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Most disease associated genetic risk factors are non-coding, making it challenging to design 48 

experiments to understand their functional consequences1,2. Identification of expression 49 

quantitative trait loci (eQTLs) has been a powerful approach to infer downstream effects of 50 

disease variants but the large majority remains unexplained.3,4. The analysis of DNA 51 

methylation, a key component of the epigenome5, offers highly complementary data on the 52 

regulatory potential of genomic regions6,7. However, a large-scale, combined analysis of 53 

methylome and transcriptome data to infer downstream effects of disease variants is lacking. 54 

Here, we show that disease variants have wide-spread effects on DNA methylation in trans 55 

that likely reflect the downstream effects on binding sites of cis-regulated transcription 56 

factors. Using data on 3,841 Dutch samples, we detected 272,037 independent cis-meQTLs 57 

(FDR < 0.05) and identified 1,907 trait-associated SNPs that affect methylation levels of 58 

10,141 different CpG sites in trans (FDR < 0.05), an eight-fold increase in the number of 59 

downstream effects that was known from trans-eQTL studies3,8,9. Trans-meQTL CpG sites 60 

are enriched for active regulatory regions, being correlated with gene expression and overlap 61 

with Hi-C determined interchromosomal contacts10,11. We detected many trans-meQTL 62 

SNPs that affect expression levels of nearby transcription factors (including NFKB1, CTCF 63 

and NKX2-3), while the corresponding trans-meQTL CpG sites frequently coincide with its 64 

respective binding site. Trans-meQTL mapping therefore provides a strategy for identifying 65 

and better understanding downstream functional effects of many disease-associated 66 

variants.  67 

 To systematically study the role of DNA methylation in explaining downstream effects of genetic 68 

variation, we analysed genome-wide genotype and DNA methylation in whole blood from 3,841 69 

samples from five Dutch biobanks12–16 (Figure 1 and Extended Data Table 1). We found cis-70 
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meQTL effects for 34.4% of all 405,709 tested CpGs (n=139,566 at a CpG-level FDR of 5%, P ≤ 71 

1.38 x 10-4), typically with a short physical distance between the SNP and CpG (median distance 72 

10 kb, Extended Data Fig. 1). By regressing out primary meQTLs effect for each of these CpGs 73 

and repeating the cis-meQTL mapping, we observed up to 16 independent cis-meQTLs for these 74 

CpGs (Extended Data Table 2). In total, we identified 272,037 independent cis-meQTL effects. 75 

Few factors determine whether a CpG site shows a cis-meQTL effect except the variance in 76 

methylation level of the CpG site involved: for the top 10% most variable CpGs, 57.2% showed a 77 

cis-meQTL effect, dropping to only 8.1% for the 10% least-variable CpGs (Extended Data Fig. 2, 78 

Extended Data Fig. 3a). The proportion of methylation variance explained by SNPs, however, is 79 

typically small (Extended Data Fig. 3b). When accounting for this strong effect of CpG variation, 80 

we find only modest enrichments and depletions for cis-meQTL CpG sites when using CpG island 81 

(CGI) and genic annotation (Extended Data Fig. 3e) or when using annotations of biological 82 

function based on chromatin segmentations of 27 blood cell types (Figure 2a).  83 

We contrasted these modest functional enrichments to CpGs whose methylation levels correlates 84 

with gene expression in cis (i.e. mapping expression quantitative trait methylations (eQTMs)), by 85 

generating RNA-seq data for 2,101 out of 3,841 individuals in our study. Using a conservative 86 

approach that maximally accounts for potential biases (i.e. cis-meQTL effects, cis-eQTL effects, 87 

batch effects and cell heterogeneity effects), we identified 12,809 unique CpGs that correlated to 88 

3,842 unique genes in cis (CpG-level FDR < 0.05). eQTMs were enriched for mapping in active 89 

regions, e.g. in and around active TSSs (3-fold enrichment, P = 1.8 x 10-91) and enhancers (2-fold 90 

enrichment, P = 1.1 x 10-139, Figure 2b). Of note, the majority of eQTMs showed the canonical 91 

negative correlation with transcriptional activity (69.2%) but a substantial minority of correlations 92 

was positive (30.8%) in line with recent evidence that DNA methylation does not always 93 
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negatively correlate with gene expression17. As expected, negatively correlated eQTMs were 94 

enriched in active regions like active TSSs (3.7- fold enrichment, P = 9.5 x 10-202). Positive 95 

correlations primarily occurred in repressed regions (e.g. Polycomb repressed, 3.4-fold 96 

enrichment, P = 5.8 x 10-103) (Extended Data Fig. 4). The sharp contrast between positively and 97 

negatively associated eQTMs, enabled us to build a model to predict the direction of the 98 

correlation. A decision tree trained on the strongest eQTMs (those with an FDR < 9.7x10-6, 99 

n=5,137) using data on histone marks and distance relative to gene, could predict the direction 100 

with an area under the curve of 0.83 (95% confidence interval, 0.78-0.87) (Figure 2d, e). 101 

