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Abstract

Genome-wide significant associations generally explain only a small proportion of the
narrow-sense heritability of complex disease (h?). While considerably more heritability is
explained by all genotyped SNPs (hgz), for most traits, much heritability remains missing
(hg2 < h?%). Rare variants, poorly tagged by genotyped SNPs, are amajor potential source
of the gap between h,? and h®. Recent efforts to assess the contribution of both sequenced
and imputed rare variants to phenotypes suggest that substantial heritability may liein
these variants. Here we analyze sequenced SNPs, imputed SNPs and haploSNPs—
haplotype variants constructed from within a sample, without using a reference panel—
and show that studies of heritability from these variants may be strongly confounded by
subtle population dratification. For example, when meta-analyzing heritability estimates
from 22 randomly ascertained case-control traits from the GERA cohort, we observe a
statistically significant increase in heritability explained by imputed SNPs even after
correcting for principal components (PCs) from genotyped (or imputed) SNPs. However,
thisincrease is eliminated when correcting for stratification using PCs from a larger
number of haploSNPs. We note that subtle stratification may also impact estimates of
heritability from array SNPs, although we find that thisis generally aless severe
problem. Overall, our results suggest that estimating the heritability explained by rare
variants for case-control traits requires exquisite control for population stratification, but
current methods may not provide thislevel of control.
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I ntroduction

While genome-wide association studies (GWAYS) have been extremely successful in
identifying robust associ ations between single nucleotide polymorphisms (SNPs) and
complex traits, the aggregate heritability explained by these loci (hgwas?) is only asmall
fraction of the heritability estimated from related individuals (h%)". This gap between h?
(ref. 2) and howas™—termed the “missing heritability®> —is partially explained by causal
variants that have not achieved genome-wide significance in GWAS of current sample
sizes’. However, the heritability explained by all genotyped SNPs (hgz) typically leaves
much of h* unaccounted for and the pattern of hewas®< hy” < h? is observed across a
broad set of complex traits'. One possible explanation for the remaining missing
heritability is that rare genetic variants—untyped by most genotyping arrays—explain a
significant portion of the variance of studied traits*>.

As sequencing data becomes more readily available, it will become possible to
directly assess the heritability explained by rare variants. In fact, arecent analysis
suggests that rare variants from previously associated regions of the genome® may
explain a substantial fraction of the heritability of prostate cancer. Even in the absence of
sequence data it may be possible to assess the heritability explained by rare variants
through imputation using a high coverage reference panel 2. While accurately imputed
SNPs do not typically explain more heritability than genotyped SNPs alone®'?, including
low-accuracy imputed SNPs can explain significantly more of the heritability of
quantitative traits™.

Despite the promise of analyses of rare variants, these analyses may be more
affected by confounding than corresponding common variant analyses. In addition to
sequencing artifact? and imputation error’®, analyses of rare variants may be particularly
susceptible to subtle population stratification™ that cannot be corrected by standard
techniques™. To assess this, we analyzed the estimates of genetic variance between the
two control cohorts in the well-studied UK10K data-set®. Control cohort label should not
be a heritable phenotype and any nonzero control-control heritability is considered a
signal of uncorrected confounding'®*°. In this analysis, we observed evidence of severe
confounding for estimates from sequenced SNPs, imputed SNPs, and haploOSNPs—
haplotype variants constructed from within a sample, without using a reference panel.
Indeed, estimates from all of these types of rare variants were often outside of the
interpretable range (> 1). An even greater concern is that these estimates of control-
control heritability from rare variants were largely unaffected by principal components
(PCs) from array SNPs, sequenced SNPs, or imputed SNPs. Inclusion of haploSNP PCs
produced statistically significant reductionsin control-control heritability for all types of
rare variants, but did not eliminate it entirely. Thisis consistent with previous analysis
showing that analysis of haplotype structure can improve ancestry inference relative to
SNPs alone'’. We note that we also observed nonzero control-control heritability in
estimates from array SNPs in the UK 10K data; LD score regression’® correctly identified
this control-control heritability as confounding, but is not designed for analyses of rare
variants.

To assess whether confounding was also present in real case-control datasets we
averaged estimates for 22 randomly ascertained complex diseases in the Genetic
Epidemiology Research on Adult Health and Aging (GERA) cohort™. We observed
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significantly more heritability in imputed SNPs h7,,,, = 0.14 (s.e.0.02) than in array
SNPs alone (Ej = 0.11 (s.e.0.01); P = 0.01 for difference) when correcting for PCs
computed from genotyped SNPs. Correcting for PCs computed from imputed SNPs did
not affect these heritability estimates. However, inclusion of PCs computed from
haploSNPs produced statistically significant reductionsin both h2 and h7,,,, such that the
difference between them was no longer statistically significant. We observe even larger
evidence of confounding in ascertained case-control studies of schizophrenia (PGC2
cohort) and multiple sclerosis (WTCCC2 cohort). Overall, we conclude that estimating
the heritability explained by rare variants for case-control traits requires exquisite control
of population gtratification, but current methods may not provide thislevel of control.

Results
UK 10K control-control heritability estimates

Evidence of genetic differences between control cohorts has been previoudly used as a
signal of confounding’®*® in estimates of heritability explained by array SNPs. We
conducted control-control analyses using low-coverage (7x) sequencing data from the
UK 10K project®, which is comprised of two cohorts—TWINSUK and ALSPAC. The
availability of sequence data allows us to assess control-control heritability using array
SNPs that are present on standard genotyping arrays as well as rare variants that may be
more susceptible to subtle population structure. As control cohort label is not expected to
be a heritable phenotype, any significant control-control heritability is an indication of
confounding. For all analyses we define the heritability explained by a set of markers
analogously to previous work®, accounting for the possible presence of population
structure (see Online Methods). All control-control estimates are on the observed scale
and were produced using Haseman-Elston (HE) regression®’. We note that PCGC
regression?, a generalization of HE regression that produces estimates on the liability
scale, isthe main method used in our analyses of real case-control phenotypesin
subsequent sections (see Online Methods and URLS).

