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Abstract 
 
Genome-wide significant associations generally explain only a small proportion of the 
narrow-sense heritability of complex disease (h2). While considerably more heritability is 
explained by all genotyped SNPs (hg

2), for most traits, much heritability remains missing 
(hg

2 < h2). Rare variants, poorly tagged by genotyped SNPs, are a major potential source 
of the gap between hg

2 and h2. Recent efforts to assess the contribution of both sequenced 
and imputed rare variants to phenotypes suggest that substantial heritability may lie in 
these variants. Here we analyze sequenced SNPs, imputed SNPs and haploSNPs—
haplotype variants constructed from within a sample, without using a reference panel—
and show that studies of heritability from these variants may be strongly confounded by 
subtle population stratification. For example, when meta-analyzing heritability estimates 
from 22 randomly ascertained case-control traits from the GERA cohort, we observe a 
statistically significant increase in heritability explained by imputed SNPs even after 
correcting for principal components (PCs) from genotyped (or imputed) SNPs. However, 
this increase is eliminated when correcting for stratification using PCs from a larger 
number of haploSNPs. We note that subtle stratification may also impact estimates of 
heritability from array SNPs, although we find that this is generally a less severe 
problem. Overall, our results suggest that estimating the heritability explained by rare 
variants for case-control traits requires exquisite control for population stratification, but 
current methods may not provide this level of control. 
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Introduction 
 
While genome-wide association studies (GWAS) have been extremely successful in 
identifying robust associations between single nucleotide polymorphisms (SNPs) and 
complex traits, the aggregate heritability explained by these loci (hGWAS

2) is only a small 
fraction of the heritability estimated from related individuals (h2)1. This gap between h2 
(ref. 2) and hGWAS

2—termed the “missing heritability3”—is partially explained by causal 
variants that have not achieved genome-wide significance in GWAS of current sample 
sizes4. However, the heritability explained by all genotyped SNPs (hg

2) typically leaves 
much of h2 unaccounted for and the pattern of hGWAS

2< hg
2 < h2 is observed across a 

broad set of complex traits1. One possible explanation for the remaining missing 
heritability is that rare genetic variants—untyped by most genotyping arrays—explain a 
significant portion of the variance of studied traits4,5.  
 As sequencing data becomes more readily available, it will become possible to 
directly assess the heritability explained by rare variants. In fact, a recent analysis 
suggests that rare variants from previously associated regions of the genome6 may 
explain a substantial fraction of the heritability of prostate cancer. Even in the absence of 
sequence data it may be possible to assess the heritability explained by rare variants 
through imputation using a high coverage reference panel7,8. While accurately imputed 
SNPs do not typically explain more heritability than genotyped SNPs alone9,10, including 
low-accuracy imputed SNPs can explain significantly more of the heritability of 
quantitative traits11.  
 Despite the promise of analyses of rare variants, these analyses may be more 
affected by confounding than corresponding common variant analyses. In addition to 
sequencing artifact12 and imputation error13, analyses of rare variants may be particularly 
susceptible to subtle population stratification14 that cannot be corrected by standard 
techniques15. To assess this, we analyzed the estimates of genetic variance between the 
two control cohorts in the well-studied UK10K data-set8. Control cohort label should not 
be a heritable phenotype and any nonzero control-control heritability is considered a 
signal of uncorrected confounding10,16. In this analysis, we observed evidence of severe 
confounding for estimates from sequenced SNPs, imputed SNPs, and haploSNPs—
haplotype variants constructed from within a sample, without using a reference panel. 
Indeed, estimates from all of these types of rare variants were often outside of the 
interpretable range (> 1). An even greater concern is that these estimates of control-
control heritability from rare variants were largely unaffected by principal components 
(PCs) from array SNPs, sequenced SNPs, or imputed SNPs. Inclusion of haploSNP PCs 
produced statistically significant reductions in control-control heritability for all types of 
rare variants, but did not eliminate it entirely. This is consistent with previous analysis 
showing that analysis of haplotype structure can improve ancestry inference relative to 
SNPs alone17.  We note that we also observed nonzero control-control heritability in 
estimates from array SNPs in the UK10K data; LD score regression18 correctly identified 
this control-control heritability as confounding, but is not designed for analyses of rare 
variants. 
 To assess whether confounding was also present in real case-control datasets we 
averaged estimates for 22 randomly ascertained complex diseases in the Genetic 
Epidemiology Research on Adult Health and Aging (GERA) cohort19. We observed 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2016. ; https://doi.org/10.1101/048181doi: bioRxiv preprint 

https://doi.org/10.1101/048181
http://creativecommons.org/licenses/by-nc-nd/4.0/


significantly more heritability in imputed SNPs �����
� � 0.14 	s. e. 0.02
 than in array 

SNPs alone (���� � 0.11 	s. e. 0.01
; � � 0.01 for difference) when correcting for PCs 
computed from genotyped SNPs. Correcting for PCs computed from imputed SNPs did 
not affect these heritability estimates. However, inclusion of PCs computed from 
haploSNPs produced statistically significant reductions in both ���� and �����

� , such that the 
difference between them was no longer statistically significant. We observe even larger 
evidence of confounding in ascertained case-control studies of schizophrenia (PGC2 
cohort) and multiple sclerosis (WTCCC2 cohort). Overall, we conclude that estimating 
the heritability explained by rare variants for case-control traits requires exquisite control 
of population stratification, but current methods may not provide this level of control. 
  
 
Results 
 
UK10K control-control heritability estimates 
 
Evidence of genetic differences between control cohorts has been previously used as a 
signal of confounding10,16 in estimates of heritability explained by array SNPs. We 
conducted control-control analyses using low-coverage (7x) sequencing data from the 
UK10K project8, which is comprised of two cohorts—TWINSUK and ALSPAC. The 
availability of sequence data allows us to assess control-control heritability using array 
SNPs that are present on standard genotyping arrays as well as rare variants that may be 
more susceptible to subtle population structure. As control cohort label is not expected to 
be a heritable phenotype, any significant control-control heritability is an indication of 
confounding. For all analyses we define the heritability explained by a set of markers 
analogously to previous work20, accounting for the possible presence of population 
structure (see Online Methods). All control-control estimates are on the observed scale 
and were produced using Haseman-Elston (HE) regression21. We note that PCGC 
regression22, a generalization of HE regression that produces estimates on the liability 
scale, is the main method used in our analyses of real case-control phenotypes in 
subsequent sections (see Online Methods and URLs). 

