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ABSTRACT12

Nervous system function requires intracellular transport of channels, receptors, mRNAs, and other cargo throughout
complex neuronal morphologies. Local signals such as synaptic input can regulate cargo trafficking, motivating
the leading conceptual model of neuron-wide transport, sometimes called the “sushi-belt model” (Doyle and
Kiebler, 2011). Current theories and experiments are based on this model, yet its predictions are not rigorously
understood. We formalized the sushi belt model mathematically, showing how it can achieve arbitrarily complex
spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an unavoidable,
morphology dependent tradeoff between speed, precision and metabolic efficiency of cargo transport. With
experimental estimates of trafficking kinetics, the model predicts delays of many hours or days for modestly
accurate and efficient cargo delivery throughout a dendritic tree. These findings challenge current understanding
of the efficacy of nucleus-to-synapse trafficking and may explain the prevalence of local biosynthesis in neurons.
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INTRODUCTION15

Dendritic and axonal trees of neurons often have many tens or even thousands of branches that can extend across the16

entire nervous system. Distributing biomolecular cargo within neuronal morphologies is therefore a considerable17

logistical task, especially for components that are synthesized in locations distant from their site of use. Nonethe-18

less, molecular transport is important for many neurophysiological processes, such as synaptic plasticity, neurite19

development and local metabolism. For example, long-lasting forms of synaptic plasticity appear to depend on20

anterograde transport of mRNAs (Nguyen et al., 1994; Bading, 2000; Kandel, 2001) and specific mRNAs are known21

to be selectively transported to regions of heightened synaptic activity (Steward et al., 1998; Steward and Worley,22

2001; Moga et al., 2004) and to developing synaptic contacts (Lyles et al., 2006).23

On the other hand, local biosynthesis and component recycling are known to support dendritic physiology,24

including some forms of synaptic plasticity (Kang and Schuman, 1996; Aakalu et al., 2001; Vickers et al., 2005;25
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Sutton and Schuman, 2006; Holt and Schuman, 2013) and maintenance of cytoskeletal, membrane and signaling26

pathways (Park et al., 2004, 2006; Grant and Donaldson, 2009; Zheng et al., 2015). Neurons therefore rely on27

a mixture of local metabolism and global transport, but the relative contributions of these mechanisms are not28

understood. Analyzing the performance of global trafficking provides a principled way to understand the division of29

labor between local and global mechanisms.30

In this paper we ask a simple question: how well can trafficking perform globally, given what we know about31

active transport and the typical morphologies of neurites? There are two parts to this question. First, how can active32

transport achieve specific spatial distributions of cargo using only local signals? Second, how long does it take to33

distribute cargo to a given degree of accuracy and what factors contribute to delays?34

Intracellular trafficking mechanisms are being characterized in increasing detail (Buxbaum et al., 2014b;35

Hancock, 2014; Wu et al., 2016). Microscopic cargo movements are stochastic, bidirectional, and inhomogeneous36

along neurites, leading to to the hypothesis that trafficking is predominantly controlled by local pathways that37

signal demand for nearby cargo, rather than a centralized addressing system (Welte, 2004; Bressloff and Newby,38

2009; Newby and Bressloff, 2010a; Doyle and Kiebler, 2011; Buxbaum et al., 2015). These local signals are39

not fully characterized, but there is evidence of multiple underlying mechanisms including transient elevations in40

second-messengers like [Ca2+] and ADP (Mironov, 2007; Wang and Schwarz, 2009), glutamate receptor activation41

(Kao et al., 2010; Buxbaum et al., 2014b), and changes in microtubule-associated proteins (Soundararajan and42

Bullock, 2014).43

A leading conceptual model ties together these details by proposing that bidirectional trafficking, combined with44

local signalling determines the spatial distribution of cargo in neurons (Welte, 2004; Buxbaum et al., 2015). Doyle45

and Kiebler (2011) call this the “sushi belt model”. In this analogy, molecular cargoes are represented by sushi46

plates that move along a conveyor belt, as in certain restaurants. Customers sitting alongside the belt correspond to47

locations along a dendrite that have specific and potentially time-critical demand for the amount and type of sushi48

they consume, but they can only choose from nearby plates as they pass.49

Stated in words, the sushi belt model is an intuitive, plausible account of the molecular basis of cargo distribution.50

Yet it is unclear whether this model conforms to intuition, and whether it implies hidden, biological relevant and51

testable predictions. Can this trafficking system accurately generate global distributions of cargo using only local52

signals? Does the model predict cross-talk, or interference between spatially separated regions of the neuron that53

require the same kind of cargo? How quickly and how accurately can cargo be delivered by this model, given what is54

know about trafficking kinetics, and do these measures of performance depend on morphology or the spatial pattern55

of demand?56

We address these questions using simple mathematical models that capture experimentally measured features57

of trafficking. We confirm that the sushi-belt model can produce any spatial distribution of cargo in complex58

morphologies. However, the model also predicts that global trafficking from the soma is severely limited by tradeoffs59

between the speed, efficiency, robustness, and accuracy of cargo delivery. Versions of the model predict testable60

interactions between trafficking dependent processes, while the model as a whole suggests that time-critical processes61

like synaptic plasticity may be less precise, or less dependent on global transport than is currently assumed.62
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Figure 1. Constructing a coarse-grained model of intracellular transport. (A) Cartoon of a single cargo particle on
a microtubule being subjected to stochastic back-and-forth movements driven by opposing motor proteins. (B)
Three example biased random walks, representing the movement of individual cargoes. (Top panel) A simple
random walk with each step independent of previous steps. (Bottom panel) adding history-dependence to the biased
random walk results in sustained unidirectional runs and stalls in movement. (C) Cartoon of a population of cargo
particles being transported along the length of a neurite. (D) Concentration profile of a population cargo transported
along a neurite over time, simulated as 1,000 independent random walks. (Top panel) simulations without runs.
(Bottom panel) simulations with runs. (E) In the limit of many individual cargo particles, the concentration of
particles u is described by a drift diffusion model whose parameters, a and b, map onto the mass action model,
(equation 1). (F) The mass-action model provides a good fit to the simulations of bulk cargo movement in (D). (Top
panel) fitted trafficking rates for the model with no runs were a≈ 0.42 s−1, b≈ 0.17 s−1. (Bottom panel) fitting the
model with runs gives a≈ 0.79 s−1, b≈ 0.54 s−1.

