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Abstract

We aligned 21,504 publicly available Illumina-sequenced human RNA-seq samples from the
Sequence Read Archive (SRA) to the human genome and compared detected exon-exon junctions
with junctions in several recent gene annotations. 56,865 junctions (18.6%) found in at least
1,000 samples were not annotated, and their expression associated with tissue type. Newer
samples contributed few novel well-supported junctions, with 96.1% of junctions detected in
at least 20 reads across samples present in samples before 2013. Junction data is compiled
into a resource called intropolis available at http://intropolis.rail.bio. We discuss an
application of this resource to cancer involving a recently validated isoform of the ALK gene.

1 Preliminaries

Gene annotations such as those compiled by RefSeq [1] and GENCODE [2] are derived primarily
from alignments of spliced cDNA sequences and protein sequences [3,4]. So far, the impact of RNA
sequencing (RNA-seq) data on annotation has been limited to a few projects including ENCODE [5]
and Illumina Body Map 2.0 [6].

To measure how much splicing variation present in publicly available RNA-seq datasets is missed
by annotation, we aligned 21,504 Illumina-sequenced human RNA-seq samples from the Sequence
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Read Archive (SRA) to the hgl9 genome assembly with Rail-RNA [7] and compared exon-exon
junction calls to exon-exon junctions from annotated transcripts. We compared exon-exon junctions
rather than full transcripts because junction calls from short RNA-seq reads are considerably more
reliable than assembled transcripts [8]. Details of our alignment protocol are reviewed in Methods.
All alignment was performed in the cloud using Amazon Web Services (AWS) Elastic MapReduce,
costing 72 US cents per sample, as computed in Methods. We considered only Illumina platforms
because of their ubiquity and high base-calling accuracy. Specifically, the samples we aligned were
obtained by querying the SRA metadata SQLite database of the R/Bioconductor package SRAdD [9]
as of April 2015 for all Illumina-sequenced human RNA-seq samples. In the remainder of this paper,
we use the term “annotation” to refer to junctions from the union of transcripts across several gene
annotation tracks from the UCSC Genome Browser [10]. For hg38 annotations, coordinates were
lifted over to hgl19. See Methods for details and Table S1 for included gene annotations together
with the number of junctions in each. In all, we found 542,706 annotated junctions: 506,105 were
present in annotations of hg!9, and the rest were added by annotations of hg38.

2 Results

We compiled the junction calls and associated coverage levels for 21,504 SRA RNA-seq samples into
a resource called intropolis available at http://intropolis.rail.bio. Using this resource, we
addressed several questions that are fundamental to our understanding of the transcriptome and
informative for analyses by individual investigators.

2.1 Robustness

We first asked whether our junction calls were robust across alignment protocols. The SEQC/MACQ-
IIT consortium (hereafter called SEQC) aligned a subset of 1,720 universal human reference RNA
and human brain reference RNA samples [11] of the 21,504 samples we considered using three
different protocols: NCBI Magic [12], r-make (which uses STAR [13]) and Subread [14]. Junctions
called by Rail-RNA are compared with junctions called by SEQC across the subset in Figure 1. Of
junctions found by Rail-RNA in at least 80 SEQC samples, as many as 97.5% are found by at least
one SEQC alignment protocol, and 90.1% are found by all three. Note that 80 SEQC samples is
4.7% of 1,720, comparable to a 1,000-sample threshold discussed below for the 21,504 SRA samples.

2.2 Relationship between annotation and expression of splice junctions

We next asked whether annotated junctions represent the diversity of junction expression observed
in the population at large. We considered a junction well-supported in our data if it appeared
in a large number of samples. We calculated the number of junctions that appeared in at least
S samples across a range of cutoffs. For each junction we considered, we also evaluated whether
it appeared in annotation. We considered the following levels of evidence: (1) fully annotated
junctions; (2) separately annotated junctions (typically exon skipping events), where both the
donor and acceptor sites appear in one or more junctions from annotation, but never for the same
junction; (3) alternative donor and acceptor sites, where only either the donor or the acceptor site
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appears in one or more junctions from annotation; and (4) novel junctions, where neither donor
nor acceptor site is found in any annotated junction.