Heritability explained by array SNPs 
 

We first estimated the heritability explained by array SNPs (���
 present on the 
Illumina Human660-Quad chip genotyping array (used by WTCCC223). After restricting 
the UK10K data to these SNPs, we performed stringent quality control (see Online 
Methods), ultimately analyzing data from 3,565 individuals at 408k array SNPs. We used 
HE regression21 to estimate ��� of the control-control phenotype (1 for the TWINSUK 
cohort; 0 for the ALSPAC cohort) at ��� � 0.51 	s. e. 0.13
, suggesting that subtle 
stratification results in substantial control-control heritability. Results did not change 
significantly when we included principal components (PCs) from array SNPs, which 
produced a similar estimate of ��� � 0.53 	s. e. 0.13
 (see Table 1), or when we used the 
GCTA software package24 to estimate ��� (see Table S1). We note that two sequencing 
centers contributed data to the UK10K project, but sequencing center was not correlated 
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with cohort label, making control-control heritability due to batch effects unlikely. As 
array SNPs showed substantially less evidence of sequencing error8, we conclude that 
subtle population stratification rather than assay artifact is the most likely explanation of 
the observed confounding. We note that we also observed signals of control-control 
heritability from array SNPs in the well-studied WTCCC223 data (see Table S2), even 
after excluding the possibility of assay artifact by restricting to genotypes that were 
concordant on separate genotyping arrays.   

We next sought to assess whether PCs computed from rare variants might be 
better able to correct for the confounding that we observed. We performed stringent 
quality control on UK10K sequence data, and computed PCs from 17.6M sequenced 
SNPs, excluding singletons (see Online Methods). We divided these SNPs into 7 MAF 
bins and computed 20 PCs from each bin, along with 20 PCs from array SNPs. Despite 
including these 160 PCs from sequenced and array SNPs, our estimate of ��� was 
essentially unchanged at ��� � 0.49 	s. e. 0.13
 (see Table 1). We repeated this analysis 
including 160 PCs from imputed and array SNPs, but did not observe any significant 
change in ��� estimates (see Table 1). 

Finally, we attempted to correct ��� estimates for confounding using PCs 
computed from haploSNPs: variants defined using a new method that analyzes haplotype 
structure within the target sample, efficiently tagging unobserved rare variation without a 
reference panel (see Online Methods and URLs). Using computationally phased 
genotypes25 at array SNPs, we built haploSNPs from all pairs of phased chromosomes in 
the sample. To build haploSNPs, we began at a SNP at which the two chromosomes 
match, and extended the haploSNP one SNP at a time.  The haploSNP was extended until 
a terminating mismatch—a mismatch that cannot be explained as a mutation on a shared 
background, or until a maximum length of 50kb is reached. Terminating mismatches 
were detected as violations of the 4-gamete test between the haploSNP being extended 
and the mismatch SNP. Using the array SNPs described above we constructed a set of 
32.3M haploSNPs, excluding singletons. We observed that haploSNP GRMs were 
somewhat dominated by noise from outlier individuals, and inclusion of PCs from GRMs 
for each of 7 MAF bins of haploSNPs along with PCs from array SNPs did not 
substantially reduce heritability estimates (see Table 1).  To reduce noise from outlier 
individuals, we computed correlation relationship matrices (CRMs) from haploSNP 
GRMs in each of 7 MAF bins, normalizing all entries by the appropriate diagonals (see 
Online Methods), and computed PCs from each haploSNP CRM. When we included 140 
PCs from haploSNP CRMs along with 20 PCs from array SNPs as covariates, the 
estimate dropped to ��� � 0.28 	s. e. 0.16
 (see Table 1), which is no longer statistically 
significant.  As analyses with and without haploSNP CRM PCs were highly correlated 
(i.e. based on the same individuals and variants), the reduction in ��� (0.23 	s. e. 0.08
) 
was statistically significant. We note that inclusion of PCs from sequenced or imputed 
SNP CRMs did not reduce estimates. Increasing the maximum length of haploSNPs 
allowed us to compute PCs that were significantly better at controlling for confounding 
(��� � 0.06 	s. e. 0.15
; see Table S3), however, due to computational considerations in 
larger data sets, we report results for haploSNPs shorter than 50kb. Using phenotypes 
simulated without stratification from sequence SNPs, we confirmed that the observed 
drop in heritability estimates could not be explained by biases introduced by inclusion of 
a large number of PCs (see Table S4). 
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We also sought to assess whether LD score regression18 could correctly identify 
control-control heritability explained by array SNPs as confounding. We computed 
association statistics for array SNPs to the control-control phenotype without covariates. 
These statistics were substantially inflated (mean �� � 1.032
 consistent with 
expectation given the sample size (N=3,565), ��� � 0.51 	s. e. 0.13
, and assuming an 
effective number of SNPs of 60k26, since 1 �  ����/���� � 1.030 (ref. 27). LD score 
regression assigned the bulk of the inflation in �� statistics to the intercept (1.031 (s.e. 
0.007)), consistent with confounding. This suggests LD score regression may be able to 
detect confounding in heritability estimates from array SNPs even if inclusion of PCs 
from array SNPs and rare variants are insufficient to correct for it.  (We note that 
attenuation bias can also produce low levels of inflation in the LD score regression 
intercept18.) 

Another published strategy for assessing confounding in heritability estimates is 
comparison of genome-wide heritability estimates to the sum of estimates for each 
chromosome28. This relies on the idea that population stratification will be captured 
redundantly by SNPs on different chromosomes, inflating the sum of per-chromosome 
estimates relative to the genome-wide estimate. When we applied this strategy to per-
chromosome estimates of control-control heritability, we observed no elevation of the 
sum of per-chromosome estimates (��� � 0.52 	s. e. 0.13
) relative to the genome-wide 
estimates (��� � 0.51 	s. e. 0.13
) (see Table S5). These results are consistent with 
simulations showing that this method may not always be well powered to detect subtle 
stratification in genome-wide estimates of heritability (see Table S6). 
 
Heritability explained by sequenced and imputed SNPs 
 
Given the confounding of heritability estimates from array SNPs, we sought to assess 
whether heritability estimates from rare variants were also affected. We performed 
stringent quality control on UK10K sequence data (see Online Methods), and estimated 
heritability explained by sequenced SNPs with MAF > 0.001 (estimates from rarer 
variants were unstable; see Table S7). We split 11.7M sequenced variants (MAF > 0.001) 
into 5 MAF bins and used MAF-stratified HE regression to estimate control-control 
��	
�  � 2.74 	s. e. 0.31
—an extremely confounded estimate outside the interpretable 
range from 0 to 1 (see Table 1 and Online Methods).  Including 20 PCs from array SNPs 
(see above), or 160 PCs from sequenced and array SNPs did not change estimates 
substantially (see Table 1). However, when we included 140 PCs from haploSNP CRMs 
along with 20 PCs from array SNPs (see above) we observed a substantial reduction to 
��	
�  � 1.64 	s. e. 0.34
. Estimates were consistent with those obtained from GCTA24 
(see Table S1). Our results suggest that these PCs capture subtle population structure 
more effectively than PCs from other variants, though severe confounding remains. We 
note that CRM PCs from a larger number of longer haploSNPs further improved our 
ability to control for confounding (see Table S3), but were not able to remove the effects 
of confounding entirely. 

