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17 Abstract

18 We made use of two recent, large-scale Drosophila GAL4 libraries and associated
19  confocal imaging datasets to automatically segment large brain regions into

20  smaller putative functional units such as neuropils and fiber tracts. The method
21 we developed is based on the hypothesis that molecular identity can be used to
22 assign individual voxels to biologically meaningful regions. Our results (available

23  athttps://strawlab.org/braincode) are consistent with this hypothesis because

24  regions with well-known anatomy, namely the antennal lobes and central

25  complex, were automatically segmented into familiar compartments. We then
26  applied the algorithm to the central brain regions receiving input from the optic
27  lobes. Based on the automated segmentation and manual validation, we can

28  identify and provide promising driver lines for 10 previously identified and 14
29  novel types of visual projection neurons and their associated optic glomeruli.
30 The same strategy can be used in other brain regions and likely other species,

31  including vertebrates.
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33 Introduction

34  Akey goal of neuroscientists is to understand brain function through a

35 mechanistic understanding of the physiology and anatomy of circuits within the
36  brain and their relation to behavior. Recently developed neurogenetic tools

37 allowing genetic targeting of specific cell classes and brain regions have been

38 essential to many advances in the past couple decades. More recently, large-scale
39 efforts to develop collections of thousands of Drosophila lines in which GAL4

40  expression is controlled via fragments of genomic DNA containing putative

41  enhancers and repressors (Jenett et al., 2012; Kvon et al., 2014; Pfeiffer et al.,

42 2008) have already been productively used as the basis for numerous screens,

43  targeted neuronal manipulation, and anatomical studies.

44  For many regions of the brain, we lack both a detailed anatomical understanding
45  of the structures present and the ability to reproducibly target specific cell types
46  contained within those structures with genetic tools. For example, despite

47  extensive work on the visual system of flies such as Drosophila (Fischbach and
48  Dittrich, 1989; Fischbach and Lyly-Hiinerberg, 1983; Nern et al., 2015; Raghu et
49 al, 2011, 2009, 2007; Raghu and Borst, 2011), the major targets of visual

50 projection neurons (VPNs), cells whose projections leave the optic lobes and

51 targetregions of the central brain, remain relatively uncharacterized despite

52  several pioneering papers (Aptekar et al., 2015; Fischbach and Dittrich, 1989;

53  Fischbach and Lyly-Hiinerberg, 1983; Ito et al,, 2013; Mu et al., 2012; Okamura
54  and Strausfeld, 2007; Otsuna et al., 2014; Otsuna and Ito, 2006; Strausfeld et al.,
55 2007; Strausfeld and Bacon, 1983; Strausfeld and Lee, 1991; Strausfeld and

56  Okamura, 2007). This region is particularly interesting because the VPNs are an
57 information bottleneck; visual information must pass through the VPNs before it
58 can influence behavior and the numbers of cell types and cell numbers are small.
59 For example, in the stalk-eyed fly Cytrodiopsis whitei, the optic nerve contains

60 about 6000 axons (Burkhardt and Motte, 1983) and the number of VPN types in
61  Drosophila is thought to number about 50 (Otsuna and Ito, 2006). Typically,

62 many of a single VPN type will converge onto a glomerular structure (Strausfeld

63 and Bacon, 1983; Strausfeld and Lee, 1991). The suggestion is that these optic
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glomeruli may process visual features in a way analogous to olfactory glomeruli
in the antennal lobe (Mu et al,, 2012) although the visual projection neurons are
likely four or five synapses from the neurons involved in sensory transduction
while the olfactory glomeruli are the primary processing centers to which the
olfactory sensory neurons converge. As it has been with the Drosophila olfactory
system, genetic access to the VPN cell types and other cell types innervating the

optic glomeruli will be useful in elucidating visual circuit function.

Similarly, other regions of ‘terra incognita,” brain regions which remain largely
undescribed, exist both within fly and vertebrate, including human, brains
(Alkemade et al., 2013; Ito et al,, 2013), and an automatic approach to discover
functional units, such as nuclei or axon tracts, and to suggest candidate genetic
lines that could be used for specific targeting of these regions would be useful.
Indeed - apart from the antennal lobes, mushroom bodies, and central complex -
much of the Drosophila brain appears homogeneous with conventional
histological techniques (Ito et al., 2013). Several projects have made use of clonal
analyses in which rare stochastic genetic events isolate a small number of
neurons and consequently assembling many such examples allows detailed
reconstructions of specific cell types and hypotheses about brain structures
(Chiang et al., 2011; Hadjieconomou et al,, 2011; Hampel et al,, 2011; Ito et al,,
2013; Livet et al., 2007; Shih et al,, 2015; Yu et al,, 2013). Other efforts combine
electron microscopy with serial reconstruction to produce even more detailed
connectomic data (Cardona et al., 2010; Helmstaedter et al., 2013; Takemura et
al,, 2013; White et al,, 1986). Despite their utility at revealing brain structure,
these approaches rely on stochastic events or histological techniques that are
difficult to correlate with cell-type specific genetically encoded markers and thus
the results cannot be directly used to identify promising driver lines for

subsequent study.

In this study, we used imaging data from recent Drosophila GAL4 collections to
automatically identify structure within the fly brain and to identify driver lines
targeting these regions. Our approach was based on the hypothesis that multiple
locations within a particular nucleus, glomerulus, or axon tract would have

patterns of genetic activity, such as gene expression or enhancer activation, more
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similar to each other than to locations within other structures. RNA expression
patterns in mouse (Fakhry and Ji, 2015; Lein et al., 2007; Ng et al,, 2009;
Thompson et al,, 2014) and human brains (Goel et al., 2014; Hawrylycz et al.,
2012; Mahfouz et al,, 2015; Myers et al,, 2015) show this to be true at a relatively
course spatial scale - sets of genes expressed in, for example, cortex or
cerebellum, are characteristic for those regions across different individuals.
Given that enhancers have more specific expression patterns than the genes that
they regulate (Kvon et al., 2014), we hypothesized that use of enhancers, rather
than genes, would enable parcellation of brain regions on a smaller scale. By
clustering GFP signal driven by enhancer-containing genomic fragments, we
identified putative functional units. Our results show that, indeed, patterns of
genomic-fragment driven expression can be used to automatically extract brain
structure. We found that much of the known structure of the well-understood
Drosophila antennal lobes is automatically found by our method. We further
show that this method predicts multiple optic glomeruli and that extensive
manual validation with more classical techniques confirms the existence and
shape of these structural elements. By using GAL4 collections rather than either
spatial profiling of expression patterns from in situ hybridization, stochastic
genetic strategies or electron microscopic based reconstruction, this approach
highlights existing genetic driver lines likely to be useful for studies of localized

neural function.

