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Abstract

Only a tiny fraction of the data and metadata produced by an fMRI study is finally conveyed to the
community. This lack of transparency not only hinders the reproducibility of neurocimaging results but also
impairs future meta-analyses. In this work we introduce NIDM-Results, a format specification providing a
machine-readable description of neuroimaging statistical results along with key image data summarising
the experiment. NIDM-Results provides a unified representation of mass univariate analyses including a
level of detail consistent with available best practices. This standardized representation allows authors to
relay methods and results in a platform-independent regularized format that is not tied to a particular
neuroimaging software package. Tools are available to export NIDM-Result graphs and associated files
from the widely used SPM and FSL software packages, and the NeuroVault repository can import NIDM-
Results archives. The specification is publically available at: http://nidm.nidash.org/specs/nidm-

results.html.

Introduction

A neuroimaging technique like functional Magnetic Resonance Imaging (fMRI) generates hundreds of
gigabytes of data, yet only a tiny fraction of that information is finally conveyed to the community. In a
typical paper, the entire results report consists of 1) a list of significant local maxima, i.e. locations in the
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brain defined in a standard atlas space inferred to be distinct from noise, and 2) a graphical

representation of the activations as an image figure.

This practice is unsatisfactory for three reasons. First, because it represents a massive loss of information
from the raw and even the derived data used to draw the conclusion of the study. For example, a meta-
analysis (in settings other than neuroimaging) combines estimates of effects of interest and their
uncertainty across studies. In brain imaging, the locations of local maxima have no measures of
uncertainty reported. While neurocimaging meta-analysis methods for coordinate data exist -3 they are a
poor approximation to the meta-analysis that would be obtained if the image data were available *. Even
though there are emerging infrastructures to support sharing of neuroimaging data (e.g. NeuroVault

RRID:SCR_003806 *°), these are still rarely utilised ’.

Second, despite the availability of guidelines 10, ambiguous or incomplete methodological reporting in

papers is still commonplace " hindering the robustness and reproducibility of scientific results 1Az,

Finally, key methodological details of the study are described in free-form text in a paper and not
available in machine-readable form, making these metadata essentially unsearchable. Databases have

been built to provide metadata associated with published papers, either manually curated (e.g. BrainMap

13,14 15,16
) )

or automatically-populated using text-mining algorithms (e.g. NeuroSynth , but, ideally, these
metadata should be made available by the authors themselves at the time of the publication, together
with the data. Additionally, searchable metadata, could help identify potential confounding factors that are

currently being overlooked (e.g. how different smoothing kernels impact the meta-analysis, or the

influence of different processing strategies on the outcome of the analysis).

In order to make neuroimaging results available in a machine-readable form a number of key technical
issues have to be addressed. First, the scope of the metadata to be shared must be defined. The space
of possible metadata to report is extremely large encompassing experimental design, acquisition, pre-
processing, statistical analysis, etc. The optimal set of metadata is highly dependant on the application of

interest and possible applications of shared data are broad. For example, in a meta-analysis, the contrast
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standard error map is required, while a comparison across neuroimaging processing pipelines would

require a complete description of the analysis pipeline including software-specific parameterization.

Another technical issue is the need to define a common representation across neuroimaging software
packages. While the three main neuroimaging software packages, SPM (RRID:SCR_007037) 718 FSL
(RRID:SCR_002823) *% and AFNI (RRID:SCR_005927) 2"??, all implement similar analyses, they often
use different terms to refer to the same concept. For example, FSL’s parameter estimate maps (e.g.
pe1.nii.gz) are the equivalent of SPM’s beta maps (e.g. beta_0001.nii). They can also use the same term
when referring to different concepts. For example, SPM and FSL both use a global scaling of the data to
get “percent BOLD signal change”, but due to differences in how the brain mask and mean signal are
computed, the data are scaled quite differently % and are not comparable. In order to fully describe an
analysis, the sharing of software-specific batch scripts (e.g. SPM matlabbatch files, FSL fsf files, or history
stored in AFNI brick headers) would be a simple solution to provide all the parameters from an analysis,
but the ability to compare and query across software would still be lacking. Pipeline systems like NiPype
2 LONI Pipeline % and CBRAIN % do explicitly model analysis steps, but a large volume of research is
still conducted directly with tools not embedded in pipelines. Ideally, one should be able to identify all
studies corresponding to a set of criteria of interest regardless of the software used. This will only be
possible if information about results across software can be represented using common data elements

and structures.

A machine-readable representation of neuroimaging data and results, using a common descriptive
standard across neuroimaging software packages, would address these issues of comparability and

transparency.

A previous effort in this direction was the XML-based Clinical and Experimental Data Exchange (XCEDE)
schema developed in the context of the Biomedical Informatics Research Network (BIRN) 829 XCEDE
modelled information about both the experimental design and results (peaks and clusters) in
neuroimaging studies. This XML schema was defined to be independent from any particular
neuroimaging analysis software and was made openly available % XCEDE has been used by multiple
sites across the United States and the United Kingdom in the context of the fBIRN project and is still in
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2831 An implementation was provided for SPM **** as well as a set

use by the Human Imaging Database
of tools **. However, the XCEDE model was not implemented by other imaging software, supported
limited provenance information, and did not offer the ability to jointly share image data summarising the

experiment.

Beyond neuroimaging, encoding of provenance, i.e. keeping track of the processes that were applied to
the data, encompassing a description of the tools, data flow and workflow parameterization, is a topic of
growing interest in science in general. A number of solutions have been proposed in order to support
better documentation of research studies. Among them, the PROV data model * is a W3C specification
to describe provenance on the web. PROV is defined in a generic fashion that is not tied to a domain in

particular (cf. % for examples of implementations).

The Neurolmaging Data Model (NIDM) 338 \vas created to expand upon the initial development of
XCEDE, introducing a domain-specific extension of PROV using semantic web technologies and the
Resource Description Framework (RDF). The goal of NIDM is to provide a complete description of
provenance for neuroimaging studies, from raw data to the final results including all the steps in-between.
The core motivation of NIDM is to support data sharing and data reuse in neuroimaging by providing rich
machine-readable metadata. Since its first developments in 2011, NIDM has been an ongoing effort and
is currently comprised of three complementary projects: NIDM-Experiment, NIDM-Workflows and NIDM-
Results. NIDM-Experiment targets the representation of raw data generated by the scanner and
information on the participants. NIDM-Workflows focuses on the description of data analysis
parameterization, including detailed software-specific variations. NIDM-Results, presented here, deals
with the representation of mass-univariate neuroimaging results using a common descriptive standard

across neuroimaging software packages.

A motivating use case for NIDM-Results was neuroimaging meta-analysis, but the format also produces a
detailed machine-readable report of many facets of an analysis. The implementation of NIDM-Results
within SPM and FSL, two of the main neuroimaging software packages, provides an automated solution
to share maps generated by neuroimaging studies along with their metadata. While NIDM-Results
focuses on mass-univariate studies and is mostly targeted at fMRI, the standard is also suitable for
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anatomical MRI (with Voxel-Based Morphometry), and Positron Emission Tomography (PET). It was
developed under the auspices of the International Neuroinformatics Coordinating Facility (INCF)
Neuroimaging data sharing Task Force (NIDASH) which comprises a core group of experts representing
more than ten labs involved in various facets of neuroimaging (including statistical analysis, informatics,
software development, ontologies). It also involved close collaboration with the main neuroimaging
software developers. The format is natively implemented in SPM and a NIDM-Results exporter is
available for FSL and will be integrated in a future version of FSL. Both NeuroVault and CBRAIN support

export to NIDM-Results and NeuroVault additionally can import NIDM-Results archives.

Results

Model

Definitions

The definitions provided below are used throughout the manuscript:

e NIDM-Results graph: A particular instance of a representation of data and metadata complying
with the NIDM-Results specification.

o NIDM-Results serialization: A text file rendering of a NIDM-Results graph.

e NIDM-Results pack: A compressed file containing a NIDM-Results serialization and some or all

of the referenced image data files.

Overview

The NIDM-Results standard is defined by a Wa3-style specification, publicly available at
http://nidm.nidash.org/specs/nidm-results.html and by an ontology (owl) file available at
http://bioportal.bioontology.org/ontologies/NIDM-RESULTS. It is comprised of a controlled vocabulary, as
well as instructions of how to use PROV to represent mass-univariate neuroimaging results. The model
provides terms to describe key elements of neuroimaging methods using a common framework across
neuroimaging software packages. For example, as illustrated in Fig. 1, error models are described in

terms of assumed variance (homoscedastic, heteroscedastic) and assumed covariance structure
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(independent, spatially correlated, etc.) and how these structures vary in space (defined independently at

each voxel, globally throughout the brain or spatially regularised).

