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4
Most disease associated genetic risk factors are non-coding, making it challenging to design
experiments to understand their functional consequences!?. Identification of expression
guantitative trait loci (eQTLs) has been a powerful approach to infer downstream effects of
disease variants but the large majority remains unexplained.®*. The analysis of DNA
methylation, a key component of the epigenome®, offers highly complementary data on the
regulatory potential of genomic regions®’. However, a large-scale, combined analysis of
methylome and transcriptome data to infer downstream effects of disease variants is lacking.
Here, we show that disease variants have wide-spread effects on DNA methylation in trans
that likely reflect the downstream effects on binding sites of cis-regulated transcription
factors. Using data on 3,841 Dutch samples, we detected 272,037 independent cis-meQTLs
(FDR < 0.05) and identified 1,907 trait-associated SNPs that affect methylation levels of
10,141 different CpG sites in trans (FDR < 0.05), an eight-fold increase in the number of
downstream effects that was known from trans-eQTL studies®®°. Trans-meQTL CpG sites
are enriched for active regulatory regions, being correlated with gene expression and overlap
with Hi-C determined interchromosomal contacts!®!, We detected many trans-meQTL
SNPs that affect expression levels of nearby transcription factors (including NFKB1, CTCF
and NKX2-3), while the corresponding trans-meQTL CpG sites frequently coincide with its
respective binding site. Trans-meQTL mapping therefore provides a strategy for identifying
and better understanding downstream functional effects of many disease-associated

variants.

To systematically study the role of DNA methylation in explaining downstream effects of genetic
variation, we analysed genome-wide genotype and DNA methylation in whole blood from 3,841

samples from five Dutch biobanks!?® (Figure 1 and Extended Data Table 1). We found cis-
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meQTL effects for 34.4% of all 405,709 tested CpGs (n=139,566 at a CpG-level FDR of 5%, P <
1.38 x 10%), typically with a short physical distance between the SNP and CpG (median distance
10 kb, Extended Data Fig. 1). By regressing out primary meQTLs effect for each of these CpGs
and repeating the cis-meQTL mapping, we observed up to 16 independent cis-meQTLs for these
CpGs (Extended Data Table 2). In total, we identified 272,037 independent cis-meQTL effects.
Few factors determine whether a CpG site shows a cis-meQTL effect except the variance in
methylation level of the CpG site involved: for the top 10% most variable CpGs, 57.2% showed a
cis-meQTL effect, dropping to only 8.1% for the 10% least-variable CpGs (Extended Data Fig. 2,
Extended Data Fig. 3a). The proportion of methylation variance explained by SNPs, however, is
typically small (Extended Data Fig. 3b). When accounting for this strong effect of CpG variation,
we find only modest enrichments and depletions for cis-meQTL CpG sites when using CpG island
(CGI) and genic annotation (Extended Data Fig. 3e) or when using annotations of biological

function based on chromatin segmentations of 27 blood cell types (Figure 2a).

We contrasted these modest functional enrichments to CpGs whose methylation levels correlates
with gene expression in cis (i.e. mapping expression quantitative trait methylations (eQTMs)), by
generating RNA-seq data for 2,101 out of 3,841 individuals in our study. Using a conservative
approach that maximally accounts for potential biases (i.e. cis-meQTL effects, cis-eQTL effects,
batch effects and cell heterogeneity effects), we identified 12,809 unique CpGs that correlated to
3,842 unique genes in cis (CpG-level FDR < 0.05). eQTMs were enriched for mapping in active
regions, e.g. in and around active TSSs (3-fold enrichment, P = 1.8 x 10"°!) and enhancers (2-fold
enrichment, P = 1.1 x 10**°, Figure 2b). Of note, the majority of eQTMs showed the canonical
negative correlation with transcriptional activity (69.2%) but a substantial minority of correlations

was positive (30.8%) in line with recent evidence that DNA methylation does not always


https://doi.org/10.1101/033084
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/033084; this version posted December 1, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

6
94  negatively correlate with gene expression!’. As expected, negatively correlated eQTMs were
95  enriched in active regions like active TSSs (3.7- fold enrichment, P = 9.5 x 102%?), Positive
96 correlations primarily occurred in repressed regions (e.g. Polycomb repressed, 3.4-fold
97  enrichment, P = 5.8 x 1019 (Extended Data Fig. 4). The sharp contrast between positively and
98  negatively associated eQTMs, enabled us to build a model to predict the direction of the
99  correlation. A decision tree trained on the strongest eQTMs (those with an FDR < 9.7x10°,
100 n=5,137) using data on histone marks and distance relative to gene, could predict the direction

101 with an area under the curve of 0.83 (95% confidence interval, 0.78-0.87) (Figure 2d, e).

