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Abstract

When estimating expression of a transcript or part of a transcript
using RNA-seq data, it is commonly assumed that reads are gener-
ated uniformly from positions within the transcript. While this as-
sumption is acceptable for long transcript sequences where reads from
many positions are averaged, it frequently leads to large errors for
short sequences, e.g., less than 100 bp. Analysis of short sequences,
such as when studying splice junctions and microRNAs, is increas-
ingly important and necessitates addressing errors in short-sequence
expression estimation. Indeed, when we examined RNA-seq data from
diverse studies, we found that large errors are introduced by variations
in RNA-seq coverage due to sequence content, experimental conditions
and sample preparation.
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We developed a technique that we call the positional bootstrap,
which quantifies the level of uncertainty in expression induced by non-
uniform coverage. Unlike methods that attempt to correct for biases
in coverage, but do so by making strong assumptions about the form of
those biases, the positional bootstrap can quantify the noise induced
by all types of bias, including unknown ones. Results obtained using
independently generated RNA-seq datasets show that the positional
bootstrap increases the accuracy of estimates of alternative splicing
levels, tissue-differential alternative splicing and tissue differential ex-
pression, by a factor of up to 10.

A Python implementation of the algorithm to quantify splicing
levels is freely available from github.com/PSI-Lab/BENTO-Seq.

1 Introduction

We describe a simple, novel procedure that can significantly increase the
usefulness of data generated using massively parallel RNA-seq technologies.
In support of downstream research and biotechnologies, several computa-
tional techniques have been developed so as to estimate the abundances,
or relative abundances, of short transcript sequences using RNA-seq data
(Jiang and Wong, 2009; Li et al., 2010a; Li and Dewey, 2011; Trapnell et al.,
2010; Roberts et al., 2011; Huang et al., 2013; Jiang and Salzman, 2013; Hu
et al., 2013). Despite extensive research and technology development, this
remains a challenging problem because: complete libraries of transcripts are
not available, even for cell types of major interest such as normal human
cells and cancer cells; short read lengths and fragment sizes often make it
impossible to uniquely resolve transcripts, leading to errors (Lacroix et al.,
2008; Steijger et al., 2013); technical artifacts introduced by sequencing pro-
tocols are not well understood, cannot be properly modelled, and introduce
significant noise, which is further compounded by the two above-mentioned
issues (Dohm et al., 2008; Hansen et al., 2010; Zheng et al., 2011); and there
are no widely accepted, gold-standard datasets that can be used to con-
vincingly benchmark techniques for estimating expression. Improvements in
protocols have partly addressed some of these challenges, such as uniformity
of read coverage (Mortazavi et al., 2008; Levin et al., 2010), but computa-
tional methods are indispensable for improving estimation accuracy (Li et al.,
2010b; Hansen et al., 2010; Roberts et al., 2011; Li and Dewey, 2011; Jones
et al., 2012; Jiang and Salzman, 2013; Hu et al., 2013).
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Because of the practical need for abundance estimation, the above chal-
lenges are usually dealt with computationally by using data models that are
known to be inaccurate, or by ignoring the problems altogether. Noise mod-
els may partly address artifacts introduced by sample preparation, hexamer
priming, PCR amplification, RNA secondary structure, relative distance to
the 3’ end of the transcript, local sequence composition, such as GC-content,
and biases from the mapping stage (Dohm et al., 2008; Hansen et al., 2010;
Zheng et al., 2011). However, inaccuracies in data models could also make
matters worse. Methods that supposedly correct the ‘noise’ introduced by
local sequence composition are developed and applied, even though this ap-
proach corrupts the underlying expression signal, which is itself, of course,
a function of the transcript sequence. Computational methods are routinely
compared using simulated data, even though it is widely known that such
data does not accurately reflect real data. Consequently, expression is often
estimated by simply summing up the reads that uniquely map to a transcript.

Here, we take a different approach. Instead of trying to correct errors
using inaccurate data models, we introduce the ‘positional bootstrap’, which
quantifies the uncertainties in abundance estimates in a way that works well
for many different sources of noise, including unknown ones. This enables
downstream analyses to properly prioritize or weight abundance estimates.
For example, given an RNA-seq dataset and a set of transcript sequences, our
method can be used to rank the abundance estimates. Below, we demonstrate
the severity of different types of noise using reads mapped to exon-exon junc-
tions, describe the positional bootstrap, and then examine the application of
our method to estimating alternative splicing levels and junction expression
levels. We conclude with a brief discussion about the general applicability
of our method to other estimation tasks as well as how it can be combined
with existing bias-correction methods.

