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Title: 

Assessing the measurement transfer function of single-cell RNA sequencing 

 

Abstract:  

Recently, measurement of RNA at single cell resolution has yielded surprising insights. Methods for 

single-cell RNA sequencing (scRNA-seq) have received considerable attention, but the broad reliability of 

single cell methods and the factors governing their performance are still poorly known. Here, we 

conducted a large-scale control experiment to assess the transfer function of three scRNA-seq methods 

and factors modulating the function. All three methods detected greater than 70% of the expected number 

of genes and had a 50% probability of detecting genes with abundance greater than 2 to 4 molecules. 

Despite the small number of molecules, sequencing depth significantly affected gene detection. While 

biases in detection and quantification were qualitatively similar across methods, the degree of bias 

differed, consistent with differences in molecular protocol. Measurement reliability increased with 

expression level for all methods and we conservatively estimate the measurement transfer functions to be 

linear above ~5-10 molecules. Based on these extensive control studies, we propose that RNA-seq of 

single cells has come of age, yielding quantitative biological information. 
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Background 

Single-cell RNA sequencing (scRNA-seq) allows unprecedented resolution for studies of gene 

expression. Since its introduction in 20091, this approach has been used to identify and classify cell types, 

characterize rare cells, and study expression variation across cell populations2–10. In this method, the 

RNA content of a single cell is captured, reverse transcribed to generate cDNA, amplified and sequenced, 

providing measurements of the transcriptomes of single cells with nucleotide-level resolution. Compared 

with methods to sequence bulk RNA, scRNA-seq requires substantial molecular amplification and 

consequently, additional handling and enzymatic reactions. This has the potential to introduce additional 

experimental errors and molecular biases, such that analytic methods designed for bulk RNA sequencing 

may not be appropriate for single-cell measurements. Despite substantial experimental methods 

development11–16, these measurements remain complex and poorly characterized. Though measurement 

characteristics likely depend on the specific experimental protocol used, there has been limited 

examination of whether measurement characteristics differ across methods. Additionally, although 

several common applications of single-cell RNA sequencing rely on measurement sensitivity, there are 

few assessments of the detection of gene expression and the factors that may affect it.  

Here, we first describe a methodology to dissect the factors that affect scRNA-seq and then we 

characterize expression measurements generated by three scRNA-seq methods in terms of sensitivity, 

precision and accuracy. We find that all methods perform comparably overall, but that individual methods 

demonstrate unique strengths and biases.  

Results 

Method overview 

Our approach was to dilute bulk total RNA (from a single source) to levels bracketing single-cell levels of 

total RNA (10 pg and 100 pg). Here, we analyzed the performance of scRNA-seq methods in terms of 

sensitivity (number of unique gene models detected), precision (replicate variation), and accuracy 

(deviation from bulk). We note that expected replicate precision depends on the exact sequence of 
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dilutions that lead to the final set of replicates. For example, if a single “master” dilution mix is made from 

which n replicate final dilutions are created, the expected number of molecules for each replicate will be 

based on the master dilution, not the original bulk. Each replicate value in relation to the bulk will be 

comprised of two terms, the variance term due to the final dilutions and a bias term, which is the deviation 

of the master dilution from the bulk. Different experimental protocols (e.g., using Fluidigm C1 to generate 

replicates) require attention to the expected variation. Overall, we adopted the framework of estimating a 

“transfer function”—i.e., the function that describes the input-output relationship of an instrument. As 

reported below, various factors affect the transfer function and we employed a general linear model 

framework to dissect the factors governing measurement performance. In particular, we observed that 

certain genes, or even control ERCC probes, have a tendency for large deviations from expectations and 

we created a list of problematic gene models for future reference. We add the caveat that our transfer 

functions are not reliable outside the range of experimental values from which we fitted the models and 

the inferences should be interpreted with care. 

RNA-sequencing datasets 

We performed replicate transcriptome amplifications of Universal Human Reference RNA (UHR) 

and Human Brain Reference RNA (HBR) that were diluted to single-cell and ten-cell abundances (10 and 

100 picograms (pg.) total RNA or ~200,000 and 2 million mRNA molecules, respectively) and were 

amplified using three single-cell RNA amplification methods (Figure 1A-B). Methods included the 

antisense RNA IVT protocol (aRNA), a custom C1 SMARTer protocol (SmartSeq Plus) performed on a 

Fluidigm C1 96-well chip, and a modified NuGen Ovation RNA sequencing protocol (NuGen, Figure 1B-

C, Table S1). Bulk ribo-depleted UHR and HBR RNA were sequenced and served as a reference. The 

general experimental scheme was consistent for all dilution replicates; however, there were differences 

across experimental groups in the specifics of experimental protocols, necessitated by particular 

methodologies (Figure 1A, see Methods and Table S1 for full details). Because of these experimental 

differences, head-to-head comparison of methods is not appropriate and our goal is to provide 

quantitative analyses of factors affecting individual methods. Current results should be used in 
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experimental planning, data analysis, and method optimization rather than as a performance test of any 

particular method. 

Data processing 

Briefly, all samples were aligned to hg19 using STAR aligner17. Uniquely aligned reads were 

assigned to GENCODE18 gene annotations using HTSeq and htseq-counts18 and then were depth 

normalized19. Ribosomal genes and genes with short isoforms (<300 nucleotides) were excluded because 

of differences in sequencing protocols across groups (Figure 1A), leaving 42,855 genes for analysis. (We 

use “gene” to match GENCODE18 gene ids, a set that includes both coding- and non-coding RNA.) To 

avoid artifacts caused by alignment or quantification ambiguities, we generated a stringently filtered gene 

list containing 10,039 genes to which reads can be uniquely assigned and referred to these genes as 

“computationally unambiguous” throughout (Table S2). Reference RNA were aligned and quantified with 

RSEM (RNA-seq by Expectation-Maximization)20. Estimated abundances were concordant with publicly 

available PrimePCR measurements and with poly-A RNA sequencing measurements (Figure S1, 

SEQC/MAQC-III Consortium, 2014, GEO accession numbers: GPL18522, GSM1362002-GSM1362029, 

GSM1361974-GSM136200121). The mass of targeted input RNA in diluted replicates was estimated as in 

Brennecke et al.2 and was used to calculate, for each gene, the expected number of input molecules in a 

diluted replicate. aRNA selectively targeted poly-adenylated (poly-A) mRNA (Figure 1A). We calculated 

the expected number of input poly-A molecules using publicly available bulk HBR sequencing 

measurements. See Methods for further details. 

 On average, replicates were sequenced at a depth of 22.0 ± 9.6 million reads (± standard 

deviation or Sd.). 1.5 ± 5.3% of reads were discarded due to primer contamination. 89.3 ± 10.6% of 

retained reads aligned to the genome, 77.6 ± 11.2% uniquely (Figure 1C). To examine the coverage 

distribution of each method, we quantified the frequency of mapped reads over several genomic regions 

of interest (Table 1). This distribution differed for the three single-cell amplification methods. The majority 

of aligned reads for aRNA dilution replicates originated from non-mitochondrial exons (excluding rRNA), a 

substantially larger proportion than that recovered by SmartSeq Plus or NuGen. rRNA genes, 
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pseudogenes and repeats encoded by the nuclear genome comprised a small fraction of reads in all 

amplified libraries (average ± SD: 0.67 ± 0.65%). rRNA and mRNA encoded by the mitochondrial genome 

(2 genes and 13 genes, respectively) constituted a substantial percentage of reads (average ± SD: 16.5 ± 

8.4%). Mitochondrial recovery differed substantially across methods. This difference may translate into a 

method-specific effect on depth normalization and for this reason mitochondrial genes have been 

excluded from the subsequent analyses. The distribution of reads across genomic features also differed 

substantially across replicates for aRNA and NuGen (Table 1).  

Gene detection sensitivity 

We calculated the number of detected genes as a measure of detection sensitivity (Figure 2A). All 

methods demonstrate comparable high gene detection, detecting greater than 70% of the expected 

number of genes, with SmartSeq Plus demonstrating the highest detection (Byar’s 95% C.I., Obs. / Exp.: 

aRNA (0.722, 0.726); SmartSeq Plus (0.877, 0.882); NuGen (0.735, 0.740)). With respect to poly-A RNA, 

aRNA detected (0.840, 0.844) of expectation. Variation across samples within each method was 

substantially larger than expected due to dilution suggesting additional loss during cDNA and 

amplification (Figure 2A).  