The current version, NIDM-Results 1.3.0, defines 214 terms (140 classes and 74 attributes) of which
45 terms are re-used from external vocabularies and ontologies. All terms are defined as specialisations
of the PROV terms. Three namespaces are defined: http://purl.org/nidash/nidm# (“nidm:”),
http://purl.org/nidash/spm# (“spm:”) and http://purl.org/nidash/fsl# (“fsl:”"). Anything that could be
represented across software or that is a generic concept is defined in the “nidm:” namespace. Software-
specific namespaces: (“spm:”, “fsl.”) are reserved for the description of functionality unique to one

software (e.g. global null inference for conjunction testing in SPM).

Fig. 2 provides an overview of NIDM-Results. In the description below, terms in single quote correspond

to elements defined by the model, identifiers for those terms are provided in Table 1.

The main entity is a ‘NIDM-Results bundle’, a specialisation of a ‘Bundle’ as defined in PROV, i.e. an
entity gathering a set of entities, activities and agents. A ‘NIDM-Results bundle’ contains a description of

the mass univariate results provenance and is typically made up of:

e 3 activities representing the main steps of statistical hypothesis testing: ‘model parameter
estimation’, ‘contrast estimation’ and ‘inference’.
e 26 types of entities (of which 6 are optional) representing inputs and outputs of the activities;
e 3 agents representing the ‘neuroimaging analysis software’, the ‘person’ or ‘study group
population’ who participated in the study and the type of ‘imaging instrument’ used.
The statistical model is described in the ‘design matrix’ and ‘error model’ entities that are both used by the
‘model parameter estimation’ activity. The ‘data’ entity describes the scaling applied to the data before
model fitting (especially relevant for first-level fMRI experiments) and links to the participants (as a
‘person’ or a group) and the ‘imaging instrument’ used to acquire the data (e.g. a magnetic resonance
imaging scanner or an electroencephalography machine). A set of ‘parameter estimate maps’ is
generated by the ‘model parameter estimation’ activity along with the analysis ‘mask map’, a ‘residual

mean squares map’ and a ‘grand mean map’ that can be used to check the performance of the data


https://doi.org/10.1101/041798
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/041798; this version posted September 15, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

scaling. Optionally, a ‘resels per voxel map’ can also be generated to record local variations in noise

smoothness.

The ‘contrast estimation’ activity uses a subset of the ‘parameter estimate maps’, the ‘residual mean
squares map’ and the analysis ‘mask map’ and combine them according to a ‘contrast weight matrix’ to
generate a ‘statistic map’. For T-tests, a ‘contrast map’ along with its ‘contrast standard error map’ are
also generated while for F-tests a ‘contrast explained mean square map’ (i.e. the numerator of an F-

statistic) is provided.

Finally, the ‘inference’ activity uses a ‘statistic map’ and generates an ‘excursion set map’ given a ‘height
threshold’ and an ‘extent threshold’. The ‘peak definition criteria’ and ‘cluster definition criteria’ entities,
used by ‘inference’, provide the connectivity criterion and minimal distance between peaks (e.g. default is
set to 8 mm for SPM and 0 mm for FSL). The ‘inference’ activity can be replaced by a ‘conjunction
inference’ which uses more than one statistic map. An optional ‘display mask map’ entity can be used to
represent contrast masking, i.e. to restrict the display without affecting the correction for multiple
comparisons. The ‘inference’ activity also generates the ‘search space mask map’ that represents the
search region in which the inference was performed (i.e. the intersection of all input mask maps, except
for the display mask map). A set of ‘supra-threshold clusters’ is derived from the ‘excursion set map’ and
a set of ‘peaks’ is derived from each cluster. Those are the clusters and peaks that are typically reported

in the results of a neuroimaging study.

A ‘neuroimaging analysis software’ agent represents the software package used to compute the analysis.

This agent is associated with all activities within the bundle.

Provenance of the ‘NIDM-Results bundle’ is also recorded: the bundle was generated by a 'NIDM-Results
Export' activity which was performed by a '‘NIDM-Results Exporter' software agent corresponding to the
software used to create the NIDM-Results document (e.g. FSL’s Python scripts, named ‘nidmfsl’ or SPM’s
exporter named ‘spm_results_nidm’). The bundle is associated with a version number corresponding to

the version of NIDM-Results model in use.
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Each activity, entity and agent has a number of predefined attributes. For instance, the list of attributes of

an ‘error model’ entity is provided in Fig. 1.
Updates

Each release of NIDM-Results is associated with a version number. Comments on the current version as
well as suggestions of extension can be provided on the GitHub nidm repository: https://github.com/incf-
nidash/nidm. Each extension or proposition of update will be reviewed and discussed with the members

of the INCF NIDASH task force.

Implementation

SPM12 natively supports export of its results into a NIDM-Results pack, either by the use of a contextual
menu in the results table or non-interactively via the batch interface as illustrated in Fig. 3. Export of
FEAT results from FSL into a NIDM-results pack can be performed using the Python module nidmfsl
(https://pypi.python.org/pypi/nidmfsl), as also illustrated in Fig. 3. nidmfsl was integrated in NeuroVault
and as a plugin % of the CBRAIN web platform for high-performance computing (RRID:SCR_005513) 2,
As a result, any FSL FEAT analysis uploaded to NeuroVault or performed in CBRAIN can be exported as
a NIDM-Results pack. NeuroVault also accepts NIDM-Results packs as a mean to upload new data to a
collection. The nidmresults Python library (https://pypi.python.org/pypi/nidmresults) and the provenance
MATLAB toolbox (http://www.artefact.tk/software/matlab/provenance/) provide higher-level functions to

interact with NIDM-Results packs.

Publically available NIDM-Results packs

A set of 244 NIDM-Results packs has been made publically available on NeuroVault at
http://neurovault.org/collections/1435/. Those packs describe the results of fMRI analyses performed at
the subject (232 packs) and group (12 packs) levels on six datasets downloaded from OpenfMRI
(RRID:SCR_005031) “**" (ds000005 1.1.0, ds000008 1.1.1, ds000011 unrevisioned, ds000052

unrevisioned, ds000107 unrevisioned, ds000114 unrevisioned).
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Examples of usage

Meta-analysis

From 21 pain studies (10 analysed in SPM and 11 in FSL) represented in NIDM-Results we performed
group coordinate-based and image-based meta-analyses contrasting the effect of pain. The data and
Python script used to perform these meta-analyses are available on NeuroVault

(http://neurovault.org/collections/1425/) and GitHub 42 respectively.

Fig. 4 provides a schematic overview of the different steps involved to compute the meta-analyses. A set
of NIDM-Results packs is queried in order to retrieve the information of interest that is then combined to
perform the meta-analysis. Because the studies included in this meta-analysis are from a curated
collection of pain studies from one laboratory, no manual filtering was needed for study or participant

selection, and contrast selection was performed based on the contrast name.

The image-based meta-analysis was performed by combining the contrast estimate maps, along with
their standard error, in a third-level mixed-effects general linear model (GLM). Each NIDM-Results pack
was queried to retrieve the image data needed for the meta-analysis (i.e. the contrast image and contrast
standard error image) along with the analysis mask. The query used to extract these data is displayed in
Fig. 5. The name of the corresponding contrast was associated to each map to allow for the selection of
the appropriate contrast. The neuroimaging software package used for the analysis was also extracted in
order to identify which study estimates would need re-scaling. Second, the contrast and standard error
estimates were selected according to the contrast name, re-scaled if needed and combined in a mixed-
effects GLM. Areas of significant activation (p<0.05 FWE cluster-wise with a cluster-forming threshold of
p<0.001 uncorrected) found by the pain meta-analysis are displayed in Fig. 6. Results are also available

on NeuroVault at http://neurovault.org/collections/1432/.

The coordinate-based meta-analysis was performed using a Multilevel Kernel Density Analysis (MKDA) 2,
Each NIDM-Results pack was queried to retrieve the coordinates of the local maxima, the reference
space in use and the number of subjects for each contrast. Areas of significant activation (p<0.05 FWE
cluster-wise with a cluster-forming threshold of p<0.001 uncorrected) found by the pain meta-analysis are

displayed in Fig. 6.
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In line with previous results from the literature * the detections for the coordinate-based and image-based

meta-analysis appear consistent with a lower sensibility of the coordinate-based meta-analysis.
Reporting of neuroimaging results

Table 2 provides a mapping between the guidelines provided in ®to report neuroimaging results and the
fields available in a NIDM-Results serialisation. NIDM-Results cover all elements from the “Statistical

modelling” checklist that could be automatically retrieved within the neuroimaging software package.

Examples of reports generated from a NIDM-Results export of group and single-subject analyses
performed in SPM and FSL are provided in Fig. 7. The data and Python script used to generate those

report are available on NeuroVault (http://neurovault.org/collections/1435/) and GitHub 42 respectively.

Discussion

Data sharing in the neuroimaging community is still restrained by a number of psychological and ethical
factors that are beyond the scope of the current paper (see ™3 for a review). Those will have to be
addressed in order for data sharing to become common practice in the neuroimaging community. In an
effort to address the technological barriers that make data sharing challenging, here we have proposed a

solution to share neuroimaging results of mass univariate analyses.

