bioRxiv preprint doi: https://doi.org/10.1101/047522; this version posted April 6, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Interpretability of Multivariate Brain Maps in Brain
Decoding: Definition and Quantification

Seyed Mostafa Kial?3*

Center for Mind/Brain Sciences (CIMeC), University of Trento, via delle Regole
101, 88123, Mattarello, TN, Italy

Abstract

Brain decoding is a popular multivariate approach for hypothesis testing in
neuroimaging. Linear classifiers are widely employed in the brain decoding
paradigm to discriminate among experimental conditions. Then, the derived
linear weights are visualized in the form of multivariate brain maps to fur-
ther study the spatio-temporal patterns of underlying neural activities. It
is well known that the brain maps derived from weights of linear classifiers
are hard to interpret because of high correlations between predictors, low
signal to noise ratios, and the high dimensionality of neuroimaging data.
Therefore, improving the interpretability of brain decoding approaches is of
primary interest in many neuroimaging studies. Despite extensive studies
of this type, at present, there is no formal definition for interpretability of
multivariate brain maps. As a consequence, there is no quantitative mea-
sure for evaluating the interpretability of different brain decoding methods.
In this paper, first, we present a theoretical definition of interpretability in
brain decoding; we show that the interpretability of multivariate brain maps
can be decomposed into their reproducibility and representativeness. Sec-
ond, as an application of the proposed definition, we formalize a heuristic
method for approximating the interpretability of multivariate brain maps in
a binary magnetoencephalography (MEG) decoding scenario. Third, we pro-
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pose to combine the approximated interpretability and the performance of
the brain decoding into a new multi-objective criterion for model selection.
Our results for the MEG data show that optimizing the hyper-parameters
of the regularized linear classifier based on the proposed criterion results in
more informative multivariate brain maps. More importantly, the presented
definition provides the theoretical background for quantitative evaluation of
interpretability, and hence, facilitates the development of more effective brain
decoding algorithms in the future.

Keywords: MVPA, brain decoding, brain mapping, interpretation, model
selection

1 1. Introduction

2 Understanding the mechanisms of the brain has been a crucial topic
s throughout the history of science. Ancient Greek philosophers envisaged
s different functionalities for the brain ranging from cooling the body to act-
s ing as the seat of the rational soul and the center of sensation [I]. Modern
6 cognitive science, emerging in the 20th century, provides better insight into
7 the brain’s functionality. In cognitive science, researchers usually analyze
¢ recorded brain activity and behavioral parameters to discover the answers of
o where, when, and how a brain region participates in a particular cognitive
10 Process.

11 To answer the key questions in cognitive science, scientists often employ
12 mass-univariate hypothesis testing methods to test scientific hypotheses on a
13 large set of independent variables [2], B]. Mass-univariate hypothesis testing
1 is based on performing multiple tests, e.g., t-tests, one for each unit of the
15 neuroimaging data, i.e., independent variables. The high spatial and tempo-
16 ral granularity of the univariate tests provides fair level of interpretability.
1z On the down side, the high dimensionality of neuroimaging data requires
18 a large number of tests that reduces the sensitivity of these methods af-
19 ter multiple comparison correction. Although some techniques such as the
2 non-parametric cluster-based permutation test [4, 5] offer more sensitivity
a1 because of the cluster assumption, they still experience low sensitivity to
» brain activities that are narrowly distributed in time and space [2] [6]. The
;3 multivariate counterparts of mass-univariate analysis, known generally as
2 multivariate pattern analysis (MVPA), have the potential to overcome these
»s  deficits. Multivariate approaches are capable of identifying complex spatio-


https://doi.org/10.1101/047522
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/047522; this version posted April 6, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

» temporal interactions between different brain areas with higher sensitivity
z and specificity than univariate analysis [7], especially in group analysis of
2 neuroimaging data [§].

20 Brain decoding [9] is an MVPA technique that delivers a model to predict
s the mental state of a human subject based on the recorded brain signal.
u There are two potential applications for brain decoding: 1) brain-computer
2 interfaces (BCls) [10} [I1], and 2) multivariate hypothesis testing [12]. In the
;3 first case, a brain decoder with maximum prediction power is desired. In the
s second case, in addition to the prediction power, extra information on the
55 spatio-temporal nature of a cognitive process is desired. In this study, we are
s interested in the second application of brain decoding that can be considered
s a multivariate alternative for mass-univariate hypothesis testing.

38 In brain decoding, generally, linear classifiers are used to assess the rela-
5 tion between independent variables, i.e., features, and dependent variables,
w0 i.e., cognitive tasks [I3], 14 [15]. This assessment is performed by solving a
s linear optimization problem that assigns weights to each independent vari-
2 able. Currently, brain decoding is the gold standard in multivariate analysis
s for functional magnetic resonance imaging (fMRI) [16], 17, 18, 19] and magne-
» toencephalogram/electroencephalogram (MEEG) studies [20, 21} 22] 23] 24]
s 25 26]. It has been shown that brain decoding can be used in combination
s with brain encoding [27] to infer the causal relationship between stimuli and
a7 responses [2§].

a8 Brain mapping [29] is a higher form of neuroimaging that assigns pre-
s computed quantities, e.g., univariate statistics or weights of a linear classi-
so fier, to the spatio-temporal representation of neuroimaging data. In MVPA,
51 brain mapping uses the learned parameters from brain decoding to produce
s brain maps, in which the engagement of different brain areas in a cognitive
53 task is visualized. Intuitively, the interpretability of a brain decoder refers to
sa the level of information that can be reliably derived by an expert from the
55 resulting maps. From the neuroscientific perspective, a brain map is consid-
ss ered interpretable if it enables the scientist to answer where, when, and how
57 questions.

58 Typically, a trained classifier is a black box that predicts the label of
5o an unseen data point with some accuracy. Valverde-Albacete and Peldez-
oo Moreno [30] experimentally showed that in a classification task optimizing
&1 only classification error rate is insufficient to capture the transfer of crucial
&2 information from the input to the output of a classifier. It is also shown
&3 by Ramdas et al. [31] that in the case of data with small sample size using
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&« the classification accuracy as a test statistic for two sample testing should be
ss performed with extra cautious. Beside these limitations of classification ac-
s curacy in inference, and considering the fact that the best predictive model
& might not be the most informative one [32]; a classifier, taken alone, only
s answers the question of what is the most likely label of a given unseen sam-
o ple [33]. This fact is generally known as knowledge extraction gap [34] in
70 the classification context. Thus far, many efforts have been devoted to filling
7 the knowledge extraction gap of linear and non-linear data modeling meth-
72 ods in different areas such as computer vision [35], signal processing [36],
7z chemometrics [37], bioinformatics [38], and neuroinformatics [39).

74 Despite the theoretical advantages of MVPA | its practical application to
7 inferences regarding neuroimaging data is limited primarily by a lack of in-
76 terpretability |40} [41) [42]. Therefore, improving the interpretability of linear
77 brain decoding and associated brain maps is a primary goal in the brain imag-
s ing literature [43]. The lack of interpretability of multivariate brain maps is
79 a direct consequence of low signal-to-noise ratios (SNRs), high dimensional-
g0 ity of whole-scalp recordings, high correlations among different dimensions of
s data, and cross-subject variability [15] [44) [45], [14], 46], 47, 48], [49], 50}, 51, 52, [41].
&2 At present, two main approaches are proposed to enhance the interpretabil-
g3 ity of multivariate brain maps: 1) introducing new metrics into the model
s+ selection procedure and 2) introducing new penalty terms for regularization
ss  to enhance stability selection.

86 The first approach to improving the interpretability of brain decoding
sz concentrates on the model selection procedure. Model selection is a pro-
ss cedure in which the best values for the hyper-parameters of a model are
o determined [I4]. The selection process is generally performed by considering
o the generalization performance, i.e., the accuracy, of a model as the decisive
o criterion. Rasmussen et al. [53] showed that there is a trade-off between
e the spatial reproducibility and the prediction accuracy of a classifier; there-
o3 fore, the reliability of maps cannot be assessed merely by focusing on their
a prediction accuracy. To utilize this finding, they incorporated the spatial re-
s producibility of brain maps in the model selection procedure. An analogous
o approach, using a different definition of spatial reproducibility, is proposed
o by Conroy et al. [54]. Beside spatial reproducibility, the stability of the clas-
s sifiers [55] is another criterion that is used in combination with generalization
o performance to enhance the interpretability. For example, [56] 57] showed
wo that incorporating the stability of models into cross-validation improves the
1 interpretability of the estimated parameters (by linear models).
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102 The second approach to improving the interpretability of brain decoding
w3 focuses on the underlying mechanism of regularization. The main idea be-
10+ hind this approach is two-fold: 1) customizing the regularization terms to
105 address the ill-posed nature of brain decoding problems (where the number
s of samples is much less than the number of features) [58, 50] and 2) combin-
w7 ing the structural and functional prior knowledge with the decoding process
s S0 as to enhance stability selection. Group Lasso [59] and total-variation
o penalty [60] are two effective methods using this technique [61, 62]. Sparse
o penalized discriminant analysis [63], group-wise regularization [7], random-
m ized Lasso [47], smoothed-sparse logistic regression [64], total-variation L1
12 penalization [65] 66], the graph-constrained elastic-net [67, [68], and random-
us ized structural sparsity [69] are examples of brain decoding methods in which
s regularization techniques are employed to improve stability selection, and
us thus, the interpretability of brain decoding.

116 Recently, taking a new approach to the problem, Haufe et al. questioned
u7  the interpretability of weights of linear classifiers because of the contribu-
us  tion of noise in the decoding process [70} 39, [71]. To address this problem,
no they proposed a procedure to convert the linear brain decoding models into
120 their equivalent generative models. Their experiments on the simulated and
1 fMRI/EEG data illustrate that, whereas the direct interpretation of classifier
122 weights may cause severe misunderstanding regarding the actual underlying
123 effect, their proposed transformation effectively provides interpretable maps.
124 Despite the theoretical soundness, the major challenge of estimating the em-
15 pirical covariance matrix of the small sample size neuroimaging data [72]
126 limits the practical application of this method.