2 Biases in RNA-seq

To illustrate the effects of noise introduced by various biases, including across
different sample preparations, we analyzed the 75bp Illumina Bodymap dataset
and the 76bp human dataset from the Kaessmann laboratory (Brawand et al.,
2011). These datasets were derived from poly-A selected mRNA of healthy
individuals and have four overlapping tissue types: brain, heart, kidney and
liver. We mapped the two datasets to 671,448 exon-exon junctions derived
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from hg19 annotations, using TopHat with the same parameter settings. We
required each junction read to overlap at least 8bp with both exons, making
the number of possible read mapping positions for each junction to be 60
for Bodymap and 61 for Kaessmann’s dataset. For a given junction, if there
were no noise sources that lead to positional variations in read coverage, the
underlying transcript abundance would be the same across different posi-
tions, as would the Poisson parameter that is assumed to generate the reads.
However, as described below, we observed widespread over-dispersion in the
number of reads mapped to junction positions, indicating the existence of
considerable position-dependent noise.

To examine the strength of different biases, for each exon-exon junction
and tissue in the Bodymap data, we counted the number of unique positions
with reads, m, i.e., positions that had one or more mapped reads. It is
interesting to examine this quantity because, in contrast to the total number
of reads that map to a junction, it is much less sensitive to ‘read stacks’ and
other biases. For example, a read stack is only counted once in m. Comparing
the observed distribution of m to a simulated distribution assuming uniform
coverage can reveal the strength of sequencing biases. For each junction and
tissue, we used the actual number of mapped reads, to simulate bias-free
data by assuming that reads map to all positions in an unbiased, or uniform,
manner (see SM). Fig. 1A shows the distribution of the number of unique
positions, m, for the actual data (red), compared to the bias-free, simulated
data (blue), for all junctions where the total number of mapped reads is
between 10 and 20. The two distributions are very different, indicating that
the approach of summing up the reads over positions is highly flawed.

A common misconception in the community is that if the number of
mapped reads is larger, the relative noise level is lower. To explore this, in
Fig. 1B we plot the distribution of m for the actual and bias-free data, when
the total number of mapped reads is between 50 and 60. We see that the
distributions overlap even less for these high-count cases.

We additionally found that the actual data contains both sequence- and
experiment-dependent biases. This is observed by first mixing the experi-
ments to cancel out the majority of experiment-dependent bias, and then
perform the above analysis of comparing the observed distribution of m
(green lines in Fig. 1 A-B) to the distribution assuming bias-free read map-
ping. For every experiment and every short sequence, we sampled n reads
that are mapped to the event from all 16 experiments. The resulting data
still contains sequence-dependent biases that are shared across experiments,
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Figure 1: Sequence-, experiment-, and dataset-dependent biases in real RNA-
seq data. A-B: Distribution of the number of positions with at least one
mapped read spanning an exon-exon junction in the Bodymap data (red),
randomly resampled Bodymap data with effects of experiment-dependent
bias canceled (green), and simulated data with no sequence- and experiment-
dependent bias (blue). n is the total number of reads mapped to the junction.
C: For each pair of tissues, the observed frequency of positions in pairs of
tissues that have more reads than the median. All lines are above 0.5, showing
reads tend to be mapped to the same positions in two tissues. D: Distribution
of junctions by the proportion of reads coming from the Bodymap dataset
versus Kaessman’s dataset. Solid line: RNA-seq data. Dotted line: expected
distribution if there exists no dataset-dependent differences across junctions.
The real data have a much wider distribution, reflecting dataset-dependent
differences in sequencing technology and sample variability.
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because we only sampled from actual, mapped reads. For 10 ≤ n ≤ 20 in
Fig. 1A, this distribution (green) is located roughly 2/3 between the distri-
bution for data containing both sequence- and experiment-dependent biases
and the distribution for bias-free data. Because all experiments are mea-
suring the same sequences and the same RNA species, this suggests that
about 2/3 of the overall bias is experiment-dependent and the other 1/3 is
sequence-dependent. For 50 ≤ n ≤ 60, the distribution of m is plotted in
Fig. 1B (green), and indicates that when the number of mapped reads is
higher, sequence dependent bias plays more of a role.

