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Abstract 
Single-cell RNA sequencing (scRNA‑seq) offers exciting possibilities to address 

biological and medical questions, but a systematic comparison of recently developed 
protocols is still lacking. Here, we generated data from 447 mouse embryonic stem 
cells using Drop‑seq, SCRB‑seq, Smart‑seq (on Fluidigm C1) and Smart‑seq2 and 

analyzed existing data from 35 mouse embryonic stem cells prepared with CEL‑seq. 
We find that Smart‑seq2 is the most sensitive method as it detects the most genes 
per cell and across cells with the most even coverage, well suited for annotating 

transcriptomes. However, we also find that unique molecular identifiers (UMIs), 
available for CEL‑seq, Drop‑seq and SCRB‑seq, reduce the measurement noise 

considerably, which is most relevant for quantifying transcriptomes. Importantly, we 
show by power simulations that SCRB‑seq and Drop‑seq are the most cost-efficient 
methods for detecting differentially expressed genes. Our analyses offer a solid basis 

for an informed choice among five prominent scRNA‑seq protocols and for future 
evaluations of protocol improvements. 
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Introduction 

Genome-wide quantification of mRNA transcripts can be highly informative for the 
characterization of cellular states and to understand regulatory circuits and processes1,2. 
Ideally, such data are collected with high spatial resolution, and scRNA‑seq now allows for 
transcriptome-wide analyses of individual cells, revealing new and exciting biological and 
medical insights3–5. scRNA‑seq requires the isolation of single cells and the conversion of 
their RNA into cDNA libraries that can be quantified using high-throughput sequencing4,6. 
How well single-cell transcriptomes can be characterized depends on many factors, 
including the sensitivity of the method, i.e. which and how many mRNAs can be detected, 
its accuracy, i.e. how well the quantification corresponds to the actual concentration of 
mRNAs and its precision, i.e. with how much technical noise mRNAs are quantified. Of high 
practical relevance is also the efficiency of the method, i.e. the monetary cost to 
characterize single cells e.g. at a certain level of precision. In order to make a well-informed 
choice among available scRNA‑seq methods, it is important to estimate these parameters 
comparably. Each method is likely to have its own strengths and weaknesses. For example, 
it has previously been shown that scRNA‑seq conducted in the small volumes available in 
the automated microfluidic platform from Fluidigm (Smart‑seq protocol on the C1-platform) 
performs better than Smart‑seq or other commercially available kits in microliter volumes7. 
Furthermore, the Smart‑seq protocol has been optimized for sensitivity, even full-length 
coverage, accuracy and cost8 and this improved “Smart‑seq2” protocol9 has also become 
widely used10–14.  
Other protocols have sacrificed full-length coverage for 3’ or 5’ sequencing of mRNAs in 
order to sequence part of the primer used for cDNA generation. This enables early 
barcoding of libraries, i.e. the incorporation of well-specific or cell-specific barcodes, 
allowing to multiplex cDNA amplification and library generation and thereby increasing the 
throughput of scRNA‑seq library generation by one to three orders of magnitude15–19. 
Additionally, this approach allows the incorporation of Unique Molecular Identifiers (UMIs), 
random nucleotide sequences that tag individual mRNA molecules and hence allow for the 
distinction between original molecules and amplification duplicates that derive from the 
cDNA or library amplification18,20,21. Utilization of UMI information leads to improved 
quantification of mRNA molecules22,23 and has been implemented in several scRNA‑seq 
protocols, such as STRT22, CEL‑seq23, Drop‑seq17, inDrop19, MARS‑seq16 or SCRB‑seq15.  

However, a thorough and systematic comparison of scRNA‑seq methods, evaluating 
sensitivity, accuracy, precision and efficiency is still lacking. To address this issue, we 
analyzed 482 scRNA‑seq libraries from mouse embryonic stem cells (mESCs) generated 
using five different methods with two technical replicates for each method (Fig. 1). 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Figure 1 | Schematic overview of the experimental and computational workflow. Mouse 
embryonic stem cells (mESCs) cultured in 2i/LIF and ERCC spike-in RNA were used to 
generate single-cell RNA‑seq data with five different library preparation methods (CEL‑seq, 
Drop‑seq, SCRB‑seq, Smart‑seq/C1 and Smart‑seq2). The methods differ in the usage of 
unique molecular identifier sequences (UMI), which allow the discrimination between reads 
derived from original mRNA molecules and duplicates during cDNA amplification. Data 
processing was identical across methods and analyzed cell numbers per method and 
replicate are given, which were used to compare sensitivity, accuracy, precision and cost-
efficiency. The five scRNA‑seq methods are denoted by color throughout the figures of this 
study: purple - CEL‑seq, orange - Drop‑seq, green SCRB‑seq, blue - Smart‑seq, yellow - 
Smart‑seq2.  
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Results 

