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Abstract

Current approaches to single-cell transcriptomic analysis are computationally

intensive and require assay-specific modeling which limit their scope and

generality. We propose a novel method that departs from standard analysis

pipelines, comparing and clustering cells based not on their transcript or gene

quantifications but on their transcript-compatibility read counts. In re-analysis of

two landmark yet disparate single-cell RNA-Seq datasets, we show that our

method is up to two orders of magnitude faster than previous approaches,

provides accurate and in some cases improved results, and is directly applicable

to data from a wide variety of assays.

Introduction
Single-cell RNA-Seq (scRNA-Seq) has proved to be a powerful tool for probing cell

states [1–5], defining cell types [6–9], and describing cell lineages [10–13]. These

applications of scRNA-Seq all rely on two computational steps: quantification of

gene or transcript abundances in each cell and clustering of the data in the resulting

abundance ⇥ cell expression matrix [14, 15]. There are a number of challenges in

both of these steps that are specific to scRNA-Seq analysis. While methods for

transcript/gene abundance estimation from bulk RNA-Seq have been extensively

tested and benchmarked [16], the wide variety of assay types in scRNA-Seq [17–25]

have required a plethora of customized solutions [2, 6, 7, 9, 11–13, 24, 26–37] that

are di�cult to compare to each other. Furthermore, the quantification methods

used all rely on read alignment to transcriptomes or genomes, a time consuming

step that will not scale well with the increasing numbers of reads predicted for

scRNA-Seq [15, 38]. Clustering based on scRNA-Seq expression matrices can also

require domain specific information, e.g. temporal information [33] or functional

constraints [37] so that in some cases hand curation of clusters is performed after

unsupervised clustering [7].

In [39], a method of collapsing bulk read alignments into “equivalence classes”

of reads was introduced for the purpose of estimating alternative splicing isoform

frequencies from bulk RNA-Seq data. Each equivalence class consists of all the

reads that are compatible with the same set of transcripts. (See Figure 1 for an

example.) The collapsing of reads into equivalence classes was initially introduced

to allow for significant speedup of the E-step in the expectation-maximization (EM)

algorithm used in some RNA-Seq quantification programs [40,41], as the read counts

in the equivalence classes, or transcript-compatibilty counts (TCC), correspond to

the su�cient statistics for a standard RNA-Seq model [42]. In other words, the use
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of transcript-compatibility counts was an intermediate computation step towards

quantifying transcript abundances. In this paper we instead consider the direct

use of such counts for the comparison and clustering of scRNA-Seq cells. Figure

2 shows an outline of a method we have developed for clustering and analyzing

scRNA-Seq data; the key idea is to base clustering not on the quantification of

transcripts or genes but on the transcript-compatibility counts for each cell. We

note that equivalence classes have also been used in [43, 44] to define similarity

scores between de novo assembled transcripts.

To better understand the relevance of transcript-compatibility counts, consider

their relationship to “gene-level” counts used in many RNA-Seq analyses. In the

same way that “genes” represent groupings of transcripts [45], equivalence classes

as introduced by [39] are also groups of transcripts. However while the former is a

biologically motivated construction, the latter is technical, consisting of groupings

that capture the extent of ambiguous multiple mappings among reads. The lack of

direct biological interpretation of equivalence classes makes transcript-compatibility

counts less intuitive; however, as we will show, there are two significant advantages

to working with them: 1) unlike transcript or gene-level quantifications, transcript-

compatibility counts can be computed without a read-generation model, and hence

a single clustering pipeline based on transcript-compatibility counts can be used

across a wide range of scRNA-Seq assays; 2) transcript-compatibility counts can be

computed by pseudoalignment, a process that does not require read alignment and

can be done extremely e�ciently [41].

To demonstrate both the general applicability of our method as well as its ac-

curacy, we re-analyzed data from two recently published scRNA-Seq papers: the

pseudotemporal ordering of primary human myoblasts by [12] and the cell classi-

fication in the mouse cortex and hippocampus by [7]. We show that not only are

we able to recapitulate the analyses of the papers two orders of magnitude faster

than previously possible, but we also provide a refinement of the published results,

suggesting that our approach is both fast and accurate. To demonstrate both the

general applicability of our method as well as its accuracy, we re-analyzed data

from two recently published scRNA-Seq papers: the pseudotemporal ordering of

primary human myoblasts by [12] and the cell classification in the mouse cortex

and hippocampus by [7]. The speedup of our method makes single-cell RNA-Seq

analysis interactive for the first time: sensitivity of results to parameters and anno-

tations can be easily explored and analyses can be easily reproduced by individuals

without access to significant compute resources. Furthermore, the e�ciency of our

methods will take on increasing significance as single-cell RNA sequencing scales to

experiments with hundreds of thousands of cells and improved technologies make

the acquisition of single-cell data easier and faster (for example [46]). In addition,

we also illustrate the advantages of the broad applicability of our approach via its

suitability to a multitude of assays. Existing pipelines must be tailored to specific

assays making it di�cult to perform meta-analyses and to compare results across

experiments.
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Results
Transcript-compatibility counts from pseudoalignments

To demonstrate the e↵ectiveness of transcript-compatibility counts for scRNA-Seq

analysis, we first examined how e�ciently they can be computed. While transcript-

compatibility counts can be extracted from read alignments (e.g. in SAM/BAM

format), they do not require the full information contained in alignments. Instead,

we examined the speedup possible with pseudoalignment [41], which obtains for

each read the set of transcripts it is compatible with and therefore can be directly

used to obtain transcript-compatibility counts.