127 In spite of the aforementioned efforts to improve the interpretability of
s brain decoding, there is still no formal definition for the interpretability of
120 brain decoding in the literature. Therefore, the interpretability of different
10 brain decoding methods are evaluated either qualitatively or indirectly (i.e.,
13 by means of an intermediate property). In qualitative evaluation, to show
132 the superiority of one decoding method over the other (or a univariate map),
133 the corresponding brain maps are compared visually in terms of smooth-
13+ ness, sparseness, and coherency using already known facts (see, for exam-
s ple, [47, [73]). In the second approach, important factors in interpretability
s such as spatio-temporal reproducibility are evaluated to indirectly assess the
137 interpretability of results (see, for example, [46, 53], (54] [74]). Despite partial
s effectiveness, there is no general consensus regarding the quantification of
130 these intermediate criteria. For example, in the case of spatial reproducibil-
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1o ity, different methods such as correlation [53] [74], dice score [46], or parameter
11 variability [39, [54] are used for quantifying the stability of brain maps, each
12 of which considers different aspects of local or global reproducibility.

143 With the aim of filling this gap, our contribution is three-fold: 1) As-
us  suming that the true solution of brain decoding is available, we present a
us theoretical definition of the interpretability. Furthermore, we show that the
us interpretability can be decomposed into the reproducibility and the represen-
17 tativeness of brain maps. 2) As a proof of the concept, we propose a practical
us  heuristic based on event-related fields for quantifying the interpretability of
1o brain maps in MEG decoding scenarios. 3) Finally, we propose the com-
150 bination of the interpretability and the performance of the brain decoding
151 as a new Pareto optimal multi-objective criterion for model selection. We
12 experimentally show that incorporating the interpretability into the model
153 selection procedure provides more reproducible, more neurophysiologically
15« plausible, and (as a result) more interpretable maps.

15 2. Methods

156 2.1. Notation and Background

157 Let X € R? be a manifold in Euclidean space that represents the in-
158 put space and Y € R be the output space, where ) = ®*(X). Then, let
s S ={Z=XY) |z = (x1,%1),---,20 = (Tn,yn)} be a training set of n
160 independently and identically distributed (iid) samples drawn from the joint
161 distribution of Z = X x ) based on an unknown Borel probability measure p.
12 In the neuroimaging context, X indicates the trials of brain recording, e.g.,
13 fMRI, MEG, or EEG signals, and Y represents the experimental conditions
e or dependent variables. The goal of brain decoding is to find the function
165 Pg: X — Y as an estimation of the ideal function ®* : X — ).

166 As is a common assumption in the neuroimaging context, we assume the
17 true solution of a brain decoding problem is among the family of linear func-
s tions H (®* € H). Therefore, the aim of brain decoding reduces to finding
10 an empirical approximation of ®g, indicated by P, among all & € H. This
o approximation can be obtained by estimating the predictive conditional den-
i sity p(Y | X) by training a parametric model p(Y | X, 0) (i.e., a likelihood
12 function), where © denotes the parameters of the model. Alternatively, ©
113 can be estimated by solving a risk minimization problem:

0= argénin L(P(X), Ps(X) +AQ2(O) (1)
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e where £ : Z x Z — RT is the loss function, Q : R? — R* is the reg-
s ularization term, and A is a hyper-parameter that controls the amount of
e regularization. There are various choices for €2, each of which reduces the
177 hypothesis space H to H' C H by enforcing different prior functional or
178 structural constraints on the parameters of the linear decoding model (see,
o for example, [75] [76] [60L [77]). The amount of regularization A is generally de-
1o cided using cross-validation or other data perturbation methods in the model
11 selection procedure.

182 In the neuroimaging context, the estimated parameters of a linear de-
13 coding model O can be used in the form of a brain map so as to visualize
18« the discriminative neurophysiological effect. Although the magnitude of O is
15 affected by the dynamic range of data and the level of regularization, it has
185 1o effect on the predictive power and the interpretability of maps. On the
1e7 other hand, the direction of O affects the predictive power and contains in-
188 formation regarding the importance of and relations among predictors. This
19 type of relational information is very useful when interpreting brain maps in
1o which the relation between different spatio-temporal independent variables
11 can be used to describe how different brain regions interact over time for a
12 certain cognitive process. Therefore, we refer to the normalized parameter
13 vector of a linear brain decoder in the unit hyper-sphere as a multivariate
s brain map (MBM); we denote it by © where © = % (|I.]| represents the
105 2-norm of a vector).

196 As shown in Eq. [I} learning occurs using the sampled data. In other
17 words, in the learning paradigm, we attempt to minimize the loss function
s with respect to @5 (and not ®*) [78]. Therefore, all of the implicit assump-
100 tions (such as linearity) regarding ®* might not hold on ®g, and vice versa
20 (see the supplementary material for a simple illustrative example). The ir-
20 reducible error ¢ is the direct consequence of sampling; it sets a lower bound
202 on the error, where we have:

Dg(X) = 0*(X) + ¢ 2)

205 The distribution of e dictates the type of loss function £ in Eq. [ For
20 example, assuming a Gaussian distribution with mean 0 and variance o2 for
205 € implies the least squares loss function [79].

206 2.2. Interpretability of Multivariate Brain Maps: Theoretical Definition
207 In this section, we present a theoretical definition for the interpretability
208 Of linear brain decoding models and their associated MBMs. Our definition

7
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20 of interpretability is based on two main assumptions: 1) the brain decoding
20 problem is linearly separable; 2) its unique and neurophysiologically plausi-
o1 bleE| solution, i.e., ®*, is available.

212 Consider a linearly separable brain decoding problem in an ideal scenario
23 where e = 0 and rank(X) = p. In this case, ®* is linear and its parameters ©*
24 are unique and plausible. The unique parameter vector ©* can be computed
25 as follows:

0F = 2! XY (3)

216 Using ©* as the reference, we define the strong-interpretability of an MBM
217 as follows:

s Definition 1. An MBM O associated with a linear function ® is “strongly-
210 interpretable” if and only if © oc ©*.

220 It can be shown that, in practice, the estimated solution of a linear brain
21 problem (using Eq. (1)) is not strongly-interpretable because of the inherent
2» limitations of neuroimaging data, such as uncertainty [80] in the input and
23 output space (¢ # 0), the high dimensionality of data (n < p), and the
24 high correlation between predictors (rank(X) < p). With these limitations
25 in mind, even though in practice the solution of linear brain decoding is not
26 strongly-interpretable, one can argue that some are more interpretable than
»7 others. For example, in the case in which ©* o [0,1]7, a linear classifier
2 where © o [0.1,1.2]” can be considered more interpretable than a linear
20 classifier where © oc [2,1]7. This issue raises the following question:

20 Problem 1. Let S!,...,S™ be m perturbed training sets drawn from S via
a1 a certain perturbation scheme such as jackknife, bootstrapping [81], or cross-

2 validation [82]. Assume ©',...,0™ are m MBMs of a certain ® (estimated
23 using Eq. 1| for certain £, ©; and \) on the corresponding perturbed training
2 sets. How can we quantify the proximity of ® to the strongly-intrepretable
235 solution of brain decoding problem ®*7

'Here, neurophysiological plausibility refers to the spatio-temporal chemo-
physical constraints of the underlying neural activity that is highly dependent
on the acquisition device.
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236 To answer this question, considering the uniqueness and the plausibility
237 of @* as the two main characteristics that convey its strong-interpretability,
28 we define the interpretability as follows:

s Definition 2. Let o/ (j = 1,...,m) be the angle between ©’ and ©*. The
20 “interpretability” (0 < ng < 1) of the MBM derived from a linear function
21 @ is defined as follows:

Vje{l,...,m}, ne = Eg[cos(a)] (4)

242 Empirically, the interpretability is the mean of cosine similarities between
23 ©F and MBMs derived from different samplings of the training set. In ad-
24 dition to the fact that employing cosine similarity is a common method for
25 measuring the similarity between vectors, we have another strong motivation
us for this choice. It can be shown that, for large values of p, the distribution of
27 the dot product in the unit hyper-sphere, i.e., the cosine similarity, converges

\/%). Due
29 to the small variance for a large enough p values, any similarity value that is
250 significantly larger than zero represents a meaningful similarity between two
251 high dimensional vectors (see the supplementary material for more details
22 about the distribution of cosine similarity).

253 In what follows, we demonstrate how the definition of interpretability is
s geometrically related to the uniqueness and plausibility characteristics of the

255 true solution to brain decoding problem.

2s  to a normal distribution with 0 mean and variance of %, i.e., N(0,

6 2.3. Interpretability Decomposition into Reproducibility and Representative-
257 ness

258 An alternative approach toward quantifying the interpretability is to as-
250 sess separately its uniqueness and neurophysiological plausibility. In this
w0 section, we firstly define the reproducibility and representativeness as mea-
1 sures for quantifying the uniqueness and neurophysiological plausibility of
s2  brain decoding model, respectively. Then we show how these definitions are
x3 related to the definition of interpretability.

264 The high dimensionality and the high correlations between variables are
s two inherent characteristics of neuroimaging data that negatively affect the
6 uniqueness of the solution of a brain decoding problem. Therefore, a certain
7 configuration of hyper-parameters may result different estimated parameters
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xs on different portions of data. Here, we are interested in assessing this vari-
x0  ability as a measure for uniqueness. Let 95 be the ith (i = 1,...,p) element
20 of an MBM estimated on the jth (j = 1,...,m) perturbed training set. We
on first define the main multivariate brain map as follows:

o2 Definition 3. The “main multivariate brain map” 6" € R? of a linear func-

23 tion @ is defined as the sum of estimated MBMs ©7 (j =1,...,m) on the
o perturbed training sets S7 in the unit hyper-sphere:

. , qT
Do SN S i

O = 7 (5)

I[Zmo e e
215 The definition of 6" is analogous to the main prediction of a learning
26 algorithm [83]; it provides a reference for quantifying the reproducibility of

277 all MBM:

2 Definition 4. Let ©# be the main multivariate brain map of ®. Then, let

2o o be the angle between ©7 and ©#. The “reproducibility” ¥ (0 < vg < 1)
20 of an MBM derived from a linear function ® is defined as follows:

Vje{l,...,m}, vYp = Eglcos(a)] (6)

281 In fact, reproducibility provides a measure for quantifying the dispersion
22 of MBMs, computed over different perturbed training sets, from the main
253 multivariate brain map.

284 On the other hand, the coherency between the main multivariate brain
255 map of a decoder and the true solution can be employed as a measure for the

286 plausibility of a model. We refer to this coherency as the representativeness
267 of an MBM:

»s Definition 5. Let O be the main multivariate brain map of ®. The “rep-
20 resentativeness” (0 < g < 1) is defined as the cosine similarity between ©*
200 and é*Z

o — ‘ 161.6%|

EIE !