To exclude the possibility that cohort-specific sequencing error at rare variants 
was the main source of confounding, we analyzed rare variants imputed from array SNPs. 
Specifically, we restricted to the set of 408k array SNPs described above, 
computationally phased these SNPs and imputed 13.0M rare variants (MAF > 0.001) 
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using the Impute2 software package29 with 1000 Genomes data30 as a reference panel 
(see Online Methods). As previously suggested, we did not impose any imputation 
quality threshold11, maximizing our ability to tag untyped SNPs. While heritability 
estimates from imputed SNPs were somewhat lower, they remained severely confounded 
at ����

� � 1.55 	s. e. 0.33
 and were not reduced by inclusion of PCs from array SNPs, 
sequenced SNPs or imputed SNPs (see Table 1). Again, inclusion of PCs from haploSNP 
CRMs (along with array SNPs) produced a statistically significant reduction in ����

� �
0.90 	s. e. 0.30
, but did not eliminate confounding. 
 
Heritability explained by haploSNPs 
 
Finally, to exclude the possibility that a combination of sequencing and imputation error 
were driving control-control heritability estimates from these variants, we analyzed the 
set of haploSNPs for the purposes of heritability estimation. We restricted to the set of 
26.5M haploSNPs with MAF > 0.001, and estimated heritability explained by these 
variants using MAF-stratified HE regression as above. Our simulations without 
population stratification indicate that haploSNPs can effectively tag unobserved 
sequenced SNPs in the UK10K data (see Supplementary Note). 

Of all types of rare variants, haploSNPs showed the strongest evidence of 
confounding: ����� � 4.10 	s. e. 0.52
; this confounding produced an inflation in the sum 
of per-chromosome estimates of heritability relative to the genome-wide estimate (see 
Table S5). Consistent with previous analyses, PCs from haploSNP CRMs produced the 
largest reduction 	����� � 1.90 	s. e. 0.51
). The fact that computationally inferred rare 
variants, unaffected by sequencing or imputation error, showed extreme confounding 
further implicates subtle population stratification rather than assay artifact as the most 
likely source of confounding. Indeed, previous work has noted that rare variants are 
subject to more local patterns of stratification14, which may be difficult to correct using 
standard methods. 
 
Recommendations 
 
We recommend that estimates of heritability from array SNPs should be checked for 
confounding using LD score regression18. While there are alternate causes of inflation in 
the LD score regression intercept (e.g. attenuation bias or LD-dependent genetic 
architectures), a lack of observed inflation indicates that confounding due to population 
stratification is unlikely to be a major concern. If LD score regression shows evidence of 
confounding and/or there are other reasons for concern about stratification, PCs from 
haploSNP CRMs should be included as covariates, in addition to PCs from array SNPs.  
If a reduction is observed, CRM PCs from a larger number of longer haploSNPs can be 
investigated.  
 For heritability estimates from rare variants—sequenced SNPs, imputed SNPs, or 
haploSNPs—PCs computed from sequenced or imputed SNPs are unlikely to impact 
estimates. While PCs from haploSNP CRMs are more likely to detect subtle 
stratification, they are unlikely to correct for confounding completely. Thus, we 
recommend including PCs from haploSNP CRMs as covariates, but caution that any 
significant drop in estimates after inclusion of these PCs should be considered as 
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evidence of uncorrected confounding rather than the resolution of this confounding. 
Overall, we believe that it is currently not possible to ensure that estimates of heritability 
from rare variants are robust to subtle population stratification. 
 
Analysis of 22 complex diseases (GERA cohort) 
 
Heritability explained by array SNPs 
 
We next sought to assess the extent to which the subtle stratification observed in the 
UK10K control-control analyses might confound estimates of heritability from array 
SNPs in real case-control phenotypes. We focused on 22 complex diseases in 47,360 
randomly ascertained samples typed at 289k SNPs in the GERA cohort19 (see Online 
Methods). Estimates were obtained for each disease using PCGC regression22, assuming 
that the prevalence of each disease matched the case fractions in the GERA cohort. Given 
the relatively low values of ��� for any one trait31, we computed an average of liability-
scale ��� estimates across 22 traits (all averages across traits are inverse-variance 
weighted). We obtained an estimate of ���� � 0.11 	s. e. 0.01
 after including PCs from 
array SNPs (see Figure 1 and Table S8). We first sought to assess whether residual 
confounding could be impacting these estimates by applying LD score regression to 
association statistics 	mean ��

 across all studies � 1.027
 computed for each disease. 
LD score regression produced an average intercept of 1.005 (s.e. 0.002), suggesting that 
confounding is limited. This is consistent with our intuition that randomly ascertained 
studies are less susceptible to effects of stratification and assay artifact than ascertained 
case-control studies (see below). 

We computationally phased these genotyped SNPs25, constructed 39.3M 
haploSNPs (MAF > 10-4) and computed 20 CRM PCs from each of 7 haploSNP MAF 
ranges (see Online Methods). Including PCs from haploSNP CRMs (along with PCs from 
array SNPs) reduced the estimate to ���� � 0.09 	s. e. 0.01
, a difference of 0.015.  
Though quantitatively small, this difference was statistically significant (standard error of 
the difference (s.e.d.) 0.002 across 22 traits; see Table S9 and S10).  
 
Heritability explained by imputed SNPs 

 
We sought to assess whether imputed SNPs or haploSNPs could explain significantly 
more heritability than array SNPs alone. We began by performing imputation using the 
Impute2 software package29 with a reference panel from the 1000 Genomes Project30 (see 
Online Methods). As previously described11, we did not impose any imputation quality 
filter, maximizing our ability to tag untyped causal variants. As this is a randomly 
ascertained study, assay artifacts are unlikely to be correlated with phenotypes and 
observed increases are likely to be due to polygenic signal or subtle population 
stratification. We estimated ����

�  using MAF-stratified PCGC regression22 (see Online 
Methods). Averaged across 22 traits, we observe �����

� � 0.14 	s. e. 0.02
 after correcting 
for stratification with PCs from array SNPs, a statistically significant increase of 0.038 
over ���� (s.e.d. 0.016; P=0.02). Correcting for stratification with CRM PCs from 
haploSNPs (along with PCs from array SNPs) reduced our estimate to �����

� �
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0.09 	s. e. 0.02
 (see Figure 1 and Table S8), no longer showing any increase over the 
corresponding estimate of ���� (�����

� � ���� � 0.003; s.e.d. 0.016). We note that estimates 
of �����

�  with and without PCs from haploSNP CRMs are strongly correlated as they are 
made using the same set of individuals and variants. Thus, the reduction in �����

�  after 
inclusion of these PCs has a low s.e.d. (0.005, smaller than the s.e.d. of �����

� � ����
 and is 
highly statistically significant (see Table S9). However, inclusion of PCs from imputed 
SNPs did not alter estimates (see Figure 1). Thus, an analysis utilizing current methods to 
correct for population stratification would have incorrectly concluded that imputed SNPs 
explained significantly more heritability than array SNPs alone.  
 