Generation of scRNA‑seq libraries 
We generated scRNA‑seq libraries from mouse embryonic stem cells (mESCs) in two 
independent replicates using Smart‑seq24, Smart‑seq28, Drop‑seq17 and SCRB‑seq15. 
Additionally, we used available scRNA‑seq data23 from mESCs that was generated using 
CEL‑seq18. An overview of the employed methods and their library generation workflows is 
provided in Figure 2 and in Supplementary Table 1. 
For each replicate of the Smart‑seq protocol, we performed a run on the C1 platform from 
Fluidigm (Smart‑seq/C1) using the 10-17 µm mRNA‑seq Integrated Fluidic Circuit (IFCs) 
microfluidic chips that can automatically capture up to 96 cells7. We imaged the cells to 
identify doublets (see below) and added lysis buffer together with External RNA Control 
Consortium spike-ins (ERCCs) that consist of 92 poly-adenylated synthetic RNA transcripts 
spanning a range of concentrations25. We used the commercially available Smart‑seq kit 
(Clontech) that uses oligo-dT priming, template switching and PCR amplification to 
generate full-length double-stranded cDNA. We harvested the amplified cDNAs and 
converted them into 96 different sequenceable libraries by tagmentation (Nextera, Illumina) 
and PCR amplification using indexed primers for multiplexing. Advantages of this system 
include that single cell isolation and cDNA generation is automated, that captured cells can 
be imaged, that reaction volumes are small and that full-length cDNA libraries are 
sequenced. 
For each replicate of the Smart‑seq2 protocol, we sorted mESCs by flow cytometry into 
96‑well PCR plates containing lysis buffer and ERCCs. We generated cDNA as described8,9 
and used an in-house produced Tn5 transposase26 to generate 96 libraries by 
tagmentation. While Smart‑seq/C1 and Smart‑seq2 are very similar protocols that generate 
full-length libraries they differ in how cells are isolated, the reaction volume and in that 
Smart‑seq2 has been systematically optimized8,9. The main disadvantage of both protocols 
is that the generation of full-length cDNA libraries precludes an early barcoding step and 
the incorporation of UMIs.  
For each replicate of the SCRB‑seq protocol15, we also sorted mESCs by flow cytometry 
into 96-well PCR plates containing lysis buffer and ERCCs. Also similar to Smart‑seq2, 
cDNA is generated by oligo-dT priming, template switching and PCR amplification of full-
length cDNA. However, the oligo-dT primers contain well-specific (i.e. cell-specific) 
barcodes and UMIs. Hence, cDNA from one plate can be pooled and then be converted 
into RNA‑seq libraries, whereas a modified transposon-based fragmentation approach is 
used that enriches for 3’ ends. The protocol is optimized for small volumes and few 
handling steps, but it does not generate full-length RNA‑seq profiles and its performance 
compared to other methods is unknown.  
The fourth method evaluated was Drop‑seq, a recently developed microdroplet-based 
approach17. Similarly to SCRB‑seq, each cDNA molecule is labeled with a cell-specific 
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multiplexing barcode and an UMI to count original mRNA molecules. In the case of 
Drop‑seq, over 108 of such barcoded oligo-dT primers are immobilized on beads with each 
bead carrying a unique cell barcode. A flow of beads suspended in lysis buffer and a flow of 
a single-cell suspension are brought together in a microfluidic chip that generates nanoliter-
sized emulsion droplets. Cells are lysed within these droplets, their mRNA binds to the 
oligo-dT-carrying beads, and after breaking the droplets reverse transcription, template 
switching and library generation is performed for all cells in parallel in a single tube. The 
ratio of beads to cells (20:1) ensures that the vast majority of the beads have either no 
(>95% expected when Poisson distributed) or one single cell (4.8% expected) in their 
droplet and hence ensures that doublets are rare (<0.12% expected)17. We benchmarked 
our Drop‑seq setup as recommended17 and determined the doublet rate by mixing mouse 
and human T-cells (~2.5% of sequenced cell transcriptomes; Supplementary Fig.  1a), 
confirming that the Drop‑seq protocol works well in our setup. The main advantage of the 
protocol is that many scRNA‑seq libraries can be generated at low costs. One 
disadvantage is that the simultaneous inclusion of ERCC spike-ins is not practical for 
Drop‑seq, as their addition would generate cDNA from ERCCs also in all beads that have 
no cell and hence would approximately double the sequencing costs. As a proxy for the 
missing ERCC data, we used a published dataset17, where ERCC spike-ins were 
sequenced by the Drop‑seq method without single-cell transcriptomes.  
Finally, we re-analyzed data23 generated using CEL‑seq18 for which two replicates of 
scRNA‑seq libraries were available for the same cell type and culture conditions (mESCs in 
2i/LIF). Similarly to Drop‑seq and SCRB‑seq, cDNA is tagged with multiplexing barcodes 
and UMIs. As opposed to the four PCR-based methods described above, CEL‑seq relies 
on linear amplification by in-vitro transcription (IVT) for the initial pre-amplification of single-
cell material. 
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Figure 2 | Schematic overview of key library preparation steps in each method analyzed in 
this study. 
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Processing of scRNA‑seq libraries 

For Smart‑seq2, Smart‑seq/C1, SCRB‑seq and Drop‑seq we generated libraries from 192, 
192, 192 and ~200 cells in the two independent replicates and sequenced a total of 852, 
437, 443 and 866 million reads, respectively. The data from CEL‑seq consisted of 
102 million reads from a total of 74 cells (Fig.  1, Supplementary Fig.  1b). All data were 
processed identically, with cDNA reads clipped to 45 bp, mapped using STAR27 and UMIs 
being quantified using the Drop‑seq pipeline17. To adjust for differences in sequencing 
depths, we used only cells with at least one million reads, resulting in 40, 79, 93, 162, 187 
cells for CEL‑seq, Drop‑seq, SCRB‑seq, Smart‑seq/C1 and Smart‑seq2, respectively. To 
exclude doublets (libraries generated from two or more cells) in the Smart‑seq/C1 data, we 
analyzed microscope images of the microfluidic chips and identified 16 reaction chambers 
with multiple cells that were excluded from further analysis. For the three UMI methods, we 
calculated the number of UMIs per library and found that - at least in our case of a rather 
homogenous cell population - doublets can be readily identified as libraries that have more 
than twice the mean total UMI count (Supplementary Fig. 1c), which lead to the removal of 
0, 3 and 9 cells for CEL‑seq, Drop‑seq and SCRB‑seq, respectively.  
Finally, to remove low-quality libraries, we used a method that exploits the fact that 
transcript detection and abundance in low-quality libraries correlate poorly with high-quality 
libraries as well as with other low-quality libraries28. We therefore determined the maximum 
Spearman correlation coefficient for each cell in all-to-all comparisons, which readily 
allowed the identification of low-quality libraries by visual inspection of the distributions of 
correlation coefficients (Supplementary Fig. 1c). This filtering led to the removal of 5, 16, 
30 cells for CEL‑seq, Smart‑seq/C1, Smart‑seq2, respectively, while no cells were removed 
for Drop‑seq and SCRB‑seq. The higher number for the two Smart‑seq methods is 
consistent with the notion that in the early barcoding methods (CEL‑seq, Drop‑seq, 
SCRB‑seq), low-quality cells are probably outcompeted by high-quality cells so that they 
do not pass our one million reads filter. As Smart‑seq/C1 and Smart‑seq2 libraries are 
generated in separate reactions, filtering by correlation coefficient is more important for 
these methods. 
In summary, we processed and filtered our data so that we could use a total of 482 high-
quality, equally sequenced scRNA‑seq libraries for a fair comparison of the sensitivity, 
accuracy, precision and efficiency of the methods. 

