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Highlights

• The manuscript presents a method to calculate sample sizes for fMRI experiments

• The power analysis is based on the estimation of the mixture distribution of null and active peaks

• The methodology is validated with simulated and real data.

1 Abstract

Mounting evidence over the last few years suggest that published neuroscience research suffer from low

power, and especially for published fMRI experiments. Not only does low power decrease the chance of

detecting a true effect, it also reduces the chance that a statistically significant result indicates a true

effect (Ioannidis, 2005). Put another way, findings with the least power will be the least reproducible,

and thus a (prospective) power analysis is a critical component of any paper. In this work we present a

simple way to characterize the spatial signal in a fMRI study with just two parameters, and a direct way

to estimate these two parameters based on an existing study. Specifically, using just (1) the proportion

of the brain activated and (2) the average effect size in activated brain regions, we can produce closed

form power calculations for given sample size, brain volume and smoothness. This procedure allows one

to minimize the cost of an fMRI experiment, while preserving a predefined statistical power. The method

is evaluated and illustrated using simulations and real neuroimaging data from the Human Connectome

Project. The procedures presented in this paper are made publicly available in an online web-based

toolbox available at www.neuropowertools.org.

Keywords: power, fMRI, neuroimaging, sample size, effect size, statistical power

2 Introduction

In a scientific study, one typically aims for a statistical power of 80%, implying that a true effect in

the population is detected with a 80% chance. Power computations allow researchers to compute the

minimal number of subjects to obtain the aimed statistical power. As such, power calculations avoid

spending time and money on studies that are futile, and also prevent wasting time and money adding

extra subjects, when sufficient power was already available.

Prospective power analyses for fMRI experiments have two distinct uses. One is the the optimisation of

the experimental design to ensure maximal statistical power for a given scanning duration and various

constraints of behavioural paradigms. Methods have been developed to find the optimal number and

arrangement of stimuli over the duration of the experiment for each subject (Wager and Nichols, 2003;

Friston et al., 1999; Smith et al., 2007). The second use is to find the necessary number of subjects

(Desmond and Glover, 2002; Mumford and Nichols, 2008).

While it is straightforward to compute power for a single, univariate response, determining the power

of an fMRI study is a formidable task. An array of parameters must be specified such as the within-

and between-subject variance, the first and second level design, the temporal autocorrelation and the

size of the hypothesized effect, all of which may vary voxel-by-voxel. Many of these parameters may be

estimated based on a pilot study, independent of the study to be performed. The most difficult parameter

to specify is the region-of-interest (ROI), the specific location where activations are expected.
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The earliest attempt to visualise power for neuroimaging was done by Van Horn et al. (1998), where the

noncentral F -distribution was used to compute voxelwise power applied to PET data. A first effort to

compute sample sizes for neuroimaging for block designs was a procedure by Desmond and Glover (2002),

that included within- and between-subject variability and the mean effect. The model was extended by

Mumford and Nichols (2008), where multiple designs and temporal autocorrelation were taken into

account. The procedure also takes the multiple testing problem into account by averaging over ROI

analyses. A more elaborate implementation by Hayasaka et al. (2007) also considered the multiple testing

problem by using the non-central random field theory to control the family-wise error rate.

In this work we present a simple way to characterize the spatial signal in a fMRI study, and a direct

way to estimate power based on an existing pilot study. Specifically, using (1) the volume of the brain

activated and (2) the average effect size in activated brain regions, we can directly calculate power for

given sample size, brain volume and smoothness. With such a basic formulation, we hope this will make

power analyses prevalent, making better use of scarce research funding and better communicating the

potential reproducibility of a study.

The present method is an extension of the procedure presented in Durnez et al. (2014) based on peak

statistics. Peaks, local maximas in the statistic image, are particularly tractable as they are independent

and have reliable random field theory results for their uncorrected and Familywise Error (FWE) corrected

p-values (Durnez et al., 2014). In contrast, individual voxel values have complex dependency, and clusters

have unreliable RFT p-values (Woo et al., 2014; Hayasaka, 2003; Durnez et al., 2014; Silver et al., 2011).

In our procedure we use a statistic image from a pilot study, and use peaks above a threshold u to fit

a mixture model, where (1-π1) of the peaks follow a known null distribution, and the remainder follow

a Gaussian with unknown mean and variance. Once the alternative distribution Ha is estimated, the

distribution can be transformed to account for a different sample size. As such, not only can the posthoc

power of the pilot study be estimated, but also power for a new study with the same experiment and a

different sample size, allowing general sample size calculations.