10
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201 The following proposition shows the relationship between the presented
202 definitions for reproducibility, representativeness, and the interpretability:

203 Proposition 1. ne = B3 X ¢g.

204 See for a proof. Proposition [I]indicates the interpretability

25 can be decomposed into the representativeness and the reproducibility of a
206 decoding model.

207 2.4. A Heuristic for Practical Quantification of Interpretability in Time-
208 Domain MEG decoding

200 In practice, it is impossible to evaluate the interpretability, as ®* is un-
s0 known. In this study, to provide a practical proof of the mentioned theoret-
;1 ical concepts, we propose the use of contrast event-related fields (cERFs) of
52 MEG data as neurophysiological plausible heuristics for ©* in a binary MEG
33 decoding scenario in the time domain.

304 The EEG/MEG data are a mixture of several simultaneous stimulus-
s related and stimulus-unrelated brain activities. In general, unrelated-stimulus
w6 brain activities are considered as Gaussian noise with zero mean and variance
w7 0. One popular approach to canceling the noise component is to compute
w8 the average of multiple trials. It is expected that the average will converge
30 to the true value of the signal with a variance of %2 The result of the av-
s eraging process is generally known as ERF in the MEG context; separate
i interpretation of different ERF components can be performed [84]]

312 Assume Xt = {z; e X |y, =1} e R"P and X~ = {z; € X | y; =
a3 —1} € R *P. Then, the cERF brain map O°ERF ig computed as follows:

1 1
écERF _ _nt inex+ Li = = ZmieX— T (8)

- 1 1
|7 Poext Ti = = Dopex— Til|

314 Using the core theory presented in [39], it can be shown that cERF is
a5 the equivalent generative model for the least squares solution in a binary

IThe application of the presented heuristic to MEG data can be extended to
EEG because of the inherent similarity of the measured neural correlates in these
two devices. In the EEG context, the ERF can be replaced by the event-related
potential (ERP).

11
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u6  time-domain MEG decoding scenario (see [Appendix Al). Using O°ERF a5 a

a1z heuristic for é*, the representativeness can be approximated as follows:

_ (,:j,u.écERF
N kb )
& &=
318 Where fp is an approximation of B and we have:
Bo = Dghy £ /(1 - B2)(1 — A2) (10)
310 Ap represents the cosine similarity between ©* and O°FEF (see Fig-
20 ures [B.8 and [Appendix B). If Ay — 1 then fp — S

écERF

321 In a similar manner, can be used to heuristically approximate the

32 interpretability as follows:

fio =Vj € {1,...,m},7ig = Eg(cos(7?)) (11)

323 where ~q,...,7, are the angles between ©!,...,0™ and O°ERF  The
2 following equality represents the relation between n and 7 (see Figures

w5 and [Appendix C).

ne = Aghe £ siny; + -+ +siny,,) (12)

W1 = A%
p—
326 Again, if Ag — 1 then g — 1. Notice that Ag is independent of the
27 decoding approach used; it only depends on the quality of the heuristic. It
»s can be shown that 7 = Bq; X V.
329 Eq.[12|shows that the choice of heuristic has a direct effect on the approxi-
;0 mation of interpretability and that an inappropriate selection of the heuristic
s yields a very poor estimation of interpretability because of the destructive
sz contribution of Ag. Therefore, the choice of heuristic should be carefully
;3 justified based on accepted and well-defined facts regarding the nature of the
s collected data (see the supplementary material for the experimental investi-
135 gation of the limitations of the proposed heuristic).

3
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s 2.5. Incorporating the Interpretability into Model Selection

337 The procedure for evaluating the performance of a model so as to choose
1 the best values for hyper-parameters is known as model selection [85]. This
;30 procedure generally involves numerical optimization of the model selection
uo  criterion. The most common model selection criterion is based on an estima-
s tor of generalization performance, i.e., the predictive power. In the context
sz of brain decoding, especially when the interpretability of brain maps matters,
s employing the predictive power as the only decisive criterion in model selec-
s tion is problematic in terms of interpretability [86] 53], (54]. Here, we propose
us  a multi-objective criterion for model selection that takes into account both
us  prediction accuracy and MBM interpretability.

347 Let g and d¢ be the approximated interpretability and the generalization
us  performance of a linear function ®, respectively. We propose the use of the
10 scalarization technique [87] for combining 7je and Je into one scalar 0 <
0 ((P) <1 as follows:

W1ﬁ¢+w2(sq>
o= i 02 (13)
0 5@ <K
351 where w; and wy are weights that specify the level of importance of the

2 interpretability and the performance, respectively. x is a threshold on the
13 performance that filters out solutions with poor performance. In classification
4 Scenarios, k£ can be set by adding a small safe interval to the chance level of
35 classification.

356 It can be shown that the hyper-parameters of a model ® are optimized
37 based on (g are Pareto optimal [88]. In other words, there exist no other @’
38 for which we obtain both 7j¢: > 7je and ¢ > de. We expect that optimizing

39 the hyper-parameters based on (g, rather only d¢, yields more informative
360 MBMS

sr 2.6. Fxperimental Materials

w2 2.0.1. Toy Dataset

363 To illustrate the importance of integrating the interpretability of brain
s decoding with the model selection procedure, we use simple 2-dimensional toy

365 data presented in [39]. Assume that the true underlying generative function
w6 D is defined by

N if @ =15
y(I)(X){—l if m=-15

13
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367 where X € {[1.5,0]7,[-1.5,0]7}; and z; and zy represent the first and
s the second dimension of the data, respectively. Furthermore, assume the
w0 data is contaminated by Gaussian noise with co-variance ¥ = [i(()) 23 6253 } :

5o Figure [1f shows the distribution of the noisy data.

s 2.6.2. MEG Data

372 We use the MEG dataset presented in [89]E]. The dataset was also used
a3 for the DecMeg2014 competition?] In this dataset, visual stimuli consisting
s of famous faces, unfamiliar faces, and scrambled faces are presented to 16
a5 subjects and fMRI, EEG, and MEG signals are recorded. Here, we are only
s interested in MEG recordings. The MEG data were recorded using a Vec-
wr torView system (Elekta Neuromag, Helsinki, Finland) with a magnetometer
srs - and two orthogonal planar gradiometers located at 102 positions in a hemi-
sro  spherical array in a light Elekta-Neuromag magnetically shielded room.

380 Three major reasons motivated the choice of this dataset: 1) It is publicly
;1 available. 2) The spatio-temporal dynamic of the MEG signal for face vs.
sz scramble stimuli has been well studied. The event-related potential analysis
3 of EEG/MEG shows that N170 occurs 130 — 200ms after stimulus presen-
s tation and reflects the neural processing of faces [0, 89]. Therefore, the
35 IN170 component can be considered the ground truth for our analysis. 3) In
s the literature, non-parametric mass-univariate analysis such as cluster-based
;7 permutation tests is unable to identify narrowly distributed effects in space
3 and time (e.g., an N170 component) [2,[6]. These facts motivate us to employ
;0 multivariate approaches that are more sensitive to these effects.

390 As in [51], we created a balanced face vs. scrambled MEG dataset by
s randomly drawing from the trials of unscrambled (famous or unfamiliar) faces
52 and scrambled faces in equal number. The samples in the face and scrambled
33 face categories are labeled as 1 and —1, respectively. The raw data is high-
s pass filtered at 1Hz, down-sampled to 250H z, and trimmed from 200ms
35 before the stimulus onset to 800ms after the stimulus. Thus, each trial has
15 250 time-points for each of the 306 MEG sensors (102 magnetometers and

!The full dataset is publicly available at ftp://ftp.mrc-cbu.cam.ac.uk/
personal/rik.henson/wakemandg_hensonrn/

“The competition data are available at http://www.kaggle.com/c/
decoding-the-human-brain
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so7 204 planar gradiometers)ﬂ To create the feature vector of each sample, we
18 pooled all of the temporal data of 306 MEG sensors into one vector (i.e.,
19 we have p = 250 x 306 = 76500 features for each sample). Before training
wo the classifier, all of the features are standardized to have a mean of 0 and
w1 standard-deviation of 1.

w2 2.7 Classification and Fvaluation

403 In all experiments, a least squares classifier with L1-penalization, i.e.,
ws  Lasso [75], is used for decoding. Lasso is a very popular classification method
s in the context of brain decoding, mainly because of its sparsity assumption.
ws The choice of Lasso helps us to better illustrate the importance of includ-
w7 ing the interpretability in the model selection. Lasso solves the following
w08 oOptimization problem:

6= argénin |0(X) — Bs(X)[2 + 1O, (14)

409 where A is the hyper-parameter that specifies the level of regularization.
a0 Therefore, the aim of the model selection is to find the best value for .
a1 Here, we try to find the best regularization parameter value among A =
a2 {0.001,0.01,0.1, 1, 10, 50, 100, 250, 500, 1000, 5000, 10000, 15000, 25000, 50000} .
413 We use the out-of-bag (OOB) [91], O2] method for computing e, Ve, Ss,
ns 7o, and (g for different values of A\. In OOB, given a training set (X,Y),
a5 m replications of bootstrap [81] are used to create perturbed training sets
as (we set m = 50) Pl In all of our experiments, we set w; = wy = 1 and
a7 K = 0.6 in the computation of (. Furthermore, we set g = 1 — FPE
sz where EPE indicates the expected prediction error; it is computed using the

a0 procedure explained in[Appendix F| Employing OOB provides the possibility
20 of computing the bias and variance of the model as contributing factors in

421 EPE

a2 To investigate the behavior of the proposed model selection criterion,
23 we benchmark it against the commonly used performance criterion in the
24 single-subject decoding scenario. Assuming (X;,Y;) for ¢ = 1,...,16 are
w25 MEG trial/label pairs for subject ¢, we separately train a Lasso model for

IThe preprocessing scripts in python and MATLAB are available at: https:
//github.com/FBK-NILab/DecMeg2014/

“The MATLAB code used for experiments is available at https://github.
com/smkia/interpretability/
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w6 each subject to estimate the parameter of the linear function (iDi, where Y; =
o1 X;0;. Let @9 and <I>§ represent the optimized solution based on d¢ and (o,

w28 respectively. We denote the MBM associated with Cﬁf and Cﬁf by éf and (:)f,
w0 respectively. Therefore, for each subject, we compare the resulting decoders
a0 and MBMs computed based on these two model selection criteria.

