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Abstract

Brain decoding is a popular multivariate approach for hypothesis testing in
neuroimaging. Linear classifiers are widely employed in the brain decoding
paradigm to discriminate among experimental conditions. Then, the derived
linear weights are visualized in the form of multivariate brain maps to fur-
ther study the spatio-temporal patterns of underlying neural activities. It
is well known that the brain maps derived from weights of linear classifiers
are hard to interpret because of high correlations between predictors, low
signal to noise ratios, and the high dimensionality of neuroimaging data.
Therefore, improving the interpretability of brain decoding approaches is of
primary interest in many neuroimaging studies. Despite extensive studies
of this type, at present, there is no formal definition for interpretability of
multivariate brain maps. As a consequence, there is no quantitative mea-
sure for evaluating the interpretability of different brain decoding methods.
In this paper, first, we present a theoretical definition of interpretability in
brain decoding; we show that the interpretability of multivariate brain maps
can be decomposed into their reproducibility and representativeness. Sec-
ond, as an application of the proposed definition, we formalize a heuristic
method for approximating the interpretability of multivariate brain maps in
a binary magnetoencephalography (MEG) decoding scenario. Third, we pro-
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pose to combine the approximated interpretability and the performance of
the brain decoding into a new multi-objective criterion for model selection.
Our results for the MEG data show that optimizing the hyper-parameters
of the regularized linear classifier based on the proposed criterion results in
more informative multivariate brain maps. More importantly, the presented
definition provides the theoretical background for quantitative evaluation of
interpretability, and hence, facilitates the development of more effective brain
decoding algorithms in the future.

Keywords: MVPA, brain decoding, brain mapping, interpretation, model
selection

1. Introduction1

Understanding the mechanisms of the brain has been a crucial topic2

throughout the history of science. Ancient Greek philosophers envisaged3

different functionalities for the brain ranging from cooling the body to act-4

ing as the seat of the rational soul and the center of sensation [1]. Modern5

cognitive science, emerging in the 20th century, provides better insight into6

the brain’s functionality. In cognitive science, researchers usually analyze7

recorded brain activity and behavioral parameters to discover the answers of8

where, when, and how a brain region participates in a particular cognitive9

process.10

To answer the key questions in cognitive science, scientists often employ11

mass-univariate hypothesis testing methods to test scientific hypotheses on a12

large set of independent variables [2, 3]. Mass-univariate hypothesis testing13

is based on performing multiple tests, e.g., t-tests, one for each unit of the14

neuroimaging data, i.e., independent variables. The high spatial and tempo-15

ral granularity of the univariate tests provides fair level of interpretability.16

On the down side, the high dimensionality of neuroimaging data requires17

a large number of tests that reduces the sensitivity of these methods af-18

ter multiple comparison correction. Although some techniques such as the19

non-parametric cluster-based permutation test [4, 5] offer more sensitivity20

because of the cluster assumption, they still experience low sensitivity to21

brain activities that are narrowly distributed in time and space [2, 6]. The22

multivariate counterparts of mass-univariate analysis, known generally as23

multivariate pattern analysis (MVPA), have the potential to overcome these24

deficits. Multivariate approaches are capable of identifying complex spatio-25
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temporal interactions between different brain areas with higher sensitivity26

and specificity than univariate analysis [7], especially in group analysis of27

neuroimaging data [8].28

Brain decoding [9] is an MVPA technique that delivers a model to predict29

the mental state of a human subject based on the recorded brain signal.30

There are two potential applications for brain decoding: 1) brain-computer31

interfaces (BCIs) [10, 11], and 2) multivariate hypothesis testing [12]. In the32

first case, a brain decoder with maximum prediction power is desired. In the33

second case, in addition to the prediction power, extra information on the34

spatio-temporal nature of a cognitive process is desired. In this study, we are35

interested in the second application of brain decoding that can be considered36

a multivariate alternative for mass-univariate hypothesis testing.37

In brain decoding, generally, linear classifiers are used to assess the rela-38

tion between independent variables, i.e., features, and dependent variables,39

i.e., cognitive tasks [13, 14, 15]. This assessment is performed by solving a40

linear optimization problem that assigns weights to each independent vari-41

able. Currently, brain decoding is the gold standard in multivariate analysis42

for functional magnetic resonance imaging (fMRI) [16, 17, 18, 19] and magne-43

toencephalogram/electroencephalogram (MEEG) studies [20, 21, 22, 23, 24,44

25, 26]. It has been shown that brain decoding can be used in combination45

with brain encoding [27] to infer the causal relationship between stimuli and46

responses [28].47

Brain mapping [29] is a higher form of neuroimaging that assigns pre-48

computed quantities, e.g., univariate statistics or weights of a linear classi-49

fier, to the spatio-temporal representation of neuroimaging data. In MVPA,50

brain mapping uses the learned parameters from brain decoding to produce51

brain maps, in which the engagement of different brain areas in a cognitive52

task is visualized. Intuitively, the interpretability of a brain decoder refers to53

the level of information that can be reliably derived by an expert from the54

resulting maps. From the neuroscientific perspective, a brain map is consid-55

ered interpretable if it enables the scientist to answer where, when, and how56

questions.57

Typically, a trained classifier is a black box that predicts the label of58

an unseen data point with some accuracy. Valverde-Albacete and Peláez-59

Moreno [30] experimentally showed that in a classification task optimizing60

only classification error rate is insufficient to capture the transfer of crucial61

information from the input to the output of a classifier. It is also shown62

by Ramdas et al. [31] that in the case of data with small sample size using63
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the classification accuracy as a test statistic for two sample testing should be64

performed with extra cautious. Beside these limitations of classification ac-65

curacy in inference, and considering the fact that the best predictive model66

might not be the most informative one [32]; a classifier, taken alone, only67

answers the question of what is the most likely label of a given unseen sam-68

ple [33]. This fact is generally known as knowledge extraction gap [34] in69

the classification context. Thus far, many efforts have been devoted to filling70

the knowledge extraction gap of linear and non-linear data modeling meth-71

ods in different areas such as computer vision [35], signal processing [36],72

chemometrics [37], bioinformatics [38], and neuroinformatics [39].73

Despite the theoretical advantages of MVPA, its practical application to74

inferences regarding neuroimaging data is limited primarily by a lack of in-75

terpretability [40, 41, 42]. Therefore, improving the interpretability of linear76

brain decoding and associated brain maps is a primary goal in the brain imag-77

ing literature [43]. The lack of interpretability of multivariate brain maps is78

a direct consequence of low signal-to-noise ratios (SNRs), high dimensional-79

ity of whole-scalp recordings, high correlations among different dimensions of80

data, and cross-subject variability [15, 44, 45, 14, 46, 47, 48, 49, 50, 51, 52, 41].81