We observed that the junctions most widely expressed across samples and experiments were
well-documented in annotation. For example, we observed that junctions that appeared in at least
40% of human RNA-seq samples on SRA (S > 8,000) were also present in previous annotation at
least 99.8% of the time. However, 18.6% of junctions that appeared in 1,000 or more samples did
not appear in annotation (Figure 2a). Many of these unannotated junctions are partially annotated,
but 3.5% of junctions found in over 1,000 samples do not match any splice site from an annotated
junction.

We also took an investigator-focused view of the relationship between annotation and expression.
Most investigators collect only a small number of samples for their study. We restricted attention to
samples where at least 100,000 junctions were found to rule out obviously small RNA-seq samples
and samples that were mislabeled as RNA-seq on SRA. In each sample, we counted the number
of instances where a read maps across a junction. (A read mapping across two junctions thus
contributes two instances.) The total number of such “junction overlaps” across samples is a
measure of the total expression of junctions across SRA. Most of the reads that map to junctions
map to annotated junctions (Figure 2b). In 10,090 of a total of 10,311 samples that meet our
criterion of 100,000 junctions observed, over 95% of junction overlaps correspond to annotated
junctions.

This represents only the bulk coverage of junctions. We can also consider the number of junctions
observed, regardless of coverage. In 3,389 out of 10,311 samples, we observe that fewer than 80%
of junctions appear in annotation (Figure 2c¢). So while the most highly covered junctions are
well-annotated, there is a large number of junctions that are well-covered across multiple samples
but may not appear in any given small subset of samples.

To explore this idea further, we investigated the potential for single studies to be the sole contrib-
utors of individual unannotated junctions. In this event, the junction may not have been called
robustly across experimental protocols. Here, we considered junctions that appeared in at least
P projects instead of samples. We again broke this calculation down by the different potential
levels of evidence: whether the junction was entirely novel, had an alternative donor or acceptor,
an exon skip, or whether it was fully annotated (Figure 3). The story at the project level mirrors
the story at the sample level: 23.4% of junctions found in over 200 of the 929 projects are not fully
annotated. So unannotated junctions recur across independent investigations.

2.3 Technical and biological variation in junction expression across samples

We next explored variation across the 21,504 samples we processed. We wanted to see the com-
bination of technical and biological factors that contribute to variation in unannotated junction
expression. In this analysis, we considered only the 56,865 unannotated junctions found in at least
1,000 samples of the 21,504, and the subset of 21,057 samples of the 21,504 with at least 100,000
reads each. We performed a Principal Component Analysis (PCA) on the data matrix where rows
correspond to the 56,865 unannotated junctions and columns correspond to the 21,057 samples.
(See Methods for technical details of the decomposition.)
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PC1 explains the overwhelming majority of the variance (87.9%) and has a Pearson correlation
coefficient r = 0.978 with junction sequencing depth s; as measured by total junction overlaps
(i.e., instances where a read maps across a junction) in sample j (Figure 4) after normalization
by library size and log transformation. PC1 is also highly correlated with log-transformed read
length ¢; (r = 0.639), but much less correlated with log-transformed total number of mapped reads
Cj (r = 0.277), showing that enrichment for splice junctions is different in different samples. (See
Methods for precise definitions of correlates.)

We further examined samples belonging to specific groups that generated well-characterized datasets.
Both the SEQC consortium and ABRF [15] studied universal human reference RNA (UHRR) and
human brain RNA reference (HBRR) samples constructed by the MACQ-IIT consortium for quality
control. UHRR is comprised of total RNA from 10 different cancer cell lines representing various
human tissues, while HBRR samples are comprised of total RNA from several donors across several
brain regions. Both groups studied these samples in four different mixture ratios—0:1, 1:3, 3:1,
and 1:0—with each sample sequenced at multiple sites. The four mixtures separate well, and each
lies on a radial line passing through the singular point on the left. Data from the two groups are
separated because they used different sequencing depths and read lengths.

The four SEQC UHRR:HBRR sample ratios form four clusters distinguished by PC2, and the
ABRF UHRR:HBRR sample ratios form clusters distinguished by both PC1 and PC2. Observe
that there is a singular point where all points appear to converge (Figure 4). Here, the number of
junctions detected in a sample approaches zero. A radial line extending from the singular point
rotating clockwise across the plot passes over UHRR:HBRR sample ratios in the same order for
ABRF as it does for SEQC. Though ABRF and SEQC have some overlap in managing investigators,
they are two different projects that employed randomized study designs, making a strong case that
PC2 is distinguishing mostly biological rather than technical factors.