41 3. Results

w2 3.1. Performance-Interpretability Dilemma: A Toy Fxample

433 In the definition of ®* on the toy dataset discussed in Section [2.6.1], x; is
a4 the decisive variable and x5 has no effect on the classification of the data into
a5 target classes. Therefore, excluding the effect of noise and based on the the-
s ory of the maximal margin classifier [03, 94], 6* o [1,0]7 is the true solution
a7 to the decoding problem. By accounting for the effect of noise and solving

. . 1 2 T

ss  the decoding problem in (X,Y) space, we have O [W, m] as the

10 parameter of the linear classifier. Although the estimated parameters on the
wmo noisy data yield the best generalization performance for the noisy samples,
w1 any attempt to interpret this solution fails, as it yields the wrong conclusion
w2 with respect to the ground truth (it says xs has twice the influence of x;
w3 on the results, whereas it has no effect). This simple experiment shows that
aa the most accurate model is not always the most interpretable one, primarily
us  because the contribution of the noise in the decoding process [39]. On the
ws other hand, the true solution of the problem ©* does not provide the best
a7 generalization performance for the noisy data.

asg To illustrate the effect of incorporating the interpretability in the model
uo  selection, a Lasso model with different \ values is used for classifying the toy
w0 data. In this case, because 6" is known, the exact value of interpretability can
s be computed using Eq. [l Table [I] compares the resultant performance and
2 interpretability from Lasso. Lasso achieves its highest performance (d¢ =

s 0.9884) at A = 10 with © o [0.4636,0.8660]7 (indicated by the magenta
s4 line in Figure [1)). Despite having the highest performance, this solution
5 suffers from a lack of interpretability (ne = 0.4484). By increasing A, the
ss  interpretability improves so that for A = 500, 1000 the classifier reaches its
ss7 highest interpretability by compensating for 0.06 of its performance. Our
w8 observation highlights two main points:

459 1. In the case of noisy data, the interpretability of a decoding model is
460 incoherent with its performance. Thus, optimizing the parameter of
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- Positive Samples
- Negative Samples

Lex[1;2]

05

Figure 1: Noisy samples of toy data. The black line shows the true separator
based on the generative model (®*). The magenta line shows the most accurate
classification solution. Because of the contribution of noise, any interpretation of
the parameters of the most accurate classifier yields a misleading conclusion with
respect to the true underlying phenomenon [39].

Table 1: Comparison between 03, ¢, and (3 for different \ values on the toy
2D example shows the performance-interpretability dilemma, in which the most
accurate classifier is not the most interpretable one.

A ‘ 0 0.001 0.01 0.1 1 10 50 100 250 500 1000

6(®) | 0.9883 0.9883 0.9883 0.9883 0.9883 0.9884 0.9880 0.9840 0.9310 0.9292 0.9292
n(®)| 0.4391 0.4391 0.4391 0.4392 0.4400 0.4484 0.4921 0.5845 0.9968 1 1
¢(®) | 0.7137 0.7137 0.7137 0.7137 0.7142 0.7184 0.7400 0.7842 0.9639 0.9646 0.9646

é 0.4520 0.4520 0.4520 0.4521 0.4532 0.4636 0.4883 0.5800 0.99 1 1
& 0.8920 0.8920 0.8920 0.8919 0.8914 0.8660 0.8727 0.8146 0.02 0 0

461 the model based on its performance does not necessarily improve its
462 interpretability. This observation confirms the previous finding by Ras-
463 mussen et al. [53] regarding the trade-off between the spatial repro-
a64 ducibility (as a measure for the interpretability) and the prediction
465 accuracy in brain decoding.

a66 2. If the right criterion is used in the model selection, employing proper
467 regularization technique (sparsity prior, in this case) leads to more
468 interpretability for the decoding models.

wo  3.2. Mass-Univariate Hypothesis Testing on MEG Data

470 Results show that non-parametric mass-univariate analysis is unable to
a  detect narrowly distributed effects in space and time (e.g., an N170 compo-
> nent) [2,[6]. To illustrate the advantage of the proposed decoding framework

4

3
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a3 for spotting these effects, we performed a non-parametric cluster-based per-
ws  mutation test [5] on our MEG dataset using Fieldtrip toolbox [95]. In a single
a5 subject analysis scenario, we considered the trials of MEG recordings as the
a6 unit of observation in a between-trials experiment. Independent-samples t-
a7 statistics are used as the statistics for evaluating the effect at the sample level
as and to construct spatio-temporal clusters. The maximum of the cluster-level
w0 summed t-value is used for the cluster level statistics; the significance prob-
w0 ability is computed using a Monte Carlo method. The minimum number
i1 of neighboring channels for computing the clusters is set to 2. Considering
a2 0.025 as the two-sided threshold for testing the significance level and repeat-
w3 ing the procedure separately for magnetometers and combined-gradiometers,
s N0 significant result is found for any of the 16 subjects. This result motivates
w5 the search for more sensitive (and, at the same time, more interpretable)
s alternatives for hypothesis testing.

wr 3.3. Single-Subject Decoding on MEG Data

a8 In this experiment, we aim to compare the multivariate brain maps of
w0 brain decoding models when dg and (e are used as the criteria for model
w0 selection. Figure [2(a) represents the mean and standard-deviation of the
s performance and interpretability of Lasso across 16 subjects for different
w2 A values. The performance and interpretability curves further illustrate the
w03 performance-interpretability dilemma in the single-subject decoding scenario
s in which increasing the performance delivers less interpretability. The aver-
w5 age performance across subjects is improved when \ approaches 1, but on the
w6 other side, the reproducibility and the representativeness of models declines
s significantly [see Figure 2{(b)].

408 One possible reason behind the performance-interpretability dilemma is
w0 illustrated in Figure[3] The figure shows the mean and standard deviation of
so0 bias, variance, and EPE of Lasso across 16 subjects. The plot proposes that
s the effect of variance is overwhelmed by bias in the computation of EPE,
so  where the best performance (minimum EPE) at A = 1 has the lowest bias,
s03 its variance is higher than for A = 0.001,0.01,0.1. While this tiny increase
s« in the variance is not reflected in EPE but Figure (b) shows a significant
sos effect on the reproducibility.

506 Table [2| summarizes the performance, reproducibility, representativeness,
sor and interpretability of @f and Cf>f for 16 subjects. The average result over
ss 16 subjects shows that employing (¢ instead of dg in model selection pro-
s0 vides significantly higher reproducibility, representativeness, and (as a result)

18
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Figure 2: (a) Mean and standard-deviation of the performance, interpretability,
and plausibility of Lasso over 16 subjects. The performance and interpretability
become incoherent as A increases. (b) Mean and standard-deviation of the re-
producibility, representativeness, and interpretability of Lasso over 16 subjects.
The interpretability declines because of the decrease in both reproducibility and

representativeness.
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Figure 3: Mean and standard-deviation of the bias, variance, and EPE of Lasso
over 16 subjects. The effect of variance on the EPE is overwhelmed by bias.
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Table 2: The performance, reproducibility, representativeness, and interpretability
of ® and <I>§ over 16 subjects.

Subj Criterion: dg Criterion: (g
S Ca urs Ba Yo S Ca e Ba Yo
1 0.81 0.53 0.26 0.42 0.62 0.78 0.70 0.63 0.76 0.83
2 0.80 0.70 0.60 0.72 0.83 0.80 0.70 0.60 0.72 0.83
3 0.81 0.63 0.45 0.64 0.71 0.78 0.71 0.64 0.78 0.83
4 0.84 0.52 0.20 0.31 0.66 0.76 0.70 0.64 0.77 0.83
5 0.80 0.54 0.29 0.44 0.65 0.78 0.69 0.61 0.73 0.83
6 0.79 0.52 0.24 0.39 0.63 0.74 0.67 0.61 0.74 0.82
7 0.84 0.55 0.27 0.40 0.66 0.81 0.70 0.59 0.71 0.84
8 0.87 0.55 0.24 0.35 0.68 0.85 0.68 0.52 0.61 0.84
9 0.80 0.55 0.31 0.46 0.67 0.77 0.67 0.57 0.69 0.82
10 0.79 0.53 0.26 0.41 0.64 0.77 0.68 0.58 0.70 0.83
11 0.74 0.65 0.56 0.68 0.82 0.74 0.65 0.56 0.68 0.82
12 0.80 0.55 0.29 0.46 0.64 0.79 0.70 0.61 0.74 0.83
13 0.83 0.50 0.18 0.29 0.61 0.77 0.70 0.63 0.76 0.82
14 0.90 0.58 0.27 0.39 0.68 0.81 0.78 0.74 0.89 0.84
15 0.92 0.63 0.34 0.48 0.71 0.89 0.78 0.66 0.77 0.86
16 0.87 0.55 0.23 0.37 0.62 0.81 0.74 0.67 0.81 0.83
Mean [ 0.83+£0.05 0.57 + 0.05 0.31 +0.12 0.45 + 0.13 0.68 = 0.07|0.79 £+ 0.04 0.70+0.04 0.62+0.05 0.74+0.06 0.83+0.01

si0  interpretability compensating for 0.04 of performance.

511 These results are further analyzed in Figure 4| where @? and éf are com-
sz pared subject-wise in terms of their performance and interpretability. The
s13 comparison shows that adopting (s instead of d¢ as the criterion for model
siu selection yields significantly better interpretable models by compensating
si5 a negligible degree of performance in 14 out of 16 subjects. Figure (a)
si6  shows that employing dg provides on average slightly higher accurate models
sz (Wilcoxon rank sum test p-value= 0.012) across subjects (0.83 £ 0.05) than
s using (e (0.79£0.04). On the other side, Figure[4(b) shows that employing e
si9 and compensating by 0.04 in the performance provides (on average) substan-
s20 tially higher (Wilcoxon rank sum test p-value= 5.6 x 107%) interpretability
sz across subjects (0.62 4 0.05) compared to dg (0.31 £ 0.12). For example, in
s» the case of subject 1 (see table , using dg in model selection to select the
s23 best A value for the Lasso yields a model with dp = 0.81 and 76 = 0.26. In
s24  contrast, using (e delivers a model with dg = 0.78 and 7 = 0.63.