RESULTS63

A simple model captures bulk behaviour of actively transported cargo64

Transport along microtubules is mediated by kinesin and dynein motors that mediate anterograde and retrograde65

transport respectively (Block et al., 1990; Hirokawa et al., 2010; Gagnon and Mowry, 2011). Cargo is often66

simultaneously bound to both forms of motor protein, resulting in stochastic back-and-forth movements with a net67

direction determined by the balance of opposing movements (Welte, 2004; Hancock, 2014; Buxbaum et al., 2014a,68

Fig. 1A). We modeled this process as a biased random walk, which is general enough to accommodate variations in69

biophysical details (Bressloff, 2006; Bressloff and Earnshaw, 2007; Müller et al., 2008; Bressloff and Newby, 2009;70
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Newby and Bressloff, 2010a; Bressloff and Newby, 2013).71

Figure 1 shows this model in a one-dimensional cable, corresponding to a section of neurite. In each unit of72

time the cargo moves a unit distance forwards or backwards, or remains in the same place, each with different73

probabilities. In the simplest version of the model, the probabilities of forward and backward jumps are constant for74

each time step (Fig. 1B, top panel). Cargo can also undergo extended unidirectional runs (Klumpp and Lipowsky,75

2005; Müller et al., 2008; Hancock, 2014). The model can account for these runs with jump probabilities that depend76

on the previous movement of the particle (Fig. 1B, bottom panel, Methods).77

While the movement of individual cargoes is stochastic, the movement of a population of cargoes (Fig. 1C)78

is predictable. This is seen in Figure 1D, which shows the distribution of 1000 molecules over time, with (top79

panel) and without (bottom panel) unidirectional runs. The bulk distribution of cargo can therefore be modeled as a80

deterministic process that describes how cargo cargo concentration spreads out in time. This leads to the well known81

drift-diffusion equation (Fig. 1E) when the movement probabilities are spatially uniform.82

For simulations and calculations, this process can also be conveniently described by a mass-action model (Voit83

et al., 2015) that breaks up the concentration profile along a neurite into small compartments with concentration-84

dependent transition rates between adjacent comparments. In a neurite with N compartments, the mass-action model85

is:86

u1
a1−⇀↽−
b1

u2
a2−⇀↽−
b2

u3
a3−⇀↽−
b3

...
aN−1−−⇀↽−−
bN−1

uN (1)

where ui is the amount of cargo in each compartment, and ai and bi respectively denote local rate constants for87

anterograde and retrograde transport. The parameters of the mass-action model map onto the drift-diffusion equation88

when rate constants are spatially homogeneous (Smith and Simmons, 2001). This allowed us to constrain mass-89

action model parameters using experimental estimates of the mean and variance of particle positions from imaging90

experiments (see Methods).91

For example, with a compartment length of 1 µm, the simulations in figure 1D gave mean particle velocities of92

15 µm per minute, which is within the range of experimental observations for microtubule transport (Rogers and93

Gelfand, 1998; Dynes and Steward, 2007; Müller et al., 2008). The variances of the particle distributions depended94

on whether unidirectional runs are assumed, and respectively grew at a rate of ∼0.58 and ∼1.33 µm2 per second for95

the top and bottom panel of 1D. The mass action model provides a good fit to cases (Figure 1F). In general, the96

apparent diffusion coefficient of the model increases as run length increases (Figure 1 Supplement, 1A). The fit of the97

mass-action model decreases as the run length increases. However, the model remains a reasonable approximation98

for many physiological run lengths and particle numbers, even over a relatively short time window of 100 seconds99

(Figure 1 Supplement, 1B).100

Biophysical formulation of the sushi belt model101

The advantage of the mass action model is that it easily extends to complex morphologies with spatially non-uniform102

trafficking rates, and can accommodate additional processes, including sequestration of cargo. The sushi-belt model103

(Doyle and Kiebler, 2011) proposes that local mechanisms modify local trafficking rates and capture cargo as it104

passes. For these local signals to encode the demand for cargo, some feedback mechanism must exist between the105

local concentration of cargo and the signal itself. There are many biologically plausible mechanisms for locally106

encoding demand (see Methods). For our main results, we did not focus on these implementation details and simply107

assumed a reliable local demand signal. We have thus addressed the performance of the transport mechanism per se,108
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Figure 2. Local trafficking rates determine the spatial distribution of biomolecules by a simple kinetic relationship.
(A) The mass action transport model for a simple branched morphology. (B) Demonstration of tuning trafficking
rates to distribute cargo to match a demand signal. Each pair of rate constants ({a1,b1}, {a2,b2}) was constrained to
sum to one. This constraint, combined with the condition in equation (4) specifies a unique solution to achieve the
demand profile. (C) A model of a CA1 pyramidal cell with 742 compartments adapted from Migliore and Migliore
(2012). Spatial cargo demand was set proportional to the average membrane potential deflection due to excitatory
synaptic input applied at the locations marked by red dots. (D) Convergence of the cargo concentration in the CA1
model over time, t (arbitrary units).

under the most forgiving assumptions about how reliably demand is encoded.109

The mass action model of sushi-belt transport is:110

u1
a1


b1

u2
a2


b2

u3
a3


b3

u4
a4


b4

...

c1

y c2

y c3

y c4

y
u?1 u?2 u?3 u?4

(2)

where u represents the concentration of cargo on the network of microtubules, indexed by the compartment. In each111

compartment, molecules can irreversibly detach from the microtubules in a reaction ui
ci−→ u?i , where u? denotes the112

detached cargo. Biologically, cargo will eventually degrade. However, in this study we are concerned with how113

cargo can be rapidly distributed so that detached cargo can satisfy demand for at least some time. Therefore, for114

simplicity we assume degradation rates are effectively zero.115

In the limiting case where detachment rates also approach zero, we only need to consider trafficking between116

compartments, as shown in Figure 2A. Over time, concentrations of microtubule-bound cargo in each compartment117

approach steady-state, which occurs when the ratio of cargo between neighboring compartments is balanced by the118
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trafficking rates:119

up

uc

∣∣∣∣∣
ss

=
b
a

(3)

where up is the level in a “parent” compartment (closer to soma), uc is the level in the adjacent “child” compartment120

(closer to periphery) and b and a are the trafficking rate constants between these compartments.121

If ũi represents the local demand signal in compartment i, then equation (3) gives the condition for cargo122

distribution to match demand:123
b
a
=

ũp

ũc
(4)

An example demand profile and the corresponding trafficking rate relationships are shown in Figure 2B. This124

condition ensures that cargo is delivered in proportion to local demand. The absolute concentration at steady-state is125

determined by the total amount of cargo produced (Figure 2, supplement 1); in the case of mRNA, this might be126

controlled at the somatic compartment by transcriptional regulation. In this paper, we mainly focus on the relative127

accuracy of cargo distribution when some fixed amount of cargo is produced at the soma.128

To illustrate demand-modulated trafficking in a realistic setting, we used a reconstructed model of a CA1129

pyramidal neuron (Migliore and Migliore, 2012). To provide a demand signal, we modeled excitatory synaptic130

input at 120 locations within three dendritic regions (red dots, Fig. 2D) and set demand, (ũi), equal to the average131

membrane potential in each electrical compartment (see Methods). As expected, cargo was transported selectively to132

regions of high synaptic activity (Fig. 2E, Supp. Movie 1), matching the demand profile exactly at steady state (Fig.133

2F). Therefore, local control of trafficking rates (equivalently, motor protein kinetics) can deliver cargo to match134

arbitrarily complex spatial demand.135

Transport bottlenecks occur when trafficking rates are non-uniform136

If cargo delivery is achieved by controlling trafficking along microtubules, then delivery times to distal sites will be137

affected by proximal demand. For example, if the demand signal ũi approaches zero in a compartment, the trafficking138

rates into that compartment also approach zero, cutting off the flow of cargo along the neurite (Fig 3A). The smallest139

demand signal, ε often determines the rate-limiting time constant for cargo delivery to an entire dendritic tree. We140

refer to this scenario as a “transport bottleneck.” Figures 3B-C illustrate how decreasing ε to zero causes arbitrarily141

slow convergence in a simple 3-compartment model with all other trafficking rates normalized to 1.142

We imposed a bottleneck in the reconstructed CA1 model by setting demand in the middle third of the apical143

dendrite to a lower level than the rest of the dendritic tree, which was set uniformly high. As expected, the cargo144

distribution converged much more quickly for uniform demand than with a bottleneck present (Fig. 3D).145