Single-cell libraries are sequenced to reasonable saturation at one million reads 
For all five methods >50% of the reads mapped to the mouse genome (Fig.  3a), 
comparable to previous results7,16. Overall, between 48% (Smart‑seq2) and 32% (CEL‑seq) 
of all reads were exonic and thus used to quantify gene expression levels. However, the 
UMI data showed that only 12 %, 5 % and 15 % of the exonic reads were derived from 
independent mRNA molecules for CEL‑seq, Drop‑seq and SCRB‑seq, respectively (Fig. 3a). 
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This indicates that - at the level of mRNA molecules - most of the libraries complexity has 
already been sequenced at one million reads. To quantify the relationship between the 
number of detected genes or mRNA molecules and the number of reads in more detail, we 
downsampled reads to varying depths and estimated to what extend libraries were 
sequenced to saturation (Supplementary Fig. 2). The number of unique mRNA molecules 
plateaued at 28,632 UMIs per library for CEL‑seq, increased only marginally at 
17,207 UMIs per library for Drop‑seq and still increased considerably at 49,980 UMIs per 
library for SCRB‑seq (Supplementary Fig. 2c). Notably, CEL‑seq showed a steeper slope at 
low sequencing depths than both Drop‑seq and SCRB‑seq, potentially due to a less biased 
amplification by in vitro transcription. Hence, among the UMI methods we found that 
SCRB‑seq libraries had the highest complexity of mRNA molecules that was not yet 
sequenced to saturation at one million reads. To investigate saturation for non-UMI-based 
methods, we applied a similar approach at the gene level by counting the number of genes 
detected by at least one read. By downsampling, we estimated that ~90% (Drop‑seq, 
SCRB‑seq) to 100% (CEL‑seq, Smart‑seq/C1, Smart‑seq2) of all genes present in the 
library were detected at 1 million reads (Fig. 3b, Supplementary Fig. 2a). In particular, the 
deep sequencing of Smart‑seq2 libraries showed clearly that the number of detected genes 
did not change when increasing the sequencing depth from one million to five million reads 
per cell (Supplementary Fig. 2b).  
All in all, these analyses show that single-cell RNA‑seq libraries are sequenced to a 
reasonable level of saturation at one million reads, a cut-off that has also been previously 
suggested for different scRNA‑seq datasets7,29. While it is important to keep in mind that it 
can be more efficient to analyze scRNA‑seq data at lower coverage (see analyses below), 
comparing scRNA‑seq methods at one million reads per cell represents a reasonable 
choice for the method comparison of this study. 