Heritability explained by haploSNPs 
 
We estimated the heritability explained by the set of haploSNPs described above. 
Averaged across 22 traits we estimated ������ � 0.16 	s. e. 0.02
 after correcting for PCs 
from array SNPs and ������ � 0.09 	s. e. 0.02
 after correcting for PCs from haploSNP 
CRMs (along with PCs from arrays SNPs). Again, after correcting for PCs from 
haploSNP CRMs the difference ������ � ���� (average:-0.004; s.e.d. 0.023) was no longer 
statistically significant. Additionally, correcting for PCs from imputed SNP did not alter 
estimates substantially (see Figure 1 and Table S8), confirming that estimates of 
heritability explained by rare variants remain confounded even after applying standard 
methods to correct for population stratification. 
 Overall, our results suggest that confounding in estimates of heritability explained 
by array SNPs in randomly ascertained cohorts is limited, but that subtle stratification can 
produce spurious signals of heritability explained by rare variants. Additionally, 
confounding in estimates of heritability explained by rare variants cannot be 
appropriately corrected for through the inclusion of PCs from array SNPs or imputed 
SNPs as covariates in the analysis. After correction for PCs from haploSNP CRMs, we 
do not observe any signal of heritability from rare variants in this data set, but we caution 
that if such a signal were observed its robustness to subtle stratification would be unclear. 
 
Analysis of schizophrenia (PGC2 data) 
 
Heritability explained by array SNPs 
 
We next sought to investigate whether issues related to case-control ascertainment—
assay artifact correlated with phenotype or induced population stratification— would 
produce stronger confounding in estimates of heritability explained by array SNPs. We 
analyzed the heritability explained by array SNPs in PGC2-SCZ data32. We meta-
analyzed estimates for each of ten cohorts of European ancestry with >1,000 individuals, 
for a total of >35,000 individuals (all averages across cohorts are inverse-variance 
weighted). We applied stringent quality control to genotyped SNPs, obtaining an average 
of 461k genotyped SNPs in each cohort (see Online Methods and Table S10). We 
estimated ��� using PCGC regression22 (see Online Methods) using a disease prevalence 
of 1%31. For two studies of treatment resistant schizophrenia a disease prevalence of 
0.3% was used.  (We note that the choice of disease prevalence affects the absolute 
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estimates, but not their relative values.) We meta-analyzed cohort-specific estimates (see 
Table 2), producing an average of ���� � 0.38 	s. e. 0.02
 after including array SNP PCs 
as covariates, significantly larger than a previously published estimate31 (��� �
0.27 	s. e. 0.007
) computed from PGC2-SCZ samples (see Table 2).  

To assess the degree of residual confounding, we computed association statistics 
including array SNP PCs as covariates and ran LD score regression18. Summary statistics 
were significantly inflated 	mean ��

 across all studies � 1.048
, and LD score 
regression estimated an average intercept of 1.014 (s.e. 0.003) indicating that residual 
confounding may be a concern (see Table S10), or based on a previously published 
intercept18 computed from PGC2-SCZ samples32. We note that the previous intercept was 
computed using association statistics from the combined set of 34,241 cases and 45,604 
controls in which inflation due to cohort-specific population stratification, as observed in 
our analysis, would be diluted. 

We next assessed whether PCs from haploSNP CRMs could better correct for this 
confounding by computationally phasing these genotypes25 and constructing an average 
of 32.8M haploSNPs (MAF > 10-4) in each cohort. We note that no cohort had more than 
10,000 individuals, thus, we restricted our analysis to non-singleton haploSNPs. We 
computed 20 PCs from haploSNP CRMs for each of 7 MAF ranges (see Online 
Methods), and included these as covariates (along with PCs from array SNPs) in 
estimating ��� (see Table 2). Inclusion of these PCs significantly reduced the meta-
analyzed estimate by approximately 30% (���� � 0.27 	s. e. 0.02
), now consistent with 
the estimate from ref. 31. This further confirms that PCs from haploSNP CRMs can be 
useful in correcting for confounding in estimates of heritability explained by array SNPs.  
 
Heritability explained by haploSNPs 
 
We estimated the heritability explained by the set of haploSNPs described above. We 
focused solely on haploSNPs with MAF > 0.001, given the small sample sizes of our 
individual cohorts (see Table S10). Correcting for PCs from array SNPs, we obtained a 
meta-analyzed estimate of ������ � 1.03 	s. e. 0.07
 that showed a high degree of 
heterogeneity (P = 7.9x10-12) across cohorts (see Table 2). After including PCs from 
haploSNP CRMs as covariates, the meta-analyzed estimate dropped to ������ �
0.52 	s. e. 0.06
 and estimates no longer showed significant of heterogeneity (P = 0.43 
n.s.) (see Table 2 and Online Methods). 

Our results suggest that estimates of heritability from rare haploSNPs are 
confounded by uncorrected population stratification. While including PCs from 
haploSNP CRMs reduced these estimates substantially, we cannot be certain that they 
correct for this confounding entirely and believe that estimates of heritability explained 
by rare haploSNPs should be viewed with caution. Notably, confounding is substantially 
more severe in estimates from this ascertained case-control data than in the randomly 
ascertained GERA cohort (see above). We note that a strategy of assessing cross-cohort 
heritability explained by rare variants may be a promising approach to separating the 
effects of cohort-specific confounding and true polygenicity. However, subtle 
stratification drives differentiation between cohorts, particularly at rare variants. In a 
setting with stratification, cross-cohort analyses may actually estimate heritability that is 
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shared across populations and produce overly conservative estimates as a result (see 
Supplementary Note and Table S11). 
 
Analysis of multiple sclerosis (WTCCC2 data) 
 
Heritability explained by array SNPs 
 
We analyzed the genome-wide heritability explained by array SNPs in the WTCCC2-MS 
data set23,26. We used extremely stringent quality-control filters to avoid inflation due to 
assay artifacts10,16, and all analyses excluded chromosome 6 (see Online Methods). We 
note that while there is a large ancestry mismatch between WTCCC2 MS cases and 
controls as a consequence of the set of samples that are publicly available26, estimates of 
��� have been previously obtained in this data10,26 by including PCs from array SNPs as 
covariates, and by analyzing an ancestry-matched subset of the data10. Using PCGC 
regression22, we estimated ��� � 0.27 	s. e. 0.02
, consistent with prior estimates26,33. All 
estimates reported are on the liability scale assuming a disease prevalence of 0.1%33. 