However, less intuitive effects are seen on the convergence times of cargo in specific compartments. Figure146

3E plots convergence time for ui to reach a fraction of the steady state value for all compartments. While distal147

compartments showed prolonged convergence times, (Fig. 3E, upper right portion of plot), the bottleneck shortened148

the transport delay to proximal compartments (Fig. 3E, lower left portion of plot). This occurs because the bottleneck149

decreases the effective size of proximal part the neuron: cargo spreads efficiently throughout the proximal dendrites,150

but traverses the bottleneck more slowly.151

Another counterintuitive effect is seen when demand varies independently at proximal and distal locations, as152

might occur during selective synaptic stimulation (see e.g., Han and Heinemann, 2013). In Figure 3F we simulated153

demand at proximal and distal portions of the apical dendrite independently and quantified the total convergence154
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Figure 3. Transport bottlenecks caused by local demand profile. (A) A three-compartment transport model, with
the middle compartment generating a bottleneck. The vertical bars represent the desired steady-state concentration
of cargo in each compartment. The rate of transport into the middle compartment is small (ε , dashed arrows) relative
to transport out of the middle compartment. (B) Convergence of cargo concentration in all compartments of model
in (A) for decreasing relative bottleneck flow rate, ε . (C) Simulations (black dots) confirm that the time to
convergence is given by the smallest non-zero eigenvalue of the system (solid curve). (D) Convergence to a uniform
demand distribution (red line) is faster than a target distribution containing a bottleneck (blue line) in the CA1
model. Total error is the sum of the absolute difference in concentration from demand (L1 norm). Neuron
morphologies are color-coded according to steady state cargo concentration. (E) Transport delay for each
compartment in the CA1 model (time to accumulate 0.001 units of cargo). (F) Bar plot comparison of convergence
times for different spatial demand distributions in the CA1 model (steady-state indicated in color plots). The
timescale for all simulations in the CA1 model was normalized by setting ai +bi = 1 for each compartment.

time. Proximal demand alone (Fig. 3F ‘proximal’) resulted in the fastest convergence time. Convergence was155

slowest when the demand was restricted to distal dendrites (Fig. 3F, ‘distal’). Interestingly, when both distal and156

proximal sites signalled demand (Fig. 3F ‘both’), convergence was substantially faster, even though cargo still157

needed to reach the distal neurites. Uniform demand across the entire tree (Fig. 3F ‘entire cell’) resulted in a similar158

shortening of convergence time.159

Together, these results show that locally modulating trafficking movements will have testable effects on global160

transport times. The presence and relative contribution of this mechanism can be probed experimentally by161

characterizing the convergence rate of a cargo that aggregates at recently activated synapses, such as Arc mRNA162

(Steward et al., 1998).163
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Figure 4. Multiple strategies for transport with trafficking and cargo detachment controlled by local signals. (A)
Schematic of microtubular transport model with irreversible detachment in a branched morphology. (B) Multiple
strategies for trafficking cargo to match local demand (demand = ũ?). (Top) The demand-dependent trafficking
mechanism (DDT). When the timescale of detachment is sufficiently slow, the distribution of cargo on the
microtubules approaches a quasi-steady-state that matches ũ? spatially. This distribution is then transformed into the
distribution of detached cargo, u?. (Bottom) The demand dependent detachment (DDD) mechanism. Uniform
trafficking spreads cargo throughout the dendrites, then demand is matched by slowly detaching cargo according to
the local demand signal. An entire family of mixed strategies is achieved by interpolating between DDT and DDD.
(C-E) Quasi-Steady-state distribution of cargo on the microtubules (u, red) and steady-state distribution of detached
cargo (u?, blue), shown with a demand profile (ũ?, black) for the various strategies diagrammed in panel B. The
demand profile is shown spatially in the color-coded CA1 neuron in the right of panel C. Detached cargo matches
demand in all cases.

Local control of trafficking and detachment results in a family of trafficking strategies164

We next considered how detachment rates can be controlled by local demand signals. If trafficking is much faster165

than detachment (a,b� c), then the previous analysis remains valid because the distribution of u approaches a166

quasi-steady state that matches demand along the microtubules; cargo may then detach at a slow, nonspecific rate167

(ci = constant, with c� a,b). Figure 4C shows an example of this scenario, which we call demand-dependent168

trafficking (DDT). The spatial distribution of cargo is first achieved along the microtubules (red line, Fig. 4C), and169

maintained as cargo detaches (blue line, Fig. 4C).170

In another limiting case, trafficking rates are spatially uniform (ai = bi) so that cargo spreads evenly along the171
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Figure 5. Tradeoffs in the performance of trafficking strategies depends on the spatial pattern of demand. (A)
Delivery of cargo to the distal dendrites with slow (left) and fast detachment rates (right) in a reconstructed CA1
neuron. The achieved pattern does not match the target distribution when detachment is fast, since some cargo is
erroneously delivered to proximal sites. (B) Tradeoff curves between spatial delivery error and convergence rate for
the DDD and DDT trafficking strategies (blue line, see Fig 4D; red line, see Fig 4C). (C-D) Same as (A-B) but with
a demand throughout proximal and distal locations. The timescale of all simulations was set by imposing the
constraint that ai +bi = 1 for each compartment to permit comparison.

microtubules. The demand profile is then satisfied if local detachment rates are proportional to the demand level, ũ?:172

ci ∝
ũ?i
ũi

(5)

The result of this strategy, which we call demand-dependent detachment (DDD), is shown in Figure 4D. Unlike173

DDT, DDD avoids the transport bottlenecks examined in Figure 3, and can achieve target patterns with ũ? equal to174

zero in certain compartments by setting ci = 0.175

The model can capture mixed transport strategies between these two extremes by interpolating the relationships176

between local demand, trafficking and transport rates (see Methods). Figure 4E shows the behavior of an intermediate177

model, whose parameters are a linear interpolation between pure DDT and DDD.178
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Rapid cargo delivery in the sushi-belt model is error-prone179

Although it is mathematically convenient to separate the timescales of trafficking and detachment in the model, this180

separation may not exist in biological systems tuned for rapid transport. However, removal of timescale separation181

in the sushi-belt model results in mistargeted delivery of cargo, as we now show.182

We returned to the CA1 model of Figure 4 and considered a scenario where there is demand for cargo at the distal183

apical dendrites (Fig. 5A). If the detachment rate constants are sufficiently slow, then, as before, delivered cargo184

matched demand nearly exactly in both the DDT and DDD models (Fig. 5A, left). However, increasing detachment185

rates led to faster convergence, but resulted in cargo leaking off the microtubule on the way to its destination (Fig.186

5A, right). Thus, for a fixed trafficking timescale there is a tradeoff between the speed and accuracy of cargo delivery.187

The tradeoff curve shown in figure 5B (top) shows that both accuracy and convergence time decreased smoothly188

as the detachment rates were increased. This tradeoff was present regardless of whether the trafficking rates (Fig.189

5B, red line) or detachment rates (Fig. 5B, blue line) were modified to meet demand (compare to Fig. 4C and190

4D, respectively). However, DDD outperformed DDT overall, because the latter caused bottlenecks in proximal191

dendrites.192

When the entire apical tree was stimulated, fast detachment prevented cargo delivery to distal synaptic sites (Fig.193

5C, right). As before, a smooth speed-accuracy tradeoff is present for both transport strategies (Fig. 5D), but in194

contrast to distal demand alone, the DDT model outperformed DDD in this scenario (in contrast to Fig. 5A-B).195