Figure 3 shows the speed of obtaining transcript-compatibility counts via pseu-

doalignment in comparison to the time required to quantify RNA-Seq data with

other approaches. The key result relevant for single-cell analysis is the scalability of

pseudoalignment for obtaining transcript-compatability counts (Figure 3 and Sup-

plementary Figure 2). The fixed extra cost for aligning (rather than pseudoaligning)

reads for each cell is small, but when extrapolated to hundreds of thousands of cells

becomes a significant (computational) cost.

Pseudotime for di↵erentiating human myoblasts

The recently published Monocle software [12] that builds on the Cu✏inks pro-

gram [47] is rapidly becoming a standard tool for scRNA-Seq analysis. We therefore

sought to compare our approach to Monocle, and in order to do so began with a

re-analysis of the data in [12]. Figure 4 shows the temporal ordering of di↵eren-

tiating primary human myoblasts using transcript-compatibility counts clustering

based on the Jensen-Shannon metric and the a�nity propagation algorithm (see

Methods). We note that unlike Cu✏inks, which consists of an explicit model of

RNA-Seq suitable for the data in [12] but not necessarily for other assays, our

transcript-compatibility counts make no assumption about the nature of the data.

Furthermore, while the re-analysis appears to match that of [12], a�nity propaga-

tion with di↵erent parameters provided a more refined clustering, possibly capturing

seven stages of myoblast di↵erentiation (see also Supplementary Figure 3).

A central idea in pseudo-temporal ordering of cells relies upon the construction of

a minimum spanning tree (MST) over the pairwise distances of their corresponding

gene expression vectors [48]. This attempts to capture the trajectory of a hypothet-

ical cell that gradually “moves” through di↵erent cellular states or di↵erentiation

stages in a high-dimensional gene expression space. Our results show that the same

concept can be applied to transcript-compatibility counts. A key step in Monocle is

to first reduce the dimensionality of the data by independent component analysis

(ICA) and then compute the MST based on Euclidean distances on the plane. Here

we take a di↵erent approach and compute the MST on “cluster centers” in high

dimensions (See Methods). Both approaches aim to battle the biological and tech-

nical noise that is inevitably introduced in scRNA-Seq experiments. Even though

we could have used Monocle directly on transcript-compatibility counts, the design

and comparison of specialized tools is beyond the scope of this paper.

Figure 4d validates the three primary clusters and the pseudo-temporal order-

ing obtained by our method based on three key myoblast di↵erentiation markers,

MYOG , CDK1 and PDGFRA (see Supplementary Figure 4 for an additional set
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of genes taken from [12]). Interestingly, the expression of these genes gradually

evolves over the pseudo-temporally ordered clusters, capturing both the underlying

di↵erentiation trajectory of proliferating cells to myoblasts, and the corresponding

branching towards mesenchymal cells, as was observed in [12].

Finally, we should point out that although the three primary clusters of [12] are

evident in our results, they are not identical. This naturally raises the question

of whether clustering on (high-dimensional) transcript-compatibility counts could

possibly lead to cell mis-classification. Our results show that this is not the case. In

Figure 5 we investigated one cell that seemed to have been severely mis-classified

by our method as a di↵erentiating myoblast while it was identified as a prolifer-

ating cell by Monocle. However, an analysis of the expression levels of 12 marker

genes obtained from [12] shows that this cell displays more similarity to di↵er-

entiating myoblasts than proliferating cells. Overall our results seem to suggest

that transcript-compatibility counts, being directly obtained from sequenced reads,

might constitute a less noisy representation of the “transcriptomic state” of a cell

compared to the one obtained by quantifying its gene expression.

Cell classification in the mouse cortex and hippocampus

The re-analysis of [12] shows that clustering of transcript-compatibility counts can

be useful on a single dataset, but we believe that the true power of our approach lies

in its broad applicability to multiple single-cell assays. In contrast to the standard

quantification pipeline, obtaining transcript-compatibility counts does not require

a read-generation model; our method can be directly applied to a wide range of

scRNA-Seq datasets and transcript-compatibility counts can be used to analyze

sequenced reads without any assay-specific information. To make this point, we

re-analyzed a recent large scRNA-Seq experiment published earlier this year [7]

that uses an assay based on unique molecular identifiers (UMI). In contrast to [12]

where paired-end reads were sampled from fragments covering the entire length of

the transcripts, [7] used single-end reads that were only obtained from the 3’-end

of the transcripts.

Zeisel et al. [7] examined a very diverse population of 3005 cells obtained from

the cortical and hippocampal regions of the mouse brain. In order to analyze this

complex dataset, the authors developed a state-of-the-art hierarchical bi-clustering

method called BackSPIN (based on SPIN [30]) and were able to identify 47 distinct

sub-populations of cells within nine major brain cell types. This fine-grained analysis

also revealed a previously unknown post-mitotic oligodendrocyte sub-class, referred

to as Oligo1 in [7].

Figure 6 shows the clusters obtained by applying our method to the above dataset

and compares our method’s clustering accuracy to various quantification-based

methods. In order to systematically assess the clustering accuracy, we iteratively

sub-sampled cells from two di↵erent cell types at random and evaluated the abil-

ity of each method to distinguish between these types. Since the development of

specialized clustering algorithms is orthogonal to our paper, we compared based on

the same clustering algorithm throughout (see Methods). Our results indicate that

transcript-compatibility counts can be more accurate than standard model-based

RNA-Seq quantification tools (such as eXpress) that try to estimate the underlying
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read-generation model from the data. Our transcript-compatibility counts based

method is in fact able to achieve similar accuracy with the assay-specific quan-

tification approach used in [7] (that explicitly takes into account the significant

3’-end bias in this dataset). Clustering transcript abundance quantifications output

by kallisto results in lower accuracy due to the mismatch between kallisto’s read-

generation model and this dataset, further emphasizing the importance of using

transcript-compatibility counts which are computed without using any such model.