As a first step to provide machine-readable metadata, we restricted our scope to information that was
automatically extractable and attributes that were crucial for meta-analysis (e.g. number of subjects). This
limited the amount of information that could be represented. For instance, the description of the paradigm
was limited to the design matrix and a list of regressor names. Ideally, to be able to automatically query
for studies of interest, one would need a more thorough description of the paradigm and of the cognitive
constructs involved. While vocabularies are becoming available (e.g. Cognitive Atlas 45 and CogPO
46’47), description of fMRI paradigms is still a topic of active research. Some level of manual interaction to
select contrasts of interest is therefore needed to compute a meta-analysis based on NIDM-Results

packs. Nevertheless, NIDM-Results allows for the automation of part of the meta-analysis as described in

our results. In the future, as a consensus develops on the description of paradigms, NIDM-Results could
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easily be extended to include this information. Similarly, NIDM-Results could be extended to match

emerging best practices (such as 10).

NIDM-Results currently focuses on the representation of parametric mass-univariate analyses. Thanks to
the intrinsic extensibility of RDF models, variants could be proposed to broaden its scope. For example,
an extension for non-parametric statistics is under discussion 8 Mass-univariate results, as the most well
established approach for fMRI analysis, was an obvious choice to start a cross-software modelling effort.
But neuroimaging cannot be limited to mass-univariate analyses and future work will focus on providing

extensions for other types of analyses (e.g. analysis of resting state fMRI).

We based our modelling effort on PROV, a specification endorsed by the W3C, to model provenance on
the web. Other efforts have been proposed to model provenance including families of ontologies like the
OBO foundry *® or DOLCE *°. We chose PROV as it is lightweight, focused only on provenance, and is

easily extensible to provide domain-specific knowledge.

Another recent effort to provide structured organisation of neuroimaging data is the Brain Imaging Data
Structure (BIDS)51. While NIDM-Results and BIDS both concern the organisation and description of
neuroimaging data, they operate at very distinct domains of the analysis path. BIDS provides a
mechanism for organising only the original raw data, and it does not cover any derived data nor the
definition of particular statistical models or the outputs of those models. NIDM-Results, in contrast, works
at the other end of the analysis pipeline, defining a framework to describe the statistical model, the
statistical ‘contrasts’ that interrogate the model, and the resulting statistical maps and inferences obtained
from each contrast. Whereas BIDS was designed so that an end-user could manually create the files and
directories of a BIDS-compliant data structure, NIDM--Results is intended to be automatically generated
from analysis software and was therefore created using more expressive semantic web technologies. Of
the larger NIDM project, it is the NIDM-Experiment portion that will have the greatest overlap with BIDS.
By making the experimental metadata available as linked data, NIDM-Experiment will enable querying

across the full neuroimaging data lifecycle, interrogating data possibly hosted on distributed resources.
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NIDM-Results is based on RDF and semantic web technologies. While a number of ontologies have been
developed in relation with neuroimaging (e.g. Cognitive Atlas “ CogPO “ OntoNeurolog 52), the use of
controlled vocabularies and of linked data is not yet common practice in our community. As more and
more data become available online and as standardisation effort like the RIlI develops, we believe that
these technologies will become more widespread. RDF was chosen as a basis for NIDM for the
expressivity of its graph-based structures, the possibility to form intricate queries across datasets ¥ as
well as for the extensibility of the created data models and the possibility to interconnect across

knowledge domains (cf. % for a review).

One limitation of NIDM-Results is that only limited provenance is represented. For instance,
computational environment, which has been shown to be source of undesired variability in neuroimaging

4
results °

, is not part of our model. NIDM-Results is part of a broader effort (NIDM) that aims at
representing different levels of provenance in neuroimaging experiments. While those efforts are still
under development, our goal is to keep a link between those components to eventually provide a

complete representation of neuroimaging provenance.

As for the definition of any new model, gaining acceptance within the neuroimaging community will be
crucial for NIDM-Results. To insure a level of consensus, including the point-of-view of different actors in
the field, NIDM-Results was built as part of a collaborative effort. More feedback from the community is
welcome and can be submitted as issues in our GitHub repository or by email at nidm-
users@googlegroups.com. We also made a strong commitment to make implementations available.
Taking advantage of the fact that most functional MRI studies are performed using a limited number of
software packages (> 75% for SPM or FSL, > 90% for SPM, FSL or AFNI according to *°), we developed
implementations for SPM and FSL, and are currently working with AFNI developers to further extend the

coverage of NIDM-Results export.

While we have focused our implementation efforts on the generation of NIDM-Results packs, the
development of applications processing NIDM-Results is also crucial, to serve as incentives for
neuroimaging users. As an example, we liaised with NeuroVault to propose a one-click upload of NIDM-
Results. Here, users can benefit from all NeuroVault features including state-of-the-art visualisations but
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also sharing, either privately or publicly depending on the stage of the project. This process can ease
communication between researchers working on different platforms or used to a different set of
neuroimaging tools. In the future, we plan to offer a one-click upload of NIDM-Results packs from the
neuroimaging software packages (SPM, FSL, AFNI) into NeuroVault. A wider ecosystem is also under

development (including a standalone viewer).

Future work will focus on developing extensions for NIDM-Results to cover a larger spectrum of
neuroimaging studies (e.g. non-parametric analyses) as well as to stay up-to-date with emerging best
practices. We will also sustain our effort on the development of tools that can read and write NIDM-
Results. Finally we will focus on the specification of the other NIDM components to enable modelling of a

complete fMRI experiment from raw data to statistical results.

We believe NIDM-Results is an essential tool for the future of transparent, reproducible science using
neuroimaging. If all research publications were accompanied by such a machine-readable description of
the experiment, debates on the exact methodology used would be compressed or eliminated, and any

replication efforts greatly facilitated.
Methods

Process

Since August 2013 the model was developed through weekly teleconferences and eight focused
workshops during which the team of experts iteratively defined the terminology, seeking to ensure that the
output of AFNI, FSL and SPM could be represented in this framework. Furthermore, a separate meeting
was organised with each of the development teams of SPM, FSL and AFNI to discuss the model and its
implementation. Minutes of the meetings and online discussions are publicly available in our shared

Google drive *® and on GitHub under the incf-nidash organization °’.

Scope of the model

NIDM-Results focuses on mass-univariate models based on a General Linear Model (at the subject or
group level). To facilitate adoption, we restricted the scope of NIDM-Results to metadata that could be

automatically extracted with limited user input, motivated by the specific metadata that is crucial for the
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application of meta-analysis. This had important practical consequences. Given that pre-processing and
statistical analysis are sometimes done using separate pipelines, we focused on the statistical analysis
only. The concepts to be represented in NIDM-Results were selected based on (1) meta-analysis best
practices; (2) published guidelines to report fMRI studies ® and (3), in an effort to ensure continuity with
current practice, we also considered the elements displayed as part of results reporting in different
neuroimaging software (e.g. peaks, clusters). When an item, essential for image-based meta-analysis,
was not produced as part of the standard analysis (e.g. the contrast standard error map in SPM) we

included it in the model and depend on the exporters to generate it from existing data.

Term re-use and definitions

For each piece of information, we checked if an appropriate term was available in publicly available
ontologies: in particular STATO for statistics term, PROV for provenance, NeurolLex for neuroscience
terms, RRID for tools and also, to a lesser extent, Dublin Core, the NEPOMUK file ontology and the
Cryptographic Hash Functions vocabulary. Namespaces of the re-used ontologies are provided in

Table 2. More details on the re-used vocabularies are provided below.
PROV

The W3C specification PROV %% defines three types of objects: an Activity represents a process that was
performed on some data (e.g. a voxel-wise inference) and occurred over a fixed period of time; an Agent
represents someone (human, organization, machine...) that takes responsibility for an activity (e.g. the
SPM software) and, finally, an Entity represents any sort of data, parameters etc. that can be input or
output of an activity (e.g. a NIfTI image). PROV also defines a set of relations between those objects (e.g.
a voxel-wise inference Activity used a NIfT| image Entity; a voxel-wise inference Activity was associated
with the SPM Agent and another NIfTI image Entity was generated by the segmentation Activity). NIDM-

Results terms were defined as specialisations of PROV terms.
STATO

GLM analyses of fMRI data rely on well-known statistical constructs (e.g. one-sample T-test, two-sample

T-test, F-tests, ANOVA, inference, ordinary least squares estimation, etc.). The general-purpose
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STATistics Ontology (STATO) *® is built on the top of the OBO foundry and aims to provide a set of terms
describing statistics. We re-used statistics terms available in STATO (e.g. obo:'t-statistic’) and when we
could not find an appropriate statistical term, we engaged with STATO developers through GitHub issues

to propose new terms (e.g. "residual mean squares" discussed in issue 35 59).
NeuroLex and RRID