Intuitively, DDT is better in this case because DDD results in cargo being needlessly trafficked to the basal dendrites.196

Together, these results show that increasing the speed of cargo delivery comes at the cost of accuracy, and that197

the performance of different trafficking strategies depends on the spatial profile of demand. A family of models198

captures many possible variants of the sushi belt model with different relationships between the rates of underlying199

trafficking and detachment processes. This allowed us to assess how well trafficking can be expected to perform200

globally, without confining the results to specific cases.201

We systematically estimated the severity of the speed-accuracy trade-off for biologically realistic neurite lengths202

and trafficking kinetics, with various spatial distributions of demand. Best-case estimates of drift-diffusion parameters203

predicted a severe tradeoff: a delay of 1 day to deliver cargo with 10% average error, and roughly a week to deliver204

within 1% average error (Figure 5 supplement 1, Supplemental movies 2-3).205

Fine-tuned trafficking rates and cargo recycling introduce new tradeoffs206

We asked whether the speed-precision tradeoff could be overcome by fine-tuning trafficking parameters or allowing207

cargo to be recycled instead of irreversibly detached.208

First, we considered the effect of tuning anterograde trafficking rates to boost delivery to distal dendrites. We209

examined a realistic neurite length (800 µm; Figure 5 supplement 1, supplemental movie 4). Tuning the trafficking210

rates using a linear spatial gradient provided accurate and fast delivery (within 10% error in 200 minutes) when211

cargo demand was even along the cable. However, trafficking was very sensitive to changes in the spatial pattern212

of demand. Randomly altering the spatial profile of demand resulted in speed/precision performance that was213

comparable or worse than the untuned trafficking mechanisms, whose performance less sensitive to demand patterns214

(Figure 5, supplement 1, panels D-E).215

Second, we considered a variant of the sushi-belt model that allowed for the reversible detachment/reattachment216
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of cargo from the microtubules (Figure 5, supplement 2):217

u1
a1


b1

u2
a2


b2

u3
a3


b3

u4
a4


b4

...

d1

x
yc1 d2

x
yc2 d3

x
yc3 d4

x
yc4

u?1 u?2 u?3 u?4

(6)

Inspection of this scheme reveals that it is similar in form to the DDT model analyzed in figures 2 & 3: the reversible218

detachment step simply adds and additional transient state in each compartment. As we noted in the DDT model,219

cargo distributions can match demand over time with arbitrarily low error (see equation 4). However, transport delays220

still exist. While releasing cargo to the wrong location is not an irreversible error, it slows delivery by temporarily221

arresting movement — known as a “diffusive trap” (see e.g. Bressloff and Earnshaw, 2007).222

Cargo recycling creates a new tradeoff between delivery speed and excess cargo that has not found a destination.223

Models that deliver a high percentage of their cargo (ci > di) converged on a similarly slow timescale to the224

cannonical sushi-belt model, since they greedily release cargo into the diffusive traps. Constraining excess cargo to225

10% requires more than ∼ 103 minutes for the demand profile to be matched within 10% (Figure 5, supplement 2).226

Models that deliver less cargo (ci ≈ di) are less efficient in terms of cargo utilization, but have faster convergence.227

Achieving a convergence time roughly ten times faster required more than 90% of all cargo to remain in transit at228

steady state.229

Distinct cell-type morphologies face order of magnitude differences in speed, precision and effi-230

ciency of trafficking231

We wanted to see how these generic relationships between speed, precision and excess cargo affected global transport232

in different, realistic morphologies. We therefore implemented the families of sushi-belt models in representative233

morphologies from five cell types, spanning size and dendritic complexity (Fig. 6A). We simulated trafficking234

and delivery of cargo to a spatially uniform target distribution in each cell type to reveal morphology-dependent235

differences. In all cases we used optimistic estimates of transport kinetics, corresponding to a diffusion coefficient of236

10 µm2s−1.237

Figure 6B shows spatial plots of the distribution of cargo on the microtubules (ui, cyan-to-magenta colormap)238

and the distribution of delivered cargo (u?i , black-to-orange colormap) for a model with an irreversible detachment239

rate of 8×10−5 s−1. These parameters produce a relatively slow release of cargo — for each morphology, a sizable240

fraction of the cargo remains on the microtubules at ∼3 hours, and it takes ∼1-2 days to release all of the cargo241

(Supp. Fig. 2). While the speed of delivery is roughly equivalent, the accuracy varied across the neural morphologies.242

The hippocampal granule cell converged to very low error (∼11.7% mean error), while the larger L5 pyramidal cell243

converged to ∼27.7% error. The smaller, but more elaborately branched, Purkinje cell converged to a similarly high244

average error of ∼29.1%.245

As before, faster detachment rates produce faster, but less accurate, delivery; while slower detachment rates246

produce more accurate, but slower, delivery. These tradeoffs across the entire family of regimes are plotted in Fig.247

6C (left). Adding a reattachment process largely preserved the effect of morphology on transport tradeoffs (Fig. 6C,248

right). We fixed the detachment rate to be fast (equally fast as trafficking between two 1 µm compartments), which249

is again an optimistic scenario. A tradeoff between excess cargo and speed of delivery emerged as the reattachment250
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Figure 6. Effect of morphology on trafficking tradeoffs. (A) Representative morphologies from four neuron types,
drawn to scale. The red dot denotes the position of the soma (not to scale). (B) Distribution of cargo on the
microtubles (ui) and delivered cargo (u?i ) at four time points for sushi-belt model with irreversible detachment.
Cargo originated in the soma and was transported to a uniform distribution (all ai = bi, normalized to a diffusion
coefficient of 10 µm2 / s); the detachment rate was spatially uniform and equal to 8×10−5s−1. (C) Tradeoff curves
for achieving a uniform distribution of cargo in realistic morphologies. The sushi-belt model without reattachment
(as introduced in Fig. 4) suffers a tradeoff in speed and accuracy, while including reattachment (as in Fig. 7)
produces a similar tradeoff between speed and excess “left-over” cargo. An optimistic diffusion coefficient of 10
µm2s−1 was used in both cases. For simulations with reattachment, the detachment rate (ci) was set equal to
trafficking rates (ai,bi) for a 1 micron compartment. The detachment rate was increased linearly in proportion to
compartment length in order to model a spatially uniform capture process.

rate was varied (Fig. 6C, right) and were most severe for the Purkinje cell and L5 pyramidal cell, and least severe251

for the Granule cell. Morphology itself therefore influences the relationship between delivery speed and precision,252

and/or excess cargo required, suggesting that different cell types might exploit different trafficking strategies.253
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DISCUSSION254

The molecular motors that drive intracellular transport are remarkably efficient, achieving speeds of approximately255

15 µm per minute (Rogers and Gelfand, 1998; Dynes and Steward, 2007; Müller et al., 2008). A naı̈ve calculation256

based on this figure might suggest that subcellular cargo can be delivered within a few hours in most dendritic trees.257