Quite remarkably, our method (via a�nity propagation on all cells) was further

able to recover the Oligo1 cluster of cells, showing that transcript-compatibility

counts can indeed capture distinct cell signatures without actually quantifying their

gene expression (Figure 6, Methods). Overall, in our experiments we observed that

unsupervised clustering of transcript-compatibility counts typically yielded more

than 47 clusters, which was also the case in [7]. Some of our clusters were very

small, probably capturing outlier cells, while others seemed to be further splitting

the 47 cell subtypes identified in [7].

To further investigate this, we focused on another oligodendrocyte sub-population,

referred to as Oligo3 in [7]. As reported in [7], Oligo3 cells were almost exclusively

observed in the somatosensory cortex and were identified by the authors as being in

an intermediate stage of maturation – in between premyelinating and myelinating

oligodendrocytes. Even though the Oligo3 cells appear to be well-clustered together,

as visualized by t-SNE (Figure 7a), a�nity propagation on transcript-compatibility

counts with various parameters consistently separated them into two sub-clusters.

Our results in Figure 7b seem to suggest that a sub-population of Oligo3 cells

(captured by one of our sub-clusters) expresses an unusual signature of endothe-

lial/vascular genes on top of the expected myelin related genes. Interestingly, similar

findings have been reported recently in [37], suggesting a possible (experimental)

contamination of several oligodendrocyte cells in the dataset at hand.

Discussion
In this paper we introduced a novel method that uses transcript-compatibility

counts – instead of gene expression profiles – as distinct cell signatures for clus-

tering single cell data. Note, however, that the main focus of our method is not

about how to cluster (i.e., the particular choice of clustering algorithms), but rather

what to cluster on. To emphasize this point we considered simple, “o↵-the-shelf”

clustering methods, that directly use the corresponding TCCs as their input. In-

terestingly, while these methods may not be able to recover accurate clusters when

applied to gene expression vectors (see Supplementary Figure 6 or [7, Figure S3] for

example), our results showed that TCCs maintain all the necessary information to

recover the analyses of [12] and [7].

Even though clustering alone can reveal important information about a single-cell

RNA-Seq experiment, further biological interpretation of the results (marker gene

identification or di↵erential expression) requires some form of quantification of ex-

pression profiles within and in between clusters. So it is natural for one to think

that eventually the quantification bottleneck will still manifest itself in single-cell

analysis. A key observation however is that given an accurate clustering of the

cells, each and every individual cell’s gene expression profile is no longer needed;
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one can extract an accurate statistical representation of the gene expression within

each cluster – without having to quantify all cells separately. In particular, one can

quantify the aggregate gene expression in each cluster (cluster centers) by pooling

single-cell TCCs together and further estimate the corresponding gene variability

by subsampling and quantifying only a few cells per cluster. For example, in Supple-

mentary Figure 5 we used kallisto to quantify subsampled cells and the correspond-

ing cluster centers (after clustering on TCCs) for the Trapnell et al.’s dataset and

generated results that are very similar to the ones obtained in Figure 4 (where the

corresponding gene expression profiles were obtained from [12]). Our method can

therefore be used to e↵ectively reverse the quantification and clustering steps in the

conventional pipeline and potentially provide further end-to-end processing gains,

depending on the needs/goals of each scRNA-Seq experiment. Overall, we believe

that clustering before quantifying is a promising future direction for scRNA-Seq

analysis which may lead to more robust and accurate quantification algorithms.

Conclusions
The extraordinary developments in single-cell RNA-Seq technology over the past

few years have demonstrated that “single-cell resolution” is not just a gimmick but

an unprecedented tool for probing transcriptomes that can reveal the inner-workings

of developmental programs and their resulting tissues. However the computational

challenges of scRNA-Seq analysis, already very high due to the large number of cells

to analyze, have been further exacerbated by the smorgasbord of assays that each

introduce unique technical challenges.

The new method we have proposed and evaluated in this paper, namely analysis

of scRNA-Seq based on transcript-compatibility counts, o↵ers an e�cient, accurate

and broadly applicable solution for extracting information from scRNA-Seq exper-

iments. In the same way that single-cell analysis can be viewed as the ultimate

resolution for transcriptomics, transcript-compatibility counts are the most direct

way to “count” reads. While we have focused on clustering of cells in this paper, we

believe that transcript-compatibility counts may have applications in many other

sequencing-based assays, and that further development of methods based on such

counts o↵ers a fruitful avenue of exploration.

The ability to obtain transcript-compatibility counts by pseudoalignment is a

benefit that has its own implications and applications. For example, the speed of

pseudoalignment facilitated quick experimentation with our method, and in assess-

ing our accuracy on di↵erent datasets one discovery was that much less sampling

than is currently performed is necessary to cluster cells. In the re-analysis of [7],

we found that the main results, namely the clustering of cells and identification of

cell types, were achievable with only 1% of the data (see Figure 8a and Supple-

mentary Figure 1). This observation has significant implications for scRNA-Seq as

it suggests that for clustering of cells, low-coverage sequencing may be su�cient

thus allowing for larger experiments with more cells. Moreover, this low-coverage

clustering performance can be achieved using our method, which is not tailored to

the specific scRNA-Seq assay.
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Methods
The code used to generate the results presented in this paper is available online on

GitHub [49]. The Mus musculus transcriptome assembly used was GRCm38. The

Homo sapiens transcriptome assembly used was GRCh38. The reference genome

used for HISAT was build 10 of the mouse genome (mm10) from the UCSC genome

browser.