Detection of a given gene may depend on parameters such as the input number of molecules, 

GC-content, presence of internal adenosine monophosphate (A) hexamers, length, strength of molecular 

secondary structure, and sequencing depth. To estimate the contribution of these factors to gene 

detection, we fit a logistic regression model to the 10 pg. gene detection data with gene detection as the 

dependent variable, considering only computationally unambiguous genes to focus on experimental 

sensitivity. (See Methods and Tables S3-S4 for details.) All methods had a 50% probability of gene 

detection at ~2-4 expected input molecules, controlling for the remaining covariates (Figure 2B, Table 

S5). We calculated a molecular recovery rate as the predicted probability that a gene with 1 expected 

input molecule will be detected, scaled by the probability that at least one molecule of such a gene will be 

in a diluted replicate. Molecular recovery rates were greater than 0.25 for all methods (95% prediction 
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interval: aRNA (0.262, 0.279), SmartSeq Plus (0.534, 0.558), NuGen (0.315, 0.339)). With respect to 

poly-A RNA, aRNA recovery rate was (0.320, 0.349).  

Despite the small number of total (targeted) RNA molecules in a single 10 pg. dilution replicate 

(estimated here to be ~300,000 molecules), sequencing depth had a highly significant effect on gene 

detection (Table S3). Figure 2C shows the odds ratio of increasing sequencing depth by 500,000 reads. 

The odds ratio is the relative odds of event occurrence at two values of a variate, controlling for all other 

covariates. The odds of gene detection increased substantially with sequencing depth until a depth of 

~15-20 million reads or ~50 reads per input molecule. Here, increasing sequencing depth from 10 to 15 

million reads translated into an expected gain of 25.02 % in detected genes. The influence of remaining 

covariates on gene detection differed across methods (Figure 2D-E). The odds of gene detection 

increased with gene length, and NuGen demonstrated a significantly stronger length effect than aRNA or 

SmartSeq Plus (Figure 2D). The presence of an internal A-hexamer positively influenced the probability of 

gene detection for all methods, with strongest effect for aRNA. Increased strength of secondary structure 

decreased the odds of detection for all methods, with significantly smaller effect for aRNA than for 

SmartSeq Plus or NuGen. While GC content influenced detection probability in a complex manner, 

SmartSeq Plus demonstrated the strongest GC effect (Figure 2E).  

A small fraction of computationally unambiguous genes had poor fit by the logistic model (0.30 ± 

0.14%; see Table S6 for a list of outliers and Methods for details). Each outlier was categorized as 

“detected” if the gene was unexpectedly observed and “undetected” if it was unexpectedly missing. 

Nearly all identified outliers (16/17) were method-specific. A larger proportion of computationally 

ambiguous genes were poorly fit by the model (3.21 ± 0.23 %, Table S6) with a sizable fraction (19.81 ± 

2.90%) that fit poorly for all methods. These outlier genes had significantly lower fraction of the gene body 

that could be aligned uniquely than background genes (Figure 2F; Wilcoxon rank sum two-way test, 

p<0.05). This was the case for both detected and undetected outliers, indicating that alignment 

ambiguities likely generate both false positives and false negatives. Outliers also significantly differed 

from background in the fraction of the gene body that overlaps with another gene annotation, with lower 

overlap among detected outliers and greater overlap among undetected outliers (Figure 2G).  
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To characterize read coverage at the scale of individual base positions, we calculated the 

observed / expected nucleotide coverage as a function of 3' to 5' position within a gene (Figure 2H), 

normalized such that a uniform distribution of reads along a gene would be assigned a value of one at all 

positions (see Methods). Coverage for all methods was significantly different from uniform (Figure 2I; 

Kolmogorov-Smirnov test p<10-10 for all groups); however, NuGen demonstrated the greatest uniformity 

(Figure 2H-I) with similar positional coverage distribution for 10 pg. and 100 pg. dilution replicates. aRNA 

preferentially covered the 3’ terminal and demonstrated greater 3’ bias for 10 pg. dilution data. SmartSeq 

Plus showed an intermediate degree of bias. Segregated by expression levels, we found preferential 

recovery of the 5’ and the 3’ gene ends for low abundance genes and preferential 3’ coverage for high 

abundance genes (Figure 2J). 

Precision 

We next consider the similarity of measurements across dilution replicates, within methods and 

across methods. Though we cannot quantitatively compare measurement precision across methods (see 

Figure 1A), the results will be applicable to experimental design and analysis for each method. The 

average within experimental group pairwise correlation coefficient (± Sd.) was 0.37 ± 0.07 (Kendall) and 

0.51 ± 0.09 (Pearson, log10 counts) for 10 pg. replicates and 0.64 ± 0.06 (Kendall) and 0.79 ± 0.06 

(Pearson, log10 counts) for 100 pg. replicates (Figure 3A; zeros treated as missing values).  

 To describe the dependence of precision on expression level, we performed least-squares 

regression of the empirical standard deviation on the empirical mean (both variables log-transformed to 

satisfy the assumption of residual normality) for 10 pg. experimental groups with sample size >5. The 

mean was an excellent predictor of standard deviation (Figure 3B, adjusted R2>0.85 and slope coefficient 

t-test p <10-16 in all cases). Genes that were less precise than expected (standardized residuals outside 

predicted 90% CI) differed little from background in their biophysical characteristics (Figure 3C-F), 

suggesting limited systematic bias in experimental variability. Biophysical characteristics enriched among 

unexpectedly precise genes with respect to background differed in a method-specific manner (Figure 3C-

F). For aRNA and SmartSeq Plus, enriched biophysical characteristics were concordant with reduced 
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probability of gene detection (compare Figure 2D-E), suggesting technical dropouts might play a strong 

role in replicate precision. NuGen demonstrated the opposite trend suggesting that amplification bias 

might play a stronger role. A subset of genes whose standard deviation was poorly predicted by the mean 

(percent of genes with standardized residuals outside predicted 99.3% C.I.) are listed in Table S7. We 

recommend that the expression values of these gene models should be interpreted with caution. 

Separate principal components analysis (PCA) of each HBR and UHR for 10 pg. dilution data 

demonstrated that average displacement between single cell and bulk measurements predominate over 

differences between single cell methods (Figure 3G-H); however, there were clear differences across 

methods in the multivariate covariance structure of experimental variation. Differences across methods 

were also apparent for 100 pg. dilution replicates (Figure 3I-J), and, though these measurements were 

more similar to bulk measurements, differences between dilution replicates and bulk measurements 

persisted. We note that average displacement between single cell and bulk measurements represent both 

a bias component from utilizing a master dilution mix (see above) and technical bias. We repeated PCA 

on a subset of genes with greater than 18.5 expected input molecules (expected probability of detection 

for “typical” gene > 0.9 for all methods). On highly abundant genes, dilution replicates were substantially 

more similar to bulk measurements (Figure 3K-N) and differences across methods were substantially 

smaller. However, in all cases, the within method pattern of covariation (direction of ellipses) and the bias 

dispersal around the bulk expected value (position of the centroid of the ellipses) differed for both source 

RNA and individual methods.  

Accuracy 

We calculated pairwise correlation coefficients of dilution replicates with bulk as a metric of 

overall accuracy (Figure 4A). For this and the below, only non-zero gene counts were considered in order 

to focus on quantitation rather than sensitivity. 10 pg. dilution replicates demonstrated an average 

pairwise correlation with reference of 0.42 ± 0.01 (Kendall) and 0.55 ± 0.01 (Pearson, log10 counts). 100 

pg. replicates showed greater similarity with reference (0.57 ± 0.01 (Kendall) and 0.72 ± 0.01 (Pearson, 
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log10 counts). Correlation with reference had a modest association with percent unique alignment (Figure 

4B-C).  

To assess the accuracy of individual gene estimates, we calculated the fold deviation of 

normalized read counts with respect to bulk HBR or UHR measurements (Figure 4D-F, Methods). For all 

methods and input amounts, the median fold deviation was less than 1 but a subset of genes was 

extensively overestimated. Overestimated genes (top 5% fold-deviation) were substantially longer than 

remaining genes and more frequently contained an internal A-hexamer (Figure 4G-J). For NuGen and 

SmartSeq Plus, these genes also had lower GC content and weaker local secondary structure than 

remaining genes. Underestimated genes (bottom 5% fold-deviation) demonstrated the opposite 

tendencies: compared to background genes, they were shorter, less frequently contained internal A-

hexamers, had higher GC content and stronger secondary structure than background, as might be 

expected (Figure 4G-J). Overall, aRNA demonstrated less systematic bias than NuGen or SmartSeq 

Plus. Highly inaccurate genes (top or bottom 1% fold-deviation) are catalogued in Table S8.  