We next ascertained whether trans-meQTLs are biologically informative, since previous trans-102 

eQTL mapping studies demonstrated that identifying trans-expression effects provide a powerful 103 

tool to uncover and understand downstream biological effects of disease-SNPs3,8,9. We focussed 104 

on 6,111 SNPs that were previously associated with complex traits and diseases (‘trait-associated 105 

SNPs’, see Methods and Extended Data Table 3). We observed that one-third of these trait-106 

associated SNPs (1,907 SNPs, 31.2%) affect methylation in trans at 10,141 CpG sites, totalling 107 

27,816 SNP-CpG combinations (FDR < 0.05, P < 2.6x10-7, Figure 3a), . This represents a 5-fold 108 

increase in the number of CpG sites affected as compared with a previous trans-meQTL mapping 109 

study18. We evaluated whether the GWAS SNP themselves were likely underlying the trans-110 

effects or that the associations could be attributed to another SNP in moderate LD. Of the 1,907 111 

GWAS SNPs with trans-effects, 1,538 (87.2%) were in strong LD with the top SNP (R2 > 0.8), 112 

indicating that the GWAS SNPs indeed are the driving force behind many of the trans-meQTLs. 113 

Of note, due to the sparse coverage of the Illumina 450k array, the true number of CpGs in the 114 

genome that are altered by these trait associated SNPs will be substantially higher. After the 115 

identification of the trans-meQTLs, we assessed if the trans-meQTLs also are present in 116 
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expression. Out of the 2,889 testable trans-eQTLs we identified 8.4% of these effects, 91% of the 117 

cases the effect direction was consistent  (Extended Data Table 4). 118 

To ascertain stability our trans-meQTLs, we performed a replication analysis in a the set of 1,748 119 

lymphocyte samples18: of the 18,764 overlapping trans-meQTLs between the datasets that could 120 

be tested, 94.9% had a consistent allelic direction (Figure 1E). 12,098 trans-meQTLs were 121 

nominally significant (unadjusted P < 0.05), of which 99.87% had a consistent allelic direction. 122 

This indicates that the identified trans-meQTLs are robust and not caused by differences in cell-123 

type composition. (Extended Data Table 5). To further ascertain the stability of the trans-meQTLs, 124 

we tested SNPs known to influence blood composition19,20 for effects on methylation in trans, 125 

finding these SNPs show no or only few trans-meQTLs whereas widespread trans-meQTL effects 126 

were to be expected if our analysis had not properly controlled for blood cell composition 127 

(Extended Data Table 6). Furthermore we linked our GWAS SNPs to the SNPs known to influence 128 

cell proportions and found that only 0.6% of the GWAS SNPs are in high LD with SNPs known 129 

to influence cell proportions. Lastly, we performed trans-meQTL mapping on uncorrected and cell 130 

type corrected data see supplemental results and Extended Data Table 7,8. 131 

In contrast to cis-meQTL CpGs, trans-meQTLs CpGs show many functional enrichments: they 132 

are enriched around TSSs and depleted in heterochromatin (Figure 2c) and are strongly enriched 133 

for being an eQTM (1,913 CpGs (18.9%), 5.2-fold, P = 2.3 x 10-101). The 1,907 trait-associated 134 

SNPs that make up the trans-meQTLs were overrepresented for immune- and cancer-related traits 135 

(Figure 3b). The large majority of trans-meQTLs were inter-chromosomal (93%, 9,429 CpG-SNP 136 

pairs) and included 12 trans-meQTLs SNPs (yielding 3,616 unique CpG-SNP pairs) that each 137 

showed downstream trans-meQTL effects across all of the 22 autosomal chromosomes (i.e. trans-138 

bands, Figure 3d).  139 
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We subsequently studied the nature of these trans-meQTLs. Using high-resolution Hi-C data10, 140 

we identified 720 SNP-CpG pairs (including 402 CpG sites and 172 SNPs) among the trans-141 

meQTLs that overlapped with an inter-chromosomal contact, which is 2.9-fold more frequent than 142 

expected by chance (P = 3.7 x 10-126, Figure 3c, d). These Hi-C inter chromosomal enrichments 143 

were not confounded due to SNPs that gave trans-meQTLs on many CpG sites (i.e. trans-bands): 144 

when removing those trans-meQTLs from the analysis, Hi-C enrichments remained highly 145 

significant (P = 1.7x10-61). This indicates that some relationships between SNPs and CpGs in trans 146 

are explained by inter-chromosomal contacts. In order to characterize the 720 SNP-CpG pairs 147 

overlapping with inter-chromosomal contacts, we performed motif enrichments using three motif 148 

enrichment analyses (Homer, PWMEnrich, DEEPbind)21–23. These analyses identified that the 402 149 

CpG sites frequently overlapped with CTCF, RAD21 and SMC3 binding sites (P = 2.3x10-5, P = 150 

3.5x10-5 and P = 5.1x10-5, respectively), factors known to affect chromatin architecture24,25. This 151 

finding was confirmed by incorporating ChIP-Seq data on CTCF binding (1.8-fold enrichment, P 152 

= 5.2x10-7). 153 

We next tested whether the trans-meQTLs reflected the effect of differential transcription factor 154 