At present, two main approaches are proposed to enhance the interpretabil-82

ity of multivariate brain maps: 1) introducing new metrics into the model83

selection procedure and 2) introducing new penalty terms for regularization84

to enhance stability selection.85

The first approach to improving the interpretability of brain decoding86

concentrates on the model selection procedure. Model selection is a pro-87

cedure in which the best values for the hyper-parameters of a model are88

determined [14]. The selection process is generally performed by considering89

the generalization performance, i.e., the accuracy, of a model as the decisive90

criterion. Rasmussen et al. [53] showed that there is a trade-off between91

the spatial reproducibility and the prediction accuracy of a classifier; there-92

fore, the reliability of maps cannot be assessed merely by focusing on their93

prediction accuracy. To utilize this finding, they incorporated the spatial re-94

producibility of brain maps in the model selection procedure. An analogous95

approach, using a different definition of spatial reproducibility, is proposed96

by Conroy et al. [54]. Beside spatial reproducibility, the stability of the clas-97

sifiers [55] is another criterion that is used in combination with generalization98

performance to enhance the interpretability. For example, [56, 57] showed99

that incorporating the stability of models into cross-validation improves the100

interpretability of the estimated parameters (by linear models).101
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The second approach to improving the interpretability of brain decoding102

focuses on the underlying mechanism of regularization. The main idea be-103

hind this approach is two-fold: 1) customizing the regularization terms to104

address the ill-posed nature of brain decoding problems (where the number105

of samples is much less than the number of features) [58, 50] and 2) combin-106

ing the structural and functional prior knowledge with the decoding process107

so as to enhance stability selection. Group Lasso [59] and total-variation108

penalty [60] are two effective methods using this technique [61, 62]. Sparse109

penalized discriminant analysis [63], group-wise regularization [7], random-110

ized Lasso [47], smoothed-sparse logistic regression [64], total-variation L1111

penalization [65, 66], the graph-constrained elastic-net [67, 68], and random-112

ized structural sparsity [69] are examples of brain decoding methods in which113

regularization techniques are employed to improve stability selection, and114

thus, the interpretability of brain decoding.115

Recently, taking a new approach to the problem, Haufe et al. questioned116

the interpretability of weights of linear classifiers because of the contribu-117

tion of noise in the decoding process [70, 39, 71]. To address this problem,118

they proposed a procedure to convert the linear brain decoding models into119

their equivalent generative models. Their experiments on the simulated and120

fMRI/EEG data illustrate that, whereas the direct interpretation of classifier121

weights may cause severe misunderstanding regarding the actual underlying122

effect, their proposed transformation effectively provides interpretable maps.123

Despite the theoretical soundness, the major challenge of estimating the em-124

pirical covariance matrix of the small sample size neuroimaging data [72]125

limits the practical application of this method.126

In spite of the aforementioned efforts to improve the interpretability of127

brain decoding, there is still no formal definition for the interpretability of128

brain decoding in the literature. Therefore, the interpretability of different129

brain decoding methods are evaluated either qualitatively or indirectly (i.e.,130

by means of an intermediate property). In qualitative evaluation, to show131

the superiority of one decoding method over the other (or a univariate map),132

the corresponding brain maps are compared visually in terms of smooth-133

ness, sparseness, and coherency using already known facts (see, for exam-134

ple, [47, 73]). In the second approach, important factors in interpretability135

such as spatio-temporal reproducibility are evaluated to indirectly assess the136

interpretability of results (see, for example, [46, 53, 54, 74]). Despite partial137

effectiveness, there is no general consensus regarding the quantification of138

these intermediate criteria. For example, in the case of spatial reproducibil-139
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ity, different methods such as correlation [53, 74], dice score [46], or parameter140

variability [39, 54] are used for quantifying the stability of brain maps, each141

of which considers different aspects of local or global reproducibility.142

With the aim of filling this gap, our contribution is three-fold: 1) As-143

suming that the true solution of brain decoding is available, we present a144

theoretical definition of the interpretability. Furthermore, we show that the145

interpretability can be decomposed into the reproducibility and the represen-146

tativeness of brain maps. 2) As a proof of the concept, we propose a practical147

heuristic based on event-related fields for quantifying the interpretability of148

brain maps in MEG decoding scenarios. 3) Finally, we propose the com-149

bination of the interpretability and the performance of the brain decoding150

as a new Pareto optimal multi-objective criterion for model selection. We151

experimentally show that incorporating the interpretability into the model152

selection procedure provides more reproducible, more neurophysiologically153

plausible, and (as a result) more interpretable maps.154

2. Methods155

2.1. Notation and Background156

Let X ∈ Rp be a manifold in Euclidean space that represents the in-157

put space and Y ∈ R be the output space, where Y = Φ∗(X ). Then, let158

S = {Z = (X,Y) | z1 = (x1, y1), . . . , zn = (xn, yn)} be a training set of n159

independently and identically distributed (iid) samples drawn from the joint160

distribution of Z = X×Y based on an unknown Borel probability measure ρ.161

In the neuroimaging context, X indicates the trials of brain recording, e.g.,162

fMRI, MEG, or EEG signals, and Y represents the experimental conditions163

or dependent variables. The goal of brain decoding is to find the function164

ΦS : X→ Y as an estimation of the ideal function Φ∗ : X → Y .165

As is a common assumption in the neuroimaging context, we assume the166

true solution of a brain decoding problem is among the family of linear func-167

tions H (Φ∗ ∈ H). Therefore, the aim of brain decoding reduces to finding168

an empirical approximation of ΦS, indicated by Φ̂, among all Φ ∈ H. This169

approximation can be obtained by estimating the predictive conditional den-170

sity ρ(Y | X) by training a parametric model ρ(Y | X,Θ) (i.e., a likelihood171

function), where Θ denotes the parameters of the model. Alternatively, Θ172

can be estimated by solving a risk minimization problem:173

Θ̂ = argmin
Θ
L(Φ(X),ΦS(X) + λΩ(Θ) (1)
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where L : Z × Z → R+ is the loss function, Ω : Rp → R+ is the reg-174

ularization term, and λ is a hyper-parameter that controls the amount of175

regularization. There are various choices for Ω, each of which reduces the176

hypothesis space H to H′ ⊂ H by enforcing different prior functional or177

structural constraints on the parameters of the linear decoding model (see,178

for example, [75, 76, 60, 77]). The amount of regularization λ is generally de-179

cided using cross-validation or other data perturbation methods in the model180

selection procedure.181

In the neuroimaging context, the estimated parameters of a linear de-182

coding model Θ̂ can be used in the form of a brain map so as to visualize183

the discriminative neurophysiological effect. Although the magnitude of Θ̂ is184

affected by the dynamic range of data and the level of regularization, it has185

no effect on the predictive power and the interpretability of maps. On the186

other hand, the direction of Θ̂ affects the predictive power and contains in-187

formation regarding the importance of and relations among predictors. This188

type of relational information is very useful when interpreting brain maps in189

which the relation between different spatio-temporal independent variables190

can be used to describe how different brain regions interact over time for a191

certain cognitive process. Therefore, we refer to the normalized parameter192

vector of a linear brain decoder in the unit hyper-sphere as a multivariate193

brain map (MBM); we denote it by ~Θ where ~Θ = Θ
‖Θ‖ (‖.‖ represents the194

2-norm of a vector).195

As shown in Eq. 1, learning occurs using the sampled data. In other196

words, in the learning paradigm, we attempt to minimize the loss function197

with respect to ΦS (and not Φ∗) [78]. Therefore, all of the implicit assump-198

tions (such as linearity) regarding Φ∗ might not hold on ΦS, and vice versa199

(see the supplementary material for a simple illustrative example). The ir-200

reducible error ε is the direct consequence of sampling; it sets a lower bound201

on the error, where we have:202

ΦS(X) = Φ∗(X) + ε (2)

The distribution of ε dictates the type of loss function L in Eq. 1. For203

example, assuming a Gaussian distribution with mean 0 and variance σ2 for204

ε implies the least squares loss function [79].205

2.2. Interpretability of Multivariate Brain Maps: Theoretical Definition206

In this section, we present a theoretical definition for the interpretability207

of linear brain decoding models and their associated MBMs. Our definition208
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of interpretability is based on two main assumptions: 1) the brain decoding209

problem is linearly separable; 2) its unique and neurophysiologically plausi-210

ble1 solution, i.e., Φ∗, is available.211

Consider a linearly separable brain decoding problem in an ideal scenario212

where ε = 0 and rank(X) = p. In this case, Φ∗ is linear and its parameters Θ∗213

are unique and plausible. The unique parameter vector Θ∗ can be computed214

as follows:215

Θ∗ = Σ−1
X XTY (3)