Computation of transcript-compatibility counts

In our implementation of the method, we use kallisto to compute transcript-

compatibility counts via pseudoalignment (avoiding the quantification step that

is usually performed when running kallisto altogether). In particular, we utilized

the ”pseudo” option of the kallisto RNA-Seq program which computes equivalence

classes of reads after pseudoalignment. We used kallisto version 0.42.3 with k set

to kallisto’s default value of 31. Even though kallisto pseudoalignment is a natu-

ral approach to obtain transcript-compatibility counts, one can in principle extract

the same information from exact read alignments. To explore this alternative, we

used HISAT (with the no-spliced-alignment option enabled) to align reads on the

mouse transcriptome (GRCm38) in the case of Zeisel’s dataset and the human

transcriptome (GRCh38) in the case of Trapnell’s dataset. Then, we generated the

corresponding “alignment-based TCCs” by directly counting the number of multi-

mapped reads aligned to each set of transcripts, and evaluated their performance

in Supplementary Figure 8.

Transcript-compatibility counts based on UMI information

The dataset of [7] has reads with unique molecular identifiers (UMIs). UMIs are

typically used in scRNA-Seq to correct for PCR bias; biological copies of a tran-

script (distinct molecules) can be identified based on their UMIs. This information

can be utilized in generating the transcript-compatibility counts from equivalence

classes. Instead of counting all the reads in each equivalence class, we only count the

reads with distinct UMIs. Transcript-compatibility counts with UMIs are shown in

Figure 6b and Figure 8a (represented as “TCC with UMI” in the figures).

Clustering Methodology

On obtaining the transcript-compatibility counts for each cell, we normalize by

the total number of mapped reads to obtain a probability distribution called the

transcript-compatibility count distribution or TCC distribution. We then compute

the square-root of the Jensen-Shannon divergence [50] between the TCC distribu-

tions for each pair of cells. As a distance metric which satisfies the triangle [51]

inequality, the square-root of Jensen-Shannon divergence is a natural choice for

computing pairwise distances between two probability distributions. However, the

results obtained here are not contingent on using the square root of Jensen-Shannon

divergences as the measure of distances, and quite similar results are obtained when

we use other distances between probability distributions such as the `1 distance to

compute the pairwise distance matrix, (see Supplementary Figure 1). `1 distance

(which is just twice the total-variation distance) in fact seems to perform better than

Jensen-Shannon distance for low coverage (Supplementary Figure 1b). In contrast,
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Euclidean distance (`2 distance) seems to perform much worse (see Supplemen-

tary Figure 1). The fact that Euclidean distance is not a good distance metric to

measure distances between probability distributions is widely documented (see for

instance [52]).

All clustering carried out in this paper were done using o↵-the-shelf clustering

methods.

We used spectral clustering using the pairwise distance matrices when we know

the number of clusters in the data. This includes Figures 6b, 8a, and Supplementary

Figure 1b with 2 clusters for the pairwise distance matrix (from TCC distributions)

obtained for the data from [7].

The clustering method used when the number of clusters is not known is a�nity

propagation [53]. This is an unsupervised clustering algorithm based on message

passing, which needs a pairwise similarity matrix as input. The pairwise similar-

ity matrix is computed as the negative of the pairwise distance matrix that was

computed.

To evaluate the clustering accuracy of our method in Figure 6b, we performed

binary classification tests using the labels reported in [7] as the ground truth. In

particular, we randomly sub-sampled two di↵erent types of cells and evaluated the

ability of each pipeline to separate them into two clusters via spectral clustering.

We performed these binary classification tests between 1) the sub-classes Oligo1 (45

cells) and Oligo4 (106 cells), 2) the cell types Astrocytes (198 cells) and Interneurons

(290 cells), and 3) the more general cell types neurons (1628 cells) and non-neurons

(1377 cells). The error rates for each test were obtained by randomly sampling 22, 99

and 200 cells from each of the two labels respectively, averaged over 10 monte-carlo

iterations.

For clustering the dataset of [7], we used a�nity propagation with the default

parameters which set the preference value equal to the median of the similarity

scores and the damping parameter equal to 0.5. On doing this, we obtained 89

clusters. Of the 89 clusters obtained, cluster number 22 had the largest match with

the set of cells the authors labeled as Oligo1 (which was the new type of cells

discovered in [7]). 24 out of the 28 cells in the cluster were labeled Oligo1 by [7].

There were a total of 45 cells labeled Oligo1 in [7] out of the total of 3005 considered.

This is investigated in Figure 6c.

Also, a�nity propagation with di↵erent parameters seems to split the class la-

belled Oligo3 in [7] into 2 classes. This is investigated in Figure 7, where the two

classes considered were classes obtained with parameters set as before.