(TF) binding of TFs that map close to the SNPs since TF binding has been implicated in 155 

demethylation and loss of TF occupancy with remethylation6,7. This suggests that if a SNP allele 156 

increases TF els in cis, that trans-meQTL effects are likely detectable, and that the SNP allele 157 

likely decreases methylation of these CpG sites. Indeed, we observed that if a SNP affects multiple 158 

CpGs sites in trans (at least 10, n=305) that the assessed allele often consistently increased or 159 

decreased methylation in trans, in the same direction for, on average, 76% of CpGs per trans-160 

meQTL SNP (expected 50%, P=10-111; Figure 4a). This skew in allelic effect direction was present 161 

for 59.7% of the 305 SNPs with at least 10 trans-meQTL effects increasing to 95.2% for 104 SNPs 162 
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with at least 50 trans-meQTL effects (binomial test P < 0.05), suggesting that differential TF 163 

binding may explain a substantial fraction of trans-meQTLs. 164 

In order to explore this mechanism further, we combined ChIP-seq data on TF binding at CpGs 165 

and cis-expression effects of SNPs to directly examine the involvement of TFs in mediating trans-166 

meQTLs. Among trait-associated SNPs influencing at least 10 CpGs in trans (n=305), we 167 

identified 13 trans-meQTL SNPs with strong support for a role of TFs (Figure 4a).  168 

The most striking example was a locus on chromosome 4 (Figure 4b), where two SNPs (rs3774937 169 

and rs3774959, in strong LD) were associated with ulcerative colitis (UC)26. Top SNP rs3774937 170 

was associated with differential DNA methylation at 413 CpG sites across the genome, 92% of 171 

which showed the same direction of the effect, i.e. lower methylation associated with the risk allele 172 

(binomial P=2.72x10-69). Of those 380 CpG sites with lower methylation, 147 (38.7%) overlap 173 

with a nuclear factor kappaB (NFKB) transcription factor binding site (2.75-fold enrichment, P = 174 

5.3x10-32), as based on ENCODE NFKB ChIP-seq data in blood cell types (Figure 4c). Three motif 175 

enrichment analyses (Homer, PWMEnrich, DEEPbind)21–23 also revealed an enrichment of NFKB 176 

binding motifs for the 413 CpG sites thus corroborating the ChIP-seq results. Notably, SNP 177 

rs3774937 is located in the first intron of NFKB1 and we found that the risk allele was associated 178 

with higher NFKB1 expression (Figure 4a). Of the 413 trans-CpGs, 64 were eQTMs and revealed 179 

a coherent gene network (Figure 4d) that was enriched for immunological processes related to 180 

NFKB1 function27 (Figure 4e). Taken together, these results support the idea that the rs3774937 181 

UC risk allele decreases DNA methylation in trans by increasing NFKB1 expression in cis. 182 

The same analysis approach indicated that the trans-methylation effects of rs8060686 (linked to 183 

various phenotypes including metabolic syndrome28 and coronary heart disease29, and affecting 184 

779 trans-CpGs) were due to CTCF which mapped 315 kb from rs8060686. We observed a strong 185 
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CTCF ChIP-seq enrichment with 603/779 trans-CpGs overlapping with CTCF binding (P =1.6x10-186 

232) and enriched CTCF motifs (Figure 4a and Extended Data Fig. 5). Of these trans-CpGs, only13 187 

have been observed previously in lymphocytes18. We observed that the risk allele increased DNA 188 

methylation in trans by decreasing CTCF gene expression in cis.  189 

We found another example of this phenomenon: 228 trans-meQTL effects of 4 SNPs on 190 

chromosome 10, mapping near NKX2-3 and implicated in inflammatory bowel disease26, were 191 

strongly enriched for NKX2 transcription factor motifs and associated with NKX2-3 expression. 192 

The risk alleles decreased DNA methylation in trans at NKX2-3 binding sites by increasing NKX2-193 

3 gene expression in cis (Extended Data Fig. 6). 194 

One height locus30 contained 4 SNPs which influence 267 trans-CpGs and implicate ZBTB38 195 

(Extended Data Fig. 7). In contrast to the aforementioned TFs that are transcriptional activators, 196 

ZBTB38 is a transcriptional repressor31,32 and its expression was positively correlated with 197 

methylation in trans, in line with our observation that eQTMs in repressed regions are enriched 198 

for positive correlations. Finally, the trans-methylation effects of rs7216064 (64 trans-CpGs), 199 

associated with lung carcinoma33, preferentially occurred at regions binding CTCF, while the SNP 200 

was located in the BPTF gene, known to occupy CTCF binding sites34 (Extended Data Fig. 8). 201 

The possibility to link trans-meQTL effects to an association of TF expression in cis and 202 

concomitant differential methylation in trans at the respective binding site is limited to TFs for 203 

which ChIP-seq data or motif information is available. In order to make inferences on TFs for 204 

which such data is not yet available, we ascertained whether trans-meQTLs SNPs were more 205 

often affecting TF gene expression in cis as compared with SNPs that were not giving trans-206 

meQTLs. We observed that 13.1% of the GWAS SNPs that gave trans-meQTLs also affect TF 207 
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gene expression in cis, whereas only 4.5% of the GWAS SNPs that do not give trans-meQTLs 208 

affect TF gene expression in cis (Fisher’s exact P = 6.6 x 10-13). 209 

Here we report that one third of known disease- and trait-associated SNPs has downstream 210 

methylation effects in trans, often affecting multiple regions across the genome. The biological 211 

mechanism underlying trans-meQTLs often involves a local effect on the transcriptional activity 212 

of nearby TFs that affects DNA methylation at distal binding sites of the corresponding TFs. The 213 

direction of downstream methylation effects is remarkably consistent for each SNP and indicates 214 

that decreased DNA methylation is a signature of increased binding of transcriptional activators. 215 