Using Θ∗ as the reference, we define the strong-interpretability of an MBM216

as follows:217

Definition 1. An MBM ~Θ associated with a linear function Φ is “strongly-218

interpretable” if and only if ~Θ ∝ Θ∗.219

It can be shown that, in practice, the estimated solution of a linear brain220

problem (using Eq. 1) is not strongly-interpretable because of the inherent221

limitations of neuroimaging data, such as uncertainty [80] in the input and222

output space (ε 6= 0), the high dimensionality of data (n � p), and the223

high correlation between predictors (rank(X) < p). With these limitations224

in mind, even though in practice the solution of linear brain decoding is not225

strongly-interpretable, one can argue that some are more interpretable than226

others. For example, in the case in which Θ∗ ∝ [0, 1]T , a linear classifier227

where Θ̂ ∝ [0.1, 1.2]T can be considered more interpretable than a linear228

classifier where Θ̂ ∝ [2, 1]T . This issue raises the following question:229

Problem 1. Let S1, . . . , Sm be m perturbed training sets drawn from S via230

a certain perturbation scheme such as jackknife, bootstrapping [81], or cross-231

validation [82]. Assume
~̂
Θ1, . . . ,

~̂
Θm are m MBMs of a certain Φ (estimated232

using Eq. 1 for certain L, Ω, and λ) on the corresponding perturbed training233

sets. How can we quantify the proximity of Φ to the strongly-intrepretable234

solution of brain decoding problem Φ∗?235

1Here, neurophysiological plausibility refers to the spatio-temporal chemo-
physical constraints of the underlying neural activity that is highly dependent
on the acquisition device.
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To answer this question, considering the uniqueness and the plausibility236

of Φ∗ as the two main characteristics that convey its strong-interpretability,237

we define the interpretability as follows:238

Definition 2. Let αj (j = 1, . . . ,m) be the angle between
~̂
Θj and ~Θ∗. The239

“interpretability” (0 ≤ ηΦ ≤ 1) of the MBM derived from a linear function240

Φ is defined as follows:241

∀j ∈ {1, . . . ,m}, ηΦ = ES[cos(αj)] (4)

Empirically, the interpretability is the mean of cosine similarities between242

Θ∗ and MBMs derived from different samplings of the training set. In ad-243

dition to the fact that employing cosine similarity is a common method for244

measuring the similarity between vectors, we have another strong motivation245

for this choice. It can be shown that, for large values of p, the distribution of246

the dot product in the unit hyper-sphere, i.e., the cosine similarity, converges247

to a normal distribution with 0 mean and variance of 1
p
, i.e., N (0,

√
1
p
). Due248

to the small variance for a large enough p values, any similarity value that is249

significantly larger than zero represents a meaningful similarity between two250

high dimensional vectors (see the supplementary material for more details251

about the distribution of cosine similarity).252

In what follows, we demonstrate how the definition of interpretability is253

geometrically related to the uniqueness and plausibility characteristics of the254

true solution to brain decoding problem.255

2.3. Interpretability Decomposition into Reproducibility and Representative-256

ness257

An alternative approach toward quantifying the interpretability is to as-258

sess separately its uniqueness and neurophysiological plausibility. In this259

section, we firstly define the reproducibility and representativeness as mea-260

sures for quantifying the uniqueness and neurophysiological plausibility of261

brain decoding model, respectively. Then we show how these definitions are262

related to the definition of interpretability.263

The high dimensionality and the high correlations between variables are264

two inherent characteristics of neuroimaging data that negatively affect the265

uniqueness of the solution of a brain decoding problem. Therefore, a certain266

configuration of hyper-parameters may result different estimated parameters267
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on different portions of data. Here, we are interested in assessing this vari-268

ability as a measure for uniqueness. Let θji be the ith (i = 1, . . . , p) element269

of an MBM estimated on the jth (j = 1, . . . ,m) perturbed training set. We270

first define the main multivariate brain map as follows:271

Definition 3. The “main multivariate brain map” ~Θµ ∈ Rp of a linear func-272

tion Φ is defined as the sum of estimated MBMs
~̂
Θj (j = 1, . . . ,m) on the273

perturbed training sets Sj in the unit hyper-sphere:274

~Θµ =

[∑m
j=1 θ

j
1

∑m
j=1 θ

j
2 . . .

∑m
j=1 θ

j
p

]T∥∥∥∥[∑m
j=1 θ

j
1

∑m
j=1 θ

j
2 . . .

∑m
j=1 θ

j
p

]T∥∥∥∥ (5)

The definition of ~Θµ is analogous to the main prediction of a learning275

algorithm [83]; it provides a reference for quantifying the reproducibility of276

an MBM:277

Definition 4. Let ~Θµ be the main multivariate brain map of Φ. Then, let278

αj be the angle between
~̂
Θj and ~Θµ. The “reproducibility” ψΦ (0 ≤ ψΦ ≤ 1)279

of an MBM derived from a linear function Φ is defined as follows:280

∀j ∈ {1, . . . ,m}, ψΦ = ES[cos(αj)] (6)

In fact, reproducibility provides a measure for quantifying the dispersion281

of MBMs, computed over different perturbed training sets, from the main282

multivariate brain map.283

On the other hand, the coherency between the main multivariate brain284

map of a decoder and the true solution can be employed as a measure for the285

plausibility of a model. We refer to this coherency as the representativeness286

of an MBM:287

Definition 5. Let ~Θµ be the main multivariate brain map of Φ. The “rep-288

resentativeness” (0 ≤ βΦ ≤ 1) is defined as the cosine similarity between ~Θµ
289

and ~Θ∗:290

βΦ =
|~Θµ.~Θ∗|∥∥∥~Θµ

∥∥∥∥∥∥~Θ∗∥∥∥ (7)
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The following proposition shows the relationship between the presented291

definitions for reproducibility, representativeness, and the interpretability:292

Proposition 1. ηΦ = βΦ × ψΦ.293

See Appendix D for a proof. Proposition 1 indicates the interpretability294

can be decomposed into the representativeness and the reproducibility of a295

decoding model.296

2.4. A Heuristic for Practical Quantification of Interpretability in Time-297

Domain MEG decoding298

In practice, it is impossible to evaluate the interpretability, as Φ∗ is un-299

known. In this study, to provide a practical proof of the mentioned theoret-300

ical concepts, we propose the use of contrast event-related fields (cERFs) of301

MEG data as neurophysiological plausible heuristics for Θ∗ in a binary MEG302

decoding scenario in the time domain.303

The EEG/MEG data are a mixture of several simultaneous stimulus-304

related and stimulus-unrelated brain activities. In general, unrelated-stimulus305

brain activities are considered as Gaussian noise with zero mean and variance306

σ2. One popular approach to canceling the noise component is to compute307

the average of multiple trials. It is expected that the average will converge308

to the true value of the signal with a variance of σ2

n
. The result of the av-309

eraging process is generally known as ERF in the MEG context; separate310

interpretation of different ERF components can be performed [84]1.311

Assume X+ = {xi ∈ X | yi = 1} ∈ Rn+×p and X− = {xi ∈ X | yi =312

−1} ∈ Rn−×p. Then, the cERF brain map ~ΘcERF is computed as follows:313

~ΘcERF =
1
n+

∑
xi∈X+ xi − 1

n−

∑
xi∈X− xi∥∥ 1

n+

∑
xi∈X+ xi − 1

n−

∑
xi∈X− xi

∥∥ (8)

Using the core theory presented in [39], it can be shown that cERF is314

the equivalent generative model for the least squares solution in a binary315

1The application of the presented heuristic to MEG data can be extended to
EEG because of the inherent similarity of the measured neural correlates in these
two devices. In the EEG context, the ERF can be replaced by the event-related
potential (ERP).
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time-domain MEG decoding scenario (see Appendix A). Using ~ΘcERF as a316

heuristic for ~Θ∗, the representativeness can be approximated as follows:317

β̃Φ =
|~Θµ.~ΘcERF |∥∥∥~Θµ

∥∥∥∥∥∥~ΘcERF

∥∥∥ (9)

Where β̃Φ is an approximation of βΦ and we have:318

βΦ = ∆ββ̃Φ ±
√

(1− β̃2
Φ)(1−∆2

β) (10)