102  We next ascertained whether trans-meQTLs are biologically informative, since previous trans-
103  eQTL mapping studies demonstrated that identifying trans-expression effects provide a powerful
104  tool to uncover and understand downstream biological effects of disease-SNPs*8°, We focussed
105  on 6,111 SNPs that were previously associated with complex traits and diseases (‘trait-associated
106  SNPs’, see Methods and Extended Data Table 3). We observed that one-third of these trait-
107  associated SNPs (1,907 SNPs, 31.2%) affect methylation in trans at 10,141 CpG sites, totalling
108 27,816 SNP-CpG combinations (FDR < 0.05, P < 2.6x1077, Figure 3a), . This represents a 5-fold
109 increase in the number of CpG sites affected as compared with a previous trans-meQTL mapping
110  study'®. We evaluated whether the GWAS SNP themselves were likely underlying the trans-
111 effects or that the associations could be attributed to another SNP in moderate LD. Of the 1,907
112 GWAS SNPs with trans-effects, 1,538 (87.2%) were in strong LD with the top SNP (R? > 0.8),
113 indicating that the GWAS SNPs indeed are the driving force behind many of the trans-meQTLs.
114  Of note, due to the sparse coverage of the Illumina 450k array, the true number of CpGs in the
115 genome that are altered by these trait associated SNPs will be substantially higher. After the

116  identification of the trans-meQTLs, we assessed if the trans-meQTLs also are present in
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117  expression. Out of the 2,889 testable trans-eQTLs we identified 8.4% of these effects, 91% of the

118  cases the effect direction was consistent (Extended Data Table 4).

119  To ascertain stability our trans-meQTLs, we performed a replication analysis in a the set of 1,748
120  lymphocyte samples®: of the 18,764 overlapping trans-meQTLs between the datasets that could
121 be tested, 94.9% had a consistent allelic direction (Figure 1E). 12,098 trans-meQTLs were
122 nominally significant (unadjusted P < 0.05), of which 99.87% had a consistent allelic direction.
123 This indicates that the identified trans-meQTLs are robust and not caused by differences in cell-
124  type composition. (Extended Data Table 5). To further ascertain the stability of the trans-meQTLs,
125  we tested SNPs known to influence blood composition®? for effects on methylation in trans,
126  finding these SNPs show no or only few trans-meQTLs whereas widespread trans-meQTL effects
127  were to be expected if our analysis had not properly controlled for blood cell composition
128  (Extended Data Table 6). Furthermore we linked our GWAS SNPs to the SNPs known to influence
129  cell proportions and found that only 0.6% of the GWAS SNPs are in high LD with SNPs known
130  toinfluence cell proportions. Lastly, we performed trans-meQTL mapping on uncorrected and cell

131  type corrected data see supplemental results and Extended Data Table 7,8.

132 In contrast to cis-meQTL CpGs, trans-meQTLs CpGs show many functional enrichments: they
133 are enriched around TSSs and depleted in heterochromatin (Figure 2c) and are strongly enriched
134  for being an eQTM (1,913 CpGs (18.9%), 5.2-fold, P = 2.3 x 101%%). The 1,907 trait-associated
135  SNPs that make up the trans-meQTLs were overrepresented for immune- and cancer-related traits
136 (Figure 3b). The large majority of trans-meQTLs were inter-chromosomal (93%, 9,429 CpG-SNP
137  pairs) and included 12 trans-meQTLs SNPs (yielding 3,616 unique CpG-SNP pairs) that each
138  showed downstream trans-meQTL effects across all of the 22 autosomal chromosomes (i.e. trans-

139  bands, Figure 3d).
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140  We subsequently studied the nature of these trans-meQTLs. Using high-resolution Hi-C data’®,
141 we identified 720 SNP-CpG pairs (including 402 CpG sites and 172 SNPs) among the trans-
142 meQTLs that overlapped with an inter-chromosomal contact, which is 2.9-fold more frequent than
143 expected by chance (P = 3.7 x 101%, Figure 3c, d). These Hi-C inter chromosomal enrichments
144  were not confounded due to SNPs that gave trans-meQTLs on many CpG sites (i.e. trans-bands):
145  when removing those trans-meQTLs from the analysis, Hi-C enrichments remained highly
146  significant (P = 1.7x10°°%). This indicates that some relationships between SNPs and CpGs in trans
147  are explained by inter-chromosomal contacts. In order to characterize the 720 SNP-CpG pairs
148  overlapping with inter-chromosomal contacts, we performed motif enrichments using three motif
149  enrichment analyses (Homer, PWMEnrich, DEEPbind)?* %, These analyses identified that the 402
150  CpG sites frequently overlapped with CTCF, RAD21 and SMC3 binding sites (P = 2.3x10°, P =
151 3.5x10° and P = 5.1x10°°, respectively), factors known to affect chromatin architecture?*2°. This
152 finding was confirmed by incorporating ChIP-Seq data on CTCF binding (1.8-fold enrichment, P

153 =5.2x10-7).