Results

Segmentation based on patterns of genomic fragment coexpression

Our approach to segment brain regions into putative ‘functional units’ (nuclei or
glomeruli and axon tracts) is based on the idea that multiple locations within
such a structure - a brain nucleus, glomerulus, or axon tract, for example - are
closer to each other in terms of molecular identity than locations within other
structures. We made use of the large imaging datasets from recent Drosophila
genomic fragment GAL4 collections, and the overall strategy was to use a

conventional clustering technique on GAL4-driven expression data to parcellate
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a brain region (e.g. antennal lobe or lateral protocerebrum) into a number of
smaller putative functional units (e.g. individual olfactory or optic glomeruli)
based on their genetic code. Because the strategy links the nucleotide sequence
within genomic fragments to specific brain regions, we named it ‘Braincode’ and

the results can be interactively viewed at https://strawlab.org/braincode.

As input, we took confocal image stacks from the Rubin lab Janelia FlyLight
collection (Jenett et al., 2012; Pfeiffer et al., 2008) and from the Dickson lab
Vienna Tiles collection (B. Dickson, personal communication). In total, we used
data from 3462 Janelia FlyLight and 6022 Vienna Tiles GAL4 driver lines crossed
with UAS-mCD8::GFP. Each dataset came registered to a dataset-specific template
brain with registration error estimated to be 2-3 pm (Cachero etal., 2010; Yu et
al,, 2010). On a per-voxel basis we calculated the set of driver lines for which GFP
expression was higher than a threshold. We used the Dice coefficient to quantify
expression similarity between each possible pair of voxels and this n x n distance
matrix was used to group voxels into clusters of similar expression using k-
medoids clustering (Figure 1, see Methods for details). As typical for clustering
algorithms, one parameter controls the number of clusters, and in our case we
chose several different values for k and evaluated results for different choices
and in each of the two independent datasets. Neither manual inspection nor
calculation of a metric designed to measure clustering repeatability, adjusted
Rand index (Figure 1-figure supplement 1), showed an obvious optimal value for
k. Therefore, we chose a value of k equal 60 as a number which appeared to
provide sufficiently many clusters to capture important structures at a small
scale without producing an overwhelming number. The result of the clustering
algorithm is the assignment of each voxel in the input brain region to one of the k
clusters. This approach therefore divides the brain into distinct regions, each
likely innervated by multiple cell types. While local interneurons might be
confined specifically to the region of a particular cluster, other cell types may
extend through multiple clusters and into more distant brain regions. The
clusters found in this way are predictions of functional units in the Drosophila
brain. Most of our subsequent efforts were to evaluate the quality of these

results.
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If our hypothesis is correct that functional units can be automatically segmented
using patterns of coexpression, we can make several predictions. First, despite
physical distance not being used as a parameter in defining the clusters, we
would expect valid clusters to be spatially compact rather than consisting of, for
example, individual voxels scattered throughout the volume. Second, we would
expect that for a bilaterally symmetric brain, a given cluster should consist of
voxels in mirror-symmetric positions. Third, when clustering is used to segment
regions that are already well-understood, the shape, size and location of the
automatically found clusters match the known structures. Fourth, when
clustering is performed on a different dataset (e.g. Janelia FlyLight versus Vienna
Tiles), we expect similar segmentations because the underlying molecular

identity of the functional units should dominate the results.

Automatic segmentation of the antennal lobes

To test these expectations, we examined the Braincode results from the antennal
lobe (AL) and central complex (CX) (Figure 2). As shown when run with the
number of clusters k set to 60, the resulting clusters were compact shapes
similar in appearance to the known olfactory glomeruli (Couto et al., 2005; Grabe

et al.,, 2015; Vosshall et al., 2000) filling the volume of the AL (Figure 2A-B).

Individual clusters were highlighted (Figure 2C, left column) and used to look at
the individual GAL4 lines that have particularly high expression within a given

cluster (see https://strawlab.org/braincode) or to take an average of all confocal

image stacks from all GAL4 lines that strongly present in a particular cluster but
not broadly expressing elsewhere in the target brain region (Figure 2C, right
column, Figure 2-figure supplement 2,3). Although our input brain region was
the right AL, the average image stacks show a high level of symmetry across the
midline. Furthermore, a large fraction of voxels belonging to a given glomerulus
whose identity was manually assigned in an nc82 stained brain as ‘ground truth’
were shared with individual clusters (Figure 2-figure supplement 1).In a
subsequent manual step, we used these correspondences to identify
automatically extracted clusters as specific olfactory glomeruli (Figure 2C).

When the same analysis was performed on an entirely independent dataset
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(from the Vienna Tiles collection rather than the Janelia FlyLight) the results
were qualitatively similar (Supplementary file 1 and

https://strawlab.org/braincode website).

Central complex, Mushroom bodies, Sub-esophageal zone

We performed further clustering on both relatively well-understood brain
regions and the ‘terra incognita’ of diffuse neuropils. The central complex (CX)
has been the focus of substantial anatomical work (Bausenwein et al., 1986;
Hanesch et al,, 1989; Lin et al,, 2013; Strauss and Heisenberg, 1993) and has
been recently described in extensive detail using split-GAL4 line generation and
manual annotation (Wolff et al., 2015). The Braincode algorithm automatically
identified many of the prominent structures within this brain region (Figure 2D-
E). For example, individual shells of the ellipsoid body neurons are segmented,
individual layers of the fan shaped body are found, and the protocerebral bridge
is segmented into distinct regions. In this case, our input brain region spanned
the midline to cover the entire CX region, and consistent with expectations for a
working algorithm, the clustering results are mirror symmetric across the

midline (Figure 2F, Figure 2-figure supplement 4,5).