Smoothed density scatter plots demonstrated method-specific transfer functions between the 

expected number of input molecules and the number of read counts in an individual replicate (Figure 4K-

M). This relationship was roughly linear at expression levels greater than ~5-10 expected input molecules 

up to at least ~600 input molecules, the highest expression level examined for 10 pg. replicates, giving a 

linear dynamic range of at least 100-fold. At low to mid expression levels measurements were frequently 

underestimated expanding the apparent range of measured abundances, particularly for aRNA and 

NuGen (Figure 4N-P).  

Protocol variations 

We evaluated the effects of several protocol variations on measurement quality (Table 2). The 

aRNA protocol used for the primary analysis includes cDNA purification before initial amplification, and 3 

rounds of IVT amplification followed by dilution of amplified cDNA before library preparation (Figure 1B). 

Elimination of initial cDNA purification significantly improved sensitivity and accuracy, as did reduction to 

two rounds of IVT amplification and elimination of dilution prior to library generation (Table 2). An 
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optimized protocol incorporating both changes, demonstrated substantial improvements in the number of 

detected genes and pairwise correlation with the bulk (Table 2).  

The addition of ERCC spike-in transcripts provides an internal control 22, but it raises the concern 

that addition of synthetic RNA to a sample may decrease biological sensitivity. We found no significant 

difference in sensitivity, precision or accuracy across matched dilution replicates with and without the 

addition of ERCCs (Table 2) up to the spike-in level of 2.7% of reads. Individual ERCC transcripts were 

found to be problematic, consistently inaccurate, for SmartSeq Plus and aRNA in a method specific 

manner (Figure S2).  

Strand-specific RNA sequencing may improve detection sensitivity and reduce false positive 

detection. Stranded quantification of aRNA replicates detected slightly fewer genes than non-stranded 

quantification; however, it also detected significantly fewer genes that were not observed in the bulk, and 

genes that were detected only by stranded quantification were supported by significantly more reads than 

genes detected only by non-stranded quantification (Table 2).  

Discussion 

In light of these results, we briefly discuss a few topics related to experimental planning, method 

optimization and data analysis.  

Though the goal of this study and our experimental design is not meant to select “the best 

method”, some results may be helpful in selecting an appropriate method for a particular project. The 

enriched coverage of exons in aRNA may be beneficial for studies of mRNA, and the retention of 

transcript strand information is unique to aRNA at this point. SmartSeq Plus and C1 microfluidic device 

generates reproducible replicates and high detection sensitivity, presumably due to more uniform liquid 

handling and retention of material due to lack of vessel transfer. The uniformity of coverage provided by 

NuGen (Figure 2H-I) may be beneficial studies of isoform use and splicing. We note that, in our hands, 

NuGen reactions were inconsistent and we had repeated amplification failures, or amplification of non-
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template directed products with this method, especially at the 10 pg level where the method appears to 

be reaching the limits of it sensitivity.  

In selecting sequencing depth, there is a trade-off between gene detection sensitivity and cost. 

Typically, a small number of genes comprise the bulk of RNA molecules in a transcriptome. Sequencing 

at low depths should be sufficient to reproducibly detect and quantify these abundant genes; however, the 

majority of genes in a typical transcriptome are at low abundance. Because of this, the number of genes 

detected in the mixtures of RNAs used here depends heavily on sequencing depth (Figure 2C). The 

dynamic range limit due to sequencing depth is will be a function of the relative frequency distribution, 

which will vary for an actual single cell. Our results suggest that increasing the number of reads per cell 

may produce richer transcriptome measurements and should be considered carefully in the context of a 

specific experimental plan.  

Missing values due to lack of sensitivity and the presence of large valued outliers may cause 

complications for depth normalization methods. Large variation across samples and substantial 

differences across methods in the fraction of reads assigned to mitochondrial RNA (Table 1) will 

propagate to sample and method differences in relative read counts. More generally, we observed large 

variation in the distribution of reads across broad genome annotation classes (Table 1). Because each 

genomic annotation class accounted for a substantial number of reads and input molecules, the observed 

differences across methods, and within methods, cannot be simply explained by sampling error. Similarly, 

variation across samples in the number of detected genes cannot be easily explained by dilution (Figure 

2A). This behavior might be explained by global differences in reaction efficiencies across samples, as 

suggested previously25; however, the experimental sources of such differences in a controlled experiment 

are unclear. We found certain subsets of genes to be problematic for gene detection, accuracy, and 

precision, in a method-specific manner (Table S6-S8). We recommend that genes on these lists be 

treated with caution, filtered before analysis or interpreted with care. We similarly found several ERCC 

spike-in transcripts to be problematic (Figure S2), and recommend selecting a subset of reliable ERCC 

transcripts for use as reference measurements. 
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Some scRNA-seq quantification challenges might be reduced through further experimental 

optimizations, for example by increasing detection sensitivity and reducing amplification biases. 

Eliminating the initial cDNA purification, reducing the extent of amplification required, and limiting sample 

dilution may be productive avenues, as suggested by our data. Methods to experimentally deplete highly 

abundant and variably recovered mitochondrial RNA, if not of experimental interest, may also be of use.  

Single cell RNA measurement methods have become increasingly robust and automated 

systems have made the technique broadly more accessible and efficient. All methods examined here 

demonstrated good gene detection and a linear relationship between input molecular abundances and 

measured expression levels at mid- to high-expression levels or greater than ~5-10 input molecules. This 

corresponds to ~4,000–8,000 reliably measured genes for the reference transcriptomes examined here. 

We propose that single cell RNA measurements have come of age and this level of resolution for gene 

expression measurements has and will continue to facilitate biological discovery.  

Methods  

Experimental design 

Each collaborating center obtained reference RNA with the same lot number for Universal Human 

Reference (UHR) RNA (Agilent 740000, Lot 0006141415) and Human Brain Reference (HBR) (Ambion 

AM6050, Lot-105P055201A) and performed replicate amplification using a single amplification method, 

detailed below.  

SmartSeq Plus: Reference RNA was diluted to an intermediate stock solution by serial dilution. A 

final 1000-fold dilution occurred on the C1 chip, such that individual wells in a given batch contained 9.99 

pg. sampled from a common intermediate dilution. ERCC spike-in RNA mix 1 (Ambion 4456740) was also 

added for a final mass of approximately 7 femtograms (fg.) per sample, a 4,000,000x dilution from stock. 

Samples for each source RNA were prepared in single batches. After amplification, cDNA from the entire 

C1 96-well plate was quantified using picogreen. C1 chips with an average yield of less than 3 

nanograms were discarded. The top 15 reactor wells by cDNA concentration were selected as 
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representative 10 pg. samples for sequencing library preparation. Another 50 wells were selected by the 

same criteria. These were pooled in sets of 10, generating 5 100 pg. samples for each HBR and UHR. All 

samples for a given source were prepared in a single sequencing library preparation batch using Nextera 

XT C1 protocol.  

NuGen: HBR samples were prepared in a single batch using amplification protocol 1, generating 

4 10 pg. and 4 100 pg. amplified replicates. UHR samples were prepared in two batches, using either 

amplification protocol 1 or 2, generating 15 10 pg. and 11 100 pg. samples (see Table S1). A single 

sequencing library preparation was performed for each batch of samples using either Lucigen NxSeq or 

NuGen Ovation Rapid protocol (see Table S1). 

aRNA: Amplification was performed as previously described26. HBR samples were prepared in 4 

batches from separate dilutions of reference RNA, generating 19 10 pg. and 3 100 pg. amplified 

replicates. ERCC spike-ins were added to 5 of the 10 pg. replicates before amplification at a dilution of 

4,000,000x from stock. UHR samples were diluted and amplified in 2 batches from separate dilutions of 

reference RNA, generating 12 10 pg. and 7 100 pg. amplified replicates. (Table S1). A single sequencing 

library preparation was performed using Illumina TruSeq Stranded mRNA protocol modified to begin with 

amplified aRNA. A small numbers of reads were assigned to ERCC transcripts in replicates from the 

batch where ERCCs had been added that did not have spike-ins added (average of 0.5% of the number 

of reads assigned in spiked samples). 18 additional HBR 10 pg. replicates were amplified using aRNA for 

protocol optimization experiments (see Table S9). These samples were treated separately and were 

excluded from primary analysis.  

Bulk UHR and HBR: For each reference RNA, three sequencing libraries were generated from 

bulk material at the same laboratory as the SmartSeq Plus replicates. Cytoplasmic and mitochondrial 

ribosomal RNA (rRNA) were depleted using Ribo-Zero Gold as part of Illumina TruSeq Stranded Total 

RNA protocol. Samples were sequenced on Illumina HiSeq 2000. We also accessed publicly available 

bulk sequencing of HBR and UHR generated using poly-A selected RNA generated using standard 

Illumina mRNA-Seq protocol and sequenced on Illumina HiSeq 2000 using 100 bp. paired-end reads. 
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(SEQC/MAQC-III Consortium, 2014,GEO accession numbers: GSM1362002-GSM1362029 (HBR), 

GSM1361974-GSM1362001 (UHR), downloaded in May 201521.) These samples were generated as part 

of a larger experiment to evaluate bulk RNA sequencing where poly-A sequencing was performed at 

seven sites. For each HBR and UHR, four replicate libraries generated at the NYG site were used. 