To assess the degree of residual confounding at array SNPs, we computed 
association statistics including PCs from array SNPs as covariates and ran LD score 
regression18. Association statistics were substantially inflated overall 	mean �� � 1.15
, 
and LD Score regression assigned a large fraction of this inflation to the intercept term 
(1.06 (s.e. 0.009)). This suggests that substantial uncorrected population stratification 
confounds our estimate of ��,�  despite the inclusion of PCs from array SNPs as covariates. 
To assess whether inclusion of PCs computed from rare haploSNPs could correct for this 
stratification we computationally phased this set of genotyped SNPs25, built a set of 
53.0M haploSNPs (MAF > 10-4), and computed 20 PCs from haploSNPs in each of 7 
MAF ranges (see Online Methods). After including PCs from haploSNP CRMs (along 
with PCs from array SNPs) we estimated ��� � 0.17 	s. e. 0.02
 (see Figure 2; Online 
Methods). While we cannot exclude the possibility that some uncorrected stratification 
could confound this estimate, we believe that ��� � 0.17 	s. e. 0.02
 is a more accurate 
estimate of the ��� of multiple sclerosis in this data set than the larger values reported 
previously10,26. 

 
Heritability explained by haploSNPs 
 

We estimated the heritability explained by a subset of the haploSNPs described 
above with (MAF > 0.001). We obtained an estimate of  ����� � 1.10 	s. e. 0.08
 when 
including PCs from array SNPs as covariates; this estimate is outside the plausible 0-1 
range, suggesting severe confounding. The estimate decreased substantially to ����� �
0.37 	s. e. 0.07
 after correcting for PCs from haploSNP CRMs (along with PCs from 
array SNPs).  

Despite the large reduction in estimates of �����  after correcting for PCs from 
haploSNP CRMs, residual confounding remained a concern. To test for this confounding 
we expanded our analysis to estimate the heritability explained by all 53.0M haploSNPs 
(MAF > 10-4) described above, and obtained estimates of 3.06 	s. e. 0.18
 when 
correcting for PCs from array SNPs and 1.48 	s. e. 0.19
 when correcting for PCs from 
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haploSNP CRMs (along with PCs from array SNPs) (see Figure 2); these values are both 
outside the plausible 0-1 range, indicative of severe confounding even after correcting for 
PCs from haploSNP CRMs. This confirms the existence of residual confounding in 
estimates of heritability explained by haploSNPs with MAF > 10-4, and suggests that 
estimates from more common haploSNPs may continue to be inflated. As a result, we 
view estimates of heritability explained by haploSNPs in the WTCCC2-MS data set with 
caution.  
 
Discussion 
 

By analyzing control-control heritability in the well-studied UK10K data set8, we 
demonstrated that estimates of heritability explained by sequenced SNPs, imputed SNPs 
and haploSNPs—haplotype variants constructed from within the sample—can be 
severely inflated. Given that we observed confounding at rare variants not subject to 
sequencing or imputation error, we believe that subtle stratification, rather than assay 
artifact or imputation error, is the most likely source of the confounding. This 
stratification is immune to standard methods of correction: inclusion of principal 
components (PCs) from array SNPs, imputed SNPs or sequence SNPs. While our results 
show that PCs from haploSNP CRMs do significantly reduce the impact of confounding, 
they are unable to control for it entirely. Association statistics at rare variants are also 
likely to be inflated by this subtle stratification14, although heritability estimates 
aggregate the effects of millions of variants and may be more strongly confounded. 
UK10K control-control heritability estimates from array SNPs were also inflated, 
although to a lesser degree, and the extremely subtle nature of the stratification prevented 
a sum of per-chromosome estimates approach28 from detecting confounding.  Indeed, this 
suggests that UK10K control-control stratification is subtler than in previously discussed 
scenarios34,35, where an approach similar to the sum of per-chromosome estimates 
approach worked well36. (We note that a recent paper37 raised broader concerns about 
GCTA4,24 and related methods, which, if valid, would render much of our work moot; 
however, that paper contains 8 errors that invalidate its theoretical and empirical 
conclusions; see Supplementary Note). 

We also observed significant evidence of stratification in our analysis of 22 
randomly ascertained phenotypes from the GERA cohort. Notably, if we had used 
standard methods to correct for this confounding (i.e. including PCs from array SNPs or 
imputed SNPs), we would have incorrectly concluded that imputed SNPs explained 
significantly more heritability of the studied traits. This suggests that even in randomly 
ascertained studies—protected against assay artifact and stratification induced by the 
ascertainment process—subtle stratification may still confound heritability estimates 
from imputed SNPs. Estimates of heritability explained by haploSNPs (����� ) were 
similarly confounded in the GERA cohort, and showed more extreme evidence of 
confounding in our analyses of ascertained case-control traits. In our analyses of both 
schizophrenia and multiple sclerosis, we observed large reductions in �����  after 
correcting for PCs from haploSNP CRMs, though uncorrected confounding may continue 
to inflate these estimates. Correction for PCs from haploSNP CRMs also reduced 
estimates of ��� for all three data sets, though to a much lesser degree. 
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Overall, current methods may be unable to fully quantify or correct for 
confounding in estimates of heritability from rare variants, although PCs computed from 
haploSNP CRMs may be able to provide an indication that inflation due to stratification 
is a concern. Until a lack of inflation due to stratification can be confirmed, we suggest 
that estimates of heritability from rare variants be viewed with caution. For analyses of 
array SNPs, we recommend application of LD score regression18 to detect confounding, 
and correction for PCs computed from haploSNP CRMs if subtle stratification is a 
concern. Despite the potential for uncorrected stratification to inflate estimates of 
heritability explained by common SNPs, multiple lines of evidence, including enrichment 
of heritability in biologically relevant parts of the genome20,38,39 and strong genetic 
correlation between studies of the same trait9 and across traits40,41, suggest that the bulk 
of estimated ��� for most studied traits is due to true polygenic signal. 
 