To further show the effects of sequence bias, we examined whether reads
tend to be mapped to the same positions in two different tissues, i.e., whether
different tissues have a shared sequence-dependent bias. Fig. 1C plots the
observed frequency of positions in pairs of tissues that have more reads than
the median. The frequency exceeds what would be expected at random
(0.5), especially for larger n, when the effects of sequence bias are expected
to dominate, as shown above.

Finally, to explore dataset-dependent biases, for each junction, we com-
pared the number of reads mapped from the Bodymap and Kaessman datasets
and computed the proportion of reads from the Bodymap dataset. This quan-
tity was computed for both the actual and simulated bias-free data, and the
distributions are shown in Fig. 1D (solid lines for real data and dashed lines
for simulated data). The distributions dervied from the actual data have a
much wider variance than those from the simulated bias-free data, indicating
that there are significant dataset-dependent biases.

3 The positional bootstrap

Our technique, the positional bootstrap, is very simple to implement and
quickly assesses uncertainty in transcript abundance estimates induced by
position-dependent or sequence-dependent biases. It is based on the boot-
strap, a highly robust non-parametric method used for estimating uncer-
tainty. In the following, we briefly review the bootstrap procedure and apply
it to the estimation of short sequence abundances and splicing levels.

For a given transcript sequence, let R be the set of potential positions
where corresponding short reads can be mapped, let ni, i ∈ R be the number
of reads that map to position i in the RNA-seq dataset, and let ~n = {ni : i ∈
R}. In this paper, we refer to the ‘mapped position’ of a read as the position
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of the first base of the RNA-seq read so that all reads mapped to a certain
position are the same. As a result, reads mapped to the same position share
the same sequencing bias and ni is affected by these biases differently.

Suppose there is a quantity such as expression, λ, that we are interested
in estimating and we have a technique that takes the dataset ~n as input
and outputs an estimate E(~n) of λ. For example, λ might be the transcript
abundance and the estimate might be the average number of mapped reads
E(~n) = 1

|R|
∑

i∈R ni or the median number of mapped reads across the posi-
tions. For a true parameter value λ and a particular sequencing procedure,
there is a distribution of possible datasets that we may obtain. If we apply
the estimator to these datasets, we obtain a probabilistic distribution of the
estimate E(~n). By examining how close the distribution of E(~n) is to the
true parameter value λ, we can draw conclusions about how well the exper-
imental procedure combined with the computational technique estimates λ.
In particular, from this distribution, we can calculate the estimator variance
and construct confidence intervals.

To obtain an estimate of the quality of E(~n) using the above procedure,
we have to repeat the experiment a large number of times to obtain a dis-
tribution of ~n and E(~n). Practically, this approach is infeasible since all the
data samples are usually combined into a single dataset to produce the best
estimate. As a result, there is only one dataset and one estimate whose qual-
ity we seek to determine. The Bootstrap is an ingenious method proposed
by Efron (Efron, 1982) to approximately generate new datasets from a single
original dataset. This is accomplished by using the empirical distribution of
data points in the collected dataset as an approximation to the population
distribution of all possible data points. From this empirical distribution, data
points are re-sampled with replacement to create new datasets. Using these
re-sampled datasets, a distribution of estimators is produced. Because there
is usually a considerable amount of independently collected data points, the
empirical distribution approximates true population reasonably well, which
is the only assumption made in the bootstrap procedure. In this situation,
the datasets generated by bootstrap are good approximations of hypothetical
new datasets. This in turn makes the computed distribution of estimators
close to the true distribution. In many applications, the bootstrap has been
very successful because of its robustness and ease of use.

In our application, the number of reads (ni) mapped to positions corre-
sponding to a certain short sequence are treated as data points. These po-
sitions have mapped reads that originated from the same RNA species with
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a certain abundance but may be affected by different sequencing artifacts.
Therefore, ni comes from a certain distribution with a shared mean corre-
sponding to expression and variations corresponding to sequencing bias and
sampling variability. We bootstrap these positions to form sample datasets
with biases that are typically encountered during sequencing.