Sequenced read data for each source were pooled. We additionally used publicly available PrimePCR 

measurements generated by the SEQC/MAQC-III Consortium using UHR and HBR RNA (SEQC/MAQC-

III Consortium, 2014, GEO accession number: GPL18522, downloaded in Feb. 201521) to evaluate our 

reference gene abundance estimates. 

Because of differences in experimental design, direct comparison across methods of precision 

and the effect of input RNA abundance is difficult. For example, input RNA amount as a factor have 

different meanings for the different amplification methods: for SmartSeq Plus, because 100pg samples 

were constructed by pooling 10 pg. samples after cDNA amplification, any resulting effects involve library 

construction, while for aRNA and NuGen resulting effects reflect both cDNA amplification steps and 

library steps.  

Alignment and quantification 

Low confidence nucleotides (with Phred score less than 20) were treated as unknown and 

replaced with Ns. Unknown nucleotides (Ns) at the ends of reads were trimmed. Poly-A and method-

specific adapter sequences were trimmed from the 3’ end of reads using in-house software 27. Reads 

were aligned to the human reference genome, build hg19, and to ERCC spike-in transcript sequences 

using STAR 17. We retained reads that aligned to at least 40% (paired-end) or 60% (single-end) of 

trimmed length or 30bp, whichever was greater. In addition, we discarded reads with greater than 30% 

mismatched positions in trimmed length. Uniquely aligned reads were assigned to GENCODE18 gene 

annotations and to ERCC transcripts Using HTSeq and htseq-counts. Reads overlapping multiple 

annotations were assigned to a single gene or discarded using the intersection non-empty method18. We 

normalized raw read counts for differences in sequencing depth using size-factors estimated by the 

method proposed by Anders and Huber and implemented in DESeq19 after filtering genes as described in 
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Excluded and ambiguous genes, below. aRNA sequenced data retained RNA strand information, but we 

did not use this information in quantification so that that all methods were analyzed consistently. For 

protocol optimization analysis (Table 2), aRNA samples were re-quantified using strand information where 

applicable. Each method demonstrated different dependence of read counts on gene length (Figure 2H), 

so no single length normalization procedure was appropriate, hence the analyses were completed without 

length normalization. 

 To estimate input RNA abundances, raw sequencing data from all three ribosome-depleted bulk 

HBR or UHR replicates were pooled resulting in a single sample for each HBR and UHR with sequencing 

depth of ~400 million reads. Sequencing characteristics of bulk RNA sequencing are relatively well known 

and we used a model theoretic method to estimate reference gene expression, as implemented in RSEM 

(RNA-seq by Expectation-Maximization, version 1.2.18, using Bowtie version 1.1.1) strand-specific 

quantification 20,28. Poly-A tails were not added to transcripts. RSEM gene abundances were normalized 

to transcripts per million (TPM). 50.4% and 51.1% of reads aligned to genes for HBR and UHR, 

respectively. 

 We validated the robustness of the RSEM abundance estimates by comparing them to estimates 

generated using two additional algorithms. First, we used HTSeq and htseq-counts18 in the intersection 

non-empty mode as described above. This method makes few assumptions about the distribution of 

sequencing reads along transcripts. Second, we used a modified version of Maxcounts29, a method 

designed to be robust to differences in sequencing protocol and each gene was assigned the 95%ile 

depth of coverage value across covered exons. For both HTSeq and Maxcounts, quantification was 

strand-specific and estimates were normalized to reads per million (RPM). Counts were also compared to 

PrimePCR measurements (see Experimental design). To compute gene abundance estimates using 

PrimePCR, we removed undetectable genes (CT>35, based on a CT of 35 for one DNA molecule 21) and 

then subtracted 35 from each gene's CT value to generate log2 number of molecules, which were then 

converted to log10 units. Genes with multiple reported CT measurements were removed, leaving 11,788 

(UHR) and 11,572 (HBR) gene measurements for analysis. Pairwise scatter plots and correlations can be 

found in Figure S1. All quantification algorithms provide similar estimates. We used RSEM quantification 
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throughout because this method provides isoform expression level estimates, which allow more fine-

tuned estimates of gene characteristics (such as GC content and length).  

 Ribosomal and mitochondrial RNA were depleted from bulk HBR and UHR samples (see 

Experimental Design). We compared estimated RNA abundances based on these samples to abundance 

based on samples generated using poly-A RNA to determine whether the method of RNA selection 

substantively affected abundance estimates. Expression estimates were similar across library preparation 

methods and the library generated with ribosomal and mitochondrial depletion demonstrated the greatest 

similarity with qPCR measurements (Figure S1B). RSEM expression level estimates based on ribosomal 

and mitochondrial RNA depleted samples were used as "truth" throughout. 

Excluded and unambiguous genes 

We excluded ribosomal genes, genes with short isoforms, and genes on the mitochondrial 

chromosome, as described in the main text. Inferences made by bioinformatics methods may affect 

sensitivity, precision, and quantification accuracy for any individual gene. We identified a stringent set of 

genes to which reads could be uniquely aligned, in order to focus on sensitivity, precision and accuracy of 

the molecular measurements. Identified genes did not overlap in genomic positions with exons from any 

other annotated gene on either strand and could be aligned to uniquely across the entire gene. As a 

measure of mappability we used the GENCODE CRG Alignability track for reference genome hg19, 

generated by the ENCODE project and downloaded as a bigwig file from the UCSC Genome Browser on 

Sept. 23 201430. This track contains sliding windows of k-mers and a record of how many locations in the 

genome each k-mer aligns using the GEM aligner allowing up to two mismatches. We used k equal to 50 

nucleotides because the minimum read length in this study was 50 base pairs. Genes where all sliding 

windows align to only one location were considered uniquely alignable.  

Expected number of molecules in diluted replicate 

 We estimated the expected number of molecules in a diluted replicate in three steps. First, we 

estimated the fraction of total input RNA that was targeted for cDNA synthesis and used this to find the 
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mass of targeted RNA. Second, we converted this mass to a total number of input molecules using the 

average transcript length for each HBR and UHR. Third, we converted gene relative expression levels to 

expected numbers of molecules in a diluted replicate.  

 To estimate the mass of RNA targeted for cDNA synthesis, we followed a previously described 

method2. For each SmartSeq Plus dilution replicate, we calculated the percent of reads assigned to 

ERCC transcripts, with respect to the total number of reads assigned to genes that were retained after 

filtering. (SmartSeq Plus samples were used because all replicates included ERCC spike-ins.) We divided 

the known ERCC mass (7.12 or 71.2 femtograms) by the average percentage of reads assigned to ERCC 

transcripts to get the total mass of targeted transcripts and ERCC molecules and therefore the mass of 

targeted transcripts. By this method, we estimated the following masses for targeted molecules: 0.24 pg. 

(HBR 10 pg. replicates), 2.4 pg. (HBR 100 pg. replicates), 0.26 pg. (UHR 10 pg. replicates) and 2.6 pg. 

(UHR 100 pg. replicates). The average transcript length for HBR, based on RSEM relative gene 

expression level estimates, was 1,535.56 nucleotides (average transcript mass of 8.175 x 10-7 pg. and 

288,600 molecules in 10 pg. replicate); for UHR, it was 1,348.39 nucleotides (average mass of 7.179 x 

10-7 pg. and 364,762 molecules in a 10 pg. replicate). For ERCC molecules, the expected number was 

calculated directly from the known mass of spiked-in materials and the known molarity of each spike-in 

transcript. We repeated this analysis using five aRNA HBR 10 pg. samples that contained ERCC spike-

ins to estimate the mass of targeted mRNA in a diluted HBR replicate. The mass of targeted mRNA was 

estimated to be 0.15 pg. (HBR 10 pg. replicates). We used RSEM relative gene expression level 

estimates for poly-A selected bulk HBR samples to estimate the number of targeted mRNA molecules. 

The average mRNA transcript length in HBR was estimated to be 1,968.73 nucleotides (average mass of 

1.048 x 10-6 pg. and 143,631 molecules in a 10 pg. replicate). 

