

1 Automatic segmentation of *Drosophila* neural
2 compartments using GAL4 expression data reveals
3 novel visual pathways

4 Panser K^{1*}, Tirian L^{1,2*}, Schulze F^{3*}, Villalba S¹, Jefferis GSXE⁴, Bühler K³,
5 Straw AD¹

6

7 ¹Research Institute of Molecular Pathology (IMP), Vienna Bio-Center

8 ²Current Address: Institute of Molecular Biotechnology Austria (IMBA), Vienna
9 Bio-Center

10 ³VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH

11 ⁴Division of Neurobiology, MRC Laboratory of Molecular Biology

12 * These authors contributed equally

13

14 Correspondence: AD Straw (andrew.straw@imp.ac.at)

15 **Major subject area**

16 Neuroscience

17 **Abstract**

18 We made use of two recent, large-scale *Drosophila* GAL4 libraries and associated
19 confocal imaging datasets to automatically segment large brain regions into
20 smaller putative functional units such as neuropils and fiber tracts. The method
21 we developed is based on the hypothesis that molecular identity can be used to
22 assign individual voxels to biologically meaningful regions. Our results (available
23 at <https://strawlab.org/braincode>) are consistent with this hypothesis because
24 regions with well-known anatomy, namely the antennal lobes and central
25 complex, were automatically segmented into familiar compartments. We then
26 applied the algorithm to the central brain regions receiving input from the optic
27 lobes. Based on the automated segmentation and manual validation, we can
28 identify and provide promising driver lines for 10 previously identified and 14
29 novel types of visual projection neurons and their associated optic glomeruli.
30 The same strategy can be used in other brain regions and likely other species,
31 including vertebrates.

32

33 **Introduction**

34 A key goal of neuroscientists is to understand brain function through a
35 mechanistic understanding of the physiology and anatomy of circuits within the
36 brain and their relation to behavior. Recently developed neurogenetic tools
37 allowing genetic targeting of specific cell classes and brain regions have been
38 essential to many advances in the past couple decades. More recently, large-scale
39 efforts to develop collections of thousands of *Drosophila* lines in which GAL4
40 expression is controlled via fragments of genomic DNA containing putative
41 enhancers and repressors (Jenett et al., 2012; Kvon et al., 2014; Pfeiffer et al.,
42 2008) have already been productively used as the basis for numerous screens,
43 targeted neuronal manipulation, and anatomical studies.

44 For many regions of the brain, we lack both a detailed anatomical understanding
45 of the structures present and the ability to reproducibly target specific cell types
46 contained within those structures with genetic tools. For example, despite
47 extensive work on the visual system of flies such as *Drosophila* (Fischbach and
48 Dittrich, 1989; Fischbach and Lyly-Hünerberg, 1983; Nern et al., 2015; Raghu et
49 al., 2011, 2009, 2007; Raghu and Borst, 2011), the major targets of visual
50 projection neurons (VPNs), cells whose projections leave the optic lobes and
51 target regions of the central brain, remain relatively uncharacterized despite
52 several pioneering papers (Aptekar et al., 2015; Fischbach and Dittrich, 1989;
53 Fischbach and Lyly-Hünerberg, 1983; Ito et al., 2013; Mu et al., 2012; Okamura
54 and Strausfeld, 2007; Otsuna et al., 2014; Otsuna and Ito, 2006; Strausfeld et al.,
55 2007; Strausfeld and Bacon, 1983; Strausfeld and Lee, 1991; Strausfeld and
56 Okamura, 2007). This region is particularly interesting because the VPNs are an
57 information bottleneck; visual information must pass through the VPNs before it
58 can influence behavior and the numbers of cell types and cell numbers are small.
59 For example, in the stalk-eyed fly *Cyrtodiopsis whitei*, the optic nerve contains
60 about 6000 axons (Burkhardt and Motte, 1983) and the number of VPN types in
61 *Drosophila* is thought to number about 50 (Otsuna and Ito, 2006). Typically,
62 many of a single VPN type will converge onto a glomerular structure (Strausfeld
63 and Bacon, 1983; Strausfeld and Lee, 1991). The suggestion is that these optic

64 glomeruli may process visual features in a way analogous to olfactory glomeruli
65 in the antennal lobe (Mu et al., 2012) although the visual projection neurons are
66 likely four or five synapses from the neurons involved in sensory transduction
67 while the olfactory glomeruli are the primary processing centers to which the
68 olfactory sensory neurons converge. As it has been with the *Drosophila* olfactory
69 system, genetic access to the VPN cell types and other cell types innervating the
70 optic glomeruli will be useful in elucidating visual circuit function.

71 Similarly, other regions of ‘terra incognita,’ brain regions which remain largely
72 undescribed, exist both within fly and vertebrate, including human, brains
73 (Alkemade et al., 2013; Ito et al., 2013), and an automatic approach to discover
74 functional units, such as nuclei or axon tracts, and to suggest candidate genetic
75 lines that could be used for specific targeting of these regions would be useful.
76 Indeed – apart from the antennal lobes, mushroom bodies, and central complex –
77 much of the *Drosophila* brain appears homogeneous with conventional
78 histological techniques (Ito et al., 2013). Several projects have made use of clonal
79 analyses in which rare stochastic genetic events isolate a small number of
80 neurons and consequently assembling many such examples allows detailed
81 reconstructions of specific cell types and hypotheses about brain structures
82 (Chiang et al., 2011; Hadjieconomou et al., 2011; Hampel et al., 2011; Ito et al.,
83 2013; Livet et al., 2007; Shih et al., 2015; Yu et al., 2013). Other efforts combine
84 electron microscopy with serial reconstruction to produce even more detailed
85 connectomic data (Cardona et al., 2010; Helmstaedter et al., 2013; Takemura et
86 al., 2013; White et al., 1986). Despite their utility at revealing brain structure,
87 these approaches rely on stochastic events or histological techniques that are
88 difficult to correlate with cell-type specific genetically encoded markers and thus
89 the results cannot be directly used to identify promising driver lines for
90 subsequent study.

91 In this study, we used imaging data from recent *Drosophila* GAL4 collections to
92 automatically identify structure within the fly brain and to identify driver lines
93 targeting these regions. Our approach was based on the hypothesis that multiple
94 locations within a particular nucleus, glomerulus, or axon tract would have
95 patterns of genetic activity, such as gene expression or enhancer activation, more

96 similar to each other than to locations within other structures. RNA expression
97 patterns in mouse (Fakhry and Ji, 2015; Lein et al., 2007; Ng et al., 2009;
98 Thompson et al., 2014) and human brains (Goel et al., 2014; Hawrylycz et al.,
99 2012; Mahfouz et al., 2015; Myers et al., 2015) show this to be true at a relatively
100 course spatial scale – sets of genes expressed in, for example, cortex or
101 cerebellum, are characteristic for those regions across different individuals.
102 Given that enhancers have more specific expression patterns than the genes that
103 they regulate (Kvon et al., 2014), we hypothesized that use of enhancers, rather
104 than genes, would enable parcellation of brain regions on a smaller scale. By
105 clustering GFP signal driven by enhancer-containing genomic fragments, we
106 identified putative functional units. Our results show that, indeed, patterns of
107 genomic-fragment driven expression can be used to automatically extract brain
108 structure. We found that much of the known structure of the well-understood
109 *Drosophila* antennal lobes is automatically found by our method. We further
110 show that this method predicts multiple optic glomeruli and that extensive
111 manual validation with more classical techniques confirms the existence and
112 shape of these structural elements. By using GAL4 collections rather than either
113 spatial profiling of expression patterns from *in situ* hybridization, stochastic
114 genetic strategies or electron microscopic based reconstruction, this approach
115 highlights existing genetic driver lines likely to be useful for studies of localized
116 neural function.

117 **Results**

118 **Segmentation based on patterns of genomic fragment coexpression**

119 Our approach to segment brain regions into putative ‘functional units’ (nuclei or
120 glomeruli and axon tracts) is based on the idea that multiple locations within
121 such a structure – a brain nucleus, glomerulus, or axon tract, for example – are
122 closer to each other in terms of molecular identity than locations within other
123 structures. We made use of the large imaging datasets from recent *Drosophila*
124 genomic fragment GAL4 collections, and the overall strategy was to use a
125 conventional clustering technique on GAL4-driven expression data to parcellate

126 a brain region (e.g. antennal lobe or lateral protocerebrum) into a number of
127 smaller putative functional units (e.g. individual olfactory or optic glomeruli)
128 based on their genetic code. Because the strategy links the nucleotide sequence
129 within genomic fragments to specific brain regions, we named it 'Braincode' and
130 the results can be interactively viewed at <https://strawlab.org/braincode>.

131 As input, we took confocal image stacks from the Rubin lab Janelia FlyLight
132 collection (Jenett et al., 2012; Pfeiffer et al., 2008) and from the Dickson lab
133 Vienna Tiles collection (B. Dickson, personal communication). In total, we used
134 data from 3462 Janelia FlyLight and 6022 Vienna Tiles GAL4 driver lines crossed
135 with *UAS-mCD8::GFP*. Each dataset came registered to a dataset-specific template
136 brain with registration error estimated to be 2-3 μm (Cachero et al., 2010; Yu et
137 al., 2010). On a per-voxel basis we calculated the set of driver lines for which GFP
138 expression was higher than a threshold. We used the Dice coefficient to quantify
139 expression similarity between each possible pair of voxels and this $n \times n$ distance
140 matrix was used to group voxels into clusters of similar expression using k -
141 medoids clustering (Figure 1, see Methods for details). As typical for clustering
142 algorithms, one parameter controls the number of clusters, and in our case we
143 chose several different values for k and evaluated results for different choices
144 and in each of the two independent datasets. Neither manual inspection nor
145 calculation of a metric designed to measure clustering repeatability, adjusted
146 Rand index (Figure 1-figure supplement 1), showed an obvious optimal value for
147 k . Therefore, we chose a value of k equal 60 as a number which appeared to
148 provide sufficiently many clusters to capture important structures at a small
149 scale without producing an overwhelming number. The result of the clustering
150 algorithm is the assignment of each voxel in the input brain region to one of the k
151 clusters. This approach therefore divides the brain into distinct regions, each
152 likely innervated by multiple cell types. While local interneurons might be
153 confined specifically to the region of a particular cluster, other cell types may
154 extend through multiple clusters and into more distant brain regions. The
155 clusters found in this way are predictions of functional units in the *Drosophila*
156 brain. Most of our subsequent efforts were to evaluate the quality of these
157 results.

158 If our hypothesis is correct that functional units can be automatically segmented
159 using patterns of coexpression, we can make several predictions. First, despite
160 physical distance not being used as a parameter in defining the clusters, we
161 would expect valid clusters to be spatially compact rather than consisting of, for
162 example, individual voxels scattered throughout the volume. Second, we would
163 expect that for a bilaterally symmetric brain, a given cluster should consist of
164 voxels in mirror-symmetric positions. Third, when clustering is used to segment
165 regions that are already well-understood, the shape, size and location of the
166 automatically found clusters match the known structures. Fourth, when
167 clustering is performed on a different dataset (e.g. Janelia FlyLight versus Vienna
168 Tiles), we expect similar segmentations because the underlying molecular
169 identity of the functional units should dominate the results.

170 **Automatic segmentation of the antennal lobes**

171 To test these expectations, we examined the Braincode results from the antennal
172 lobe (AL) and central complex (CX) (Figure 2). As shown when run with the
173 number of clusters k set to 60, the resulting clusters were compact shapes
174 similar in appearance to the known olfactory glomeruli (Couto et al., 2005; Grabe
175 et al., 2015; Vosshall et al., 2000) filling the volume of the AL (Figure 2A-B).

176 Individual clusters were highlighted (Figure 2C, left column) and used to look at
177 the individual GAL4 lines that have particularly high expression within a given
178 cluster (see <https://strawlab.org/braincode>) or to take an average of all confocal
179 image stacks from all GAL4 lines that strongly present in a particular cluster but
180 not broadly expressing elsewhere in the target brain region (Figure 2C, right
181 column, Figure 2-figure supplement 2,3). Although our input brain region was
182 the right AL, the average image stacks show a high level of symmetry across the
183 midline. Furthermore, a large fraction of voxels belonging to a given glomerulus
184 whose identity was manually assigned in an nc82 stained brain as 'ground truth'
185 were shared with individual clusters (Figure 2-figure supplement 1). In a
186 subsequent manual step, we used these correspondences to identify
187 automatically extracted clusters as specific olfactory glomeruli (Figure 2C).
188 When the same analysis was performed on an entirely independent dataset

189 (from the Vienna Tiles collection rather than the Janelia FlyLight) the results
190 were qualitatively similar (Supplementary file 1 and
191 <https://strawlab.org/braincode> website).

192 **Central complex, Mushroom bodies, Sub-esophageal zone**

193 We performed further clustering on both relatively well-understood brain
194 regions and the ‘terra incognita’ of diffuse neuropils. The central complex (CX)
195 has been the focus of substantial anatomical work (Bausenwein et al., 1986;
196 Hanesch et al., 1989; Lin et al., 2013; Strauss and Heisenberg, 1993) and has
197 been recently described in extensive detail using split-GAL4 line generation and
198 manual annotation (Wolff et al., 2015). The Braincode algorithm automatically
199 identified many of the prominent structures within this brain region (Figure 2D-
200 E). For example, individual shells of the ellipsoid body neurons are segmented,
201 individual layers of the fan shaped body are found, and the protocerebral bridge
202 is segmented into distinct regions. In this case, our input brain region spanned
203 the midline to cover the entire CX region, and consistent with expectations for a
204 working algorithm, the clustering results are mirror symmetric across the
205 midline (Figure 2F, Figure 2-figure supplement 4,5).

206 The results on these well studied brain regions therefore support the idea that
207 patterns of coexpression can indeed be used to identify functional units and that
208 the Braincode algorithm is capable of automatically segmenting brain regions
209 into putative, biologically meaningful sub-regions.

210 On the <https://strawlab.org/braincode> website, we also include the results of
211 clustering the mushroom bodies (MBs) and sub-esophageal zone (SEZ). Future
212 clustering results can be added upon request.

213 **Optic glomeruli**

214 The posterior ventrolateral protocerebrum (PVLP), posterior lateral
215 protocerebrum (PLP) and anterior optic tubercle (AOTU) are diffuse neuropils to
216 which the majority of outputs from the medulla and lobula neuropils within the
217 optic lobes project (Otsuna and Ito, 2006; Strausfeld and Bacon, 1983; Strausfeld

218 and Lee, 1991). By analogy to the antennal lobes, where a single glomerulus
219 processes the output of a single type of olfactory sensory neuron (OSN), it is
220 proposed that a single VPN type projects to a single optic glomerulus and
221 encodes a single visual feature (Mu et al., 2012). These regions have accordingly
222 received some attention, but the specific location and identity of structures
223 within these regions remains incompletely described. Therefore, we used
224 Braincode to identify putative functional units in this region (Figure 3AB). We
225 call the union of these three neuropils (PVLP, PLP and AOTU) the optic
226 Ventrolateral Neuropil (oVLNP).