However, this ignores the stochastic nature of biochemical processes — motors spontaneously change directions and258

cargo can be randomly delivered to the wrong site. Such chance events are inevitable in molecular systems, and in259

the case of active transport they lead to diffusion of bulk cargo in addition to directed movement. If this kind of260

biochemical stochasticity played out in the sushi restaurant analogy, then the waiting time for a dish wouldn’t simply261

equate to the time taken for the chef to prepare the dish and for the belt to convey it. Instead, the restaurant would be262

beleaguered by fickle customers who pick up dishes they do not want, either withholding them for an indefinite263

period, or setting them on another belt destined for the kitchen.264

Mathematical models provide a rigorous framework to test the plausibility and inherent relationships in concep-265

tual models. Our study formalized the foremost conceptual model of dendritic transport (Doyle and Kiebler, 2011)266

to account for trafficking in realistic dendritic morphologies. Over a wide range of assumptions the model exhibits267

inherent and surprisingly punishing trade-offs between the accuracy of cargo delivery and the time taken to transport268

it over these morphologies. Using conservative estimates based on experimental data, the canonical sushi-belt model269

predicts delays of many hours or even days to match demand within 10%. Producing excess cargo and permitting270

reversible detachment from the microtubules can mitigate this tradeoff, but at substantial metabolic cost, since a271

large amount of excess cargo is required.272

These predictions are unsettling, because nucleus-to-synapse transport appears to play a role in time-critical273

processes. Elevated synaptic activity can initiate distal metabolic events including transcription (Kandel, 2001;274

Deisseroth et al., 2003; Greer and Greenberg, 2008; Ch’ng and Martin, 2011) and this has been shown to be an275

important mechanism of neuronal plasticity (Nguyen et al., 1994; Frey and Morris, 1997, 1998; Bading, 2000;276

Kandel, 2001; Redondo and Morris, 2011). Moreover, neuronal activity has been observed to influence trafficking277

directly through second-messengers (Mironov, 2007; Wang and Schwarz, 2009; Soundararajan and Bullock, 2014),278

consistent with the hypothesis that trafficking rates are locally controlled. Genes that are transcribed in response279

to elevated activity can regulate synaptic strengths (Flavell and Greenberg, 2008; Bloodgood et al., 2013; Spiegel280

et al., 2014), and it has recently been suggested that nucleus-to-synapse trafficking of Arc directly regulates synaptic281

plasticity (Okuno et al., 2012). None of these findings imply that all kinds of molecular cargo are transported from282

the soma to distal dendritic locations, since mRNA can be sequestered and locally synthesized within dendrites283

(Kang and Schuman, 1996; Cajigas et al., 2012; Holt and Schuman, 2013). However, the speed, precision and284

efficiency tradeoffs revealed in the sushi belt model provide a principled way to understand why some processes285

might require local biosynthesis, while others operate globally.286

The different ways that local demand signals can influence trafficking and detachment can impact global287

performance, sometimes non-intuitively. Many of these effects should be experimentally testable. For example,288

transport bottlenecks can be induced if demand signals target local trafficking rates along microtubules (the DDT289

model). Transport to distal compartments will be substantially faster when proximal demand is introduced (see Fig.290

3). On the other hand, uniform trafficking combined with locally controlled detachment (DDD model, Fig. 4D)291

can avoid bottlenecks, and often leads to faster transport. However, this is not always the case, as was shown in292

figure 5D, where uniform trafficking is slower/inaccurate because cargo explores the basal dendritic tree even though293
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there is no demand in that region. Spatial tuning of trafficking speed permitted more efficient cargo delivery in the294

model. However, this has yet to be observed experimentally and would require extremely stereotyped morphology295

and physiological needs for it to be effective.296

Intuitively, speed/precision/excess cargo tradeoffs arise because there is a conflict between exploring the dendritic297

tree for dropoff locations, capturing cargo in its current position and making sufficient excess cargo available to298

buffer local availability. For irreversible cargo detachment, the capture rate needs to be roughly an order of magnitude299

slower than trafficking, otherwise, compartments proximal to the soma receive disproportionately high levels of300

cargo. This scaling is unfavorable for achieving high accuracy: if it takes roughly 100 minutes to distribute cargo301

throughout the dendrites, it will take roughly 1000 minutes (16-17 hours) before the cargo dissociates and is delivered302

to the synapses. If, instead, cargo is able to reattach, then fast reattachment favors exploration at the cost of greater303

excess (i.e. non-utilized) cargo, while slow reattachment hinders transport, since more cargo is detached and thus304

immobile. Even when the vast majority of cargo is produced as excess, global delivery times of several hours persist.305

Furthermore, if a neuron needs to rapidly replace a cargo that is already present in high concentrations, the strategy306

of generating excess cargo will result in large dilution times.307

Overall, our results show that there are multiple ways that neurons can distribute cargo, but each differs in its308

speed, accuracy and metabolic cost. Therefore, optimizing for any one of these properties comes at the expense309

of the others. For example, in the model without reattachment (Fig. 4), the same distribution of cargo can be310

achieved by: (a) location-dependent trafficking followed by uniform release, (b) uniform trafficking followed by311

location-dependent release, or (c) a mixture of these two strategies. Experimental findings appear to span these312

possibilities. Kim and Martin (2015) identified three mRNAs that were uniformly distributed in cultured Aplysia313

sensory neurons, but were targeted to synapses at the level of protein expression by localized translation (supporting314

option b). In contrast, the expression of Arc mRNA is closely matched to the pattern of Arc protein in granule cells315

of the dentate gyrus (possibly supporting option a; Steward et al., 1998; Farris et al., 2014; Steward et al., 2015).316

Trafficking kinetics do not just differ according to cargo identity — the same type of molecular cargo can exhibit317

diverse movement statistics in single-particle tracking experiments (Dynes and Steward, 2007). These differences318

lead us to speculate that different neuron types and different cargoes have adapted trafficking strategies that match319

performance tradeoffs to biological needs.320

It is possible that active transport in biological neurons will be more efficient and flexible than models predict.321

For this reason, it is crucial to explore, quantitatively, the behavior of existing conceptual models by replacing322

words with equations so that we can see where discrepancies with biology might arise. More generally, conceptual323

models of subcellular processes deserve more quantitative attention because they can reveal non-obvious constraints,324

relationships and connections to other biological and physical phenomena (Smith and Simmons, 2001; Bressloff,325

2006; Fedotov and Méndez, 2008; Newby and Bressloff, 2010b; Bhalla, 2011; Bressloff and Newby, 2013; Bhalla,326

2014). Other modeling studies have focused on the effects of stochasticity and local trapping of cargo on a327

microscopic scale, particularly in the setting of low particle numbers (Bressloff, 2006; Bressloff and Earnshaw,328

2007; Fedotov and Méndez, 2008; Newby and Bressloff, 2010b; Bressloff and Newby, 2013). We opted for a329

coarse-grained class of models in order to examine transport and delivery across an entire neuron. The model330

we used is necessarily an approximation: we assumed that cargo can be described as a concentration and that the331

multiple steps involved in cellular transport can lumped together in a mass action model.332

By constraining trafficking parameters based on prior experimental measurements, we revealed physiologically333
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important tradeoffs across a variety of assumptions. It is an open and crucial question whether these modeling334

predictions hold biologically. Experimental falsification would prompt revision of the underlying models as well335

as our conceptual understanding of intracellular transport. On the other hand, experimental confirmation of these336

tradeoffs would have fundamental consequences for theories of synaptic plasticity and other physiological processes337

that are thought to require efficient nucleus-to-synapse trafficking.338

METHODS339

All simulation code is available online: https://github.com/ahwillia/Williams-etal-Synaptic-Transport340