The results on these well studied brain regions therefore support the idea that
patterns of coexpression can indeed be used to identify functional units and that
the Braincode algorithm is capable of automatically segmenting brain regions

into putative, biologically meaningful sub-regions.

On the https://strawlab.org/braincode website, we also include the results of

clustering the mushroom bodies (MBs) and sub-esophageal zone (SEZ). Future

clustering results can be added upon request.

Optic glomeruli

The posterior ventrolateral protocerebrum (PVLP), posterior lateral
protocerebrum (PLP) and anterior optic tubercle (AOTU) are diffuse neuropils to
which the majority of outputs from the medulla and lobula neuropils within the

optic lobes project (Otsuna and Ito, 2006; Strausfeld and Bacon, 1983; Strausfeld
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and Lee, 1991). By analogy to the antennal lobes, where a single glomerulus
processes the output of a single type of olfactory sensory neuron (OSN), it is
proposed that a single VPN type projects to a single optic glomerulus and
encodes a single visual feature (Mu et al,, 2012). These regions have accordingly
received some attention, but the specific location and identity of structures
within these regions remains incompletely described. Therefore, we used
Braincode to identify putative functional units in this region (Figure 3AB). We
call the union of these three neuropils (PVLP, PLP and AOTU) the optic
Ventrolateral Neuropil (o0VLNP).

Consistent with the idea that some of the automatically segmented clusters are
optic glomeruli, we could identify a single, previously described VPN type
projecting to many of these clusters (Figure 3C-]). In addition to creating an
average image by combining driver lines expressing in the cluster, we selected
individual driver lines that appeared to drive expression in a single VPN type
projecting to this cluster. By comparing the morphology of the neurons selected
this way with previous reports, particularly Otsuna and Ito (2006), we could
identify LC04, LCO6, LC09, LC10, LC11, LC12, LC13 and LC14. (Missing elements
from the sequence - LCO1, LC02, LCO3, LCO5, LCO7 and LCO8 - were omitted by
Otsuna and Ito due to uncertain identification compared to previous work.) To
image the precise location of synaptic outputs of each of these VPN types, we
expressed a presynaptic marker, synaptotagmin::GFP (syt::GFP) (Zhang et al,,
2002), using the selected driver lines. After registering these newly acquired
confocal image z-stacks to the templates of the Vienna or Janelia collections, we
could then define the 3D location and extent of the VPN output - the VPN’s
associated optic glomerulus - by performing assisted 3D segmentations of the
presynaptic regions. Initial inspection showed a substantial similarity between
such manually validated optic glomeruli and automatically identified clusters,

and below we quantify this correspondence.

When segmenting a large brain region into putative functional units, we might
expect to find axon tracts in addition to nuclei or glomeruli. Indeed, the

clustering results also included two apparent axon tracts through this region, the
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249  great commissure connecting the two contralateral lobulae including LC14 and

250  the tract that includes the Lat (lamina tangential) neuron type (Figure 4).

251 In addition to clusters corresponding to output regions of previously identified
252 neuron types, we found clusters that appear to be projection targets of VPNs that
253  have not been previously described. These novel VPNs are eight lobula columnar
254  (LC) types, four lobula plate-lobula columnar (LPLC) types, one lobula-plate

255  columnar type, and two medulla columnar (MC) VPNs types. Using the same

256  presynaptic GFP expression approach as above, we saw substantial similarity
257  between these manually validated optic glomeruli to the clustering result (Figure
258  5,6). For each cell type, we used the FlyCircuit database (Chiang et al.,, 2011) to
259  identify multiple example single neuron morphologies (Figure 8-table

260  supplement 1). We named these neuron types by continuing the sequence

261 onwards from the last published number for a particular class (i.e. LC15 is the

262  firstlobula columnar type we identified whereas LC14 was previously reported).

263  We defined the precise 3D location of the optic glomeruli by segmenting the

264  presynaptic marker signal from registered confocal image stacks of VPN lines.
265  Quantification showed a high degree of colocalization between these manually
266  validated optic glomeruli and voxels from specific clusters, and plotting these
267  results showed that the Braincode method automatically produces

268 segmentations with substantial similarity to those derived from labor-intensive
269 manual techniques (Figure 7A). This holds true across a second, entirely distinct

270  dataset (Figure 7B).

271  We evaluated completeness of the results in two ways. First, we clustered both
272  data sets twice with k equal 60 but different random number seeds and

273  discovered in each run at least 23 of the 25 glomeruli or tracts associated with a
274  particular VPN type (Figure 8-table supplement 1). We expect subsequent

275 repetitions to reveal few, if any, additional novel structures. Secondly, we noted
276  thatregions of high intensity anti-Bruchpilot (nc82 antibody) staining, an

277  indicator of synaptic contacts, coincide with optic glomeruli. In the brain regions
278  investigated, we found glomeruli for all such high intensity regions (Figure 8).

279  We did not perform clustering on the Posterior Slope (PS), a region targeted by


https://doi.org/10.1101/032292
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/032292; this version posted November 29, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

280
281
282
283

284

285
286
287
288
289
290
291
292
293
294
295
296
297

298
299
300
301
302
303
304
305
306
307
308
309
310

available under aCC-BY-ND 4.0 International license.

Panser, Tirian, Schulze et al. p. 11

the lobula plate tangential cells (LPTCs), and thus did not expect to find any
clusters associated with these neurons, nor did we find any such clusters. Taking
these results together, we conclude that the Braincode method can find a

majority of structures in a particular region.