In the remainder of this paper, we present our procedure and evaluate it based on simulations that

explore different fMRI characteristics, such as spatial extent of the signal and signal intensity. Next,

we present an evaluation using 180 unrelated subjects from the Human Connectome Project (HCP)

(Van Essen et al., 2012). These HCP data are used for a number of reasons. First, these data are very

high quality, resulting in a very high power when including all subjects and thus offer a high level of

certainty about the location of the effect. Second, with 180 subjects, we can use subsamples of the data

to create many smaller fMRI studies. The sampled results can then be compared to the results of the full

dataset. The added value of the HCP data is that it possesses various unknown noise sources in fMRI

that would be impossible to simulate. Third, we demonstrate the procedure on a typical example of an

fMRI experiment using an fMRI dataset (Seurinck et al., 2011). Finally, we conclude with a discussion

on the topic and the implementation of the procedure in a toolbox.

3 Methods

3.1 Measures of power

First we consider a single one-sided univariate test: The null hypothesis H0 is rejected in favor of the

alternative hypothesis Ha only when the test statistic Z exceeds significance threshold zα; zα is chosen

to control the type I error rate, α = P (Z ≥ zα|H0), the power of this test is defined as P (Z ≥ zα|Ha),

which of course requires the distribution of Z under Ha.
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In a multiplicity context like voxelwise testing where many tests are performed simultaneously, several

definitions for power exist (Dudoit et al., 2003). We will focus on average and familywise power. For

voxelwise inference, let I1 denote the set of indices for voxels that are truly activated. The average power

is simply the arithmatic mean of power over non-null voxels:

βzα =
1

|I1|
∑
i⊂I1

P (Zi ≥ zα|Hai)

where |I1| is the number of truly activated voxels, and Hai is the alternative hypothesis at voxel i. As-

suming a homogeneous signal, average power has the traditional interpretation of power: the probability

of a true positive at one voxel. The familywise error rate (FWER) is the probability of at least one type

I error. Its counterpart, familywise power, is defined as P (Zi ≥ zα for some i ⊂ I1), the probability of

at least one true positive.

We can similarly define average and familywise power for peakwise tests similar to defining clusters:

the identification of local maxima depends on a neighborhood. The SPM1 software (RRID:nif-0000-

00305) uses 18-order neighborhood to define maxima, while FSL2 (RRID:birnlex 2067) uses 26-order

neighborhood. While peaks can be defined independently of an excursion or screening threshold, it can

be sensible to exclude the lowest peaks with such a threshold u. This excludes the peaks corresponding

to very low SNR, and also is required if parametric distributional results are to be used. Let J comprise

the indices of all local maxima above u. Denote the test statistic for peak j as Zuj . Let J1 ⊂ J denote the

set of indices for peaks above u corresponding to a voxel containing true signal, while J0 ⊂ J denotes

the set of indices for peaks above u corresponding to a voxel containing no true signal. Average power is

then defined as

βuzα =
1

|J1|
∑
j⊂J1

P (Zuj ≥ zα|Haj) (1)

while familywise power is defined as P (Zuj ≥ zα for some j ⊂ J1). In what remains, we focus on average

power. First, it is the most intuitive measure of power as it reflects the average probability of a rejection

within the set of false null hypotheses. Second, familywise power may not be a satisfactory measure as a

high probability of at least one rejection within the set of truly activated peaks may still be accompanied

by a large proportion of false negatives.

3.2 Estimation Procedure

To calculate average peakwise power, it is essential to know the distribution of peak heights for truly

active peaks Zu for peak heights above screening threshold u (distribution under Ha). Under the null,

non-active peaks Zuj with j ∈ J0, have a simple distribution, approximately following an exponential

distribution with mean u+ 1/u for screening threshold u (Worsley, 2007):

f(zuj |H0, Z
u
j ≥ u) = u exp(−u(zuj − u)) (2)

For Ha, while a shifted exponential might work well for small signals, we found a truncated normal

distribution (truncated at screening threshold u) was better to describe the distribution of active peaks

Zuj with j ∈ J1:

1http://www.fil.ion.ucl.ac.uk/spm/
2www.fmrib.ox.ac.uk/fsl
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f(zuj |Ha, µ1, σ1, Z
u
j ≥ u)) =

1
σ1
ϕ
(
zuj −µ1

σ1

)
1− Φ

(
u−µ1

σ1

) , (3)

where φ and Φ are the density and cumulative distribution function of the standard normal distribution,

respectively.

The total distribution of peak heights Zuj (j ∈ J ) can be written as the following mixture distribution:

f(zuj |π0, µ1, σ1, Z
u
j ≥ u) = (1− π1)f(zuj |H0, Z

u
j ≥ u) + π1f(zuj |Ha, µ1, σ1, Z

u
j ≥ u) (4)

where π1 is the proportion of true positive peaks among all peaks above u.