Heritability explained by array SNPs

Wefirst estimated the heritability explained by array SNPs (h2) present on the
I1lumina Human660-Quad chip genotyping array (used by WTCCC2%). After restricting
the UK10K data to these SNPs, we performed stringent quality control (see Online
Methods), ultimately analyzing datafrom 3,565 individuals at 408k array SNPs. We used
HE regression® to estimate hj of the control-control phenotype (1 for the TWINSUK
cohort; O for the ALSPAC cohort) at hf, = 0.51 (s.e.0.13), suggesting that subtle
stratification results in substantial control-control heritability. Results did not change
significantly when we included principal components (PCs) from array SNPs, which
produced a smilar estimate of hj = 0.53 (s.e.0.13) (see Table 1), or when we used the
GCTA software package™ to estimate h? (see Table S1). We note that two sequencing
centers contributed data to the UK10K project, but sequencing center was not correlated
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with cohort label, making control-control heritability due to batch effectsunlikely. As
array SNPs showed substantially less evidence of sequencing error®, we conclude that
subtle population gtratification rather than assay artifact isthe most likely explanation of
the observed confounding. We note that we also observed signals of control-control
heritability from array SNPs in the well-studied WTCCC2? data (see Table S2), even
after excluding the possibility of assay artifact by restricting to genotypes that were
concordant on separate genotyping arrays.

We next sought to assess whether PCs computed from rare variants might be
better able to correct for the confounding that we observed. We performed stringent
guality control on UK10K sequence data, and computed PCs from 17.6M sequenced
SNPs, excluding singletons (see Online Methods). We divided these SNPsinto 7 MAF
bins and computed 20 PCs from each bin, along with 20 PCs from array SNPs. Despite
including these 160 PCs from sequenced and array SNPs, our estimate of hg was
essentially unchanged at hj = 0.49 (s.e.0.13) (see Table 1). We repeated this analysis
including 160 PCs from imputed and array SNPs, but did not observe any significant
changein h; estimates (see Table 1).

Finally, we attempted to correct hf, estimates for confounding using PCs
computed from haploSNPs: variants defined using a new method that analyzes haplotype
structure within the target sample, efficiently tagging unobserved rare variation without a
reference panel (see Online Methods and URLS). Using computationally phased
genotypes™ at array SNPs, we built haploSNPs from all pairs of phased chromosomes in
the sample. To build haploSNPs, we began at a SNP at which the two chromosomes
match, and extended the haploSNP one SNP at atime. The haploSNP was extended until
aterminating mismatch—a mismatch that cannot be explained as a mutation on a shared
background, or until a maximum length of 50kb is reached. Terminating mismatches
were detected as violations of the 4-gamete test between the haploSNP being extended
and the mismatch SNP. Using the array SNPs described above we constructed a set of
32.3M haploSNPs, excluding singletons. We observed that haploSNP GRMs were
somewhat dominated by noise from outlier individuals, and inclusion of PCs from GRMs
for each of 7 MAF bins of haploSNPs along with PCs from array SNPs did not
substantially reduce heritability estimates (see Table 1). To reduce noise from outlier
individuals, we computed correlation relationship matrices (CRMs) from haploSNP
GRMsin each of 7 MAF bins, normalizing all entries by the appropriate diagonals (see
Online Methods), and computed PCs from each haploSNP CRM. When we included 140
PCs from haploSNP CRMs along with 20 PCs from array SNPs as covariates, the
estimate dropped to h; = 0.28 (s.e.0.16) (see Table 1), which isno longer statistically
significant. As analyses with and without haploSNP CRM PCswere highly correlated
(i.e. based on the sameindividuals and variants), the reduction in h (0.23 (s.e.0.08))
was statistically significant. We note that inclusion of PCs from sequenced or imputed
SNP CRMs did not reduce estimates. Increasing the maximum length of haploSNPs
allowed usto compute PCsthat were significantly better at controlling for confounding
(hf, = 0.06 (s.e.0.15); see Table S3), however, due to computational considerationsin
larger data sets, we report results for haploSNPs shorter than 50kb. Using phenotypes
simulated without stratification from sequence SNPs, we confirmed that the observed
drop in heritability estimates could not be explained by biases introduced by inclusion of
alarge number of PCs (see Table $4).


https://doi.org/10.1101/048181
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048181; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

We al'so sought to assess whether LD score regression™® could correctly identify
control-control heritability explained by array SNPs as confounding. We computed
association gtatistics for array SNPs to the control-control phenotype without covariates.
These statistics were substantially inflated (mean y? = 1.032) consistent with
expectation given the sample size (N=3,565), hf, = (.51 (s.e.0.13), and assuming an
effective number of SNPs of 60k®°, since 1 + h2N /Mg = 1.030 (ref. 27). LD score
regression assigned the bulk of theinflation in y? statistics to the intercept (1.031 (s.e.
0.007)), cong stent with confounding. This suggests LD score regression may be able to
detect confounding in heritability estimates from array SNPs even if inclusion of PCs
from array SNPs and rare variants are insufficient to correct for it. (We note that
attenuation bias can also produce low levels of inflation in the LD score regression
intercept’®.)

Another published strategy for assessing confounding in heritability estimatesis
comparison of genome-wide heritability estimates to the sum of estimates for each
chromosome®. This relies on the idea that population stratification will be captured
redundantly by SNPs on different chromosomes, inflating the sum of per-chromosome
estimates relative to the genome-wide estimate. When we applied this strategy to per-
chromosome estimates of control-control heritability, we observed no eevation of the
sum of per-chromosome estimates (hf, = 0.52 (s.e.0.13)) relative to the genome-wide
estimates (hj = 0.51 (s.e.0.13)) (see Table S5). These results are consistent with
simulations showing that this method may not always be well powered to detect subtle
stratification in genome-wide estimates of heritability (see Table S6).

Heritability explained by sequenced and imputed SNPs

Given the confounding of heritability estimates from array SNPs, we sought to assess
whether heritability estimates from rare variants were also affected. We performed
stringent quality control on UK10K sequence data (see Online Methods), and estimated
heritability explained by sequenced SNPswith MAF > 0.001 (estimates from rarer
variants were unstable; see Table S7). We split 11.7M sequenced variants (MAF > 0.001)
into 5 MAF bins and used MAF-stratified HE regression to estimate control-control

h%.q = 2.74 (s.e.0.31)—an extremely confounded estimate outside the interpretable
range from 0 to 1 (see Table 1 and Online Methods). Including 20 PCs from array SNPs
(see above), or 160 PCs from sequenced and array SNPs did not change estimates
substantially (see Table 1). However, when we included 140 PCs from haploSNP CRMs
along with 20 PCs from array SNPs (see above) we observed a substantial reduction to
hZ,, = 1.64 (s.e.0.34). Estimates were consistent with those obtained from GCTA*
(see Table S1). Our results suggest that these PCs capture subtle population structure
more effectively than PCs from other variants, though severe confounding remains. We
note that CRM PCs from alarger number of longer haploSNPs further improved our
ability to control for confounding (see Table S3), but were not able to remove the effects
of confounding entirely.