227 Consistent with the idea that some of the automatically segmented clusters are
228 optic glomeruli, we could identify a single, previously described VPN type
229 projecting to many of these clusters (Figure 3C-J). In addition to creating an
230 average image by combining driver lines expressing in the cluster, we selected
231 individual driver lines that appeared to drive expression in a single VPN type
232 projecting to this cluster. By comparing the morphology of the neurons selected
233 this way with previous reports, particularly Otsuna and Ito (2006), we could
234 identify LC04, LC06, LC09, LC10, LC11, LC12, LC13 and LC14. (Missing elements
235 from the sequence – LC01, LC02, LC03, LC05, LC07 and LC08 – were omitted by
236 Otsuna and Ito due to uncertain identification compared to previous work.) To
237 image the precise location of synaptic outputs of each of these VPN types, we
238 expressed a presynaptic marker, synaptotagmin::GFP (syt::GFP) (Zhang et al.,
239 2002), using the selected driver lines. After registering these newly acquired
240 confocal image z-stacks to the templates of the Vienna or Janelia collections, we
241 could then define the 3D location and extent of the VPN output – the VPN's
242 associated optic glomerulus – by performing assisted 3D segmentations of the
243 presynaptic regions. Initial inspection showed a substantial similarity between
244 such manually validated optic glomeruli and automatically identified clusters,
245 and below we quantify this correspondence.

246 When segmenting a large brain region into putative functional units, we might
247 expect to find axon tracts in addition to nuclei or glomeruli. Indeed, the
248 clustering results also included two apparent axon tracts through this region, the

249 great commissure connecting the two contralateral lobulae including LC14 and
250 the tract that includes the Lat (lamina tangential) neuron type (Figure 4).

251 In addition to clusters corresponding to output regions of previously identified
252 neuron types, we found clusters that appear to be projection targets of VPNs that
253 have not been previously described. These novel VPNs are eight lobula columnar
254 (LC) types, four lobula plate-lobula columnar (LPLC) types, one lobula-plate
255 columnar type, and two medulla columnar (MC) VPNs types. Using the same
256 presynaptic GFP expression approach as above, we saw substantial similarity
257 between these manually validated optic glomeruli to the clustering result (Figure
258 5,6). For each cell type, we used the FlyCircuit database (Chiang et al., 2011) to
259 identify multiple example single neuron morphologies (Figure 8-table
260 supplement 1). We named these neuron types by continuing the sequence
261 onwards from the last published number for a particular class (i.e. LC15 is the
262 first lobula columnar type we identified whereas LC14 was previously reported).

263 We defined the precise 3D location of the optic glomeruli by segmenting the
264 presynaptic marker signal from registered confocal image stacks of VPN lines.
265 Quantification showed a high degree of colocalization between these manually
266 validated optic glomeruli and voxels from specific clusters, and plotting these
267 results showed that the Braincode method automatically produces
268 segmentations with substantial similarity to those derived from labor-intensive
269 manual techniques (Figure 7A). This holds true across a second, entirely distinct
270 dataset (Figure 7B).

271 We evaluated completeness of the results in two ways. First, we clustered both
272 data sets twice with k equal 60 but different random number seeds and
273 discovered in each run at least 23 of the 25 glomeruli or tracts associated with a
274 particular VPN type (Figure 8-table supplement 1). We expect subsequent
275 repetitions to reveal few, if any, additional novel structures. Secondly, we noted
276 that regions of high intensity anti-Bruchpilot (nc82 antibody) staining, an
277 indicator of synaptic contacts, coincide with optic glomeruli. In the brain regions
278 investigated, we found glomeruli for all such high intensity regions (Figure 8).
279 We did not perform clustering on the Posterior Slope (PS), a region targeted by

280 the lobula plate tangential cells (LPTCs), and thus did not expect to find any
281 clusters associated with these neurons, nor did we find any such clusters. Taking
282 these results together, we conclude that the Braincode method can find a
283 majority of structures in a particular region.

284 **Interpreting results from automatic clustering**

285 As noted above, any clustering algorithm has a parameter that (implicitly or
286 explicitly) controls the number of resulting clusters. An important question
287 when using these algorithms, then, is how to set that parameter. In the ideal case,
288 an inherent clustering is easy to identify within the data and nearly trivial for an
289 automatic algorithm to extract. Often however, and we believe this is the case for
290 the type of spatial expression data used here, the distinctions between different
291 portions of the data are somewhat unclear and the clustering algorithm creates a
292 classification which may be different from an expert assessment. Experts
293 themselves often disagree, however, due to debates in which 'lumpers' argue
294 that differences are insignificant and only obscure a more important deeper
295 unity and 'splitters' argue that the differences seen reflect important underlying
296 distinctions. Therefore, we expected some degree of splitting, lumping or both in
297 our results.

298 To evaluate the distinctness of our clusters and to gain insight into the molecular
299 distances between different clusters, we plotted distance matrices between
300 medoids (Figure 7–figure supplement 1 A,C). We also made use of t-distributed
301 stochastic neighbor embedding (von der Maaten and Hinton, 2008) to make 2D
302 plots in which medoids are plotted in close proximity when their molecular
303 distance is low but farther apart when they are less closely related (Figure 7–
304 figure supplement 1 B,D). In some cases, this approach shows that some clusters
305 identified as distinct have a small 'molecular distance' and thus might be
306 considered to result from excessive splitting. On the other hand, evidence of
307 potential lumping comes from cases such as only a single cluster being found for
308 the optic glomeruli corresponding to the LC16 and LC24 VPN types, despite the
309 fact that manual segmentations of their associated optic glomeruli showed that
310 these project to anatomically distinct (but adjacent) regions (Figure 5B,H).

311 Despite a potentially unsolvable assignment problem of the existence one or two
312 'true' functional units, co-clustering indicates that there are some driver lines
313 that drive expression in both glomeruli.

314 One illustrative example of the challenge of whether to lump and split comes
315 from the optic glomerulus associated with the LC10 neuron type. Clusters C09
316 and C22 in run 1 of the Janelia Fly Light dataset (Figure 3-figure supplement 1)
317 correspond to dorsal and ventral parts of the medial AOTU respectively, and the
318 LC10 neuron type projects to both clusters. While LC10 subtypes – with distinct
319 morphology and with inputs from distinct layers of the lobula – have been
320 identified that target these regions preferentially (Costa et al., 2015; Otsuna and
321 Ito, 2006), our results – separate clusters but very low distance on the t-
322 distributed stochastic neighbor embedding (t-SNE) plot (Figure 7-figure
323 supplement 1 B) – suggest that there is relatively little molecular distance
324 between the dorsal and ventral parts of the medial AOTU. Indeed, after searching
325 through the list of driver lines with substantial expression in C22, we could find
326 only a single driver line, GMR22A07-GAL4, that drove strong expression in a VPN
327 targeting this region and had specificity for Otsuna and Ito's (2006) LC10a
328 subtype but not LC10b. It would be tempting to conclude, then, that the division
329 of the medial AOTU was erroneously split by the clustering algorithm. Yet the
330 existence of distinct LC10 subtypes suggests that there are genuine, if small,
331 distinctions between these regions. We suggest that the LC10 neuron type
332 presents an example of the lumping versus splitting problem within spatial
333 expression data. It may be that further data, for example detailed studies on
334 LC10 subtype morphology and molecular expression, could resolve the issue. In
335 the absence of such data, subdividing large brain regions can be useful simply as
336 a way to reduce the complexity of a large brain region and need necessarily
337 imply a strong claim of correspondences to genuine anatomical correlates. And
338 this benefit of clustering would furthermore remain even if further data did not
339 support a clear conclusion.

340 As discussed, automatic calculation of a measure of repeatability (adjusted Rand
341 index, Figure 1-figure supplement 1) found no obvious optimum value of k .
342 Therefore, we sought to gain a more biologically meaningful sense of consistency

343 across multiple runs of the algorithm for the value of $k=60$ that we chose by
344 performing a visualization comparing the results of a manual segmentation of a
345 brain region with the automatic segmentations. We did this for the oVLPN with
346 each of four different clustering runs, two from each dataset (Figure 7A,B and
347 Figure 7-figure supplement 2A,B). The results show that, despite different
348 random number initialization seeds, most optic glomeruli have a strong
349 correspondence with a single cluster across repeated runs of the algorithm
350 within and across the two datasets (Vienna Tiles and Janelia FlyLight). This
351 suggests substantial biologically meaningful repeatability within and between
352 datasets.

353 In sum, we suggest that the automatic segmentations produced by Braincode
354 should be used as hypotheses that must be further investigated, as we have done
355 here for the visual system, before strong conclusions can be drawn about
356 intrinsic neuroanatomical structure.

357 **Little VPN convergence to single optic glomeruli**

358 Of the 22 optic glomeruli we identified, only a single one was targeted by two
359 VPN types. Apart from LC22 and LPLC4 projecting to the same glomerulus, we
360 found no other instance of convergence of multiple VPN types to a single optic
361 glomerulus. In some cases however, two VPN types projected to a single cluster.
362 For example, LC11 and LC21 both project to the region containing C07 (Figure
363 7). While there are some regions of presynaptic colocalization in the underlying
364 signals in registered images, there are also non-overlapping presynaptic
365 localizations and thus the data suggest that the glomeruli are at least partially
366 distinct (Figure 8B). LC12 and LC17 are another similar pair but the presynaptic
367 localization is even more distinct in this case (Figure 8B). Similarly, the
368 presynaptic localizations of LC16 and LC24 both are within cluster C37, although
369 in this case we think that a paucity of driver lines driving expression in LC24
370 likely precluded a separate cluster from being identified. In summary, with a
371 single exception, we do not find evidence for multiple VPNs projecting to a single
372 optic glomerulus and instead propose that where we do see projection to the
373 same cluster that this results from lumping within the clustering algorithm.

374 While we cannot exclude the possibility that more optic glomeruli exist that are
375 the targets of two or more VPN types, our data show that such cases are
376 exceptional. Conversely, we found that each VPN type projects to a single
377 glomerulus. Together, these two observations allow us to propose naming optic
378 glomeruli according to the VPN type(s) that project to them.

379 **A map of the optic glomeruli of *Drosophila***

380 We can synthesize the novel findings of this automatic and manual
381 characterization of this brain region with a movie showing segmented visual
382 projection neurons and the presynaptic output regions associated with each of
383 these VPNs (Video 1). Furthermore, we have created reference figures describing
384 the optic glomeruli as the targets of specific VPNs (Figure 8) and provide
385 separate 3D models of each VPN type and its associated optic glomerulus all in a
386 common 3D template brain coordinate system (Supplementary file 1).

387 **Pathways leaving the optic glomeruli**

388 Just as we identified driver lines expressing in VPN types that enter a particular
389 optic glomerulus, we can also use the lists of driver lines expressed in a given
390 cluster to suggest candidate interneurons that are largely contained within a
391 particular glomerulus or projection neurons that leave from the glomerulus. To
392 demonstrate the potential of this approach, we used such driver lines to drive
393 expression of two reporters, a red fluorescent dendritic marker UAS-
394 DenMark::mCherry (Nicolaï et al., 2010) and a green fluorescent presynaptic
395 marker UAS-Syt::GFP (Zhang et al., 2002). In several cases, we can identify
396 candidate neurons that appear to have dendritic inputs in a particular
397 glomerulus and project elsewhere in the brain (Figure 9).

398 **Discussion**

399 We have demonstrated that applying a clustering algorithm to imaging data from
400 large-scale enhancer libraries segments brain regions into smaller, putative
401 functional units such as glomeruli and axon tracts. When applied to *Drosophila*

402 data, automatically extracted clusters have a high correspondence with
403 glomeruli and other neuropil subdivisions within the antennal lobes and central
404 complex, suggesting the utility of the approach. We used this approach to inform
405 a detailed investigation of the optic Ventrolateral Neuropil (oVLNP), a region
406 where most outputs from the medulla and lobula neuropils within the optic
407 lobes reach the central brain. We identified several neuron types that, to the best
408 of our knowledge, have not been previously described: eight lobula columnar
409 (LC) neuron types, four lobula plate-lobula columnar (LPLC) types, one lobula-
410 plate columnar type, and two medulla columnar (MC) types.

411 We found a nearly one-to-one projection of visual projection neurons to optic
412 glomeruli. This is consistent with the idea that each optic glomerulus processes
413 input from a single cell type and is therefore similar to the olfactory glomeruli in
414 the sense that a dedicated glomerulus receives input from a single distinct input
415 cell type (Mu et al., 2012). Future work could investigate whether the regions are
416 homologous in an evolutionary sense and if the similarities extend to functional
417 aspects and developmental mechanisms.

418 Recent computational neuroanatomical work has sought to use extensive
419 collections of registered image stacks from stochastically labeled brains (Chiang
420 et al., 2011) to identify cell types (Costa et al., 2015) construct a mesoscale
421 connectome of the fly brain (Shih et al., 2015) or to find groups of
422 morphologically similar neurons likely from the same neuroblast (Masse et al.,
423 2012). Given the complementary strengths of the respective approaches –
424 resolution to the single-cell level with stochastic labeling approaches and
425 candidate driver lines and molecular identity from the Braincode approach, it
426 may be productive to perform further analysis that takes advantage of these
427 differences. For example, it might be possible to perform a motif analysis to
428 identify enhancer fragments correlating with anatomical features such as
429 projection target, axon tract location, or branching pattern. Additionally, because
430 the enhancer fragments are likely to regulate genes that neighbor the enhancer
431 region in the genome (Kvon et al., 2014), this approach could be used to suggest
432 genes that are particularly distinct for specific brain regions and potentially for
433 specific cell types.

434 The approach outlined here has several technical dependencies, which may
435 represent limitations in some cases. Firstly, there is an obvious requirement that
436 any structure segmented automatically must have a physical scale at least
437 comparable to, if not larger than, the error in registering multiple samples.
438 Secondly, enough registered enhancer line images must be available to provide a
439 signal sufficient for clustering. Third, underlying biological variability in the
440 developmental patterns must be less than the variability in the registered
441 expression data. In addition to these technical dependencies, we found that the
442 use of an automatic classification algorithm does not solve the classic 'lumper
443 versus splitter' problem. Also, while we have shown that clustering often
444 identifies regions with anatomical correlates such as a glomerulus, in other cases
445 this may be less clear. In any case, the clusters identified result from patterns of
446 expression in many driver lines but it may be that only some driver lines are
447 confined to the boundaries of a given cluster. In cases where the automatically
448 extracted clusters do not clearly correspond with an anatomical structure, we
449 propose that clustering may nonetheless be useful in reducing the complexity of
450 thinking about a large brain region by dividing it into smaller elements.