Much work has been done in the neuroimaging community to provide controlled vocabularies and

. .. . . 1
ontologies defining neuroimaging concepts. NeurolLex 606

provides a common platform that gathers
terms from different sources (including previous vocabularies developed by NIF, BIRN...). Interestingly,
Neurolex was part of the recent Resource Identification Initiative (RII) 6263 that publicized the use of those
identifiers (e.g. “RRID:SCR_007037” for SPM 64) in research papers. RIl is currently focused on the

identification of biological resources and has been quickly adopted, with more than 100 journals

participating to date. We re-used the available RRIDs describing neuroimaging software packages.
Dublin Core, NEPOMUK file ontology and the Cryptographic Hash Functions vocabulary

Many vocabularies and ontologies have terms available to describe files. We chose to rely on the widely
adopted DUBLIN core terminology ®. Additionally, we used the “fileName” term from the NEPOMUK file

ontology % and the SHA-256 term from the Cryptographic Hash Functions vocabulary o7,
New terms

When no term was found to describe a given neuroimaging concept of interest, we created a new term
and carefully crafted a definition or engaged with the relevant ontology maintainers (e.g. we contributed
41 terms to STATO) to propose a new definition. All new terms and definitions were thoroughly discussed
between our panel of experts in the NIDM working group, which is part of the INCF Neuroimaging Task

Force (NIDASH).
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Examples of usage

Meta-analysis

Data collection was subject to the Oxford University ethics review boards, who approved the experiments.

Only statistical summaries with no identifying data are shared along this manuscript.

Results from 21 pain studies previously analysed with FSL were made available to us. The second-level
analyses were recomputed with SPM for 10 of those studies in order to obtain a dataset of NIDM-Results
packs coming from mixed software packages. We computed a one-sample meta-analysis contrasting the

effect of “pain” and compared the results of coordinate-based and image-based meta-analyses.

The MKDA toolbox %, was used to perform the coordinate-based meta-analysis. The nidmresults Python
toolbox (https://pypi.python.org/pypi/nidmresults) was used to generate the csv file required as input for

the analyses.

FSL's FLAME 1 ® was used to compute the image-based meta-analysis with the gold standard approach
(3rd level mixed-effects general linear model). FLAME 1 implements a random-effects meta-analysis with

70,71 . .
07 Parametric inferences are

iterative estimation of between-study variation via maximum likelihood
conducted by reference to a Student’s t distribution with nominal degrees of freedom (i.e. number of
studies minus number of regression parameters) to account for uncertainty in the estimation of the

between-study variance parameter. Difference in data scaling between software packages were

compensated by rescaling the FSL maps to a target intensity of 100 (instead of 10 000 by default).
Reporting of neuroimaging results

From four studies exported with NIDM-Results we wrote a script *2 to extract the information of interest to
describe group and subject-level statistics using the RDFlib library 2 to query the documents. The

paragraph that was generated could, for instance, be used as part of the method section in a research

paper.

References

1. Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F. & Fox, P. T. Activation likelihood
16


https://doi.org/10.1101/041798
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/041798; this version posted September 15, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

10.

11.

12.

13.

under aCC-BY 4.0 International license.

estimation meta-analysis revisited. Neuroimage 59, 2349-2361 (2012).

Kober, H. et al. Functional grouping and cortical-subcortical interactions in emotion: a meta-
analysis of neuroimaging studies. Neuroimage 42, 998-1031 (2008).

Costafreda, S. G., David, A. S. & Brammer, M. J. A parametric approach to voxel-based
meta-analysis. Neuroimage 46, 115-122 (2009).

Salimi-khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D. & Nichols, T. E. Meta-
analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling
of studies. Neuroimage 45, 810-823 (2009).

Gorgolewski, K. J. et al. NeuroVault.org: a web-based repository for collecting and sharing
unthresholded statistical maps of the human brain. Front. Neuroinform. 9, 8 (2015).
NeuroVault: a new home for all brain statistical maps! Available at: http://neurovault.org.
(Accessed: 15th June 2016)

Poline, J.-B. et al. Data sharing in neuroimaging research. Front. Neuroinform. 6, 9-9
(2012).

Poldrack, R. A. et al. Guidelines for reporting an fMRI study. Neuroimage 40, 409-414
(2008).

Inglis, B. A checklist for fMRI acquisition methods reporting in the literature. The Winnower
(2015). doi:10.15200/winn.143191.17127

Nichols, T. E. et al. Best Practices in Data Analysis and Sharing in Neuroimaging using
MRI. Preprint at http://dx.doi.org/10.1101/054262. (2016). doi:10.1101/054262

Carp, J. Better living through transparency: improving the reproducibility of fMRI results
through comprehensive methods reporting. Cogn. Affect. Behav. Neurosci. 13, 660—666
(2013).

Button, K. S. et al. Power failure: why small sample size undermines the reliability of
neuroscience. Nat. Rev. Neurosci. 14, 365-376 (2013).

Laird, A. R,, Lancaster, J. L. & Fox, P. T. BrainMap: the social evolution of a human brain
17


https://doi.org/10.1101/041798
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/041798; this version posted September 15, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

under aCC-BY 4.0 International license.

mapping database. Neuroinformatics 3, 65—78 (2005).

brainmap.org | Home. Available at: https://brainmap.org/. (Accessed: 15th June 2016)
Yarkoni, T. et al. Large-scale automated synthesis of human functional neuroimaging data.
Nat. Methods 8, 665—-670 (2011).

Neurosynth. Available at: http://neurosynth.org/. (Accessed: 15th June 2016)

Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J. & Nichols, T. E. Statistical
parametric mapping: the analysis of functional brain images: the analysis of functional brain
images. (Academic press, 2011).

Wellcome Trust Centre. SPM - Statistical Parametric Mapping. Available at:

http://www fil.ion.ucl.ac.uk/spm/. (Accessed: 15th June 2016)

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL.
Neuroimage 62, 782—790 (2012).

FSL - FsIWiki. Available at: http://fsl.fmrib.ox.ac.uk/fsl. (Accessed: 15th June 2016)

Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance
neuroimages. Comput. Biomed. Res. 162—-173 (1996).

AFNI. AFNI/NIfTI Server (2005). Available at: http://afni.nimh.nih.gov/. (Accessed: 23rd
April 2015)

Nichols, T. SPM plot units, 31/07/12, Neuroimaging Statistics Tips & Tools. Available at:
http://blogs.warwick.ac.uk/nichols/entry/spm_plot_units/. (Accessed: 15th June 2016)
Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data
processing framework in python. Front. Neuroinform. 5, 13 (2011).

Rex, D. E., Ma, J. Q. & Toga, A. W. The LONI Pipeline Processing Environment.
Neuroimage 19, 1033—1048 (2003).

Sherif, T. et al. CBRAIN: a web-based, distributed computing platform for collaborative
neuroimaging research. Front. Neuroinform. 8, 54 (2014).

Gadde, S. et al. XCEDE: an extensible schema for biomedical data. Neuroinformatics 10,
18


https://doi.org/10.1101/041798
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/041798; this version posted September 15, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

under aCC-BY 4.0 International license.

19-32 (2012).

Keator, D. B. et al. Derived Data Storage and Exchange Workflow for Large-Scale
Neuroimaging Analyses on the BIRN Grid. Front. Neuroinform. 3, 30 (2009).

Biomedical Informatics Research Network (BIRN) | The conduit for biomedical research.
Available at: http://www.birncommunity.org/. (Accessed: 15th June 2016)
incf-nidash/XCEDE. GitHub Available at: http://xcede.org/. (Accessed: 15th June 2016)
Human Imaging Database (HID) System | Biomedical Informatics Research Network
(BIRN). Available at: http://www.birncommunity.org/tools-catalog/human-imaging-database-
hid/. (Accessed: 15th June 2016)

Keator, D. B., Gadde, S., Grethe, J. S., Taylor, D. V. & Potkin, S. G. A general XML
schema and SPM toolbox for storage of neuro-imaging results and anatomical labels.
Neuroinformatics 00, 199-211 (2006).

XCEDE SPM Toolbox | Biomedical Informatics Research Network (BIRN). Available at:
http://www.birncommunity.org/tools-catalog/xcede-spm-toolbox/. (Accessed: 15th June
2016)

NITRC: BXH/XCEDE Tools: Tool/Resource Info. Available at:
http://www.nitrc.org/projects/bxh_xcede_tools/. (Accessed: 15th June 2016)

Moreau, L. & Missier, P. PROV-DM: The PROV Data Model. (World Wide Web Consortium,
2013).

Huynh, T. D., Groth, P. & Zednik, S. PROV Implementation Report. (2013).

Keator, D. B. et al. Towards structured sharing of raw and derived neuroimaging data
across existing resources. Neuroimage 82, 647-661 (2013).