 
URLs 
 
HaploSNP Software: http://www.hsph.harvard.edu/faculty/alkes- price/software/ 
Efficient PCGC Regression Software: http://www.hsph.harvard.edu/faculty/alkes- 
price/software/ 
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Online Methods 
 
Definition of heritability in the presence of population structure 
 
Following ref. 20 we define heritability explained by a set of variants as the maximum r2 
between the true phenotype and a linear combination of these variants. However, in the 
setting of population structure, this definition needs to be modified to include population 
label as a covariate. Specifically, assuming that values of genetic ancestry ��, �� … �� for 
k PCs are known, we fit a linear combination of variants and population labels: 

� � �� � � �� � � ! � �� � �  "��� � "��� � ! � "���  

to obtain effect sizes  ��, �� … �� for SNPs and "�, "� … "� for genetic ancestries. 
Using these, we define the heritability explained by the m variants as: 

��� � Var	 ∑ �� �
�
���

Var	� � ∑ "���
�
���

 

We note that this is a population-level parameter that does not depend on any finite 
sample. For small values of FST (< 0.01) current methods provide nearly unbiased 
estimates of this parameter in settings with and without environmental stratification, 
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though estimation becomes biased as FST grows large (see Table S12).  

Estimating heritability with covariates 
 
We used Haseman-Elston (HE) regression21 to estimate heritability in control-control 
analyses. In the standard regression, off-diagonal entries of the phenotypic covariance 
matrix are regressed against off-diagonal entries of the genetic covariance matrix. The 
regression coefficient for the GRM is an estimate of the heritability explained by the 
variants used to construct the GRM. To control for population stratification, we regressed 
PC covariates out of the phenotype, and included pseudo-GRMs computed from these 
PCs in the regression. These GRMs were calculated as '�� � ∑ (�)�)���  where (� is the 
eigenvalue corresponding to eigenvector )� . PCs were only combined into the same 
pseudo-GRM if they were computed from the same set of variants. 

For our analyses of case-control phenotypes, we used PCGC regression22—a 
recent generalization of HE regression used to produce estimates on the liability scale 
accounting for case-control ascertainment. The analyses using PCGC regression were 
similar to those described above, but covariates were regressed out of the phenotype 
using logistic regression, and the regression was adjusted to convert estimates to the 
liability scale as described in ref. 22. Estimates were produced using our previously 
published efficient implementation of PCGC regression22 (see URLs), to enable analyses 
of large data sets31. Standard errors for all analyses were computed by jackknifing over 
individuals22. 

 
MAF-partitioned heritability estimation 
 
In rare variant analyses, we dealt with potential bias in heritability estimates introduced 
by MAF-dependent genetic architectures36 by partitioning variants by MAF and 
estimating heritability jointly for all MAF bins42. We note that MAF partitioning is not 
robust to LD bias in genetic architecture that is not MAF-mediated, and may not 
eliminate bias if the genetic architecture is not fully modeled by the MAF bins 
employed43. More complex methods for addressing LD bias have been proposed10,36, 
though the suitability of these methods for analyses of rare variants is unclear11. While 
possible uncorrected LD bias is a concern, we note that this bias would affect estimates 
with and without covariates and would be unlikely to alter our conclusions.   

MAF bins were chosen based on the data set analyzed, as sample sizes varied. We 
computed PCS from 7 MAF bins of sequenced SNPs, imputed SNPs, and haploSNPs in 
the UK10K data: [doubleton-0.0005], (0.0005-0.001],(0.001-0.01], (0.01-0.05], (0.05-
0.1], (0.1-0.25], and (0.25-0.5]. For heritability estimation in this data set, we used the 5 
MAF bins with MAF > 0.001. When analyzing haploSNPs and imputed SNPs in the 
PGC2-SCZ, WTCCC2-MS, and GERA data sets, we considered MAF bins of [0.0001-
0.001], (0.001-0.005], (0.005-0.01], (0.01-0.05], (0.05-0.1], (0.1-0.25], and (0.25-0.5].  
For heritability estimation in the WTCCC2-MS and GERA data sets we used all 7 MAF 
bin; for the PGC2-SCZ data we used only the 6 MAF bins with MAF > 0.001. We note 
that none of the individual cohorts in the PGC2-SCZ data had > 10,000 individuals, so 
the lowest MAF bin (used only for PC computation) included all non-singleton variants. 
All analyses with array SNPs used only a single variance component. 
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Constructing haploSNPs 
 
HaploSNPs are haplotypes of adjacent SNPs excluding a subset of masked sites that arise 
from skipped mismatches. Individuals are defined to carry 0, 1, or 2 copies of the 
haploSNP if none, one or both of their chromosomes matches the haplotype at all 
unmasked sites. The algorithm to generate haploSNPs (see Supplementary Note for 
pseudocode) proceeds from phased genotypes. For our haploSNP analysis, we used the 
HAPI-UR method25 to computationally phase genotypes. Using these phased genotypes 
we build a set of haplotype variants. At each polymorphic SNP, we create two 
haploSNPs—one for the ancestral allele and one for the derived allele. We expand these 
haploSNPs until a terminating mismatch is detected. A terminating mismatch is one that 
cannot be explained without a recombination between the current haploSNP and the 
mismatch SNP. This is tested using a standard 4-gamete test44.  Once a terminating 
mismatch is detected, we terminate the current haploSNP and create two child 
haploSNPs: one for individuals that match the current haploSNP and the ancestral allele 
at the mismatch SNP, the other for individuals that match the current haploSNP and the 
derived allele at the mismatch SNP. We repeat this process until the current haploSNP is 
longer than a length threshold, or has MAF lower than a MAF threshold.  
 The output of this algorithm is a list of haploSNPs. These haploSNPs are a 
mapping of multiple co-located SNPs to a particular allele at each SNP. For each 
haploSNP, each phased chromosome is assigned either a 1, indicating a perfect match at 
all SNPs that make up the haploSNP, or a 0 otherwise. This set of biallelic haploSNPs is 
then used in downstream analysis in addition to biallelic SNPs. We note that all quality 
control steps (see below) are applied to SNPs prior to construction of haploSNPs, no 
additional QC steps are applied to the haploSNPs in our analysis. 
 We note that prior work on haplotype association analyses45-48 has focused on 
analyses of a small number of co-located SNPs (<10) for the purposes of identifying 
associations between combinations of these SNPs and phenotypes. While these 
approaches are substantially different than our method for generating haploSNPs, 
association statistics for rare haplotypes produced by these methods may be vulnerable to 
the effects of subtle stratification that we observe here. 
 
Constructing correlation relationship matrices (CRM) 
 
Correlation matrices are used to compute rare variant PCs because covariance matrices 
may have large diagonal entries that result in outlier PCs. Entries of the standard GRM 
from a set of variants * are computed as: 

'�,� � 1
|*| , 	 �� � 2-�
	 �� � 2-�


2-�	1 � 2-�

���

 

We compute the correlation relationship matrix by normalizing the standard GRM by the 
appropriate diagonal entries 

'�,�
� � '�,�

.'�,�'�,�
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Imputation of rare variants 
 
To perform imputation, we computationally phased our genotypes25, and used the 
Impute2 software package29 to produce a set of imputed variants. While it is common 
practice to restrict analyses to well-imputed (e.g. INFO > 0.9) genotypes, a recent 
analysis11 suggests that poorly imputed SNPs may better tag unobserved genotypes and 
explain substantially more heritability than genotyped SNPs alone. To use these variants, 
we convert the genotype probabilities output by Impute2 into hard genotype calls by 
calling the max-likelihood genotype as ground truth. Specifically we use the plink2 
software package49 with the command line option: --hard-call-threshold 0.4999. 
 