154  We next tested whether the trans-meQTLs reflected the effect of differential transcription factor
155  (TF) binding of TFs that map close to the SNPs since TF binding has been implicated in
156  demethylation and loss of TF occupancy with remethylation®’. This suggests that if a SNP allele
157  increases TF els in cis, that trans-meQTL effects are likely detectable, and that the SNP allele
158  likely decreases methylation of these CpG sites. Indeed, we observed that if a SNP affects multiple
159  CpGs sites in trans (at least 10, n=305) that the assessed allele often consistently increased or
160  decreased methylation in trans, in the same direction for, on average, 76% of CpGs per trans-
161 meQTL SNP (expected 50%, P=10"!!; Figure 4a). This skew in allelic effect direction was present

162  for 59.7% of the 305 SNPs with at least 10 trans-meQTL effects increasing to 95.2% for 104 SNPs
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163  with at least 50 trans-meQTL effects (binomial test P < 0.05), suggesting that differential TF

164  binding may explain a substantial fraction of trans-meQTLSs.

165  In order to explore this mechanism further, we combined ChIP-seq data on TF binding at CpGs
166  and cis-expression effects of SNPs to directly examine the involvement of TFs in mediating trans-
167 meQTLs. Among trait-associated SNPs influencing at least 10 CpGs in trans (n=305), we

168 identified 13 trans-meQTL SNPs with strong support for a role of TFs (Figure 4a).

169  The most striking example was a locus on chromosome 4 (Figure 4b), where two SNPs (rs3774937
170  and rs3774959, in strong LD) were associated with ulcerative colitis (UC)?®. Top SNP rs3774937
171 was associated with differential DNA methylation at 413 CpG sites across the genome, 92% of
172 which showed the same direction of the effect, i.e. lower methylation associated with the risk allele
173 (binomial P=2.72x10°%). Of those 380 CpG sites with lower methylation, 147 (38.7%) overlap
174  with a nuclear factor kappaB (NFKB) transcription factor binding site (2.75-fold enrichment, P =
175  5.3x10%?), as based on ENCODE NFKB ChIP-seq data in blood cell types (Figure 4c). Three motif
176  enrichment analyses (Homer, PWMEnrich, DEEPbind)?-23 also revealed an enrichment of NFKB
177  binding motifs for the 413 CpG sites thus corroborating the ChlP-seq results. Notably, SNP
178  rs3774937 is located in the first intron of NFKB1 and we found that the risk allele was associated
179  with higher NFKB1 expression (Figure 4a). Of the 413 trans-CpGs, 64 were eQTMs and revealed
180 a coherent gene network (Figure 4d) that was enriched for immunological processes related to
181  NFKBL1 function?’ (Figure 4e). Taken together, these results support the idea that the rs3774937

182  UC risk allele decreases DNA methylation in trans by increasing NFKB1 expression in cis.

183  The same analysis approach indicated that the trans-methylation effects of rs8060686 (linked to
184  various phenotypes including metabolic syndrome?® and coronary heart disease?®, and affecting

185 779 trans-CpGs) were due to CTCF which mapped 315 kb from rs8060686. We observed a strong
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186  CTCF ChIP-seq enrichment with 603/779 trans-CpGs overlapping with CTCF binding (P =1.6x10"
187  #2) and enriched CTCF motifs (Figure 4a and Extended Data Fig. 5). Of these trans-CpGs, only13
188  have been observed previously in lymphocytes'®. We observed that the risk allele increased DNA

189  methylation in trans by decreasing CTCF gene expression in cis.

190 We found another example of this phenomenon: 228 trans-meQTL effects of 4 SNPs on
191  chromosome 10, mapping near NKX2-3 and implicated in inflammatory bowel disease®®, were
192  strongly enriched for NKX2 transcription factor motifs and associated with NKX2-3 expression.
193  Therisk alleles decreased DNA methylation in trans at NKX2-3 binding sites by increasing NKX2-

194 3 gene expression in cis (Extended Data Fig. 6).

195  One height locus®® contained 4 SNPs which influence 267 trans-CpGs and implicate ZBTB38
196  (Extended Data Fig. 7). In contrast to the aforementioned TFs that are transcriptional activators,
197 ZBTB38 is a transcriptional repressor®:3 and its expression was positively correlated with
198  methylation in trans, in line with our observation that eQTMs in repressed regions are enriched
199  for positive correlations. Finally, the trans-methylation effects of rs7216064 (64 trans-CpGs),
200  associated with lung carcinoma®, preferentially occurred at regions binding CTCF, while the SNP

201 was located in the BPTF gene, known to occupy CTCF binding sites® (Extended Data Fig. 8).

202 The possibility to link trans-meQTL effects to an association of TF expression in cis and

203  concomitant differential methylation in trans at the respective binding site is limited to TFs for
204  which ChiIP-seq data or motif information is available. In order to make inferences on TFs for
205  which such data is not yet available, we ascertained whether trans-meQTLs SNPs were more
206  often affecting TF gene expression in cis as compared with SNPs that were not giving trans-

207  meQTLs. We observed that 13.1% of the GWAS SNPs that gave trans-meQTLs also affect TF
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208  gene expression in cis, whereas only 4.5% of the GWAS SNPs that do not give trans-meQTLSs

209  affect TF gene expression in cis (Fisher’s exact P = 6.6 x 10-13).