Genomic distribution of sequenced reads 

Genomic regions were assigned to eight categories hierarchically so that each region was 

assigned to only one category and so that each read was greedily categorized in the following order: 

rRNA exon, rRNA repeat, exon (excluding rRNA), intron, flank, intergeneic. Regions were defined based 
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on the following annotations. Exons and introns were assigned based on GENCODE18 annotations. 

Flanks were assigned to 5 kilobases up- and down-stream from gene terminals. rRNA refers to 

GENCODE18 annotations with "rRNA" as the gene_type, which includes 5S pseudogenes. rRNA repeat 

refers to RepeatMasker annotations for the rRNA class of repeat. RepeatMasker annotations for 

reference genome hg19 were downloaded from UCSC table browser as a gtf file from the UCSC genome 

browser on June 23, 2015. Remaining regions were classified as intergenic. Primary alignments for all 

reads, including multimapping reads, were assigned to these regions using htseq-counts31. The STAR 

aligner assigns a single primary alignment to each read, with multi-mapping reads assigned the alignment 

with the best alignment score, if only one such alignment exists, or a randomly selected alignment from 

the set of best alignments. (Multi-mapping reads were included for this analysis because many rRNA 

regions demonstrate substantial similarity such that it was difficult to uniquely align reads to these 

regions.) Haplotype and random chromosomes were excluded. 

Number of detected genes 

Genes not observed in the bulk were ignored. The expected number of genes in a diluted 

replicate was calculated as follows. We assumed that the number of molecules in a tube for a given gene 

are Poisson distributed with mean equal to the expected number of input molecules and that genes are 

independent. The presence or absence of a given gene follows a Bernoulli distribution, with the 

probability of success equal to the probability that at least one molecule for the gene is in the diluted 

replicate. The number of genes in a diluted replicate is then drawn from a Poisson-Binomial distribution. 

We used the R package poibin to find a 95% CI for the expected number of genes in a diluted replicate. 

We performed simulations of the dilution experiment to check robustness of the result to violation of the 

independence assumption. Simulation results matched theoretical results (data not shown). We 

performed this analysis both assuming that total RNA was targeted for capture and assuming mRNA was 

targeted for capture (see Expected number of molecules in diluted replicates, above). Because UHR 

aRNA dilution replicates did not contain ERCC spike-ins, we could only estimate mRNA expectation for 

HBR.  
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Gene traits 

We compiled a set of gene characteristics for use in bias exploration. Traits calculated include 

GC content and length, both known sources of bias for bulk RNA sequencing32. Poly-T priming was used 

by aRNA and SmartSeq Plus and may introduce a bias for genes with internal stretches of adenosines, 

and so we also computed the presence or absence of an internal A-hexamer (6 or more sequential As). 

RNA secondary structure may hinder biochemical reactions and we assigned a score for the average 

strength of local secondary structure. To do this, we calculated the minimum free energy predicted by 

Vienna RNAFold (version 1.7.2)33 for 100 nucleotide-sliding windows along the length of each isoform 

(step size of 1 nucleotide) and reported the average across all windows. All traits are calculated based on 

GENCODE18 annotated isoforms. Genes were assigned the average of isoform traits, weighted by the 

relative expression level of isoforms estimated by RSEM quantification of bulk HBR or UHR. We also 

calculated two metrics of bioinformatics complexity for each gene. As a measure of alignment complexity, 

we calculated the fraction of 50 base pair windows that were reported to be uniquely alignable in the 

GENCODE CRG Alignability track34 (see Excluded and unambiguous genes, above). As a measure of 

quantification complexity, we calculated the fraction of the gene body that overlaps with another 

annotation on either strand. Both of these metrics were calculated over the union of exons for each gene. 

Detection logistic regression 

For model fitting, we used computationally unambiguous genes (see Excluded and unambiguous 

genes, above) that were observed in bulk HBR or UHR. Genes within the upper or lower 2.5%ile value for 

any biophysical trait were excluded so that covariate ranges were well sampled. After filtering, 5,645 

genes were included in analysis. The analysis was performed on 10 pg. dilution replicates. 100 pg. 

dilution replicates were not included because of the small sample size of these groups and because of 

differences between groups in how these dilution replicates were generated (see Figure 1A and 

Experimental design). A single model was fit containing both HBR and UHR dilution replicates, in order to 

increase sample size and simplify analysis. A random 90% of the data were used in model development 
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and fitting, with the remaining 10% used to assess model fit. Final sample size for model development 

was 323,194 observations and for validation it was 45,486 observations.  

 To determine the best parametric form for each independent variable we followed the multivariate 

fractional polynomial method. In brief, this method (developed by Royston & Altman, 1994) searches a 

small range of possible polynomial functions of each independent variable to identify the transform that 

results in the best model, defined as having the largest log-likelihood. Both one- and two-term transforms 

can be tested. Before selection of a “best” transform, fit models using transformed variables are 

compared to the linear case (and to each other, if both a one- and two-term transformation are 

considered) using a likelihood ratio test (here the null hypothesis of no difference in fit was rejected at 

p<0.001). See Hosmer et al.35 for more details. In a multivariate case, transformations are tested on 

individual covariates iteratively in the context of the multivariate model in order of decreasing significance, 

retaining selected transformations for previously tested covariates. Once all variables have been tested 

the process repeats, beginning with the previously identified best transforms, until no additional changes 

are significant. We used a closed test procedure for determining significance (see Hosmer et al.), 

permitting two-term transformations for the number of molecules and GC content. Single-term transforms 

were permitted for gene length, strength of local secondary structure and sequencing depth for the sake 

of model simplicity and interpretability. We used the R mfp package for this analysis36. For selecting 

parametric form, all samples were treated together, ignoring amplification method. By this method, the 

selected model is: 

Logit(E(Y|M,L,G,S,A,D)) = β0 + (β1√M) + (β2 log(M)√M) + (β3 log(L)) + (β4 G
-2) + (β5 log(G) G-2) + (β6 

(S+39.1)/10) + (β7 A) + (β8 (D/10)-2) 

where M represents the expected number of input molecules in a diluted replicate, L represents the gene 

length (in kilobases), G represents the gene GC content, S represents the gene strength of local 

secondary structure (kcal/mol, shifted and scaled for stability), A indicates the presence of an A-hexamer 

within the gene body, and D represents the sequencing depth (per million reads, scaled for stability). 
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 In the final model, amplification method was encoded as dummy variables so that method -

specific coefficients were found for all independent covariates, with the exception of sequencing depth. 

We fit a single coefficient for depth across all methods to increase the covariate range. The final model 

was fit excluding 17 large influence genes (having Cook’s Distance >0.001 for at least two observations in 

each of at least two methods) using R built-in glm function with family (error model) set to binomial37. The 

final model can be found in Table S3. Model fit was assessed using normalized Chi-Square (proposed by 

Osius and Rojek) and normalized Sum-of-Squares goodness-of-fit statistics, evaluated on a random 10% 

of the data excluded from model development (Table S4, and see Hosmer et al. for details). To assess 

the benefit of including biophysical and sample covariates, in addition to the expected number of input 

molecules, we calculated the area under the receiver operating characteristic curve (AUC) for 

classification using the model, and separately for classification based on the expected number of input 

molecules alone. AUC provides a measure of the probability that the classifier will assign a higher score 

to a randomly selected detected gene than a randomly selected undetected gene. AUC average and 

standard deviations were calculated over 10,000 bootstrap replicates. To determine whether the model 

was sensitive to read length or paired end status, we calculated fit statistics for data truncated in silico to 

50 base pair single-end reads (Table S4). We additionally tested extension of model to ERCC spike-in 

molecules (using SmartSeq Plus and aRNA 10 pg. dilution replicates containing spike-ins) and to dilution 

samples beginning with 100 pg. input RNA (Table S4). For these additional validations, a random 5,000 

observations were used to calculate fit statistics. For tests of extension to 100 pg. data, SmartSeq Plus 

samples were excluded because these samples were not generated using 100 pg. input RNA for cDNA 

generation and amplification, but by pooling ten 10 pg. diluted replicates before sequencing library 

preparation, and so were not appropriate for the modeled process. In all cases, validation statistics were 

calculated based on predictions for genes within covariate ranges used in model fitting and excluding 17 

identified large influence genes. For ERCC samples, this meant that four transcripts shorter than 300 nt. 

were excluded. Also, because the ERCC molecules span a 106 range while transcriptomes at a single-cell 

level span ~103 range, 2.5%ile trimming based on input molecules means that only 50 out 92 transcripts 

were used. While the expected number of input molecules is a very good predictor of gene detection, 

addition of the remaining independent variables improved prediction (Table S4). All additional 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2016. ; https://doi.org/10.1101/045450doi: bioRxiv preprint 

https://doi.org/10.1101/045450
http://creativecommons.org/licenses/by-nc-nd/4.0/


independent covariates also contributed significantly to the model. The model was not sensitive to read-

length or paired-end status: it fit data truncated in silico to 50 base-pair single-end reads well (Table S4). 