Instead of estimating all parameters at once, we take a two-stage approach. We first estimate π1, and

then conditional on π̂1 estimate µ1 and σ1. We found this 2 stage approach more stable than estimating

all 3 parameters jointly.

There are a variety of estimation methods for π1 that have been proposed (Benjamini and Hochberg,

2000; Storey and Tibshirani, 2003; Storey, 2002; Pounds and Morris, 2003; Pounds and Cheng, 2004) all

based on the observed distribution of the p-values. A comparison of the estimators for peak inference in

fMRI data analysis is discussed in Durnez et al. (2014), and here we use the preferred method from that

work, the estimator of Pounds and Cheng (2004).

Once π̂1 is obtained for a dataset with sample size n, we estimate the remaining parameters, µ1 and σ1

in Equation 4 using maximum likelihood on the same data. Let Zuj denote an active peak (j ∈ J1) with

Zuj = b
rSE(b)

√
n, where b is the average experimental effect and where rSE(b) = SE(b)

√
n. The relative

standard error attempts to remove sample size dependence. For a one-sample T-test rSE(b) equals σ,

but this generalises to other types of models and test statistics (see Appendix A). The expected value

of the peak height under the alternative before truncation is µ1 = µ
rSE(b)

√
n where µ = E(b) is the

(non-null) mean in effect units. We define δ = µ/rSE(b) to be the unitless effect size; in the one-sample

case, this is exactly Cohen’s d, δ = µ/σ.

For a new sample of size n∗, we model the distribution of truly activated peaks before truncation as

N (µ∗1, σ1) with µ∗1 = δ
√
n∗. Note that we assume that the variance of the distribution σ2

1 remains

constant for different sample sizes.

For a given peak statistical threshold zα, the average peakwise power with truncation at screening

threshold u is P (Zuj ≥ zα), computed as

βuzα = P (Zuj ≥ zα) =
Φ
(
zα−µ∗

1

σ1

)
− Φ

(
u−µ∗

1

σ1

)
1− Φ

(
u−µ∗

1

σ1

) , (5)

the complementary cumulative distribution function of the alternative distribution from Equation 3. The

statistical threshold zα can either be uncorrected or corrected for multiple testing.

3.3 Computing the statistical threshold zα

We evaluate several strategies to select the statistical threshold zα:

1. UN: Level α = 0.05, uncorrected for multiple testing.

2. FDR: Corrected to control the false discovery rate at level 0.05 with the method of Benjamini and

Hochberg (1995).
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3. FWER-BF: Corrected to control the familywise error rate at level 0.05 using a Bonferroni correc-

tion.

4. FWER-RFT: Corrected to control the familywise error rate at level 0.05 using a random field

theory (RFT) correction (Friston et al., 2007).

The null distribtuion of peaks (Equation 2) is used to compute uncorrected p-values for each peak, as

well as to compute the thresholds for all of the above methods. We stress that we are not condoning the

use of uncorrected thresholds (Method 1), but we need to verify the accuracy of our method in these

basic settings. The FDR method (2) is adaptive and produces data dependent thresholds. Our predicted

FDR threshold for a new study with n∗ subjects is simply the exact FDR threshold from the pilot study.

The rationale behind this is that, given that the actual study is typically larger than the pilot, and that

average power will increase with sample size, we expect that the FDR cutoff will decrease. Therefore,

using the pilot FDR threshold should in principle result in a conservative estimate of the actually realized

FDR threshold, though of course if the pilot is negative (no FDR significance) no power estimation based

on FDR can be made. Both methods 3 and 4 assume that the search volume is the same in the pilot and

new study, and the RFT method (4) assumes the smoothness is the same.

3.4 Simulations

Evaluations are done with 500 simulated datasets. For each realization, for a given sample size n we

generate n statistical parametric maps, summarising evidence for activation. These represent the average

effect of the design in a first-level analysis for each subject, i.e. a three-dimensional map of subject-specific

b-values. We simulate n 64 × 64 × 64 volumes filled with independent standard Gaussian noise, setting

the voxel size to 3 × 3 × 3 mm. Images are smoothed with a 3D Gaussian kernel with a full-width at

half maximum (FWHM) of 8 mm. After smoothing, images are rescaled to restore unit variance. In each

subject-specific b-map, we add true activation in 4 ball-shaped volumes that span either 2, 4, 6 or 8%

of the total brain volume. Within these activation blocks, the effect size takes a value of 0.5, 1, 1.5 or 2

units for all n subjects. In a next step, a z image is obtained by performing an ordinary least squares

group analysis with all subject-specific b-maps using FSL’s flame. In this z image, peaks are defined and

only peaks above screening threshold u are considered; we use u = 2.3, the standard value in the FSL

software package. The null distribution from Equation 2 thus gives peak p-values:

P (Zuj ≥ zuj |H0, Z
u
j ≥ u) ≈ exp (−u(zuj − u)) (6)

We use these simulations to study the performance of the procedure described in section 3.1. Specifically

we first simulate pilot data from 15 subjects. In these data, we estimate π̂1 using the procedure presented

by Pounds and Morris (2003) and then the alternative truncated normal distribution N(µ̂1, σ̂1); with

π̂1, µ̂1, σ̂1, we are able to predict power of future studies in function of sample size n∗. To estimate the

truncated normal distribution using maximum likelihood, we use the Limited-memory Broyden-Fletcher-

Goldfarb-Shanno with box constraints (L-BFGS-B) algorithm (Byrd et al., 1995). The expected peak

height under the null is t = u+ 1/u = 2.74. As the expected value of the alternative distribution should

exceed this value, we set µ̂1 = 2.74 as a lower limit in the optimization algorithm. The standard deviation

under the null is 1/u = 0.43 and we expect the variance under the alternative to be no less than that of

the null, so we take 0.1 as a conservative lower limit for σ̂1. We iterate the optimization over 20 randomly

chosen starting values to avoid local maxima in the maximal likelihood estimation. We draw starting

values for µ̂1 from a range between 2.74 and 10 and for σ̂1 from a range between 0.1 and 10.

5

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 20, 2016. ; https://doi.org/10.1101/049429doi: bioRxiv preprint 

https://doi.org/10.1101/049429
http://creativecommons.org/licenses/by-nd/4.0/


For each pilot data set, we predict power for a new study with n = 15, ..., 35 using equation 5.

The true underlying π1 is obtained by calculating the percentage of peaks that are located in activated

areas. The screening threshold has the goal to eliminate a large portion of null peaks. As such π1 will

be slightly higher than the voxelwise proportion of activation in the brain (i.e. 2,4,6 or 8 %). We also

calculate the average peak effect size in truly active areas, E(Zuj ), j ∈ J1, in the simulated data. We

compare this not to µ̂1, but a shifted version that accounts for the screening threshold u, µ̂1 + σ̂1τ̂ , where

τ̂ =
ϕ
(
u−µ̂1

σ̂1

)
1− Φ

(
u−µ̂1

σ̂1

) (7)

To validate the power predictions for the final experimental study, we simulate study data for n =

15, ..., 35 as described above. We apply the significance thresholds described in section 3.2 to the revealed

peaks. The predicted power β̂uzα as calculated in Equation 5 is compared to the empiricially derived

peakwise average power βuzα in the simulated images for which the underlying truth is known:

βuzα =
|Zuj ≥ zα|
|Zuj |

, for j ∈ J1 (8)

Hence, β̂uzα for a sample size n∗ is estimated in each of 500 simulated pilot studies of sample size n

and the average over these simulations is compared to the average of the actual power in 500 simulated

studies of sample size n∗.

3.5 HCP data

We use data from the Human Connectome Project (HCP) (Van Essen et al., 2012) to evaluate our

method with complex signal and noise structure. We used results from analysed task fMRI data with

5mm smoothing, ‘level 2’ models (where data from different runs on the same task are combined). For

each of 180 unrelated subjects we have 47 unique contrasts.

We use a working assumption that any group analysis of 100 or more participants gives high powered

results and can reflect population results.

The procedure used to analyze these data is shown in Figure 1 and is described below. We start with 180

subject-specific b-maps. From this, we take a subsample of 15 subjects that will serve as the held-in pilot

data. On these data we perform a Ordinary Least Squares (OLS) group analysis using FSL’s flame and

define peaks based on the resulting z image. We apply a screening threshold u = 2.3, the default value

in the FSL software. We derive peaks and compute peak p-values (Equation 6) and apply our estimation

procedure. As in the simulations, we transform the mean of the alternative distribution to the truncated

expected effect size as µ̂1 + σ̂1τ̂ (see Equation 7).

Next, we take a subsample of n subjects, n = 15, 11, ..., 65. These data represent the experimental data

for which the pilot analysis has served. We refer to these data as the held-in study data. With the same

procedure as with the pilot data, we compute peak p-values and we perform a peakwise analysis with

the thresholding procedures described in section 3.2.

On the remaining 100 subjects (the held-out data) we also perform a one-sample T -test, but threshold

each t image voxelwise at 5% FWER using Random Field Theory (Worsley et al., 1992). With nRef = 100,

we will use the set of FWER-significant voxels as working set of empirically active voxels Ĵ1, the

remaining voxels denoted Ĵ0.