To exclude the possibility that cohort-specific sequencing error at rare variants
was the main source of confounding, we analyzed rare variants imputed from array SNPs.
Specifically, we restricted to the set of 408k array SNPs described above,
computationally phased these SNPs and imputed 13.0M rare variants (MAF > 0.001)
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using the Impute2 software package™ with 1000 Genomes data™ as a reference panel
(see Online Methods). As previously suggested, we did not impose any imputation
quality threshold™, maximizing our ability to tag untyped SNPs. While heritability
estimates from imputed SNPs were somewhat lower, they remained severely confounded
at hl-zmp = 1.55 (s.e.0.33) and were not reduced by inclusion of PCs from array SNPs,
sequenced SNPs or imputed SNPs (see Table 1). Again, inclusion of PCs from haploSNP
CRM s (along with array SNPs) produced a statistically significant reduction in h? , =

imp —
0.90 (s.e.0.30), but did not eiminate confounding.
Heritability explained by haploSNPs

Finally, to exclude the possibility that a combination of sequencing and imputation error
were driving control-control heritability estimates from these variants, we analyzed the
set of haploSNPs for the purposes of heritability estimation. We restricted to the set of
26.5M haploSNPs with MAF > 0.001, and estimated heritability explained by these
variants using MAF-stratified HE regression as above. Our simulations without
population gtratification indicate that haploSNPs can effectively tag unobserved
sequenced SNPs in the UK10K data (see Supplementary Note).

Of all types of rare variants, haploSNPs showed the strongest evidence of
confounding: h,zmp = 4.10 (s.e.0.52); this confounding produced an inflation in the sum
of per-chromosome estimates of heritability relative to the genome-wide estimate (see
Table S5). Consistent with previous analyses, PCs from haploSNP CRM s produced the
largest reduction (hj,, = 1.90 (s.e.0.51)). Thefact that computationally inferred rare
variants, unaffected by sequencing or imputation error, showed extreme confounding
further implicates subtle population stratification rather than assay artifact as the most
likely source of confounding. Indeed, previous work has noted that rare variants are
subject to more local patterns of stratification™, which may be difficult to correct using
standard methods.

Recommendations

We recommend that estimates of heritability from array SNPs should be checked for
confounding using LD score regression’®. While there are alternate causes of inflation in
the LD score regression intercept (e.g. attenuation bias or LD-dependent genetic
architectures), alack of observed inflation indicates that confounding due to population
stratification is unlikely to be a major concern. If LD score regression shows evidence of
confounding and/or there are other reasons for concern about stratification, PCs from
haploSNP CRM s should be included as covariates, in addition to PCs from array SNPs.
If areduction is observed, CRM PCs from alarger number of longer haploSNPs can be
investigated.

For heritability estimates from rare variants—sequenced SNPs, imputed SNPs, or
haploSNPs—PCs computed from sequenced or imputed SNPs are unlikely to impact
estimates. While PCs from haploSNP CRMs are more likely to detect subtle
stratification, they are unlikely to correct for confounding completely. Thus, we
recommend including PCs from haploSNP CRMs as covariates, but caution that any
significant drop in estimates after inclusion of these PCs should be considered as
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evidence of uncorrected confounding rather than the resolution of this confounding.
Overdl, we believe that it is currently not possible to ensure that estimates of heritability
from rare variants are robust to subtle population stratification.

Analysis of 22 complex diseases (GERA cohort)
Heritability explained by array SNPs

We next sought to assess the extent to which the subtle stratification observed in the
UK10K control-control analyses might confound estimates of heritability from array
SNPsinrea case-control phenotypes. We focused on 22 complex diseases in 47,360
randomly ascertained samples typed at 289k SNPsin the GERA cohort™ (see Online
Methods). Estimates were obtained for each disease using PCGC regression®, assuming
that the prevalence of each disease matched the case fractionsin the GERA cohort. Given
the relatively low values of h2 for any one trait*, we computed an average of liability-
scale h2 estimates across 22 traits (all averages across traits are inverse-variance
weighted). We obtained an estimate of hZ = 0.11 (s.e.0.01) after including PCs from
array SNPs (see Figure 1 and Table S8). We first sought to assess whether residual
confounding could be impacting these estimates by applying LD score regression to
association statistics (mean y? across all studies = 1.027) computed for each disease.
LD score regression produced an average intercept of 1.005 (s.e. 0.002), suggesting that
confounding islimited. Thisis consistent with our intuition that randomly ascertained
studies are less susceptible to effects of stratification and assay artifact than ascertained
case-control studies (see below).

We computationally phased these genotyped SNPs”, constructed 39.3M
haploSNPs (MAF > 10™) and computed 20 CRM PCs from each of 7 haploSNP MAF
ranges (see Online Methods). Including PCs from haploSNP CRMs (along with PCs from
array SNPs) reduced the estimate to I_lf, = 0.09 (s.e.0.01), adifference of 0.015.

Though quantitatively small, this difference was statistically significant (standard error of
the difference (s.e.d.) 0.002 across 22 traits; see Table SO and S10).

Heritability explained by imputed SNPs

We sought to assess whether imputed SNPs or haploSNPs could explain significantly
more heritability than array SNPs alone. We began by performing imputation using the
Impute2 software package® with a reference pane from the 1000 Genomes Project® (see
Online Methods). As previously described™, we did not impose any imputation quality
filter, maximizing our ability to tag untyped causal variants. Asthisisarandomly
ascertained study, assay artifacts are unlikely to be correlated with phenotypes and
observed increases are likely to be due to polygenic signal or subtle population
stratification. We estimated hZ,,, using MAF-stratified PCGC regression (see Online
Methods). Averaged across 22 traits, we observe 7, = 0.14 (s.e.0.02) after correcting
for stratification with PCsfrom array SNPs, a statistically significant increase of 0.038
over l_zg (s.e.d. 0.016; P=0.02). Correcting for stratification with CRM PCsfrom

hapl oSNPs (along with PCs from array SNPs) reduced our estimate to h2,,,, =

imp —


https://doi.org/10.1101/048181
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048181; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