The model did not fit ERCC or 100 pg. dilution replicates well (Normalized Chi-square goodness-of-fit test 

p < 0.05); however, it still improved prediction accuracy in these cases compared to using the number of 

input molecules alone for prediction (Table S4).  

 When examining the effect of the number of input molecules on the probability of gene detection, 

the remaining covariates were set to median values (gene length of 1.05 kilobases, GC content of 0.49, 

average strength of local secondary structure of -24.7 kcal/mol, no internal A-hexamer, sequencing depth 

of 17.1 million reads). To calculate the effect of increasing sequencing depth on percent genes detected, 

gene detection probabilities were calculated for all genes included in regression analysis (using gene-

specific covariate values) at each examined depth. The expected number of genes detected is the sum of 

detection probabilities over all genes. To calculate a molecular detection rate for aRNA with respect to 

poly-adenylated mRNA molecules, we fit a logistic model with the same functional form using expected 

number of input molecules calculated from bulk poly-A HBR samples, gene detection data from aRNA 

HBR 10 pg. dilution replicates, and fixing the depth coefficient to the value estimated in the above 

analysis.  

Sensitivity outliers 

We calculated the squared deviance residual for each observation as a measure of fit, using the 

logistic model described above. The sum of squared deviance residuals is equivalent to the likelihood 

ratio test statistic comparing the saturated model with respect to the fitted model, and the sum of squared 

deviance for a subset of observations can be considered the contribution of this set of observations to 

overall model fit. To find method-specific problematic genes, we calculated the average squared deviance 

residual for each gene over all samples for each method separately. For each method, we classified 

genes with average squared deviance residual larger than 4 as outliers. We repeated outlier identification 

for computationally ambiguous genes within the range of covariates used in model fitting (n=28,270).  

Coverage 
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Nucleotide-level coverage was calculated for each gene in the R programming environment37 and 

using Bioconductor libraries GenomicRanges and Rsamtools38–40. Coverage was calculated based on 

uniquely aligned reads only. Only computationally unambiguous genes were used. Additionally, only 

genes with a single annotated isoform were used in this analysis. 

 We calculated the observed per nucleotide coverage scaled by the expected coverage as a 

function of absolute 3' to 5' position within a gene. HBR and UHR dilution replicates were treated 

together. Replicates were grouped by method and by input amount. Each gene in each sample was 

considered an independent replicate observation of gene coverage. Genes were filtered to include only 

those observations with an average of at least 2x coverage per nucleotide. Genes were aligned from the 

3’ end, so that the per nucleotide sample size decreased from 3’ to 5’, resulting in increased variance in 

estimates from 3’ to 5’. Nucleotide positions were filtered to include only those with at least 25 replicate 

observations, which means that for some genes 5' data was excluded. For each gene, per nucleotide 

coverage was normalized so that the expected coverage at each position was 1x. For each nucleotide 

position, the expected value is equal to the number of observations at that position and the observed 

value is the sum of normalized observed values at that position across observations. Using this this 

scheme, each gene of at least length i contributes equally to the observed coverage at position i, 

regardless of expression level. The result is positional observed / expected coverage values.  

 To examine patterns of gene coverage as a function of expression level, genes were grouped 

genes by average per nucleotide coverage. We calculated the average per nucleotide coverage for each 

of 100 equally sized bins from 5' to 3', rather than coverage as a function of absolute nucleotide position 

as above, in order to observe qualitative coverage patterns occurring at the same relative position along 

gene bodies. For each gene, bin values were normalized to sum to one so that within an expression level 

category all genes contribute equally. For an experimental group, positional bins were assigned the 

average normalized coverage across all genes, observed in any sample within the experimental group, 

that fell within a given expression level category.  

Precision 
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We calculated Pearson pairwise correlation coefficient and Kendall tau pairwise rank correlation 

coefficient across dilution replicates as a measure of similarity across replicates. The Pearson correlation 

coefficient is sensitive to large-valued outliers, while the Kendall correlation coefficient is robust. In brief, 

Kendall correlation is calculated as follows. For each pair of genes the pair is categorized as concordant if 

the relative ranks of the gene pair are the same for both samples and discordant otherwise. The 

coefficient reports the fraction of all pairs that are concordant less the fraction that are discordant. For 

both correlation coefficients, zeros were treated as missing values, such that only genes observed in both 

members of a pair were included in the calculation. 

 To characterize measurement precision, we performed least-squares regression of the empirical 

standard deviation on the empirical mean. We used computationally unambiguous genes to fit these 

models. Additionally, we included only genes with >95% probability of presence in a diluted replicate, 

excluded gene detection outliers and trimmed the upper and lower 2.5%ile by mean value for model 

fitting. Both the average and standard deviation were log-transformed for normality of residuals. After all 

filtering, at least 1,100 genes were used to fit the model: log10(standard deviation) = a + b * log10(mean). 

Sample sizes ranged from 1,149-1,269 genes. A separate model was fit for each experimental group. 

Because 100 pg. experimental groups have small sample sizes (for most, n<=5) and so provide unstable 

estimates of variance due to missing values, we performed this analysis on 10 pg. groups only. The 

NuGen HBR 10 pg. sample size is also quite small (n=4) and was excluded.  

 To characterize biases in experimental variation we selected a subset of genes where empirical 

standard deviation was not well predicted by the mean, meaning genes with standardized residuals 

outside 90% confidence interval of predicted value (assuming a T-distribution with n-3 degrees of 

freedom for standardized residuals), and a set of "typical" genes, where the gene variance is well 

predicted by the mean. Typical genes were defined as possessing standardized residuals inside an 80% 

confidence interval of predicted value. For enrichment tests of GC-content, length, and secondary 

structure, we calculated the Hodges-Lehmann estimate of difference in location to provide an estimate of 

the magnitude of in location between test and background gene. This metric estimates the median 

difference between the two groups. 
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 We identified outliers with unexpectedly high or low experimental variation as genes with 99.3% 

confidence interval of predicted value. We considered computationally unambiguous genes, and also 

extended the analysis to computationally ambiguous genes, excluding those with mean expression 

outside the range used in model fitting.  

 Principal components analysis was performed on sample covariance matrix calculated using 

zero-corrected log-transformed read counts for computationally unambiguous genes with non-zero counts 

in at least on sample and using the R prcomp function. Each PCA included the appropriate bulk HBR or 

UHR. RSEM-estimated relative frequencies were normalized to the same scale as the diluted replicates 

using the DESeq method for estimating size factors, as described above. Bivariate normal 95% 

confidence ellipses were calculated for each experimental group using the R dataEllipse function from the 

car package41. 

Accuracy 

Sample sizes (number of genes) for analysis in Figure 4D-N, given filtering described in plot 

legend, were the following: HBR: n=1,339 (10 pg.) and 2,797 (100 pg.); UHR: n=1,243 (10 pg.) and 2,614 

(100 pg.) As stated, in evaluation of gene measurements in individual dilution measurements genes with 

zero read counts were excluded. For evaluation of average gene measurements, zero values in individual 

replicates were retained. RSEM-estimated relative frequencies were treated as true relative expression 

values for each gene. These were normalized to the same scale as the diluted replicates using the 

DESeq method for estimating size factors, as described above. Wide boxes in boxplots of fold deviation 

in Figure 4D-F include values for all samples in an experimental group. 

  To identify method-specific biases in accuracy, we calculated the median fold deviation for each 

gene across dilution replicates within each experimental group. Genes with fewer than three observations 

were removed. Of the remaining genes, those with median fold deviation in the upper or lower 5%ile were 

categorized as overestimated and underestimated, respectively. Remaining genes were used as 

background for enrichment tests for enrichment. For each method, genes within the upper or lower 1%ile 

were classified as outlier genes with poor accuracy. Outliers were identified for each experimental group, 
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and then merged across input amounts for each RNA source by taking the union of identified outliers. We 

repeated outlier identification using computationally ambiguous genes, following the same filtering criteria 

described above.  

To generate density scatter plots of gene read counts in individual dilution replicates, 

measurements from all 10 pg. dilution replicates for a given method were pooled. The density scatter 

plots were generated using the R densCols and KernSmooth::bkde2D functions. These functions 

estimate local density using a binned approximation to a 2 dimensional kernel density with a bivariate 

Gaussian kernel. log10 read counts were used. For density scatter plots of average read counts, averages 

were taken separately for HBR and UHR 10 pg. dilution replicates. Averages for HBR and UHR were 

pooled before density calculation.  