Data sets 
 
UK10K data set 
 
The UK10K project8 data is comprised of low-coverage sequencing (7x) from individuals 
from two cohorts: ALSPAC and TWINSUK. We combined these data sets and applied 
stringent QC, removing SNPs that had either a deviation from Hardy-Weinberg 
equilibrium at a p-value below 0.01, or missingness greater than 0.002. For our analyses 
of sequenced SNPs we did not impose any threshold on minor allele frequency, and were 
left with 17.6M non-singleton sequenced SNPs. We used the full set of sequenced SNPs 
to compute PCs for controlling population stratification and 11.7M sequenced SNPs with 
MAF > 0.001 to estimate heritability from sequenced SNPs. We then focused on the set 
of SNPs that were also typed on the Illumina Human660-Quad chip genotyping array 
(used by WTCCC223). These SNPs were defined “array SNPs” in our analyses. We also 
removed one individual in any pair of individuals with relatedness greater than 0.025 by 
array SNP covariance.  Following all QC steps, we analyzed 3,565 individuals—1,817 
from ALSPAC and 1,748 from TWINSUK, using 408k array SNPs. We computationally 
phased these genotypes25, and used the phased genotypes to impute 17.4M non-singleton 
SNPs of which 13.0M had MAF > 0.001. We also used these phased genotypes to 
construct a total of 32.3M haploSNPs of which 26.5M had MAF > 0.001. 
 
 
GERA data set 
 
The GERA data set is comprised of genotype data from the GERA EUR chip and 
phenotype data for each of 22 disease conditions based on electronic medical records for 
54,734 individuals of European ancestry31. We averaged heritability estimates of 22 
randomly ascertained case-control phenotypes recorded as part of the GERA data set19 
(see Table S8). While we expect assay artifact to be largely uncorrelated with phenotype 
in randomly ascertained case control-studies, we used stringent QC to ensure that it did 
not impact our estimates. Specifically, we removed any SNPs that had either a deviation 
from Hardy-Weinberg equilibrium at a p-value below 0.01, or missingness greater than 
0.002. We also removed one individual in any pair of individuals with relatedness greater 
than 0.025 by SNP covariance.  Following all QC steps, we analyzed 47,360 individuals 
genotyped at 289k SNPs.  We computationally phased these genotyped SNPs25 and used 
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these phased genotypes to impute (see below) 22.6M SNPs of which 13.7M had MAF > 
0.001. We also built a set of 39.3M haploSNPs (see below) of which 27.5M had MAF > 
0.001. 

 
Schizophrenia data set (PGC2 data set) 
 
The PGC232 data set is comprised of several cohorts of diverse ancestry that were 
genotyped on a variety of different genotyping platforms. To avoid issues related to 
cross-population heritability estimation, we focused on meta-analysis of estimates within 
cohorts. Our estimates were produced from each of 10 cohorts with >1,000 individuals. 
Within each cohort we applied stringent QC to genotyped SNPs (we did not analyze 
imputed SNPs), removing any SNPs that were below 0.01 minor allele frequency, had 
deviation from Hardy-Weinberg equilibrium at a p-value below 0.01, had missingness 
greater than 0.002, or had differential missingness between cases and controls with a p-
value below 0.05. We also removed one individual in any pair of individuals with 
relatedness greater than 0.025 by SNP covariance.  Following all QC steps, we analyzed 
35,238 individuals. This is smaller than the number of individuals analyzed the largest 
previous meta-analysis32 because we restricted to individuals that came from cohorts with 
>1,000 individuals. The average number of SNPs genotyped in each cohort was 461k.  
We computationally phased these genotyped SNPs25 and built an average of 32.8M 
haploSNPs in each cohort (see Table S10), of which an average of 26.3M had MAF > 
0.001.  
 
Multiple sclerosis data set (WTCCC2 data set) 
 
We analyzed the publicly available subset26 of data analyzed in a large GWAS of 
multiple sclerosis23. As cases and controls were genotyped separately, we used a very 
high level of stringency in our quality control. Specifically, we removed any SNPs that 
had minor allele frequency below 0.02, had deviation from Hardy-Weinberg equilibrium 
at a p-value below 0.05, had missingness greater than 0.002, or had differential 
missingness between cases and controls with a p-value below 0.05. We also removed one 
individual in any pair of individuals with relatedness greater than 0.05 by SNP 
covariance. We subsequently performed five rounds of outlier removal whereby all 
individuals more than 6 standard deviations away from the mean along any of the top 20 
eigenvectors were removed and all eigenvectors recomputed. Following all QC steps, we 
analyzed 14,526 individuals genotyped at 375k SNPs. These individuals consisted of 
9,315 cases, 2,635 controls from the NBS cohort and 2,794 controls from the 58C cohort. 
We computationally phased the genotypes25 and built a set of 53.0M haploSNPs (see 
below) with MAF > 0.0001, of which 36.3M had MAF > 0.001. To avoid biases due to 
the large effect of the well-known HLA locus, we excluded chromosome 6 from all 
heritability analyses, leaving a total of 349k SNPs. While the effect of the HLA locus is 
the largest in the genome, it has been estimated to explain only about 3% of the 
phenotypic variance of MS on the liability scale33, and thus should not affect our results 
substantially.  
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Figures 
 
Figure 1.  
 

 
 
Figure 1. Estimates of heritability explained by common SNPs, imputed SNPs and 
haploSNPs, averaged across 22 traits in the GERA cohort.  We estimated heritability 
explained by array SNPs, imputed SNPs and haploSNPs in the GERA data set (all 
estimates on the liability scale). Estimates are averaged using an inverse-variance 
weighted average of estimates for 22 traits (see Table S8 for individual trait estimates) 
and standard errors are displayed on the figure. After including array SNP PC covariates, 
both imputed and haploSNPs explain significantly more heritability than array SNPs 
alone. However, inclusion of haploSNP PCs eliminates all signals of rare variant 
heritability. This suggests that this data-set contains no signal of rare variant heritability 
beyond what is due to stratification. 
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Figure 2. Estimates of heritability of multiple sclerosis explained by common SNPs 
and haploSNPs in WTCCC2 data. We analyze the heritability of multiple sclerosis 
explained by array SNPs and haploSNPs (all estimates on the liability scale). Relative to 
SNP PCs, inclusion of haploSNP PCs produces reductions in heritability estimated from 
haploSNPs and array SNPs. Standard errors are indicated on the plot. Notably, the 
estimate of 0.27 (s.e. 0.02) obtained from array SNPs after including PC covariates is 
consistent with previous estimates10,33, but inclusion of haploSNP PCs reduces this 
estimate to 0.17 (s.e. 0.02) suggesting that previous estimates may be inflated due to by 
subtle population stratification. We note that despite the large reductions in �����  (for 
both MAF > 0.0001 and MAF > 0.001), it is very likely that these estimates are still 
inflated by subtle stratification. As a result, we cannot conclude that haploSNPs explain 
more heritability than genotyped SNPs alone. 
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Tables 
a. 