0.09 (s.e.0.02) (see Figure 1 and Table SB), no longer showing any increase over the
corresponding estimate of k3 (h,,, — h5 = 0.003; s.ed. 0.016). We note that estimates

of k2 with and without PCs from haploSNP CRM s are strongly correlated as they are

imp

made using the same set of individuals and variants. Thus, the reduction in h?,__ after

imp
inclusion of these PCs hasalow s.e.d. (0.005, smaller than the s.e.d. of h7,,,, — h2) andis
highly statistically significant (see Table S9). However, inclusion of PCs from imputed

SNPs did not alter estimates (see Figure 1). Thus, an analysis utilizing current methods to
correct for population stratification would have incorrectly concluded that imputed SNPs

explained significantly more heritability than array SNPs alone.
Heritability explained by haploSNPs

We estimated the heritability explained by the set of haploSNPs described above.
Averaged across 22 traits we estimated E,Zlap = (.16 (s.e.0.02) after correcting for PCs
from array SNPs and E,Zmp = 0.09 (s.e.0.02) after correcting for PCs from haploSNP
CRMs (along with PCs from arrays SNPs). Again, after correcting for PCsfrom
haploSNP CRMs the difference h7,,, — h2 (average:-0.004; s.e.d. 0.023) was no longer
statistically significant. Additionally, correcting for PCs from imputed SNP did not alter
estimates substantially (see Figure 1 and Table S8), confirming that estimates of
heritability explained by rare variants remain confounded even after applying standard
methods to correct for population stratification.

Overall, our results suggest that confounding in estimates of heritability explained
by array SNPs in randomly ascertained cohortsis limited, but that subtle stratification can
produce spurious signals of heritability explained by rare variants. Additionally,
confounding in estimates of heritability explained by rare variants cannot be
appropriately corrected for through the inclusion of PCs from array SNPs or imputed
SNPs as covariatesin the analysis. After correction for PCs from haploSNP CRMs, we
do not observe any signal of heritability from rare variantsin this data set, but we caution
that if such asignal were observed its robustness to subtle stratification would be unclear.

Analysis of schizophrenia (PGC2 data)
Heritability explained by array SNPs

We next sought to investigate whether issues related to case-control ascertainment—
assay artifact correlated with phenotype or induced population stratification— would
produce stronger confounding in estimates of heritability explained b%/ array SNPs. We
analyzed the heritability explained by array SNPsin PGC2-SCZ data®. We meta-
analyzed estimates for each of ten cohorts of European ancestry with >1,000 individuals,
for atotal of >35,000 individuals (all averages across cohorts are inverse-variance
weighted). We applied stringent quality control to genotyped SNPs, obtaining an average
of 461k genotyped SNPsin each cohort (see Online Methods and Table S10). We
estimated hj using PCGC regression® (see Online Methods) using a disease prevalence
of 1%>'. For two studies of treatment resistant schizophrenia a disease prevalence of
0.3% was used. (We note that the choice of disease prevalence affects the absolute
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estimates, but not their relative values.) We meta-analyzed cohort-specific estimates (see
Table 2), producing an average of 1_15 = 0.38 (s.e.0.02) after including array SNP PCs
as covariates, significantly larger than a previously published estimate® (hg =

0.27 (s.e.0.007)) computed from PGC2-SCZ samples (see Table 2).

To assess the degree of residual confounding, we computed association statistics
including array SNP PCs as covariates and ran LD score regression™®. Summary statistics
were significantly inflated (mean y? across all studies = 1.048), and LD score
regression estimated an average intercept of 1.014 (s.e. 0.003) indicating that residual
confounding may be a concern (see Table S10), or based on a previously published
intercept’® computed from PGC2-SCZ samples™. We note that the previous intercept was
computed using association statistics from the combined set of 34,241 cases and 45,604
controls in which inflation due to cohort-specific population stratification, as observed in
our analysis, would be diluted.

We next assessed whether PCs from haploSNP CRM s could better correct for this
confounding by computationally phasing these genotypes® and constructing an average
of 32.8M haploSNPs (MAF > 10™) in each cohort. We note that no cohort had more than
10,000 individuals, thus, we restricted our analysis to non-singleton haploSNPs. We
computed 20 PCs from haploSNP CRMs for each of 7 MAF ranges (see Online
Methods), and included these as covariates (along with PCs from array SNPs) in
estimating hZ (see Table 2). Inclusion of these PCs significantly reduced the meta-
analyzed estimate by approximately 30% (I_zg = 0.27 (s.e.0.02)), now consistent with

the estimate from ref. 31. This further confirms that PCs from haploSNP CRM s can be
useful in correcting for confounding in estimates of heritability explained by array SNPs.

Heritability explained by haploSNPs

We estimated the heritability explained by the set of haploSNPs described above. We
focused solely on haploSNPs with MAF > 0.001, given the small sample sizes of our
individual cohorts (see Table S10). Correcting for PCs from array SNPs, we obtained a
meta-analyzed estimate of E,Zlap = 1.03 (s.e.0.07) that showed a high degree of
heterogeneity (P = 7.9x10*?) across cohorts (see Table 2). After including PCs from
haploSNP CRMs as covariates, the meta-analyzed estimate dropped to E,Zmp =

0.52 (s.e.0.06) and estimates no longer showed significant of heterogeneity (P = 0.43
Nn.s.) (see Table 2 and Online Methods).

Our results suggest that estimates of heritability from rare haploSNPs are
confounded by uncorrected population stratification. While including PCs from
haploSNP CRM s reduced these estimates substantially, we cannot be certain that they
correct for this confounding entirely and believe that estimates of heritability explained
by rare haploSNPs should be viewed with caution. Notably, confounding is substantially
more severe in estimates from this ascertained case-control data than in the randomly
ascertained GERA cohort (see above). We note that a strategy of assessing cross-cohort
heritability explained by rare variants may be a promising approach to separating the
effects of cohort-specific confounding and true polygenicity. However, subtle
stratification drives differentiation between cohorts, particularly at rare variants. In a
setting with stratification, cross-cohort analyses may actually estimate heritability that is
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shared across populations and produce overly conservative estimates as aresult (see
Supplementary Note and Table S11).