∆β represents the cosine similarity between ~Θ∗ and ~ΘcERF (see Fig-319

ures B.8 and Appendix B). If ∆β → 1 then β̃Φ → βΦ.320

In a similar manner, ~ΘcERF can be used to heuristically approximate the321

interpretability as follows:322

η̃Φ = ∀j ∈ {1, . . . ,m}, η̃Φ = ES(cos(γj)) (11)

where γ1, . . . , γm are the angles between
~̂
Θ1, . . . ,

~̂
Θm and ~ΘcERF . The323

following equality represents the relation between η and η̃ (see Figures C.9324

and Appendix C).325

ηΦ = ∆β η̃Φ ±

√
1−∆2

β

m
(sin γ1 + · · ·+ sin γm) (12)

Again, if ∆β → 1 then η̃Φ → ηΦ. Notice that ∆β is independent of the326

decoding approach used; it only depends on the quality of the heuristic. It327

can be shown that η̃Φ = β̃Φ × ψΦ.328

Eq. 12 shows that the choice of heuristic has a direct effect on the approxi-329

mation of interpretability and that an inappropriate selection of the heuristic330

yields a very poor estimation of interpretability because of the destructive331

contribution of ∆β. Therefore, the choice of heuristic should be carefully332

justified based on accepted and well-defined facts regarding the nature of the333

collected data (see the supplementary material for the experimental investi-334

gation of the limitations of the proposed heuristic).335
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2.5. Incorporating the Interpretability into Model Selection336

The procedure for evaluating the performance of a model so as to choose337

the best values for hyper-parameters is known as model selection [85]. This338

procedure generally involves numerical optimization of the model selection339

criterion. The most common model selection criterion is based on an estima-340

tor of generalization performance, i.e., the predictive power. In the context341

of brain decoding, especially when the interpretability of brain maps matters,342

employing the predictive power as the only decisive criterion in model selec-343

tion is problematic in terms of interpretability [86, 53, 54]. Here, we propose344

a multi-objective criterion for model selection that takes into account both345

prediction accuracy and MBM interpretability.346

Let η̃Φ and δΦ be the approximated interpretability and the generalization347

performance of a linear function Φ, respectively. We propose the use of the348

scalarization technique [87] for combining η̃Φ and δΦ into one scalar 0 ≤349

ζ(Φ) ≤ 1 as follows:350

ζΦ =

{
ω1η̃Φ+ω2δΦ
ω1+ω2

δΦ ≥ κ

0 δΦ < κ
(13)

where ω1 and ω2 are weights that specify the level of importance of the351

interpretability and the performance, respectively. κ is a threshold on the352

performance that filters out solutions with poor performance. In classification353

scenarios, κ can be set by adding a small safe interval to the chance level of354

classification.355

It can be shown that the hyper-parameters of a model Φ are optimized356

based on ζΦ are Pareto optimal [88]. In other words, there exist no other Φ′357

for which we obtain both η̃Φ′ > η̃Φ and δΦ′ > δΦ. We expect that optimizing358

the hyper-parameters based on ζΦ, rather only δΦ, yields more informative359

MBMs.360

2.6. Experimental Materials361

2.6.1. Toy Dataset362

To illustrate the importance of integrating the interpretability of brain363

decoding with the model selection procedure, we use simple 2-dimensional toy364

data presented in [39]. Assume that the true underlying generative function365

Φ∗ is defined by366

Y = Φ∗(X ) =

{
1 if x1 = 1.5
−1 if x1 = −1.5
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where X ∈ {[1.5, 0]T , [−1.5, 0]T}; and x1 and x2 represent the first and367

the second dimension of the data, respectively. Furthermore, assume the368

data is contaminated by Gaussian noise with co-variance Σ =

[
1.02 −0.3
−0.3 0.15

]
.369

Figure 1 shows the distribution of the noisy data.370

2.6.2. MEG Data371

We use the MEG dataset presented in [89]1. The dataset was also used372

for the DecMeg2014 competition2. In this dataset, visual stimuli consisting373

of famous faces, unfamiliar faces, and scrambled faces are presented to 16374

subjects and fMRI, EEG, and MEG signals are recorded. Here, we are only375

interested in MEG recordings. The MEG data were recorded using a Vec-376

torView system (Elekta Neuromag, Helsinki, Finland) with a magnetometer377

and two orthogonal planar gradiometers located at 102 positions in a hemi-378

spherical array in a light Elekta-Neuromag magnetically shielded room.379

Three major reasons motivated the choice of this dataset: 1) It is publicly380

available. 2) The spatio-temporal dynamic of the MEG signal for face vs.381

scramble stimuli has been well studied. The event-related potential analysis382

of EEG/MEG shows that N170 occurs 130 − 200ms after stimulus presen-383

tation and reflects the neural processing of faces [90, 89]. Therefore, the384

N170 component can be considered the ground truth for our analysis. 3) In385

the literature, non-parametric mass-univariate analysis such as cluster-based386

permutation tests is unable to identify narrowly distributed effects in space387

and time (e.g., an N170 component) [2, 6]. These facts motivate us to employ388

multivariate approaches that are more sensitive to these effects.389

As in [51], we created a balanced face vs. scrambled MEG dataset by390

randomly drawing from the trials of unscrambled (famous or unfamiliar) faces391

and scrambled faces in equal number. The samples in the face and scrambled392

face categories are labeled as 1 and −1, respectively. The raw data is high-393

pass filtered at 1Hz, down-sampled to 250Hz, and trimmed from 200ms394

before the stimulus onset to 800ms after the stimulus. Thus, each trial has395

250 time-points for each of the 306 MEG sensors (102 magnetometers and396

1The full dataset is publicly available at ftp://ftp.mrc-cbu.cam.ac.uk/

personal/rik.henson/wakemandg_hensonrn/
2The competition data are available at http://www.kaggle.com/c/

decoding-the-human-brain
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204 planar gradiometers)1. To create the feature vector of each sample, we397

pooled all of the temporal data of 306 MEG sensors into one vector (i.e.,398

we have p = 250 × 306 = 76500 features for each sample). Before training399

the classifier, all of the features are standardized to have a mean of 0 and400

standard-deviation of 1.401

2.7. Classification and Evaluation402

In all experiments, a least squares classifier with L1-penalization, i.e.,403

Lasso [75], is used for decoding. Lasso is a very popular classification method404

in the context of brain decoding, mainly because of its sparsity assumption.405

The choice of Lasso helps us to better illustrate the importance of includ-406

ing the interpretability in the model selection. Lasso solves the following407

optimization problem:408

Θ̂ = argmin
Θ
‖Φ(X)− ΦS(X)‖2

2 + λ ‖Θ‖1 (14)

where λ is the hyper-parameter that specifies the level of regularization.409

Therefore, the aim of the model selection is to find the best value for λ.410

Here, we try to find the best regularization parameter value among λ =411

{0.001, 0.01, 0.1, 1, 10, 50, 100, 250, 500, 1000, 5000, 10000, 15000, 25000, 50000}.412

We use the out-of-bag (OOB) [91, 92] method for computing δΦ, ψΦ, β̃Φ,413

η̃Φ, and ζΦ for different values of λ. In OOB, given a training set (X,Y),414

m replications of bootstrap [81] are used to create perturbed training sets415

(we set m = 50) 2. In all of our experiments, we set ω1 = ω2 = 1 and416

κ = 0.6 in the computation of ζΦ. Furthermore, we set δΦ = 1 − EPE417

where EPE indicates the expected prediction error; it is computed using the418

procedure explained in Appendix E. Employing OOB provides the possibility419

of computing the bias and variance of the model as contributing factors in420

EPE.421

To investigate the behavior of the proposed model selection criterion,422

we benchmark it against the commonly used performance criterion in the423

single-subject decoding scenario. Assuming (Xi,Yi) for i = 1, . . . , 16 are424

MEG trial/label pairs for subject i, we separately train a Lasso model for425

1The preprocessing scripts in python and MATLAB are available at: https:

//github.com/FBK-NILab/DecMeg2014/
2The MATLAB code used for experiments is available at https://github.

com/smkia/interpretability/
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each subject to estimate the parameter of the linear function Φ̂i, where Yi =426

XiΘ̂i. Let Φ̂δ
i and Φ̂ζ

i represent the optimized solution based on δΦ and ζΦ,427

respectively. We denote the MBM associated with Φ̂δ
i and Φ̂ζ

i by
~̂
Θδ
i and

~̂
Θζ
i ,428

respectively. Therefore, for each subject, we compare the resulting decoders429

and MBMs computed based on these two model selection criteria.430

3. Results431

3.1. Performance-Interpretability Dilemma: A Toy Example432

In the definition of Φ∗ on the toy dataset discussed in Section 2.6.1, x1 is433

the decisive variable and x2 has no effect on the classification of the data into434

target classes. Therefore, excluding the effect of noise and based on the the-435

ory of the maximal margin classifier [93, 94], ~Θ∗ ∝ [1, 0]T is the true solution436

to the decoding problem. By accounting for the effect of noise and solving437

the decoding problem in (X,Y) space, we have ~Θ ∝ [ 1√
(5)
, 2√

(5)
]T as the438

parameter of the linear classifier. Although the estimated parameters on the439

noisy data yield the best generalization performance for the noisy samples,440

any attempt to interpret this solution fails, as it yields the wrong conclusion441

with respect to the ground truth (it says x2 has twice the influence of x1442

on the results, whereas it has no effect). This simple experiment shows that443

the most accurate model is not always the most interpretable one, primarily444

because the contribution of the noise in the decoding process [39]. On the445

other hand, the true solution of the problem ~Θ∗ does not provide the best446

generalization performance for the noisy data.447

To illustrate the effect of incorporating the interpretability in the model448

selection, a Lasso model with different λ values is used for classifying the toy449

data. In this case, because ~Θ∗ is known, the exact value of interpretability can450

be computed using Eq. 4. Table 1 compares the resultant performance and451

interpretability from Lasso. Lasso achieves its highest performance (δΦ =452

0.9884) at λ = 10 with
~̂
Θ ∝ [0.4636, 0.8660]T (indicated by the magenta453

line in Figure 1). Despite having the highest performance, this solution454

suffers from a lack of interpretability (ηΦ = 0.4484). By increasing λ, the455

interpretability improves so that for λ = 500, 1000 the classifier reaches its456

highest interpretability by compensating for 0.06 of its performance. Our457

observation highlights two main points:458

1. In the case of noisy data, the interpretability of a decoding model is459

incoherent with its performance. Thus, optimizing the parameter of460
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Figure 1: Noisy samples of toy data. The black line shows the true separator
based on the generative model (Φ∗). The magenta line shows the most accurate
classification solution. Because of the contribution of noise, any interpretation of
the parameters of the most accurate classifier yields a misleading conclusion with
respect to the true underlying phenomenon [39].

Table 1: Comparison between δΦ, ηΦ, and ζΦ for different λ values on the toy
2D example shows the performance-interpretability dilemma, in which the most
accurate classifier is not the most interpretable one.

λ 0 0.001 0.01 0.1 1 10 50 100 250 500 1000

δ(Φ) 0.9883 0.9883 0.9883 0.9883 0.9883 0.9884 0.9880 0.9840 0.9310 0.9292 0.9292
η(Φ) 0.4391 0.4391 0.4391 0.4392 0.4400 0.4484 0.4921 0.5845 0.9968 1 1
ζ(Φ) 0.7137 0.7137 0.7137 0.7137 0.7142 0.7184 0.7400 0.7842 0.9639 0.9646 0.9646

~̂
Θ ∝

[
0.4520
0.8920

] [
0.4520
0.8920

] [
0.4520
0.8920

] [
0.4521
0.8919

] [
0.4532
0.8914

] [
0.4636
0.8660

] [
0.4883
0.8727

] [
0.5800
0.8146

] [
0.99
0.02

] [
1
0

] [
1
0

]

the model based on its performance does not necessarily improve its461

interpretability. This observation confirms the previous finding by Ras-462

mussen et al. [53] regarding the trade-off between the spatial repro-463

ducibility (as a measure for the interpretability) and the prediction464

accuracy in brain decoding.465

2. If the right criterion is used in the model selection, employing proper466

regularization technique (sparsity prior, in this case) leads to more467

interpretability for the decoding models.468

3.2. Mass-Univariate Hypothesis Testing on MEG Data469

Results show that non-parametric mass-univariate analysis is unable to470

detect narrowly distributed effects in space and time (e.g., an N170 compo-471

nent) [2, 6]. To illustrate the advantage of the proposed decoding framework472
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for spotting these effects, we performed a non-parametric cluster-based per-473

mutation test [5] on our MEG dataset using Fieldtrip toolbox [95]. In a single474

subject analysis scenario, we considered the trials of MEG recordings as the475

unit of observation in a between-trials experiment. Independent-samples t-476

statistics are used as the statistics for evaluating the effect at the sample level477

and to construct spatio-temporal clusters. The maximum of the cluster-level478

summed t-value is used for the cluster level statistics; the significance prob-479

ability is computed using a Monte Carlo method. The minimum number480

of neighboring channels for computing the clusters is set to 2. Considering481

0.025 as the two-sided threshold for testing the significance level and repeat-482

ing the procedure separately for magnetometers and combined-gradiometers,483

no significant result is found for any of the 16 subjects. This result motivates484

the search for more sensitive (and, at the same time, more interpretable)485

alternatives for hypothesis testing.486

3.3. Single-Subject Decoding on MEG Data487

In this experiment, we aim to compare the multivariate brain maps of488

brain decoding models when δΦ and ζΦ are used as the criteria for model489

selection. Figure 2(a) represents the mean and standard-deviation of the490

performance and interpretability of Lasso across 16 subjects for different491

λ values. The performance and interpretability curves further illustrate the492

performance-interpretability dilemma in the single-subject decoding scenario493

in which increasing the performance delivers less interpretability. The aver-494

age performance across subjects is improved when λ approaches 1, but on the495

other side, the reproducibility and the representativeness of models declines496

significantly [see Figure 2(b)].497

One possible reason behind the performance-interpretability dilemma is498

illustrated in Figure 3. The figure shows the mean and standard deviation of499

bias, variance, and EPE of Lasso across 16 subjects. The plot proposes that500

the effect of variance is overwhelmed by bias in the computation of EPE,501

where the best performance (minimum EPE) at λ = 1 has the lowest bias,502

its variance is higher than for λ = 0.001, 0.01, 0.1. While this tiny increase503

in the variance is not reflected in EPE but Figure 2(b) shows a significant504

effect on the reproducibility.505

Table 2 summarizes the performance, reproducibility, representativeness,506

and interpretability of Φ̂δ
i and Φ̂ζ

i for 16 subjects. The average result over507

16 subjects shows that employing ζΦ instead of δΦ in model selection pro-508

vides significantly higher reproducibility, representativeness, and (as a result)509
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Figure 2: (a) Mean and standard-deviation of the performance, interpretability,
and plausibility of Lasso over 16 subjects. The performance and interpretability
become incoherent as λ increases. (b) Mean and standard-deviation of the re-
producibility, representativeness, and interpretability of Lasso over 16 subjects.
The interpretability declines because of the decrease in both reproducibility and
representativeness.

Figure 3: Mean and standard-deviation of the bias, variance, and EPE of Lasso
over 16 subjects. The effect of variance on the EPE is overwhelmed by bias.
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Table 2: The performance, reproducibility, representativeness, and interpretability
of Φ̂δ

i and Φ̂ζ
i over 16 subjects.

