96.85 3.59 / 3.06 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2016. ; https://doi.org/10.1101/050286doi: bioRxiv preprint 

https://doi.org/10.1101/050286
http://creativecommons.org/licenses/by-nc-nd/4.0/


h 
 

0.526 / 0.517 
 

2.43 / 1.06 
 

85.42 / 94.79 1.76 / 1.83 
i 

 
0.703 / 0.686 

 
2.81 / 1.20 

 
85.11 / 91.49 4.61 / 3.76 

j 
 

0.666 / 0.663 
 

2.08 / 0.97 
 

95.18 / 97.59 3.82 / 3.42 
k 

 
0.367 / 0.520 

 
3.43 / 0.74 

 
78.05 / 98.78 3.36 / 2.83 

o 
 

0.650 / 0.626 
 

2.73 / 0.80 
 

86.96 / 95.65 2.83 / 2.36 
p 

 
0.629 / 0.602 

 
1.98 / 1.21 

 
92.41 / 92.41 2.46 / 1.55 

q 
 

0.546 / 0.551 
 

1.82 / 0.66 
 

95.24 / 98.41 2.40 / 2.40 
r 

 
0.663 / 0.646 

 
3.00 / 1.03 

 
89.29 / 94.29 3.73 / 4.60 

s 
 

0.721 / 0.705 
 

2.68 / 1.26 
 

89.07 / 93.44 2.20 / 1.49 
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