Lymphoblastoid cell lines, typically made from HapMap samples, are extensively present in SRA.
Different studies cluster together and are again placed on a radial line going through the singular
point; each study used very different sequencing depths and read lengths. Searching the SRA
metadata, we could classify a number of samples as brain and blood. Again, these samples fall
along radial lines through the singular point. The biggest separation in PC2 is between brain and
blood, two tissue types that are well-represented in SRA.

2.4 Novel junction discovery over time

We proceeded to measure the accumulation of “confidently called” junctions over calendar time. A
junction was “confidently called” if it was found in at least 20 reads across all samples. We measured
the discovery date of a junction as the earliest submission date to the BioSample database [16]
from among all samples in which the junction was found by Rail-RNA. The > 20-read curve has
noticeable spikes in 2009 and 2011 but appears to decelerate significantly before 2013, by which
time 96.1% of junctions were discovered.

Recent samples added to SRA have contributed few novel junctions. Curves for more stringent
coverage thresholds (Figure 5) level off sooner; the curve for the most stringent threshold (> 160
reads) is essentially flat by 2012. Ranked and labeled are the dominant contributing projects
from days on which the most junctions were discovered. The largest single contribution comes
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from UWE, the University of Washington’s Human Reference Epigenome Mapping Project [17],
on April 4, 2011, when 252,628 new junctions appeared. The submission includes total RNA
from fetal tissue, which exhibits markedly different expression than adult tissue [18]. The second,
third, fourth, and fifth-largest contributions are from, respectively, ENCODE [19], early studies
of 69 lymphoblastoid cell lines (LCLs) [20] and 41 Coriell cell lines [21], and the Illumina Body
Map 2.0 sequencing of 16 human tissue types [6]. The GEUVADIS submission of 464 LCLs is on
only the 55th-largest contributing date, November 7, 2012. By this time, LCLs had already been
well-studied using RNA-seq.

To determine whether the annotation of junctions is being driven by RNA-seq experiments, we
examined the correlation between annotated junctions and the discovery date of observed junctions
over calendar time. GENCODE released 18 versions between September 2009 and December 2012.
Call a confidently called junction “documented” if it appears in at least one GENCODE release.
Most documented junctions (80.0%) appear in the earliest GENCODE release (Figure 6a). Doc-
umented junctions tend to have early discovery dates (Figure 6b); in fact, by late January 2010,
74.2% of documented junctions were discovered, while 20.3% of confidently called junctions were
discovered (Figure 6¢). This makes sense: annotated junctions tend to be found in many samples,
making it likelier at least one sample has an early submission date to BioSample. It is reasonable
to speculate that there is a correlation between junction discovery date and GENCODE appear-
ance date: perhaps shortly after a junction is discovered, it appears in GENCODE. But inspection
of the relationship between documentation date and discovery date suggests that only the first
GENCODE release introduced new junctions with significantly earlier discovery dates than other
releases (Figure 6b). The reason for this phenomenon is junctions appearing first in GENCODE’s
first release are present in many more samples (median = 5,817) than junctions appearing first in
other GENCODE releases (median = 603 samples) (Figure 6d).

3 Application to ALK isoform discovery

We have compared the variation in our database intropolis to standard gene annotations.
intropolis associates each junction with the set of samples where the junction was called and the
number of reads spanning the junction in that sample, enabling biological investigators to gain new
insights. Here, we give a simple example application involving the anaplastic lymphoma kinase
(ALK) gene.

ALK is frequently mutated or aberrantly expressed in cancers including neuroblastoma [22-25]
and non-small-cell lung adenocarcinoma, where in particular it has been found to participate in the
fusion gene EML4-ALK [26]. Cancers with ALK abnormalities are often responsive to treatment
with ALK inhibitors such as crizotinib [27]. ALK is a good therapeutic target because it is rarely
expressed in normal adult tissue [28]. A novel ALK transcript variant present in about 11% of
melanomas and occasionally in other cancer subtypes was recently identified [29]. The transcript is
described as resulting from a de novo alternative transcription initiation (ATI) site in ALK intron
19 and is dubbed ALKATI. The kinase activity of ALKATT is found to be suppressed by various
ALK inhibitors, and a patient with ALKAT!-expressing metastatic melanoma is shown to exhibit
significant tumor shrinkage after treatment with crizotinib.