Our study reveals previously unrecognized functional consequences of disease variants in non-216 

coding regions. These can be looked up online (http://www.genenetwork.nl/biosqtlbrowser/), and 217 

provide leads for experimental follow-up. 218 

Figures 219 

Figure 1. Overview of a genomic region around TMEM176B, where the relations between a SNP, 220 

DNA methylation at nearby CpGs, and the associations with the gene itself are shown. a, 221 

Illustration of a methylation Quantitative Trait Locus (meQTL) b, Illustration of an expression 222 

Quantitative Trait Locus (eQTL). c, Ilustration of methylation-expression association (eQTM). 223 

The figures show how correction for meQTLs may increase detection of such associations. The 224 

left plot shows the data before correction for cis-meQTLs, the corrected data in the right figure 225 

shows the meQTL-corrected methylation data. d, Two overlaid pie charts. The inner chart 226 

indicates the proportion of tested CpGs harboring meQTLs. Over 35% of all tested CpGs show 227 

evidence for harboring a meQTL, either in cis or in trans. The outer chart indicates what CpGs are 228 
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associated with gene expression in cis (in total 3.2%). e, Replication of peripheral blood trans-229 

meQTLs in lymphocytes. 230 

 231 
Figure 2. a-c, Over- or underrepresentation of CpGs for different predicted chromatin states for 232 

cis-meQTLs, trans-meQTLs and eQTMs. Grey bars reflect uncorrected enrichments, colored bars 233 

reflect enrichments after correction for factors influencing the likelihood of harboring a meQTL 234 

or eQTM, including methylation variability. Bar graphs show odds ratios and error bars (95% 235 

confidence interval). CGI: CpG island; TssA: Active TSS; TssAFlnk: Flanking active TSS; 236 

TxFlnk, Transcribed at gene 5’ and 3’; Tx: Strong transcription; TxWk: Weak transcription; EnhG: 237 

Genic enhancer; Enh: Enhancer; ZNF/Rpts: ZNF genes and repeats; Het: Heterochromatin; 238 

TssBiv: Bivalent/Poised TSS; BivFlnk: Flanking bivalent TSS/Enhancer; EnhBiv: Bivalent 239 

enhancer. d, Decision tree for predicting the effect direction of eQTMs. Each subplot shows the 240 

distributions for positive (blue) and negative (red) associations for that subset of the data. Dashed 241 

vertical lines indicate the optimal split used by the algorithm. The boxes in the leaves indicate the 242 

number of positive and negative effects in each of the leaves. e, Receiver operator characteristic 243 

curve showing the performance of the decision tree.Figure 3. a, Distribution of tested trait-244 

associated SNPs influencing DNA methylation in trans. Over 1,900 SNPs (31.2%) of all tested 245 

SNPs have downstream effects on DNA methylation. b, Overrepresentation of SNPs with trans-246 

meQTLs in different GWAS trait categories, where the y-axis shows the odds ratio. c, Hi-C 247 

contacts are overrepresented among trans-meQTLs. Grey bars show the number of Hi-C contacts 248 

using permutated data, while the red bar reflects the actually observed number in our data. d, Dot-249 

plot depicting the trans-meQTLs. The effect strength is reflected by the size of the dot. Red dots 250 

indicate an overlap with a Hi-C contact. Several SNPs with widespread trans-meQTLs show inter-251 
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chromosomal contacts genome-wide, further implicating an important role for those SNPs in the 252 

development of the associated trait. 253 

Figure 3. a, Distribution of tested trait-associated SNPs influencing DNA methylation in trans. 254 

Over 1,900 SNPs (31.2%) of all tested SNPs have downstream effects on DNA methylation. b, 255 

Overrepresentation of SNPs with trans-meQTLs in different GWAS trait categories, where the y-256 

axis shows the odds ratio. c, Hi-C contacts are overrepresented among trans-meQTLs. Grey bars 257 

show the number of Hi-C contacts using permutated data, while the red bar reflects the actually 258 

observed number in our data. d, Dot-plot depicting the trans-meQTLs. The effect strength is 259 

reflected by the size of the dot. Red dots indicate an overlap with a Hi-C contact. Several SNPs 260 

with widespread trans-meQTLs show inter-chromosomal contacts genome-wide, further 261 

implicating an important role for those SNPs in the development of the associated trait. 262 