525 The advantage of the exchange between the performance and the inter-
526 pﬁretabilitﬁy can be seen in the quality of MBMs. Figure and show
527 @‘15 and é§ of subject 1, i.e., the spatio-temporal multivariate maps of the
28 Lasso models with maximum values of dp and (g, respectively. The maps
s20 are plotted for 102 magnetometer sensors. In each case, the time course of
s weights of classifiers associated with the MEG2041 and MEG1931 sensors
531 are plotted. Furthermore, the topographic maps represent the spatial pat-
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Figure 4: a) Comparison between performance of (in and @f Adopting (3 instead
of dp in model selection yields (on average) 0.04 less accurate classifiers over 16
subjects. b) Comparison between interpretability of @f and ‘if Adopting (s
instead of dg in model selection yields on average 0.31 more interpretable classifiers
over 16 subjects.

s terns of weights averaged between 184ms and 236ms after stimulus onsetEl.

533 While (;)(15 is sparse in time and space, it fails to accurately represent the
s spatio-temporal dynamic of the N170 component. Furthermore, the multi-
s35  collinearity problem arising from the correlation between the time course of
53 the MEG2041 and MEG1931 sensors causes extra attenuation of the N170
s37  effect in the MEG1931 sensor. Therefore, the model is unable to capture the

s3s  spatial pattern of the dipole in the posterior area. In contrast, (:)§ represents
s the dynamic of the N170 component in time (see Figure @ In addition,
ss0 it also shows the spatial pattern of two dipoles in the posterior and tem-

ss1. poral areas. In summary, (1)§ suggests a more representative pattern of the

s22 underlying neurophysiological effect than (:)‘f

543 In addition, optimizing the hyper-parameters of brain decoding based on
s (g offers more reproducible brain decoders. According to table[2] using (g in-
ss stead of dp provides (on average) 0.15 more reproducibility over 16 subjects.
ss6 10 illustrate the advantage o£ higherqreproducibility on the interpretability

se7 - of maps, Figure |7| visualizes é‘{ and é% over 4 perturbed training sets. The
ss  spatial maps [Figure [7[(a) and Figure[fj(c)] are plotted for the magnetometer
sa9  sensors averaged in the time interval between 184ms and 236ms after stim-
so ulus onset. The temporal maps [Figure [f|(b) and Figure [7j(d)] are showing

!The bounds of colorbars are symmetrized based on the maximum absolute
value of parameters
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Figure 5: Comparison between spatio-temporal multivariate maps of the most
accurate ( and the most interpretable ( classifiers for Subject 1. @§ provides

more spatio-temporal representativeness of the N170 effect than (;)‘{
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Figure 6: Event related fields (ERFs) of face and scrambled face samples for
MEG2041 and MEG1931 sensors.

ss1 the multivariate temporal maps of MEG1931 and MEG2041 sensors. While

552 (:)‘{ is unstable in time and space across the 4 perturbed training sets, (:)§
553 provides more reproducible maps.

ssa 4. Discussions

sss 4.1. Defining Interpretability: Theoretical Advantages

556 An overview of the brain decoding literature shows frequent co-occurrence
ss7  of the terms interpretation, interpretable, and interpretability with the terms
sss. model, classification, parameter, decoding, method, feature, and pattern (see
50 the quick meta-analysis on the literature in the supplementary material);
ss0 however, a formal formulation of the interpretability is never presented. In
se1  this study, our primary interest is to present a theoretical definition of the in-
sz terpretability of linear brain decoding models and their corresponding MBMs.
563 Furthermore, we show the way in which interpretability is related to the re-
ss«  producibility and neurophysiological representativeness of MBMs. Our defi-
sss nition and quantification of interpretability remains theoretical, as we assume
ses  that the true solution of the brain decoding problem is available. Despite
ss7 this limitation, we argue that the presented definition provides a concrete
sss  framework of a previously abstract concept and that it establishes a theoret-
ss0 ical background to explain an ambiguous phenomenon in the brain decoding
st context. We support our argument using an example in time-domain MEG
s decoding in which we show how the presented definition can be exploited
sz to heuristically approximate the interpretability. This example shows how
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Figure 7: Comparison of the reproducibility of Lasso when d¢ and (¢ are used
in the model selection procedure. (a) and (b) show the spatio-temporal patterns

represented by ©f across the 4 perturbed training sets. (c) and (d) show the

spatio-temporal patterns represented by (:)% across the 4 perturbed training sets.
FEmploying (s instead of dg in the model selection yields more reproducible MBMs.
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s73  partial prior knowledgeﬂ regarding underlying brain activity can be used to
sz find more plausible multivariate patterns in data. Furthermore, the proposed
sts  decomposition of the interpretability of MBMs into their reproducibility and
st representativeness explains the relationship between the influential coopera-
si7 - tive factors in the interpretability of brain decoding models and highlights the
szs  possibility of indirect and partial evaluation of interpretability by measuring
s7o these effective factors.

ss0 4.2. Application in Model Evaluation

581 Discriminative models in the framework of brain decoding provide higher
sz sensitivity and specificity than univariate analysis in hypothesis testing of
ss3 neuroimaging data. Although multivariate hypothesis testing is performed
ssa  based solely on the generalization performance of classifiers, the emergent
sss need for extracting reliable complementary information regarding the un-
ss  derlying neuronal activity motivated a considerable amount of research on
ss7 improving and assessing the interpretability of classifiers and their associated
sss MBMs. Despite ubiquitous use, the generalization performance of classifiers
ss9 1S not a reliable criterion for assessing the interpretability of brain decoding
soo models [53]. Therefore, considering extra criteria might be required. How-
s ever, because of the lack of a formal definition for interpretability, different
so characteristics of brain decoding models are considered as the main objec-
03 tive in improving their interpretability. Reproducibility [53] [54], stability
soe  selection [7, 47, 69], sparsity [96], and neurophysiological plausibility [97] are
sos examples of related criteria.

596 Our definition of interpretability helped us to fill this gap by introducing
so7 a new multi-objective model selection criterion as a weighted compromise be-
ses tween interpretability and generalization performance of linear models. Our
se0 experimental results on single-subject decoding showed that adopting the
o0 new criterion for optimizing the hyper-parameters of brain decoding models
01 18 an important step toward reliable visualization of learned models from
sz neuroimaging data. It is not the first time in the neuroimaging context that
03 a new metric is proposed in combination with generalization performance for
s the model selection. Several recent studies proposed the combination of the
s0s reproducibility of the maps [53, 54, [43] or the stability of the classifiers [56], [57]

IThe partial knowledge can be based on already known facts regarding the
timing and location of neural activity.
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s with the performance of discriminative models to enhance the interpretability
v of decoding models. Our definition of interpretability supports the claim that
08 the reproducibility is not the only effective factor in interpretability. There-
s00 fore, our contribution can be considered a complementary effort with respect
s10  to the state of the art of improving the interpretability of brain decoding at
s the model selection level.

612 Furthermore, this work presents an effective approach for evaluating the
sz  quality of different regularization strategies for improving the interpretability
e of MBMSs. As briefly reviewed in Section [I} there is a trend in research within
e15 the brain decoding context in which prior knowledge is injected into the pe-
s16 nalization term as a technique to improve the interpretability of decoding
sz models. Thus far, in the literature, there is no ad-hoc method to compare
sis  these different methods. Our findings provide a further step toward direct
s10 evaluation of interpretability of the currently proposed penalization strate-
20 gies. Such an evaluation can highlight the advantages and disadvantages of
s21  applying different strategies on different data types and facilitates the choice
22 of appropriate methods for a certain application.

o3 4.3. Regularization and Interpretability

624 Haufe et al. [39] demonstrated that the weight in linear discriminative
ss models are unable to accurately assess the relationship between indepen-
26 dent variables, primarily because of the contribution of noise in the decoding
27 process. The problem is primarily caused by the decoding process that min-
28 1mizes the classification error only considering the uncertainty in the output
620 space [80, 98, 99] and not the uncertainty in the input space (or noise). The
30 authors concluded that the interpretability of brain decoding cannot be im-
en  proved using regularization. Our experimental results on the toy data (see
32 Section shows that if the right criterion is used for selecting the best val-
633 ues for hyper-parameters, appropriate choice of the regularization strategy
e3« can still play significant role in improving the interpretability of results. For
35 example, in this case, the true generative function behind the sampled data
s3 1s sparse (see Section , but because of the noise in the data, the sparse
s37 model is not the most accurate one. Using a more comprehensive criterion
s (in this case, (p) shows the advantage of selecting correct prior assump-
s30 tions about the distribution of the data via regularization. This observation
sa0 encourages the modification of the conclusion in [39] as follows: if the per-
sa1 formance of the model is the only criterion in the model selection, then the
sz interpretability cannot necessarily be improved by means of regularization.
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o3 4.4. Advantage over Mass-Univariate Analysis

644 Mass-univariate hypothesis testing methods are among the most popular
s tools in neuroscience research because they provide significance checks and
ss a fair level of interpretability via univariate brain maps. Mass-univariate
sa7 analyses consist of univariate statistical tests on single independent variables
ss followed by multiple comparison correction. Generally, multiple compari-
sa0 son correction reduces the sensitivity of mass-univariate approaches because
0 of the large number of univariate tests involved. Cluster-based permuta-
1 tion testing [5] provides a more sensitive univariate analysis framework by
2 making the cluster assumption in the multiple comparison correction. Un-
3 fortunately, this method is not able to detect narrow spatio-temporal effects
e« in the data [2]. As a remedy, brain decoding provides a very sensitive tool
s for hypothesis testing; it has the ability to detect multivariate patterns, but
s suffers from a low level of interpretability. Our study proposes a possible
es7  solution for the interpretability problem of classifiers, and therefore, it facili-
ess  tates the application of brain decoding in the analysis of neuroimaging data.
5o Our experimental results for the MEG data demonstrate that, although the
s0 Tnon-parametric cluster-based permutation test is unable to detect the N170
s effect in MEG data, employing (s instead of dg in model selection not only
sz detects the stimuli-relevant information in the data, but also assures both
3 reproducible and representative spatio-temporal mapping of the timing and
s the location of underlying neurophysiological effect.