Subj
Criterion: δΦ Criterion: ζΦ

δΦ ζΦ η̃Φ β̃Φ ψΦ δΦ ζΦ η̃Φ β̃Φ ψΦ
1 0.81 0.53 0.26 0.42 0.62 0.78 0.70 0.63 0.76 0.83
2 0.80 0.70 0.60 0.72 0.83 0.80 0.70 0.60 0.72 0.83
3 0.81 0.63 0.45 0.64 0.71 0.78 0.71 0.64 0.78 0.83
4 0.84 0.52 0.20 0.31 0.66 0.76 0.70 0.64 0.77 0.83
5 0.80 0.54 0.29 0.44 0.65 0.78 0.69 0.61 0.73 0.83
6 0.79 0.52 0.24 0.39 0.63 0.74 0.67 0.61 0.74 0.82
7 0.84 0.55 0.27 0.40 0.66 0.81 0.70 0.59 0.71 0.84
8 0.87 0.55 0.24 0.35 0.68 0.85 0.68 0.52 0.61 0.84
9 0.80 0.55 0.31 0.46 0.67 0.77 0.67 0.57 0.69 0.82
10 0.79 0.53 0.26 0.41 0.64 0.77 0.68 0.58 0.70 0.83
11 0.74 0.65 0.56 0.68 0.82 0.74 0.65 0.56 0.68 0.82
12 0.80 0.55 0.29 0.46 0.64 0.79 0.70 0.61 0.74 0.83
13 0.83 0.50 0.18 0.29 0.61 0.77 0.70 0.63 0.76 0.82
14 0.90 0.58 0.27 0.39 0.68 0.81 0.78 0.74 0.89 0.84
15 0.92 0.63 0.34 0.48 0.71 0.89 0.78 0.66 0.77 0.86
16 0.87 0.55 0.23 0.37 0.62 0.81 0.74 0.67 0.81 0.83

Mean 0.83±0.05 0.57± 0.05 0.31± 0.12 0.45± 0.13 0.68± 0.07 0.79± 0.04 0.70±0.04 0.62±0.05 0.74±0.06 0.83±0.01

interpretability compensating for 0.04 of performance.510

These results are further analyzed in Figure 4 where Φ̂δ
i and Φ̂ζ

i are com-511

pared subject-wise in terms of their performance and interpretability. The512

comparison shows that adopting ζΦ instead of δΦ as the criterion for model513

selection yields significantly better interpretable models by compensating514

a negligible degree of performance in 14 out of 16 subjects. Figure 4(a)515

shows that employing δΦ provides on average slightly higher accurate models516

(Wilcoxon rank sum test p-value= 0.012) across subjects (0.83± 0.05) than517

using ζΦ (0.79±0.04). On the other side, Figure 4(b) shows that employing ζΦ518

and compensating by 0.04 in the performance provides (on average) substan-519

tially higher (Wilcoxon rank sum test p-value= 5.6 × 10−6) interpretability520

across subjects (0.62± 0.05) compared to δΦ (0.31± 0.12). For example, in521

the case of subject 1 (see table 2), using δΦ in model selection to select the522

best λ value for the Lasso yields a model with δΦ = 0.81 and η̃Φ = 0.26. In523

contrast, using ζΦ delivers a model with δΦ = 0.78 and η̃Φ = 0.63.524

The advantage of the exchange between the performance and the inter-525

pretability can be seen in the quality of MBMs. Figure 5a and 5b show526

~̂
Θδ

1 and
~̂
Θζ

1 of subject 1, i.e., the spatio-temporal multivariate maps of the527

Lasso models with maximum values of δΦ and ζΦ, respectively. The maps528

are plotted for 102 magnetometer sensors. In each case, the time course of529

weights of classifiers associated with the MEG2041 and MEG1931 sensors530

are plotted. Furthermore, the topographic maps represent the spatial pat-531
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Figure 4: a) Comparison between performance of Φ̂δ
i and Φ̂ζ

i . Adopting ζΦ instead
of δΦ in model selection yields (on average) 0.04 less accurate classifiers over 16

subjects. b) Comparison between interpretability of Φ̂δ
i and Φ̂ζ

i . Adopting ζΦ

instead of δΦ in model selection yields on average 0.31 more interpretable classifiers
over 16 subjects.

terns of weights averaged between 184ms and 236ms after stimulus onset1.532

While
~̂
Θδ

1 is sparse in time and space, it fails to accurately represent the533

spatio-temporal dynamic of the N170 component. Furthermore, the multi-534

collinearity problem arising from the correlation between the time course of535

the MEG2041 and MEG1931 sensors causes extra attenuation of the N170536

effect in the MEG1931 sensor. Therefore, the model is unable to capture the537

spatial pattern of the dipole in the posterior area. In contrast,
~̂
Θζ

1 represents538

the dynamic of the N170 component in time (see Figure 6). In addition,539

it also shows the spatial pattern of two dipoles in the posterior and tem-540

poral areas. In summary,
~̂
Θζ

1 suggests a more representative pattern of the541

underlying neurophysiological effect than
~̂
Θδ

1.542

In addition, optimizing the hyper-parameters of brain decoding based on543

ζΦ offers more reproducible brain decoders. According to table 2, using ζΦ in-544

stead of δΦ provides (on average) 0.15 more reproducibility over 16 subjects.545

To illustrate the advantage of higher reproducibility on the interpretability546

of maps, Figure 7 visualizes
~̂
Θδ

1 and
~̂
Θζ

1 over 4 perturbed training sets. The547

spatial maps [Figure 7(a) and Figure 7(c)] are plotted for the magnetometer548

sensors averaged in the time interval between 184ms and 236ms after stim-549

ulus onset. The temporal maps [Figure 7(b) and Figure 7(d)] are showing550

1The bounds of colorbars are symmetrized based on the maximum absolute
value of parameters
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(a) Spatio-temporal pattern of
~̂
Θδ

1.

(b) Spatio-temporal pattern of
~̂
Θζ

1.

Figure 5: Comparison between spatio-temporal multivariate maps of the most

accurate ( 5a) and the most interpretable ( 5b) classifiers for Subject 1.
~̂
Θζ

1 provides

more spatio-temporal representativeness of the N170 effect than
~̂
Θδ

1.
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Figure 6: Event related fields (ERFs) of face and scrambled face samples for
MEG2041 and MEG1931 sensors.

the multivariate temporal maps of MEG1931 and MEG2041 sensors. While551

~̂
Θδ

1 is unstable in time and space across the 4 perturbed training sets,
~̂
Θζ

1552

provides more reproducible maps.553

4. Discussions554

4.1. Defining Interpretability: Theoretical Advantages555

An overview of the brain decoding literature shows frequent co-occurrence556

of the terms interpretation, interpretable, and interpretability with the terms557

model, classification, parameter, decoding, method, feature, and pattern (see558

the quick meta-analysis on the literature in the supplementary material);559

however, a formal formulation of the interpretability is never presented. In560

this study, our primary interest is to present a theoretical definition of the in-561

terpretability of linear brain decoding models and their corresponding MBMs.562

Furthermore, we show the way in which interpretability is related to the re-563

producibility and neurophysiological representativeness of MBMs. Our defi-564

nition and quantification of interpretability remains theoretical, as we assume565

that the true solution of the brain decoding problem is available. Despite566

this limitation, we argue that the presented definition provides a concrete567

framework of a previously abstract concept and that it establishes a theoret-568

ical background to explain an ambiguous phenomenon in the brain decoding569

context. We support our argument using an example in time-domain MEG570

decoding in which we show how the presented definition can be exploited571

to heuristically approximate the interpretability. This example shows how572
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Perturbation1 Perturbation2