Smart‑seq2 has the highest sensitivity 

Taking the number of detected genes per cell as a measure to compare the sensitivity of the 
five methods, we found that Drop‑seq had the lowest sensitivity with a median of 
4811  genes detected per cell, while with CEL‑seq, SCRB‑seq and Smart‑seq/C1 6839, 
7906 and 7572 genes per cell were detected, respectively (Fig. 3c). Smart‑seq2 detected 
the highest number of genes per cell, with a median of 9138. To compare the total number 
of genes detected across several cells, we pooled 35 cells per method and detected 
~16,000 genes for CEL‑seq and Drop‑seq, ~17,000 for SCRB‑seq, ~18,000 for Smart‑seq/
C1 and ~19,000 for Smart‑seq2 (Fig. 3d). While the vast majority of genes (~12,000) were 
detected by all methods, ~500 genes were specific to each of the 3’ counting methods, but 
~1000 genes were specific to each of the two full-length methods (Supplementary 
Fig. 3a,b). That the full length methods detect more genes in total is also apparent when 
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plotting the genes detected in all available cells as the 3’ counting methods level off well 
below 20,000 genes while the two full-length methods well above 20,000 genes (Fig. 3d).  
How even reads cover mRNAs can be regarded as another measure of sensitivity. As 
expected, the 3’ counting methods showed a strong bias of reads mapped to the 3’ end 
(Supplementary Fig.  4a). However, it is worth mentioning that a considerable fraction of 
reads also covered more 5’ regions, probably due to internal oligo-dT priming30. 
Smart‑seq2 showed a more even coverage than Smart‑seq, confirming previous findings8. 
A general difference between the 3’-counting and the full-length methods can also be seen 
in the quantification of expression levels as they are separated by the first principal 
component explaining 75% of the total variance (Supplementary Fig. 4b). 
As an absolute measure of sensitivity, we compared the probability of detecting the 
92 spiked-in ERCCs, for which the number of molecules available for library construction is 
known (Supplementary Fig.  5). We determined the detection probability of each ERCC 
mRNA as the proportion of cells with non-zero read or UMI counts31. For the CEL‑seq data, 
Gruen et al. noted that their ERCCs were likely degraded23 and we also found that ERCCs 
from the CEL‑seq data are detected with a ten-fold lower efficiency than for the other 
methods (data not shown). Therefore, we did not consider the CEL‑seq libraries for any 
ERCC-based analyses. For Drop‑seq, we used the ERCC-only data set17 and for the other 
three methods, 2-5% of the one million reads per cell mapped to ERCCs, which were 
sequenced to complete saturation at that level (Supplementary Fig. 5b). For Smart‑seq2, an 
ERCC RNA molecule was detected on average in half of the libraries when ~7 molecules 
were present in the sample, while Smart‑seq/C1 required ~11 molecules for detection in 
half of the libraries. Drop‑seq and SCRB‑seq has estimates of ~16-17 molecules per cell 
(Supplementary Fig. 5c-e).  
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Figure 3 | Sensitivity of scRNA‑seq methods. (a) Percentage of the 1 million downsampled 
reads that can not be mapped to the mouse genome (grey), are mapped to regions outside 
exons (orange), inside exons (blue) and carry a unique UMI (green). For UMI methods, blue 
denotes the duplicated exonic reads. (b) Median number of genes detected (CPM>=1) per 
cell when downsampling total read counts to indicated depths. Dashed line above 1 million 
reads represents the extrapolated asymptotic fit. (c) Number of genes detected (CPM>=1) 
per cell. Each dot represents a cell and each boxplot represents the median, first and third 
quartile per replicate and method. (d) Cumulative number of genes detected as more cells 
are added. The order of cells considered was drawn randomly 100 times to display mean ± 
standard deviation (shaded area). 
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Notably, the sensitivity estimated from the number of detected genes does not fully agree 
with the comparison based on ERCCs. While Smart‑seq2 is the most sensitive method in 
both cases, Drop‑seq performs better and SCRB‑seq performs worse when using ERCCs. 
The reasons for this discrepancy are unclear, but several have been noted before32–34 
including that ERCCs do not model endogenous mRNAs perfectly since they are shorter, 
have shorter poly-A tails, lack a 5’ cap and can show batch-wise variation in concentrations 
as observed for the CEL‑seq data. In the case of Drop‑seq, it should be kept in mind that 
ERCCs were sequenced separately as discussed above and in this way leading to a higher 
efficiency. Therefore, while it is still useful to estimate the absolute range in which molecules 
are detected, for our purpose of comparing the sensitivity of methods using the same cells, 
we regard the number of detected genes per cell as the more reliable estimate of sensitivity 
in our setting, as it sums over many, non-artificial genes. 
In summary, we find that Smart‑seq2 is the most sensitive method as it detects the highest 
number genes per cell, the most genes in total across cells and has the most even 
coverage of transcripts. Smart‑seq/C1 is slightly less sensitive per cell, but detects the 
same number of genes across cells, if one considers its lower fraction of mapped exonic 
reads (Fig.  3a). Among the 3’ counting methods, SCRB‑seq is most sensitive, closely 
followed by CEL‑seq, whereas Drop‑seq detects considerably fewer genes.  
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Accuracy is similar across scRNA‑seq methods 

In order to quantify the accuracy of transcript level quantifications, we compared observed 
expression values with annotated molecule concentration of the 92 ERCC transcripts 
(Supplementary Fig. 5a). For each cell, we calculated the correlation coefficient (R2) for a 
linear model fit (Fig 4). While the median accuracy did differ among methods (Kruskal-Wallis 
test, p<2.2e-16), all methods had high accuracies ranging between 0.86 and 0.91. As 
discussed above, CEL‑seq was excluded from the ERCC analyses due to the potential 
degradation of the ERCCs in this data set23. The original publication for CEL‑seq from 10 pg 
of total RNA input and ERCC spike-in reported a mean correlation coefficient of R2=0.8718, 
similar to the correlations reported for the other four methods. Hence, we find that the 
accuracy is similarly high across all five methods and also because absolute expression 
levels are rarely of interest, the small differences in accuracy will rarely be a decisive factor 
when choosing among the five methods.  

 Figure 4 | Accuracy of scRNA‑seq methods. ERCC expression values were correlated to their 

annotated molarity. Shown are the distributions of correlation coefficients (adjusted R2 of linear 

regression model) across methods. Each dot represents a cell/bead and each boxplot represents the 

median, first and third quartile.  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Precision is highest for CEL‑seq and SCRB‑seq and strongly increased by UMIs 

While a high accuracy is necessary to quantify absolute expression values, one of the most 
common experimental aims is to compare relative expression levels in order to identify 
differentially expressed genes or biological variation between cells. Hence, the precision of 
a method - i.e. its reproducibility or its amount of technical variation - is the major factor 
that determines the power to detect differentially expressed genes. As we used the same 
cells under the same culture conditions for all five methods, we assume that the amount of 
biological variation is the same across all five methods. Therefore, differences in the total 
variation among methods can be interpreted as differences in their technical variation. In 
order to compare variation for the same set of genes across all methods, we analyzed all 
12942 genes that were detected in 25% of the cells by at least one method (Supplementary 
Fig.  6). In this way we also include genes that are hardly or not at all detected by less 
sensitive methods and allow for a fair comparison of technical variation.  
To visualize the amount of variation as proposed before35, we plotted for each gene its 
squared coefficient of variation (CV²) against its mean expression count. As expected35, we 
found a strong negative correlation, i.e. that lowly expressed genes vary more (Fig.  5). 
Importantly, we find that all three UMI methods clearly outperform the two non-UMI 
methods (Fig. 5b) and that this depends on the usage of UMIs, as the UMI methods show 
much higher variation when counting reads instead of UMIs (Fig.  5a). This reduction in 
variation due to UMIs has been described before for CEL‑seq23 and seems even stronger 
for SCRB‑seq and Drop‑seq, fitting with the notion that in vitro amplification is more precise 
than PCR amplification. 