65 4.9. Limitations and Future Directions

666 Despite theoretical and practical advantages, the proposed definition and
ss7 quantification of interpretability suffer from some limitations. All of the
s presented concepts are defined for linear models, with the main assumption
oo that ®* € H (where H is a class of linear functions). This fact highlights
s0 the importance of linearizing the experimental protocol in the data collection
e phase [27]. Extending the definition of interpretability to non-linear models
ez demands future research into the visualization of non-linear models in the
e3 form of brain maps. Currently, our findings cannot be directly applied to
sz« non-linear models. Furthermore, the proposed heuristic for the time-domain
ss  MEG data applies only to binary classification. One possible solution in mul-
s ticlass classification is to separate the decoding problem into several binary
ez sub-problems. In addition the quality of the proposed heuristic is limited for
s the small sample size datasets (see supplementary material). Finding phys-
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o 10logically relevant heuristics for other acquisition modalities such as fMRI
0 can be also considered in future work.

61 b. Conclusions

682 We presented a novel theoretical definition for the interpretability of linear
3 brain decoding and associated multivariate brain maps. We demonstrated
ssa how the interpretability relates to the representativeness and reproducibility
s of brain decoding. Although it is theoretical, the presented definition pro-
s vides a first step toward practical solution for filling the knowledge extraction
se7 gap in linear brain decoding. As an example of this major breakthrough,
ses and to provide a proof of concept, a heuristic approach based on the contrast
o event-related field is proposed for practical evaluation of the interpretability
s00 in time-domain MEG decoding. We experimentally showed that adding the
o1 interpretability of brain decoding models as a criterion in the model selec-
sz tion procedure yields significantly higher interpretable models by sacrificing
03 a negligible amount of performance. Our methodological and experimental
soa achievements can be considered a complementary theoretical and practical
e0s effort that contributes to researches on enhancing the interpretability of mul-
s tivariate pattern analysis.
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0 Appendix A. cERF and its Generative Nature

701 According to [39], for a linear discriminative model with parameters ©,
702 the unique equivalent generative model can be computed as follows:

w3 In a binary (Y = {1, —1}) least squares classification scenario, we have:
A Sx S XY = XTY = ™ — (A.2)

74 where Yx represents the covariance of the input matrix X, and pu* and p~
705 are the means of positive and negative samples, respectively. Therefore,

28


https://doi.org/10.1101/047522
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/047522; this version posted April 6, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

A
62
NcERF
1 e
£
/ (_)(:F]RF
/
/ A
/ /
/ /
/
6/
/
/
/
/
f
/
! / A/ o
7
FL &
/ /
/
/
/
iy
/7
'/
/ /Yy
V4
1 g,
(a)

Figure B.8: Misrepresentation of O°ERE with respect to 6.

706 the equivalent generative model for the above classification problem can be
77 derived by computing the difference between the mean of samples in two
s classes that is equivalent to the definition of cERF in time-domain MEG
00 data.

70 Appendix B. Relation between 35 and BQ(Eq.

71 Let v be the angle between O# and ©*. Let ~" be the angle between OH
12 and O°FRF . Furthermore, assume that § is the angle between ©* and ©¢FRF
73 and that Ag = cos(d). We consider both cases in which ¢ is underesti-
na mated /overestimated by Bg (see Figure as an example in 2-dimensional
75 space). Then, we have:

v=7"%8 = cos(y) = cos(v + )

- — (B.1)
= cos(7y) cos(9) £ sin(y) sin(d) = BeAp £ \/(1 — £2)(1 - A3)
76 Appendix C. Relation between ns and 1e(Eq.
717 Let aq, ..., a,, be the angles between (:)1, cee O™ and é*, and vi,...,%m
7s be the angles between @1, e ,@m and O°ERF Furthermore, assume that
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Figure C.9: Relation between ng and 7).

no 0 is the angle between ©* and ©°FEF. We consider both cases in which
70 Mg is underestimated /overestimated by 7¢ (see Figure as an example in
1 2-dimensional space).

cos(a) + - -+ cos(am)  cos(yr £0) + -+ 4 cos(ym £ 9)

Ne =
_ cos(y1) cos(d) £ sin(yy) sin(d) + - - - 4+ cos(Yym) cos() £ sin(7yy,) sin(J)
Ag=cos(6)  Apglcos(y1) + - - - 4 cos(Yy,)] £ sin(0)[sin(yy) + -+ - + sin('ym)qC-l)

N ——
——

m

g 05 ) eosm) V01— AF
= > o = Bpfle £ —————(sin(y1) + -+ + sin(ym))

22 Appendix D. Proof of Proposition

723 Throughout this proof, we assume that all of the parameter vectors are
7¢ normalized in the unit hypersphere (see Figure as an illustrative ex-

2 ample in 2 dimensions). Let 7 = {O',...,0™} be a set m MBMs, for

—

726 m perturbed training sets where ©! € RP. Now, consider any arbitrary
727 p — l-dimensional hyperplane A that contains ©#. Clearly, A divides the
728 p-dimensional parameter space into 2 subspaces. Let V and ¥ be binary
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29 operators where ©/VO* indicates that ©' and ©F are in the same subspace,
0 and ©'WOF indicates that they are in different subspaces. Now, we define
m Ty = {6 | 6vO*} and T, = {6 | 6'¥O*}. Let the cardinality of T},
722 denoted by n(Tr) be 7 (n(T1) = j). Thus, n(TU) = m—j. Now, assume that

s £(07, A) = ay,...,q; are the angles between © € T, and A, and (similarly)

73 1, ..., Qb fOT @l € Ty and A. Based on Eq. [5 I let @“ and @“ be the main
61460 .1
IREECA

m L0 A) = £(6%, A) = «. Furthermore, assume £(6*, A) = 7. As a re-

77 sult, ¥ = cos(a) and Pp = cos(y). According to Eq. |4 and using a cosine

73s similarity definition, we have:

75 maps of T, and Ty, respectively. Therefore, we obtain OH

1 & =
= — 0.0/
.

cos(y+aq) + -+ + cos(y + o) + cos(y — ajq1) + - -+ + cos(y — o)

m
_ cos(y + a) +cos(y — ) (D.1)
_ cos(7) 005(042) — sin(y) sin(«) 4 cos(y) cos(a) + sin(7y) sin(«)
2
= cos(y) cos(a) = By X Vg.
739 A similar procedure can be used to prove 7 = B¢ X g by replacing o

0 with O¢FRE,

w1 Appendix E. Computing the Bias and Variance in Binary Classi-
742 fication

743 Here, using the out-of-bag (OOB) technique, and based on procedures
744 proposed by [83] and [100], we compute the expected prediction error (EPE)
25 for a linear binary classifier ® under bootstrap perturbation of the training
76 set. Let m be the number of perturbed training sets resulting from partition-
7 ing (X,Y) into (Xi., Ys) and (Xys, Vi), i.e., training and test sets. If P is
s the linear classifier estimated from the jth perturbed training set, then the
720 main prediction ®*(x;) for each sample in the dataset can be computed as
0 follows:
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Figure D.10: Relation between representativeness, reproducibility, and inter-
pretability in 2 dimensions.

LNk i) > L
(i) = { - RERPY SRS (E.1)
0 otherwise
751 where k; is the number of times that x; is present in the test setﬂl
752 The computation of bias is challenging because the optimal model ®*

753 is unknown. According to [I01], misclassification error is one of the loss
7 measures that satisfies a Pythagorean-type equality, and:

—Z.c ), B (x;)) = Zﬁyl, xi))—%Z£(yi,<I>*(xi)) (E.2)

755 Because all terms of the above equation are positive, the mean loss be-
6 tween the main prediction and the actual labels can be considered as an
77 upper-bound for the bias:

S L@ (x), () < Zﬁyl, (x,) (E:3)

%

Tt is expected that each sample x; € X appears (on average) k;
the test sets.
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758 Therefore, a pessimistic approximation of bias B(x;) can be calculated as
750 follows:

N JO df dR(x) =
Blxi) = {1 otherwise (E4)
760 Then, the unbiased and biased variances (see [83] for definitions) in each

71 training set can be calculated by:

o

vy = {f 1 PO KIEEE

1 Zf B(XZ) =1 and (I)M<Xi> 7é &)j(Xi>

e} —
v (i) {O otherwise (E.6)
762 Then, the expected prediction error of ® can be computed as follows
63 (ignoring the irreducible error):
1 n
EPE3(X)=— B(x;
oX) = 0 DD B)+
%,_/
) o Bias (E7>
i J J
i Z Z[Vu (x;) — V5 (xi)]
7j=1 i=1
Variance

w4 References

765 [1] E. Crivellato, D. Ribatti, Soul, mind, brain: Greek philosophy and the birth

766 of neuroscience, Brain research bulletin 71 (2007) 327-336.

767 [2] D. M. Groppe, T. P. Urbach, M. Kutas, Mass univariate analysis of event-
768 related brain potentials/fields i: A critical tutorial review, Psychophysiology
760 48 (2011) 1711-1725.

770 [3] E. Maris, Statistical testing in electrophysiological studies, Psychophysiology
771 49 (2012) 549-565.

33


https://doi.org/10.1101/047522
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/047522; this version posted April 6, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

2 [4] E. Bullmore, M. Brammer, S. C. Williams, S. Rabe-Hesketh, N. Janot,

3 A. David, J. Mellers, R. Howard, P. Sham, Statistical methods of esti-
774 mation and inference for functional mr image analysis, Magnetic Resonance
775 in Medicine 35 (1996) 261-277.

776 [5] E. Maris, R. Oostenveld, Nonparametric statistical testing of eeg-and meg-
777 data, Journal of neuroscience methods 164 (2007) 177-190.

778 [6] D. M. Groppe, T. P. Urbach, M. Kutas, Mass univariate analysis of event-
779 related brain potentials/fields ii: Simulation studies, Psychophysiology 48
780 (2011) 1726-1737.

781 [7] M. van Gerven, C. Hesse, O. Jensen, T. Heskes, Interpreting single trial data
782 using groupwise regularisation, Neurolmage 46 (2009) 665-676.

783 [8] T. Davis, K. F. LaRocque, J. A. Mumford, K. A. Norman, A. D. Wagner,
784 R. A. Poldrack, What do differences between multi-voxel and univariate
785 analysis mean? how subject-, voxel-, and trial-level variance impact fmri
786 analysis, Neurolmage 97 (2014) 271-283.

787 [9] J.-D. Haynes, G. Rees, Decoding mental states from brain activity in hu-
788 mans, Nature Reviews Neuroscience 7 (2006) 523-534.

70 [10] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, T. M.
790 Vaughan, Brain—computer interfaces for communication and control, Clini-
791 cal neurophysiology 113 (2002) 767-791.

72 [11] L. F. Nicolas-Alonso, J. Gomez-Gil, Brain computer interfaces, a review,
793 Sensors 12 (2012) 1211-1279.