  263 
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Figure 4. a, An imbalance in effect direction of trans-meQTLs implies involvement of 264 

transcription factors. Each dot represents a SNP with at least 10 trans-meQTL effects. The x-axis 265 

shows the number of trans-effects where the minor allele increases methylation, whereas the y-266 

axis shows a decrease in methylation. SNPs with a multitude of effects of which many have the 267 

same allelic direction often exhibit evidence for a cis-eQTL on a transcription factor (colored dots), 268 

and an overrepresentation of CpGs in trans overlapping with binding sites for that transcription 269 

factor. b, Depiction of the NFKB1 gene and rs3774937, associated with ulcerative colitis. The plot 270 

shows an increased expression of NFKB1 for the risk allele C. c, In addition to influencing NFKB1 271 

expression, rs3774937 also influences DNA methylation at 413 CpGs in trans, decreasing 272 

methylation levels at 93% of affected CpG sites (dark grey). In addition, many of the CpG sites 273 

(37.3%) overlap with NFKB binding sites (3.8-fold enrichment, P-value = 5.3 x 10-32), shown in 274 

the outer chart. d, Illustrations of meQTL (left plot) and eQTL effects (right plot) of rs3774937 in 275 

trans. Only SNP-gene combinations were tested where the gene was associated with one of the 276 

413 CpGs with a trans-meQTL. e, Gene network of the eQTM genes associated with 72 of the 413 277 

CpGs (17.4%), that are showing a trans-meQTL (red). NFKB is depicted in blue. Genes also 278 

showing evidence for a trans-eQTL effect are shown in red. f, Top pathways as identified by 279 

enrichment method DEPICT for which many of the genes in e were overrepresented. Many of the 280 

identified pathways were inflammation-related, in line with the inflammatory nature of ulcerative 281 

colitis. 282 

Methods 283 

Cohort descriptions 284 

The five cohorts used in our study are described briefly below. The number of samples per 285 

cohort and references to full cohort descriptions can be found in Extended data table 1. 286 
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CODAM 287 

The Cohort on Diabetes and Atherosclerosis Maastricht13 (CODAM) consists of a selection of 288 

547 subjects from a larger population-based cohort.35 Inclusion of subjects into CODAM was 289 

based on a moderately increased risk to develop cardiometabolic diseases, such as type 2 290 

diabetes and/or cardiovascular disease. Subjects were included if they were of Caucasian descent 291 

and over 40 yrs of age and additionally met at least one of the following criteria: increased BMI 292 

(>25), a positive family history of type 2 diabetes, a history of gestational diabetes and/or 293 

glycosuria, or use of anti-hypertensive medication. 294 

LifeLines-DEEP 295 

The LifeLines-DEEP (LLD) cohort12 is a sub-cohort of the LifeLines cohort.36 LifeLines is a 296 

multi-disciplinary prospective population-based cohort study examining the health and health-297 

related behaviours of 167,729 individuals living in the northern parts of The Netherlands using a 298 

unique three-generation design. It employs a broad range of investigative procedures assessing 299 

the biomedical, socio-demographic, behavioural, physical and psychological factors contributing 300 

to health and disease in the general population, with a special focus on multi-morbidity and 301 

complex genetics. A subset of 1,500 LifeLines participants also take part in LLD12. For these 302 

participants, additional molecular data is generated, allowing for a more thorough investigation 303 

of the association between genetic and phenotypic variation.  304 

LLS 305 

The aim of the Leiden Longevity Study14 (LLS) is to identify genetic factors influencing 306 

longevity and examine their interaction with the environment in order to develop interventions to 307 

increase health at older ages. To this end, long-lived siblings of European descent were recruited 308 

together with their offspring and their offspring’s partners, on the condition that at least two 309 
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long-lived siblings were alive at the time of ascertainment. For men the age criteria was 89 or 310 

older, for women age 91 or over. These criteria led to the ascertainment of 944 long-lived 311 

siblings from 421 families, together with 1,671 of their offspring and 744 partners. 312 

NTR 313 

The Netherlands Twin Register15,37,38 (NTR) was established in 1987 to study the extent to which 314 

genetic and environmental influences cause phenotypic differences between individuals. To this 315 

end, data from twins and their families (nearly 200,000 participants) from all over the 316 

Netherlands are collected, with a focus on health, lifestyle, personality, brain development, 317 

cognition, mental health, and aging. In NTR Biobank15 samples for DNA, RNA, cell lines and 318 

for biomarker projects have been collected. 319 

RS 320 

The Rotterdam Study16 is a single-centre, prospective population-based cohort study conducted 321 

in Rotterdam, the Netherlands16. Subjects were included in different phases, with a total of 322 

14,926 men and women aged 45 and over included as of late 2008. The main objective of the 323 

Rotterdam Study is to investigate the prevalence and incidence of and risk factors for chronic 324 

diseases to contribute to a better prevention and treatment of such diseases in the elderly. 325 

Genotype data 326 

Data generation 327 

Genotype data was generated for each cohort individually. Details on the methods used can be 328 

found in the individual papers (CODAM: van Dam et al.35; LLD: Tigchelaar et al.12; LLS: 329 

Deelen et al.39, 2014; NTR: Willemsen et al.15; RS: Hofman et al.16). 330 
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Imputation and QC 331 

For each cohort separately, the genotype data were harmonized towards the Genome of the 332 

Netherlands40 (GoNL) using Genotype Hamonizer41 and subsequently imputed per cohort using 333 

Impute242 using GoNL43 reference panel43 (v5). Quality control was also performed per cohort. 334 