Interpreting results from automatic clustering

As noted above, any clustering algorithm has a parameter that (implicitly or
explicitly) controls the number of resulting clusters. An important question
when using these algorithms, then, is how to set that parameter. In the ideal case,
an inherent clustering is easy to identify within the data and nearly trivial for an
automatic algorithm to extract. Often however, and we believe this is the case for
the type of spatial expression data used here, the distinctions between different
portions of the data are somewhat unclear and the clustering algorithm creates a
classification which may be different from an expert assessment. Experts
themselves often disagree, however, due to debates in which ‘lumpers’ argue
that differences are insignificant and only obscure a more important deeper
unity and ‘splitters’ argue that the differences seen reflect important underlying
distinctions. Therefore, we expected some degree of splitting, lumping or both in

our results.

To evaluate the distinctness of our clusters and to gain insight into the molecular
distances between different clusters, we plotted distance matrices between
medoids (Figure 7-figure supplement 1 A,C). We also made use of t-distributed
stochastic neighbor embedding (von der Maaten and Hinton, 2008) to make 2D
plots in which medoids are plotted in close proximity when their molecular
distance is low but farther apart when they are less closely related (Figure 7-
figure supplement 1 B,D). In some cases, this approach shows that some clusters
identified as distinct have a small ‘molecular distance’ and thus might be
considered to result from excessive splitting. On the other hand, evidence of
potential lumping comes from cases such as only a single cluster being found for
the optic glomeruli corresponding to the LC16 and LC24 VPN types, despite the
fact that manual segmentations of their associated optic glomeruli showed that

these project to anatomically distinct (but adjacent) regions (Figure 5B,H).
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Despite a potentially unsolvable assignment problem of the existence one or two
‘true’ functional units, co-clustering indicates that there are some driver lines

that drive expression in both glomeruli.

One illustrative example of the challenge of whether to lump and split comes
from the optic glomerulus associated with the LC10 neuron type. Clusters C09
and C22 in run 1 of the Janelia Fly Light dataset (Figure 3-figure supplement 1)
correspond to dorsal and ventral parts of the medial AOTU respectively, and the
LC10 neuron type projects to both clusters. While LC10 subtypes - with distinct
morphology and with inputs from distinct layers of the lobula - have been
identified that target these regions preferentially (Costa et al., 2015; Otsuna and
Ito, 2006), our results - separate clusters but very low distance on the t-
distributed stochastic neighbor embedding (t-SNE) plot (Figure 7-figure
supplement 1 B) - suggest that there is relatively little molecular distance
between the dorsal and ventral parts of the medial AOTU. Indeed, after searching
through the list of driver lines with substantial expression in C22, we could find
only a single driver line, GMR22A07-GAL4, that drove strong expression in a VPN
targeting this region and had specificity for Otsuna and Ito’s (2006) LC10a
subtype but not LC10b. It would be tempting to conclude, then, that the division
of the medial AOTU was erroneously split by the clustering algorithm. Yet the
existence of distinct LC10 subtypes suggests that there are genuine, if small,
distinctions between these regions. We suggest that the LC10 neuron type
presents an example of the lumping versus splitting problem within spatial
expression data. It may be that further data, for example detailed studies on
LC10 subtype morphology and molecular expression, could resolve the issue. In
the absence of such data, subdividing large brain regions can be useful simply as
a way to reduce the complexity of a large brain region and need necessarily
imply a strong claim of correspondences to genuine anatomical correlates. And
this benefit of clustering would furthermore remain even if further data did not

support a clear conclusion.

As discussed, automatic calculation of a measure of repeatability (adjusted Rand
index, Figure 1-figure supplement 1) found no obvious optimum value of k.

Therefore, we sought to gain a more biologically meaningful sense of consistency
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343  across multiple runs of the algorithm for the value of k=60 that we chose by
344  performing a visualization comparing the results of a manual segmentation of a
345  brain region with the automatic segmentations. We did this for the oVLNP with
346  each of four different clustering runs, two from each dataset (Figure 7A,B and
347  Figure 7-figure supplement 2A,B). The results show that, despite different

348 random number initialization seeds, most optic glomeruli have a strong

349  correspondence with a single cluster across repeated runs of the algorithm
350  within and across the two datasets (Vienna Tiles and Janelia FlyLight). This
351  suggests substantial biologically meaningful repeatability within and between
352  datasets.

353 In sum, we suggest that the automatic segmentations produced by Braincode
354  should be used as hypotheses that must be further investigated, as we have done
355  here for the visual system, before strong conclusions can be drawn about

356 intrinsic neuroanatomical structure.

357 Little VPN convergence to single optic glomeruli

358  Ofthe 22 optic glomeruli we identified, only a single one was targeted by two
359 VPN types. Apart from LC22 and LPLC4 projecting to the same glomerulus, we
360 found no other instance of convergence of multiple VPN types to a single optic
361 glomerulus. In some cases however, two VPN types projected to a single cluster.
362  For example, LC11 and LC21 both project to the region containing C07 (Figure
363 7). While there are some regions of presynaptic colocalization in the underlying
364 signals in registered images, there are also non-overlapping presynaptic

365 localizations and thus the data suggest that the glomeruli are at least partially
366  distinct (Figure 8B). LC12 and LC17 are another similar pair but the presynaptic
367 localization is even more distinct in this case (Figure 8B). Similarly, the

368  presynaptic localizations of LC16 and LC24 both are within cluster C37, although
369 in this case we think that a paucity of driver lines driving expression in LC24

370  likely precluded a separate cluster from being identified. In summary, with a
371  single exception, we do not find evidence for multiple VPNs projecting to a single
372  optic glomerulus and instead propose that where we do see projection to the

373  same cluster that this results from lumping within the clustering algorithm.
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While we cannot exclude the possibility that more optic glomeruli exist that are
the targets of two or more VPN types, our data show that such cases are
exceptional. Conversely, we found that each VPN type projects to a single
glomerulus. Together, these two observations allow us to propose naming optic

glomeruli according to the VPN type(s) that project to them.