451 Despite these potential limitations, the Braincode approach is not limited to
452 *Drosophila*. Data are available from recent Zebrafish enhancer trap experiments
453 (Kawakami et al., 2010; Kondrychyn et al., 2011) and registering brains is also
454 possible (Ronneberger et al., 2012). Together, these would enable an attempt to
455 apply the Braincode technique. New developments, such as the use of site-
456 specific integrase (Lister, 2011; Mosimann et al., 2013) could be used to
457 minimize expression level variation due to effects of where a transgene
458 integrates in the genome and improve efficiency and thus produce comparable
459 datasets to those used here for *Drosophila*. Such an effort in Zebrafish could be
460 used to suggest driver lines corresponding to functional units identified in brain-
461 wide activity-based experiments (Ahrens et al., 2012; Kubo et al., 2014;
462 Portugues et al., 2014; Randlett et al., 2015). Similar datasets are being gathered
463 in another fish species, Medaka (Alonso-Barba et al., 2015). Variability of brain
464 development in mammals may make the approach more challenging, or only
465 operate on larger scales, in these species. Nevertheless, the ability to

466 automatically segment brain regions into putative functional units could prove
467 useful in unraveling structure-function relationships in a variety of species.

468 **Methods and materials**

469 **Drosophila Strains/Stocks**

470 Flies were raised at 25 degrees Celsius under a 12 hour light-dark cycle on
471 standard cornmeal food. Used GAL4 lines were from the Vienna Tiles collection
472 (generated by the groups of B.J. Dickson and A. Stark, unpublished data, see also
473 Kvon et al., 2014) and Janelia GAL4 library (Pfeiffer et al., 2010, 2008) and were
474 obtained from the Vienna Drosophila RNAi Center or Bloomington Drosophila
475 Stock Center (BDSC), respectively. UAS-mCD8::GFP was generated by B.J.
476 Dickson group. UAS-DenMark::mCherry, UAS-synaptotagmin::GFP was created
477 by B.A. Hassan and obtained from BDSC.

478 **Sample Preparation and Imaging**

479 Fly dissection and staining were performed as previously described (Yu et al.,
480 2010) using 3 to 5 days old adult flies. In brief, brains were dissected in
481 phosphate buffered saline (PBS), fixed in 4 % paraformaldehyde in PBS with 0.1
482 % Triton-X-100 and subsequently blocked in 10 % normal goat serum (Gibco
483 Life Technologies). Brains were incubated in primary and secondary antibodies
484 for a minimum of 20 hours at 4 degrees Celsius and washed in PBS with 0.3 %
485 Triton-X-100. Fly brains were mounted in Vectashield (Vector Laboratories). We
486 used the following primary antibodies: rabbit polyclonal anti-GFP (1:5000,
487 TP401, Torrey Pines), mouse monoclonal anti-bruchpilot (1:20, nc82,
488 Developmental Studies Hybridoma Bank), chicken polyclonal anti-GFP (1:10.000,
489 ab13970, Abcam), rabbit polyclonal anti-DsRed (1:1000, 632496, Clontech). We
490 used the following secondary antibodies: Alexa Fluor 488, 568 or 633 antibodies
491 (1:500 to 1:1000, Invitrogen Life Technologies).

492 Images were acquired using point scanning confocal microscope LSM780 or
493 LSM700 (Zeiss) equipped with 25x/0.8 plan-apochromat multiimmersion or

494 20x/0.8 plan-apochromat dry objectives, respectively. To avoid channel cross-
495 talk confocal Z-stacks were recorded in the multi-track (LSM700) or online
496 fingerprinting mode (LSM780).

497 **Registration, Assisted Segmentation, and 3D-Rendering**

498 For both datasets an intensity-based nonlinear warping method was used. For
499 the Vienna Tiles dataset we used the approach described in (Yu et al., 2010) and
500 for the Janelia dataset, brains were registered according to (Cachero et al., 2010).
501 Fiji (ImageJ) and Amira (4.1.2, Mercury Computer Systems) software were used
502 for image processing and analysis. Amira label field function was used to
503 segment optic glomeruli, projections and neuron types from registered images.
504 Surface files of segmented structures were generated using constrained
505 smoothing for full neuron segmentations and unconstrained smoothing for optic
506 glomeruli. We additionally used the BrainGazer visualization software (Bruckner
507 et al., 2009). In all 3D figures, we included a 3D axes scale in which red specifies
508 the lateral axis with positive towards the animal's left side, green specifies the
509 dorsal-ventral axis with positive towards ventral, and blue specifies the anterior-
510 posterior with position towards posterior. Due to the use of a perspective
511 projection in these figures, the size of the 3D axes scale is only approximate.

512 **Thresholding, Dice similarity, k-Medoids, and t-SNE**

513 GAL4 expression patterns were transformed into a binary representation in two
514 steps. First, the image is thresholded and second, morphological opening with a
515 3x3x3 kernel is applied to reduce clutter. The threshold was chosen so that the
516 resulting mask yielded 1% stained voxels. This simple heuristic was more
517 reliable for the datasets tested compared to other standard automatic
518 thresholding methods.

519 From the binarized images, the set of expressing lines was assembled for each
520 voxel. Similarity between voxels based on the respective expression set from
521 voxel A and the set from voxel B is computed using Dice's coefficient as

522
$$s = \frac{2|A \cap B|}{|A| + |B|}$$
 where \cap denotes intersection and $|x|$ denotes the number of

523 elements in set x . To decrease the effects of registration error and image
524 acquisition noise and to increase the speed of subsequent processing steps, we
525 binned the original image voxel data into larger voxels, typically a 3x3x3
526 downsampling. The k-medoids algorithm (Kaufman and Rousseeuw, 1987) was
527 run in Julia 0.4.0 using JuliaStats Clustering 0.5.0 (see Supplementary file 1). The
528 k-medoids was performed on Dice dissimilarity ($1-s$). To visualize the distance
529 between medoids, we used the implementation of t-distributed stochastic
530 neighbor embedding (von der Maaten and Hinton, 2008) in Python 2.7.10 using
531 the Scikits Learn 0.16.1 software package (Pedregosa et al., 2011) with
532 precomputed distances using metric distance $\sqrt{1-s}$ between medoids.

533 **Nomenclature**

534 Existing nomenclature was used for previously identified neuron types when an
535 unambiguous match was possible. Lobula columnar neurons were first
536 systematically described in *Drosophila* in (Fischbach and Dittrich, 1989) which
537 called these 'Lcn' types and included Lcn1, Lcn2, Lcn4, Lcn5, Lcn6, Lcn7, and
538 Lcn8 (Lcn3 was skipped). Later, these were named LC neurons, only
539 unambiguous identities were maintained, and new numbers were given by
540 (Otsuna and Ito, 2006). In Otsuna and Ito's work, only Lcn4 and Lcn6 could be
541 identified and became LC4 and LC6. However Lcn1, Lcn2, Lcn3, Lcn5, Lcn7, Lcn8
542 have no LC counterpart. In addition to LC4 and LC6, Otsuna and Ito identified
543 LC9, LC10, LC11, LC12, LC13 and LC14. Naming of non-described types was
544 based on the style of Otsuna and Ito (2006) and done in coordination with A.
545 Nern and G. Rubin. Neuropils are referred to using the terminology of the Insect
546 Brain Name Working Group (Ito et al., 2014). Abbreviations used: LC - lobula
547 columnar; LPC - lobula plate columnar; LPLC - lobula plate, lobula columnar; MC
548 - medulla columnar; Lat - lamina tangential. We call the union of the posterior
549 ventrolateral protocerebrum (PVLP), posterior lateral protocerebrum (PLP) and
550 anterior optic tubercle (AOTU) the optic Ventrolateral Neuropil (oVLNP).

551 Acknowledgements

552 We thank Barry Dickson for access to the Vienna Tiles library and comments on
553 the manuscript. We discussed with Aljosha Nern and Gerry Rubin a common
554 nomenclature for the VPNs. We thank the Janelia Fly Light team and the Dickson
555 lab for providing the datasets. IMP/IMBA Biooptics core facility provided
556 extensive microscopy support. Flies were purchased from the Drosophila
557 Bloomington Stock Center and the Vienna Drosophila RNAi Center. Arnim Jennet
558 provided a 3D atlas of brain regions. Veit Grabe and Silke Sachse provided a 3D
559 atlas of the antennal lobes. We thank Gaby Maimon and David Hain for
560 comments on the manuscript. This work was supported by ERC Starting Grant
561 281884 "FlyVisualCircuits" to ADS, FFG Headquarter Grant 834223 to the IMP
562 and VRVis, and by IMP core funding.

563 References

564 Ahrens, M.B., Li, J.M., Orger, M.B., Robson, D.N., Schier, A.F., Engert, F., Portugues, R., 2012. Brain-
565 wide neuronal dynamics during motor adaptation in zebrafish. *Nature*.
566 doi:10.1038/nature11057

567 Alkemade, A., Keuken, M.C., Forstmann, B.U., 2013. A perspective on terra incognita: uncovering
568 the neuroanatomy of the human subcortex. *Front. Neuroanat.* 7.
569 doi:10.3389/fnana.2013.00040

570 Alonso-Barba, J.I., Rahman, R.-U., Wittbrodt, J., Mateo, J.L., 2015. MEPD: medaka expression
571 pattern database, genes and more. *Nucleic Acids Res.* gkv1029.
572 doi:10.1093/nar/gkv1029

573 Aptekar, J.W., Keleş, M.F., Lu, P.M., Zolotova, N.M., Frye, M.A., 2015. Neurons forming optic
574 glomeruli compute figure-ground discriminations in *Drosophila*. *J. Neurosci. Off. J. Soc.*
575 *Neurosci.* 35, 7587–7599. doi:10.1523/JNEUROSCI.0652-15.2015

576 Bausenwein, B., Wolf, R., Heisenberg, M., 1986. Genetic Dissection of Optomotor Behavior in
577 *Drosophila melanogaster* Studies on Wild-Type and the Mutant optomotor-blindH31. *J.*
578 *Neurogenet.* 3, 87–109.

579 Bruckner, S., Soltészová, V., Gröller, M.E., Hladívka, J., Bühler, K., Yu, J.Y., Dickson, B.J., 2009.
580 BrainGazer—visual queries for neurobiology research. *IEEE Trans. Vis. Comput. Graph.*
581 15, 1497–504. doi:10.1109/TVCG.2009.121

582 Burkhardt, D., Motte, I.D., 1983. How Stalk-Eyed Flies Eye Stalk-Eyed Flies : Observations and
583 Measurements of the Eyes of *Cyrtodiopsis whitei* (Diopsidae , Diptera). *J Comp Physiol*
584 A 151, 407–421.

585 Cachero, S., Ostrovsky, A.D., Yu, J.Y., Dickson, B.J., Jefferis, G.S.X.E., 2010. Sexual Dimorphism in the
586 Fly Brain. *Curr. Biol.* CB. doi:10.1016/j.cub.2010.07.045

587 Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Cheng, A., Pulokas, J., Tomancak, P., Hartenstein,
588 V., 2010. An integrated micro- and macroarchitectural analysis of the *Drosophila* brain
589 by computer-assisted serial section electron microscopy. *PLoS Biol.* 8, 17.
590 doi:10.1371/journal.pbio.1000502

591 Chiang, A.-S., Lin, C.-Y., Chuang, C.-C., Chang, H.-M., Hsieh, C.-H., Yeh, C.-W., Shih, C.-T., Wu, J.-J.,
592 Wang, G.-T., Chen, Y.-C., Wu, C.-C., Chen, G.-Y., Ching, Y.-T., Lee, P.-C., Lin, C.-Y., Lin, H.-H.,
593 Wu, C.-C., Hsu, H.-W., Huang, Y.-A., Chen, J.-Y., Chiang, H.-J., Lu, C.-F., Ni, R.-F., Yeh, C.-Y.,
594 Hwang, J.-K., 2011. Three-Dimensional Reconstruction of Brain-wide Wiring Networks in
595 *Drosophila* at Single-Cell Resolution. *Curr. Biol.* 21, 1–11. doi:10.1016/j.cub.2010.11.056

596 Costa, M., Manton, J.D., Ostrovsky, A.D., Prohaska, S., Jefferis, G.S.X.E., 2015. NBLAST: Rapid,
597 sensitive comparison of neuronal structure and construction of neuron family databases.
598 bioRxiv 006346. doi:10.1101/006346

599 Couto, A., Alenius, M., Dickson, B.J., 2005. Molecular, Anatomical, and Functional Organization of
600 the *Drosophila* Olfactory System. *Curr. Biol.* 15, 1535–1547.
601 doi:10.1016/j.cub.2005.07.034

602 Fakhry, A., Ji, S., 2015. High-resolution prediction of mouse brain connectivity using gene
603 expression patterns. *Methods, Spatial mapping of multi-modal data in neuroscience* 73,
604 71–78. doi:10.1016/j.ymeth.2014.07.011

605 Fischbach, K.-F., Dittrich, A., 1989. The optic lobe of *Drosophila melanogaster*. I. A Golgi analysis
606 of wild-type structure. *Cell Tissue Res.* 258. doi:10.1007/BF00218858

607 Fischbach, K.-F., Lyly-Hünerberg, I., 1983. Genetic dissection of the anterior optic tract of
608 *Drosophila melanogaster*. *Cell Tissue Res.* 231, 551–563.