We removed SNPs with an imputation info-score below 0.5, a HWE P-value smaller than 10-4, a 335 

call rate below 95% or a minor allele frequency smaller than 0.05. These imputation and filtering 336 

steps resulted in 5,206,562 SNPs that passed quality control in each of the datasets. 337 

Methylation data 338 

Data generation 339 

For the generation of genome-wide DNA methylation data, 500 ng of genomic DNA was 340 

bisulfite modified using the EZ DNA Methylation kit (Zymo Research, Irvine, California, USA) 341 

and hybridized on Illumina 450k arrays according to the manufacturer’s protocols. The original 342 

IDAT files were generated by the Illumina iScan BeadChip scanner. We collected methylation 343 

data for a total of 3,841 samples. Data was generated by the Human Genotyping facility (HugeF) 344 

of ErasmusMC, the Netherlands (www.glimDNA.org). 345 

Probe remapping and selection 346 

We remapped the 450K probes to the human genome reference (HG19) to correct for inaccurate 347 

mappings of probes and identify probes that mapped to multiple locations on the genome. Details 348 

on this procedure can be found in Bonder et al. (2014)44. Next, we removed probes with a known 349 

SNP (GoNL, MAF > 0.01) at the single base extension (SBE) site or CpG site. Lastly, we 350 

removed all probes on the sex chromosomes, leaving 405,709 high quality methylation probes 351 

for the analyses. 352 
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Normalization and QC 353 

Methylation data was directly processed from IDAT files resulting from the Illumina 450k array 354 

analysis, using a custom pipeline based on the pipeline developed by Tost & Toulemat45. First, 355 

we used methylumi46 to extract the data from the raw IDAT files. Next, we performed quality 356 

control checks on the probes and samples, starting by removing the incorrectly mapped probes. 357 

We checked for outlying samples using the first two principal components (PCs) obtained using 358 

principal component analysis (PCA). None of the samples failed our quality control checks, 359 

indicating high quality data. Following quality control, we performed background correction and 360 

probe type normalization as implemented in DASEN47. Normalization was performed per cohort, 361 

followed by quantile normalization on the combined data to normalize the differences per cohort. 362 

The next step in quality control consisted of identifying potential sample mix-ups between 363 

genotype and DNA methylation data. Using mix-up mapper48, we detected and corrected 193 364 

mix-ups. Lastly, in order to correct for known and unknown confounding sources of variation in 365 

the methylation data and to give us more power to detect meQTLs, we removed the first 366 

components which were not affected by genetic information, the 22 first PCs, from the 367 

methylation data using methodology we have successfully used in trans-eQTL3,49 and meQTL 368 

analyses before44.  369 

RNA sequencing 370 

Total RNA from whole blood was deprived of globin using Ambion’s GLOBIN clear kit and 371 

subsequently processed for sequencing using Illumina’s Truseq version 2 library preparation kit. 372 

Paired-end sequencing of 2x50bp was performed using Illumina’s Hiseq2000, pooling 10 373 

samples per lane. Finally, read sets per sample were generated using CASAVA, retaining only 374 
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reads passing Illumina’s Chastity Filter for further processing.  Data was generated by the 375 

Human Genotyping facility (HugeF) of ErasmusMC, the Netherlands (www.glimDNA.org). 376 

Initial QC was performed using FastQC50 (v0.10.1), removal of adaptors was performed using 377 

cutadapt51 (v1.1), and Sickle52 (V1.2) [2] was used to trim low quality ends of the reads (min 378 

length 25, min quality 20). The sequencing reads were mapped to human genome (HG19) using 379 

STAR53 v2.3.125 .  Gene expression quantification was performed by HTseq-count. The gene 380 

definitions used for quantification were based on Ensmble version 71, with the extension that 381 

regions with overlapping exons were treated as separate genes and reads mapping within these 382 

overlapping parts did not count towards expression of the normal genes.  383 

Expression data on the gene level were first normalized using Trimmed Mean of M-values54. 384 

Then expression values were log2 transformed, gene and sample means were centred to zero. To 385 

correct for batch effects, PCA was run on the sample correlation matrix and the first 25 PCs were 386 

removed using methodology that we have use for eQTL analyses before49,55. More details are 387 

provided in Zhernakova et al (in preperation). 388 

Cis-meQTL mapping 389 

In order to determine the effect of nearby genetic variation on methylation levels (cis-meQTLs), 390 

we performed cis-meQTL mapping using 3,841 samples for which both genotype data and 391 

methylation data were available. To this end, we calculated the Spearman rank correlation and 392 

corresponding P-value for each CpG-SNP pair in each cohort separately. We only considered 393 

CpG-SNP pairs located no further than 250kb apart. The P-values were subsequently 394 

transformed into a Z-score for meta-analysis. To maximize the power of meQTL detection, we 395 

performed a meta-analysis over all datasets by calculating an overall, joint P-value using a 396 

weighted Z-method. A comprehensive overview of this method has been described previously55. 397 
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To detect all possible independent SNPs regulating methylation at a single CpG-site we 398 

regressed out all primary cis-meQTL effects and then ran cis-meQTL mapping for the same 399 