To validate the estimation procedure, we combine the held-in pilot data and the held-out data to validate
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HELD IN PILOT DATA:
PEAKWISE GROUP ANALYSIS

(not used for inference!)

HELD OUT DATA:
VOXELWISE GROUP ANALYSIS

(high powered results)

METHOD:
list of local maximum voxels
- estimate prevalence of activation (π1)     
- estimate standardized e�ect size (Δ)
- predict power

RESULT:
voxelwise activation map
 active
 non-active

non-active peak
active peak

VALIDATE ESTIMATION OF  π1 AND Δ 
PILOT DATA (n=15) + HELD OUT DATA

Empirically derived π1     = 
#{       }

#{            }

Empirically derived E(e�ect size) = average height of   {      }

DATA AT HAND:
activation maps of 180 independent subjects

PROCEDURE:
HELD IN PILOT DATA: take subsamples (pilot study) to perform power estimation procedure, n=15
HELD IN STUDY DATA: take subsamples (study) to perform model estimation procedure, n=15...65

HELD OUT DATA: use remaining data to obtain high powered (population) results, n = 100

USE OF HCP DATA

Compare for each subsample estimates to:

Empirically derived power  = 
#{    }

#{           }

HELD IN STUDY DATA:
PEAKWISE GROUP ANALYSIS

RESULT:
list of local maximum voxels
 non-signi�cant
 signi�cant

USE PILOT DATA TO PREDICT POWER

IN SUBSEQUENT STUDY

active non-active
signi�cant
non-signi�cant

true positive false positive
false negative true negative

VALIDATE PREDICTION OF POWER
STUDY DATA (n=15...65) + HELD OUT DATA

Compare for each subsample estimates to:

REPEAT THIS FOR N=15...65

REPEAT THIS FOR N=15...65

N=15

N=100

Figure 1: Overview of the procedure used to evaluate power calculations on the HCP-data
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the estimation of π̂1 and the effect size as follows: when a peak from the held-in data corresponds to an

empirically active voxel in the powerful held-out data, we consider this as an empirically active peak.

When a peak corresponds to an empiricially inactive voxel in the held-out data, it is considered empirically

inactive. We define empirically derived π1 as the ratio of the number of empirically activated peaks

and the total number of peaks (Ĵ1/J ). The empirically derived effect size is the average peak height

of all peaks that are located in empirically activated area. Finally, we combine the held-in study data

with the held-out data to validate the power estimation: empirically derived power is defined as

the ratio of the number of significant empirically active peaks for the held-in study data (for a given

thresholding procedure) and the total number of empirically activated peaks. The empirically derived

power is computed for subsamples with n = 15, ..., 65 subjects; each power prediction based on n subjects

is compared to power on these n = 15, ..., 65 subjects.

This resampling procedure is repeated 500 times for each of the 47 contrasts.

Some tweaking is needed to use these real data for evaluation purposes. While we assume that the analysis

of the held-out data is powerful enough to represent results on a population level, these data were analyzed

using familywise error rate control. Therefore, the maps with the set of voxels (and consequently peaks)

that we call empirically activated can be contaminated with 5% false positives. On the other hand, within

the voxels (and consequently peaks) that appear empirically inactive, there might be false negatives. This

poses a problem for our measures of empirically derived π1, effect size δ and power. We have derived a

set of corrections for these measures to account for the presence of false positives and false negatives in

the held-out data described in Appendix B.

3.6 Data example

We apply our estimation procedure to data from a study of 13 subjects on the role of higher order

visual areas in imagined visual motion (Seurinck et al., 2011). First level analyses were carried out with

a standard General Linear Model approach using FSL’s FEAT function (Jenkinson et al., 2012). The

second level analysis is performed in R with OLS, resulting in a 3D T -statistic map, that is transformed

to Z-values (Hughett, 2007).

For this one Z map we apply our method with u = 2, characterizing the signal with π̂1, µ̂1, σ̂1, and

computing prospective power for different statistical thresholds (uncorrected, FDR-corrected, FWER-

corrected with a Bonferroni procedure and FWER-corrected with a Random Field Theory procedure)

and sample sizes (n∗ = 10− 60).

4 Results

4.1 Simulations

Results for the accuracy of alternative distribution parameters π1 and µ1 are shown in Figure 2. We can

see that for very small effect sizes, the prevalence of activation π1 is unbiased, while for medium to large

effect sizes π1 is overestimated. We show in the supplementary materials that this effect can be explained

by the mismatch between the modeled beta-distribution and the observed distribution of p-values for

active peaks.