So while it is evident from this analysis that CEL‑seq and SCRB‑seq are the most precise 
methods (Fig.  5b), it is not equally clear how this affects the detection of differentially 
expressed genes and how it can inform the experimental design. Therefore, we conducted 
power simulations that used - for each method across the set of 12942 genes - the 
observed mean-variance relationship and the dropout probability to simulate read counts 
when 5% of genes are differently expressed between two groups of single cells. To this end 
we first estimated the mean and dispersion parameter (i.e. the shape parameter of the 
gamma mixing distribution) for each gene per method. Next, we fitted a spline to the 
resulting pairs of mean and dispersion estimates (Supplementary Fig. 7a) in order to predict 
the dispersion of a gene given its mean. Moreover, we included the sensitivity of each 
scRNA‑seq method in the power simulations by modeling a gene-wise dropout parameter 
from the observed detection rates also dependent on the mean expression (Supplementary 
Fig. 7b). 
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Figure 5 | Precision of scRNA‑seq methods. (a) Gene-wise mean and squared coefficient of variation 

(CV) of scRNA‑seq data were calculated. Scatter plots are shown for UMI (blue) and read-count 
(orange) based quantification. (b) Linear model (lm) fits of CV2 for UMI (CEL‑seq, Drop‑seq, 

SCRB‑seq) and read-count (Smart‑seq/C1, Smart‑seq2) based quantification. 


Subsequently, we simulate read counts for two groups that mimic realistic gene expression 
changes by adding log-fold changes to 5% of the genes. These log-fold changes were 
drawn from observed differences between microglial subpopulations from a previously 
published dataset36 to mimic a biologically realistic scenario The simulated datasets were 
then tested for differential expression using limma37 from which the average true positive 
rate (TPR) and the average false discovery rate (FDR) could be calculated. 
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First, we analyzed how the number of cells affects TPR and FDR by running 100 simulations 
each for a range of 16 to 512 cells per group. As expected, SCRB‑seq and CEL‑seq 
performed best, reaching a TPR of 80% with 72 and 77 cells, respectively (Fig. 6a). While 
Drop‑seq reached 80% power with a slightly lower estimate of 111 cells, Smart‑seq2 and 
Smart‑seq/C1 reached 80% power only for larger cell numbers of 139 and 190 per group, 
respectively. FDRs were similar in all methods and just slightly above 5% (Suppl. Fig. 8).  
Accordingly, when simulating the power to detect expression differences with a fixed 
sample size of 64 cells per group, SCRB‑seq and CEL‑seq performed best (Fig.  6b), 
followed by Drop‑seq, while Smart‑seq/C1 had the lowest power. As expected from the 
mean-variance plots above, when analyzing power without using UMIs, SCRB‑seq and 
CEL‑seq performed similar to Smart‑seq/C1, while Drop‑seq performed very poorly 
(Fig. 6b). Hence, UMIs strongly increase the power to detect differentially expressed genes 
by scRNA‑seq. For the read-count based Smart‑seq methods, Smart‑seq2 consistently 
performed better than Smart‑seq/C1. 
Next, we asked how TPR and FDR depend on the sequencing depth. We repeated our 
simulation studies as described above, but estimated the mean-dispersion and mean-
dropout relationships from data downsampled to 500,000 or 250,000 reads per cell. Overall, 
the decrease in power was very moderate (Fig. 6c, Supplementary Fig. 8). Interestingly, not 
all methods respond to downsampling at similar rates. While CEL‑seq was nearly 
unaffected in power by downsampling to either 500,000 or 250,000 reads, power 
decreased a bit more for SCRB‑seq, when downsampling to 250,000 reads. For Drop‑seq, 
there is a clear reduction in power when downsampling from 1,000,000 to 500,0000 reads, 
but no further loss is seen for 250,000 reads. For the Smart‑seq methods, we do not see a 
strong effect of downsampling, although a slight variance in the power estimate is 
observed. 
In summary, when using power simulations to compare precision among methods, CEL‑seq 
and SCRB‑seq performed best, followed by Drop‑seq. Smart‑seq2 and especially 
Smart‑seq/C1 performed considerably worse, due to their lack of UMIs. 
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Figure 6 | Power analysis. (a)-(b) Power simulations using empirical mean/dispersion and mean/
dropout relationships from single-cell data at 1 million reads. Simulated effect sizes of at least 
0.25  log2 fold-change are considered. Boxplots represent the median, first and third quartile of 100 
simulations. (a) Power analysis of variable sample sizes n=16, n=32, n=64, n=128, n=256 and n=512. 
Shown are power calculations of 100 simulations for each method. (b) For a fixed sample size of 
n=64, we computed the power of read-count and UMI quantification over 100 simulations. (c) Power 
simulations using mean/dispersion and mean/dropout estimates from empirical single-cell data at 
1 million, 0.5 million and 0.25 million reads. Line areas indicate the median power with standard error 
over 100 simulations.  

!17

0.00

0.25

0.50

0.75

1.00

16 32 64 128 256 512
Cells simulated

M
ar

gi
na

l P
ow

er

CEL−seq Drop−seq SCRB−seq Smart−seq2 Smart−seq / C1

a

Reads UMIs

0.00

0.25

0.50

0.75

M
ar

gi
na

l P
ow

er

b

1,000,000 500,000 250,000

0.25

0.50

0.75

1.00

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Cells simulated

M
ar

gi
na

l P
ow

er

CEL−seq Drop−seq SCRB−seq Smart−seq2 Smart−seq / C1
c

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 31, 2016. ; https://doi.org/10.1101/035758doi: bioRxiv preprint 

https://doi.org/10.1101/035758
http://creativecommons.org/licenses/by-nc-nd/4.0/


Efficiency is highest for SCRB‑seq and Drop‑seq when considering costs and power 
In practice, the costs of a method also matter when judging the performance of different 
scRNA‑seq methodologies. We estimated the cost-efficiency by calculating the costs for 
generating scRNA‑seq data at a given amount of power. Given the number of single cells 
that are needed per group to reach 80% power as simulated above for three sequencing 
depths (Fig.  6a), we calculated the costs to generate and sequence these libraries. For 
example, at one million reads, SCRB‑seq requires 72 cells per group and generating 
144  SCRB‑seq libraries costs ~290€ plus sequencing costs of ~720€. We assume that 
generating paired-end reads for CEL‑seq, SCRB‑seq and Drop‑seq is done with a 50 cycles 
single end kit and thus costs the same as sequencing single-end Smart‑seq libraries. 