Perturbation3 Perturbation4

Perturbation1 Perturbation2

Perturbation3 Perturbation4

Perturbation1

Perturbation2

Perturbation3

Perturbation4

Perturbation1

Perturbation2

Perturbation3

Perturbation4

Figure 7: Comparison of the reproducibility of Lasso when δΦ and ζΦ are used
in the model selection procedure. (a) and (b) show the spatio-temporal patterns

represented by
~̂
Θδ

1 across the 4 perturbed training sets. (c) and (d) show the

spatio-temporal patterns represented by
~̂
Θζ

1 across the 4 perturbed training sets.
Employing ζΦ instead of δΦ in the model selection yields more reproducible MBMs.
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partial prior knowledge1 regarding underlying brain activity can be used to573

find more plausible multivariate patterns in data. Furthermore, the proposed574

decomposition of the interpretability of MBMs into their reproducibility and575

representativeness explains the relationship between the influential coopera-576

tive factors in the interpretability of brain decoding models and highlights the577

possibility of indirect and partial evaluation of interpretability by measuring578

these effective factors.579

4.2. Application in Model Evaluation580

Discriminative models in the framework of brain decoding provide higher581

sensitivity and specificity than univariate analysis in hypothesis testing of582

neuroimaging data. Although multivariate hypothesis testing is performed583

based solely on the generalization performance of classifiers, the emergent584

need for extracting reliable complementary information regarding the un-585

derlying neuronal activity motivated a considerable amount of research on586

improving and assessing the interpretability of classifiers and their associated587

MBMs. Despite ubiquitous use, the generalization performance of classifiers588

is not a reliable criterion for assessing the interpretability of brain decoding589

models [53]. Therefore, considering extra criteria might be required. How-590

ever, because of the lack of a formal definition for interpretability, different591

characteristics of brain decoding models are considered as the main objec-592

tive in improving their interpretability. Reproducibility [53, 54], stability593

selection [7, 47, 69], sparsity [96], and neurophysiological plausibility [97] are594

examples of related criteria.595

Our definition of interpretability helped us to fill this gap by introducing596

a new multi-objective model selection criterion as a weighted compromise be-597

tween interpretability and generalization performance of linear models. Our598

experimental results on single-subject decoding showed that adopting the599

new criterion for optimizing the hyper-parameters of brain decoding models600

is an important step toward reliable visualization of learned models from601

neuroimaging data. It is not the first time in the neuroimaging context that602

a new metric is proposed in combination with generalization performance for603

the model selection. Several recent studies proposed the combination of the604

reproducibility of the maps [53, 54, 43] or the stability of the classifiers [56, 57]605

1The partial knowledge can be based on already known facts regarding the
timing and location of neural activity.
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with the performance of discriminative models to enhance the interpretability606

of decoding models. Our definition of interpretability supports the claim that607

the reproducibility is not the only effective factor in interpretability. There-608

fore, our contribution can be considered a complementary effort with respect609

to the state of the art of improving the interpretability of brain decoding at610

the model selection level.611

Furthermore, this work presents an effective approach for evaluating the612

quality of different regularization strategies for improving the interpretability613

of MBMs. As briefly reviewed in Section 1, there is a trend in research within614

the brain decoding context in which prior knowledge is injected into the pe-615

nalization term as a technique to improve the interpretability of decoding616

models. Thus far, in the literature, there is no ad-hoc method to compare617

these different methods. Our findings provide a further step toward direct618

evaluation of interpretability of the currently proposed penalization strate-619

gies. Such an evaluation can highlight the advantages and disadvantages of620

applying different strategies on different data types and facilitates the choice621

of appropriate methods for a certain application.622

4.3. Regularization and Interpretability623

Haufe et al. [39] demonstrated that the weight in linear discriminative624

models are unable to accurately assess the relationship between indepen-625

dent variables, primarily because of the contribution of noise in the decoding626

process. The problem is primarily caused by the decoding process that min-627

imizes the classification error only considering the uncertainty in the output628

space [80, 98, 99] and not the uncertainty in the input space (or noise). The629

authors concluded that the interpretability of brain decoding cannot be im-630

proved using regularization. Our experimental results on the toy data (see631

Section 3.1) shows that if the right criterion is used for selecting the best val-632

ues for hyper-parameters, appropriate choice of the regularization strategy633

can still play significant role in improving the interpretability of results. For634

example, in this case, the true generative function behind the sampled data635

is sparse (see Section 2.6.1), but because of the noise in the data, the sparse636

model is not the most accurate one. Using a more comprehensive criterion637

(in this case, ζΦ) shows the advantage of selecting correct prior assump-638

tions about the distribution of the data via regularization. This observation639

encourages the modification of the conclusion in [39] as follows: if the per-640

formance of the model is the only criterion in the model selection, then the641

interpretability cannot necessarily be improved by means of regularization.642
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4.4. Advantage over Mass-Univariate Analysis643

Mass-univariate hypothesis testing methods are among the most popular644

tools in neuroscience research because they provide significance checks and645

a fair level of interpretability via univariate brain maps. Mass-univariate646

analyses consist of univariate statistical tests on single independent variables647

followed by multiple comparison correction. Generally, multiple compari-648

son correction reduces the sensitivity of mass-univariate approaches because649

of the large number of univariate tests involved. Cluster-based permuta-650

tion testing [5] provides a more sensitive univariate analysis framework by651

making the cluster assumption in the multiple comparison correction. Un-652

fortunately, this method is not able to detect narrow spatio-temporal effects653

in the data [2]. As a remedy, brain decoding provides a very sensitive tool654

for hypothesis testing; it has the ability to detect multivariate patterns, but655

suffers from a low level of interpretability. Our study proposes a possible656

solution for the interpretability problem of classifiers, and therefore, it facili-657

tates the application of brain decoding in the analysis of neuroimaging data.658

Our experimental results for the MEG data demonstrate that, although the659

non-parametric cluster-based permutation test is unable to detect the N170660

effect in MEG data, employing ζΦ instead of δΦ in model selection not only661

detects the stimuli-relevant information in the data, but also assures both662

reproducible and representative spatio-temporal mapping of the timing and663

the location of underlying neurophysiological effect.664

4.5. Limitations and Future Directions665

Despite theoretical and practical advantages, the proposed definition and666

quantification of interpretability suffer from some limitations. All of the667

presented concepts are defined for linear models, with the main assumption668

that Φ∗ ∈ H (where H is a class of linear functions). This fact highlights669

the importance of linearizing the experimental protocol in the data collection670

phase [27]. Extending the definition of interpretability to non-linear models671

demands future research into the visualization of non-linear models in the672

form of brain maps. Currently, our findings cannot be directly applied to673

non-linear models. Furthermore, the proposed heuristic for the time-domain674

MEG data applies only to binary classification. One possible solution in mul-675

ticlass classification is to separate the decoding problem into several binary676

sub-problems. In addition the quality of the proposed heuristic is limited for677

the small sample size datasets (see supplementary material). Finding phys-678
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iologically relevant heuristics for other acquisition modalities such as fMRI679

can be also considered in future work.680

5. Conclusions681

We presented a novel theoretical definition for the interpretability of linear682

brain decoding and associated multivariate brain maps. We demonstrated683

how the interpretability relates to the representativeness and reproducibility684

of brain decoding. Although it is theoretical, the presented definition pro-685

vides a first step toward practical solution for filling the knowledge extraction686

gap in linear brain decoding. As an example of this major breakthrough,687

and to provide a proof of concept, a heuristic approach based on the contrast688

event-related field is proposed for practical evaluation of the interpretability689

in time-domain MEG decoding. We experimentally showed that adding the690

interpretability of brain decoding models as a criterion in the model selec-691

tion procedure yields significantly higher interpretable models by sacrificing692

a negligible amount of performance. Our methodological and experimental693

achievements can be considered a complementary theoretical and practical694

effort that contributes to researches on enhancing the interpretability of mul-695

tivariate pattern analysis.696
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Appendix A. cERF and its Generative Nature700

According to [39], for a linear discriminative model with parameters Θ,701

the unique equivalent generative model can be computed as follows:702

A ∝ ΣXΘ (A.1)