To investigate the prevalence of ALKATT on SRA, we searched for a deficit of junction expression
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in ALK exons 1-19 compared to exons 20-29. We did this by defining a junction inclusion ratio
D measuring to what degree junctions between exons 20-29 are expressed relative to junctions
between exons 1-19 (see Methods). This signature is a necessary but not sufficient condition for
exclusive ALKATT expression: the expression signature also arises in, for example, the EML4-ALK
fusion gene. Table S2 shows the ten top SRA samples we studied ranked in order of decreasing D.
As expected, four such samples are cancers, including uveal melanoma. Three of the ten samples
are from two melanocyte cell cultures studied as part of the ENCODE project, “NHEM_M2” and
“NHEM.f M2.” Cap analysis of gene expression (CAGE) data from ENCODE on the same cell
lines shows a T'SS within ALK intron 19, where the TSS was localized for ALK AT (Supplementary
Fig. S1). This raises the possibility that the transcript is expressed in normal melanocytes. While
Wiesner et al. found no ALKATT expression in 1,600 samples from 43 different normal tissues
across the GTEx project, including skin, it should be noted that melanocytes comprise only up
to 10% of skin cells. In addition to melanocytes, the ALKAT! transcript may be expressed in
macrophages. We also observed that the macrophage and macrophage+fibroblast samples from
Table S2 are part of the study [30] that additionally sequenced the same samples exposed to tumor
necrosis factor (TNF). The two samples exposed to TNF appear to have no expression of the ALK
gene, suggesting that TNF may participate in suppressing ALK gene expression. This is supported
by [31] in lymphoma.

4 Discussion

We have measured variation in junction expression across thousands of RNA sequencing samples.
Our analysis demonstrates both the strengths and weaknesses of relying on current annotation for
RNA-seq analysis. We have also used our population-level view of transcription to understand the
potential hazards of analyzing individual samples without a clear understanding of the background
variation in junction discovery levels. We have introduced a resource, intropolis, for others to
investigate junction variation, and we have provided an example of the utility of our resource in
the case of ALK gene expression.

As highlighted by Figure 2a-b, considering only the variation contained in annotation may suffice
if an investigator is interested only in well-expressed transcript isoforms. However, genes that are
not generally well-expressed and nonetheless present in a small but significant number of samples
on SRA are likelier to be incompletely annotated. Our approach to synthesizing large public RNA-
sequencing datasets offers the opportunity to study transcription more deeply than ever before.

Data availability. intropolis may be downloaded at http://intropolis.rail.bio.
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Figure 1: Displayed is the number of exon-exon junctions J found by Rail-RNA and other alignment
protocols in at least S of the 1,720 brain and universal human reference RNA-seq samples also
studied by the SEQC/MACQ-IIT consortium [11] (i.e., SEQC). “2 aligners” (red), “3 aligners”
(green), and “4 aligners” (orange) refer to junctions we found with Rail-RNA that were also found
by, respectively, 1, 2, and 3 of the alignment protocols used by SEQC. 97.5% of junctions found by
Rail-RNA in at least 80 SEQC samples were also found by another SEQC alignment protocol, and
90.5% were also found by all three SEQC alignment protocols.
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Figure 2: (a) shows how many exon-exon junctions J are found in at least S samples of the 21,504
human RNA-seq samples on SRA aligned here. It also shows how much evidence for these junctions
is found in gene annotation: “fully annotated” (orange) means the junction is in an annotated
transcript, “exon skip” (green) means a called junction’s donor and acceptor sites are annotated in
distinct junctions, “alternative donor/acceptor” (red) means only one of a called junction’s donor
and acceptor sites is in a junction from annotation, and “novel” (blue) means neither donor nor
acceptor site is annotated. The overwhelming majority (99.7%) of junctions found in over 8,000
samples are fully annotated, but 18.6% found in over 1,000 samples are not fully annotated. (b)
and (c) restrict attention to the 10,311 samples for which 100,000 junctions are discovered in each.
(b) refers to overlaps as defined in the main text, and it shows that if a sample’s junctions are
weighted by the number of reads that map across them, annotation captures over 95% of variation
in 10,090 samples. But if each junction is weighted equally as in (c), annotation captures less than
80% of variation in 3,389 samples.
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Figure 3: Displayed is the number of exon-exon junctions J found in at least P projects of the
929 human RNA-seq projects on SRA considered in this paper. It also shows how much evidence
for these junctions is found in gene annotation: “fully annotated” (orange) means the junction is
in an annotated transcript, “exon skip” (green) means a called junction’s donor and acceptor sites
are annotated in distinct junctions, “alternative donor/acceptor” (red) means only one of a called
junction’s donor and acceptor sites is in a junction from annotation, and “novel” (blue) means
neither donor nor acceptor site is annotated. 23.4% of junctions found in over 200 projects are not
fully annotated.