Protocol variations 

To evaluate the effect of removing purification of initial cDNA, 12 additional HBR 10 pg. dilution 

replicates were generated. 6 were generated using the same cDNA protocol as the primary aRNA 

samples, in which initial cDNA is purified using a MinElute column. 6 were generated without this 

purification step, with adjusted molarity for aRNA amplification to accommodate the change in reaction 

volume. Each set of 6 included 3 replicates generated using 13 rounds of PCR amplification during 

sequencing library preparation and 3 using 15. In this analysis, differences in PCR treatment were 

ignored.  

To evaluate the effect of reducing rounds of cDNA amplification, 5 additional HBR 10 pg. dilution 

replicates were generated using 2 rounds of IVT amplification (rather than 3). All amplified material was 

used as input for sequencing library preparation. Additionally, these samples were generated without 

initial cDNA purification and using 15 rounds of PCR during sequencing library preparation (rather than 

13). These data were compared to 3 replicates generated using 3 rounds of aRNA amplification, and 

otherwise following the same protocol. To evaluate an optimized aRNA protocol, excluding initial cDNA 

purification and reducing rounds of amplification, the same 5 HBR 10 pg. dilution replicates used to 
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examine the effect of reducing rounds of IVT amplification were compared to the primary HBR 10 pg. 

aRNA data.  

To examine the effect of ERCC addition, 10 replicates beginning with 10 pg. HBR total RNA were 

amplified using aRNA. In 5, ERCC spike-in controls were added with reference RNA at a final dilution of 

1:4,000,000. Samples generated in ERCC optimization showed evidence of cross-contamination, with 

counts assigned to ERCC transcripts (total ERCC counts: 892-1,457) at appropriate relative abundances 

for samples generated without addition of ERCC controls. 

The effect of strand-specific sequencing was evaluated by re-quantifying aRNA HBR 10 pg. 

samples using strand information.  
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FIGURES AND TABLES 

Figure 1. Experimental design and RNA sequencing statistics by experimental group  

 

A. Dilution experiment summary. See Methods for detailed information. B. Single cell amplification 

methods used. Protocols involve two key steps: conversion of RNA (blue) to cDNA (green), and 
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amplification of cDNA. aRNA targeted poly-adenylated mRNA by using an oligo-dT T7 primer for initial 

cDNA synthesis. After generating double-stranded cDNA, molecules were amplified using in vitro 

transcription with T7 polymerase. This amplification procedure was designed to minimize exponential 

expansion of errors. cDNA generation and amplification were repeated two additional times before library 

preparation. SmartSeq Plus targeted total RNA using a mixture of poly-T and randomized primers for 

initial cDNA synthesis. Full-length transcripts were captured through the template-switching capacity of 

reverse transcriptase. Double stranded cDNA molecules were amplified using 18 rounds of PCR. All 

cDNA and amplification reactions were performed on a 96-well Fluidigm C1 chip, intended to reduce 

experimental variation by performing reactions in small volume. NuGen targeted total RNA through use of 

proprietary primers for initial cDNA synthesis. Second strand cDNA synthesis was generated using an 

RNA primer, which was subsequently degraded from the second strand cDNA copy, resulting in linear 

amplification by DNA replication. This method was designed to minimize exponential amplification of 

error. C. Sample sizes and RNA sequencing statistics by experimental group. Includes color key used in 

all figures. For analysis based on combined HBR and UHR dilution replicates, solid colors were used. 

Abbreviations: Human Brain Reference (HBR), Universal Human Reference (UHR), University of 

Pennsylvania (Penn), University of California San Diego (UCSD), University of Southern California (USC), 

picogram (pg.), base pair (bp.), contamination (contamin.), average (Ave.), standard deviation (Sd.), 

amplification (amp.). 
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Table 1. Coverage selectivity by method 

Average percent of aligned reads assigned to genomic regions for each method. Nuclear rRNA includes 

rRNA genes, pseudogenes and repeats. See Methods for definitions of genomic regions.  

  

 Ave.  Sd.  Ave.  Sd.  Ave.  Sd.  Ave.  Sd.  Ave.  Sd. 
aRNA 59.07   5.70     23.29   4.68     0.03     0.02     4.82     1.62     12.29   2.79     

SmartSeq Plus 41.00   0.86     39.56   0.85     1.28     0.07     10.02   0.43     7.77     0.26     

NuGen 29.27   4.97     45.09   5.88     1.33     0.40     20.38   5.19     3.65     0.59     

Bulk (Poly-A) 80.13   -       8.52     -       0.08     -       1.96     -       9.01     -       

Bulk (rRNA-depleted) 61.44   0.54     37.89   0.45     0.03     0.01     0.10     0.04     0.25     0.04     

aRNA 71.57   2.34     23.02   2.60     0.06     0.05     1.61     0.19     3.38     0.59     

SmartSeq Plus 35.89   0.89     52.84   0.94     0.31     0.02     6.20     0.26     3.85     0.12     

NuGen 33.00   4.02     39.33   8.99     1.25     0.57     23.47   7.31     2.59     0.62     

Bulk (Poly-A) 86.99   -       7.11     -       0.11     -       0.47     -       5.09     -       

Bulk (rRNA-depleted) 58.17   0.34     41.28   0.29     0.02     0.01     0.03     0.01     0.18     0.02     

Source

HBR

UHR

Protocol

% exons 
(excluding rRNA 
& mitochondria)

% rRNA 
(mitochondrial)

% mitochondrial 
(non-rRNA)% rRNA (nuclear)% intronic

Genome coverage
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Figure 2. Single-cell RNA sequencing sensitivity 

 

A. Number of detected genes. Each point represents a single sample. Horizontal black lines indicate 

group mean. Boxes indicate ± 2 Sd.. Gray horizontal lines indicate 95% CI for the expected number of 

genes in a diluted replicate, assuming total (dark gray) or poly-A (light gray) RNA. See Methods. B. 

Probability of gene detection as a function of the expected number of input molecules estimated using 
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logistic model (see main text and Methods). Horizontal lines indicate 50% and 90% probability. Vertical 

lines indicate 1 and at 4.605 molecules (99% probability of ≥ 1 molecule present in diluted replicate). 

Bands indicate 95% CI. Black line indicates probability of ≥ 1 molecule present in a diluted replicate. C. 

Odds ratio for gene detection as a function of sequencing depth. Horizontal line indicates an odds ratio of 

one (no gain in detection sensitivity). Band indicates 95% CI. D. Odds ratios for differences in biophysical 

trait values. Error bars indicate a 95% CI. “*” indicates significant difference across pairs of methods 

(Bonferonni corrected p<0.05). E. Odds ratio for an increase of 0.01 in GC content. Bands indicate 95% 

CI. F. Boxplot of gene mappability, or the fraction of the gene body that can be aligned to uniquely (see 

Methods) for computationally ambiguous gene detection outliers (wide boxes) and background genes 

(narrow boxes). Both undetected (Undet.) and detected (Det.) outliers are shown. "*" indicates significant 

difference (Wilcoxon rank-sum two-way test p<0.05). G. As in F, but for the fraction of the gene body that 

overlaps in genomic position with a separate gene annotation. H. Nucleotide coverage. Observed over 

expected coverage normalized for expression level as a function of absolute 3’ to 5’ position. See 

Methods. I. Comparison of nucleotide coverage with uniform distribution. Empirical CDF is of normalized 

per nucleotide coverage. Black diagonal line indicates uniformity. Kolmogorov-Smirnov (KS) statistic for 

difference from the uniform distribution is in the bottom right, with larger values indicating greater 

difference between the distributions. J. Coverage for genes with different expression levels. Relative 5’ to 

3’ coverage, calculated over 100 equally spaced bins for four expression level categories (rows). See 

Methods. Abbreviations: confidence interval (CI); Cumulative distribution function (CDF). 
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Figure 3. Single-cell RNA-sequencing precision 

 

A. Pairwise correlations for all samples. Upper triangle: Pearson correlation. Lower triangle: Kendall 

correlation. Zeros treated as missing values. Each row and column is an individual sample. Experimental 
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group is indicated by color bars at edge of plot. B. Relationship between standard deviation (st. dev.) and 

mean characterized by least squares regression (see Methods). All estimated coefficients were highly 

significant (coefficient t-test p<10-16). C-F. Enrichment of biophysical traits in experimentally precise (low) 

and variable (high) genes with respect to background genes (see Methods). Error bars indicate 95% CI. 

“*” indicates significant difference (p<0.05). Numbers at bottom indicate sample size (number of genes). 