CpG-site to find secondary cis-meQTL. We repeated that in a stepwise fashion until no more 400 

independent cis-meQTL were found.  401 

To filter out potential false positive cis-meQTLs caused by SNPs affecting the binding of a probe 402 

on the array, we filtered the cis-meQTLs effects by removing any CpG-SNP pair for which the 403 

SNP was located in the probe. In addition, all other CpG-SNP pairs for which the SNP was 404 

outside the probe, but in LD (R2 > 0.2 or D’ > 0.2) with a SNP inside the probe were also 405 

removed. We tested for LD between SNPs in the probe and in the surrounding cis area in the 406 

individual genotype datasets, as well as in GoNL v5, in order to be as strict as possible in 407 

marking a QTL as true positive. 408 

To correct for multiple testing, we empirically controlled the false discovery rate (FDR) at 5%. 409 

For this, we compared the distribution of observed P-values to the distribution obtained from 410 

performing the analysis on permuted data. Permutation was done by shuffling the sample 411 

identifiers of one data set, breaking the link between, e.g., the genotype data and the methylation 412 

or expression data. We repeated this procedure 10 times to obtain a stable distribution of P-413 

values under the null distribution. The FDR was determined by only selecting the strongest effect 414 

per CpG55 in both the real analysis and in the permutations (i.e. probe level FDR < 5%). 415 

Cis-eQTL mapping 416 

For a set of 2,116 BIOS samples we had also generated RNA-seq data. We used this data to 417 

identify cis-eQTLs. Cis-eQTL mapping was performed using the same method as cis-meQTL 418 

mapping. Details on these eQTLs will be described in a separate paper (Zhernakova et al, in 419 

preparation).  420 
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Expression quantitative trait methylation (eQTM) analysis 421 

To identify associations between methylation levels and expression levels of nearby genes (cis-422 

eQTMs), we first corrected our expression and methylation data for batch effects and covariates 423 

by regressing out the PCs and regressing out the identified cis-meQTLs and cis-eQTLs, to ensure 424 

only relationships between CpG sites and gene expression levels would be detected that were not 425 

attributable to particular genetic variation or batch effects. We mapped eQTMs in a window of 426 

250Kb around the TSS of a transcript. Further statistical analysis was identical to the cis-meQTL 427 

mapping. For this analysis we were able to use a total of 2,101 samples for which both genetic, 428 

methylation and gene expression data was available. To correct for multiple testing we controlled 429 

the FDR at 5%, the FDR was determined by only selecting the strongest effect per CpG55 in both 430 

the real analysis and in the permutations.  431 

Trans-meQTL mapping 432 

To identify the effects of distal genetic variation with methylation (trans-meQTLs) we used the 433 

same 3,841 samples that we had used for cis-meQTL mapping. To focus our analysis and limit 434 

the multiple testing burden, we restricted our analysis to SNPs that have been previously found 435 

to be significantly correlated to traits and diseases at a P < 5x10-8. We extracted these SNPs from 436 

the NHGRI genome-wide association study (GWAS) catalogue, used recent GWAS studies not 437 

yet in the NHGRI GWAS catalogue and studies on the Immunochip and Metabochip platform 438 

that are not included in the NHGRI GWAS catalogue (Extended Data Table 1). We compiled 439 

this list of SNPs in December 2014. Per SNP we only investigated CpG sites that mapped at least 440 

5 Mb from the SNP or on other chromosomes. Before mapping trans-meQTLs, we regressed out 441 

the identified cis-meQTLs to increase the statistical power of trans-meQTL detection (as done 442 

previously for trans-eQTLs3) and to avoid designating an association as trans that may be due to 443 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 1, 2015. ; https://doi.org/10.1101/033084doi: bioRxiv preprint 

https://doi.org/10.1101/033084
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

long-range LD (e.g. within the HLA region). To ascertain the stability of the trans-meQTLs we 444 

also performed the trans-mapping on the non-corrected data and the methylation data corrected 445 

for cell-type proportions. In addition, we performed meQTL mapping on SNPs known to 446 

influence the cell type proportions in blood19,20. 447 

To filter out potential false positive trans-meQTLs due to cross-hybridization of the probe, we 448 

remapped the methylation probes with very relaxed settings, identical to Westra et al.55, with the 449 

difference that we only accepted mappings if the last bases of the probe including the SBE site 450 

were mapped accurately to the alternative location. If the probe mapped within our minimal 451 

trans-window, 5 Mb from the SNP, we removed the effect as being a false positive trans-452 

meQTL. 453 

We controlled for multiple testing by using 10 permutations. We controlled the false-discovery 454 

rate at 5%, identical to the aforementioned cis-meQTL analysis. 455 

Trans-eQTL mapping 456 

To check if the trans-meQTL effects can also be found back on gene expression levels, we 457 

annotated the CpGs with a trans-meQTL to genes using our eQTMs. Using the 2,101 samples 458 

for which both genotype and gene expression data were available, we performed trans-eQTL 459 

mapping, associating the SNPs known to be associated with DNA methylation in trans with their 460 

corresponding eQTM genes. 461 

Annotations and enrichment tests 462 

Annotation of the CpGs was performed using Ensembl56 (v70), UCSC Genome Browser57 and 463 