Model of single-particle transport341

Let xn denote the position of a particle along a 1-dimensional cable at timestep n. Let vn denote the velocity of342

the particle at timestep n; for simplicity, we assume the velocity can take on three discrete values, vn = {−1,0,1},343

corresponding to a retrograde movement, pause, or anterograde movement. As a result, xn is constrained to take on344

integer values. In the memoryless transport model (top plots in Fig. 1B, 1D, and 1F), we assume that vn is drawn345

with fixed probabilities on each step. The update rule for position is:346

xn+1 = xn + vn

347

vn+1 =


−1 with probability p−
0 with probability p0

1 with probability p+

We chose p− = 0.2, p0 = 0.35 and p+ = 0.45 for the illustration shown in Figure 1. For the model with348

history-dependence (bottom plots in Fig. 1B, 1D, and 1F), the movement probabilities at each step depend on the349

previous movement. For example, if the motor was moving in an anterograde direction on the previous timestep,350

then it is more likely to continue to moving in that direction in the next time step. In this case the update rule is351

written in terms of conditional probabilities:352

vn+1 =


−1 with probability p(−|vn)

0 with probability p(0|vn)

1 with probability p(+|vn)

In the limiting (non-stochastic) case of history-dependence, the particle always steps in the same direction as the353

previous time step.354

vn =−1 vn = 0 vn = 1

p(vn+1 =−1) 1 0 0

p(vn+1 = 0) 0 1 0

p(vn+1 = 1) 0 0 1
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We introduce a parameter k ∈ [0,1] to linearly interpolate between this extreme case and the memoryless model.355

vn =−1 vn = 0 vn = 1

p(vn+1 =−1) p−(1− k)+ k p−(1− k) p−(1− k)

p(vn+1 = 0) p0(1− k) p0(1− k)+ k p0(1− k)

p(vn+1 = 1) p+(1− k) p+(1− k) p+(1− k)+ k

(7)

The bottom plots of figure 1B, 1D were simulated with k = 0.5.356

To estimate the concentration and spatial distribution of cargo in real units, we used a 1 µm/sparticle velocity357

and a 1 second time step to match experimental estimates of kinesin (Klumpp and Lipowsky, 2005, and references).358

We assumed a dendritic diameter of 7.2705 µm.359

Relationship of single-particle transport to the mass-action model360

The mass-action model (equation 1, in the Results) simulates the bulk movement of cargo across discrete compart-361

ments. Cargo transfer is modeled as an elementary chemical reaction obeying mass-action kinetics (Keener and362

Sneyd, 1998). For an unbranched cable, the change in cargo in compartment i is given by:363

u̇i = aui−1 +bui+1− (a+b)ui (8)

For now, we assume that the anterograde and retrograde trafficking rate constants (a and b, respectively) are spatially364

uniform.365

The mass-action model can be related to a drift-diffusion partial differential equation (Fig. 1E) by discretizing u

into spatial compartments of size ∆ and expanding around some position, x:

u̇(x)≈ a
[

u(x)−∆
∂u
∂x

+
∆2

2
∂ 2u
∂x2

]
+b
[

u(x)+∆
∂u
∂x

+
∆2

2
∂ 2u
∂x2

]
− (a+b) u(x) (9)

= a
[
−∆

∂u
∂x

+
∆2

2
∂ 2u
∂x2

]
+b
[

∆
∂u
∂x

+
∆2

2
∂ 2u
∂x2

]
(10)

We keep terms to second order in ∆, as these are of order dt in the limit ∆→ 0 (Gardiner, 2009). This leads to a366

drift-diffusion equation:367

u̇(x) =
∂u
∂ t

= (b−a)︸ ︷︷ ︸
drift coefficient

∂u
∂x

+

(
a+b

2

)
︸ ︷︷ ︸

diffusion coefficient

∂ 2u
∂x2 (11)

Measurements of the mean and mean-squared positions of particles in tracking experiments, or estimates of the368

average drift rate and dispersion rate of a pulse of labeled particles can thus provide estimates of parameters a and b.369

How does this equation relate to the model of single-particle transport (Fig. 1A-B)? For a memoryless biased370

random walk, the expected position of a particle after n time steps is E[xn] = n(p+− p−) and the variance in position371

after n steps is n
(

p++ p−− (p+− p−)2
)
. For large numbers of non-interacting particles the mean and variance372

calculations for a single particle can be directly related to the ensemble statistics outlined above. We find:373

a =
2p+− (p+− p−)2

2
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374

b =
2p−− (p+− p−)2

2

This analysis changes slightly when the single-particle trajectories contain long, unidirectional runs. The375

expected position for any particle is the same E[xn] = n(p+− p−); the variance, in contrast, increases as run lengths376

increase. However, the mass-action model can often provide a good fit in this regime with appropriately re-fit377

parameters (see Fig. 1F). Introducing run lengths produces a larger effective diffusion coefficient and thus provides378

faster transport. As long as the single-particles have stochastic and identically distributed behavior, the ensemble379

will be well-described by a normal distribution by the central limit theorem. This only breaks down in the limit of380

very long unidirectional runs, as the system is no longer stochastic (Figure 1, Supplement 1).381

Stochastic interpretation of the mass-action model382

An important assumption of the mass-action model is that there are large numbers of transported particles, so that383

the behavior of the total system is deterministic. Intuitively, when each compartment contains many particles, then384

small fluctuations in particle number don’t appreciably change concentration. Many types of dendritic cargo are385

present in high numbers (Cajigas et al., 2012).386

When few cargo particles are present, fluctuations in particle number are more functionally significant. Although387

we did not model this regime directly, the mass-action model also provides insight into this stochastic regime.388

Instead of interpreting ui as the amount of cargo in compartment i, this variable (when appropriately normalized)389

can be interpreted as the probability of a particle occupying compartment i. Thus, for a small number of transported390

cargoes, the mass-action model describes the average, or expected, distribution of the ensemble.391

In this interpretation, the mass-action model models a spatial probability distribution. Let pi denote the392

probability of a particle occupying compartment i. If a single particle starts in the somatic compartment at t = 0, and393

we query this particle’s position after a long period of transport, then the probability ratio between of finding this394

particle in any parent-child pair of compartments converges to:395

pp

pc

∣∣∣∣
ss
=

b
a

which is analogous to equation (3) in the Results.396

In the stochastic model, the number of molecules in each compartment converges to a binomial distribution at397

steady-state; the coefficient of variation in each compartment is given by:398 √√√√1− p(ss)
i

n p(ss)
i

This suggests two ways of decreasing noise. First, increasing the total number of transported molecules, n, decreases399

the noise by a factor of 1/
√

n. Second, increasing pi decreases the noise in compartment i. However, this second400

option necessarily comes at the cost of decreasing occupation probability and thus increasing noise in other401

compartments.402
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Estimating parameters of the mass-action model using experimental data403

The parameters of the mass-action model we study can be experimentally fit by estimating the drift and diffusion404

coefficients of particles over the length of a neurite. A common approach is to plot the mean displacement and mean405

squared displacement of particles as a function of time. The slopes of the best-fit lines in these cases respectively406

estimate the drift and diffusion coefficients in (11). Diffusion might not accurately model particle movements407

over short time scales because unidirectional cargo runs result in superdiffusive motion, evidenced by superlinear408

increases in mean squared-displacement with time (Caspi et al., 2000). However, over longer timescales, cargoes409

that stochastically change direction can be modeled as a diffusive process (Soundararajan and Bullock, 2014).410