  No PCs 

Array 

SNP PCs 

Sequenced  

SNP PCs 

Imputed  

GRM PCs 

HaploSNP  

GRM PCs 

HaploSNP  

CRM PCs 

Common SNPs 0.51 (0.13) 0.53 (0.13) 0.49 (0.13) 0.50 (0.15) 0.44 (0.14) 0.28 (0.16) 

Sequenced SNPs (MAF > 0.001) 2.74 (0.31) 2.69 (0.30) 2.81 (0.38) 2.82 (0.35) 2.41 (0.35) 1.64 (0.34) 

Imputed SNPs (MAF > 0.001) 1.55 (0.33) 1.55 (0.32) 1.54 (0.34) 1.53 (0.32) 1.39 (0.31) 0.90 (0.30) 

HaploSNPs (MAF > 0.001) 4.10 (0.52) 3.98 (0.60) 3.67 (0.51) 3.73 (0.46) 3.27 (0.49) 1.90 (0.51) 

 
b. 

  No PCs Array SNP PCs 

Sequence SNP 

PCs 

Imputed SNP 

PCs 

HaploSNP 

GRM PCs 

HaploSNP 

CRM PCs 

Array SNPs 

N/A 

-0.02 (0.04) 0.02 (0.06) 0.01 (0.05) 0.08 (0.06) 0.23 (0.08) 

Sequenced SNPs (MAF > 0.001) 0.05 (0.06) -0.07 (0.19) -0.07 (0.15) 0.33 (0.12) 1.10 (0.20) 

Imputed SNPs (MAF > 0.001) 0.00 (0.05) 0.01 (0.16) 0.02 (0.13) 0.16 (0.13) 0.66 (0.18) 

HaploSNPs (MAF > 0.001) 0.12 (0.08) 0.43 (0.22) 0.37 (0.16) 0.83 (0.19) 2.21 (0.32) 

Table 1. UK10K Control-Control Heritability Estimates with Different Corrections For Population Stratification. 
(a) We estimate control-control heritability explained by array SNPs and three types of rare variants: sequenced SNPs, imputed SNPs 
and haploSNPs. All types of variants show substantial evidence of confounding. Inclusion of PC covariates from array SNPs, 
sequenced SNPs, or imputed SNPs does not alter the estimate of heritability explained. While inclusion of haploSNP CRM PC 
covariates produces statistically significant drops in the heritability explained by all sets of variants, substantial evidence of 
confounding remains. (b) Given the small sample size of the UK10 data-set, standard errors on estimates are large. However, as 
analyses were based on the same individuals and, in some cases, the same set of variants, errors in the estimates were highly 
correlated. Thus, the standard error of the difference between two estimates was smaller than suggested by the nominal standard 
errors. We estimated the standard error of the difference (s.e.d.) for a pair of estimates using a jackknife over individuals (see Online 
Methods). The table above lists the difference and s.e.d. for an analysis with a set of PCs and the corresponding analysis with no 
covariates. For example, inclusion of haploSNP CRM PCs as covariates reduced the estimate from sequenced SNPs by 1.10 (s.e.d. 
0.20) (from 2.74 (s.e. 0.31) with no covariates to 1.66 (s.e. 0.38) with haploSNP CRM PCs). Statistically significant reductions in 
control-control heritability are indicated in bold. 
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Cohort 
Heritability Explained by Array SNPs Heritability Explained by haploSNPs  

Array SNP PCs HaploSNP CRM PCs Array SNP PCs HaploSNP CRM PCs 

ajsz 0.52 (0.13) 0.28 (0.12) 0.98 (0.27) 0.45 (0.28) 

boco 0.43 (0.08) 0.26 (0.08) 2.14 (0.30) 1.04 (0.28) 

clm2 0.35 (0.03) 0.27 (0.03) 0.88 (0.11) 0.45 (0.09) 

clo3 0.46 (0.06) 0.29 (0.07) 1.64 (0.26) 0.67 (0.21) 

gras 0.54 (0.15) 0.29 (0.16) 2.37 (0.48) 1.09 (0.60) 

irwt 0.66 (0.13) 0.24 (0.14) 3.82 (0.51) 0.68 (0.52) 

mgs2 0.34 (0.06) 0.29 (0.07) 0.68 (0.20) 0.60 (0.19) 

s234 0.27 (0.08) 0.21 (0.07) 1.31 (0.30) 0.75 (0.25) 

swe5 0.38 (0.07) 0.31 (0.08) 0.41 (0.23) 0.29 (0.25) 

swe6 0.21 (0.15) 0.02 (0.17) 0.06 (0.40) -0.20 (0.49) 

Average 0.38 (0.02) 0.27 (0.02) 1.03 (0.07) 0.52 (0.06) 

Heterogeneity P  0.14 0.95 7.87E-12 0.43 

 
Table 2. Estimates of the heritability of schizophrenia explained by array SNPs and haploSNPs in PGC2 cohorts.  
We analyze the heritability of schizophrenia explained by array SNPs and haploSNPs with MAF > 0.001 (all estimates on the liability 
scale). Estimates are meta-analyzed using an inverse-variance weighted average of cohort-specific estimates.  All cohorts analyzed 
contained a minimum of 1000 samples (see Supplementary Material of ref. 32). Relative to array SNP PCs, inclusion of haploSNP 
PCs produces significant reductions in heritability estimated from haploSNPs and array SNPs.  The meta-analyzed estimate made with 
array SNP PC covariates is substantially higher than previously reported estimates from mega-analysis of overlapping data-sets9,31. 
Our results suggest that cohort-specific population stratification, diluted in large mega-analyses may explain some of this difference. 
As before, we observe a large drop in ����

�  estimates after including haploSNP CRM PC covariates, but cannot conclude that residual 
confounding does not continue to inflate estimates. We also give the P value for heterogeneity of estimates across cohorts based on 
Cochran’s Q statistic50 and note that estimates of ����

�  no longer show statistically significant evidence of heterogeneity after inclusion 
of PCs from haploSNP CRMs as covariates  
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