The effect size estimator is unbiased for the smallest effect size. The larger the effect size, the better the

estimation. When only few activation areas are present, the effect size is underestimated. In this case,

the number of activated peaks is very small in relation to the number of null peaks. Therefore, the model
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shows biased results in separating both distributions. With larger effect sizes and larger activation areas,

the model performs very well.
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Figure 2: Left: Plot of estimated π̂1 against true π1 for different sample sizes and different values for µ1.
Each dot represents a different simulation, as such there are 500 dots for each condition. Right: Plot of
estimated expected peak height µ̂1 against true expected peak height µ1 for different effect sizes. The
estimations are the result for a pilot dataset with n = 15.

Using these estimates of π1, µ1 and σ1 for the case of n = 15, we then computed power for future

studies for peak inference with 5% error rate control for the different inference procedures tested. Figure

3 shows the plot of β̂z and βz for n∗ = 15− 35. With small activated brain regions, the power is largely

underestimated. This leads to conservative results. For larger activated regions, the results are unbiased.

This result is consistent over different conditions and different thresholding procedures. The procedure is

often unable to estimate power for FDR thresholding for smaller effect sizes. This is because - due to the

adaptive character of the procedure - in the pilot study often no significant effects are found. Therefore,

there is no cutoff, and as such power cannot be estimated in larger sample sizes. The non-adaptive

multiple testing procedures show a modest bias only.

The goal of the presented method is to perform sample size calculations. Figure 4 shows the performance

of these sample size calculations when aiming for 70% power. While the variance is high for conditions

with small effect sizes, the average bias of most conditions and multiple comparison procedures is within

a range of 5 subjects. In line with the previous results, the model has difficulties estimating power when

only a small proportion of the brain is active.
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Figure 3: Plots of the peakwise average power with error rate control at 5% for different effect sizes and
different amounts of activation. The left column shows the estimated power curves, the middle column
shows the true power and the right column shows the bias. Bias is defined as the estimated power minus
the true power. The peakwise average power is estimated from a pilot study with 15 subjects.
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Figure 4: Plots of the predicted and true required sample size when aiming for 70% power. The different
plots refer to the different multiple testing procedures. Points inside the grey area identify poins with a
maximum bias of 5 subjects. Each semi-transparent dot represents a different simulation, as such there
are 500 dots for each condition. The fully colored dots present the average per condition. The estimated
sample size results from a pilot study with 15 subjects.

12

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 20, 2016. ; https://doi.org/10.1101/049429doi: bioRxiv preprint 

https://doi.org/10.1101/049429
http://creativecommons.org/licenses/by-nd/4.0/


4.2 HCP data

Results of the estimation procedure for the prevalence of activation π1 and the effect size based on a

pilot dataset of about 15 subjects are shown in Figure 5. We show that for a range of contrasts and

tasks we find slightly overestimated estimates for the prevalence of activation and the effect sizes. The

estimations are good with low variance and the effect sizes suffer from modest overestimation. The result

of the gambling task contrast, “punish versus reward” is noteworthy. There are very few activations in

this contrastoften leading to no active peaks. Only in 19 of the 500 pilot data resamples, there were

peaks in the activated area, as such the average true π1 and π̂1 are very close to 0. However, even in this

contrast, the effect size is well estimated in the cases where π̂1 was above 0.
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Figure 5: An evaluation of the estimation of π1 (left) and the effect size (right). Each pastel colored
plotting symbol corresponds to one random sub-sample taken from the data, for one particular sample
size, experiment and contrast. The average estimation for each contrast is plotted in a darker color.

The power estimates are accurate over a large range of tasks. The estimation and bias on the power

estimates for error rate control at 5% is given in Figure 6. In most contrasts, the bias ranges from 10%

underestimation (blue) to 10% overestimation (red). In general, the underestimation disappears over a

short range of subjects, indicating that a sample size calculation will overestimate the number of subjects

needed, but by only a few subjects difference. The underestimation is much larger for contrasts with a

smaller effect size. As in the simulations, the adaptive multiple testing procedures show instability due to

instances when no significant results are found, leading to underestimation of power. All power estimates

are at most conservative.

Again, the gambling task contrast, “punish versus reward”, is problematic. There are no resample schemes

where both the pilot study resamples and the final study resamples result in the detection of active peaks.
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As there is no activation, there is no finite solution for the average power defined in equation 1. The

same problem arises for some contrasts when thresholding with false discovery rate control. As in the

simulations, due to the adaptive character of the procedure, sometimes no significant effects are found.

This leads to infinite computations for power.