Table 1 | Cost efficiency extrapolation for single-cell RNA‑seq experiments. 

a Based on simulations (Fig. 6a) for detection of log2 (fold-change) >= 0.25 
b assuming 5 € per million reads 
c sequencing depth 1 million reads 
d sequencing depth 0.5 million reads 
e sequencing depth 0.25 million reads 

When we do analogous calculations for the four other methods (Table 1, Supplementary 
Fig.  9), we find that at a sequencing depth of 1 million reads SCRB‑seq is most cost-
effective, followed by Drop‑seq and CEL‑seq, while Smart‑seq/C1 is almost ten-fold less 
efficient due its high library costs that arise from the microfluidic chips and the costs for 
generating independent libraries. Smart‑seq2 is similarly expensive when relying on 
commercial library preparation reagents. However, these costs can be significantly reduced 
by in-house production of Tn5 transposase26 as was also done in our experiments.  

Method Marginal 

Power

FDR 

(%)

ncells  

 (per group)

Library cost 

per cell (€)

Experiment cost (€) 

(incl. sequencingb)

CEL‑seq 0.8a ~5.3 77c | 80d | 80e ~8 ~ 2000c | 1680d | 1480e

Drop‑seq 0.8a ~7.1 111c | 135d | 132e ~0.1 ~ 1130c | 700d | 360e

SCRB‑seq 0.8a ~5.8 72c | 70d | 94e ~2 ~ 1010c | 630d | 610e

Smart‑seq/C1 0.8a ~5.8 190c | 184d | 195e ~25 ~ 11380c | 10130d | 10260e

Smart‑seq2 

(commercial)

0.8a ~5.1 139c | 123d | 134e ~30 ~ 15280c | 12890d | 13720e

Smart‑seq2 

(in-house Tn5)

0.8a ~5.1 139c | 123d | 134e ~3 ~ 2220c | 1350d | 1140e
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Interestingly, we find that a relatively low sequencing depth seems sufficient for differential 
expression analysis, confirming previous findings15,38. Hence, methods with low per-cell 
reagent costs are in advantage, despite their lower sensitivity and precision. Indeed, at 
lower sequencing depths of a quarter million reads, we find that Drop‑seq is clearly the 
most efficient method. 
The estimates should be understood as a lower boundary for the real costs since many 
factors are not considered such as costs to set-up the methods, costs to isolate single cells 
or costs due to practical constraints in generating a fixed number of scRNA‑seq libraries. In 
particular, it is important that independent biological replicates are needed when 
investigating particular factors such as genotypes or developmental timepoints and some 
methods such as Smart‑seq/C1 and Drop‑seq are less flexible in distributing scRNA‑seq 
libraries across replicates. This said, we do think that our simulations do allow a fair and 
realistic comparison of the five methods and reveal that SCRB‑seq and Drop‑seq are the 
most efficient methods analyzed here. 
  

Discussion 

Single-cell RNA‑sequencing (scRNA‑seq) is a powerful technology to tackle a multitude of 
biomedical questions. To facilitate choosing among the many approaches that were 
recently developed, we systematically compared five scRNA‑seq methods and assessed 
their sensitivity, accuracy, precision and cost-efficiency. We chose a leading commercial 
platform (Smart‑seq/C1), one of the most popular full-length methods (Smart‑seq2), a 
method that uses in-vitro transcription for amplification from manually isolated cells 
(CEL‑seq), a PCR-based method with a very high throughput (Drop‑seq) and a UMI-based 
method that allows single-cell isolation by FACS (SCRB‑seq). Protocols are available for all 
these methods and can therefore be set up by any molecular biology lab.  
We find that SCRB‑seq, Smart‑seq/C1 and CEL‑seq detect a similar number of genes per 
cell, while Drop‑seq detects nearly 50% less than the most sensitive method Smart‑seq2 
(Fig. 3b,c). Despite this lower per cell sensitivity, Drop‑seq does not generally detect fewer 
genes since the total number of detected genes converges around 18,000, similar as for 
SCRB‑seq and CEL‑seq (Fig. 3d). A potential explanation could be that a fraction of mRNA 
molecules gets detached from the beads when droplets are broken up for reverse 
transcription. It will be interesting to see whether this step could be optimized in the future. 
While the three 3’ counting methods detect largely the same set of genes, Smart‑seq/C1 
and Smart‑seq2 detect around 3000 additional genes (Fig.  3d, Supplementary Fig.  3b), 
suggesting that some 3’ ends of cDNAs might be difficult to convert to sequenceable 
molecules. When using ERCCs to compare absolute sensitivities, we again find Smart‑seq2 
to be the most sensitive method. However, we also find that sensitivity estimates from 
ERCCs do not perfectly correlate with estimates from endogenous genes, suggesting that 
they might not always be an ideal benchmark for comparing different methods. In summary, 
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we find that Smart‑seq2 is the most sensitive method based on its gene detection rate per 
cell and in total. In addition, Smart‑seq2 shows the most even read coverage across 
transcripts (Supplementary Fig. 4a), making it the most appropriate method for detecting 
alternative splice forms. Hence, it would in general be the most suitable method when an 
annotation of single cell transcriptomes is the focus. 
We find that accuracy is similarly high across methods. However, because absolute 
quantification of mRNA molecules is rarely of interest, accuracy is not an important criterion 
for choosing among the five methods. In contrast, relative quantification of gene expression 
levels is of interest for most scRNA‑seq studies and hence the precision of the method is an 
important benchmark. When approximating technical variation and reproducibility as gene-
wise coefficient of variation, we find that SCRB‑seq and CEL‑seq have the highest 
precision. Both the variance analysis and our power simulations show that UMIs increase 
the power for differential gene expression considerably, especially for the PCR-based 
methods (Fig.  5a, Fig.  6b). This is due to the large amount of amplification needed for 
scRNA‑seq libraries, as the effect of UMIs on power for bulk RNA‑seq libraries is 
neglectable39. Although CEL‑seq and SCRB‑seq have the highest precision for a fixed set 
of cells, what matters in practice is the trade-off between costs and power. Using 
simulations considering the mean-variance relationship and the dropout probabilities for a 
realistic level of differential gene expression, we find that at one million reads, SCRB‑seq is 
the most efficient method. When reducing the number of sequenced reads per cell to 
250,000, it is Drop‑seq (Table 1, Supplementary Fig. 9). Interestingly, Smart‑seq2 using in-
house produced transposase is - despite its lower precision - still reasonably efficient, 
probably due to its higher sensitivity. In contrast, Smart‑seq/C1 and Smart‑seq2 using 
commercial transposase are by far the least efficient methods due to their high costs and 
their lower precision.  
As mentioned above, the cost estimates are a lower boundary and many additional aspects 
will be important when choosing a method. Despite its lower efficiency to quantify 
expression levels, Smart‑seq2 might be preferable if one can produce transposase and is 
interested also in splice variants. SCRB‑seq or Smart‑seq2 might be also preferable when 
rare subpopulations are isolated by FACS as Drop‑seq in its current setup requires a large 
amount of cells. Another advantage of these two methods is that they can also be used for 
generating bulk RNA‑seq libraries. So while such factors will be differently weighted by 
each individual lab and for each research question, our analyses provide a solid basis for 
such considerations when choosing among the five analysed methods. 
Our analysis also provide a basis for evaluating further improvements of scRNA‑seq 
methods. For example, the efficiency of the Fluidigm C1 platform can be increased 
considerably, when implementing UMI-based protocols on the C1 platform22,40, or using 
early barcoding to increase the number of cells per chip, as available in the HT mRNA‑seq 
IFC. The CEL‑seq variant MARS‑seq combines the high precision of UMIs and IVT-based 
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amplification with higher throughput16 and SCRB‑seq is even more cost-efficient on a 384-
well format15. Other recent developments, such as CEL‑seq240 promise to further increase 
the performance of scRNA‑seq protocols. 