data from the Epigenomics Roadmap Project.58 We used the Epigenomics Roadmap annotation 464 

for the SBE site of the methylation site for all 27 blood cell types. We chose to use both the 465 
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histone mark information and the chromatin marks in blood-related cell types only, as generated 466 

by the Epigenomics Roadmap Project. Summarizing the information over the 27 blood cell types 467 

was done by counting presence of histone-marks in all the cell types and scaling the abundance, 468 

i.e. if the mark is bound in all cell types the score would be 1 if it would be present in none of the 469 

blood cell types the score would be 0. 470 

To calculate enrichment of meQTLs or eQTMs for any particular genomic context, we used 471 

logistic regression because this allows us to account for covariates such as CpG methylation 472 

variation. For cis-meQTLs, we used the variability of DNA methylation, the number of SNPs 473 

tested, and the distance to the nearest SNP per CpG as covariates. For all other analyses we used 474 

only the variability in DNA methylation as a covariate. 475 

Next to annotation data from the Epigenomics Roadmap project, we used transcription factor 476 

ChIP-seq data from the ENCODE-project for blood-related cell lines. For every CpG site, we 477 

determined if there was an overlap with a ChIP-seq signal and performed a Fisher exact test to 478 

determine whether the trans-meQTL probes associated with the SNP in the transcription factor 479 

region of interest were more often overlapping with a ChIP-seq region than the other trans-480 

meQTL probes. We collected all transcription factor called narrow peak files from the UCSC 481 

genome browser to perform the enrichments. 482 

Enrichment of known sequence motifs among trans-CpGs was assessed by PWMEnrich22 483 

package in R, Homer59 and DEEPbind23. For PWMEnrich hundred base pair sequences around 484 

the interrogated CpG site were used, and as a background set we used the top CpGs from the 50 485 

permutations used to determine the FDR threshold of the trans-meQTLs. For Homer the default 486 

settings for motif enrichment identification were used, and the same CpGs derived from the 487 

permutations were used as a background. For DEEPbind we used both the permutation 488 
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background like described for Homer and the permutations background as described for 489 

PWMEnrich. 490 

Using data published by Rao et al.10 we were able to intersect the trans-meQTLs with 491 

information about the 3D structure of the human genome. For the annotation, we used the 492 

combined Hi-C data for both inter- and intra-chromosomal data at 1Kb and the quality threshold 493 

of E30 in the GM12878 lymphoblastoid cell line. Both the trans-meQTL SNP and trans-meQTL 494 

probes were put in the relevant 1Kb block, and for these blocks we looked up the chromosomal 495 

contact value in the measurements by Rao et al. Surrounding the trans-meQTLs SNPs, we used a 496 

LD window that spans maximally 250Kb from the trans-meQTL SNP and had a minimal R2 of 497 

0.8. If a Hi-C contact between the SNP block and the CpG-site was indicated, we flagged the 498 

region as a positive for Hi-C contacts. As a background, we used the combinations found in our 499 

50 permutated trans-meQTL analyses, taking for each permutation the top trans-meQTLs that 500 

were similar in size to the real analysis. This permitted us to empirically determine whether there 501 

were significantly more Hi-C interactions in the real data as compared to the permutations. 502 

eQTM direction prediction 503 

We predicted the direction of the eQTM effects using both a decision tree and a naïve Bayes 504 

model (as implemented by Rapid-miner60 v6.3). We built the models on the strongest eQTMs 505 

(i.e. those identified at a very stringent FDR <9.73x10-6). For the decision tree we used a 506 

standard cross-validation set-up using 20 folds. For the naive Bayes model we used a double 507 

loop cross-validation: performance was evaluated in the outer loop using 20-fold cross-508 

validation, while feature selection (using both backward elimination and forward selection) took 509 

place in the inner loop using 10-fold cross-validation. Details about the double-loop cross-510 

validation can be found in Ronde et al.61. During the training of the model, we balanced the two 511 
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classes making sure we had an equal number of positively correlating and negatively correlating 512 

CpG-gene combinations, by randomly sampling a subset of the overrepresented negatively 513 

correlating CpG-gene combination group. We chose to do so to circumvent labelling al eQTMs 514 

as negative, since this is the class were the majority of the eQTMs are in. 515 

In the models we used annotation from the CpG-site, namely: overlap with epigenomics roadmap 516 

chromatin states, histone marks and relations between the histone marks, GC content 517 

surrounding the CpG-site and relative locations from the CpG-site to the transcript.  518 

DEPICT 519 

To investigate whether there was biological coherence in the trans-meQTLs identified, we 520 

performed gene-set enrichment analysis for each genetic risk factor that was showing at least 10 521 

trans-meQTL effects. To do so, we adapted DEPICT27, a pathway enrichment analysis method 522 

that we previously developed for GWAS. Instead of defining loci with genes by using top 523 

associated SNPs, we used the eQTM information to link CpGs to genes. Within DEPICT gene 524 

set enrichment, significance is determined by using matched sets of permuted loci (in terms of 525 

numbers of genes per locus) that have been identified using simulated GWAS. Subsequent 526 

pathway enrichment analysis was conducted as described before, and significance was 527 

determined by controlling the false discovery rate at 5%. 528 
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