Figure 7 shows the performance of the model when predicting sample sizes. We see that our method

predicts very well the sample size for a large range of contrasts. Only the motor contrasts show a larger

bias. This can be due to the fact that the motor contrasts are known to be very local contrasts. This

corresponds to the results from the simulated condition when the percentage of active brain regions is

small.
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Figure 6: Evaluation of the power estimation over different subjects for all unique HCP-contrasts for
thresholding with different error rate corrections at α = 0.05 from a pilot study with 15 subjects. The
left column shows the estimated power curves, the middle column shows the true power and the right
column shows the bias. Bias is defined as the estimated power minus the true power. The contrasts are
sorted by their average empirically derived effect size.
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Figure 7: Plots of the predicted and true required sample size when aiming for 70% power. The different
plots refer to the different multiple testing procedures. Points inside the light grey area identify poins
with a maximum bias of 15 subjects, the darker grey area refers to a maximum bias of 5 subjects. Each
semi-transparent dot represents a different subsample, as such there are 500 dots for each condition. The
fully colored dots present the average per task. The estimated sample size results from a pilot study with
15 subjects.
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4.3 Example

Based on these values of π1, µ1, σ1, power predictions for different thresholding methods and a range of

n∗’s are shown in Figure 8.
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Figure 8: Left: Estimated distribution of peak p-values. The histogram of peak p-values is shown in light
blue, the lines show the estimated part of the histogram stemming from the null distribution (green) and
the total distribution (blue). Right: Estimated distribution of peak heights. The histogram of the peak
heights is shown in light blue, the lines show the estimated distributions for the null (dark green), the
alternative (light green) and the total distribution (blue)

The results of the power estimation procedure can be found in Figure 9. If the aim of the power analysis

is to obtain at least 80% average power, then this study would require 19 subjects for uncorrected

thresholding at α = 0.05. False discovery rate thresholding at α = 0.05 requires 27 subjects. For family-

wise error rate control at α = 0.05, the study would require 41 subjects with Bonferroni thresholding

and 42 subjects with Random Field Theory thresholding.

5 Discussion

In neuroscience, results are often based on fMRI studies that suffer from a lack of power. In order to

save costs and effort while preserving sufficient power for detecting important effects, we presented a

method to predict power for different sample sizes. While other methods for power calculations in fMRI

often require the estimation of many different parameters that are often difficult to estimate (Mumford

and Nichols, 2008; Desmond and Glover, 2002), our method is based on only peak values that require

Random Field Theory assumptions for the computation of p-values.

Our results indicate that the method works well when the size of activated brain regions is reasonably

large. When the activated region is small, the presented method underestimates the power largely. This

can be seen in the simulations, where biases arise when only 2% of the brain is active but disappear when

over 6% is active. In the HCP data, we also see larger biases for the motor tasks, a contrast known for

larger effect sizes but very local effects. This indicates further that biases arise when the activated region

is small, irrespective of the effect size. Applying the method to small activated brain regions results

in atmost conservative results for sample size calculations, i.e. overestimation of required sample size.

However, to confidently use the method, it is best to restrict the search region (i.e. apply a ROI mask),

an advice that generally applies to fMRI analysis.
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Figure 9: Estimated peakwise average power, u = 2 for different multiple testing procedures as a function
of sample size. The vertical lines show for each multiple testing procedure the required number of subjects
to obtain a power of at least 80%.

Furthermore, the pilot study should be sufficiently high for the power analyses to work. In the supple-

mentary materials, we show the results for a smaller sample size (n = 10), which results in larger biases

for small effect sizes and small activation foci.

We focus on peaks for several reasons. We have shown in previous work that the assumption of a uniform

distribution of the p-values under the null is mainly attained with peak p-values, but not with cluster

p-values (Durnez et al., 2014). As this is an assumption crucial for the procedure presented here, we opt

for peak inference rather than cluster inference. Moreover, problems with localisation and stability have

been reported with cluster inference (Roels et al., 2014; Woo et al., 2014). However, when a user wants

to infer power for cluster inference, this procedure on peaks can be used as a lower bound, as the power

of cluster inference should be generally higher than peak inference (Friston et al., 2007). While voxelwise

inference was not directly considered, RFT FWER inferences for peaks should give similar results as

voxelwise inference, making our power predictions relevant for that domain as well. On the other hand,

it is possible to use the method if the prevalence of activation is widespread in the brain. It is up to the

researcher to decide whether this shall be the call in the new study.

We have evaluated the procedure using simulated data. The data represent a simplified fMRI experiment

but we still vary a number of parameters, like the effect size and the thresholding procedure to ensure

that the findings are generalizable to a range of different possible fMRI experiments. In our simulations,

we have used a constant effect size of activation over different subjects. We have not applied subject-

specific effect sizes, as we believe this would not alter the average effect size, but rather it would inflate

the between subjects variance, leading to a smaller normalized effect size. Thus we have considered only

varying the average effect size µ1 and not separately the between subject variance.