For clustering the dataset of [12], we used a�nity propagation with preference

parameter set to 1.3 and damping parameter set to 0.95 to obtain three clusters in

Figure 4. To obtain 8 clusters on the dataset of [12], we used a�nity propagation

with preference parameter set to 0.6 and damping parameter set to 0.95 to obtain

8 clusters. Then after collapsing any cluster with less than 5 cells into the cluster

closest to it, we obtain the seven clusters investigated in Figure 5. More details

regarding our parameter choices for a�nity propagation in this dataset are provided

in Supplementary Figure 7.
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Partial order on clusters

On the [12] data set, for the seven clusters obtained, we first find the centroid

TCC distribution of each cluster as the mean TCC distribution of all cells in the

cluster. Then, we compute the pairwise Jensen-Shannon distances between the cen-

troid TCC distributions (cluster centers). We then run a minimum weight spanning

tree on the complete graph between the cluster centers with weights given by the

computed pairwise distances. This gives us a partial-order on the clusters, which is

investigated in Figure 4 and Supplementary Figure 3.

Quantification

In this paper, we used kallisto and eXpress as representative methods for model-

based quantification as they demonstrate similar accuracy to other available quan-

tification tools [41]. In particular, for Zeisel et al.’s dataset (Figures 6b and 8a)

we used these tools as a “negative control” to demonstrate the importance of the

read-generating model when using quantified abundances to cluster single cell data.

Although the significant mismatch between the assumed model (i.e., full transcript

length coverage) and the 3’-end bias in this dataset is expected to a↵ect the quan-

tification accuracy for each individual cell, our results show that such a mismatch

further impacts the accuracy of clustering and cell-type classification. To evaluate

the cell-type classification performance of kallisto and eXpress, we took the mini-

mum of the error rates obtained with bias modeling turned on and o↵.

For the Trapnell et al. dataset, we used kallisto to quantify transcript abundances

and obtain the gene expression profiles within the clusters obtained from TCCs.

Note that the read-generating model in this dataset is similar to the standard RNA-

Seq model that kallisto uses for quantification. More specifically, in Supplementary

Figure 5a we quantified the corresponding cluster centers by running kallisto’s EM

algorithm on the pooled TCCs of each cluster. Using kallisto in this setting resem-

bles bulk RNA-Seq quantification applied to the pooled reads coming from each

individual cluster (instead of the entire population of cells). In Supplementary Fig-

ure 5b we further quantified randomly sub-sampled cells (20 cells per cluster) to

obtain an accurate estimate of the gene expression variability within each cluster.

Visualization of cells and clusters

We used t-SNE [54] to visualize the cells and clusters in Figures 6a, 8b, and Sup-

plementary Figure 1a.

The left panel of Figure 4d, 5a, 5b and Supplementary Figure 4a was created using

an implementation [55] of the di↵usion map algorithm of [56].
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Figure 1 Equivalence class and transcript-compatibility counts. This figure gives an example of
how reads are collapsed into equivalence classes. Each read is mapped to one or more transcripts
in the reference transcriptome; these are transcripts that the read is compatible with, i.e. the
transcripts that the read could possibly have come from. For example, read 1 is compatible with
transcripts t1 and t3, read 2 is compatible with transcripts t1 and t2, and so on. An equivalence
class is a group of reads that is compatible with the same set of transcripts. For example, reads
4,5,6,7,8 are all compatible with t1,t2 and t3 and they form an equivalence class. Since the reads
in an equivalence class are all compatible with the same set of transcripts, we simply represent an
equivalence class by that set of transcripts. For example, the equivalence class consisting of reads
4,5,6,7,8 is represented by {t1, t2, t3}. Aggregating the number of reads in each equivalence class
yields the corresponding transcript-compatibility counts. Note that in order to estimate the
transcript abundances from the transcript-compatibility counts, a read-generation model is needed
to resolve the multi-mapped reads.
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Figure 2 Overview of the Method. This figure illustrates our transcript-compatibility counts
(abbreviated TCC) clustering method in a very simple, yet instructive example and highlights its
major di↵erences with respect to the conventional single cell clustering approach. Here, we
consider an scRNA-Seq example with K cells (only the reads coming from Cell1 and Cell2 are
shown here) and a reference transcriptome consisting of three transcripts, t1, t2 and t3.
Conventional approach: Single cells are clustered based on their transcript or gene
abundances (here we only focus on transcripts for concreteness). This widely adopted pipeline
involves computing a (#transcripts ⇥ #cells) expression matrix by first aligning each cell’s reads
to the reference. The corresponding alignment information is next to each read, which for the
purpose of illustration only contains the mapped positions (the aligned reads of Cell1 are also
annotated directly on the transcripts). While reads 1 and 5 are uniquely mapped to transcripts 1
and 3, reads 2, 3 and 4 are mapped to multiple transcripts (multi-mapped reads). The
quantification step must therefore take into account a specific read-generating model and handle
multi-mapped reads accordingly.
Our proposed method: Single cells are clustered based on their transcript-compatibility
counts. Our method assigns the reads of each cell to equivalence classes via the process of
pseudoalignment and simply counts the number of reads that fall in each class to construct a
(#eq.classes ⇥ #cells) matrix of transcript-compatibility counts. Then, the method proceeds by
directly using the transcript-compatibility counts for downstream processing and single cell
clustering. The underlying idea here is that even though equivalence classes may not have an
explicit biological interpretation, their read counts can collectively provide us with a distinct
signature of each cell’s gene expression; transcript-compatibility counts can be thought of as
feature vectors and cells can be identified by their di↵erential expression over these features.
Compared to the conventional approach, our method does not attempt to resolve multi-mapped
reads (no need for an assay-specific read-generating model) and only requires transcript
compatibility information for each read (no need for exact read alignment).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2016. ; https://doi.org/10.1101/036863doi: bioRxiv preprint 

https://doi.org/10.1101/036863
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ntranos et al. Page 15 of 20

a"

b Run$mes(of(kallisto(and(HISAT(on(Trapnell(
et(al.’s(271(primary(human(myoblasts(