In summary, we find that Drop‑seq is the most efficient method when quantifying 
transcriptomes of a large numbers of cells with low sequencing depth. Smart‑seq2 is 
probably preferred when annotation of transcriptomes and alternative splicing is of 
relevance. Smart‑seq2 using in-house produced transposase and SCRB‑seq might be 
preferable for analyzing fewer numbers of cells, especially when cells need to be 
preselected by FACS and bulk RNA‑seq needs to be generated with the same 
methodology. 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Methods 

Published data 

CEL‑seq data for J1 mESC cultured in 2i/LIF condition23 were obtained under accession 
GSE54695. Drop‑seq ERCC17 data were obtained under accession GSE66694. Raw fastq 
files were extracted using the SRA toolkit (2.3.5). We trimmed cDNA reads to the same 
length and processed raw reads in the same way as data sequenced for this study. 

Cell culture of mESC 
J1 mouse embryonic stem cells were maintained on gelatin-coated dishes in Dulbecco's 
modified Eagle's medium supplemented with 16% fetal bovine serum (FBS, Sigma-Aldrich), 
0.1 mM β-mercaptoethanol (Invitrogen), 2 mM L-glutamine, 1x MEM non-essential amino 
acids, 100 U/ml penicillin, 100 µg/ml streptomycin (PAA Laboratories GmbH), 1000 U/ml 
recombinant mouse LIF (Millipore) and 2i (1µM PD032591 and 3µM CHIR99021 (Axon 
Medchem, Netherlands). J1 embryonic stem cells were obtained from E. Li and T. Chen and 
mycoplasma free determined by a PCR-based test. Cell line authentication was not recently 
performed. 

Single cell RNA‑seq library preparations 

Drop‑seq 

Drop‑seq experiments were performed as published17 and successful establishment of the 
method in our lab was confirmed by a species-mixing experiment (Supplementary Fig. 1a). 
For this work, J1 mES cells (100/µl) and barcode-beads (120/µl, Chemgenes) were co-flown 
in Drop‑seq PDMS devices (Nanoshift). Emulsions were broken by addition of 
perfluoroctanol (Sigma-Aldrich) and mRNA on beads was reverse transcribed (Maxima RT, 
Thermo Fisher). Unused primers were degraded by addition of Exonuclease I (New England 
Biolabs). Washed beads were counted and aliquoted for pre-amplification (2000 beads / 
reaction). Nextera XT libraries were constructed from 1 ng of pre-amplified cDNA with a 
custom P5 primer (IDT). 

SCRB‑seq 
RNA was stabilized by resuspending cells in RNAprotect Cell Reagent (Qiagen) and RNAse 
inhibitors (Promega). Prior to FACS sorting, cells were diluted in PBS (Invitrogen). Single 
cells were sorted into 5 µl lysis buffer consisting of a 1/500 dilution of Phusion HF buffer 
(New England Biolabs) and ERCC spike-ins (Ambion), spun down and frozen at -80 °C. 
Plates were thawed and libraries prepared as described previously15. Briefly, RNA was 
desiccated after protein digestion by Proteinase K (Ambion). RNA was reverse transcribed 
using barcoded oligo-dT primers (IDT) and products pooled and concentrated. 
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Unincorporated barcode primers were digested using Exonuclease I (New England Biolabs). 
Pre-amplification of cDNA pools were done with the KAPA HiFi HotStart polymerase (KAPA 
Biosystems). Nextera XT libraries were constructed from 1 ng of pre-amplified cDNA with a 
custom P5 primer (IDT). 