609 Goel, P., Kuceyeski, A., Locastro, E., Raj, A., 2014. Spatial patterns of genome-wide expression
610 profiles reflect anatomic and fiber connectivity architecture of healthy human brain.
611 *Hum. Brain Mapp.* 35, 4204–4218. doi:10.1002/hbm.22471

612 Grabe, V., Strutz, A., Baschwitz, A., Hansson, B.S., Sachse, S., 2015. Digital *in vivo* 3D atlas of the
613 antennal lobe of *Drosophila melanogaster*. *J. Comp. Neurol.* 523, 530–544.
614 doi:10.1002/cne.23697

615 Hadjieconomou, D., Rotkopf, S., Alexandre, C., Bell, D.M., Dickson, B.J., Salecker, I., 2011. Flybow:
616 genetic multicolor cell labeling for neural circuit analysis in *Drosophila melanogaster*.
617 *Nat. Methods*. doi:10.1038/nmeth.1567

618 Hampel, S., Chung, P., McKellar, C.E., Hall, D., Looger, L.L., Simpson, J.H., 2011. *Drosophila*
619 *Brainbow*: a recombinase-based fluorescence labeling technique to subdivide neural
620 expression patterns. *Nat. Methods* 8, 253–9. doi:10.1038/nmeth.1566

621 Hanesch, U., Fischbach, K.-F., Heisenberg, M., 1989. Neuronal architecture of the central complex
622 in *Drosophila melanogaster*. *Cell Tissue Res.* 257, 343–366. doi:10.1007/BF00261838

623 Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., Miller, J.A., van de Lagemaat,
624 L.N., Smith, K.A., Ebbert, A., Riley, Z.L., Abajian, C., Beckmann, C.F., Bernard, A.,
625 Bertagnolli, D., Boe, A.F., Cartagena, P.M., Chakravarty, M.M., Chapin, M., Chong, J., Dalley,
626 R.A., Daly, B.D., Dang, C., Datta, S., Dee, N., Dolbeare, T.A., Faber, V., Feng, D., Fowler, D.R.,
627 Goldy, J., Gregor, B.W., Haradon, Z., Haynor, D.R., Hohmann, J.G., Horvath, S., Howard, R.E.,
628 Jeromin, A., Jochim, J.M., Kinnunen, M., Lau, C., Lazarz, E.T., Lee, C., Lemon, T.A., Li, L., Li,
629 Y., Morris, J.A., Overly, C.C., Parker, P.D., Parry, S.E., Reding, M., Royall, J.J., Schulkin, J.,
630 Sequeira, P.A., Slaughterbeck, C.R., Smith, S.C., Sodt, A.J., Sunkin, S.M., Swanson, B.E.,
631 Vawter, M.P., Williams, D., Wohnoutka, P., Zielke, H.R., Geschwind, D.H., Hof, P.R., Smith,
632 S.M., Koch, C., Grant, S.G.N., Jones, A.R., 2012. An anatomically comprehensive atlas of the
633 adult human brain transcriptome. *Nature* 489, 391–399. doi:10.1038/nature11405

634 Helmstaedter, M., Briggman, K.L., Turaga, S.C., Jain, V., Seung, H.S., Denk, W., 2013. Connectomic
635 reconstruction of the inner plexiform layer in the mouse retina. *Nature* 500, 168–174.
636 doi:10.1038/nature12346

637 Ito, K., Shinomiya, K., Ito, M., Armstrong, J.D., Boyan, G., Hartenstein, V., Harzsch, S., Heisenberg,
638 M., Homberg, U., Jenett, A., Keshishian, H., Restifo, L.L., Rössler, W., Simpson, J.H.,
639 Strausfeld, N.J., Strauss, R., Vosshall, L.B., 2014. A Systematic Nomenclature for the Insect
640 Brain. *Neuron* 81, 755–765. doi:10.1016/j.neuron.2013.12.017

641 Ito, M., Masuda, N., Shinomiya, K., Endo, K., Ito, K., 2013. Systematic Analysis of Neural Projections
642 Reveals Clonal Composition of the *Drosophila* Brain. *Curr. Biol.* 1–12.
643 doi:10.1016/j.cub.2013.03.015

644 Jenett, A., Rubin, G.M., Ngo, T.-T.B., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B.D., Cavallaro,
645 A., Hall, D., Jeter, J., Iyer, N., Fetter, D., Hausenfluck, J.H., Peng, H., Trautman, E.T., Svirskas,
646 R.R., Myers, E.W., Iwinski, Z.R., Aso, Y., DePasquale, G.M., Enos, A., Hulamm, P., Lam, S.C.B.,
647 Li, H.-H., Laverty, T.R., Long, F., Qu, L., Murphy, S.D., Rokicki, K., Safford, T., Shaw, K.,
648 Simpson, J.H., Sowell, A., Tae, S., Yu, Y., Zugates, C.T., 2012. A GAL4-driver line resource
649 for *Drosophila* neurobiology. *Cell Rep.* 2, 991–1001. doi:10.1016/j.celrep.2012.09.011

650 Kaufman, L., Rousseeuw, P.J., 1987. Clustering by Means of Medoids, in: Statistical Data Analysis
651 Based on the L1 Norm and Related Methods.

652 Kawakami, K., Abe, G., Asada, T., Asakawa, K., Fukuda, R., Ito, A., Lal, P., Mouri, N., Muto, A., Suster,
653 M.L., Takakubo, H., Urasaki, A., Wada, H., Yoshida, M., 2010. zTrap: zebrafish gene trap
654 and enhancer trap database. *BMC Dev. Biol.* 10, 105. doi:10.1186/1471-213X-10-105

655 Kondrychyn, I., Teh, C., Garcia-Lecea, M., Guan, Y., Kang, A., Korzh, V., 2011. Zebrafish Enhancer
656 TRAP transgenic line database ZETRAP 2.0. *Zebrafish* 8, 181–182.
657 doi:10.1089/zeb.2011.0718

658 Kubo, F., Hablitzel, B., Dal Maschio, M., Driever, W., Baier, H., Arrenberg, A.B., 2014. Functional
659 Architecture of an Optic Flow-Responsive Area that Drives Horizontal Eye Movements in
660 Zebrafish. *Neuron* 81, 1344–1359. doi:10.1016/j.neuron.2014.02.043

661 Kvon, E.Z., Kazmar, T., Stampfel, G., Yáñez-Cuna, J.O., Pagani, M., Schernhuber, K., Dickson, B.J.,
662 Stark, A., 2014. Genome-scale functional characterization of *Drosophila* developmental
663 enhancers *in vivo*. *Nature*. doi:10.1038/nature13395

664 Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S.,
665 Brockway, K.S., Byrnes, E.J., Chen, L., Chen, L., Chen, T.-M., Chi Chin, M., Chong, J., Crook,
666 B.E., Czaplinska, A., Dang, C.N., Datta, S., Dee, N.R., Desaki, A.L., Desta, T., Diep, E.,
667 Dolbeare, T.A., Donelan, M.J., Dong, H.-W., Dougherty, J.G., Duncan, B.J., Ebbert, A.J.,
668 Eichele, G., Estin, L.K., Faber, C., Facer, B.A., Fields, R., Fischer, S.R., Fliss, T.P., Frenzley, C.,
669 Gates, S.N., Glattfelder, K.J., Halverson, K.R., Hart, M.R., Hohmann, J.G., Howell, M.P., Jeung,
670 D.P., Johnson, R.A., Karr, P.T., Kawal, R., Kidney, J.M., Knapik, R.H., Kuan, C.L., Lake, J.H.,
671 Laramee, A.R., Larsen, K.D., Lau, C., Lemon, T.A., Liang, A.J., Liu, Y., Luong, L.T., Michaels, J.,
672 Morgan, J.J., Morgan, R.J., Mortrud, M.T., Mosqueda, N.F., Ng, L.L., Ng, R., Orta, G.J., Overly,
673 C.C., Pak, T.H., Parry, S.E., Pathak, S.D., Pearson, O.C., Puchalski, R.B., Riley, Z.L., Rockett,
674 H.R., Rowland, S.A., Royall, J.J., Ruiz, M.J., Sarno, N.R., Schaffnit, K., Shapovalova, N.V.,
675 Sivisay, T., Slaughterbeck, C.R., Smith, S.C., Smith, K.A., Smith, B.I., Sodt, A.J., Stewart, N.N.,
676 Stumpf, K.-R., Sunkin, S.M., Sutram, M., Tam, A., Teemer, C.D., Thaller, C., Thompson, C.L.,
677 Varnam, L.R., Visel, A., Whitlock, R.M., Wohnoutka, P.E., Wolkey, C.K., Wong, V.Y., Wood,
678 M., Yaylaoglu, M.B., Young, R.C., Youngstrom, B.L., Feng Yuan, X., Zhang, B., Zwingman,
679 T.A., Jones, A.R., 2007. Genome-wide atlas of gene expression in the adult mouse brain.
680 *Nature* 445, 168–176. doi:10.1038/nature05453

681 Lin, C.-Y., Chuang, C.-C., Hua, T.-E., Chen, C.-C., Dickson, B.J., Greenspan, R.J., Chiang, A.-S., 2013. A
682 comprehensive wiring diagram of the protocerebral bridge for visual information
683 processing in the *Drosophila* brain. *Cell Rep.* 3, 1739–53.
684 doi:10.1016/j.celrep.2013.04.022

685 Lister, J.A., 2011. Use of phage φ C31 integrase as a tool for zebrafish genome manipulation.
686 *Methods Cell Biol.* 104, 195–208. doi:10.1016/B978-0-12-374814-0.00011-2

687 Livet, J., Weissman, T.A., Kang, H., Draft, R.W., Lu, J., Bennis, R.A., Sanes, J.R., Lichtman, J.W., 2007.
688 Transgenic strategies for combinatorial expression of fluorescent proteins in the
689 nervous system. *Nature* 450, 56–62. doi:10.1038/nature06293

690 Mahfouz, A., van de Giessen, M., van der Maaten, L., Huisman, S., Reinders, M., Hawrylycz, M.J.,
691 Lelieveldt, B.P.F., 2015. Visualizing the spatial gene expression organization in the brain
692 through non-linear similarity embeddings. *Methods, Spatial mapping of multi-modal*
693 *data in neuroscience* 73, 79–89. doi:10.1016/j.ymeth.2014.10.004

694 Masse, N.Y., Cachero, S., Ostrovsky, A., Jefferis, G.S.X.E., 2012. A mutual information approach to
695 automate identification of neuronal clusters in *Drosophila* brain images. *Front.*
696 *Neuroinformatics* 6, 21. doi:10.3389/fninf.2012.00021

697 Mosimann, C., Puller, A.-C., Lawson, K.L., Tschopp, P., Amsterdam, A., Zon, L.I., 2013. Site-directed
698 zebrafish transgenesis into single landing sites with the phiC31 integrase system. *Dev.*
699 *Dyn. Off. Publ. Am. Assoc. Anat.* 242, 949–963. doi:10.1002/dvdy.23989

700 Mu, L., Ito, K., Bacon, J.P., Strausfeld, N.J., 2012. Optic glomeruli and their inputs in *Drosophila*
701 share an organizational ground pattern with the antennal lobes. *J. Neurosci. Off. J. Soc.*
702 *Neurosci.* 32, 6061–71. doi:10.1523/JNEUROSCI.0221-12.2012

703 Myers, E.M., Bartlett, C.W., Machiraju, R., Bohland, J.W., 2015. An integrative analysis of regional
704 gene expression profiles in the human brain. *Methods, Spatial mapping of multi-modal*
705 *data in neuroscience* 73, 54–70. doi:10.1016/j.ymeth.2014.12.010

706 Nern, A., Pfeiffer, B.D., Rubin, G.M., 2015. Optimized tools for multicolor stochastic labeling reveal
707 diverse stereotyped cell arrangements in the fly visual system. *Proc. Natl. Acad. Sci. U. S.*
708 *A.* doi:10.1073/pnas.1506763112

709 Ng, L., Bernard, A., Lau, C., Overly, C.C., Dong, H.-W., Kuan, C., Pathak, S., Sunkin, S.M., Dang, C.,
710 Bohland, J.W., Bokil, H., Mitra, P.P., Puelles, L., Hohmann, J., Anderson, D.J., Lein, E.S.,
711 Jones, A.R., Hawrylycz, M., 2009. An anatomic gene expression atlas of the adult mouse
712 brain. *Nat. Neurosci.* 12, 356–362. doi:10.1038/nn.2281

713 Nicolaï, L.J.J., Ramaekers, A., Raemaekers, T., Drozdzecki, A., Mauss, A.S., Yan, J., Landgraf, M.,
714 Annaert, W., Hassan, B.A., 2010. Genetically encoded dendritic marker sheds light on
715 neuronal connectivity in *Drosophila*. *Proc. Natl. Acad. Sci. U. S. A.* 107, 20553–20558.
716 doi:10.1073/pnas.1010198107

717 Okamura, J.-Y., Strausfeld, N.J., 2007. Visual system of calliphorid flies: motion- and orientation-
718 sensitive visual interneurons supplying dorsal optic glomeruli. *J. Comp. Neurol.* 500,
719 189–208. doi:10.1002/cne.21195

720 Otsuna, H., Ito, K., 2006. Systematic analysis of the visual projection neurons of *Drosophila*
721 melanogaster. I. Lobula-specific pathways. *J. Comp. Neurol.* 497, 928–58.
722 doi:10.1002/cne.21015

723 Otsuna, H., Shinomiya, K., Ito, K., 2014. Parallel neural pathways in higher visual centers of the
724 *Drosophila* brain that mediate wavelength-specific behavior. *Front. Neural Circuits* 8, 8.
725 doi:10.3389/fncir.2014.00008

726 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
727 Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
728 Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: machine learning in Python. *J.*
729 *Mach Learn Res.*

730 Pfeiffer, B.D., Jenett, A., Hammonds, A.S., Ngo, T.-T.B., Misra, S., Murphy, C., Scully, A., Carlson, J.W.,
731 Wan, K.H., Laverty, T.R., Mungall, C., Svirskas, R., Kadonaga, J.T., Doe, C.Q., Eisen, M.B.,
732 Celniker, S.E., Rubin, G.M., 2008. Tools for neuroanatomy and neurogenetics in
733 *Drosophila*. *PNAS* 105, 9715–20. doi:10.1073/pnas.0803697105

734 Pfeiffer, B.D., Ngo, T.-T.B., Hibbard, K.L., Murphy, C., Jenett, A., Truman, J.W., Rubin, G.M., 2010.
735 Refinement of Tools for Targeted Gene Expression in *Drosophila*. *Genetics* 186, 735–755.
736 doi:10.1534/genetics.110.119917

737 Phelan, P., Nakagawa, M., Wilkin, M.B., Moffat, K.G., O’Kane, C.J., Davies, J.A., Bacon, J.P., 1996.
738 Mutations *Drosophila* in shaking-B Prevent Giant Fiber System Electrical Synapse
739 Formation in the *Drosophila* Giant Fiber System. *J Neurosci* 16, 1101–1113.