Each bootstrap dataset is generated by re-sampling the positions in R
with replacement while keeping the total number of sampled positions the
same as in the original dataset. An illustration of this procedure is shown in
the first two rows of Fig. 2. We denote the index of the i-th data point in
the k-th bootstrap dataset sample as I(k)(i) so that the entire k-th bootstrap
dataset is ~nI(k) . The i-th element in I(k) is generated as an independent
random sample from R:

I(k)(i) ∼ Uniform(R). (1)

To obtain good bootstrap estimates, the number of bootstrap samples, K,
should be large to cover many likely datasets. After bootstraping the datasets,
each dataset is processed to produce a point estimate E(~n) for λ or a Bayesian
posterior distribution P (λ|~n) for λ. During this estimation procedure, read
generation is assumed to be bias-free and follow standard distributions such
as the Poisson or binomial distributions. As a result, the bootstrap procedure
effectively handles the variation due to sequencing bias and the estimation
procedure handles the inference assuming a bias-free read generation process.

If point estimates are used, the standard deviation across the bootstrap
samples can be used as a confidence measure. If a Bayesian inference proce-
dure is used for λ, each bootstrap sample produces a distribution over λ. In
this case, we proposed a ‘posterior distribution with bootstrap’, PBS(λ|~nI),
which combines the posterior probability of all of the bootstrap samples:

PBS(λ|~n) =
1

K

K∑
k=1

P (λ|~nI(k)), (2)

where nI(k) is the k-th bootstrap dataset. To obtain a confidence measure, we
can use the variance of λ in PBS(λ|~n), which is equal to the average variance
of λ in P (λ|~nI(k)) plus the variance of the expected value of λ across the
bootstrap samples.
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Figure 2: An illustration of the positional bootstrap. First two rows each
represent a junction with nine mappable positions and the number of reads
mapped to them. The left column is the original data and the rest are the
bootstrap samples. In each bootstrap sample, the positions (shown above the
x-axis) in the original data is sampled with replacement, such that repeats
and skips almost always occur. Each bootstrap sample is processed to obtain
a distribution of PSI values shown in the bottom row with the standard
method. The distributions from bootstrap samples are averaged to produce
the final bootstrap distribution of PSI, shown as the solid curve in the bottom
left panel in comparison with the distribution produced by standard method
with the original data (broken curve).
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4 Estimators for expression and alternative

splicing

Here, we show how the above technique can be used to obtain distributions
of estimators for transcript abundance and relative isoform levels for alter-
natively spliced transcripts.

4.1 Expression estimation

Following the notation above, the number of reads mapped to a set of posi-
tions is {ni}. Assuming there is no sequencing bias, and that the number of
reads is generated from a Poisson distribution with underlying abundance λ,
the likelihood function of the entire dataset is:

L(λ) =
∏
i∈R

λni

ni!
e−λ. (3)

Let N =
∑

i∈R ni be the total number of reads and P = |R| be the total num-
ber of positions considered. We can use the maximum likelihood estimator
as a point estimator, which is λ̂ = N/P . In addition, we can use a Bayesian
framework with an improper uniform prior over λ. Then the unnormalized
posterior distribution is the same as the likelihood function. Rearranging it,
we obtain:

P (λ|~n) ∝ λNe−Pλ. (4)

From the above, we observe that the posterior is the Gamma distribution
with a shape parameter equal to N + 1 and a scale parameter equal to 1/P .
The variance is equal to (N + 1)/P 2, which can be used as the confidence for
this estimator.

4.2 Splicing level estimation

In this section, we propose a Bayesian framework for the estimation of relative
abundances of two splicing isoforms. We consider two spliced RNA products
that are locally different. For example, in cassette splicing, the middle exon B
in a triplet of exons A-B-C might be skipped, resulting in either the inclusion
variant A-B-C or the exclusion variant A-C. For these two variants, we first
identify two sets of positions to which mapped RNA short reads can only
originate from one of the variants. We refer to these two sets of positions
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as the ‘inclusion positions’ and the ‘exclusion positions’. In the cassette
splicing example, the inclusion positions corresponds to reads that span the
A-B junction, the B-C junction and reads mapped to the body of B, while
exclusion positions correspond to reads that span the A-C junction.

We only use the numbers of reads mapped to the inclusion and exclusion
positions defined above so there is no uncertainty about which isoform a
read came from. If a position is found to be not mappable, possibly due to
reasons such as sequence repeats, the position can be discarded. In addition,
positions whose mapped reads do not span an exon-exon junction can be
discarded to avoid error introduced by unspliced reads. These procedures
reduce the set of inclusion and exclusion positions, but do not change the
inference procedure presented here. In the following analysis, the input data
consists of two sets of counts corresponding to the number of reads mapped to
the inclusion and exclusion positions. The size of these two sets of positions
need not to be the same and the goal is to determine the distribution over
the percent of transcripts with the central piece spliced in (PSI), as generally
defined for different alternative splicing events in (Wang et al., 2008).