Smart‑seq/C1 
Smart‑seq/C1 libraries were prepared on the Fluidigm C1 system according to the 
manufacturer's protocol. Cells were loaded on a 10-17 µm RNA‑seq microfluidic IFC at a 
concentration of 200,000/ml. Capture site occupancy was surveyed using the Operetta 
(Perkin Elmer) automated imaging platform. 

Smart‑seq2 
mESCs were sorted into 96-well PCR plates containing 2 µl lysis buffer (1.9 µl 0.2% 
TritonX-100; 0.1 µl RNAseq inhibitor (Lucigen)) and spike-in RNAs (Ambion), spun down and 
frozen at -80 °C. To generate Smart‑seq2 libraries, priming buffer mix containing dNTPs and 
oligo-dT primers was added to the cell lysate and denatured at 72 °C. cDNA synthesis and 
pre-amplification of cDNA was performed as described previously8,9. Sequencing libraries 
were constructed from 2.5 ng of pre-amplified cDNA using an in-house generated Tn5 
transposase26. Briefly, 5 µl cDNA was incubated with 15 µl tagmentation mix (1 µl of Tn5; 2 
µl 10x TAPS MgCl2 Tagmentation buffer; 5 µl 40% PEG8000; 7 µl water) for 8 min at 55 °C. 
Tn5 was inactivated and released from the DNA by the addition of 5 µl 0.2% SDS and 5 min 
incubation at room temperature. Sequencing library amplification was performed using 5 µl 
Nextera XT Index primers (Illumina) that had been first diluted 1:5 in water and 15 µl PCR 
mix (1 µl KAPA HiFi DNA polymerase (KAPA Biosystems); 10µl 5x KAPA HiFi buffer; 1.5 µl 
10mM dNTPs; 2.5µl water) in 10 PCR cycles. Barcoded libraries were purified and pooled 
at equimolar ratios. 

DNA sequencing 
For SCRB‑seq and Drop‑seq, final library pools were size-selected on 2% E-Gel Agarose 
EX Gels (Invitrogen) by excising a range of 300-800 bp and extracting DNA using the 
MinElute Kit (Qiagen) according to the manufacturer's protocol. 
Smart‑seq/C1, Drop‑seq and SCRB‑seq library pools were sequenced on a Illumina 
HiSeq1500 using High Output mode. Smart‑seq2 pools were sequenced on Illumina 
HiSeq2500 (Replicate A) and HiSeq2000 (Replicate B) platforms. Smart‑seq/C1 and 
Smart‑seq2 libraries were sequenced 45 cycles single-end, whereas Drop‑seq and 
SCRB‑seq libraries were sequenced paired-end with 20 cycles to decode cell barcodes and 
UMI from read 1 and 45 cycles into the cDNA fragment. Similar sequencing qualities were 
confirmed by FastQC v0.10.1 (Supplementary Fig. 1b). 
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Basic data processing and sequence alignment 
Smart‑seq/C1/Smart‑seq2 libraries (i5 and i7) and Drop‑seq/SCRB‑seq pools (i7) were 
demultiplexed from the Nextera barcodes using deML41. All reads were trimmed to the 
same length of 45 bp by cutadapt42 and mapped to the mouse genome (mm10) including 
mitochondrial genome sequences and unassigned scaffolds concatenated with the ERCC 
spike-in reference. Alignments were calculated using STAR 2.4.027 using all default 
parameters. 
For libraries containing UMIs, cell- and gene-wise count/UMI tables were generated using 
the published Drop‑seq pipeline (v1.0)17. We discarded the last 2 bases of the Drop‑seq cell 
and molecular barcodes to account for bead synthesis errors. 
For Smart‑seq/C1 and Smart‑seq2, features were assigned and counted using the 
Rsubread package (v1.20.2)43. 

Power Analysis 
We developed a custom R package for statistical power evaluation of differential gene 
expression. For each method, we estimated the mean expression, dispersion and dropout 
probability per gene from the same number of cells per method. In the read count 
simulations, we followed the framework proposed in Polyester44, i.e. we retained the 
observed mean-variance dependency by applying a smooth spline fit. Furthermore, we 
included a log-logistic function for the binomial mean-dropout relationship. In each 
iteration, we simulated count measurements for 12942 genes (shared gene set) for sample 
sizes of 24, 25, 26, 27, 28 and 29 cells per group.  
The read count for a gene i in a cell j is modeled as a product of a binomial and negative 
binomial distribution:  

Xij ~ B(p = 1 – p0) * NB(µ, θ)  

The mean expression magnitude µ was randomly drawn from the empirical distribution. 5 
percent of the genes were defined as differentially expressed with an effect size drawn from 
the observed fold changes between microglial subpopulations in Zeisel et al36. The 
dispersion θ and dropout probability p0 were predicted by above mentioned fits.  
For each method, 100 RNA‑seq experiments were simulated and tested for differential 
expression using limma37 in combination with voom45 (v3.26.7). 

ERCC capture efficiency 

To estimate the single molecule capture efficiency, we assume that the success or failure of 
detecting an ERCC is a binomial process, as described before31. Detections are 
independent from each other and are thus regarded as independent Bernoulli trials. We 
recorded the number of cells with nonzero and zero read or UMI counts for each ERCC per 
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method and applied a maximum likelihood estimation to fit the probability of successful 
detection. The fit line was shaded with the 95% Wilson score confidence interval. 

Cost efficiency calculation 
We based our cost efficiency extrapolation on the power simulations starting from empirical 
data at different sequencing depths (250,000 reads, 500,000 reads, 1,000,000 reads; 
Fig. 6c). We determined the number of cells required per method and depth for adequate 
power (80%) by an asymptotic fit to the median powers. For the calculation of sequencing 
cost, we assumed 5€ per million raw reads, independent of method. Although UMI-based 
methods need paired-end sequencing, we assumed a 50 cycle sequencing kit is sufficient 
for all methods. 


Data accession 

The raw and analyzed data files can be obtained in GEO under accession number 
GSE75790. 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