210  Here we report that one third of known disease- and trait-associated SNPs has downstream

211 methylation effects in trans, often affecting multiple regions across the genome. The biological
212 mechanism underlying trans-meQTLs often involves a local effect on the transcriptional activity
213 of nearby TFs that affects DNA methylation at distal binding sites of the corresponding TFs. The
214  direction of downstream methylation effects is remarkably consistent for each SNP and indicates
215  that decreased DNA methylation is a signature of increased binding of transcriptional activators.
216  Our study reveals previously unrecognized functional consequences of disease variants in non-

217  coding regions. These can be looked up online (http://www.genenetwork.nl/biosgtibrowser/), and

218  provide leads for experimental follow-up.

219  Figures

220  Figure 1. Overview of a genomic region around TMEM176B, where the relations between a SNP,
221 DNA methylation at nearby CpGs, and the associations with the gene itself are shown. a,
222 lllustration of a methylation Quantitative Trait Locus (meQTL) b, Illlustration of an expression
223 Quantitative Trait Locus (eQTL). c, llustration of methylation-expression association (eQTM).
224 The figures show how correction for meQTLs may increase detection of such associations. The
225  left plot shows the data before correction for cis-meQTLs, the corrected data in the right figure
226  shows the meQTL-corrected methylation data. d, Two overlaid pie charts. The inner chart
227 indicates the proportion of tested CpGs harboring meQTLs. Over 35% of all tested CpGs show

228  evidence for harboring a meQTL, either in cis or in trans. The outer chart indicates what CpGs are
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229  associated with gene expression in cis (in total 3.2%). e, Replication of peripheral blood trans-

230  meQTLs in lymphocytes.

231
232 Figure 2. a-c, Over- or underrepresentation of CpGs for different predicted chromatin states for

233 cis-meQTLs, trans-meQTLs and eQTMs. Grey bars reflect uncorrected enrichments, colored bars
234  reflect enrichments after correction for factors influencing the likelihood of harboring a meQTL
235  or eQTM, including methylation variability. Bar graphs show odds ratios and error bars (95%
236 confidence interval). CGIl: CpG island; TssA: Active TSS; TssAFInk: Flanking active TSS;
237  TxFlInk, Transcribed at gene 5° and 3’; Tx: Strong transcription; TxWk: Weak transcription; EnhG:
238  Genic enhancer; Enh: Enhancer; ZNF/Rpts: ZNF genes and repeats; Het: Heterochromatin;
239  TssBiv: Bivalent/Poised TSS; BivFInk: Flanking bivalent TSS/Enhancer; EnhBiv: Bivalent
240 enhancer. d, Decision tree for predicting the effect direction of eQTMs. Each subplot shows the
241  distributions for positive (blue) and negative (red) associations for that subset of the data. Dashed
242  vertical lines indicate the optimal split used by the algorithm. The boxes in the leaves indicate the
243 number of positive and negative effects in each of the leaves. e, Receiver operator characteristic
244  curve showing the performance of the decision tree.Figure 3. a, Distribution of tested trait-
245  associated SNPs influencing DNA methylation in trans. Over 1,900 SNPs (31.2%) of all tested
246  SNPs have downstream effects on DNA methylation. b, Overrepresentation of SNPs with trans-
247  meQTLs in different GWAS trait categories, where the y-axis shows the odds ratio. ¢, Hi-C
248  contacts are overrepresented among trans-meQTLs. Grey bars show the number of Hi-C contacts
249  using permutated data, while the red bar reflects the actually observed number in our data. d, Dot-
250  plot depicting the trans-meQTLs. The effect strength is reflected by the size of the dot. Red dots

251 indicate an overlap with a Hi-C contact. Several SNPs with widespread trans-meQTLs show inter-
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chromosomal contacts genome-wide, further implicating an important role for those SNPs in the

development of the associated trait.

Figure 3. a, Distribution of tested trait-associated SNPs influencing DNA methylation in trans.
Over 1,900 SNPs (31.2%) of all tested SNPs have downstream effects on DNA methylation. b,
Overrepresentation of SNPs with trans-meQTLs in different GWAS trait categories, where the y-
axis shows the odds ratio. ¢, Hi-C contacts are overrepresented among trans-meQTLs. Grey bars
show the number of Hi-C contacts using permutated data, while the red bar reflects the actually
observed number in our data. d, Dot-plot depicting the trans-meQTLs. The effect strength is
reflected by the size of the dot. Red dots indicate an overlap with a Hi-C contact. Several SNPs
with widespread trans-meQTLs show inter-chromosomal contacts genome-wide, further