In a binary (Y = {1,−1}) least squares classification scenario, we have:703

A ∝ ΣXΣ−1
X XTY = XTY = µ+ − µ− (A.2)

where ΣX represents the covariance of the input matrix X, and µ+ and µ−704

are the means of positive and negative samples, respectively. Therefore,705
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1

1

(a)

Figure B.8: Misrepresentation of ~ΘcERF with respect to ~Θ∗.

the equivalent generative model for the above classification problem can be706

derived by computing the difference between the mean of samples in two707

classes that is equivalent to the definition of cERF in time-domain MEG708

data.709

Appendix B. Relation between βΦ and β̃Φ(Eq. 10)710

Let γ be the angle between ~Θµ and ~Θ∗. Let γ′ be the angle between ~Θµ
711

and ~ΘcERF . Furthermore, assume that δ is the angle between ~Θ∗ and ~ΘcERF
712

and that ∆β = cos(δ). We consider both cases in which βΦ is underesti-713

mated/overestimated by β̃Φ (see Figure B.8 as an example in 2-dimensional714

space). Then, we have:715

γ = γ′ ± δ ⇒ cos(γ) = cos(γ′ ± δ)

= cos(γ) cos(δ)± sin(γ) sin(δ) = β̃Φ∆β ±
√

(1− β̃2)(1−∆2
β)

(B.1)

Appendix C. Relation between ηΦ and η̃Φ(Eq. 12)716

Let α1, . . . , αm be the angles between
~̂
Θ1, . . . ,

~̂
Θm and ~Θ∗, and γ1, . . . , γm717

be the angles between
~̂
Θ1, . . . ,

~̂
Θm and ~ΘcERF . Furthermore, assume that718
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1

(a)

Figure C.9: Relation between ηΦ and η̃Φ.

δ is the angle between ~Θ∗ and ~ΘcERF . We consider both cases in which719

ηΦ is underestimated/overestimated by η̃Φ (see Figure C.9 as an example in720

2-dimensional space).721

ηΦ =
cos(α1) + · · ·+ cos(αm)

m
=

cos(γ1 ± δ) + · · ·+ cos(γm ± δ)
m

=
cos(γ1) cos(δ)± sin(γ1) sin(δ) + · · ·+ cos(γm) cos(δ)± sin(γm) sin(δ)

m
∆β=cos(δ)
−−−−−−→=

∆β[cos(γ1) + · · ·+ cos(γm)]± sin(δ)[sin(γ1) + · · ·+ sin(γm)]

m

η̃Φ=
cos(γ1)+···+cos(γm)

m−−−−−−−−−−−−−→ ηΦ = ∆β η̃Φ ±

√
1−∆2

β

m
(sin(γ1) + · · ·+ sin(γm))

(C.1)

Appendix D. Proof of Proposition 1722

Throughout this proof, we assume that all of the parameter vectors are723

normalized in the unit hypersphere (see Figure D.10 as an illustrative ex-724

ample in 2 dimensions). Let T = {~̂Θ1, . . . ,
~̂
Θm} be a set m MBMs, for725

m perturbed training sets where
~̂
Θi ∈ Rp. Now, consider any arbitrary726

p − 1-dimensional hyperplane A that contains ~Θµ. Clearly, A divides the727

p-dimensional parameter space into 2 subspaces. Let O and H be binary728
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operators where ~ΘiO~Θk indicates that ~Θi and ~Θk are in the same subspace,729

and ~ΘiH~Θk indicates that they are in different subspaces. Now, we define730

TU = {~Θi | ~ΘiO~Θ∗} and TL = {~Θi | ~ΘiH~Θ∗}. Let the cardinality of TL731

denoted by n(TL) be j (n(TL) = j). Thus, n(TU) = m−j. Now, assume that732

](
~̂
Θi,A) = α1, . . . , αj are the angles between

~̂
Θi ∈ TL and A, and (similarly)733

αj+1, . . . , αm for
~̂
Θi ∈ TU and A. Based on Eq. 5, let ~Θµ

L and ~Θµ
U be the main734

maps of TL and TU , respectively. Therefore, we obtain ~Θµ =
~ΘµL+~ΘµU

‖~ΘµL+~ΘµU‖
and735

](~Θµ
L,A) = ](~Θµ

U ,A) = α. Furthermore, assume ](~Θ∗,A) = γ. As a re-736

sult, ψΦ = cos(α) and βΦ = cos(γ). According to Eq. 4 and using a cosine737

similarity definition, we have:738

ηΦ =
1

m

m∑
j=1

∣∣∣~Θ∗.~̂Θj
∣∣∣

=
cos(γ + α1) + · · ·+ cos(γ + αj) + cos(γ − αj+1) + · · ·+ cos(γ − αm)

m

=
cos(γ + α) + cos(γ − α)

2

=
cos(γ) cos(α)− sin(γ) sin(α) + cos(γ) cos(α) + sin(γ) sin(α)

2
= cos(γ) cos(α) = βΦ × ψΦ.

(D.1)

A similar procedure can be used to prove η̃Φ = β̃Φ × ψΦ by replacing ~Θ∗739

with ~ΘcERF .740

Appendix E. Computing the Bias and Variance in Binary Classi-741

fication742

Here, using the out-of-bag (OOB) technique, and based on procedures743

proposed by [83] and [100], we compute the expected prediction error (EPE)744

for a linear binary classifier Φ under bootstrap perturbation of the training745

set. Let m be the number of perturbed training sets resulting from partition-746

ing (X, Y ) into (Xtr, Ytr) and (Xts, Yts), i.e., training and test sets. If Φ̂j is747

the linear classifier estimated from the jth perturbed training set, then the748

main prediction Φµ(xi) for each sample in the dataset can be computed as749

follows:750
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1

1

(a)

Figure D.10: Relation between representativeness, reproducibility, and inter-
pretability in 2 dimensions.

Φµ(xi) =

{
1 if 1

ki

∑ki
j=1 Φ̂j(xi) ≥ 1

2

0 otherwise
(E.1)

where ki is the number of times that xi is present in the test set1.1751

The computation of bias is challenging because the optimal model Φ∗752

is unknown. According to [101], misclassification error is one of the loss753

measures that satisfies a Pythagorean-type equality, and:754

1

n

n∑
i=1

L(Φµ(xi),Φ
∗(xi)) =

1

n

n∑
i=1

L(yi,Φ
µ(xi))−

1

n

n∑
i=1

L(yi,Φ
∗(xi)) (E.2)

Because all terms of the above equation are positive, the mean loss be-755

tween the main prediction and the actual labels can be considered as an756

upper-bound for the bias:757

1

n

n∑
i=1

L(Φµ(xi),Φ
∗(xi)) ≤

1

n

n∑
i=1

L(yi,Φ
µ(xi)) (E.3)

1It is expected that each sample xi ∈ X appears (on average) ki ≈ m
3 times in

the test sets.
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Therefore, a pessimistic approximation of bias B(xi) can be calculated as758

follows:759

B(xi) =

{
0 if Φµ(xi) = yi
1 otherwise

(E.4)

Then, the unbiased and biased variances (see [83] for definitions) in each760

training set can be calculated by:761

V j
u (xi) =

{
1 if B(xi) = 0 and Φµ(xi) 6= Φ̂j(xi)
0 otherwise

(E.5)

V j
b (xi) =

{
1 if B(xi) = 1 and Φµ(xi) 6= Φ̂j(xi)
0 otherwise

(E.6)

Then, the expected prediction error of Φ can be computed as follows762

(ignoring the irreducible error):763

EPEΦ(X) =
1

n

n∑
i=1

B(xi)︸ ︷︷ ︸
Bias

+

1

nm

m∑
j=1

n∑
i=1

[V j
u (xi)− V j

b (xi)]︸ ︷︷ ︸
V ariance

(E.7)
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