740 Portugues, R., Feierstein, C.E., Engert, F., Orger, M.B., 2014. Article Whole-Brain Activity Maps
741 Reveal Stereotyped, Distributed Networks for Visuomotor Behavior. *Neuron* 81, 1328–
742 1343. doi:10.1016/j.neuron.2014.01.019

743 Raghu, S.V., Borst, A., 2011. Candidate Glutamatergic Neurons in the Visual System of *Drosophila*.
744 *PLoS ONE* 6, e19472. doi:10.1371/journal.pone.0019472

745 746 747 Raghu, S.V., Joesch, M., Borst, A., Reiff, D.F., 2007. Synaptic organization of lobula plate tangential cells in *Drosophila*: gamma-aminobutyric acid receptors and chemical release sites. *J. Comp. Neurol.* 502, 598–610. doi:10.1002/cne.21319

748 749 750 Raghu, S.V., Joesch, M., Sigrist, S.J., Borst, A., Reiff, D.F., 2009. Synaptic organization of lobula plate tangential cells in *Drosophila*: *Dalpha7* cholinergic receptors. *J. Neurogenet.* 23, 200–9. doi:10.1080/01677060802471684

751 752 Raghu, S.V., Reiff, D.F., Borst, A., 2011. Neurons with cholinergic phenotype in the visual system of *Drosophila*. *J. Comp. Neurol.* 519, 162–76. doi:10.1002/cne.22512

753 754 755 756 Randlett, O., Wee, C.L., Naumann, E.A., Nnaemeka, O., Schoppik, D., Fitzgerald, J.E., Portugues, R., Lacoste, A.M.B., Riegler, C., Engert, F., Schier, A.F., 2015. Whole-brain activity mapping onto a zebrafish brain atlas. *Nat. Methods advance online publication*. doi:10.1038/nmeth.3581

757 758 759 760 Ronneberger, O., Liu, K., Rath, M., Rueß, D., Mueller, T., Skibbe, H., Drayer, B., Schmidt, T., Filippi, A., Nitschke, R., Brox, T., Burkhardt, H., Driever, W., 2012. ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains. *Nat. Methods* 9, 735–742. doi:10.1038/nmeth.2076

761 762 763 Shih, C.-T., Sporns, O., Yuan, S.-L., Su, T.-S., Lin, Y.-J., Chuang, C.-C., Wang, T.-Y., Lo, C.-C., Greenspan, R.J., Chiang, A.-S., 2015. Connectomics-Based Analysis of Information Flow in the *Drosophila* Brain. *Curr. Biol.* 25, 1249–1258. doi:10.1016/j.cub.2015.03.021

764 765 766 Strausfeld, N.J., Bacon, J.P., 1983. Multimodal convergence in the central nervous system of dipterous insects, in: *Fortschritte der Zoologie: Multimodal Convergence in Sensory Systems*. Gustav Fischer Verlag, New York, pp. 47–76.

767 768 Strausfeld, N.J., Lee, J.-K., 1991. Neuronal basis for parallel visual processing in the fly. *Vis. Neurosci.* 7, 13–33.

769 770 771 Strausfeld, N.J., Okamura, J.-Y., 2007. Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents. *J. Comp. Neurol.* 500, 166–88. doi:10.1002/cne.21196

772 773 774 Strausfeld, N.J., Sinakevitch, I., Okamura, J.-Y., 2007. Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes. *Dev. Neurobiol.* 67, 1267–88. doi:10.1002/dneu.20396

775 776 Strauss, R., Heisenberg, M., 1993. A higher control center of locomotor behavior in the *Drosophila* brain. *J Neurosci* 13, 1852–1861.

777 778 779 780 781 Takemura, S., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P.K., Katz, W.T., Olbris, D.J., Plaza, S.M., Winston, P., Zhao, T., Horne, J.A., Fetter, R.D., Takemura, S., Blazek, K., Chang, L.-A., Ogundeyi, O., Saunders, M. a., Shapiro, V., Sigmund, C., Rubin, G.M., Scheffer, L.K., Meinertzhagen, I. a., Chklovskii, D.B., 2013. A visual motion detection circuit suggested by *Drosophila* connectomics. *Nature* 500, 175–181. doi:10.1038/nature12450

782 783 784 785 786 787 788 Thompson, C.L., Ng, L., Menon, V., Martinez, S., Lee, C.-K., Glattfelder, K., Sunkin, S.M., Henry, A., Lau, C., Dang, C., Garcia-Lopez, R., Martinez-Ferre, A., Pombero, A., Rubenstein, J.L.R., Wakeman, W.B., Hohmann, J., Dee, N., Sodt, A.J., Young, R., Smith, K., Nguyen, T.-N., Kidney, J., Kuan, L., Jeromin, A., Kaykas, A., Miller, J., Page, D., Orta, G., Bernard, A., Riley, Z., Smith, S., Wohnoutka, P., Hawrylycz, M.J., Puelles, L., Jones, A.R., 2014. A High-Resolution Spatiotemporal Atlas of Gene Expression of the Developing Mouse Brain. *Neuron* 83, 309–323. doi:10.1016/j.neuron.2014.05.033

789 von der Maaten, L.J.P., Hinton, G.E., 2008. Visualizing Data using t-SNE. *J. Mach. Learn. Res.*

790 Vosshall, L.B., Wong, A.M., Axel, R., 2000. An Olfactory Sensory Map in the Fly Brain. *Cell* 102,
791 147–159. doi:10.1016/S0092-8674(00)00021-0

792 White, J.G., Southgate, E., Thomson, J.N., Brenner, S., 1986. The Structure of the Nervous System of
793 the Nematode *Caenorhabditis elegans*. *Philos. Trans. R. Soc. B Biol. Sci.* 314, 1–340.
794 doi:10.1098/rstb.1986.0056

795 Wolff, T., Iyer, N.A., Rubin, G.M., 2015. Neuroarchitecture and neuroanatomy of the *Drosophila*
796 central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits.
797 *J. Comp. Neurol.* 523, Spc1–Spc1. doi:10.1002/cne.23773

798 Yu, H., Awasaki, T., Schroeder, M.D.D., Long, F., Yang, J.S.S., He, Y., Ding, P., Kao, J., Wu, G.Y.-Y.Y.,
799 Peng, H., Myers, G., Lee, T., 2013. Clonal Development and Organization of the Adult
800 *Drosophila* Central Brain. *Curr Biol* 23, 1–11. doi:10.1016/j.cub.2013.02.057

801 Yu, J.Y., Kanai, M.I., Demir, E., Jefferis, G.S.X.E., Dickson, B.J., 2010. Cellular Organization of the
802 Neural Circuit that Drives *Drosophila* Courtship Behavior. *Curr Biol* 20, 1602–1614.
803 doi:10.1016/j.cub.2010.08.025

804 Zhang, Y.Q., Rodesch, C.K., Broadie, K., 2002. Living synaptic vesicle marker: synaptotagmin-GFP.
805 *Genes. N. Y. N* 2000 34, 142–145. doi:10.1002/gene.10144

806

807 **Figure captions**

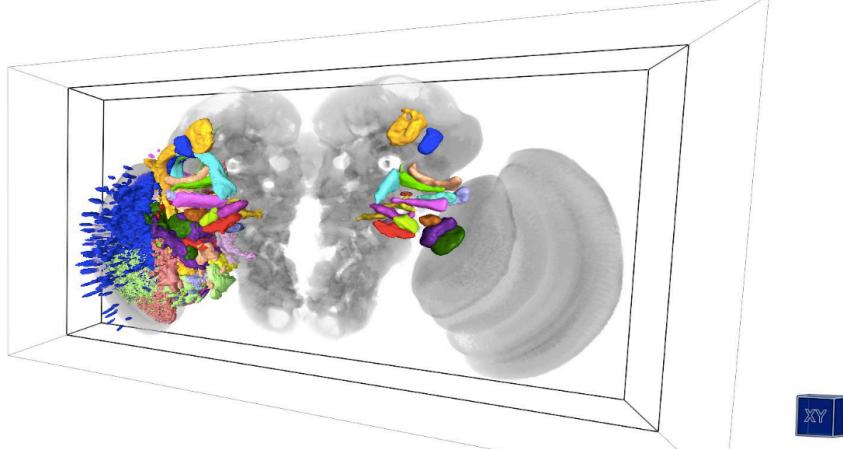
808 **Figure 1. Automatic segmentation of a brain region into domains sharing**
809 **common enhancer profiles.** A) Thousands of registered confocal image stacks
810 from the Janelia FlyLight and Vienna Tiles projects were used. B) Within an
811 analyzed brain region (purple outline), a list of driver lines driving expression
812 was compiled for each voxel. C) A voxel-to-voxel similarity s was computed using
813 the Dice coefficient and k -medoids was used to cluster groups of voxels of
814 putative functional units. D) Each voxel is colored according to its cluster and
815 plotted in the original brain coordinate system. All panels: Janelia FlyLight data
816 for the optic Ventrolateral Neuropil (oVLPN) region defined as PLP, PVLP, and
817 AOTU, run 1, 42317 voxels, 3462 driver lines, k equal 60. 3D axes scale 40 μm in
818 lateral (red), dorsal-ventral (green), anterior-posterior (blue).

819 **Figure 2. Automatic segmentation of antennal lobe (AL) and central**
820 **complex (CX).** A) The automatic clustering results from the right AL plotted in
821 the whole brain. 3D axes scale 40 μm . B) 3D views of the AL clustering
822 assignments. 3D axes scale 15 μm C) individual clusters (left), average image of
823 strongly expressing driver lines with broad driver lines removed (middle), and
824 manually assigned corresponding olfactory glomerulus (right). Scale bars 20 μm .
825 D) The automatic clustering results from CX plotted in the whole brain. 3D axes
826 scale 40 μm . E) 3D views of the CX clustering assignments. 3D axes scale 30 μm .
827 F) individual clusters (left), average image of strongly expressing driver lines
828 with broad driver lines removed (right). Scale bars 20 μm . (Panels A-C: Janelia
829 FlyLight data for the right AL, run 1, 23769 voxels, 3462 driver lines, k equal 60.
830 Panels D-F: Janelia FlyLight data for CX, run 1, 27598 voxels, 3462 driver lines, k
831 equal 60.)

832 **Figure 3. Automatic segmentation reveals clusters that correspond to optic**
833 **glomeruli associated with previously identified visual projection neurons**
834 **(VPNs).** A) Clusters from the oVLPN region plotted within entire brain. 3D axes
835 scale 40 μm . B) Multiple 3D views of clusters. 3D axes scale 40 μm . C-J)
836 Individual clusters, average images, selected driver lines, 3D segmentations of a
837 particular VPN type, presynaptic marker (UAS-synaptotagmin::GFP) expressed

838 by a single driver and 3D segmentation of presynaptic region to define optic
839 glomerulus. (All panels: Janelia FlyLight data for the oVLPN region defined as
840 PLP, PVLP, and AOTU, run 1, 42317 voxels, 3462 driver lines, k equal 60. Scale
841 bars 50 μm .)

842 **Figure 4. Automatic segmentation reveals clusters that correspond to tracts**
843 **associated with previously identified visual projection neurons.** A) Clusters
844 of the oVLPN with the Vienna Tile dataset plotted within entire brain. 3D axes
845 scale 40 μm . B) Multiple 3D views of clusters. 3D axes scale 30 μm . C) Cluster
846 associated with the giant commissure, including LC14 neurons. D) Cluster
847 associated with the axons of Lat neurons. (All panels: Vienna Tiles data for the
848 oVLPN, run 1, 13458 voxels, 6022 driver lines, k equal 60. Scale bars 50 μm .)


849 **Figure 5. Automatic segmentation reveals clusters that correspond to optic**
850 **glomeruli associated with newly identified LC-type visual projection**
851 **neurons.** A-H) Individual clusters, average images, selected driver lines, 3D
852 segmentations of a particular VPN type, presynaptic marker (UAS-
853 synaptotagmin::GFP) expressed by a single driver and 3D segmentation of
854 presynaptic region to define optic glomerulus. (All panels: Janelia FlyLight data
855 for the oVLPN, run 1, 42317 voxels, 3462 driver lines, k equal 60. Scale bars 50
856 μm .)

857 **Figure 6. Automatic segmentation reveals clusters that correspond to optic**
858 **glomeruli associated with newly identified LPLC, LPC, and MC-type visual**
859 **projection neurons.** A-F) Individual clusters, average images, selected driver
860 lines, 3D segmentations of a particular VPN type, presynaptic marker (UAS-
861 synaptotagmin::GFP) expressed by a single driver and 3D segmentation of
862 presynaptic region to define optic glomerulus. (All panels: Janelia FlyLight data
863 for the oVLPN, run 1, 42317 voxels, 3462 driver lines, k equal 60. Scale bars 50
864 μm .)

865 **Figure 7. Automatically assigned clusters colocalize with manually**
866 **segmented optic glomeruli.** A) Colocalization similarity (measured based on
867 set of voxels in manually annotated region and set of voxels in clustering result)
868 between the Janelia FlyLight dataset and manual assignments using the same 3D

869 template brain. (Janelia FlyLight data for run 1, oVLPN, 42317 voxels, 3462
870 driver lines, k equal 60.) B) Colocalization similarity between the Vienna Tiles
871 dataset and manual assignments using the same 3D template brain. (Vienna Tiles
872 data for run 1, oVLPN, 13458 voxels, 6022 driver lines, k equal 60.)

873

874 **Video 1. 3D location of manually segmented visual projection neurons and**
875 **optic glomeruli.** Right half shows 3D rendering of all identified optic glomeruli
876 registered onto a 3D reference brain. Optic glomeruli were segmented from
877 single driver confocal images expressing presynaptic marker (UAS-
878 synaptotagmin::GFP). Left half shows 3D rendering of visual projection neurons
879 segmented from single driver confocal images expressing a non-localized cell
880 membrane marker (UAS-CD8::GFP).

881 **Figure 8. An atlas of the optic glomeruli defined by manual segmentation of**
882 **presynaptic marker expression experiments.** A) 3D rendering of all identified
883 optic glomeruli registered onto a 3D reference brain. Optic glomeruli were
884 segmented from single driver confocal images expressing presynaptic marker
885 (UAS-synaptotagmin::GFP). (Scale bars 40 μm.) B) Z-stack showing the location
886 of each optic glomerulus in a 2D view on the background of an average image of
887 many individual nc82 stained brains.

888 **Figure 9. Using clusters to identify neuron types that express dendritic**
889 **markers in a particular optic glomerulus and project to another region. A-**
890 **D) Neurons that project to (left) and from (right) a particular optic glomerulus,**
891 **found using candidate searches from the Braincode result lists. Pre- and post-**

892 synaptic markers were UAS-synaptotagmin::GFP and UAS-DenMark::mCherry,
893 respectively. A) Putative outputs from the optic glomerulus to which MC61
894 projects include a neuron type that projects to the bulb. Such cells express post-
895 synaptic marker in the AOTU and pre-synaptic markers in the bulb. (Driver lines:
896 GMRH07-GAL4, VT037804-GAL4) B) The optic glomerulus to which the LC04
897 neuron type projects contains a neuron, likely the giant commissural
898 interneuron CGI (Phelan et al., 1996) that expresses post-synaptic marker in this
899 glomerulus. (Driver lines: GMR56D07-GAL4, VT064571-GAL4) C) The optic
900 glomerulus to which the LC09 neuron type projects contains a neuron that
901 expresses pre- and post-synaptic markers in this glomerulus (arrowheads).
902 (Driver lines: GMR18C12-GAL4, VT062768-GAL4) D) The optic glomerulus to
903 which the LC16 neuron type projects contains a neuron that expresses pre- and
904 post-synaptic markers in this glomerulus. (Driver lines: GMR25E04-GAL4,
905 VT062646-GAL4)

906 **Supplement Captions**

907 **Figure 1-figure supplement 1. Repeatability scores across multiple runs of**
908 **the *k*-medoids algorithm.** The adjusted Rand index, a measure of repeatability,
909 was calculated based on 10 repeated runs of the *k*-medoids algorithm for both
910 datasets and several brain regions.