Analysis of multiple scleross (WTCCC2 data)
Heritability explained by array SNPs

We analyzed the genome-wide heritability explained by array SNPsin the WTCCC2-M S
data set*?°. We used extremely stringent quality-control filters to avoid inflation dueto
assay artifacts'®®, and all analyses excluded chromosome 6 (see Online Methods). We
note that while there is a large ancestry mismatch between WTCCC2 M S cases and
controls as a consequence of the set of samples that are publicly available®, estimates of
h2 have been previously obtained in this data'®*° by including PCs from array SNPs as
covariates, and by analyzing an ancestry-matched subset of the data’®. Using PCGC
regression’?, we estimated h2 = 0.27 (s.e. 0.02), consistent with prior estimates™®. Al
estimates reported are on the liability scale assuming a disease prevalence of 0.1%>,

To assess the degree of residual confounding at array SNPs, we computed
association statistics including PCs from array SNPs as covariates and ran LD score
regression’®, Association statistics were substantially inflated overall (mean y2 = 1.15),
and LD Score regression assigned alarge fraction of thisinflation to the intercept term
(2.06 (s.e. 0.009)). This suggests that substantial uncorrected population stratification
confounds our estimate of h; despite theinclusion of PCs from array SNPs as covariates.
To assess whether inclusion of PCs computed from rare haploSNPs could correct for this
stratification we computationally phased this set of genotyped SNPs?, built a set of
53.0M haploSNPs (MAF > 10™), and computed 20 PCs from haploSNPsin each of 7
MAF ranges (see Online Methods). After including PCs from haploSNP CRMss (along
with PCsfrom array SNPs) we estimated hg = 0.17 (s.e.0.02) (see Figure 2; Online
Methods). While we cannot exclude the possibility that some uncorrected stratification
could confound this estimate, we believe that h; = 0.17 (s.e.0.02) is amore accurate

estimate of the hf, of multiple sclerosis in this data set than the larger values reported
previously’®?,

Heritability explained by haploSNPs

We estimated the heritability explained by a subset of the haploSNPs described
above with (MAF > 0.001). We obtained an estimate of 7., = 1.10 (s.e.0.08) when
including PCs from array SNPs as covariates; this estimate is outside the plausible 0-1
range, suggesting severe confounding. The estimate decreased substantially to hﬁap =
0.37 (s.e.0.07) after correcting for PCs from haploSNP CRMs (along with PCs from
array SNPs).

Despite the large reduction in estimates of h,zlap after correcting for PCs from
haploSNP CRMs, residual confounding remained a concern. To test for this confounding
we expanded our analysis to estimate the heritability explained by all 53.0M haploSNPs
(MAF > 10™) described above, and obtained estimates of 3.06 (s.e. 0.18) when
correcting for PCsfrom array SNPs and 1.48 (s.e. 0.19) when correcting for PCsfrom
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haploSNP CRMss (along with PCs from array SNPs) (see Figure 2); these values are both
outside the plausible 0-1 range, indicative of severe confounding even after correcting for
PCs from haploSNP CRMs. This confirms the existence of residual confounding in
estimates of heritability explained by haploSNPs with MAF > 10, and suggests that
estimates from more common haploSNPs may continue to be inflated. As a result, we
view estimates of heritability explained by haploSNPs in the WTCCC2-M S data set with
caution.

Discussion

By analyzing control-control heritability in the well-studied UK10K data set®, we
demonstrated that estimates of heritability explained by sequenced SNPs, imputed SNPs
and haploSNPs—haplotype variants constructed from within the sample—can be
severely inflated. Given that we observed confounding at rare variants not subject to
sequencing or imputation error, we believe that subtle stratification, rather than assay
artifact or imputation error, isthe most likely source of the confounding. This
stratification isimmune to standard methods of correction: inclusion of principal
components (PCs) from array SNPs, imputed SNPs or sequence SNPs. While our results
show that PCs from haploSNP CRMs do significantly reduce the impact of confounding,
they are unable to control for it entirely. Association statistics at rare variants are also
likely to beinflated by this subtle stratification'*, although heritability estimates
aggregate the effects of millions of variants and may be more strongly confounded.
UK10K control-control heritability estimates from array SNPs were also inflated,
although to a lesser degree, and the extremely subtle nature of the stratification prevented
a sum of per-chromosome estimates approach? from detecting confounding. Indeed, this
suggests that UK10K control-control stratification is subtler than in previously discussed
scenarios®*, where an approach similar to the sum of per-chromosome estimates
approach worked well*®. (We note that a recent paper® raised broader concerns about
GCTA*** and related methods, which, if valid, would render much of our work moot;
however, that paper contains 8 errors that invalidate its theoretical and empirical
conclusions; see Supplementary Note).

We also observed significant evidence of stratification in our analysis of 22
randomly ascertained phenotypes from the GERA cohort. Notably, if we had used
standard methods to correct for this confounding (i.e. including PCs from array SNPs or
imputed SNPs), we would have incorrectly concluded that imputed SNPs explained
significantly more heritability of the studied traits. This suggests that even in randomly
ascertained studies—protected against assay artifact and stratification induced by the
ascertainment process—subtle stratification may still confound heritability estimates
from imputed SNPs. Estimates of heritability explained by haploSNPs (h,zmp) were
similarly confounded in the GERA cohort, and showed more extreme evidence of
confounding in our analyses of ascertained case-control traits. In our analyses of both
schizophrenia and multiple sclerosis, we observed large reductionsin h,zmp after
correcting for PCs from haploSNP CRMs, though uncorrected confounding may continue
to inflate these estimates. Correction for PCs from haploSNP CRM s also reduced
estimates of hf, for al three data sets, though to a much lesser degree.
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Overal, current methods may be unable to fully quantify or correct for
confounding in estimates of heritability from rare variants, although PCs computed from
haploSNP CRMs may be able to provide an indication that inflation due to stratification
isaconcern. Until alack of inflation due to stratification can be confirmed, we suggest
that estimates of heritability from rare variants be viewed with caution. For analyses of
array SNPs, we recommend application of LD score regression®® to detect confounding,
and correction for PCs computed from haploSNP CRMsiif subtle stratificationisa
concern. Despite the potential for uncorrected stratification to inflate estimates of
heritability explained by common SNPs, multiple lines of evidence, including enrichment
of heritability in biologically relevant parts of the genome?®3** and strong genetic
correlation between studies of the same trait® and across traits™*!, suggest that the bulk
of estimated hj for most studied traitsis dueto true polygenic signal.