Run$mes(of(read(mappers(Zeisel(et(
al.’s(3005(mouse(brain(cells(

Figure 3 Runtime comparison of alignment methods. (a) The time required to process 3005
cells from mouse brain cell dataset [7] in core hours is shown here. The time taken for read
alignment with Bowtie and HISAT is much larger than the time taken for kallisto pseudoalignment
(which is used by our method to obtain the transcript-compatibility counts). kallisto
pseudoalignment and HISAT were run on 32 cores. Bowtie and word count were each timed on 1
core with 10 randomly selected cells. The bars shown here are estimates obtained by multiplying
these times by 300.5. Because we do not account for the overhead associated with parallelizing,
the Bowtie and word count estimates are lower bounds on their run times in practice. After
preprocessing the UMIs, each of the 5, 914, 602, 849 single-end reads in the dataset were less than
50 bp long. (b) The time required to process 271 cells of the dataset of [12] in core hours is
shown here. As before, the time taken for read alignment with HISAT is significantly larger than
the time taken for kallisto pseudoalignment. Both methods were run on 32 cores. The dataset has
814, 344, 693 paired-end reads, and each mate in a pair is 100 bp long.
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Figure 4 Temporal ordering of di↵erentiating primary human myoblasts using
transcript-compatibility counts. (a) A minimum-spanning tree (MST) was drawn through the
271 cells using Jensen-Shannon distances computed between 1, 101, 805-dimensional vectors of
TCCs of cells in the dataset. Following the longest path does not show a clear cell di↵erentiation
pattern. (b) A�nity propagation clustering generated 7 clusters (after collapsing spurious
clusters with less than 5 cells into their nearest neighboring cluster), and an MST was drawn
through the centroids of the clusters. Using the labels from Trapnell et al. [12], the longest path
shows a di↵erentiation pattern from proliferating cell (red) to di↵erentiating myoblast (blue). The
MST also shows how some proliferating cells alternatively di↵erentiate into interstitial
mesenchymal cells (green). (c) The cells were then clustered into 3 groups based on their
transcript-compatibility counts, and the MST from b was re-labeled using these new cell types.
(d) The expression levels of the genes MYOG, CDK1, and PDGFRA were analyzed for the 3
TCC clusters. MYOG, CDK1, and PDGFRA show greater expression for centroids from clusters
with greater proportions of TCC cell types 1, 2, and 3, respectively. For each gene, a histogram
over each centroid shows how expression level evolves with the di↵erentiation process. CDK1,
MYOG, and PDGFRA being markers for proliferating cells, di↵erentiating myoblasts, and
interstitial mesenchymal cells, indicate that the clustering and centroid-ordering based on TCC
captures intermediate steps of the human myoblast di↵erentiation trajectory.
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Figure 5 Clustering primary human myoblasts based on transcript-compatibility counts. (a)
The transcript-compatibility counts matrix for 271 primary human myoblasts from [12] is
visualized using a di↵usion map. Three clusters obtained using a�nity propagation are shown
along with the distribution of these cells across the 4 cell-collection timepoints (0, 24, 48 and 72
hours). (b) The di↵usion map obtained using transcript compatibility counts is relabeled using
the cells reported by [12]. Clusters 1, 2, 3 generated by the transcript compatibility based method
map to proliferating cells, di↵erentiating myoblasts, and interstitial cells respectively. According to
Trapnell et al.’s labels, the transcript compatibility based method seems to have severely
misclassified cell T48 CT G10 (SRR1033183) as a di↵erentiating mycoblast. (c) Comparing the
expressions of 12 di↵erentiating genes in T48 CT G10 with those of the average proliferating cell
and the average di↵erentiating myoblast, 8 out of the 12 genes show expressions similar to what
one would expect from a di↵erentiating myoblast. MYOG seems to show an FPKM of 14, which
while more than the mean expression of proliferating cells (around 0.28) is much less than the
mean expression of di↵erentiating myoblasts (around 61.33). We note that this cell has the
highest expression of MYOG among all cells labelled by Trapnell et al. as proliferating cell (and
the second highest cell has expression around 5.4). However there are 88 di↵erentiating myoblasts
with MYOG expression less than 15 FPKM. Hence it is reasonable to think that this MYOG
expression is more typical of di↵erentiating myoblasts than proliferating cells. Only genes CDK1
and CCMB2 show expressions close to what one would expect from a proliferating cell. Even
though CDK1 is a highly specific marker for proliferating cells, the above gene profile indicates
that classifying cell T48 CT G10 as a di↵erentiating myoblast seems reasonable.
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Figure 6 Clustering mouse brain cells based on transcript-compatibility counts. (a) The TCC
distribution and gene expression matrices for the 3005 mouse brain cells are visualized using
t-SNE (based on Jensen-Shannon distances between TCC distributions and gene expression
distributions of cells respectively) and colored with the cell type determined by Zeisel et al. [7].
We note that the transcript-compatibility based t-SNE also visually maintains the cluster structure
of the 9 major clusters, even though it can be computed two orders of magnitude faster than the
gene expression matrix. (b) Cells from each of two cell types determined by Zeisel et al. were
randomly selected, and then the clustering accuracy of multiple methods was tested. The
clustering accuracy was measured as the error rate of the clustering. First, we note that the 3’-end
bias in this dataset significantly a↵ects the accuracy of kallisto and eXpress that have been chosen
here as representative methods for model-based quantification (See Methods). For each point in
the eXpress and kallisto curves, we took the minimum of the error rates obtained with bias
modeling turned on and o↵. By avoiding estimation of the read model, transcript-compatibility
based methods were indeed more accurate. We see that transcript-compatibility based clustering
achieves similar accuracy to the gene-level UMI counting method implemented by the authors for
this dataset without explicitly accounting for PCR biases. Refining transcript-compatibility
counting to correct for PCR biases (by counting only the distinct UMI’s of reads in each
equivalence class) leads to a marginal improvement of our method. (c) Running a�nity
propagation on the TCC distribution matrix (using negative Jensen-Shannon distance as similarity
metric) produced a cluster of 28 cells, 24 of which were labelled Oligo1. Zeisel et al. [7] classified
45 of the 3005 cells as this new class of cells. The bar plot compares the mean expression of
selected oligodendrocyte marker genes in the TCC cluster to their mean expression in Zeisel et
al.’s Oligo1. As reported in [7], Oligo1 cells are characterized by their distinct expression of genes
such as Itpr2, Rnf122, Idh1 and Gpr17. The similarity of the bars seems to suggest that clustering
on TCC can capture this fine grained information. Note that although single cell clustering was
entirely performed based on transcript-compatibility counts, the gene expression data used to
evaluate this figure were obtained from Zeisel et al.
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Figure 7 Analysis on transcript-compatibility counts refines the classification of mouse brain
cells. (a) Runs of a�nity propagation with di↵erent propagation and damping parameters were
carried out on the TCC matrix for the 3005 mouse brain cells of [7]. The Oligo3 subclass
discovered by Zeisel et al. was consistently split into to subclasses A and B. (b) Cells in the
Oligo3 A class showed greater expression of endothelial/vascular genes and lower expression of
myelinating oligodendrocyte genes. The opposite was true for the cells in Oligo3 B. This result
may corroborate the potential contamination of oligodendrocytes in the Zeisel et al. dataset that
has recently been reported in Fan et al. [37].
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Figure 8 Coverage requirements for clustering based on transcript-compatibility counts. As an
intermediate between raw reads and quantified transcript abundances, transcript-compatibility
counts intuitively have more information than the reconstructed transcripts and less noise than
the raw reads. (a) As the read coverage of a cell of the dataset of [7] decreases from
approximately 627k mapped reads, di↵erent methods have varying robustness to the loss of
coverage. Each method was evaluated on its ability to cluster 200 randomly selected neurons
mixed with 200 randomly selected non-neurons into the two cell types (the clustering of [7] being
considered as the ground truth). Amongst methods which do not explicitly account for PCR bias,
TCC based clustering performed much better than kallisto and eXpress and was quite close in
performance to the UMI counting method of [7]. For each point in the eXpress and kallisto
curves, we took the minimum of the error rates obtained with bias modeling turned on and o↵. By
counting the number of unique UMIs rather than reads (TCC with UMI in the plot),
transcript-compatibility based clustering was adapted to account for PCR bias, resulting in similar
performance to that of gene-level UMI counting used in [7]. (b) Even at significantly decreased
coverage depths, our method maintains clusters corresponding to the 9 major cell types identified
by Zeisel et al. The transcript-compatibility disturbution matrices at varying coverage depths are
visualized using t-SNE. (c) At various coverage depths, transcript-compatibility counting with
UMIs disagrees slightly with the cells the authors labeled as Oligo1 (cyan cell IDs). As the
coverage decreases, transcript-compatibility based a�nity propagation still identifies a cluster that
captures the vast majority of Oligo1 cells in the 3005-cell population.
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Supplementary Figure 1: Comparison of di↵erent distance metrics to use to compute pairwise