A map of the optic glomeruli of Drosophila

We can synthesize the novel findings of this automatic and manual
characterization of this brain region with a movie showing segmented visual
projection neurons and the presynaptic output regions associated with each of
these VPNs (Video 1). Furthermore, we have created reference figures describing
the optic glomeruli as the targets of specific VPNs (Figure 8) and provide
separate 3D models of each VPN type and its associated optic glomerulus all in a

common 3D template brain coordinate system (Supplementary file 1).

Pathways leaving the optic glomeruli

Just as we identified driver lines expressing in VPN types that enter a particular
optic glomerulus, we can also use the lists of driver lines expressed in a given
cluster to suggest candidate interneurons that are largely contained within a
particular glomerulus or projection neurons that leave from the glomerulus. To
demonstrate the potential of this approach, we used such driver lines to drive
expression of two reporters, a red fluorescent dendritic marker UAS-
DenMark::mCherry (Nicolai et al., 2010) and a green fluorescent presynaptic
marker UAS-Syt::GFP (Zhang et al., 2002). In several cases, we can identify
candidate neurons that appear to have dendritic inputs in a particular

glomerulus and project elsewhere in the brain (Figure 9).

Discussion

We have demonstrated that applying a clustering algorithm to imaging data from
large-scale enhancer libraries segments brain regions into smaller, putative

functional units such as glomeruli and axon tracts. When applied to Drosophila
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data, automatically extracted clusters have a high correspondence with
glomeruli and other neuropil subdivisions within the antennal lobes and central
complex, suggesting the utility of the approach. We used this approach to inform
a detailed investigation of the optic Ventrolateral Neuropil (0VLNP), a region
where most outputs from the medulla and lobula neuropils within the optic
lobes reach the central brain. We identified several neuron types that, to the best
of our knowledge, have not been previously described: eight lobula columnar
(LC) neuron types, four lobula plate-lobula columnar (LPLC) types, one lobula-

plate columnar type, and two medulla columnar (MC) types.

We found a nearly one-to-one projection of visual projection neurons to optic
glomeruli. This is consistent with the idea that each optic glomerulus processes
input from a single cell type and is therefore similar to the olfactory glomeruli in
the sense that a dedicated glomerulus receives input from a single distinct input
cell type (Mu et al., 2012). Future work could investigate whether the regions are
homologous in an evolutionary sense and if the similarities extend to functional

aspects and developmental mechanisms.

Recent computational neuroanatomical work has sought to use extensive
collections of registered image stacks from stochastically labeled brains (Chiang
et al.,, 2011) to identify cell types (Costa et al.,, 2015) construct a mesoscale
connectome of the fly brain (Shih et al., 2015) or to find groups of
morphologically similar neurons likely from the same neuroblast (Masse et al.,
2012). Given the complementary strengths of the respective approaches -
resolution to the single-cell level with stochastic labeling approaches and
candidate driver lines and molecular identity from the Braincode approach, it
may be productive to perform further analysis that takes advantage of these
differences. For example, it might be possible to perform a motif analysis to
identify enhancer fragments correlating with anatomical features such as
projection target, axon tract location, or branching pattern. Additionally, because
the enhancer fragments are likely to regulate genes that neighbor the enhancer
region in the genome (Kvon et al.,, 2014), this approach could be used to suggest
genes that are particularly distinct for specific brain regions and potentially for

specific cell types.
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The approach outlined here has several technical dependencies, which may
represent limitations in some cases. Firstly, there is an obvious requirement that
any structure segmented automatically must have a physical scale at least
comparable to, if not larger than, the error in registering multiple samples.
Secondly, enough registered enhancer line images must be available to provide a
signal sufficient for clustering. Third, underlying biological variability in the
developmental patterns must be less than the variability in the registered
expression data. In addition to these technical dependencies, we found that the
use of an automatic classification algorithm does not solve the classic ‘lumper
versus splitter’ problem. Also, while we have shown that clustering often
identifies regions with anatomical correlates such as a glomerulus, in other cases
this may be less clear. In any case, the clusters identified result from patterns of
expression in many driver lines but it may be that only some driver lines are
confined to the boundaries of a given cluster. In cases where the automatically
extracted clusters do not clearly correspond with an anatomical structure, we
propose that clustering may nonetheless be useful in reducing the complexity of

thinking about a large brain region by dividing it into smaller elements.

Despite these potential limitations, the Braincode approach is not limited to
Drosophila. Data are available from recent Zebrafish enhancer trap experiments
(Kawakami et al,, 2010; Kondrychyn et al.,, 2011) and registering brains is also
possible (Ronneberger et al., 2012). Together, these would enable an attempt to
apply the Braincode technique. New developments, such as the use of site-
specific integrase (Lister, 2011; Mosimann et al., 2013) could be used to
minimize expression level variation due to effects of where a transgene
integrates in the genome and improve efficiency and thus produce comparable
datasets to those used here for Drosophila. Such an effort in Zebrafish could be
used to suggest driver lines corresponding to functional units identified in brain-
wide activity-based experiments (Ahrens et al., 2012; Kubo et al,, 2014;
Portugues et al., 2014; Randlett et al., 2015). Similar datasets are being gathered
in another fish species, Medaka (Alonso-Barba et al., 2015). Variability of brain
development in mammals may make the approach more challenging, or only

operate on larger scales, in these species. Nevertheless, the ability to
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466  automatically segment brain regions into putative functional units could prove

467  useful in unraveling structure-function relationships in a variety of species.

468 Methods and materials

469 Drosophila Strains/Stocks

470  Flies were raised at 25 degrees Celsius under a 12 hour light-dark cycle on

471  standard cornmeal food. Used GAL4 lines were from the Vienna Tiles collection
472  (generated by the groups of B.]J. Dickson and A. Stark, unpublished data, see also
473  Kvonetal, 2014) and Janelia GAL4 library (Pfeiffer et al,, 2010, 2008) and were
474  obtained from the Vienna Drosophila RNAi Center or Bloomington Drosophila
475  Stock Center (BDSC), respectively. UAS-mCD8::GFP was generated by B.].