Let I and E be the set of inclusion and exclusion positions and the number
of reads mapped to position i be ni. Suppose in the biological sample, the
combined expression of the inclusion and exclusion variant is β and the PSI
value is ψ. Then, by the definition of PSI, the abundance of the inclusion
variant is ψβ and the abundance of the exclusion variant is (1−ψ)β. Based on
the assumption that short RNA-seq reads are independently generated with
a Poisson parameter proportional to the abundance, the combined likelihood
of the observed RNA-seq read data is:

L(β, ψ) =
∏
i∈I

((βψ)ni

ni!
e−βψ

)∏
i∈E

((β(1− ψ))ni

ni!
e−β(1−ψ)

)
. (5)

Rearranging the above equation, we obtain:

L(β, ψ) =
( ∏
i∈I,E

1

ni!

)(
(βψ)

∑
i∈I

ni
)(

(β(1− ψ))

∑
i∈E

ni
)

·
(
e−|I|βψ

)(
e−|E|β(1−ψ)

)
,

(6)

where |I| is the size of I and |E| is the size of E. Clearly, the likelihood func-
tion depends on ~n only through the total number of inclusion and exclusion
reads. To simplify the notation, let |I| = PI , |E| = PE,

∑
i∈I ni = NI and
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∑
i∈E ni = NE. For each event, these four counts are the sufficient statistics

that jointly determine the likelihood function of β and ψ. Using this notation
and rearranging, the likelihood function is:

L(β, ψ) ∝ βNI+NEe−PEβψNI (1− ψ)NEePEβψ−PIβψ. (7)

Note that when the number of the inclusion positions is the same as the
number of exclusion positions (PI = PE), the last term is constant and the
likelihood function is separable between β and ψ. The part depending on
ψ is a standard binomial likelihood function. Practically, this can happen if
we only consider one junction for each variant and all junction positions are
mappable. Intuitively, this is because when either an inclusion or exclusion
read is observed, the probability that it is an inclusion read is the same as
PSI without scaling by the number of possible inclusion/exclusion positions.

However, there is dependency between ψ and β in general because of
unequal number of positions. To obtain the posterior distribution of ψ, we
need to integrate out β from the joint posterior distribution of β and ψ. Here,
we choose the Beta prior with parameters a and b for ψ and an independent
exponential prior with parameter r for β:

P (ψ) ∝ ψa−1(1− ψ)b−1. (8)

P (β) ∝ exp(−rβ). (9)

The two parameters a and b in the Beta prior represent how likely the in-
clusion variant appears in general and how strong the prior is. They can be
inferred from data using an empirical Bayes approach. Furthermore, differ-
ent Beta priors can be used for different events, if additional information is
available. Similarly, the parameter r in the exponential prior for expression
represents a likely expression level of a short sequence scaled by sequencing
coverage. Without specific prior knowledge, we can use the uniform prior
as a the default setting with a = b = 1 and r = 0. Note that when r = 0,
the prior of expression is improper as it cannot be normalized, but with ob-
served data, it becomes normalizable. Using these priors, the unnormalized
posterior distribution is:

P (β, ψ|~n) ∝ βNI+NE exp[−(ψPI + (1− ψ)PE + r)β]

· ψNI+a−1(1− ψ)NE+b−1.
(10)
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We integrate over β to obtain the posterior distribution of ψ. As long
as r ≥ 0, the integral over β converges when there is at least one mappable
inclusion or exclusion position.

P (ψ|~n) =

∞∫
0

P (β, ψ|~n)dβ, (11)

∝ (NI +NE)!ψNI+a−1(1− ψ)NE+b−1

(ψPI + (1− ψ)PE + r)NI+NE
. (12)

The above posterior distribution is a rational function of degree equal to
the total number of mapped reads, which can be large for highly expressed
genes. To obtain exact samples or exact posterior distribution would require
integrating ψ to obtain the normalizing constant of P (ψ|~n). This can be slow
if many reads are mapped. To speed up computation, we observe that ψ is one
dimensional and bounded between 0 and 1. This makes the distribution of
ψ convenient to approximate using a grid. We use a uniform grid with linear
interpolation to approximate the probability density function of the posterior.
This way, the distribution of ψ can be obtained in constant computation time
with respect to N and P . To prevent numerical underflow, the standard log-
sum-exp technique is used. The number of points in the grid can be set by
the user, and a default value of 500 is used in our software implementation.