The mass-action model might also be fit by tracking the positions of a population of particles with photoacti-411

vatable GFP (Roy et al., 2012). In this case, the distribution of fluorescence at each point in time could be fit by412

a Gaussian distribution; the drift and diffusion coefficients are respectively proportional to the rate at which the413

estimated mean and variance evolves over time.414

These experimental measurements can vary substantially across neuron types, experimental conditions, and415

cargo identities. Therefore, in order to understand fundamental features and constraints of the sushi belt model across416

systems, it is more useful to explore relationships within the model across ranges of parameters. Unless otherwise417

stated, the trafficking kinetics were constrained so that ai +bi = 1 for each pair of connected compartments. This418

is equivalent to having a constant diffusion coefficient of one across all compartments. Given a target expression419

pattern along the microtubules, this is the only free parameter of the trafficking simulations; increasing the diffusion420

coefficient will always shorten convergence times, but not qualitatively change our results. In figure 6 we fixed the421

diffusion coefficients as specified in the Results based on optimistic estimates (Caspi et al., 2000; Soundararajan and422

Bullock, 2014).423

Steady-state analysis424

The steady-state ratio of trafficked cargo in neighboring compartments equals the ratio of the trafficking rate constants425

(equation 2). Consider a unbranched neurite with non-uniform anterograde and retrograde rate constants (equation426

1). It is easy to verify the steady-state relationship in the first two compartments, by setting u̇1 = 0 and solving:427

−a1u1 +b1u2 = 0 ⇒ u1

u2

∣∣∣∣∣
ss

=
b1

a1

Successively applying the same logic down the cable confirms the condition in equation 2 holds globally. The more428

general condition for branched morphologies can be proven by a similar procedure (starting at the tips and moving429

in).430

It is helpful to re-express the mass-action trafficking model as a matrix differential equation, u̇ = Au, where431

u = [u1,u2, ...uN ]
T is the state vector, and A is the state-transition matrix. For a general branched morphology, A will432

be nearly tridiagonal, with off-diagonal elements corresponding to branch points; matrices in this form are called433
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Hines matrices (Hines, 1984). For the simpler case of an unbranched cable, A is tridiagonal:434

A =



−a1 b1 0 ... 0

a1 −b1−a2 b2 0

0 a2 −b2−a3 b3
. . .

...
... 0 a3

. . . 0
. . . −bN−2−aN−1 bN−1

0 ... 0 aN−1 −bN−1


For both branched and unbranched morphologies, each column of A sums to zero, which reflects conservation of435

mass within the system. Assuming nonzero trafficking rates, the rank of A is exactly N−1 (this can be seen by taking436

the sum of the first N−1 rows, which results in −1 times the final row). Thus, the nullspace of A is one-dimensional.437

Equation (3) describes this manifold of solutions: the level of cargo can be scaled by a common multiplier across all438

compartments without disrupting the relation in (2).439

The steady-state distribution, ũ, is a vector that spans the nullspace of A. It is simple to show that all other440

eigenvalues A are negative using the Gershgorin circle theorem; thus, the fixed point described by equation 2 is441

stable. The convergence rate is determined by the non-zero eigenvalue with smallest magnitude of A. There are no442

other fixed points or limit cycles in this system.443

Biologically plausible model of a local demand signal444

There are many biochemical mechanisms that could signal demand. Here we briefly explore cytosolic calcium, [Ca]i,445

as a candidate mechanism since it is modulated by local synaptic activity and [Ca]i transients simultaneously arrest446

anterograde and retrograde microtubular transport for certain cargoes (Wang and Schwarz, 2009). We represent the447

effect of the calcium-dependent pathway by some function of calcium, f ([Cai]). This function could, for example,448

capture the binding affinity of [Ca]i to enzymes that alter the kinetics of motor proteins; the Hill equation would449

provide a simple functional form. If all outgoing trafficking rates of a compartment are controlled by cytosolic450

calcium — i.e. for any parent-child pair of compartments we have a = f ([Ca]p) and b = f ([Ca]c) — then condition451

in equation 4 is satisfied:452

b
a
=

f ([Ca]c)
f ([Ca]p)

=
ũp

ũc
(12)

where ũi = 1/ f ([Ca]i). We emphasize that other potential signaling pathways could achieve the same effect, so453

while there is direct evidence for [Ca]i as an important signal, the model can be interpreted broadly, with [Ca]i454

serving as a placeholder for any local signal identified experimentally. Further, [Ca]i itself may only serve as a455

demand signal over short timescales, while other, more permanent, signals such as microtubule-associated proteins456

(Soundararajan and Bullock, 2014) are needed to signal demand over longer timescales.457

Simulations in realistic morphologies458

We obtained a CA1 pyramidal cell model Migliore and Migliore (2012) from the online repository ModelDB459

(https://senselab.med.yale.edu/modeldb/), accession number 144541. We used the same spatial compartments used460

by Migliore and Migliore (2012) and set the trafficking and dissociation parameters of the mass-action transport461

model without reference to the geometry of the compartments. The mass-action model was simulated in Python462
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by solving matrix exponentials of A with the scipy library (Jones et al., 2001). In figure 2 we simulated electrical463

activity of this model with excitatory synaptic input for 5 seconds using the Python API to NEURON (Hines et al.,464

2009). We used the average membrane potential over this period to set the target demand level. In Figures 3 and 4,465

we imposed artificial demand profiles with regions of low-demand and high-demand (10x larger) as depicted in the466

figures.467

In figure 8, we obtained representative morphologies of five cell types from neuromorpho.org (Ascoli et al., 2007).468

Specifically, we downloaded a Purkinje cell (Purkinje-slice-ageP43-6), a parvalbumin-positive interneuron469

(AWa80213), a Martinotti cell (C100501A3), a layer-5 pyramidal cell (32-L5pyr-28), and a granule cell from470

the dentate gyrus (041015-vehicle1). In these simulations, we scaled the trafficking parameters inversely471

proportional to the squared distance between the midpoints of the compartments. Doing this fixes the diffusion472

coefficient of cargo trafficking as a constant, Speci ∆ For simulations with reattachment, we set the detachment473

rate (ci) was set equal to trafficking rates (ai,bi) for a 1 micron compartment. The detachment rate was increased474

linearly in proportion to compartment length in order to model a spatially uniform capture process. We used a475

custom-written Python library to generate movies and figures for these simulations (Williams, 2016).476

Incorporating detachment and reattachment into the mass-action model477

Introducing detachment into the mass-action model. For compartment i in a cable, the differential equations become:478

u̇i = ai−1ui−1− (ai +bi−1 + ci)ui +biui+1

u̇?i = ciui

When ai,bi� ci, then the distribution of cargo on the microtubules (ui) approaches a quasi-steady-state that479

follows equation 3. In figure 4, we present DDT and DDD models as two strategies that distribute cargo to match a480

demand signal ũ?i . As mentioned in the main text, a spectrum of models that interpolate between these extremes are481

possible. To interpolate between these strategies, let F be a scalar between 0 and 1, and let ũ? be normalized to sum482

to one. We choose ai and bi to achieve:483

ũi = F ũ?i +(1−F)/N

along the microtubular network and choose ci to satisfy484

ci ∝
ũ?i

F ũ?i +(1−F)/N

. Here, N is the number of compartments in the model. Setting F = 1 results in the DDT model (demand is satisfied485

purely by demand-modulated trafficking, and non-specific detachment, Fig. 4C). Setting F = 0 results in the DDD486

model (demand is satisfied purely by demand-modulated detachment, and uniform/non-specific trafficking, Fig. 4D).487