URLSs
HaploSNP Software: http://www.hsph.harvard.edu/faculty/alkes- price/software/

Efficient PCGC Regression Software: http://www.hsph.harvard.edu/faculty/alkes-
price/software/
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Online Methods
Definition of heritability in the presence of population structure

Following ref. 20 we define heritability explained by a set of variants as the maximum r2
between the true phenotype and a linear combination of these variants. However, in the
setting of population structure, this definition needs to be modified to include population
label as acovariate. Specifically, assuming that values of genetic ancestry y,, v, ... ¥ for
k PCs are known, wefit alinear combination of variants and population |abels:

Yy =Bixy + Baxo + o By + Y1ys Hoye o+ vk
to obtain effect sizes S, B, ... ., for SNPsand y,, ), ..., for genetic ancestries.
Using these, we define the heritability explained by the m variants as:
2 Var( X2, Bix;)
hg = K
Var(y — X2, ¥:ivi)

We note that thisis a population-level parameter that does not depend on any finite
sample. For small values of Fsr (< 0.01) current methods provide nearly unbiased
estimates of this parameter in settings with and without environmental stratification,
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though estimation becomes biased as Fsr grows large (see Table S12).
Estimating heritability with covariates

We used Haseman-Elston (HE) regression? to estimate heritability in control-control
analyses. In the standard regression, off-diagonal entries of the phenotypic covariance
matrix are regressed against off-diagonal entries of the genetic covariance matrix. The
regression coefficient for the GRM isan estimate of the heritability explained by the
variants used to construct the GRM. To control for population stratification, we regressed
PC covariates out of the phenotype, and included pseudo-GRMs computed from these
PCs in the regression. These GRMs were calculated as K- = Y; A, v;v; where 4; isthe
eigenvalue corresponding to eigenvector v;. PCswere only combined into the same
pseudo-GRM if they were computed from the same set of variants.

For our analyses of case-control phenotypes, we used PCGC regression®—a
recent generalization of HE regression used to produce estimates on the liability scale
accounting for case-control ascertainment. The analyses using PCGC regression were
similar to those described above, but covariates were regressed out of the phenotype
using logistic regression, and the regression was adjusted to convert estimates to the
liability scale as described in ref. 22. Estimates were produced using our previously
published efficient implementation of PCGC regression® (see URLS), to enable analyses
of large data sets™. Standard errors for all analyses were computed by jackknifing over
individuals.

MAF-partitioned heritability estimation

In rare variant analyses, we dealt with potential biasin heritability estimates introduced
by M AF-dependent genetic architectures™ by partitioning variants by MAF and
estimating heritability jointly for all MAF bins*. We note that MAF partitioning is not
robust to LD biasin genetic architecture that is not MAF-mediated, and may not
eliminate biasif the genetic architecture is not fully modeled by the MAF bins
employed™®. More complex methods for addressing LD bias have been proposed'®=,
though the suitability of these methods for analyses of rare variantsis unclear*’. While
possible uncorrected LD biasis a concern, we note that this bias would affect estimates
with and without covariates and would be unlikely to alter our conclusions.

MAF bins were chosen based on the data set analyzed, as sample sizes varied. We
computed PCS from 7 MAF bins of sequenced SNPs, imputed SNPs, and haploSNPsin
the UK10K data: [doubleton-0.0005], (0.0005-0.001],(0.001-0.01], (0.01-0.05], (0.05-
0.1], (0.1-0.25], and (0.25-0.5]. For heritability estimation in this data set, we used the 5
MAF binswith MAF > 0.001. When analyzing haploSNPs and imputed SNPs in the
PGC2-SCZ, WTCCC2-MS, and GERA data sets, we considered MAF bins of [0.0001-
0.001], (0.001-0.005], (0.005-0.01], (0.01-0.05], (0.05-0.1], (0.1-0.25], and (0.25-0.5].
For heritability estimation in the WTCCC2-M S and GERA data setswe used all 7 MAF
bin; for the PGC2-SCZ data we used only the 6 MAF binswith MAF > 0.001. We note
that none of the individual cohorts in the PGC2-SCZ data had > 10,000 individuals, so
the lowest MAF bin (used only for PC computation) included al non-singleton variants.
All analyses with array SNPs used only a single variance component.
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Constructing haploSNPs

HaploSNPs are haplotypes of adjacent SNPs excluding a subset of masked sites that arise
from skipped mismatches. Individuals are defined to carry 0O, 1, or 2 copies of the
haploSNP if none, one or both of their chromosomes matches the haplotype at all
unmasked sites. The algorithm to generate hapl oOSNPs (see Supplementary Note for
pseudocode) proceeds from phased genotypes. For our haploSNP analysis, we used the
HAPI-UR method® to computationally phase genotypes. Using these phased genotypes
we build a set of haplotype variants. At each polymorphic SNP, we create two
haploSNPs—one for the ancestral allele and one for the derived allele. We expand these
hapl 0SNPs until a terminating mismatch is detected. A terminating mismatch is one that
cannot be explained without a recombination between the current haploSNP and the
mismatch SNP. Thisistested using a standard 4-gamete test**. Once aterminating
mismatch is detected, we terminate the current haploSNP and create two child
haploSNPs: one for individuals that match the current haploSNP and the ancestral allele
at the mismatch SNP, the other for individuals that match the current haploSNP and the
derived alele at the mismatch SNP. We repesat this process until the current haploSNP is
longer than a length threshold, or has MAF lower than a MAF threshold.

The output of thisalgorithm isalist of haploSNPs. These haploSNPs are a
mapping of multiple co-located SNPsto a particular allele at each SNP. For each
haploSNP, each phased chromosome is assigned either a 1, indicating a perfect match at
all SNPs that make up the haploSNP, or a 0 otherwise. This set of biallelic haploSNPsis
then used in downstream analysisin addition to biallelic SNPs. We note that all quality
control steps (see below) are applied to SNPs prior to construction of haploSNPs, no
additional QC steps are applied to the haploSNPs in our analysis.

We note that prior work on haplotype association analyses™*® has focused on
analyses of a small number of co-located SNPs (<10) for the purposes of identifying
associations between combinations of these SNPs and phenotypes. While these
approaches are substantially different than our method for generating haploSNPs,
association gatistics for rare haplotypes produced by these methods may be vulnerable to
the effects of subtle stratification that we observe here.

Constructing correlation relationship matrices (CRM)

Correlation matrices are used to compute rare variant PCs because covariance matrices
may have large diagonal entries that result in outlier PCs. Entries of the standard GRM
from a set of variants S are computed as.

K. . = iz (xls - Zps)(xjs - Zps)
Y |S| SES

Zps(l - Zps)
We compute the correlation relationship matrix by normalizing the standard GRM by the

appropriate diagonal entries
Kl,]

K*.
v VKK

*
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I mputation of rare variants

To perform imputation, we computationally phased our genotypes®, and used the
Impute2 software package® to produce a set of imputed variants. While it is common
practice to restrict analyses to well-imputed (e.g. INFO > 0.9) genotypes, a recent
analysis' suggests that poorly imputed SNPs may better tag unobserved genotypes and
explain substantially more heritability than genotyped SNPs alone. To use these variants,
we convert the genotype probabilities output by Impute2 into hard genotype calls by
calling the max-likelihood genotype as ground truth. Specifically we use the plink2
software package™ with the command line option: --hard-call-threshold 0.4999.