704 [12] D. Bzdok, Classical statistics and statistical learning in imaging neuro-
795 science, arXiv preprint arXiv:1603.01857 (2016).

796 [13] F. Pereira, T. Mitchell, M. Botvinick, Machine learning classifiers and fMRI:
797 a tutorial overview., Neurolmage 45 (2009) 199-209.

7¢  [14] S. Lemm, B. Blankertz, T. Dickhaus, K.-R. Miiller, Introduction to machine
799 learning for brain imaging, Neuroimage 56 (2011) 387-399.

soo  [15] M. Besserve, K. Jerbi, F. Laurent, S. Baillet, J. Martinerie, L. Garnero,
801 Classification methods for ongoing eeg and meg signals, Biological research
802 40 (2007) 415-437.

34


https://doi.org/10.1101/047522
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/047522; this version posted April 6, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

so3  [16] J. V. Haxby, M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, P. Pietrini,

804 Distributed and Overlapping Representations of Faces and Objects in Ven-
805 tral Temporal Cortex, Science 293 (2001) 2425-2430.

sos  [17] D.D. Cox, R. L. Savoy, Functional magnetic resonance imaging (fmri)brain
807 reading: detecting and classifying distributed patterns of fmri activity in
808 human visual cortex, Neuroimage 19 (2003) 261-270.

soo  [18] T.M. Mitchell, R. Hutchinson, R. S. Niculescu, F. Pereira, X. Wang, M. Just,
810 S. Newman, Learning to decode cognitive states from brain images, Machine
811 Learning 57 (2004) 145-175.

sz [19] K. A. Norman, S. M. Polyn, G. J. Detre, J. V. Haxby, Beyond mind-reading;:
813 multi-voxel pattern analysis of fmri data, Trends in cognitive sciences 10
814 (2006) 424-430.

sis [20] L. Parra, C. Alvino, A. Tang, B. Pearlmutter, N. Yeung, A. Osman, P. Sajda,
816 Single-trial detection in EEG and MEG: Keeping it linear, Neurocomputing
817 52-54 (2003) 177-183.

sis  [21] J. W. Rieger, C. Reichert, K. R. Gegenfurtner, T. Noesselt, C. Braun, H.-J.
819 Heinze, R. Kruse, H. Hinrichs, Predicting the recognition of natural scenes
820 from single trial meg recordings of brain activity, Neuroimage 42 (2008)
821 1056—-1068.

s22  [22] M. K. Carroll, G. A. Cecchi, I. Rish, R. Garg, A. R. Rao, Prediction and
823 interpretation of distributed neural activity with sparse models, Neurolmage
824 44 (2009) 112-122.

g5 [23] A. M. Chan, E. Halgren, K. Marinkovic, S. S. Cash, Decoding word and
826 category-specific spatiotemporal representations from meg and eeg, Neu-
827 roimage 54 (2011) 3028-3039.

28 [24] H. Huttunen, T. Manninen, J.-P. Kauppi, J. Tohka, Mind reading with
820 regularized multinomial logistic regression, Machine vision and applications
830 24 (2013) 1311-1325.

ss1  [25] D. Vidaurre, C. Bielza, P. Larranaga, A survey of 11 regression, International
832 Statistical Review 81 (2013) 361-387.

ss3  [26] M. Abadi, R. Subramanian, S. Kia, P. Avesani, I. Patras, N. Sebe, De-
834 caf: Meg-based multimodal database for decoding affective physiological re-
835 sponses, IEEE Transactions on Affective Computing 6 (2015) 209-222.

35


https://doi.org/10.1101/047522
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/047522; this version posted April 6, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

sss  |27] T. Naselaris, K. N. Kay, S. Nishimoto, J. L. Gallant, Encoding and decoding

837 in fmri, Neuroimage 56 (2011) 400-410.

s [28] S. Weichwald, T. Meyer, O. Ozdenizci, B. Scholkopf, T. Ball, M. Grosse-
839 Wentrup, Causal interpretation rules for encoding and decoding models in
840 neuroimaging, Neurolmage 110 (2015) 48-59.

sa1 [29] N. Kriegeskorte, R. Goebel, P. Bandettini, Information-based functional
842 brain mapping, Proceedings of the National Academy of Sciences of the
843 United States of America 103 (2006) 3863-3868.

sas - [30] F. J. Valverde-Albacete, C. Peldez-Moreno, 100% classification accuracy
845 considered harmful: The normalized information transfer factor explains
846 the accuracy paradox, PLOS ONE 9 (2014) e84217.

sa7  [31] A. Ramdas, A. Singh, L. Wasserman, Classification accuracy as a proxy for
848 two sample testing, arXiv preprint arXiv:1602.02210 (2016).

sa0  [32] R. Turner, A model explanation system, 2015.

sso  [33] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, K.-R.

851 Miiller, How to explain individual classification decisions, The Journal of
852 Machine Learning Research 11 (2010) 1803-1831.

53 [34] A. Vellido, J. Martin-Guerroro, P. Lisboa, Making machine learning models
854 interpretable, in: Proceedings of the 20th European Symposium on Arti-
855 ficial Neural Networks, Computational Intelligence and Machine Learning
856 (ESANN). Bruges, Belgium, 2012, pp. 163-172.

ss7 [35] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Miiller, W. Samek,
858 On pixel-wise explanations for non-linear classifier decisions by layer-wise
859 relevance propagation, PloS one 10 (2015).

so  [36] G. Montavon, M. Braun, T. Krueger, K.-R. Muller, Analyzing local struc-
861 ture in kernel-based learning: Explanation, complexity, and reliability as-
862 sessment, Signal Processing Magazine, IEEE 30 (2013) 62-74.

ss3  [37] D. Yu, S. J. Lee, W. J. Lee, S. C. Kim, J. Lim, S. W. Kwon, Classification
864 of spectral data using fused lasso logistic regression, Chemometrics and
865 Intelligent Laboratory Systems 142 (2015) 70-77.

sss  [38] K. Hansen, D. Baehrens, T. Schroeter, M. Rupp, K.-R. Miiller, Visual
867 interpretation of kernel-based prediction models, Molecular Informatics 30
868 (2011) 817-826.

36


https://doi.org/10.1101/047522
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/047522; this version posted April 6, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

so  [39] S. Haufe, F. Meinecke, K. Gorgen, S. Dahne, J.-D. Haynes, B. Blankertz,
870 F. BieBmann, On the interpretation of weight vectors of linear models in
871 multivariate neuroimaging, Neurolmage (2013).

sz [40] M. R. Sabuncu, A universal and efficient method to compute maps from
873 image-based prediction models, Medical Image Computing and Computer-
874 Assisted Intervention-MICCAI 2014 (2014) 353-360.

srs |41] J.-D. Haynes, A primer on pattern-based approaches to fmri: Principles,
876 pitfalls, and perspectives, Neuron 87 (2015) 257-270.

sr7  [42] T. Naselaris, K. N. Kay, Resolving ambiguities of mvpa using explicit models
878 of representation, Trends in cognitive sciences 19 (2015) 551-554.

sro  [43] S. C. Strother, P. M. Rasmussen, N. W. Churchill, K. Hansen, Stability and

880 Reproducibility in fMRI Analysis, New York: Springer-Verlag, 2014.

ss1  |44] A. Anderson, J. S. Labus, E. P. Vianna, E. A. Mayer, M. S. Cohen, Com-
882 mon component classification: What can we learn from machine learning?,
883 Neuroimage 56 (2011) 517-524.

ssa  [45] K. H. Brodersen, F. Haiss, C. S. Ong, F. Jung, M. Tittgemeyer, J. M.
885 Buhmann, B. Weber, K. E. Stephan, Model-based feature construction for
886 multivariate decoding, Neurolmage 56 (2011) 601-615.

ss7  |46] G. Langs, B. H. Menze, D. Lashkari, P. Golland, Detecting stable distributed
888 patterns of brain activation using gini contrast, Neurolmage 56 (2011) 497—
839 507.

so  [47] G. Varoquaux, A. Gramfort, B. Thirion, Small-sample brain mapping:
891 sparse recovery on spatially correlated designs with randomization and clus-
892 tering, in: Proceedings of the 29th International Conference on Machine
893 Learning (ICML-12), 2012, pp. 1375-1382.

sa  [48] J.-P. Kauppi, L. Parkkonen, R. Hari, A. Hyvérinen, Decoding magnetoen-
895 cephalographic rhythmic activity using spectrospatial information, Neurolm-
896 age 83 (2013) 921-936.

so7  [49] S. Taulu, J. Simola, J. Nenonen, L. Parkkonen, Novel noise reduction meth-
898 ods, Magnetoencephalography (2014) 35-71.

so  [50] G. Varoquaux, B. Thirion, How machine learning is shaping cognitive neu-
900 roimaging, GigaScience 3 (2014) 28.

37


https://doi.org/10.1101/047522
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/047522; this version posted April 6, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

o1 [51] E. Olivetti, S. M. Kia, P. Avesani, Meg decoding across subjects, in: Pattern
902 Recognition in Neuroimaging, 2014 International Workshop on, IEEE, 2014.

o3 [52] S. Haufe, S. Dahne, V. V. Nikulin, Dimensionality reduction for the analysis
904 of brain oscillations, Neurolmage (2014).

os  [53] P. M. Rasmussen, L. K. Hansen, K. H. Madsen, N. W. Churchill, S. C.

906 Strother, Model sparsity and brain pattern interpretation of classification
907 models in neuroimaging, Pattern Recognition 45 (2012) 2085-2100.

ws [54] B. R. Conroy, J. M. Walz, P. Sajda, Fast bootstrapping and permutation
909 testing for assessing reproducibility and interpretability of multivariate fmri
910 decoding models, PloS one 8 (2013) e79271.

o [55] O. Bousquet, A. Elisseeff, Stability and generalization, The Journal of
012 Machine Learning Research 2 (2002) 499-526.

o3 [56] B. Yu, Stability, Bernoulli 19 (2013) 1484-1500.

o [57] C. Lim, B. Yu, Estimation stability with cross validation (escv), Journal of

915 Computational and Graphical Statistics (2015).

ais  [58] N. Mgrch, L. K. Hansen, S. C. Strother, C. Svarer, D. A. Rottenberg,
917 B. Lautrup, R. Savoy, O. B. Paulson, Nonlinear versus linear models in
018 functional neuroimaging: Learning curves and generalization crossover, in:
919 Information processing in medical imaging, Springer Berlin Heidelberg, 1997,
920 pp- 259-270.

o1 [59] M. Yuan, Y. Lin, Model selection and estimation in regression with grouped
922 variables, Journal of the Royal Statistical Society: Series B (Statistical
023 Methodology) 68 (2006) 49-67.

o2a  [60] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, K. Knight, Sparsity and
025 smoothness via the fused lasso, Journal of the Royal Statistical Society:
926 Series B (Statistical Methodology) 67 (2005) 91-108.

o7 [61] E. P. Xing, M. Kolar, S. Kim, X. Chen, High-dimensional sparse structured
928 input-output models, with applications to gwas, Practical Applications of
929 Sparse Modeling (2014) 37.

s0  [62] L. Rish, G. A. Cecchi, A. Lozano, A. Niculescu-Mizil, Practical Applications
031 of Sparse Modeling, MIT Press, 2014.