911 **Figure 2-figure supplement 1. Automatically assigned clusters colocalize**
912 **with manually segmented antennal lobe glomeruli.** Colocalization similarity
913 (measured based on set of voxels in manually annotated region and set of voxels
914 in clustering result) between the Janelia FlyLight dataset and manual
915 assignments using the same 3D template brain. (Janelia FlyLight data for the
916 right antennal lobe region, run 1, 6502 voxels, 3462 driver lines, *k* equal 60.)

917 **Figure 2-figure supplement 2. First 30 clusters from right antennal lobe.** On
918 the left of each column, a 3D rendering of each cluster is shown within the
919 antennal lobe, and on the right is an average image of the drivers with high
920 expression in that cluster but that do not broadly express. (Janelia FlyLight data

921 for the right antennal lobe region, run 1, 6502 voxels, 3462 driver lines, k equal
922 60. Scale bars 20 μm .)

923 **Figure 2-figure supplement 3. Second 30 clusters from right antennal lobe.**

924 As in Figure 2-figure supplement 2. (Janelia FlyLight data for the right antennal
925 lobe region, run 1, 6502 voxels, 3462 driver lines, k equal 60. Scale bars 20 μm .

926 **Figure 2-figure supplement 4. First 30 clusters from central complex.** As in
927 Figure 2-figure supplement 2 but for the central complex region. (Janelia
928 FlyLight data for the central complex region, run 1, 27598 voxels, 3462 driver
929 lines, k equal 60. Scale bars 20 μm .)

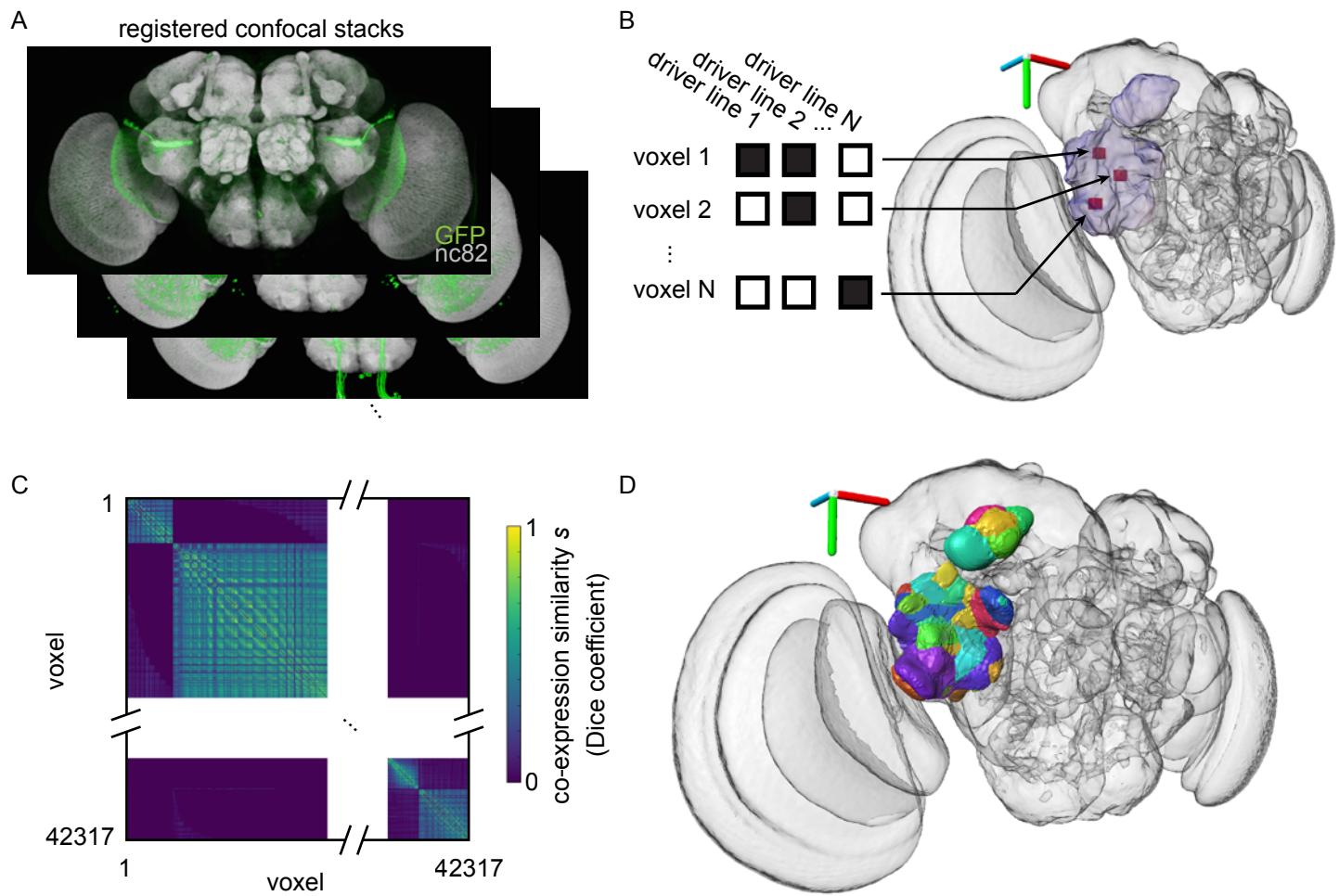
930 **Figure 2-figure supplement 5. Second 30 clusters from central complex.** As
931 in Figure 2-figure supplement 4. (Janelia FlyLight data for the central complex
932 region, run 1, 27598 voxels, 3462 driver lines, k equal 60. Scale bars 20 μm .)

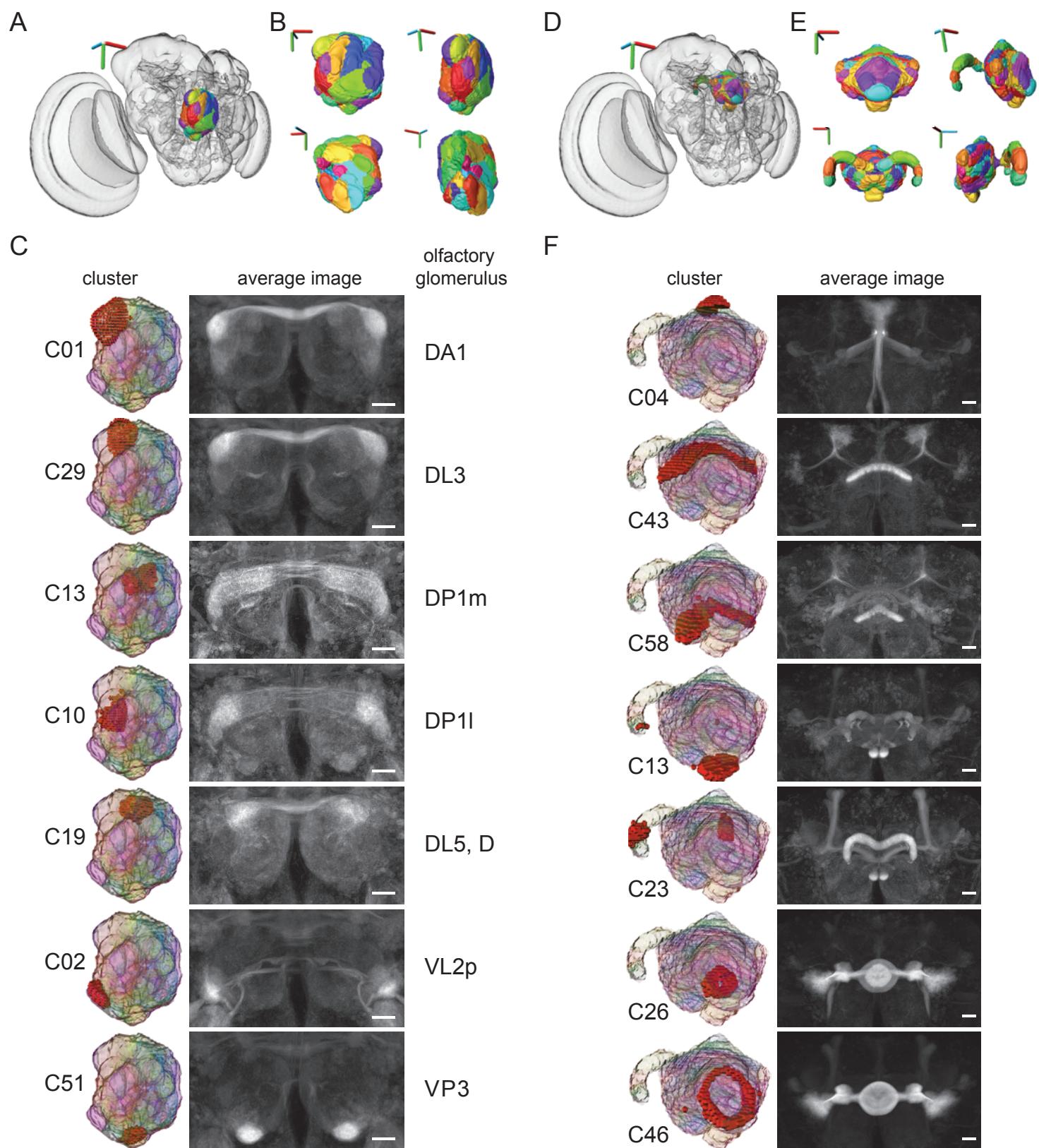
933 **Figure 3-figure supplement 1. First 30 clusters from the oVLPN region,**
934 **using Janelia FlyLight dataset.** As in Figure 2-figure supplement 2 but for the
935 oVLPN region. (Janelia FlyLight data for the oVLPN region defined as defined as
936 PLP, PVLP, and AOTU, run 1, 42317 voxels, 3462 driver lines, k equal 60. Scale
937 bars 50 μm .)

938 **Figure 3-figure supplement 2. Second 30 clusters from the oVLPN region,**
939 **using Janelia FlyLight dataset.** As in Figure 3-figure supplement 1. (Janelia
940 FlyLight data for the the oVLPN region defined as defined as PLP, PVLP, and
941 AOTU, run 1, 42317 voxels, 3462 driver lines, k equal 60. Scale bars 50 μm .)

942 **Figure 4-figure supplement 1. First 30 clusters from the oVLPN region,**
943 **using Vienna Tiles dataset.** As in Figure 3-figure supplement 1 but for the
944 Vienna Tiles data. (Vienna Tiles data for the the oVLPN region defined as defined
945 as PLP, PVLP, and AOTU, run 1, 13458 voxels, 6022 driver lines, k equal 60. Scale
946 bars 50 μm .)

947 **Figure 4-figure supplement 2. Second 30 clusters from the oVLPN region,**
948 **using Vienna Tiles dataset.** As in Figure 4-figure supplement 1. (Vienna Tiles


949 data for the the oVLNP region defined as defined as PLP, PVLP, and AOTU, run 1,
950 13458 voxels, 6022 driver lines, k equal 60. Scale bars 50 μm .)


951 **Figure 7-figure supplement 1. Clustering quality for both datasets.** A)
952 Quantification of similarity between clusters as measured by voxel-to-voxel
953 similarity s for each medoid of every cluster of run 1 in the oVLNP region. B) t-
954 distributed stochastic neighbor (tSNE) maps showing a representation of
955 molecular distance between medoids in the oVLNP region of the Janelia FlyLight
956 dataset. C) Quantification of similarity between clusters as measured by voxel-to-
957 voxel similarity s for each medoid of every cluster in the oVLNP region of run 1
958 the Vienna Tiles dataset. D) t-distributed stochastic neighbor (tSNE) maps
959 showing a representation of molecular distance between medoids in the oVLNP
960 region of the Vienna Tiles dataset.

961 **Figure 7-figure supplement 2. Repeated clustering of the same dataset**
962 **gives similar results.** A) Colocalization similarity (measured based on set of
963 voxels in manually annotated region and set of voxels in clustering result)
964 between a second clustering run on the Janelia FlyLight dataset and manual
965 assignments using the same 3D template brain. Compare with Figure 7a. (Janelia
966 FlyLight data for run 2, oVLNP, 42317 voxels, 3462 driver lines, k equal 60. Scale
967 bars 50 μm .) B) Colocalization similarity between a second clustering run on the
968 Vienna Tiles dataset and manual assignments using the same 3D template brain.
969 (Vienna Tiles data for run 2, oVLNP, 13458 voxels, 6022 driver lines, k equal 60.)