distances. (a) Shows the t-SNEs obtained when using `1 (Manhattan distance or twice the total
variation distance) and `2 distances (Euclidean distance) instead of Jensen-Shannon distances to
compute pairwise distances between TCC histograms obtained for 3005 mouse brain cells of Zeisel
et al. [1]. The `1 distance seems to maintain the cluster centers to a much larger extent than `2
distances. (b) As the average read coverage of each cell in the dataset decreases from
approximately 627,000 mapped reads, spectral clusterings based on di↵erent distance metrics
exhibit varying ability to distinguish neurons from non-neurons. While both `1 distance and
Jensen-Shannon Divergence perform similarly well at high coverage (error rate 5%), the
commonly used `2 distance resulted in significantly worse performance. We note that `2 distance
is known to be a bad metric to use while comparing probability distributions. For the two classes
picked, `1 distances perform better that Jensen-Shannon distance at low coverage.
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Supplementary Figure 2: Runtimes of bowtie, kallisto-quant, kallisto-pseudoalign, and

computation of pairwise distance matrices. (a) The runtimes of Bowtie, kallisto with both
pseudoalignment and quantification (kallisto-quant), and kallisto with just pseudoalignment
(kallisto-pseudoalign) were obtained for 200 randomly selected cells from Zeisel et al.’s 3005
mouse brain cell dataset [1] as shown on the left pane. The (extrapolated) runtime of Bowtie was
higher than the runtimes of the two pseudoalignment-based methods. When comparing
kallisto-quant against kallisto-pseudoalign (as shown on the right pane), kallisto-pseudoalign is
slightly faster, saving approximately 5 seconds per cell. As the number of cells scales up to 44, 000
for novel sequencing technologies such as DropSeq, kallisto-pseudoalign will have savings of about
60 hours compared to kallisto-quant and 1.8 years compared to bowtie. (b) The runtimes
obtained for running pairwise distances on the distributions obtained from TCCs, transcriptome
expressions, and gene counting are shown here. These times are shown for Jensen-Shannon
distance and `1 distances. The feature dimension indicated in the table equals the number of
features (either TCC, transcript abundances, or gene abundances) that are non-zero in at least
one of the 3005 samples.
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Supplementary Figure 3: More details on the 7 clusters obtained from a�nity clustering in the

data-set of [2]. (a) Shows the di↵usion map of cells colored by the labels of the 7 clusters. (b)