Neuroimaging Data Model. NIDASH Available at: http://nidm.nidash.org. (Accessed: 15th
June 2016)

glatard/cbrain-plugins-nidm. GitHub Available at: https://github.com/glatard/cbrain-plugins-

nidm. (Accessed: 15th June 2016)
19


https://doi.org/10.1101/041798
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/041798; this version posted September 15, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

under aCC-BY 4.0 International license.

Poldrack, R. A. et al. Toward open sharing of task-based fMRI data: the OpenfMRI project.
Front. Neuroinform. 7, 12—12 (2013).

OpenfMRI. Available at: https://openfmri.org/. (Accessed: 15th June 2016)
incf-nidash/nidmresults-paper. GitHub Available at: https://github.com/incf-
nidash/nidmresults-paper/. (Accessed: 15th June 2016)

Poldrack, R. A. & Gorgolewski, K. J. Making big data open: data sharing in neuroimaging.
Nat. Neurosci. 17, 1510-1517 (2014).

Poldrack, R. A. et al. The cognitive atlas: toward a knowledge foundation for cognitive
neuroscience. Front. Neuroinform. 5, 17-17 (2011).

Poldrack, R. et al. Cognitive atlas. (2011). Available at: http://www.cognitiveatlas.org/.
Turner, J. A. & Laird, A. R. The cognitive paradigm ontology: Design and application.
Neuroinformatics 10, 57—66 (2012).

CogPO | Home. Available at: http://www.cogpo.org/. (Accessed: 15th June 2016)
Non-parametric statistics - Pull Request #233 - incf-nidash/nidm. GitHub (2014). Available
at: https://github.com/incf-nidash/nidm/pull/233. (Accessed: 23rd April 2015)

Smith, B. et al. The OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration. Nat. Biotechnol. 25, 1251-1255 (2007).

Masolo, C. et al. The wonderweb library of fundational ontologies and the dolce ontology.
wonderweb deliverable d18, final report (vr. 1.0. 31-12-2003). The WonderWeb Library of
Fundational Ontologies and the DOLCE ontology. WonderWeb Deliverable D18, Final
Report (vr. 1. 0. 31-12-2003) (2003).

Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and
describing outputs of neuroimaging experiments. Sci Data 3, 160044 (2016).

Temal, L., Dojat, M., Kassel, G. & Gibaud, B. Towards an ontology for sharing medical
images and regions of interest in neuroimaging. J. Biomed. Inform. 41, 766—778 (2008).

Nolan Nichols, B. et al. Building a Web of Linked Data Resources to Advance
20


https://doi.org/10.1101/041798
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/041798; this version posted September 15, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Neuroscience Research. Preprint at http://dx.doi.org/10.1101/053934. bioRxiv 053934
(2016). doi:10.1101/053934

54. Glatard, T. et al. Reproducibility of neuroimaging analyses across operating systems. Front.
Neuroinform. 9, 12 (2015).

55. Carp, J. The secret lives of experiments: methods reporting in the fMRI literature.
Neuroimage 63, 289-300 (2012).

56. NIDASH. Google drive Available at: https://drive.google.com/open?id=0B-
BLof5_SOh8bWR3UDE4WTdELXM. (Accessed: 15th June 2016)

57. incf-nidash/nidm. GitHub Available at: https://github.com/incf-nidash/nidm. (Accessed: 15th
June 2016)

58. stato-ontology.org. Available at: http://stato-ontology.org. (Accessed: 6th January 2016)

59. New term ‘residual mean squares’ - Issue #35 - ISA-tools/stato. GitHub Available at:
https://github.com/ISA-tools/stato/issues/35. (Accessed: 15th June 2016)

60. Larson, S. D. & Martone, M. E. NeuroLex.org: an online framework for neuroscience
knowledge. Front. Neuroinform. 7, 18—18 (2013).

61. NeurolLex.org - The Neuroscience Lexicon. Available at: http://neurolex.org/. (Accessed:
15th June 2016)

62. Bandrowski, A. E. & Martone, M. E. RRIDs: A Simple Step toward Improving
Reproducibility through Rigor and Transparency of Experimental Methods. Neuron 90,
434-436 (2016).

63. RRID | Welcome. Available at: https://scicrunch.org/resources. (Accessed: 15th June 2016)

64. RRID Resolver: SPM. Available at: https://scicrunch.org/resolver/nif-0000-00343.
(Accessed: 23rd April 2015)

65. DCMI Home: Dublin Core® Metadata Initiative (DCMI). Available at: http://dublincore.org/.
(Accessed: 14th September 2016)

66. Nepomuk File Ontology (NFO). Available at:
21


https://doi.org/10.1101/041798
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/041798; this version posted September 15, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

67.

68.

69.

70.

71.

72.

73.

under aCC-BY 4.0 International license.

http://www.semanticdesktop.org/ontologies/2007/03/22/nfo/v1.2/. (Accessed: 14th
September 2016)

Cryptographic Hash Functions - LC Linked Data Service | Library of Congress. Available at:
http://id.loc.gov/vocabulary/preservation/cryptographicHashFunctions.html. (Accessed: 14th
September 2016)

Cognitive and Affective Neuroscience Laboratory - Tools. Available at:
http://wagerlab.colorado.edu/tools. (Accessed: 15th June 2016)

Smith, S. et al. FSL: New tools for functional and structural brain image analysis.
Neuroimage 13, 249 (2001).

Beckmann, C. F., Jenkinson, M. & Smith, S. M. General multilevel linear modeling for group
analysis in FMRI. Neuroimage 20, 1052—-1063 (2003).

Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., Jenkinson, M. & Smith, S. M.
Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage
21, 1732-1747 (2004).

rdflib 4.2.2-dev — rdflib 4.2.2-dev documentation. Available at:
http://rdflib.readthedocs.org/. (Accessed: 15th June 2016)

Haverbeke, M. Codemirror. (2011). Available at: https://codemirror.net.

Data Citations

Tom S.M., C. R. Fox, C. Trepel, R.A. Poldrack. OpenfMRI ds000005, revision 1.1.0 (2016), .

Aron, A.R., T.E. Behrens, M. Frank, S. Smith, R.A. Poldrack. OpenfMRI ds000008, revision 1.1.1 (2016).

Foerde, K., B.J. Knowlton, R.A. Poldrack, OpenfMRI ds000011 unrevisioned (2006),.

Poldrack, R.A., J. Clark, E.J. Pare-Blagoev, D. Shohamy, J. Creso Moyano, C. Myers, M. Gluck,
OpenfMRI ds000052 unrevisioned (2001).

Duncan, K., C. Pattamadilok, I. Knierim, J. Devlin, OpenfMRI ds000107 unrevisioned (2009).

Gorgolewski K.J., A. Storkey, M.A. Bastin, I.R. Whittle, .M. Wardlaw, C.R. Pernet, OpenfMRI ds000114
unrevisioned (2013).

22


https://doi.org/10.1101/041798
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/041798; this version posted September 15, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Acknowledgments

We gratefully acknowledge Matthew Webster, Paul McCarthy, Eugene Duff and Steve Smith, from the
FMRIB and Robert Cox and Ziad Saad from the NIH, for their inputs on the integration of NIDM-Results
within FSL and AFNI; as well as the NIDASH task force members for their inputs during the development
of the model. We also gratefully acknowledge the Tracey group at FMRIB for sharing their pain datasets

used in the meta-analysis.

Author Contributions

CM contributed in creation of NIDM-Results, developed the FSL exporter and wrote the manuscript.

TA contributed in creation of NIDM-Results and edited the manuscript.

AB generated the example datasets and edited the manuscript.

GC provided feedback on the implementation of the model for AFNI and commented on the manuscript.
SD contributed in creation of NIDM-Results and edited the manuscript.

GF contributed in creation of NIDM-Results, developed the SPM exporter and edited the manuscript.
SG contributed in creation of NIDM-Results and edited the manuscript.

TG contributed in creation of NIDM-Results, developed the CBRAIN plugin and edited the manuscript.
KJG contributed in creation of NIDM-Results, integrated NIDM-Results with NeuroVault and edited the
manuscript.

KGH contributed in creation of NIDM-Results and edited the manuscript.

MJ provided feedback on the implementation of the model for FSL and commented on the manuscript.
DBK contributed in creation of NIDM-Results and edited the manuscript.

BNN contributed in creation of NIDM-Results and edited the manuscript.

JBP contributed in creation of NIDM-Results and edited the manuscript.

RR provided feedback on the implementation of the model for AFNI and commented on the manuscript.
VS developed a viewer for NIDM-Results and edited the manuscript.

JT contributed in creation of NIDM-Results and commented on the manuscript.

TEN contributed in creation of NIDM-Results and edited the manuscript.

Competing interests

The author(s) declare no competing financial interests.