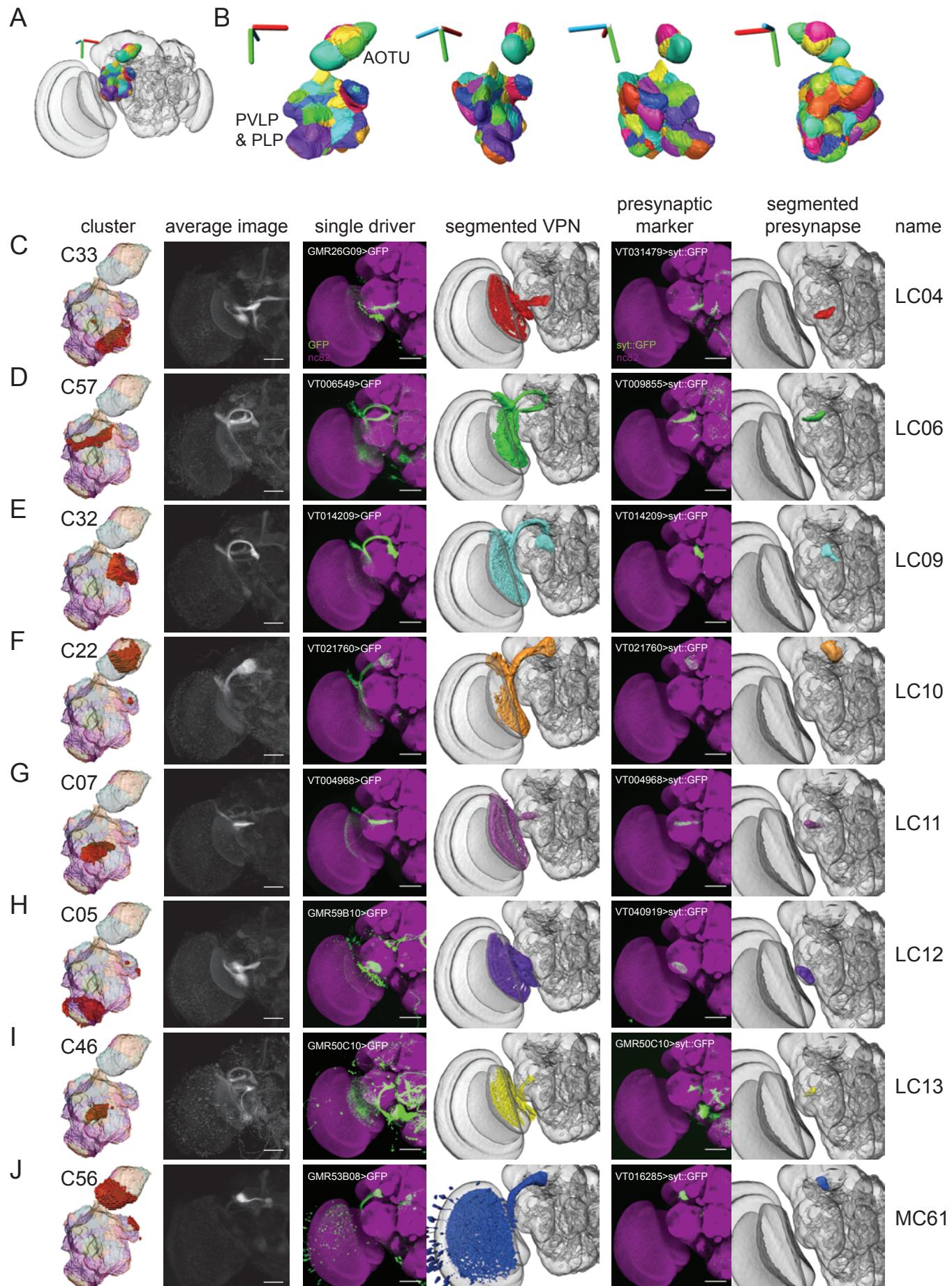
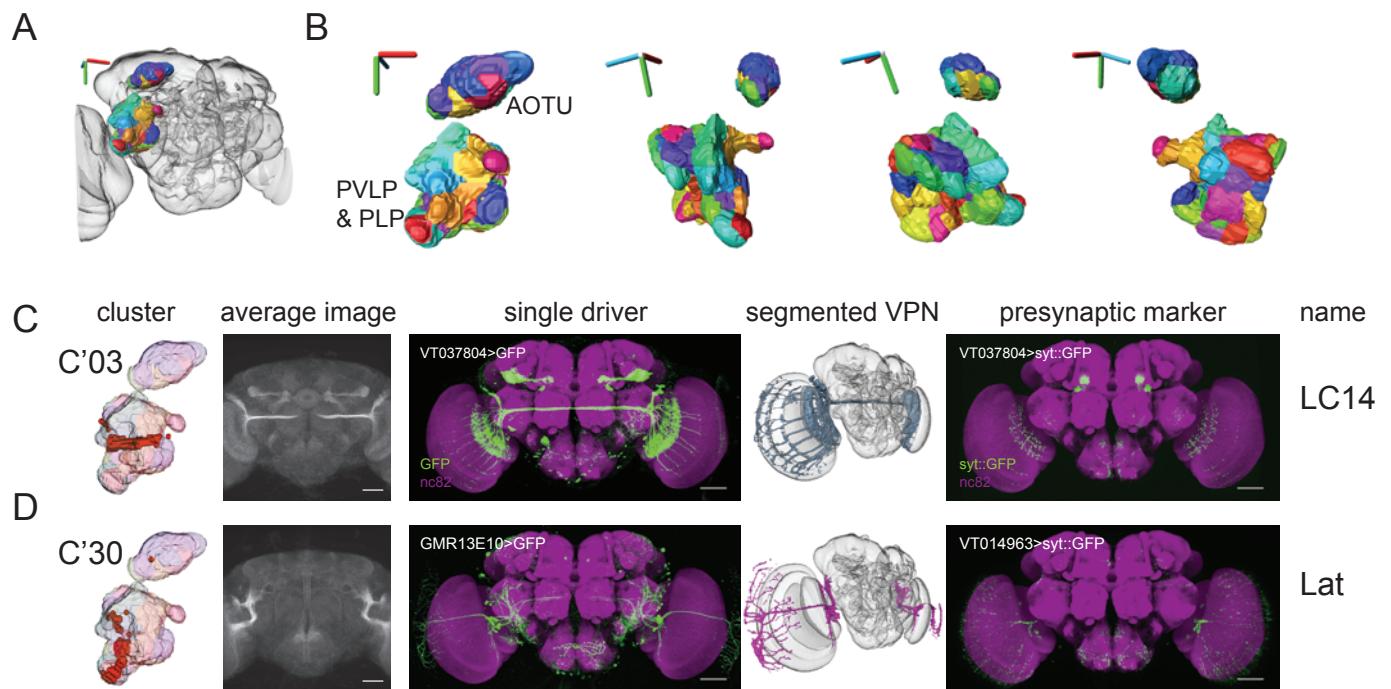
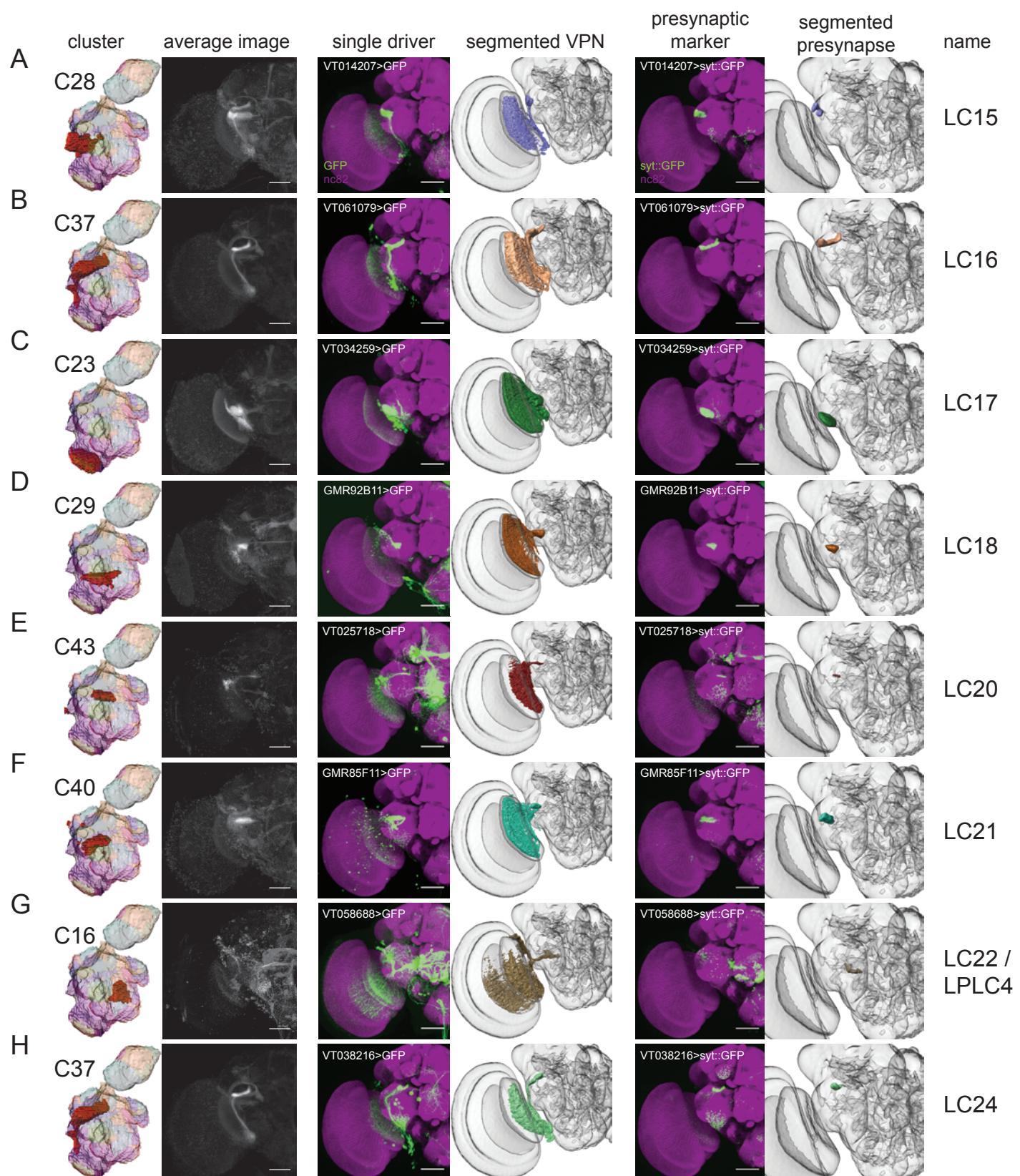
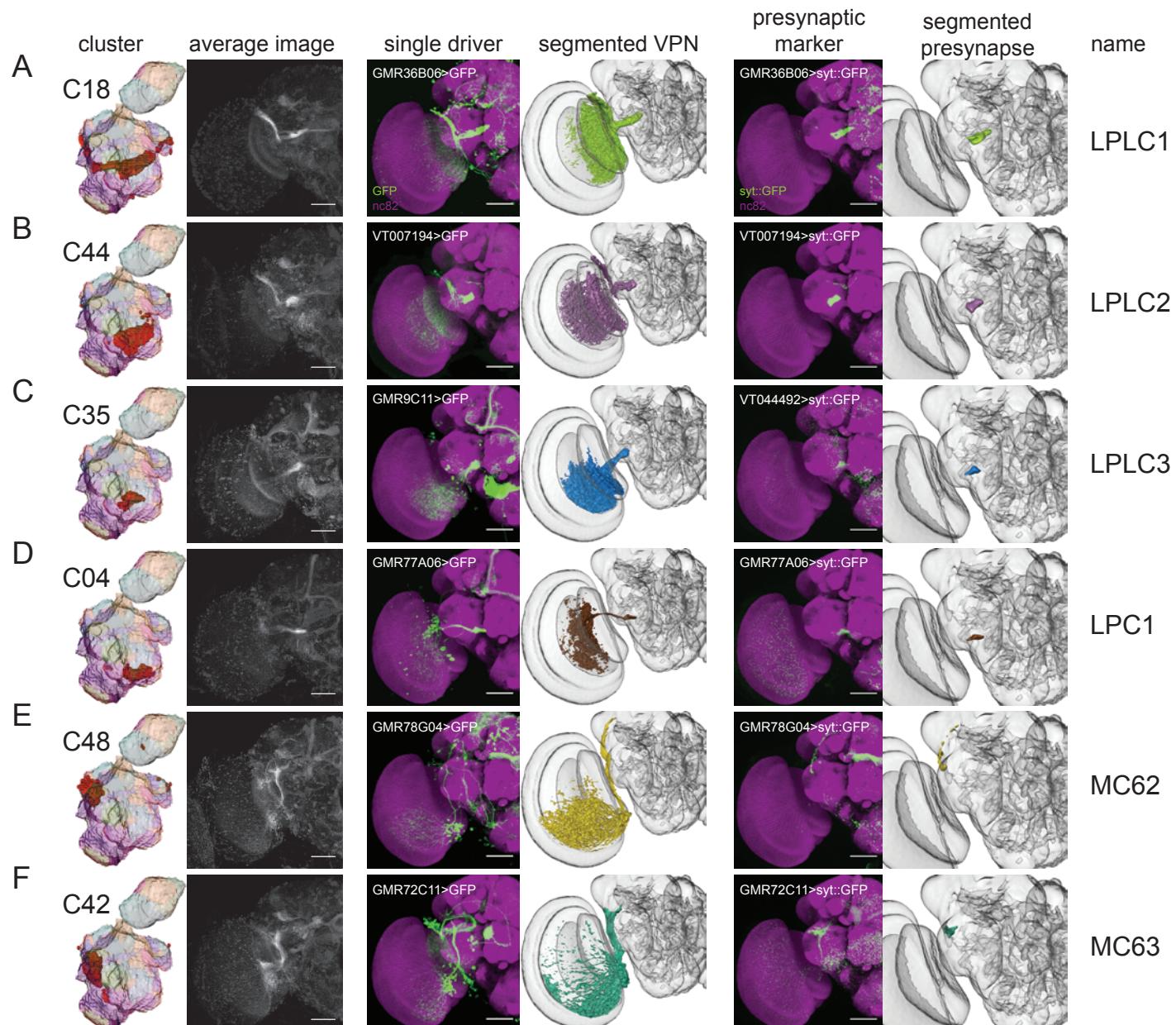
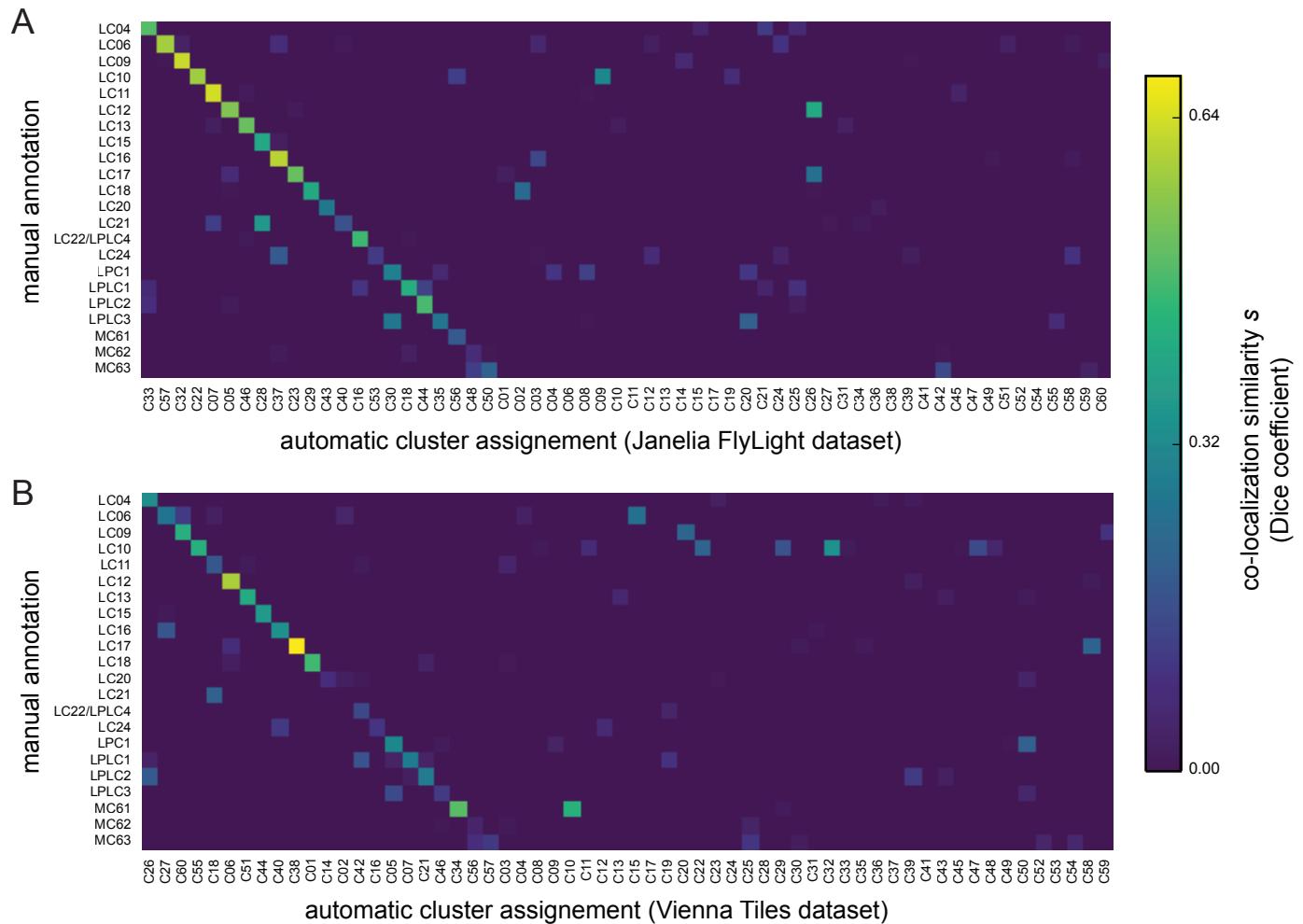