implicating an important role for those SNPs in the development of the associated trait.
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264  Figure 4. a, An imbalance in effect direction of trans-meQTLs implies involvement of
265  transcription factors. Each dot represents a SNP with at least 10 trans-meQTL effects. The x-axis
266  shows the number of trans-effects where the minor allele increases methylation, whereas the y-
267  axis shows a decrease in methylation. SNPs with a multitude of effects of which many have the
268  same allelic direction often exhibit evidence for a cis-eQTL on a transcription factor (colored dots),
269  and an overrepresentation of CpGs in trans overlapping with binding sites for that transcription
270  factor. b, Depiction of the NFKB1 gene and rs3774937, associated with ulcerative colitis. The plot
271 shows an increased expression of NFKBL1 for the risk allele C. c, In addition to influencing NFKB1
272 expression, rs3774937 also influences DNA methylation at 413 CpGs in trans, decreasing
273 methylation levels at 93% of affected CpG sites (dark grey). In addition, many of the CpG sites
274 (37.3%) overlap with NFKB binding sites (3.8-fold enrichment, P-value = 5.3 x 10°%2), shown in
275  the outer chart. d, lllustrations of meQTL (left plot) and eQTL effects (right plot) of rs3774937 in
276  trans. Only SNP-gene combinations were tested where the gene was associated with one of the
277 413 CpGs with atrans-meQTL. e, Gene network of the eQTM genes associated with 72 of the 413
278  CpGs (17.4%), that are showing a trans-meQTL (red). NFKB is depicted in blue. Genes also
279  showing evidence for a trans-eQTL effect are shown in red. f, Top pathways as identified by
280 enrichment method DEPICT for which many of the genes in e were overrepresented. Many of the
281 identified pathways were inflammation-related, in line with the inflammatory nature of ulcerative

282  colitis.

283 Methods

284  Cohort descriptions
285  The five cohorts used in our study are described briefly below. The number of samples per

286  cohort and references to full cohort descriptions can be found in Extended data table 1.


https://doi.org/10.1101/033084
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/033084; this version posted December 1, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

15

287 CODAM

288  The Cohort on Diabetes and Atherosclerosis Maastricht* (CODAM) consists of a selection of
289 547 subjects from a larger population-based cohort.® Inclusion of subjects into CODAM was
290 based on a moderately increased risk to develop cardiometabolic diseases, such as type 2

291  diabetes and/or cardiovascular disease. Subjects were included if they were of Caucasian descent
292 and over 40 yrs of age and additionally met at least one of the following criteria: increased BMI
293 (>25), a positive family history of type 2 diabetes, a history of gestational diabetes and/or

294  glycosuria, or use of anti-hypertensive medication.

295  LifeLines-DEEP

296  The LifeLines-DEEP (LLD) cohort!? is a sub-cohort of the LifeLines cohort.*® LifeLines is a
297  multi-disciplinary prospective population-based cohort study examining the health and health-
298  related behaviours of 167,729 individuals living in the northern parts of The Netherlands using a
299  unique three-generation design. It employs a broad range of investigative procedures assessing
300 the biomedical, socio-demographic, behavioural, physical and psychological factors contributing
301 to health and disease in the general population, with a special focus on multi-morbidity and

302 complex genetics. A subset of 1,500 LifeLines participants also take part in LLD2. For these
303  participants, additional molecular data is generated, allowing for a more thorough investigation

304  of the association between genetic and phenotypic variation.

305 LLS

306  The aim of the Leiden Longevity Study** (LLS) is to identify genetic factors influencing

307 longevity and examine their interaction with the environment in order to develop interventions to
308 increase health at older ages. To this end, long-lived siblings of European descent were recruited

309  together with their offspring and their offspring’s partners, on the condition that at least two
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310 long-lived siblings were alive at the time of ascertainment. For men the age criteria was 89 or
311 older, for women age 91 or over. These criteria led to the ascertainment of 944 long-lived

312 siblings from 421 families, together with 1,671 of their offspring and 744 partners.

313 NTR

314  The Netherlands Twin Register’>3"38 (NTR) was established in 1987 to study the extent to which
315  genetic and environmental influences cause phenotypic differences between individuals. To this
316 end, data from twins and their families (nearly 200,000 participants) from all over the

317  Netherlands are collected, with a focus on health, lifestyle, personality, brain development,

318  cognition, mental health, and aging. In NTR Biobank®® samples for DNA, RNA, cell lines and

319  for biomarker projects have been collected.

320 RS

321 The Rotterdam Study*® is a single-centre, prospective population-based cohort study conducted
322 in Rotterdam, the Netherlands®®. Subjects were included in different phases, with a total of

323 14,926 men and women aged 45 and over included as of late 2008. The main objective of the
324  Rotterdam Study is to investigate the prevalence and incidence of and risk factors for chronic

325  diseases to contribute to a better prevention and treatment of such diseases in the elderly.

326  Genotype data

327 Data generation
328  Genotype data was generated for each cohort individually. Details on the methods used can be
329  found in the individual papers (CODAM: van Dam et al.®>; LLD: Tigchelaar et al.%; LLS:

330  Deelen et al.*®, 2014; NTR: Willemsen et al.'®; RS: Hofman et al.*¢).
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331 Imputation and QC
332 For each cohort separately, the genotype data were harmonized towards the Genome of the
333 Netherlands® (GoNL) using Genotype Hamonizer*! and subsequently imputed per cohort using
334 Impute2*? using GoNL* reference panel* (v5). Quality control was also performed per cohort.
335  We removed SNPs with an imputation info-score below 0.5, a HWE P-value smaller than 10, a
336 call rate below 95% or a minor allele frequency smaller than 0.05. These imputation and filtering

337  steps resulted in 5,206,562 SNPs that passed quality control in each of the datasets.