476  Dickson group. UAS-DenMark::mCherry, UAS-synaptotagmin::GFP was created
477 by B.A. Hassan and obtained from BDSC.

478 Sample Preparation and Imaging

479  Fly dissection and staining were performed as previously described (Yu et al.,
480  2010) using 3 to 5 days old adult flies. In brief, brains were dissected in

481  phosphate buffered saline (PBS), fixed in 4 % paraformaldehyde in PBS with 0.1
482 % Trition-X-100 and subsequently blocked in 10 % normal goat serum (Gibco
483  Life Technologies). Brains were incubated in primary and secondary antibodies
484  for a minimum of 20 hours at 4 degrees Celsius and washed in PBS with 0.3 %
485  Trition-X-100. Fly brains were mounted in Vectashield (Vector Laboratories). We
486  used the following primary antibodies: rabbit polyclonal anti-GFP (1:5000,

487  TP401, Torrey Pines), mouse monoclonal anti-bruchpilot (1:20, nc82,

488 Developmental Studies Hybridoma Bank), chicken polyclonal anti-GFP (1:10.000,
489 ab13970, Abcam), rabbit polyclonal anti-DsRed (1:1000, 632496, Clontech). We
490 used the following secondary antibodies: Alexa Fluor 488, 568 or 633 antibodies
491  (1:500 to 1:1000, Invitrogen Life Technologies).

492  Images were acquired using point scanning confocal microscope LSM780 or

493  LSM700 (Zeiss) equipped with 25x/0.8 plan-apochromat multiimmersion or
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20x/0.8 plan-apochromat dry objectives, respectively. To avoid channel cross-
talk confocal Z-stacks were recorded in the multi-track (LSM700) or online

fingerprinting mode (LSM780).
Registration, Assisted Segmentation, and 3D-Rendering

For both datasets an intensity-based nonlinear warping method was used. For
the Vienna Tiles dataset we used the approach described in (Yu et al.,, 2010) and
for the Janelia dataset, brains were registered according to (Cachero et al., 2010).
Fiji (Image]) and Amira (4.1.2, Mercury Computer Systems) software were used
for image processing and analysis. Amira label field function was used to
segment optic glomeruli, projections and neuron types from registered images.
Surface files of segmented structures were generated using constrained
smoothing for full neuron segmentations and unconstrained smoothing for optic
glomeruli. We additionally used the BrainGazer visualization software (Bruckner
etal,, 2009). In all 3D figures, we included a 3D axes scale in which red specifies
the lateral axis with positive towards the animal’s left side, green specifies the
dorsal-ventral axis with positive towards ventral, and blue specifies the anterior-
posterior with position towards posterior. Due to the use of a perspective

projection in these figures, the size of the 3D axes scale is only approximate.

Thresholding, Dice similarity, k-Medoids, and t-SNE

GAL4 expression patterns were transformed into a binary representation in two
steps. First, the image is thresholded and second, morphological opening with a
3x3x3 kernel is applied to reduce clutter. The threshold was chosen so that the
resulting mask yielded 1% stained voxels. This simple heuristic was more
reliable for the datasets tested compared to other standard automatic

thresholding methods.

From the binarized images, the set of expressing lines was assembled for each

voxel. Similarity between voxels based on the respective expression set from

voxel A and the set from voxel B is computed using Dice’s coefficient as
_ﬂAﬂm

s = m where N denotes intersection and |x| denotes the number of
+
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523 elements in set x. To decrease the effects of registration error and image

524  acquisition noise and to increase the speed of subsequent processing steps, we
525 binned the original image voxel data into larger voxels, typically a 3x3x3

526  downsampling. The k-medoids algorithm (Kaufman and Rousseeuw, 1987) was
527  runin Julia 0.4.0 using JuliaStats Clustering 0.5.0 (see Supplementary file 1). The
528 k-medoids was performed on Dice dissimilarity (1-s). To visualize the distance
529  between medoids, we used the implementation of t-distributed stochastic

530 neighbor embedding (von der Maaten and Hinton, 2008) in Python 2.7.10 using
531 the Scikits Learn 0.16.1 software package (Pedregosa et al., 2011) with

532  precomputed distances using metric distance V1-s between medoids.

533 Nomenclature

534  Existing nomenclature was used for previously identified neuron types when an
535 unambiguous match was possible. Lobula columnar neurons were first

536  systematically described in Drosophila in (Fischbach and Dittrich, 1989) which
537  called these ‘Len’ types and included Lenl, Len2, Len4, Len5, Len6, Len7, and
538 Lcn8 (Len3 was skipped). Later, these were named LC neurons, only

539 unambiguous identities were maintained, and new numbers were given by

540 (Otsuna and Ito, 2006). In Otsuna and Ito’s work, only Lcn4 and Len6 could be
541 identified and became LC4 and LC6. However Lcn1, Len2, Len3, Len5, Len7, Len8
542  have no LC counterpart. In addition to LC4 and LC6, Otsuna and Ito identified
543 LC9,LC10,LC11,LC12,LC13 and LC14. Naming of non-described types was

544  based on the style of Otsuna and Ito (2006) and done in coordination with A.
545 Nern and G. Rubin. Neuropils are referred to using the terminology of the Insect
546  Brain Name Working Group (Ito et al.,, 2014). Abbreviations used: LC - lobula
547  columnar; LPC - lobula plate columnar; LPLC - lobula plate, lobula columnar; MC
548 - medulla columnar; Lat - lamina tangential. We call the union of the posterior
549  ventrolateral protocerebrum (PVLP), posterior lateral protocerebrum (PLP) and

550 anterior optic tubercle (AOTU) the optic Ventrolateral Neuropil (oVLNP).
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807 Figure captions

808 Figure 1. Automatic segmentation of a brain region into domains sharing
809 common enhancer profiles. A) Thousands of registered confocal image stacks
810  from the Janelia FlyLight and Vienna Tiles projects were used. B) Within an

811 analyzed brain region (purple outline), a list of driver lines driving expression
812  was compiled for each voxel. C) A voxel-to-voxel similarity s was computed using
813  the Dice coefficient and k-medoids was used to cluster groups of voxels of

814  putative functional units. D) Each voxel is colored according to its cluster and
815 plotted in the original brain coordinate system. All panels: Janelia FlyLight data
816  for the optic Ventrolateral Neuropil (0VLNP) region defined as PLP, PVLP, and
817 AOTU, run 1,42317 voxels, 3462 driver lines, k equal 60. 3D axes scale 40 um in

818 lateral (red), dorsal-ventral (green), anterior-posterior (blue).