Data sets
UK10K data set

The UK 10K project® datais comprised of low-coverage sequencing (7x) from individuals
from two cohorts: ALSPAC and TWINSUK. We combined these data sets and applied
stringent QC, removing SNPs that had either a deviation from Hardy-Weinberg
equilibrium at a p-value below 0.01, or missingness greater than 0.002. For our analyses
of sequenced SNPs we did not impose any threshold on minor allele frequency, and were
left with 17.6M non-singleton sequenced SNPs. We used the full set of sequenced SNPs
to compute PCs for controlling population stratification and 11.7M sequenced SNPs with
MAF > 0.001 to estimate heritability from sequenced SNPs. We then focused on the set
of SNPs that were also typed on the Illumina Human660-Quad chip genotyping array
(used by WTCCC2%). These SNPs were defined “array SNPS” in our analyses. We also
removed one individual in any pair of individuals with relatedness greater than 0.025 by
array SNP covariance. Following all QC steps, we analyzed 3,565 individuals—1,817
from ALSPAC and 1,748 from TWINSUK, using 408k array SNPs. We computationally
phased these genotypes™, and used the phased genotypes to impute 17.4M non-singleton
SNPs of which 13.0M had MAF > 0.001. We also used these phased genotypes to
construct atotal of 32.3M haploSNPs of which 26.5M had MAF > 0.001.

GERA data set

The GERA data set is comprised of genotype data from the GERA EUR chip and
phenotype data for each of 22 disease conditions based on electronic medical records for
54,734 individuals of European ancestry®". We averaged heritability estimates of 22
randomly ascertained case-control phenotypes recorded as part of the GERA data set™®
(see Table S8). While we expect assay artifact to be largely uncorrelated with phenotype
in randomly ascertained case control-studies, we used stringent QC to ensure that it did
not impact our estimates. Specifically, we removed any SNPs that had either adeviation
from Hardy-Weinberg equilibrium at a p-value below 0.01, or missingness greater than
0.002. We also removed oneindividual in any pair of individuals with relatedness greater
than 0.025 by SNP covariance. Following all QC steps, we analyzed 47,360 individuals
genotyped at 289k SNPs. We computationally phased these genotyped SNPs? and used
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these phased genotypes to impute (see below) 22.6M SNPs of which 13.7M had MAF >
0.001. We also built a set of 39.3M haploSNPs (see below) of which 27.5M had MAF >
0.001.

Schizophrenia data set (PGC2 data set)

The PGC2* data set is comprised of several cohorts of diverse ancestry that were
genotyped on a variety of different genotyping platforms. To avoid issues related to
cross-population heritability estimation, we focused on meta-analysis of estimates within
cohorts. Our estimates were produced from each of 10 cohorts with >1,000 individuals.
Within each cohort we applied stringent QC to genotyped SNPs (we did not analyze
imputed SNPs), removing any SNPs that were below 0.01 minor allele frequency, had
deviation from Hardy-Weinberg equilibrium at a p-value below 0.01, had missingness
greater than 0.002, or had differential missingness between cases and controls with a p-
value below 0.05. We also removed one individual in any pair of individuals with
relatedness greater than 0.025 by SNP covariance. Following all QC steps, we analyzed
35,238 individuals. Thisis smaller than the number of individuals analyzed the largest
previous meta-analysis® because we restricted to individuals that came from cohortswith
>1,000 individuals. The average number of SNPs genotyped in each cohort was 461k.
We computationally phased these genotyped SNPs™ and built an average of 32.8M
haploSNPs in each cohort (see Table S10), of which an average of 26.3M had MAF >
0.001.

Multiple sclerosis data set (WTCCC2 data set)

We analyzed the publicly available subset® of data analyzed in alarge GWAS of
multiple sclerosis. As cases and controls were genotyped separately, we used a very
high level of stringency in our quality control. Specifically, we removed any SNPs that
had minor allele frequency below 0.02, had deviation from Hardy-Weinberg equilibrium
at ap-value below 0.05, had missingness greater than 0.002, or had differential
missingness between cases and controls with a p-value below 0.05. We also removed one
individual in any pair of individuals with relatedness greater than 0.05 by SNP
covariance. We subsequently performed five rounds of outlier removal whereby all
individuals more than 6 standard deviations away from the mean along any of the top 20
eigenvectors were removed and all elgenvectors recomputed. Following all QC steps, we
analyzed 14,526 individuals genotyped at 375k SNPs. These individuals consisted of
9,315 cases, 2,635 controls from the NBS cohort and 2,794 controls from the 58C cohort.
We computationally phased the genotypes? and built a set of 53.0M haploSNPs (see
below) with MAF > 0.0001, of which 36.3M had MAF > 0.001. To avoid biases dueto
the large effect of the well-known HLA locus, we excluded chromosome 6 from all
heritability analyses, leaving atotal of 349k SNPs. While the effect of the HLA locusis
the largest in the genome, it has been estimated to explain only about 3% of the
phenotypic variance of MS on the liability scale®®, and thus should not affect our results
substantially.
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Figure 1. Estimates of heritability explained by common SNPs, imputed SNPs and
haploSNPs, averaged across 22 traitsin the GERA cohort. We estimated heritability
explained by array SNPs, imputed SNPs and haploSNPs in the GERA data set (all
estimates on the liability scale). Estimates are averaged using an inverse-variance
weighted average of estimates for 22 traits (see Table S8 for individual trait estimates)
and standard errors are displayed on the figure. After including array SNP PC covariates,
both imputed and haploSNPs explain significantly more heritability than array SNPs
alone. However, inclusion of haploSNP PCs eliminates all signals of rare variant
heritability. This suggests that this data-set contains no signal of rare variant heritability
beyond what is due to stratification.
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Figure 2. Estimates of heritability of multiple sclerosis explained by common SNPs
and haploSNPsin WTCCC2 data. We analyze the heritability of multiple sclerosis
explained by array SNPs and haploSNPs (all estimates on the liability scale). Relative to
SNP PCs, inclusion of haploSNP PCs produces reductionsin heritability estimated from
haploSNPs and array SNPs. Standard errors are indicated on the plot. Notably, the
estimate of 0.27 (s.e. 0.02) obtained from array SNPs after including PC covariatesis
consistent with previous estimates'®*, but inclusion of haploSNP PCs reduces this
estimate to 0.17 (s.e. 0.02) suggesting that previous estimates may be inflated due to by
subtle population stratification. We note that despite the large reductionsin h,zmp (for
both MAF > 0.0001 and MAF > 0.001), it is very likely that these estimates are till
inflated by subtle stratification. As aresult, we cannot conclude that haploSNPs explain
more heritability than genotyped SNPs alone.
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Tables
a
Array Sequenced Imputed HaploSNP HaploSNP
No PCs SNP PCs SNP PCs GRM PCs GRM PCs CRM PCs
Common SNPs 0.51 (0.13) | 0.53 (0.13)| 0.49 (0.13)| 0.50 (0.15)| 0.44 (0.14)| 0.28 (0.16)
Sequenced SNPs (MAF > 0.001) 274  (0.31)| 2.69 (0.30)| 2.81 (0.38)| 2.82 (0.35)| 2.41 (0.35)| 1.64 (0.34)
Imputed SNPs (MAF > 0.001) 1.55 (0.33) | 1.55 (0.32)| 1.54 (0.34)| 153 (0.32)| 1.39 (0.31)| 0.90 (0.30)
HaploSNPs (MAF > 0.001) 410 (0.52) | 3.98 (0.60) | 3.67 (0.51)| 3.73 (0.46)| 3.27 (0.49)| 1.90 (0.51)
b.
Sequence SNP | Imputed SNP HaploSNP HaploSNP
No PCs Array SNP PCs PCs PCs GRM PCs CRM PCs
Array SNPs -0.02 (0.04)| 0.02 (0.06)| 0.01 (0.05)| 0.08 (0.06)| 0.23 (0.08)
Sequenced SNPs (MAF > 0.001) N/A 0.05 (0.06) | -0.07 (0.19) | -0.07 (0.15)| 0.33 (0.12) | 1.10 (0.20)
Imputed SNPs (MAF > 0.001) 0.00 (0.05)| 0.01 (0.16)| 0.02 (0.13)| 0.16 (0.13)| 0.66 (0.18)
HaploSNPs (MAF > 0.001) 0.12 (0.08) | 0.43 (0.22)| 0.37 (0.16)| 0.83 (0.19) | 2.21 (0.32)