5 Results

To demonstrate the effectiveness of the proposed bootstrap method, we used
it to estimate PSI for cassette splicing, which is the most common type of
alternative splicing. In cassette splicing, the alternative exon B in an consec-
utive exon triplet A-B-C can be excluded while exons A and B are assumed
to be constitutive. We mapped the Bodymap and the Kaessmann datasets
described above to 43,848 cassette exon triplets and only used the junction
reads. The bootstrap method was applied with the uniform prior on both
PSI and expression (a = b = 1, r = 0). In addition, we applied Bayesian PSI
inference without the bootstrap, which is denoted as the ‘standard method’.

Fig. 3 compares the mean and standard deviation obtained using the
bootstrap procedure and the standard method, and includes the details for
two examples. In these two examples, total number of mapped reads are
similar, but the reads mapped to one exon is much more concentrated on
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Figure 3: A-B: Comparison between the estimated PSI and its standard devi-
ation obtained by the bootstrap method and the standard method. Pearson
correlation coefficient is shown above the figures. Correlation is very high for
expected PSI while bootstrap increases the standard deviation estimations
for many exons due to unevenly mapped reads. C-D: Real RNA-seq read
distributions of two example exons, shown as circle and star in A-B, hav-
ing similar PSI values and standard deviation estimations from the standard
method. However, the bootstrap accounts for the high unevenness of read
mapping in C and assigns a much higher standard deviation.
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Figure 4: Additional PSI variance estimated by the bootstrap method com-
pared to the standard method for two datasets. Points at the origin corre-
spond to exon-tissue combinations whose bootstrap confidence estimate is
the same as the standard confidence estimate. Points away from the origin
correspond to exon-tissue combinations that have a higher bootstrap confi-
dence estimate, because biases are accounted for.

certain spots, suggesting sequencing bias. In the result, PSI mean is similar
for the two methods, but the standard deviation is quite different, because
sequencing artifacts are detected. Fig. 4 shows a scatter plot of the addi-
tional variance captured by the bootstrap method compared to the standard
method for both datasets. We observe that there is a positive correlation
due to a sequence-dependent bias that is shared between the two datasets.
However, significant differences exist due to an experiment-dependent bias
and sequence-dependent biases that are different between the two datasets.

We used several methods to evaluate the performance gain produced by
the bootstrap procedure. First, we computed the correlation between PSI
estimates from two datasets (Bodymap and Kaessmann) for the top k per-
cent most confident exons, ranked by the confidence estimate produced by
the standard method and the bootstrap method (Fig. 5 A). We observe the
correlation of PSI decreases as more exons are included, indicating that both
confidence estimates are representative of uncertainty . However, the boot-
strap confidence is significantly better and decreases the error (1-correlation
coefficient) by a factor of 2 for the top 10% of exons.
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Figure 5: A. Cross-dataset Pearson correlation coefficient of the k percent
most confident PSI estimates. The raking is computed by sorting the stan-
dard deviation in increasing order. Using the bootstrap standard deviation to
rank events increased the correlation of PSI values estimated from two inde-
pendently prepared datasets by both methods. The version of PSI estimate
used made little difference. B-F: Number of disagreements (errors) of PSI and
junction expression estimates when comparing different divisions of datasets.
Dataset divisions are described in the main text and SI. Events are sorted
by increasing standard deviation. Dotted line: standard method. Solid line:
bootstrap method. B-D: Number of errors in PSI estimation. An error is
defined as PSI difference greater than 10% between two datasets. E-F: error
rates of tissue dependent PSI differences and junction expression differences.
In A-F, using the bootstrap to estimate confidence (solid line) appear to al-
ways produce lower error rates than the standard method, indicating that the
bootstrap captured genuine inaccuracies produced by RNA-seq technology.
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Next, we split each dataset into two halves by junction positions (posi-
tions 1-30 and 31-60) so that the positions covered by each half are different.
These two halves represent two junction datasets that may be produced by
a technology with a shorter read length, but with the same distribution of
position-dependent sequencing biases as well as other bias introduced during
upstream processing, such as during sample preparation and amplification.
However, their idiosyncratic biases are different due to different sequences
associated with different positions. Since these two halves are measuring
the same RNA species, a robust procedure that properly takes into account
uncertainty introduced by sequencing bias should produce little difference
when estimating PSI. Similarly, PSI values estimated from the same half of
the Bodymap and Kaessmann’s dataset and the PSI values estimated from
different halves of the different datasets can be compared. For these two
comparisons, genuine PSI differences might exist because of possible biolog-
ical difference between the samples. However, dataset-dependent sequencing
bias, whose severity is shown above in Fig. 2 D, can also produce apparent
sample-dependent PSI differences that are erroneous. Therefore, a robust
method that captures sequencing bias is expected to produce fewer confident
differences in PSI.