Funding

The INCF supported and organised the task force meetings in which the model was discussed. AB, CM
and TEN were supported by the Wellcome Trust [100309/Z/12/Z]. TA was supported by the Medical
Research Council (United Kingdom) [MC-A060-53114]. BNN was supported by NIH grants [AA012388,
AA021697, AA021697-04S1]. SG was partially supported by NIH grants [1RO1EB020740-01A1,

23


https://doi.org/10.1101/041798
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/041798; this version posted September 15, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

1P41EB019936-01A1]. JBP was partially supported by a NIH-NIBIB grant [P41-EB019936], the Laura
and John Arnold Foundation and by a NIH-NIDA grant [U24-038653]. DBK was supported by the
Function Biomedical Informatics Re-search Network (NIH 1 [U24 U24 RR021992]), the BIRN
Coordinating Center (https://www.birncommunity.org; NIH 1 [U24 RR025736-01]) and the Conte Center
on Brain Programming in Adolescent Vulnerabilities [1P50MH096889-01A1]. GC and RR were supported
by the NIMH and NINDS Intramural Research Programs (ZICMH002888) of the NIH/HHS, USA. KJG was
sponsored by the Laura and John Arnold Foundation. KGH was supported by the Morphometry
Biomedical Informatics Research Network (MBIRN, NIH U24 RR021382), the BIRN Coordinating Center
(NIH U24 RR025736-01). SD and TG were supported by the Irving Ludmer Family Foundation and the

Ludmer Centre for Neuroinformatics and Mental Health.

24


https://doi.org/10.1101/041798
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/041798; this version posted September 15, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Figures

a b Subject level

2.3.3.4 nidm:'Error Model'

of parameter estimation, including specification of the error probability distribution, its

variance and dependence both spatially and across observations. .

nidm:'Error Model' is a prov:Entity' used by nidm:'Model Parameter Estimation’, SE M

A nidm:Error Model' has attributes: Gaussian Homogeneous Serial. corr.

local global

« rdfs:label: {opTiona) Human readable description of the nidm:'Error Model'.

» nidm:'dependence Map-Wise Dependence". (orrionsl) Property that associates
an 'Error Parameter Map-Wise Dependence' to the dependence of an 'Error Model'.

(range nidm:Error Parameter Map-Wise Dependence' such as nidm:'Constant
Parameter', nidm:'Independent Parameter', nidm:'Regularized Parameter’).

* nidm:'error Variance Homogeneous': (orTional) A boolean value reflecting how u
the variance of the error is modeled during parameter estimation; TRUE for constant . .l-
varlancesg\lr:r aIII observations in the model, FALSE for heterogeneous variance. Gaussian Homogeneaus Serial. corr.
(range xsd:boolean). local regularized

nidm:'has Error Dependence": (ormionaL) Property that associates a covariance
structure representing the dependence structure of the error, used as part of model
estimation with an 'Error Model". (range obo:'covariance struclure' such as
nidm:'Exchangeable Error', nidm:'Independent Error', obo:Toeplitz covariance
structure’, obo:'compound symmetry covariance structure’, obo:'unstructured
covariance structure').

nidm:'has Error Distribution’: (ormionaL) Property that assoclates a Probability
distribution used to model the error with an ErrorModel. (range obo:'probability

distribution’ such as ebo:'continuous probability distribution’, obodiscrete Gaussian H‘"";’EEZ;"US Serial. corr.
probability distribution’). local
« nidm:'vari: Map-Wise Dependence": (crrionaL) Property that associates an

‘Error Parameter Map-Wise Dependence’ to the variance of an 'Error Model'. (range

nidm:'Error Parameter Map-Wise Dependence' such as nidm:'Constant Parameter',

nidm:Independent Parameter', nidm:'Regularized Parameter’).

Cc Group level Legend
Variance Error distribution
SPM /|\
one sample . e -
aussian
t-test Gaussian Homogeneous Independent Homogeneous Heterogeneous distribution

local noise

Covariance structures

: u
||
"u
..I
Gaussian Heterogeneous Independent l. ..

local noise

FLAME 1

Independent Compound

Seriall
covariance Symmetry y Unstructured

correlated covariance

Map-wise dependence (variance or covariance)

3dttest++ Gaussian Homogeneous Independent
local noise

Constant Independent Regularized

Fig. 1. Description of the error models with NIDM-Results. Excerpt of the NIDM-Results 1.3.0 specification describing a nidm:’Error
Model’ and its attributes (a). Examples of model implementations for subject-level (b) and group-level (c) analyses for SPM, FSL
and AFNI.
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Flg 2. NIDM-Results objects. Color-coding indicates the type as defined in PROV (blue: Entity, red: Act|V|ty green: Agent).
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Fig. 3. NIDM-Results export in SPM12 (a) and FSL v5.0 (b).

Query
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NIDM-Results

NIDM-Results

Query

8006 (151 ds107_group
Name Size | Kind S
design.con 126bytes  Document
[ design.fsf 20K8  Document
* design.grp 131bytes  Document
* design.lcon 28bytes  Document
» (3 copel.feat -~ Folder
» [ cope2.feat - Folder
» (1 inputreg - Folder
> (3 logs -~ Folder
! bg_image.nii.gz 3.4MB  gzip compressed archive
¥ mask.nii.gz 15KB  gzip compressed archive
I mean_func.ni.gz 2.8MB  gzip compressed archive
© report firstlevel.html 10K8  HTML document
© report_log.htmi SSKB  HTML document
© report_reg.html 17KB  HTML document
© report_stats.htmi 495bytes  HTML document
¢ reporthtml 922bytes  HTML document
1 design.mat 732bytes  MATLAB Data
[ design_cov.ppm 6KB  OpenOffice.app Document
* design.ppm 219KB  OpenOffice.app Document
'« design_cov.png 106 bytes  Portable Network Graphics image
|| design.png 1KB Portable Network Graphics image
R f5l_ds107_group.nidm.zip 13.6 MB__ZIParchive

Statistic images

Image-based
meta-analysis

Peak
coordinates
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Fig. 4. Image-based and coordinate-based meta-analyses using NIDM-Results. Each NIDM-Results pack is queried to retrieve the
data and metadata of interest for each type of meta-analysis. These data are then combined in a meta-analysis.
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prefix prov: <http://www.w3.org/ns/prov# >

prefix nidm: <http://purl.org/nidash/nidm# >

prefix contrast_estimation: <http://purl.org/nidash/nidm#NIDM_0000001>
prefix contrast_map: <http://purl.org/nidash/nidm#NIDM_0000002>
prefix stderr_map: <http://purl.org/nidash/nidm#NIDM_0000013>

prefix contrast_name: <http://purl.org/nidash/nidm#NIDM_0000085>
prefix statistic_map: <http://purl.org/nidash/nidm#NIDM_0000076>
prefix mask_map: <http://purl.org/nidash/nidm#NIDM_0000054>

SELECT ?contrastName ?con_file ?std_file ?mask_file ?software
WHERE {
?con_id a contrast._map: ;
contrast_name: ?contrastName ;
prov:atlLocation ?con_file ;
prov:wasGeneratedBy ?con_est .
?std_id a stderr_map: ;
prov:atlLocation ?std_file ;
prov:wasGeneratedBy ?con_est .
?mask_id a mask_map: ;
prov:atlLocation ?mask_file .
?soft_id a ?software .
?con_est a contrast_estimation: ;
prov:wasAssociatedWith ?soft_id ;
prov:used ?mask_id .
FILTER(?software NOT IN (prov:SoftwareAgent, prov:Agent))

b

Fig. 5. SPAI;{GQL query to retrieve data and metadata needed for image-based meta-analysis (syntax was highlighted using
CodeMirror ™°)

Fig. 6. One-sample meta-analysis of 21 studies investigating the effect of pain. Areas of significant activation with an FWE-corrected
cluster-wise threshold p<0.05 (cluster-forming threshold p<0.001 uncorrected) for the image-based (A) and the coordinate-based (B)
meta-analyses.
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a FSL group analysis

Group-level analysis was performed with FSL (version 5.0.x). A linear regression was computed at each voxel, using weighted least squares
(assuming unequal variances) with a local variance estimate.

Cluster-wise inference was performed with correction for multiple comparisons using a threshold P <= 0.050 (FWER adjusted) with a cluster defining
threshold Z-statistic >= 2.300. The search volume was 1522 cm”3 (190327 voxels).

b SPM group analysis

Group-level analysis was performed with SPM (version 12.6685). A linear regression was computed at each voxel, using ordinary least squares
(assuming equal variances) with a local variance estimate.

Voxel-wise inference was performed with correction for multiple comparisons using a threshold P <= 0.050 (FWER adjusted). The search volume was
949 cm”3 (118626 voxels).

c FSL single-subject analysis

Subject-level analysis was performed with FSL (version 5.0.x). A linear regression was computed at each voxel, using generalized least squares
(assuming equal variances) with a local variance estimate and a spatially regularized Toeplitz covariance structure. Drift was fit with a gaussian
running line drift model (60.0s FWHM).