819  Figure 2. Automatic segmentation of antennal lobe (AL) and central

820 complex (CX). A) The automatic clustering results from the right AL plotted in
821  the whole brain. 3D axes scale 40 um. B) 3D views of the AL clustering

822  assignments. 3D axes scale 15 um C) individual clusters (left), average image of
823  strongly expressing driver lines with broad driver lines removed (middle), and
824 manually assigned corresponding olfactory glomerulus (right). Scale bars 20 pm.
825 D) The automatic clustering results from CX plotted in the whole brain. 3D axes
826  scale 40 um. E) 3D views of the CX clustering assignments. 3D axes scale 30 um.
827  F)individual clusters (left), average image of strongly expressing driver lines
828  with broad driver lines removed (right). Scale bars 20 pm. (Panels A-C: Janelia
829  FlyLight data for the right AL, run 1, 23769 voxels, 3462 driver lines, k equal 60.
830  Panels D-F: Janelia FlyLight data for CX, run 1, 27598 voxels, 3462 driver lines, k
831 equal 60.)

832  Figure 3. Automatic segmentation reveals clusters that correspond to optic
833 glomeruli associated with previously identified visual projection neurons
834  (VPNs). A) Clusters from the oVLNP region plotted within entire brain. 3D axes
835  scale 40 um. B) Multiple 3D views of clusters. 3D axes scale 40 um. C-])

836 Individual clusters, average images, selected driver lines, 3D segmentations of a

837  particular VPN type, presynaptic marker (UAS-synaptotagmin::GFP) expressed
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by a single driver and 3D segmentation of presynaptic region to define optic
glomerulus. (All panels: Janelia FlyLight data for the oVLNP region defined as
PLP, PVLP, and AOTU, run 1, 42317 voxels, 3462 driver lines, k equal 60. Scale
bars 50 pm.)

Figure 4. Automatic segmentation reveals clusters that correspond to tracts
associated with previously identified visual projection neurons. A) Clusters
of the oVLNP with the Vienna Tile dataset plotted within entire brain. 3D axes
scale 40 um. B) Multiple 3D views of clusters. 3D axes scale 30 um. C) Cluster
associated with the giant commissure, including LC14 neurons. D) Cluster
associated with the axons of Lat neurons. (All panels: Vienna Tiles data for the

oVLNP, run 1, 13458 voxels, 6022 driver lines, k equal 60. Scale bars 50 pum.)

Figure 5. Automatic segmentation reveals clusters that correspond to optic
glomeruli associated with newly identified LC-type visual projection
neurons. A-H) Individual clusters, average images, selected driver lines, 3D
segmentations of a particular VPN type, presynaptic marker (UAS-
synaptotagmin::GFP) expressed by a single driver and 3D segmentation of
presynaptic region to define optic glomerulus. (All panels: Janelia FlyLight data
for the oVLNP, run 1, 42317 voxels, 3462 driver lines, k equal 60. Scale bars 50

um.)

Figure 6. Automatic segmentation reveals clusters that correspond to optic
glomeruli associated with newly identified LPLC, LPC, and MC-type visual
projection neurons. A-F) Individual clusters, average images, selected driver
lines, 3D segmentations of a particular VPN type, presynaptic marker (UAS-
synaptotagmin::GFP) expressed by a single driver and 3D segmentation of
presynaptic region to define optic glomerulus. (All panels: Janelia FlyLight data
for the oVLNP, run 1, 42317 voxels, 3462 driver lines, k equal 60. Scale bars 50

um.)

Figure 7. Automatically assigned clusters colocalize with manually
segmented optic glomeruli. A) Colocalization similarity (measured based on
set of voxels in manually annotated region and set of voxels in clustering result)

between the Janelia FlyLight dataset and manual assignments using the same 3D
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869  template brain. (Janelia FlyLight data for run 1, oVLNP, 42317 voxels, 3462
870  driver lines, k equal 60.) B) Colocalization similarity between the Vienna Tiles
871  dataset and manual assignments using the same 3D template brain. (Vienna Tiles

872  dataforrun 1, oVLNP, 13458 voxels, 6022 driver lines, k equal 60.)

873

874 Video 1. 3D location of manually segmented visual projection neurons and
875  optic glomeruli. Right half shows 3D rendering of all identified optic glomeruli
876  registered onto a 3D reference brain. Optic glomeruli were segmented from

877  single driver confocal images expressing presynaptic marker (UAS-

878  synaptotagmin::GFP). Left half shows 3D rendering of visual projection neurons
879  segmented from single driver confocal images expressing a non-localized cell

880 membrane marker (UAS-CD8::GFP).

881  Figure 8. An atlas of the optic glomeruli defined by manual segmentation of
882  presynaptic marker expression experiments. A) 3D rendering of all identified
883  optic glomeruli registered onto a 3D reference brain. Optic glomeruli were

884 segmented from single driver confocal images expressing presynaptic marker
885  (UAS-synaptotagmin::GFP). (Scale bars 40 um.) B) Z-stack showing the location
886  of each optic glomerulus in a 2D view on the background of an average image of

887  many individual nc82 stained brains.