700


https://doi.org/10.1101/038224
http://creativecommons.org/licenses/by/4.0/

0T

0.02F i
0.01F » i
AN
a o000 : TR iy A AR Ay |
X » 2 i .‘-4 < ?: te 00 o Sy : °
‘:?'o".'.. .
at % 8° o° . ..
° %’a ’oov ‘ ... ==
2 ..~..‘o
S ...r’...:-
~0.01" N ..:5...)_. R
..;'. oo '.‘o .
b, 00 .?. 'é o?‘.
.'o'.' .... q
e .‘b .?'..o
-0.02 - ';?- 4 1
‘ 0.015

Figure 4: Displayed is the first principal component (PC1) vs. the second principal component (PC2) for a Principal Component
Analysis (PCA) with a coverage data matrix where rows are junctions and columns are samples. (See Methods for technical
details.) Each point corresponds to a distinct sample. Gray points are unlabeled samples, red points are blood samples, magenta
points are lymphoblastoid cell line samples, and cyan points are brain samples. GEUVADIS (GEU) is a sizable cluster of magenta
points. The ABRF and SEQC consortia each sequenced mixtures of Universal Human Reference RNA (UHRR) and Human Brain
Reference RNA (HBRR) in four sample ratios UHRR:HBRR that form distinct clusters in the shaded regions: 0:1 (green), 1:3
(blue), 3:1 (brown), and 1:0 (yellow).
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Figure 5: The 3,211,228 junctions found in at least 20 reads across samples are accumulated by their “discovery dates.” Here,
discovery date of a junction is taken to be the earliest submission date to the BioSample database from among the samples in
which the junction was found. 96.1% of the junctions were discovered before January 1, 2013, despite how only 34.7% of samples
depicted in the figure had been submitted by then, and afterwards discovery levels off. Demanding higher levels of confidence (the
red, green, and orange curves) gives rise to earlier asymptotes. Ranked from 1 to 5 are the dominant contributing projects from
dates on which the most junctions are discovered. “Che” refers to a study of 41 Coriell cell lines by Cheung et al. [21], “Pic” refers
to a study of 69 LCLs by Pickrell et al. [20], “UWE” refers to the University of Washington Human Reference Epigenome Mapping
Project [17], “BM2” refers to Illumina Body Map 2.0 [6], and “ENC” refers to ENCODE [19]. “GEU” refers to GEUVADIS [32],
whose 464 LCLs uncovered few junctions that had not already been discovered.
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Figure 6: Displayed is a summary of the evolution of junctions from the GENCODE annotation of hg19 through its 18 releases
compared to the evolution of confidently called junctions called across SRA. Every junction considered here is “confidently called”—
found in at least 20 reads across the SRA samples we analyzed. (a) shows that most junctions (80.0%) annotated by GENCODE
first appeared in the first release. (b) shows that junctions in GENCODE tend to have early discovery dates. This is also evident
from (c), which shows that while only 20.3% of junctions are discovered by late January 2010, almost three-quarters of junctions
appearing in at least one GENCODE release are discovered by the same date. Also shown in (b) is how junctions first appearing
in GENCODE’s first release have noticeably earlier discovery dates than junctions first appearing in later releases. This is due to
how junctions first appearing in GENCODE’s first release tend to be found in many more samples (median = 5,825) than junctions
first appearing in later releases (median = 602 samples). In every box plot, the red diamond corresponds to the median, and the
blue triangle corresponds to the mean.
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Methods