38


https://doi.org/10.1101/047522
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/047522; this version posted April 6, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

o2 [63] L. Grosenick, S. Greer, B. Knutson, Interpretable classifiers for fmri improve

033 prediction of purchases, Neural Systems and Rehabilitation Engineering,
034 IEEE Transactions on 16 (2008) 539-548.

o35 [64] M. de Brecht, N. Yamagishi, Combining sparseness and smoothness improves
936 classification accuracy and interpretability, Neurolmage 60 (2012) 1550—
937 1561.

ss  [65] V. Michel, A. Gramfort, G. Varoquaux, E. Eger, B. Thirion, Total variation
030 regularization for fmri-based prediction of behavior, Medical Imaging, IEEE
940 Transactions on 30 (2011) 1328-1340.

aar  [66] A. Gramfort, B. Thirion, G. Varoquaux, Identifying predictive regions from
942 fmri with tv-11 prior, in: Pattern Recognition in Neuroimaging (PRNI), 2013
043 International Workshop on, IEEE, 2013, pp. 17-20.

aa  [67] L. Grosenick, B. Klingenberg, S. Greer, J. Taylor, B. Knutson, Whole-brain
945 sparse penalized discriminant analysis for predicting choice, Neurolmage 47
046 (2009) S58.

w7 [68] L. Grosenick, B. Klingenberg, K. Katovich, B. Knutson, J. E. Taylor, In-
948 terpretable whole-brain prediction analysis with graphnet, Neurolmage 72
949 (2013) 304-321.

o [69] Y. Wang, J. Zheng, S. Zhang, X. Duan, H. Chen, Randomized structural
951 sparsity via constrained block subsampling for improved sensitivity of dis-
952 criminative voxel identification, Neurolmage (2015).

o3 [70] F. BieBmann, S. Dahne, F. C. Meinecke, B. Blankertz, K. Gorgen, K.-R.

054 Miiller, S. Haufe, On the interpretability of linear multivariate neuroimaging
055 analyses: filters, patterns and their relationship, in: Proceedings of the 2nd
956 NIPS Workshop on Machine Learning and Interpretation in Neuroimaging,
057 2012.

s [71] S. Haufe, F. Meinecke, K. Gorgen, S. Dahne, J.-D. Haynes, B. Blankertz,
959 F. Biessmann, Parameter interpretation, regularization and source localiza-
960 tion in multivariate linear models, in: Pattern Recognition in Neuroimaging,
961 2014 International Workshop on, IEEE, 2014, pp. 1-4.

o2 [72] D. A. Engemann, A. Gramfort, Automated model selection in covariance
963 estimation and spatial whitening of meg and eeg signals, Neurolmage 108
964 (2015) 328-342.

39


https://doi.org/10.1101/047522
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/047522; this version posted April 6, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

o5 [73] Z. Li, Y. Wang, Y. Wang, X. Wang, J. Zheng, H. Chen, A novel feature

966 selection approach for analyzing high dimensional functional mri data, arXiv
967 preprint arXiv:1506.08301 (2015).

ws [74] S. M. Kia, S. Vega-Pons, E. Olivetti, P. Avesani, Multi-task learning for
969 interpretation of brain decoding models, in: NIPS Workshop on Machine
970 Learning and Interpretation in Neuroimaging (MLINI), 2014, Springer Lec-
o71 ture Notes on Artificial Intelligence Series, In press.

o2 [75] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of

073 the Royal Statistical Society. Series B (Methodological) (1996) 267-288.

ora  [76] H. Zou, T. Hastie, Regularization and variable selection via the elastic net,
075 Journal of the Royal Statistical Society: Series B 67 (2005) 301-320.

o6 [77] R. Jenatton, J.-Y. Audibert, F. Bach, Structured variable selection with
077 sparsity-inducing norms, arXiv preprint arXiv:0904.3523 (2009).

ars  [78] T. Poggio, C. Shelton, On the mathematical foundations of learning, Amer-
079 ican Mathematical Society 39 (2002) 1-49.

o [79] M. C.-K. Wu, S. V. David, J. L. Gallant, Complete functional characteri-
081 zation of sensory neurons by system identification, Annu. Rev. Neurosci. 29
082 (2006) 477-505.

w3 [80] C.C. Aggarwal, P. S. Yu, A survey of uncertain data algorithms and appli-
084 cations, Knowledge and Data Engineering, IEEE Transactions on 21 (2009)
%85 609-623.

s [81] B. Efron, Bootstrap methods: another look at the jackknife, The annals of
087 Statistics (1979) 1-26.

s [82] R. Kohavi, et al., A study of cross-validation and bootstrap for accuracy
989 estimation and model selection, in: Ijcai, volume 14, 1995, pp. 1137-1145.

oo [83] P.Domingos, A unified bias-variance decomposition for zero-one and squared
991 loss, AAAT/TAAT 2000 (2000) 564-569.

w2 [84] M. D. Rugg, M. G. Coles, Electrophysiology of mind: Event-related brain
993 potentials and cognition., Oxford University Press, 1995.

ss  [85] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning,
995 volume 2, Springer, 2009.

40


https://doi.org/10.1101/047522
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/047522; this version posted April 6, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

ws  [86] A. Gramfort, G. Varoquaux, B. Thirion, Beyond brain reading: randomized

997 sparsity and clustering to simultaneously predict and identify, in: Machine
998 Learning and Interpretation in Neuroimaging, Springer, 2012, pp. 9-16.

oo [87] M. Caramia, P. Dell” Olmo, Multi-objective optimization, Multi-objective
1000 Management in Freight Logistics: Increasing Capacity, Service Level and
1001 Safety with Optimization Algorithms (2008) 11-36.

w2 [88] R. T. Marler, J. S. Arora, Survey of multi-objective optimization methods
1003 for engineering, Structural and multidisciplinary optimization 26 (2004)
1004 369-395.

wos  [89] R. N. Henson, D. G. Wakeman, V. Litvak, K. J. Friston, A Parametric Em-
1006 pirical Bayesian framework for the EEG/MEG inverse problem: generative
1007 models for multisubject and multimodal integration, Frontiers in Human
1008 Neuroscience 5 (2011).

woe  [90] S. Bentin, T. Allison, A. Puce, E. Perez, G. McCarthy, Electrophysiological
1010 studies of face perception in humans, Journal of cognitive neuroscience 8
1011 (1996) 551-565.

w2 [91] D. H. Wolpert, W. G. Macready, An efficient method to estimate bagging’s
1013 generalization error, Machine Learning 35 (1999) 41-55.

4 [92] L. Breiman, Random forests, Machine learning 45 (2001) 5-32.

s [93] V. N. Vapnik, S. Kotz, Estimation of dependences based on empirical data,

1016 volume 40, Springer-verlag New York, 1982.

w7 [94] V. Vapnik, The nature of statistical learning theory, Springer Science &
1018 Business Media, 2013.

o [95] R. Oostenveld, P. Fries, E. Maris, J.-M. Schoffelen, Fieldtrip: open source
1020 software for advanced analysis of meg, eeg, and invasive electrophysiological
1021 data, Computational intelligence and neuroscience 2011 (2010).

w2 [96] S. Dash, D. M. Malioutov, K. R. Varshney, Learning interpretable classifi-

1023 cation rules using sequential rowsampling, in: Acoustics, Speech and Signal
1024 Processing (ICASSP), 2015 IEEE International Conference on, IEEE, 2015,
1025 pp. 3337-3341.

w6 [97] B. Afshin-Pour, H. Soltanian-Zadeh, G.-A. Hossein-Zadeh, C. L. Grady, S. C.
1027 Strother, A mutual information-based metric for evaluation of fmri data-
1028 processing approaches, Human brain mapping 32 (2011) 699-715.

41


https://doi.org/10.1101/047522
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/047522; this version posted April 6, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

w9 [98] J. B. T. Zhang, Support vector classification with input data uncertainty,
1030 Advances in neural information processing systems 17 (2005) 161.

w1 [99] C. Tzelepis, V. Mezaris, 1. Patras, Linear maximum margin classifier for

1032 learning from uncertain data, arXiv preprint arXiv:1504.03892 (2015).

w33 [100] G. Valentini, T. G. Dietterich, Bias-variance analysis of support vector
1034 machines for the development of svm-based ensemble methods, The Journal
1035 of Machine Learning Research 5 (2004) 725-775.

s [101] R. Tibshirani, Bias, variance and prediction error for classification rules,
1037 University of Toronto, Department of Statistics, 1996.

42


https://doi.org/10.1101/047522
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Methods
	Notation and Background
	Interpretability of Multivariate Brain Maps: Theoretical Definition
	Interpretability Decomposition into Reproducibility and Representativeness
	A Heuristic for Practical Quantification of Interpretability in Time-Domain MEG decoding
	Incorporating the Interpretability into Model Selection
	Experimental Materials
	Toy Dataset
	MEG Data

	Classification and Evaluation

	Results
	Performance-Interpretability Dilemma: A Toy Example
	Mass-Univariate Hypothesis Testing on MEG Data
	Single-Subject Decoding on MEG Data

	Discussions
	Defining Interpretability: Theoretical Advantages
	Application in Model Evaluation
	Regularization and Interpretability
	Advantage over Mass-Univariate Analysis
	Limitations and Future Directions

	Conclusions
	cERF and its Generative Nature
	Relation between  and (Eq.  10)
	Relation between  and (Eq.  12)
	Proof of Proposition 1
	Computing the Bias and Variance in Binary Classification