338  Methylation data

339  Data generation

340 For the generation of genome-wide DNA methylation data, 500 ng of genomic DNA was

341  bisulfite modified using the EZ DNA Methylation kit (Zymo Research, Irvine, California, USA)
342  and hybridized on [llumina 450k arrays according to the manufacturer’s protocols. The original
343  IDAT files were generated by the Illumina iScan BeadChip scanner. We collected methylation
344  data for a total of 3,841 samples. Data was generated by the Human Genotyping facility (HugeF)

345  of ErasmusMC, the Netherlands (www.glimDNA.org).

346  Probe remapping and selection

347  We remapped the 450K probes to the human genome reference (HG19) to correct for inaccurate
348  mappings of probes and identify probes that mapped to multiple locations on the genome. Details
349  on this procedure can be found in Bonder et al. (2014)*. Next, we removed probes with a known
350  SNP (GoNL, MAF > 0.01) at the single base extension (SBE) site or CpG site. Lastly, we

351 removed all probes on the sex chromosomes, leaving 405,709 high quality methylation probes

352  for the analyses.
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353  Normalization and QC
354  Methylation data was directly processed from IDAT files resulting from the Illumina 450k array
355  analysis, using a custom pipeline based on the pipeline developed by Tost & Toulemat*. First,
356 we used methylumi® to extract the data from the raw IDAT files. Next, we performed quality
357  control checks on the probes and samples, starting by removing the incorrectly mapped probes.
358  We checked for outlying samples using the first two principal components (PCs) obtained using
359  principal component analysis (PCA). None of the samples failed our quality control checks,
360 indicating high quality data. Following quality control, we performed background correction and
361  probe type normalization as implemented in DASEN*’. Normalization was performed per cohort,
362  followed by quantile normalization on the combined data to normalize the differences per cohort.
363  The next step in quality control consisted of identifying potential sample mix-ups between
364  genotype and DNA methylation data. Using mix-up mapper*, we detected and corrected 193
365  mix-ups. Lastly, in order to correct for known and unknown confounding sources of variation in
366  the methylation data and to give us more power to detect meQTLS, we removed the first
367  components which were not affected by genetic information, the 22 first PCs, from the
368  methylation data using methodology we have successfully used in trans-eQTL3* and meQTL

369  analyses before®,

370  RNA sequencing

371  Total RNA from whole blood was deprived of globin using Ambion’s GLOBIN clear kit and
372 subsequently processed for sequencing using Illumina’s Truseq version 2 library preparation kit.
373  Paired-end sequencing of 2x50bp was performed using Illumina’s Hiseq2000, pooling 10

374  samples per lane. Finally, read sets per sample were generated using CASAVA, retaining only
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375  reads passing Illumina’s Chastity Filter for further processing. Data was generated by the

376  Human Genotyping facility (HugeF) of ErasmusMC, the Netherlands (www.glimDNA.org).

377  Initial QC was performed using FastQC®° (v0.10.1), removal of adaptors was performed using
378  cutadapt®® (v1.1), and Sickle®? (V1.2) [2] was used to trim low quality ends of the reads (min
379  length 25, min quality 20). The sequencing reads were mapped to human genome (HG19) using
380 STAR®v2.3.125. Gene expression quantification was performed by HTseqg-count. The gene
381  definitions used for quantification were based on Ensmble version 71, with the extension that
382  regions with overlapping exons were treated as separate genes and reads mapping within these

383  overlapping parts did not count towards expression of the normal genes.

384  Expression data on the gene level were first normalized using Trimmed Mean of M-values®.
385  Then expression values were log2 transformed, gene and sample means were centred to zero. To
386  correct for batch effects, PCA was run on the sample correlation matrix and the first 25 PCs were
387  removed using methodology that we have use for eQTL analyses before*®*. More details are

388  provided in Zhernakova et al (in preperation).

389  Cis-meQTL mapping

390 In order to determine the effect of nearby genetic variation on methylation levels (cis-meQTLs),
391  we performed cis-meQTL mapping using 3,841 samples for which both genotype data and

392  methylation data were available. To this end, we calculated the Spearman rank correlation and
393  corresponding P-value for each CpG-SNP pair in each cohort separately. We only considered
394  CpG-SNP pairs located no further than 250kb apart. The P-values were subsequently

395 transformed into a Z-score for meta-analysis. To maximize the power of meQTL detection, we
396 performed a meta-analysis over all datasets by calculating an overall, joint P-value using a

397  weighted Z-method. A comprehensive overview of this method has been described previously®.
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398  To detect all possible independent SNPs regulating methylation at a single CpG-site we
399  regressed out all primary cis-meQTL effects and then ran cis-meQTL mapping for the same
400 CpG-site to find secondary cis-meQTL. We repeated that in a stepwise fashion until no more

401  independent cis-meQTL were found.