Using these two halves of the two datasets, four sets of PSI values and
confidence estimates were produced using the standard method and the boot-
strap method. For each method, we analyzed the agreement of all six pairs of
these four estimates by separating them into three categories based on if the
position and the dataset are the same (Fig. 5 B-D). Exons are sorted in de-
scending order of confidence in PSI and an error is defined by a greater than
10% disagreement in the PSI value. As expected, the cross-position, cross-
dataset comparison (Fig 5 B) produces the largest difference, because both
the experiment and the sequence are different. The same-position, cross-
dataset comparison produced more error than then cross-position, same-
dataset comparison, suggesting there is more experiment-dependent bias
than sequence-dependent bias. For all of these experiments, compared to
the standard method, the bootstrap method made significantly fewer errors
in estimating PSI for the exons to which it assigned highest confidence.

We also evaluated the proposed bootstrap method in terms of detecting
tissue-dependent PSI differences and tissue-dependent exon-exon junction
expression differences. All pairs of tissues are considered, producing a total
of 43, 848 ×

(
4
2

)
= 263088 exon-tissue-pair combinations. Z-scores of the
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expected PSI differences are used to detect tissue specific splicing changes:

z =
E(ψi)− E(ψj)√
Var(ψi) + Var(ψj)

, (13)

where ψi is the PSI value estimated for the i-th tissue. These z-scores are
computed for all exon-tissue-pair combinations and ranked by their absolute
value. To detect a set of k most significant tissue-specific splicing changes, a
threshold on the absolute value of z-scores corresponding to k is used. Using
the setup described above, we used the same event-tissue-pair combination
from two datasets such that they differ in position or origin to verify the de-
tection of tissue-dependent splicing differences. The top k events are used for
both datasets and an error is detected if the direction of change is different
between the two datasets. Using this criteria, we compared the performance
between the bootstrap method and the standard method. As shown in Fig. 5
E, the bootstrap method produced a much lower error rate for the most con-
fident events than the standard method. In addition, the bootstrap method
can be used to detect junction expression differences. For this task, the
mean of the posterior distribution of log(β) is used as the expression and
the variance of log(β) is used as the confidence estimate. Z-scores are used
to rank the events. Again, a much higher detection rate of tissue-dependent
difference is achieved by the bootstrap method.

6 Conclusions

Sequencing artifacts are prevalent in RNA-seq, they have multiple causes,
and they usually depend on sequencing protocol. As a result, estimating a
realistic confidence score is critical for avoiding incorrect conclusions when
analyzing RNA-seq data. We proposed the ‘positional bootstrap’, a method
that computes confidence scores by simultaneously taking into account cover-
age and sequencing artifacts in a robust, general manner, that works even for
unknown sources of error. It can also be readily combined with other bias-
correcting methods to capture the effect of residual biases unaccounted for. In
addition, we proposed novel methods for visualizing sequencing artifacts and
comparing estimation methods across datasets. In these comparisons, the po-
sitional bootstrap outperformed the standard method used in the community
by a wide margin, especially for the most confident estimates. These com-
parisons include analyses of alternative splicing, tissue-dependent splicing
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differences and tissue-dependent junction expression differences. Moreover,
the positional bootstrap idea can potentially be applied to many other prob-
lems that make use of short reads, such as DNA sequencing, other RNA-seq
tasks, CLIP-Seq and ChIP-Seq. The only requirement is that the estimator
depends in the same way on some measurements obtained for a set of ge-
nomic positions. Bootstrapping these positions and combining the estimates
of bootstrap samples produces a much more realistic confidence measure,
by taking into account the empirical discrepancy between the positions due
to sequencing artifacts. These sequencing artifacts can go undetected only
if they happen to be the same across all genomic positions being analyzed,
which is unlikely the case for many types of sequencing artifacts. Given the
simplicity, rational and performance gain achieved by the positional boot-
strap, we believe it will have wide applicability in the field.
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