(C) Median difference in gene length estimated by Hodges-Lehman statistic. Significance: Wilcoxon rank 

sum two-way test. (D) Relative risk of containing an internal A-hexamer. Significance: Fisher's exact test. 

(E) As C for % GC content. (F) As C for strength of local secondary structure. G-J. PCA projection of 

dilution data on PC 1 and 2. Plots were centered so that bulk UHR or HBR was positioned at the origin. 

Points represent individual dilution replicates. Colored ovals represent bivariate normal 95% confidence 

ellipses. % Sd. explained by a PC is indicated in axis label. See Methods. (G) HBR 10 pg. (H) UHR 10 pg. 

(I) HBR 100 pg. (J) UHR 100 pg. K-N. As G-J, but using only abundantly expressed genes (see main 

text). Axis scales differ from G-J, with axes in equivalent to the purple-boxed region in G-J. (K) HBR 10 

pg. (L) UHR 10 pg. (M) HBR 100 pg. (N) UHR 100 pg. Abbreviations: Standard error (SE); confidence 

interval (CI); kilobases (kb); kilocalories (kcal); mole (mol); principal components analysis (PCA); principal 

component (PC); standard deviation (sd).  
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Figure 4: Single-cell RNA sequencing accuracy
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A. Average pairwise correlation of diluted replicates with bulk HBR or UHR. Zeros treated as missing 

values. Error bars indicate ± 2 s.e.m.. B-C. Relationship between % unique alignment and similarity with 

bulk HBR or UHR. “r” indicates Pearson correlation of x and y. (B) 10 pg. (C) 100 pg. D-F. Distribution of 

fold deviation across genes. Wide boxes represent measurements in individual replicates. Narrow boxes 

represent average measurements across replicates. Y-axis was truncated for visualization and 99%ile 

values for wide boxes are in panel descriptions below, ordered to match plot. “*” indicates significant 

difference between individual and average measurements (Wilcoxon rank sum test of greater fold 

deviation in average measurements, p<0.05). (D) aRNA. 99%ile values: 2066; 1442; 514; 718. (E) 

SmartSeq Plus. 99%ile values: 877; 770; 553; 598. (F) NuGen. 99%ile values: 2332; 1766; 784; 937. G-

J. Enrichment of biophysical traits among underestimated (low) and overestimated (high) genes with 

respect to remaining genes. See Methods. Plot notation and statistics are as in Figure 3C-F. (G) Median 

difference in gene length. (H) Relative risk of containing an internal A-hexamer. (I) As G, for % GC 

content. (F) As G, for strength of local secondary structure. K-M. Density scatter plots of normalized read 

counts in individual 10 pg. replicates vs. expected number of input molecules. See Methods. Red 

indicates high density. Solid line indicates expected read count and hashed lines indicate ± 2 fold. (K) 

aRNA. (L) SmartSeq Plus. (N) NuGen. N-P. Density scatter plots of average normalized read counts vs. 

number of input molecules. (N) aRNA. (O) SmartSeq Plus. (P) NuGen. Gene filtering: D-F and K-P 

considered computationally unambiguous genes and excluded gene detection outliers. D-J considered 

genes with greater than 95% probability of presence in a diluted replicate. Abbreviations: confidence 

interval (CI); kilobases (kb); kilocalorie (kcal); mole (mol).  
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Table 2. Evaluation of protocol variations 
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Comparison of dilution replicates generated using modified protocols with control dilution replicates. 

Sample information can be found in Table S1 and protocol information in Methods. # genes detected only 

considers genes observed in bulk HBR or UHR. Kendall correlation was calculated excluding zeros in 

either sample. Unpaired comparisons were made using Wilcoxon two-way rank sum test for difference in 

medians. Paired comparisons were made using Wilcoxon two-way rank sign test for difference in 

medians. The null hypothesis of no difference was rejected at p<0.05. Median difference between groups, 

with 95% CI, was calculated using the Hodges-Lehman statistic.  
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SUPPLMENETAL FIGURES 

Figure S1. Accuracy and robustness of estimated reference HBR and UHR RNA expression levels 

 

A. Consistency of abundance estimates by three quantification algorithms relative to publicly available 

PrimePCR measurements (see Methods). Scatters show log10 reads per million (HTSeq18 and 

Maxcounts29), log10 transcripts per million (RSEM), or log10 molecules (PrimePCR). Upper quadrants 

indicate Pearson correlation (R) of log-transformed estimates. Pairwise zeros were treated as missing 

values. Estimates were based on combined raw reads from 3 bulk reference samples generated using 

ribosomal depletion for each HBR and UHR. RSEM estimates were used as reference throughout. B. 

Accuracy and robustness of expression estimates across library preparation methods: ribosomal-

depletion (combined n=3 samples per HBR and UHR) and poly-A RNA selection (combined n=4 samples 

per source). See Methods for sample information. Scatters as in A using RSEM expression level 

estimates for each library preparation method. Ribosomal-depletion samples were used as reference 

throughout. Abbreviations: Human Brain Reference (HBR), Universal Human Reference RNA (UHR).  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2016. ; https://doi.org/10.1101/045450doi: bioRxiv preprint 

https://doi.org/10.1101/045450
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S2. Normalized read counts and expectation for ERCC transcripts  

 

A-B. ERCC transcripts are found along the x-axis, ordered by expected number of input molecules. Axis 

labels are in the format of "ERCC spike-in ID, expected number of input molecules". Points indicate the 

normalized read count for one transcript in one sample. Horizontal gray lines and background gray boxes 

indicate the expected normalized read count and a 95% CI under a Poisson model of dilution. Wide red 

horizontal lines indicate mean normalized read counts across all ERCC transcripts with a common 

expected number of input molecule, and red boxes indicate mean ± 2 x s.e.m. (A) aRNA. (B) SmartSeq 

Plus.  
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SUPPLMENETAL TABLES 

Supplemental tables can be found in attached “supplementalTables.xlsx” file. 

Table S1. Control dataset sample identification, protocol information, and RNA sequencing stats 

Experimental group, protocol information and RNA sequencing statistics for each sample used in primary 

analyses. Alignment statistics were based on STAR alignment to hg19 and were with respect to reads 

retained after trimming for primer or poly-A sequences17. 

Table S2. Computationally unambiguous genes 

Genes to which reads can be uniquely assigned. See the Excluded and unambiguous genes section in 

Methods for details on classification.  

Table S3. Gene detection logistic regression model 

See model details in Methods. Abbreviations: M expected number of input molecules; L gene length 

(kilobases); G gene GC content; S strength of gene local secondary structure (kilocalories per mole); 

hasA presence of A-hexamer internal to gene body; D Depth (per 10,000,000 reads); S.E. standard error; 

Wald Z Wald test statistic; Pr(>|Z|) Wald test p-value.  

Table S4. Gene detection logistic regression fit and validation 

Model was fit using randomly selected 90% of 10 pg. data, excluding 17 large influence genes. Fit was 

evaluated on the remaining 10% of the data. Fit was also evaluated on sequence data that was in silico 

truncated to 50 base pair single end (“Truncated”), ERCC read counts (“ERCC”), and 100 pg. dilution 

replicates (“100 pg.”). AUC (area under receiver operating characteristic curve) reported as mean values 

± 2 Sd. calculated over 10,000 bootstrap samples. AUC (molecules) predicts detection based on number 

of input molecules alone. See Methods for further details.  

Table S5. Probability of gene detection 
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Based on model described in Methods. Remaining covariates set to median value. 

Table S6. Gene detection outliers 

Genes that are problematic for detection. See Methods for classification of outliers. "Gene set" indicates 

whether gene is classified as computationally unambiguous (1) or not (2). "Detected / undetected" 

indicates whether the gene is unexpectedly observed (D) or unexpectedly unobserved (U).  

Table S7. Precision outliers 

Genes with standardized residual outside a 99.3% confidence interval, with respect to regression of 

standard deviation on the mean (see Methods). "Gene set" indicates whether gene is classified as 

computationally unambiguous (1) or not (2). Only genes whose mean is within the range of fitted model 

were included. Column values indicate whether indicate whether the gene standard deviation is 

unexpectedly low (L) or high (H), given mean. 

Table S8. Accuracy outliers 

Genes were identified as accuracy outliers if its median fold deviation, taken across dilution replicates, 

was contained in the upper or lower 1%ile of all considered genes (see Methods). Columns labeled by 

single-cell protocol contain an "H" if a gene was identified as an overestimated outlier, and an “L” if a 

gene was identified as an underestimated outlier. "Gene set" indicates whether gene is classified as 

computationally unambiguous (1) or not (2). 

Table S9. Optimization dataset sample identification, protocol information, and RNA sequencing stats 

As Table S1 for samples used in protocol optimization analyses.  
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