402  To filter out potential false positive cis-meQTLs caused by SNPs affecting the binding of a probe
403  on the array, we filtered the cis-meQTLs effects by removing any CpG-SNP pair for which the
404  SNP was located in the probe. In addition, all other CpG-SNP pairs for which the SNP was

405  outside the probe, but in LD (R?> 0.2 or D’ > 0.2) with a SNP inside the probe were also

406  removed. We tested for LD between SNPs in the probe and in the surrounding cis area in the

407  individual genotype datasets, as well as in GONL v5, in order to be as strict as possible in

408  marking a QTL as true positive.

409  To correct for multiple testing, we empirically controlled the false discovery rate (FDR) at 5%.
410  For this, we compared the distribution of observed P-values to the distribution obtained from

411  performing the analysis on permuted data. Permutation was done by shuffling the sample

412  identifiers of one data set, breaking the link between, e.g., the genotype data and the methylation
413  or expression data. We repeated this procedure 10 times to obtain a stable distribution of P-

414  values under the null distribution. The FDR was determined by only selecting the strongest effect

415  per CpG®™ in both the real analysis and in the permutations (i.e. probe level FDR < 5%).

416  Cis-eQTL mapping

417  Foraset of 2,116 BIOS samples we had also generated RNA-seq data. We used this data to
418 identify cis-eQTLs. Cis-eQTL mapping was performed using the same method as cis-meQTL
419  mapping. Details on these eQTLs will be described in a separate paper (Zhernakova et al, in

420  preparation).
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421  Expression quantitative trait methylation (eQTM) analysis
422  To identify associations between methylation levels and expression levels of nearby genes (cis-
423  eQTMs), we first corrected our expression and methylation data for batch effects and covariates
424 by regressing out the PCs and regressing out the identified cis-meQTLs and cis-eQTLs, to ensure
425  only relationships between CpG sites and gene expression levels would be detected that were not
426  attributable to particular genetic variation or batch effects. We mapped eQTMs in a window of
427  250Kb around the TSS of a transcript. Further statistical analysis was identical to the cis-meQTL
428  mapping. For this analysis we were able to use a total of 2,101 samples for which both genetic,
429  methylation and gene expression data was available. To correct for multiple testing we controlled
430  the FDR at 5%, the FDR was determined by only selecting the strongest effect per CpG® in both

431  the real analysis and in the permutations.

432 Trans-meQTL mapping

433 To identify the effects of distal genetic variation with methylation (trans-meQTLSs) we used the
434  same 3,841 samples that we had used for cis-meQTL mapping. To focus our analysis and limit
435  the multiple testing burden, we restricted our analysis to SNPs that have been previously found
436  to be significantly correlated to traits and diseases at a P < 5x108. We extracted these SNPs from
437  the NHGRI genome-wide association study (GWAS) catalogue, used recent GWAS studies not
438  yet in the NHGRI GWAS catalogue and studies on the Immunochip and Metabochip platform
439  that are not included in the NHGRI GWAS catalogue (Extended Data Table 1). We compiled
440  this list of SNPs in December 2014. Per SNP we only investigated CpG sites that mapped at least
441 5 Mb from the SNP or on other chromosomes. Before mapping trans-meQTLs, we regressed out
442  the identified cis-meQTLSs to increase the statistical power of trans-meQTL detection (as done

443  previously for trans-eQTLs®) and to avoid designating an association as trans that may be due to


https://doi.org/10.1101/033084
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/033084; this version posted December 1, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

22
444  long-range LD (e.g. within the HLA region). To ascertain the stability of the trans-meQTLs we
445  also performed the trans-mapping on the non-corrected data and the methylation data corrected
446  for cell-type proportions. In addition, we performed meQTL mapping on SNPs known to

447  influence the cell type proportions in blood*®2°,

448  To filter out potential false positive trans-meQTLs due to cross-hybridization of the probe, we
449  remapped the methylation probes with very relaxed settings, identical to Westra et al.>®, with the
450  difference that we only accepted mappings if the last bases of the probe including the SBE site
451  were mapped accurately to the alternative location. If the probe mapped within our minimal

452  trans-window, 5 Mb from the SNP, we removed the effect as being a false positive trans-

453  meQTL.

454  We controlled for multiple testing by using 10 permutations. We controlled the false-discovery

455  rate at 5%, identical to the aforementioned cis-meQTL analysis.

456  Trans-eQTL mapping

457  To check if the trans-meQTL effects can also be found back on gene expression levels, we

458  annotated the CpGs with a trans-meQTL to genes using our eQTMs. Using the 2,101 samples
459  for which both genotype and gene expression data were available, we performed trans-eQTL
460  mapping, associating the SNPs known to be associated with DNA methylation in trans with their

461  corresponding eQTM genes.