888  Figure 9. Using clusters to identify neuron types that express dendritic
889 markers in a particular optic glomerulus and project to another region. A-
890 D) Neurons that project to (left) and from (right) a particular optic glomerulus,

891 found using candidate searches from the Braincode result lists. Pre- and post-
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892  synaptic markers were UAS-synaptotagmin::GFP and UAS-DenMark::mCherry,
893  respectively. A) Putative outputs from the optic glomerulus to which MC61

894  projects include a neuron type that projects to the bulb. Such cells express post-
895  synaptic marker in the AOTU and pre-synaptic markers in the bulb. (Driver lines:
896 GMRHO07-GAL4,VT037804-GAL4) B) The optic glomerulus to which the LC04
897  neuron type projects contains a neuron, likely the giant commissural

898 interneuron CGI (Phelan et al,, 1996) that expresses post-synaptic marker in this
899  glomerulus. (Driver lines: GMR56D07-GAL4, VT064571-GAL4) C) The optic

900 glomerulus to which the LC09 neuron type projects contains a neuron that

901  expresses pre- and post-synaptic markers in this glomerulus (arrowheads).

902  (Driver lines: GMR18C12-GAL4, VT062768-GAL4) D) The optic glomerulus to
903  which the LC16 neuron type projects contains a neuron that expresses pre- and
904  post-synaptic markers in this glomerulus. (Driver lines: GMR25E04-GAL4,

905 VT062646-GAL4)

906 Supplement Captions

907  Figure 1-figure supplement 1. Repeatability scores across multiple runs of
908 the k-medoids algorithm. The adjusted Rand index, a measure of repeatability,
909  was calculated based on 10 repeated runs of the k-medoids algorithm for both

910 datasets and several brain regions.

911  Figure 2-figure supplement 1. Automatically assigned clusters colocalize
912  with manually segmented antennal lobe glomeruli. Colocalization similarity
913 (measured based on set of voxels in manually annotated region and set of voxels
914  in clustering result) between the Janelia FlyLight dataset and manual

915  assignments using the same 3D template brain. (Janelia FlyLight data for the

916 right antennal lobe region, run 1, 6502 voxels, 3462 driver lines, k equal 60.)

917  Figure 2-figure supplement 2. First 30 clusters from right antennal lobe. On
918 the left of each column, a 3D rendering of each cluster is shown within the
919 antennal lobe, and on the right is an average image of the drivers with high

920  expression in that cluster but that do not broadly express. (Janelia FlyLight data
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921 for the right antennal lobe region, run 1, 6502 voxels, 3462 driver lines, k equal
922  60. Scale bars 20 um.)

923  Figure 2-figure supplement 3. Second 30 clusters from right antennal lobe.
924  Asin Figure 2-figure supplement 2. (Janelia FlyLight data for the right antennal
925 loberegion, run 1, 6502 voxels, 3462 driver lines, k equal 60. Scale bars 20 pm.

926  Figure 2-figure supplement 4. First 30 clusters from central complex. As in
927  Figure 2-figure supplement 2 but for the central complex region. (Janelia

928  FlyLight data for the central complex region, run 1, 27598 voxels, 3462 driver
929 lines, k equal 60. Scale bars 20 um.)

930 Figure 2-figure supplement 5. Second 30 clusters from central complex. As
931 in Figure 2-figure supplement 4. (Janelia FlyLight data for the central complex

932  region, run 1, 27598 voxels, 3462 driver lines, k equal 60. Scale bars 20 pm.)

933  Figure 3-figure supplement 1. First 30 clusters from the oVLNP region,
934  using Janelia FlyLight dataset. As in Figure 2-figure supplement 2 but for the
935  oVLNP region. (Janelia FlyLight data for the oVLNP region defined as defined as
936 PLP,PVLP,and AOTU, run 1, 42317 voxels, 3462 driver lines, k equal 60. Scale
937  bars 50 pm.)

938  Figure 3-figure supplement 2. Second 30 clusters from the oVLNP region,
939 using Janelia FlyLight dataset. As in Figure 3-figure supplement 1. (Janelia
940  FlyLight data for the the oVLNP region defined as defined as PLP, PVLP, and
941 AOTU, run 1, 42317 voxels, 3462 driver lines, k equal 60. Scale bars 50 pm.)

942  Figure 4-figure supplement 1. First 30 clusters from the oVLNP region,

943  using Vienna Tiles dataset. As in Figure 3-figure supplement 1 but for the

944  Vienna Tiles data. (Vienna Tiles data for the the oVLNP region defined as defined
945  as PLP, PVLP,and AOTU, run 1, 13458 voxels, 6022 driver lines, k equal 60. Scale
946  bars 50 pm.)

947  Figure 4-figure supplement 2. Second 30 clusters from the oVLNP region,

948 using Vienna Tiles dataset. As in Figure 4-figure supplement 1. (Vienna Tiles
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data for the the oVLNP region defined as defined as PLP, PVLP, and AOTU, run 1,
13458 voxels, 6022 driver lines, k equal 60. Scale bars 50 um.)

Figure 7-figure supplement 1. Clustering quality for both datasets. A)
Quantification of similarity between clusters as measured by voxel-to-voxel
similarity s for each medoid of every cluster of run 1 in the oVLNP region. B) t-
distributed stochastic neighbor (tSNE) maps showing a representation of
molecular distance between medoids in the oVLNP region of the Janelia FlyLight
dataset. C) Quantification of similarity between clusters as measured by voxel-to-
voxel similarity s for each medoid of every cluster in the oVLNP region of run 1
the Vienna Tiles dataset. D) t-distributed stochastic neighbor (tSNE) maps
showing a representation of molecular distance between medoids in the oVLNP

region of the Vienna Tiles dataset.

Figure 7-figure supplement 2. Repeated clustering of the same dataset
gives similar results. A) Colocalization similarity (measured based on set of
voxels in manually annotated region and set of voxels in clustering result)
between a second clustering run on the Janelia FlyLight dataset and manual
assignments using the same 3D template brain. Compare with Figure 7a. (Janelia
FlyLight data for run 2, oVLNP, 42317 voxels, 3462 driver lines, k equal 60. Scale
bars 50 um.) B) Colocalization similarity between a second clustering run on the
Vienna Tiles dataset and manual assignments using the same 3D template brain.

(Vienna Tiles data for run 2, oVLNP, 13458 voxels, 6022 driver lines, k equal 60.)

Figure 8-table supplement 1. Table with VPN, Clusters, Driver lines,
Flycircuit IDs.
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