Identifying annotated junctions. Following [33], we extracted junctions from transcripts
across all the latest “empirical” gene annotation tracks in the UCSC Genome Browser [10] for
hg19 and hg38 except GENCODE [2] and Ensembl [34]. (While GENCODE’s tracks are also
in the UCSC Genome Browser, we chose to download them from the GENCODE website http:
//www.gencodegenes.org/releases/ instead: as of January 24, 2016, GENCODE v22 was the
latest GENCODE track listed, but GENCODE v24 had already been released.) Empirical tracks
are based on alignments of e.g. spliced cDNA and protein sequences and are listed in Table S1.
Annotation tracks based on algorithmic predictions from genome sequence (Augustus, GenelD,
Genscan, N-SCAN, and SGP) were excluded because they are comprised of transcripts that were
not directly observed in experiment. Ensembl was excluded because GENCODE is already a merge
of Ensembl and HAVANA transcripts. After junction coordinates were extracted, all hg88 coor-
dinates were lifted over to hgl9 where feasible, and the union of all junctions was taken. Since
the intropolis database was formed from alignments to only the hgl9 chromosomal assembly,
only those junctions corresponding to the hg19 chromosomal assembly were kept to form a fi-
nal list of annotated junctions. Table S1 lists all gene annotations used to determine our set of
annotated junctions. We froze these annotations on January 24, 2016 and compressed them into
an archive available at http://verve.webfactional.com/misc/jan_24_2016_annotations.tar.
gz. We ran the script https://github.com/nellore/runs/blob/master/sra/rip_annotated_
junctions.py with PyPy v2.5.0 to extract junctions from these annotations, performing coordi-
nate conversions from hg38 to hg19 where appropriate. The final list of junctions we defined as
“annotated” is available at https://github.com/nellore/runs/blob/master/sra/annotated._
junctions.tsv.gz.

Selecting SRA samples. Samples were selected by querying the SRA metadata SQLite database
of the R/Bioconductor package SRAdb [9]. The database was downloaded from http://gbnci.
abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz, but this file is updated regularly. The version
of SRAmetadb.sqlite.gz we used was updated April 1, 2015, and it is available at ftp://ftp.ccb.
jhu.edu/pub/langmead/sra_junctions/SRAmetadb.sqlite.gz. We selected all run_accessions
from the sra table with platform = ’ILLUMINA’, library strategy = ’RNA-Seq’, and taxon_id
= 9606 (human) that also had URLs for FASTQs on the European Bioinformatics Institute server
listed in the fastq table. Our query may be reproduced with the script https://github.com/
nellore/runs/blob/master/sra/define_and_get_fields_SRA.R compatible with R v3.1.0.

Alignment with Rail-RNA. Rail-RNA v0.1.7b [7] was used for alignment. We aligned to hg19
rather than the more recent hg38 assembly because of hg19’s continued prevalence, including use
by the GEUVADIS consortium [32] in its study of 462 lymphoblastoid cell line (LCL) samples as
well as the GTEx consortium [35] in its ongoing large-scale study of gene expression across human
tissues. We performed a single pass of alignment; that is, reads were not realigned after junctions
were discovered to improve alignments of short-anchored reads. Alignment was performed in the
cloud using AWS Elastic MapReduce on Elastic Compute Cloud spot instances, i.e., standardized
units of computing capacity. Spot instances permit bidding for compute to save money, where bids
that equal or exceed a market price are fulfilled. However, if the market price drops below a bid,
instances could be lost, and a computational job could fail. So saving money by bidding for spot
instances comes with risk, and rather than aligning all samples in one batch, we distributed this risk
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by dividing alignment up into 43 batches of about 500 samples each. Analysis of each batch was itself
divided into (1) a preprocessing job flow, which downloaded and preprocessed compressed FASTQs
from the European Bioinformatics Institute’s mirror of SRA, writing results to Amazon’s cloud
storage service S3; and (2) an alignment job flow, which was configured to write only exon-exon
junction coordinates and the number of reads in each sample mapping across each detected junction.
Fach preprocessing job flow was run on a cluster of 21 ¢3.2xlarge instances, each with 8 Intel Xeon
E5-2680 v2 (Ivy Bridge) processing cores and 15 GB of RAM. Each alignment job flow was run on a
cluster of 61 c¢3.8xlarge instances, 32 Intel Xeon E5-2680 v2 (Ivy Bridge) processing cores and 60 GB
of RAM. Summing the sizes of the 43 compressed files output by the 43 runs gives 5.3 GB, about the
size of an alignment BAM for a single RNA-seq sample. Our alignment runs may be reproduced by
following the instructions at https://github.com/nellore/runs/blob/master/sra/README.md.