Voxel-wise inference was performed using a threshold P <= 0.001 (Uncorrected). The search volume was 1539 cm”3 (57029 voxels).

d SPM single-subject analysis

Subject-level analysis was performed with SPM (version 12.6685). A linear regression was computed at each voxel, using generalized least squares
(assuming equal variances) with a local variance estimate and a global Toeplitz covariance structure. Drift was fit with a discrete cosine transform
basis drift model (128.0s cut-off).

Voxel-wise inference was performed using a threshold P <= 0.001 (Uncorrected). The search volume was 1791 cm”3 (223883 voxels).

Fig. 7. Examples of reports generated from NIDM-Results packs for group (a, b) and single-subject (c, d) analyses performed in
FSL (a, c) and SPM (b, d).

Tables

PROV type Term Qualified name
NIDM-Results bundle nidm:NIDM_0000027

Entity

Bundle

prov:Bundle

Design Matrix

nidm:NIDM_0000019

Error Model

nidm:NIDM_0000023

Data

nidm:NIDM_0000169

Parameter Estimate Map(s)

nidm:NIDM_0000061

Mask Map

nidm:NIDM_0000054

Residual Mean Squares Map

nidm:NIDM_0000066

Resels Per Voxel Map

nidm:NIDM_0000144

Grand Mean Map

nidm:NIDM_0000033

contrast weight matrix

0bo:STATO_0000323

Statistic Map

nidm:NIDM_0000076

Contrast Map

nidm:NIDM_0000002
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Contrast Standard Error Map nidm:NIDM_0000013
Contrast Explained Mean Square Map nidm:NIDM_0000163
Excursion Set Map nidm:NIDM_0000025
Height Threshold nidm:NIDM_0000034
Extent Threshold nidm:NIDM_0000026
Peak Definition Criteria nidm:NIDM_0000063
Cluster Definition Criteria nidm:NIDM_0000007
Display Mask Map nidm:NIDM_0000020
Search Space Mask Map nidm:NIDM_0000068
Supra-Threshold Cluster(s) nidm:NIDM_0000070
Peak(s) nidm:NIDM_0000062
Activity Model Parameter Estimation nidm:NIDM_0000056
Contrast Estimation nidm:NIDM_0000001
Inference nidm:NIDM_0000049
Conjunction Inference nidm:NIDM_0000011
NIDM-Results Export nidm:NIDM_0000166
Agent Neuroimaging Analysis Software nidm:NIDM_0000164
Person prov:Person
study group population 0bo:STATO_0000193
Imaging Instrument nif:birnlex_2094
NIDM-Results Exporter nidm:NIDM_0000165
nidmfs| nidm:NIDM_0000167
spm_results_nidm nidm:NIDM_0000168

Table 1. PROV type, label and identifier of the NIDM-Results terms mentioned in single quotes in this manuscript.

(Table 2. available below Table 3)

Vocabulary/Ontology URI Prefix
PROV http://lwww.w3.org/ns/prov# prov
STATO http://purl.obolibrary.org/obo/ obo
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NeuroLex http://uri.neuinfo.org/nif/nifstd/ nix
RRID http://scicrunch.org/resolver/ rrid
Dublin Core types http://purl.org/dc/dcmitype/ dctype
Dublin Core elements http://purl.org/dc/elements/1.1/ dc
Dublin Core terms http://purl.org/dc/terms/ dct
Cryptographic Hash Functions http://id.loc.gov/vocabulary/preservation/cryptographicHashFunctions# crypto
NEPOMUK file ontology http://www.semanticdesktop.org/ontologies/2007/03/22/nfo# nfo
NIDM http://purl.org/nidash/nidm# nidm
FSL http://purl.org/nidash/fsl# fsl
SPM http://purl.org/nidash/spm# spm

Table 3. Prefixes of the vocabularies used in NIDM-Results.
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Checklist from NIDM-Results Example (turtle)
(Poldrack et al. 2008) representation

Intra-subject fMRI modeling info

Estimation method Attribute nidm:'with Estimation Method' of the i i@l i i
. 0 . . ' .. @prefix nidm_ModelParametersEstimation: <http://purl.org/nidash/nidm#NIDM_0000056> .
nidm:'Model Parameters Estimation aCtIVItY- @prefix nidm_withEstimationMethod: <http://purl.org/nidash/nidm#NIDM_0000134> .
@prefix obo_ordinaryleastsquaresestimation: <http://purl.obolibrary.org/obo/STATO_0000370>
Possible values include: '
e obo:'ordinary least squares estimation' for
niiri:model_pe_id prov:used niiri:error_model_id ;

Ordlnary least squares, a prov:Activity , nidm_ModelParametersEstimation: ;

e obo:'generalized least squares estimation’ rdfs:label "Model parameters estimation" ;
for generalized least squares or; nidm_withEstimationMethod: obo_ordinaryleastsquaresestimation: .

e obo:'weighted least squares estimation' for
weighted least squares.

Hemodynamic response function Attribute 'has HRF Basis' of a 'Design Matrix' Feer ! : ) )
@prefix nidm_DesignMatrix: <http://purl.org/nidash/nidm#NIDM_0000019> .

ent|ty- @prefix nidm_regressorNames: <http://purl.org/nidash/nidm#NIDM_0000021> .
@prefix nidm_hasHRFBasis: <http://purl.org/nidash/nidm#NIDM_0000102> .
. . ) @prefix nidm_hasDriftModel: <http://purl.org/nidash/nidm#NIDM_0000088> .
Possible values include: @prefix spm_SPMsCanonicalHRF: <http://purl.org/nidash/spm#SPM_0000004> .
° spm;'SPM's Canonical HRF' for SPM'’s @prefix spm_SPMsTemporalDerivative: <http://purl.org/nidash/spm#SPM_0000006> .
canonical hemodynamic response function @prefix spm_SPMsDispersionDerivative: <http://purl.org/nidash/spm#SPM_0000003> .

(default in SPM).

e fsl:'FSL's Gamma Difference HRF' for FSL’s ”mid:rizgﬁ"eiﬂi152;’2?3;;‘;; 2 proviEmtity , nidn Designhatrix: ;
e nidm:'Finite Impulse Response Basis Set' prov:atLocation "DesignMatrix.csv"~”xsd:anyURI ;

dct:format "text/csv"~"xsd:string ;

nfo:fileName "DesignMatrix.csv"~~xsd:string ;

dc:description niiri:design_matrix_png_id ;

nidm_regressorNames: "[\"Sn(1) active*bf(1)\",\"Sn(1) constant\"]"~"xsd:string ;
nidm_hasDriftModel: niiri:drift_model_id ;

nidm_hasHRFBasis: spm_SPMsCanonicalHRF: ;

nidm_hasHRFBasis: spm_SPMsTemporalDerivative: ;

nidm_hasHRFBasis: spm_SPMsDispersionDerivative: .

Drift modeling/high-pass filtering Attribute 'has Drift Model' of a ‘Design Matrix' ! ) 2 Line i )
. @prefix fsl_GaussianRunninglLineDriftModel: <http://purl.org/nidash/fsl#FSL_0000002> .
entity. @prefix fsl_driftCutoffPeriod: <http://purl.org/nidash/fsl#FSL_0000004> .
Possible values include: niiri:drift_model_id a prov:Entity , fsl_GaussianRunningLineDriftModel: ;
e fsl:'Gaussian Running Line Drift Model' for a rdfs:label "FSL's Gaussian Running Line Drift Model" ;

q q q - fsl_driftCutoffPeriod: "2"~"xsd:float .
Gaussian-weighted running line smoother sdrirttutotrerto xedrtioa

e spm:'DCT Drift Model' for Discrete Cosine
Transform basis.

Autocorrelation model
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Model type

Spatial definition

Contrast construction

Attribute 'has Error Dependence’ of an 'Error ror I ) ‘
@prefix nidm_ErrorModel: <http://purl.org/nidash/nidm#NIDM_0000023> .

f .
Model' entity. @prefix nidm_hasErrorDistribution: <http://purl.org/nidash/nidm#NIDM_0000101> .
@prefix nidm_errorVarianceHomogeneous: <http://purl.org/nidash/nidm#NIDM_0000094> .
P ibl | incl i @prefix nidm_varianceMapWiseDependence: <http://purl.org/nidash/nidm#NIDM_0000126> .
ossible values include: @prefix nidm_hasErrorDependence: <http://purl.org/nidash/nidm#NIDM_0000100> .
° obo;'Toep"tz covariance structure' @prefix nidm_dependenceMapWiseDependence: <http://purl.org/nidash/nidm#NIDM_0000089> .
. @prefix nidm_IndependentParameter: <http://purl.org/nidash/nidm#NIDM_0000073> .
for Serla"y correlated error @prefix nidm_ConstantParameter: <http://purl.org/nidash/nidm#NIDM_0000072> .
° obo:'unstructured covariance @prefix obo_normaldistribution: <http://purl.obolibrary.org/obo/STATO_0000227> .
' H @prefix obo_unstructuredcovariancestructure:
structure fOI' arbltrary <http://purl.obolibrary.org/obo/STATO_0000405> .
autocorrelation function

niiri:error_model_id a prov:Entity , nidm_ErrorModel: ;
Attribute 'dependence Map-Wise Dependence’ of nidm_hasErrorDistribution: obo_normaldistribution: ;
v ' . nidm_errorVarianceHomogeneous: "false"”"xsd:boolean ;
an 'Error Model entlty' nidm_varianceMapWiseDependence: nidm_IndependentParameter: ;
nidm_hasErrorDependence: obo_unstructuredcovariancestructure: ;

Possible values include: nidm_dependenceMapWiseDependence: nidm_ConstantParameter: .
e 'Constant Parameter' for a global
estimate.
e 'Independent Parameter' for a local
estimate.

e 'Regularized Parameter' for a
spatially regularized estimate.