462  Annotations and enrichment tests
463  Annotation of the CpGs was performed using Ensembl®® (v70), UCSC Genome Browser®’ and
464  data from the Epigenomics Roadmap Project.>® We used the Epigenomics Roadmap annotation

465  for the SBE site of the methylation site for all 27 blood cell types. We chose to use both the
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466  histone mark information and the chromatin marks in blood-related cell types only, as generated
467 by the Epigenomics Roadmap Project. Summarizing the information over the 27 blood cell types
468  was done by counting presence of histone-marks in all the cell types and scaling the abundance,
469 i.e. if the mark is bound in all cell types the score would be 1 if it would be present in none of the

470  blood cell types the score would be 0.

471  To calculate enrichment of meQTLs or eQTMs for any particular genomic context, we used

472  logistic regression because this allows us to account for covariates such as CpG methylation

473 variation. For cis-meQTLs, we used the variability of DNA methylation, the number of SNPs
474  tested, and the distance to the nearest SNP per CpG as covariates. For all other analyses we used

475  only the variability in DNA methylation as a covariate.

476  Next to annotation data from the Epigenomics Roadmap project, we used transcription factor
477  ChlP-seq data from the ENCODE-project for blood-related cell lines. For every CpG site, we
478  determined if there was an overlap with a ChIP-seq signal and performed a Fisher exact test to
479  determine whether the trans-meQTL probes associated with the SNP in the transcription factor
480  region of interest were more often overlapping with a ChlP-seq region than the other trans-
481  meQTL probes. We collected all transcription factor called narrow peak files from the UCSC

482  genome browser to perform the enrichments.

483  Enrichment of known sequence motifs among trans-CpGs was assessed by PWMEnrich?2

484  package in R, Homer®® and DEEPbind?. For PWMEnrich hundred base pair sequences around
485 the interrogated CpG site were used, and as a background set we used the top CpGs from the 50
486  permutations used to determine the FDR threshold of the trans-meQTLs. For Homer the default
487  settings for motif enrichment identification were used, and the same CpGs derived from the

488  permutations were used as a background. For DEEPbind we used both the permutation
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489  background like described for Homer and the permutations background as described for

490 PWMEnrich.

491  Using data published by Rao et al.'® we were able to intersect the trans-meQTLs with

492  information about the 3D structure of the human genome. For the annotation, we used the

493  combined Hi-C data for both inter- and intra-chromosomal data at 1Kb and the quality threshold
494  of E30 in the GM12878 lymphoblastoid cell line. Both the trans-meQTL SNP and trans-meQTL
495  probes were put in the relevant 1Kb block, and for these blocks we looked up the chromosomal
496  contact value in the measurements by Rao et al. Surrounding the trans-meQTLs SNPs, we used a
497 LD window that spans maximally 250Kb from the trans-meQTL SNP and had a minimal R? of
498  0.8. If a Hi-C contact between the SNP block and the CpG-site was indicated, we flagged the
499  region as a positive for Hi-C contacts. As a background, we used the combinations found in our
500 50 permutated trans-meQTL analyses, taking for each permutation the top trans-meQTLs that
501  were similar in size to the real analysis. This permitted us to empirically determine whether there

502  were significantly more Hi-C interactions in the real data as compared to the permutations.

503 eQTM direction prediction

504  We predicted the direction of the eQTM effects using both a decision tree and a naive Bayes
505  model (as implemented by Rapid-miner® v6.3). We built the models on the strongest eQTMs
506  (i.e. those identified at a very stringent FDR <9.73x10). For the decision tree we used a

507  standard cross-validation set-up using 20 folds. For the naive Bayes model we used a double
508 loop cross-validation: performance was evaluated in the outer loop using 20-fold cross-

509 validation, while feature selection (using both backward elimination and forward selection) took
510 place in the inner loop using 10-fold cross-validation. Details about the double-loop cross-

511  validation can be found in Ronde et al.®*. During the training of the model, we balanced the two
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512  classes making sure we had an equal number of positively correlating and negatively correlating
513  CpG-gene combinations, by randomly sampling a subset of the overrepresented negatively
514  correlating CpG-gene combination group. We chose to do so to circumvent labelling al eQTMs

515  as negative, since this is the class were the majority of the eQTMs are in.

516 Inthe models we used annotation from the CpG-site, namely: overlap with epigenomics roadmap
517  chromatin states, histone marks and relations between the histone marks, GC content

518  surrounding the CpG-site and relative locations from the CpG-site to the transcript.

519 DEPICT

520 To investigate whether there was biological coherence in the trans-meQTLs identified, we

521  performed gene-set enrichment analysis for each genetic risk factor that was showing at least 10
522 trans-meQTL effects. To do so, we adapted DEPICT?, a pathway enrichment analysis method
523  that we previously developed for GWAS. Instead of defining loci with genes by using top

524  associated SNPs, we used the eQTM information to link CpGs to genes. Within DEPICT gene
525  set enrichment, significance is determined by using matched sets of permuted loci (in terms of
526  numbers of genes per locus) that have been identified using simulated GWAS. Subsequent

527  pathway enrichment analysis was conducted as described before, and significance was

528  determined by controlling the false discovery rate at 5%.
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