Alignment cost. Alignment was performed over a period of eight days. 21,506 samples span-
ning 62.2 trillion nucleotides were initially selected for alignment, but two samples (run acces-
sion numbers SRR651690 and DRR023700) were not found on the European Bioinformatics In-
stitute server and were therefore excluded. We used the Amazon Cost Explorer to compute total
cost; summing across eight days of activity, it came to US$15,393.69, or 72 cents per sample.
Costs divided up by Amazon service over the period of computational activity may be viewed at
https://github.com/nellore/runs/blob/master/sra/hgl9.costs.csv.

Reproducing main figures. All data underlying Figures 1, 2, 3, 5, and 6 are reproducible with
the Python v2.7 script https://github.com/nellore/runs/blob/master/sra/tables.py, which
was run using PyPy v2.5.0. These figures as well as Figure 4 were generated with the Mathematica
v10.3.1 notebook https://github.com/nellore/runs/blob/master/sra/preprint_figures.nb.
SEQC/MAQC-III consortium junction data was downloaded from http://www.nature.com/nbt/
journal/v32/n9/extref/nbt.2957-S4.zip. BioSample submission dates for 77 SRA runs (0.3%
of the samples we studied) were not found on the server, so these runs were excluded from the
analyses involving junction discovery dates presented in Figures 5 and 6.

Analysis of novel ALK isoform. The junction inclusion ratio D discussed in the main text is
defined as follows. Suppose the number of instances where junctions are overlapped by reads (i.e.,
the junction overlap count) in ALK exons 1-19 is A, and the junction overlap count in ALK exons
20-29 is B. The normalized difference D = (B — A)/(A + B) is close to 1 when exons 1-19 are
unexpressed compared to exons 20-29, and close to -1 when exons 20—29 are unexpressed compared
to exons 1-19.

The ALK analysis may be reproduced by first filtering intropolis for junctions in ALK with
the script https://github.com/nellore/runs/blob/master/sra/alk.sh, and then running the
Mathematica 10.3.1 notebook https://github.com/nellore/runs/blob/master/sra/alk.nb. Sam-
ples found were checked manually for their descriptions on SRA at http://www.ncbi.nlm.nih.
gov/sra, and the UCSC Genome Browser screenshot of Figure S1 was created using the Genome
Browser’s PDF /PS utility.

Principal component analysis. Restrict attention to unannotated junctions found in at least
1,000 of the 21,504 SRA samples we studied and further to only those samples with at least
100,000 reads each. Consider the number of reads c;; overlapping the ith unannotated junction
in the jth sample. We formed the normalized log-counts x;; := logg(% + 1), where Cj is the
number of mapped reads for sample j. We then used the row-centered matrix A for PCA; that
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is, A;; = x;j — T;. More specifically, we computed the cross-product A’4 in a block-wise manner,
and we subsequently performed a singular value decomposition (SVD) of A'A to obtain the right-
singular vectors (principal components) with a randomized SVD algorithm [36]. Three correlates
of PC1 are mentioned in the text. They are defined as

8= Tij
%

tj = logy(1 + py)

where j indexes samples and p; is the read length in sample j.

Scripts for reproducing the PCA analysis are available in the sra subdirectory of https://github.
com/nellore/runs and described in https://github.com/nellore/runs/blob/master/sra/README.
md. Output of the analysis sourced the Mathematica 10.3.1 notebook https://github.com/
nellore/runs/blob/master/sra/preprint_figures.nb for generating Figure 4.
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Supplementary Figures and Tables

Gene annotation Number of junctions Reference

hg19

AceView 395,410 [12]
CCDS 174,337 37]
GENCODE v19 343,887 2]
UCsc 264,339 [10]
lincRNAs 30,256 [6]
MGC 160,388 [38]
RefSeq 235,512 1]
SIB 414,422 [39]
Vega 242,672 2]
hg38