Attribute prov:value of a obo:'contrast weight fuich L ) )
@prefix nidm_statisticType: <http://purl.org/nidash/nidm#NIDM_0000123> .

matrix' entity provides the contrast vector. @prefix nidm_contrastName: <http://purl.org/nidash/nidm#NIDM_0000085> .

@prefix obo_contrastweightmatrix: <http://purl.obolibrary.org/obo/STATO_0000323> .
@prefix obo_tstatistic: <http://purl.obolibrary.org/obo/STATO_0000176> .

niiri:contrast_id a prov:Entity , obo_contrastweightmatrix: ;
rdfs:label "Contrast: Listening > Rest" ;
prov:value "[ 1, 0, @ ]"~"xsd:string ;
nidm_statisticType: obo_tstatistic: ; # obo:'t-statistic’
nidm_contrastName: "listening > rest"~”xsd:string .

Group modeling info

Estimation method

(same as Intra-subject fMRI)

Statistical inference Inference on statistic image (thresholding)

Search region for analysis

Location of the search space
image

@prefix nidm_SearchSpaceMaskMap: <http://purl.org/nidash/nidm#NIDM_0000068> .

. . @prefix nidm_inCoordinateSpace: <http://purl.org/nidash/nidm#NIDM_0000104> .
Attribute prov:atLocation of a 'Search Space @prefix nidm_expectedNumberOfVoxelsPerCluster:

Mask Map' ent|ty <http://purl.org/nidash/nidm#NIDM_0000143> .

@prefix nidm_expectedNumberOfClusters: <http://purl.org/nidash/nidm#NIDM_0000141> .
@prefix nidm_searchVolumeInVoxels: <http://purl.org/nidash/nidm#NIDM_0000121> .
@prefix nidm_searchVolumeInUnits: <http://purl.org/nidash/nidm#NIDM_0000136> .
@prefix nidm_reselSizeInVoxels: <http://purl.org/nidash/nidm#NIDM_0000148> .
@prefix nidm_searchVolumeInResels: <http://purl.org/nidash/nidm#NIDM_0000149> .
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Volume of the search region in
voxels.

Volume of the search region CC.

Attribute 'search Volume In Voxels' of a 'Search
Space Mask Map' entity.

Attribute 'search Volume In Units' of a 'Search
Space Mask Map' entity.

@prefix nidm_noiseFWHMInVoxels: <http://purl.org/nidash/nidm#NIDM_0000159> .
@prefix nidm_noiseFWHMInUnits: <http://purl.org/nidash/nidm#NIDM_0000157> .
@prefix nidm_randomFieldStationarity: <http://purl.org/nidash/nidm#NIDM_0000120> .

niiri:search_space_mask_id a prov:Entity , nidm_SearchSpaceMaskMap: ;
rdfs:label "Search Space Mask Map" ;
prov:atLocation "SearchSpaceMask.nii.gz"~”*xsd:anyURI ;
nfo:fileName "SearchSpaceMask.nii.gz"~"xsd:string ;
dct:format "image/nifti"~~xsd:string ;
nidm_inCoordinateSpace: niiri:coordinate_space_id_2 ;
nidm_expectedNumberOfVoxelsPerCluster: "©.553331387916112"~"xsd:float ;
nidm_expectedNumberOfClusters: "0.0889172687960151"~*xsd:float ;
nidm_searchVolumeInVoxels: "65593"~"xsd:int ;
nidm_searchVolumeInUnits: "1771011"~"xsd:float ;
nidm_reselSizeInVoxels: "22.9229643140043"~"xsd:float ;
nidm_searchVolumeInResels: "2552.68032521656"""xsd:float ;
nidm_noiseFWHMInVoxels: "[ 2.958, 2.966, 2.611 ]"~~xsd:string ;
nidm_noiseFWHMInUnits: "[ 8.876, 8.898, 7.835 ]"~~xsd:string ;
nidm_randomFieldStationarity: "true"~”xsd:boolean ;
crypto:sha512 "e43b6e01b0463fe7d40782137867a" " xsd:string ;
prov:wasGeneratedBy niiri:inference_id .

Correction for multiple comparisons

Corrected or not?
Method used for correction

Region over which correction for
multiple comparisons was
performed

Voxel-wise significance

Corrected for Family-wise error
(FWE) or false discovery rate
(FDR)?

If FWE found by random field
theory list the smoothness in mm
FWHM

RESEL count

Attribute prov:type of the 'Height Threshold' and
the ‘Extent Threshold’ used by an ‘Inference’
activity

Possible values include:
e obo: ‘FWER adjusted p-value' for
an FWE-corrected threshold
e ‘P-Value Uncorrected’ for an
uncorrected threshold
e o0bo:‘g-value’ for an FDR-corrected
threshold

Attribute prov:atLocation of a 'Search Space
Mask Map' entity.

Attribute prov:type of the '"Height Threshold' used
by an ‘Inference’ activity (cf. above for possible
values),

Attribute 'noise FWHM In Units’ of a 'Search
Space Mask Map' entity.

Attribute 'search Volume In Resels' of a 'Search
Space Mask Map' entity.

@prefix nidm_HeightThreshold: <http://purl.org/nidash/nidm#NIDM_0000034> .
@prefix nidm_equivalentThreshold: <http://purl.org/nidash/nidm#NIDM_0000161> .
@prefix obo_FWERadjustedpvalue: <http://purl.obolibrary.org/obo/0OBI_0001265> .

niiri:inference_id prov:used niiri:height_threshold_fwer_id .

niiri:height_threshold_fwer_id a prov:Entity, nidm_HeightThreshold:,
obo_FWERadjustedpvalue: ;
rdfs:label "Height Threshold: p<@.05 (FWER-corrected)" ;
prov:value "0.05"*"xsd:float ;
nidm_equivalentThreshold: niiri:height_threshold_stat_id .

(cf. example for ‘Search region for analysis’ and ‘Correction for multiple
comparisons’)
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Cluster-wise significance

. . i . . . @prefix nidm_HeightThreshold: <http://purl.org/nidash/nidm#NIDM_0000034> .
cluster-defining threshold Attribute prov:value of the ‘Height Threshold @prefix nidm_PValueUncorrected: <http://purl.org/nidash/nidm#NIDM 00001605 .

used by an ‘Inference’ activity. @pr‘eﬁx nidm_ExtentThreshold: <http:/(pur‘l.or‘g/nidash/nidm#NIDM_0000026> 5
@prefix obo_qvalue: <http://purl.obolibrary.org/obo/OBI_0001442> .

Attribute prov:va|ue of the ‘Extent Threshold' niiri:extent_threshold_fdr_id a prov:Entity, nidm_ExtentThreshold:, obo_gvalue: ;

‘Inf g af rdfs:label "Extent Threshold: p<@.05 (FDR-corrected)" ;
used by an ‘Interence aCtIVItY- prov:value "@.05"""xsd:float .

cluster significance level

smoothness (for random field

. - . iiri:height_th hold id :Entity, nidm_HeightTh hold:,
G Attribute 'noise FWHM In Units’ of a 'Search i PVl eUmcormaeed T € @ PrOVIEREEEY, IR TELENETAresno
space Mask Map' entity. rdfs:label "Height Threshold: p<@.001 (uncorrected)" ;

prov:value "0.001"~"xsd:float .

RESEL count
Attribute 'search Volume In Resels' of a 'Search

Space Mask Map' entity.

Table 2. Checklist to report neuroimaging results for intra-subject fMRI and group models from (Poldrack et al. 2008) and corresponding representation in NIDM-Results. The following items from the original checklist were
excluded as not available automatically: “design type”, “orthogonalization of regressors”, “additional regressors used”,”if not whole brain, state how region of analysis was determined”, “If correction is limited to a small

"o« n o«

volume, the method for selecting the region should be stated explicitly”, “threshold used for visualization in figures”, “correction for multiple planned comparisons within each voxel”.



https://doi.org/10.1101/041798
http://creativecommons.org/licenses/by/4.0/