This method is only a first step in developing a means to better predict the power of fMRI studies. Many

different extensions are possible. One of these possibilities is the development of a testing procedure

that would allow to use the pilot data in the final study without harming the false positive rate (see,

e.g., similar ideas in genetics Skol et al. 2006). Second, the estimated effect size could incorporate other

characteristics besides sample size, like intrasubject variance or scan time (Mumford and Nichols, 2008)

18

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 20, 2016. ; https://doi.org/10.1101/049429doi: bioRxiv preprint 

https://doi.org/10.1101/049429
http://creativecommons.org/licenses/by-nd/4.0/


These additional parameters would allow the optimization of future studies without the restriction that

all characteristics are identical to the pilot study.

Although the evaluation on this method was performed on whole-brain analyses, it is also possible to

only apply it to a certain part of the brain, when a region of interest is specified.

We have made the procedure available to the community in a toolbox which is publicly available at

www.neuropowertools.org, for which the code can be found at https://github.com/neuropower/

neuropower. All code used for the validations and example in this paper are available online http://

github.com/jokedurnez/neuropower-validation/.
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Appendix

A Generalisation from one-sample T -test to other models

In section 3.2 we declare how all Z statistics can be written in the form Z = b
rSE(b)

√
n

where rSE(b) = SE(b)
√
n. For a one sample t test rSE(b) = σ. Here we explain how this approach can

be applied to other types of models.

A.1 Two-sample T -test

For a two-sample T -test, the Z statistic is:

Z =
X̄1 − X̄2√
σ2
1

n1
+

σ2
2

n2

=
X̄1 − X̄2√
σ2
1

n1/n
+

σ2
2

n2/n

√
n

where X̄1 and X̄2 are the sample means of each group, σ2
1 and σ2

2 are the respective variances, n1 and

n2 are the respective sample sizes and n = n1 + n2 is the total sample size.

Here b = X̄1 − X̄2 and rSE =
√

σ1

n1/n + σ2

n2/n . The relative SE can be seen as only depending on the

relative sample sizes, and thus the computed power set a total sample size and will be appropriate for a

new study that has the same group variances relative sample sizes.

A.2 Linear regression

In linear regression, the statistic Z for a regressor X can be written as:

Z =
cβ̂√

c(X ′X)−1c′σ2
=

cβ̂√
c( 1
n

∑
i x
′
ixi)

−1c′σ2

√
n

Thus rSE(b) = σ
√
c(X ′X)−1c′

√
n. But note that this can also be written as

√
c( 1
n

∑
i x
′
ixi)

−1c′σ2. If

we regard xi ∼ F , then the p× p term in the denominator can be seen as an uncentered second moment:

1

n

∑
i

x′ixi = µ′µ+ cov(x)

where µ = E(x). Thus the sample size can be set arbitrarily, with the assumption that new observations

of x can be drawn from F .

B Corrections for the mismatch between true and empirically derived

π1, effect size and power

We first introduce some notation in table 1:
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J Total number of peaks
JZ Number of detected peaks above Z

J0 Indices of peaks arising in null regions
J1 Indices of peaks arising in non-null regions
J̃0 Indices of peaks arising in empirically derived null regions
J̃1 Indices of peaks arising in empirically derived non-null regions

J0 = |J0|, J1 = |J1|
J̃0 = |J̃0|, J̃1 = |J̃1|

π00 Proportion of J̃0 that is truly null
π10 Proportion of J̃1 that is truly null

Table 1: Notation for correction of population level estimators of π0 and µ1.

π00 and π10 can be estimated using the Beta-Uniform Model by Pounds and Cheng (2004). With these

definitions, we can derive the number of peaks that are falsely classified in the FWE-analysis in table 2:

Empirically derived Empirically derived
Null peaks Active peaks

True null peaks π00J̃0 π10J̃1 J0
True active peaks (1− π00)J̃0 (1− π10)J̃1 J1

J̃0 J̃1

Table 2: Classification table of peaks after FWE thresholding.

Thus, an uncontaminated estimate of π0 can be found as:

π̃0 =
J0
J

=
π̂00J̃0 + π̂10J̃1

J

Similarly, bias-corrected versions of µ1 are possible. First we note

E(Zu|J0) = u+ 1/u

E(Zu|J1) = µ1

where the conditional expectation indicates the set of peaks under consideration. Now, similar to table

2, we can decompose the expectation over observable sets:

E(Zu|J̃0) = π00E(Zu|J0) + (1− π00)E(Zu|J1)

E(Zu|J̃1) = π10E(Zu|J0) + (1− π10)E(Zu|J1)

(9)

Thus µ̃1 can be estimated:

µ̃1 =
Ê(Zu|J̃1)− π̂10(u+ 1/u)

1− π̂10
(10)
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