CCDS 178,775 [37]
GENCODE v24 346,547 2]
UCSC 356,644 [10]
lincRNAs 29,940 [6]
MGC 169,302 [38]
RefSeq 247,577 1]
SIB 433,606 [39]

Table S1: Gene annotations from which exon-exon junctions were extracted and unioned to obtain
a list of annotated junctions. All tracks were taken from the UCSC Genome Browser [10] except for
GENCODE |[2], which was downloaded from the GENCODE website http://www.gencodegenes.
org/releases/. Junction coordinates from hg38 annotations were lifted over to hgl9 before the
union was performed. Of all gene annotations listed here, the Swedish Bioinformatics Institute
(SIB) genes has the most, with over 400,000 junctions for each of hg19 and hg38.
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0¢

Junction Junction . .
coverage A | coverage B Total junction
Rank | Sample (i.e., run) | Project Description of sample veras veras coverage C D=(B-A)/C
for ALK for ALK across ALK
exons 1-19 | exons 20-29 ross
1 SRR545713 SRPO07461 | EM-LM2: mormal human 0 139 139 1
melanocyte
1 SRR396804 SRPo10166 | Mon-small cell lung 0 172 172 1
adenocarcinoma
1 SRR620100 SRP017262 | leukemia 0 108 108 1
4 SRR 1289650 SRP042031 | macrophage 1 85 86 0.976
5 SRR1289651 SRPO42031 | Macrophage cultured 1 77 78 0.974
with fibroblast
6 SRR545716 SRPO07461 | EMM2: normal human P 94 96 0.958
melanocyte
7 SRR628586 SRP017413 | uveal melanoma 12 111 123 0.805
8 DRRO16705 DRPO01919 | 12228, an EMLA-ALK-expressing | 5o 285 333 0.765
lung adenocarcinoma cell line
9 SRR545714 SRPO07461 | NEM-LM2: normal human 14 63 77 0.636
melanocyte
10 ERR532612 ERP006077 | prostate tumor 16 53 69 0.536

Table S2: Top ten samples across the 21,504 analyzed in this paper in order of descending junction inclusion ratio D, as defined
in the table. D essentially measures the difference in expression between junctions across ALK exons 1-19 and junctions across
ALK exons 20-29. Values of D close to 1 may point toward expression of ALKATT a novel transcript variant of ALK recently
identified in [29] across several cancers but not normal cells. Several cancer samples appear, but interestingly, normal cell samples
also appear, including melanocytes and macrophages.
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Window Position

Human Feb. 2009 (GRCh37/hg19) chr2:29,446,620-29,446,889 (270 bp)

Scale 100 bases} | hgl9
chr2: 29,446,650| 29,446,700 29,446,750 29,446,800 29,446,850|
UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs & Comparative Genomics)
ALK
ALK}

RefSeq Genes

RefSeq Genes|

1:29446803:-:0.002089
NHEM cell pA+ - 1

NHEM cell pA+ - 2

’:29446882:-:0.007862
NHETf cell pA+ - 1

NHEf cell pA+ - 2

NHEM M2 whole cell EOIEA+ CAGE TSS HMM from ENCODE/RIKEN

NHEM M2 whole cell polyA+ CAGE Minus start sites Rei 1 from ENCODE/RIKEN

NHEM M2 whole cell ioIiA+ CAGE Minus start sites Rep 2 from ENCODE/RIKEN
NHEM.f M2 whole cell polyA+ CAGE TSS HMM from ENCODE/RIKEN
NHEM.f M2 whole cell ioIiA+ CAGE Minus start sites Rep 1 from ENCODE/RIKEN

L Ly
NHEM.f M2 whole cell ioIiA+ CAGE Minus start sites Rep 2 from ENCODE/RIKEN

Figure S1: Displayed in the UCSC Genome Browser (http://genome.ucsc.edu) are tracks corresponding to CAGE data for normal
human melanocyte cell cultures NHEM_M2 and NHEM.f_ M2 studied by ENCODE as well as T'SSes predicted with Hidden Markov
Models from pooled replicates in the ALK gene for hg19. Observe that one model predicts a TSS in the region chr2:29,446,803—
29,446,696 and the other predicts a T'SS in the region chr2:29,446,882—-29,446,687, both of which contain the T'SS region identified
for ALKATT in [29], chr2:29,446,768-29,446,744.
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