Table 1. UK10K Control-Control Heritability Estimates with Different Corrections For Population Stratification.

(a) We estimate control-control heritability explained by array SNPs and three types of rare variants. sequenced SNPs, imputed SNPs
and haploSNPs. All types of variants show substantial evidence of confounding. Inclusion of PC covariates from array SNPs,
sequenced SNPs, or imputed SNPs does not alter the estimate of heritability explained. While inclusion of haploSNP CRM PC
covariates produces statistically significant drops in the heritability explained by all sets of variants, substantial evidence of
confounding remains. (b) Given the small sample size of the UK 10 data-set, standard errors on estimates are large. However, as
analyses were based on the same individuals and, in some cases, the same set of variants, errors in the estimates were highly
correlated. Thus, the standard error of the difference between two estimates was smaller than suggested by the nominal standard
errors. We estimated the standard error of the difference (s.e.d.) for apair of estimates using ajackknife over individuals (see Online
Methods). The table above lists the difference and s.e.d. for an analysis with a set of PCs and the corresponding analysis with no
covariates. For example, inclusion of haploSNP CRM PCs as covariates reduced the estimate from sequenced SNPs by 1.10 (s.e.d.
0.20) (from 2.74 (s.e. 0.31) with no covariatesto 1.66 (s.e. 0.38) with haploSNP CRM PCs). Statistically significant reductionsin

control-control heritability are indicated in bold.
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Cohort Heritability Explained by Array SNPs Heritability Explained by haploSNPs

Array SNP PCs | HaploSNP CRM PCs | Array SNP PCs | HaploSNP CRM PCs
ajsz 0.52 (0.13) 0.28 (0.12) | 0.98 (0.27) 0.45 (0.28)
boco 0.43 (0.08) 0.26 (0.08) | 2.14 (0.30) 1.04 (0.28)
clm2 0.35 (0.03) 0.27 (0.03) | 0.88 (0.112) 0.45 (0.09)
clo3 0.46 (0.06) 0.29 (0.07) | 1.64 (0.26) 0.67 (0.21)
gras 0.54 (0.15) 0.29 (0.16) | 2.37 (0.48) 1.09 (0.60)
irwt 0.66 (0.13) 0.24 (0.214) | 3.82 (0.51) 0.68 (0.52)
mgs2 0.34 (0.06) 0.29 (0.07) | 0.68 (0.20) 0.60 (0.19)
s234 0.27 (0.08) 0.21 (0.07) | 131 (0.30) 0.75 (0.25)
swe5 0.38 (0.07) 0.31 (0.08) | 0.41 (0.23) 0.29 (0.25)
sweb 0.21 (0.15) 0.02 (0.17) | 0.06 (0.40) -0.20 (0.49)
Average 0.38 (0.02) 0.27 (0.02) | 1.03 (0.07) 0.52 (0.06)
Heterogeneity P 0.14 0.95 7.87E-12 0.43

Table 2. Estimates of the heritability of schizophrenia explained by array SNPs and haploSNPsin PGC2 cohorts.

We analyze the heritability of schizophrenia explained by array SNPs and haploSNPs with MAF > 0.001 (all estimates on the liability
scale). Estimates are meta-analyzed using an inverse-variance weighted average of cohort-specific estimates. All cohorts analyzed
contained a minimum of 1000 samples (see Supplementary Material of ref. 32). Relative to array SNP PCs, inclusion of haploSNP
PCs produces significant reductions in heritability estimated from haploSNPs and array SNPs. The meta-analyzed estimate made with
array SNP PC covariates is substantially higher than previously reported estimates from mega-analysis of overlapping data-sets™*.
Our results suggest that cohort-specific population stratification, diluted in large mega-analyses may explain some of this difference.
As before, we observe alarge drop in h7,,,, estimates after including haploSNP CRM PC covariates, but cannot conclude that residual
confounding does not continue to inflate estimates. We also give the P value for heterogeneity of estimates across cohorts based on
Cochran’s Q statistic™ and note that estimates of h,zmp no longer show statistically significant evidence of heterogeneity after inclusion
of PCs from haploSNP CRMs as covariates
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