An interpolated strategy is shown in figure 4E (F = 0.3).488

The mass-action model with reattachment (equation 6) produces the following system of differential equations489

for a linear cable, with di denoting the rate constant of reattachment in compartment i490

u̇i = ai−1ui−1− (ai +bi−1 + ci)ui +biui+1 +diu?i
u̇?i = ciui−diu?i
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We examined the DDD model with N = 100 compartments and diffusion coefficient of 10µm2 s−1. The maximal491

detachment rate constant and the reattachment rates were tunable parameters, while the reattachment rates were492

spatially uniform. Results were similar when reattachment was modulated according to demand (data not shown,493

see supplemental simulations at https://github.com/ahwillia/Williams-etal-Synaptic-Transport).494

Globally tuning transport rates to circumvent the speed-specificity tradeoff495

In figure 5, supplement 1, we explored whether fine-tuning the trafficking rates could provide both fast and precise496

cargo distribution. We investigated the DDD model with fast detachment rates in an unbranched cable with equally497

spaced synapses and N = 100 compartments. Large detachment rates produced a proximal bias in cargo delivery498

which we empirically found could be corrected by setting the anterograde and retrograde trafficking rates to be:499

ai =
D
2
+β · N−1− i

N−2
500

bi =
D
2
−β · N−1− i

N−2

where i = {1,2, ...N−1} indexes the trafficking rates from the soma (i = 1) to the other end of the cable (i = N−1),501

and D = 10µm2/s is the diffusion coefficient. Faster detachment rates require larger values for the parameter β ; note502

that β < D/2 is a constraint to prevent bi from becoming negative. This heuristic qualitatively improved, but did not503

precisely correct for, fast detachment rates in the DDT model (data not shown).504

Intuitively, the profile of the proximal delivery bias is roughly exponential (Fig. 6B), and therefore the anterograde505

rates need to be tuned more aggressively near the soma (where the bias is most pronounced), and more gently tuned506

as the distance to the soma increases. Importantly, tuning the trafficking rates in this manner does not alter the507

diffusion coefficient (proportional to ai +bi) constant along the length of the cable. Instead, by increasing ai and508

decreasing bi we introduce a rightward drift/velocity in the cargo distribution.509
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FIGURE SUPPLEMENTS655

Figure 1 supplement 1. The effect of cargo run length on mass-action model fit and diffusion coefficient. The
model of stochastic particle movement (Equation 7, Methods) was simulated with equal transition probabilities
(p− = p0 = p+ = 1/3) for various values of k and particle numbers in an infinite cable with 1 µm compartments
and 1 second time steps. The expected run length is given by the mean of a negative binomial distribution. For each
simulation, a mass-action approximation was fit by matching the first two moments of the cargo distribution, as
described in the Methods. In both panels, dots represent simulated triplicates, and lines denote the average outcome
with colors denoting the simulated ensemble size (see legend). (A) The mass-action model (Equation 1, Results)
provides a reasonably accurate fit after 100 seconds of simulation with moderately long run lengths and low particle
numbers. The fit improves for longer simulations and larger particle numbers, since the cargo distribution is better
approximated by a normal distribution under these conditions due to the central limit theorem. The coefficient of
determination, R2, reflects the proportion of explained variance by the mass-action model (equivalent to a Gaussian
fit to the concentration profile). (B) The estimated diffusion coefficient of the mass-action model (i.e. the variance of
the Gaussian fit in panel A) increases as expected run length increases.
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Figure 2 supplement 1. Equation 4 specifies the relative distribution of cargo, changing the total amount of
cargo scales this distribution. (A) Inspired by ion channel expression gradients observed in hippocampal
cells(Hoffman et al., 1997; Magee, 1998), we produced a linear gradient in cargo distribution in an unbranched
cable. By equation 4, the trafficking rate constants satisfy bi/ai = i/i+1 (where i indexes on increasing distance to
the soma). Starting from a uniform distribution of cargo in the cable (t = 0 a.u.), the desired linear profile emerges
over time. (B) Changing the amount of cargo in the cable (the sum of ui across all compartments, see legend) does
not disrupt the steady-state linear expression profile, but scales its slope.
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Figure 5 supplement 1. Tuning the model for speed and specificity results in sensitivity to the target spatial
distribution of cargo. (A-C) Cargo begins on the left end of an unbranched cable, and is ideally distributed equally
amongst a number recently stimulated synaptic sites (black arrows). We set the length of the cable to 800 µm
(roughly the length of an apical dendrite in a CA1 cell) and the diffusion coefficient to 10 µm2/s — an estimate on
the upper end of what might be biologically achieved (see Fig. 1, Caspi et al., 2000; Soundararajan and Bullock,
2014). Steady-state cargo profiles (red) for three stimulation patterns (black arrows) along an unbranched cable. The
dotted black line corresponds to the ‘target’ steady-state level at each delivery site. (A) When the timescale of
detachment is sufficiently slow, cargo can be evenly distributed to the synapses regardless of their number and
position. Transport parameters were set according to the procedure shown in figure 4D. (B) When detachment is
näively increased (all rates multiplicatively scaled) a proximal bias in the steady-state distribution of cargo across all
stimulation patterns. (C) Transport rate constants, ai and bi, were tuned to optimize the distribution of cargo to six
equally spaced synapses (top row); detachment rate constants were the same as in panel B. Changing the number of
synapses (middle row) or the position of the synapses (bottom row) causes the unequal distribution of cargo to
synapses. (D) Tradeoff curves between non-specificity and convergence rate for six evenly spaced synapses (top row
of A-C). Trafficking parameters were chosen so that the anterograde velocity decreased linearly over the length of
the cable; the color of the lines shows the maximum velocity at the soma. The tradeoff curves shift to the left and
becomes non-monotonic as the anterograde velocity increases. (E) Tradeoff curves for six randomly positioned
synapses drawn uniformly across the cable. Ten simulations are shown for two levels of anterograde velocity (blue
lines, 0 µm/min; red lines 30 µm/min); as before, the velocity linearly decreased across the length of the cable.
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Figure 5 supplement 2. Adding a mechanism for cargo reattachment produces a further tradeoff between rate of
delivery and excess cargo. (A) Schematic of mass-action model with reversible detachment of cargo. (B)
Simulations of three illustrative parameter sets. As in figure 6, cargo is distributed to six demand hotspots (black
arrows). Six evenly distributed demand hotspots are placed along a neurite with a biologically relevant length of 800
µm and an optimistic diffusion coefficient of 10 µm2/s. The distributions of cargo on the microtubules (ui, blue) and
detached cargo (u?i , red) are shown at three times points for each model. Top row, a model in which detachment and
reattachment occur on similar timescales (fast convergence). Middle row, a model in which detachment happens on
a faster timescale than reattachment (reattachment is still quite fast relative to trafficking rates; slow convergence).
Bottom row, a model in which detachment occurs slowly, and reattachment occurs even slower (slow convergence).
(C) Mean percent error in the distribution of detached cargo (top) and excess cargo (bottom) as a function of time
for the three parameter sets shown in panel B. (D) Tradeoff curves between excess cargo and time to converge to
steady-state. Fast reattachment rates caused large excess cargo (upper left corner); increasing reattachment
decreased this excess, but also increased the convergence time (lower right corner). The tradeoff is present across
four detachment timescales (yellow-to-purple lines) that span four orders of magnitude. Colored squares denote the
position of the three parameter sets shown in panels B and C. A model was judged to read steady-state when the
derivatives dropped below a set threshold, near zero (see Methods).
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