Each pie-chart node in the MST shows the distribution of the cells of each cluster in real-time.
The tree on which these are placed corresponds to the pseudotime obtained.
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Supplementary Figure 4: More genes to validate the 3 clusters obtained from the data-set

of [2] Shows the distribution of various other genes that are known to be markers of the three
states represented by the three TCC clusters. The patterns discovered here using TCC closely
matched those found by Trapnell et al.
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Supplementary Figure 5: Quantifying after clustering to validate clusters obtained. (a) The
expression levels obtained after running kallisto’s EM algorithm on the pooled TCCs of each
cluster. The left pane shows the mean TPMs of the 3 clusters. The right pane shows the mean
TPMs of the 7 clusters overlaid on the MST from Figure 4. We note that these were obtained by
running the EM algorithm 3 times and 7 times, respectively (once for each cluster). We also note
that the TPMs are similar to those of Figure 4d. (b) Here we show an estimate of the number of
cells expressing the each of 3 genes. The expression levels are obtained by randomly sampling 20
cells from each cluster and quantifying them. We note that the numbers obtained are similar to
those of the middle pane Figure 4d.
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Supplementary Figure 6: Selecting parameters for a�nity propagation on [2]’s gene expression

vectors We note that choosing optimal parameters for a�nity propagation requires some
biological intuition. (a) For each of 3 damping parameter values, we swept through multiple
preference parameter values. We looked for a combination of parameters that produced a
reasonable amount of clusters roughly the same size. The left plot show two curves for each
damping parameter: a dotted one indicating the number of cells in the smallest cluster and a solid
one indicating the number of cells in the largest cluster. In the case where we do not know the
correct number of clusters, we would use clusterings immediately before the large spike in number
of clusters (right plot), resulting in about 7 clusters. The plots shown here are generated using
Trapnell et al.’s expression vectors. We also noticed that from empirical testing, varying
parameters in a flat region of the plot resulted in the exact same clusters. (b) There are multiple
combinations of parameters that could generate 3 or 7 clusters. Here we use Trapnell et al.’s
expression vectors to generate two MSTs. Each MST uses one of two combinations of damping
and preference parameters selected based on the plots in (a). Slight tweaking of the preference
parameters can result in an MST with 8 clusters, as shown in the right-most tree. Like we did in
Figure 4, we would collapse the 1-cell cluster into its nearest cluster. Knowing that 3 cell types
exist in the population, we also tried another two combinations of parameters to produce 3
clusters. For easy comparison to the TCC results in the main text, we visualized the clusters with
the di↵usion maps of Figure 4d. We see that the cell discussed in Figure 5 (T48 CT G10) still
fails to be classified as a di↵erentiating myoblast. For additional comparison, we computed
another di↵usion map using Trapnell et al.’s expression vectors (right-most di↵usion map).
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Supplementary Figure 7: Selecting parameters for a�nity propagation on TCC vectors for

Trapnell’s dataset (a) For the TCC approach, we performed the same parameter sweep
presented in Supplementary Figure 6, resulting in the plots shown here. Additionally, we highlight
the area of the curves where a�nity propagation with a damping value of 0.95 results in 3 clusters.
The default a�nity propagation parameters of 0.5 for damping and -0.52, the median of the
similarity matrix, for preference results in 24 clusters, 12 of which have only 1 member. (b) To
test the stability of the clusters across a flat region of the curves, we looked at 3 combinations of
parameters that resulted in 3 clusters when the damping value equals 0.95. The clusterings are
identical, and we see that Cell T48 CT G10 is consistently classified as a di↵erentiating myoblast.
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Supplementary Figure 8: Comparing alignment-based TCC with pseudoalignment-based TCC

Alignment was performed using HISAT on the mouse transcriptome (GRCm38) in the case of
Zeisel’s dataset and the human transcriptome (GRCh38) in the case of Trapnell’s dataset.
HISAT’s --no-spliced-alignment option was used. TCC vectors can be generated from aligned
reads by simply counting the number of ambiguous reads aligned to each set of transcripts. For
Zeisel et al.’s dataset, HISAT maps 1, 843, 467, 887 reads to 417, 515 equivalence classes, and
kallisto maps 1, 768, 321, 229 reads to 246, 981 equivalence classes. We compare the (a) t-SNE
visualizations on Zeisel et al.’s dataset, (b) clustering accuracies on Zeisel et al.’s dataset, and
(c) runtimes of the two approaches on both Zeisel and Trapnell et al.’s datasets. Overall,
alignment-based TCCs yield slightly better cell-type classification error rates on the Zeisel et al.’s
dataset – at the cost however of a higher computation time.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2016. ; https://doi.org/10.1101/036863doi: bioRxiv preprint 

https://doi.org/10.1101/036863
http://creativecommons.org/licenses/by-nc-nd/4.0/


—————————————————— Page 8 of 8

References
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