970 **Figure 8-table supplement 1. Table with VPN, Clusters, Driver lines,**
971 **Flycircuit IDs.**

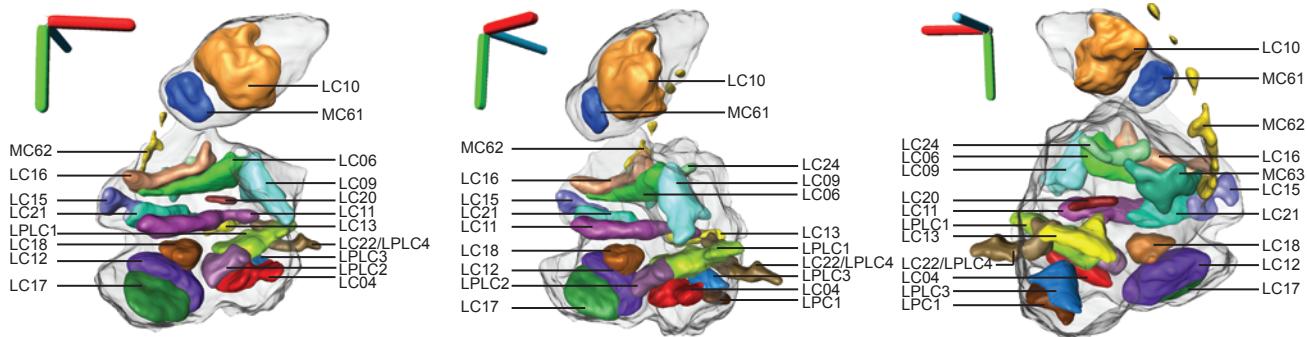
Figure 1. Automatic segmentation of a brain region into domains sharing common enhancer profiles. bioRxiv preprint doi: <https://doi.org/10.1101/032292>; this version posted November 29, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

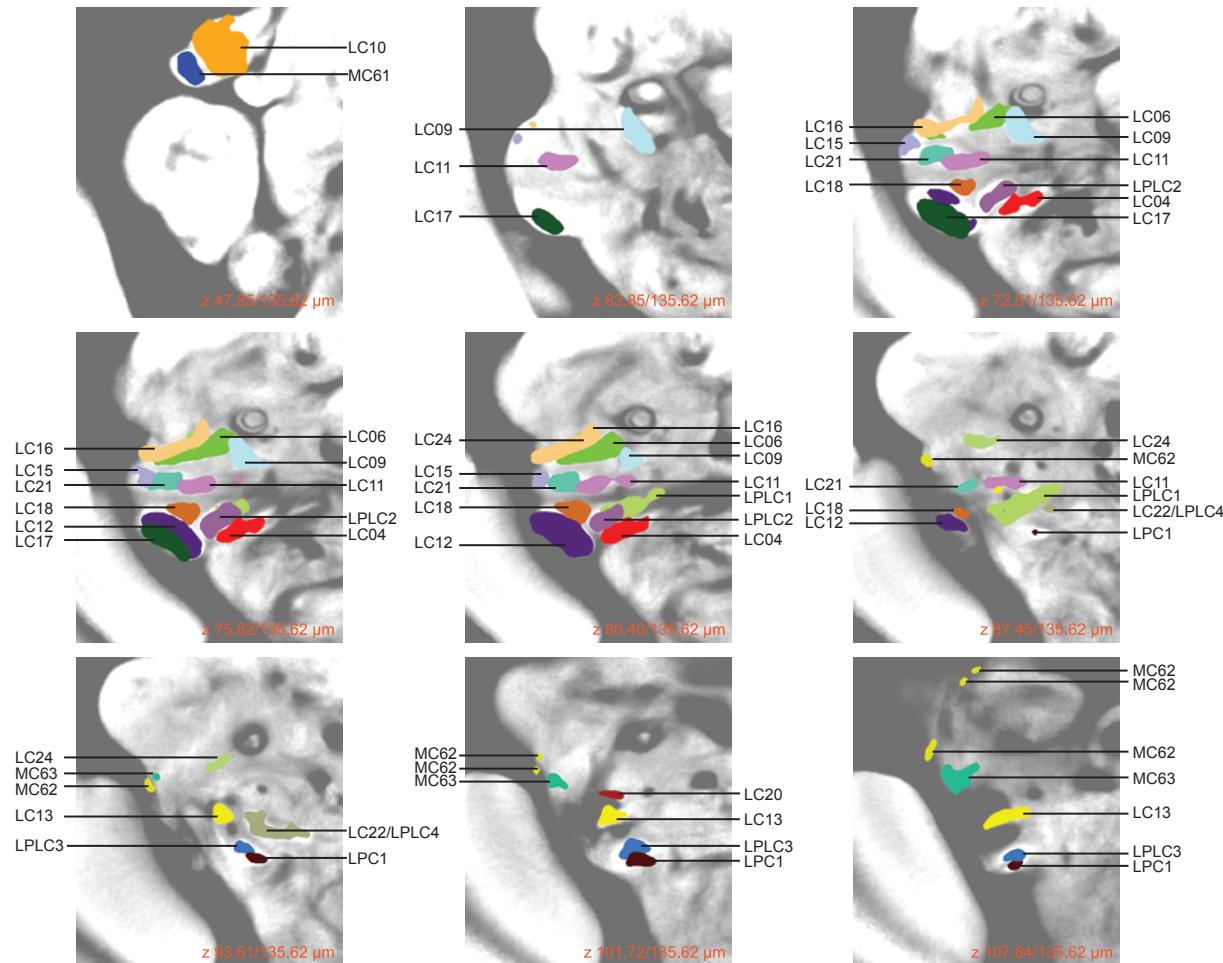


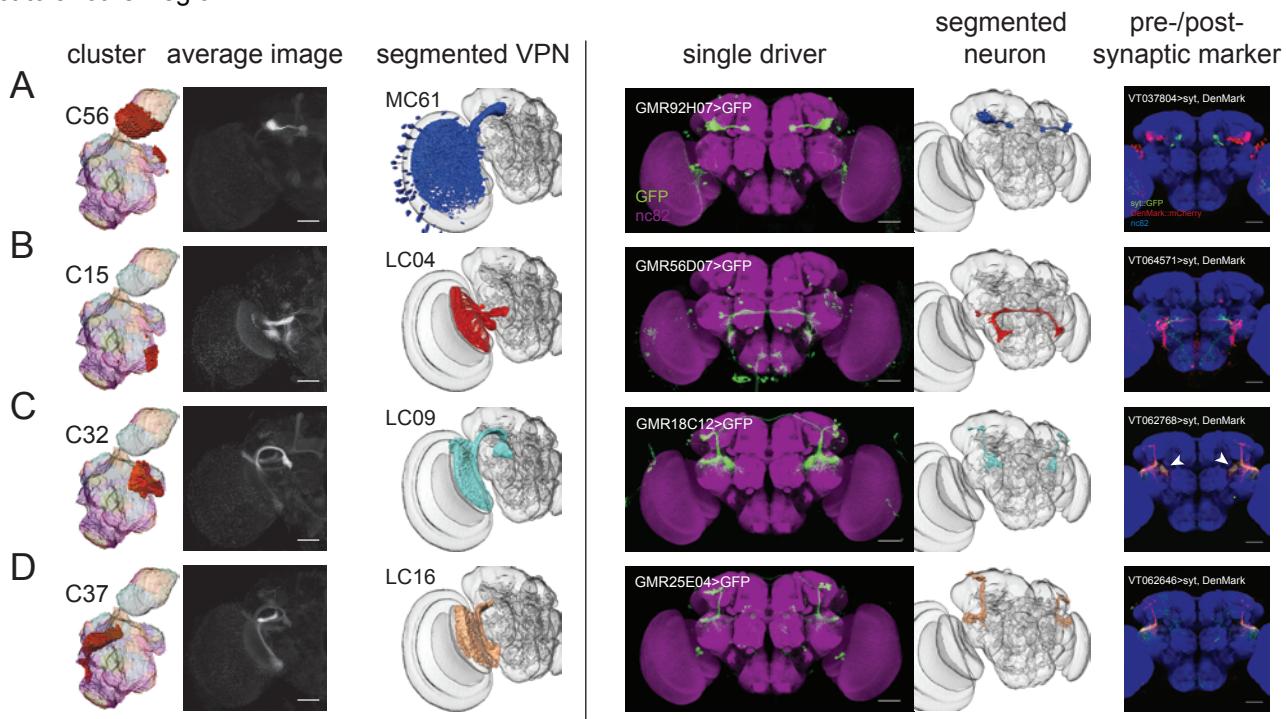
bioRxiv preprint doi: <https://doi.org/10.1101/032292>; this version posted November 29, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

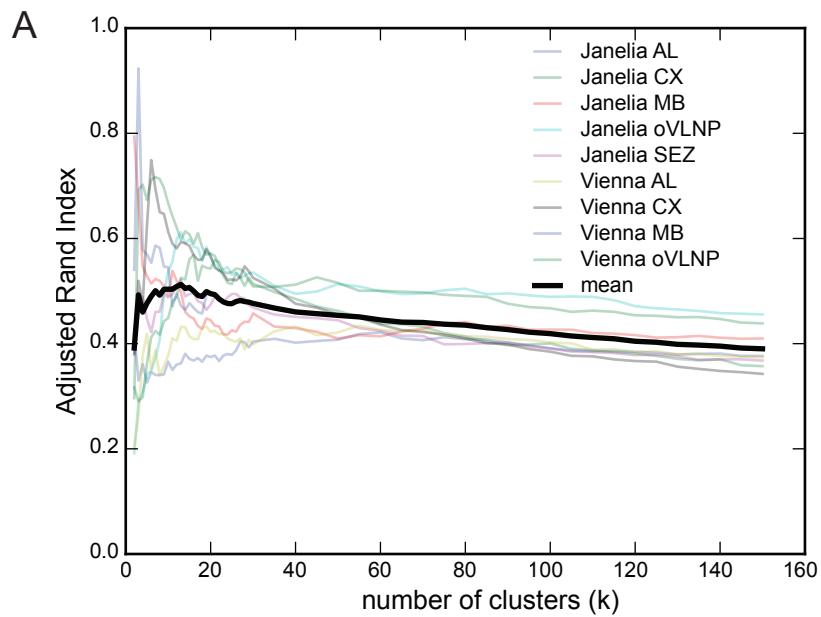
bioRxiv preprint doi: <https://doi.org/10.1101/032292>; this version posted November 29, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


Figure 6. Automatic Segmentation Reveals a New Class of Presynapses Associated with newly identified LPC, LPC and MC type visual projection neurons




bioRxiv preprint doi: <https://doi.org/10.1101/032292>; this version posted November 29, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.


A

B

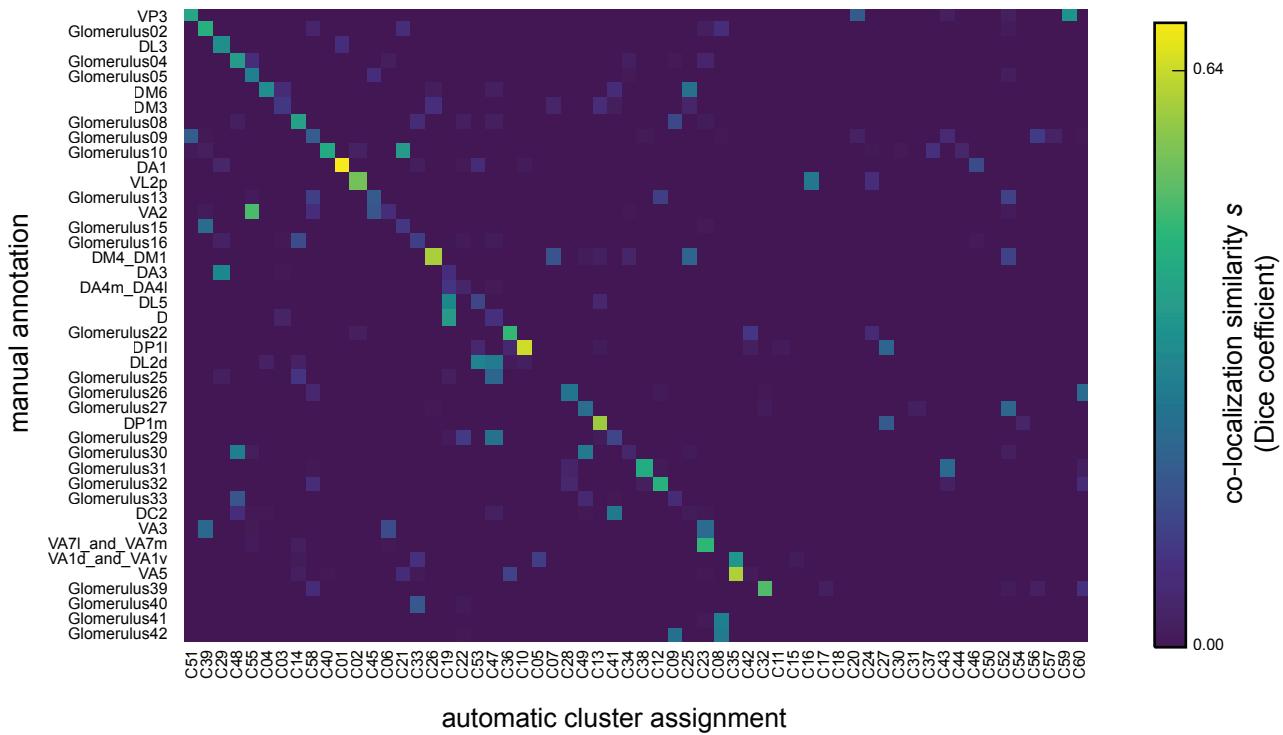


Figure 2—figure supplement 2. First 30 clusters, not shown in the main figure.

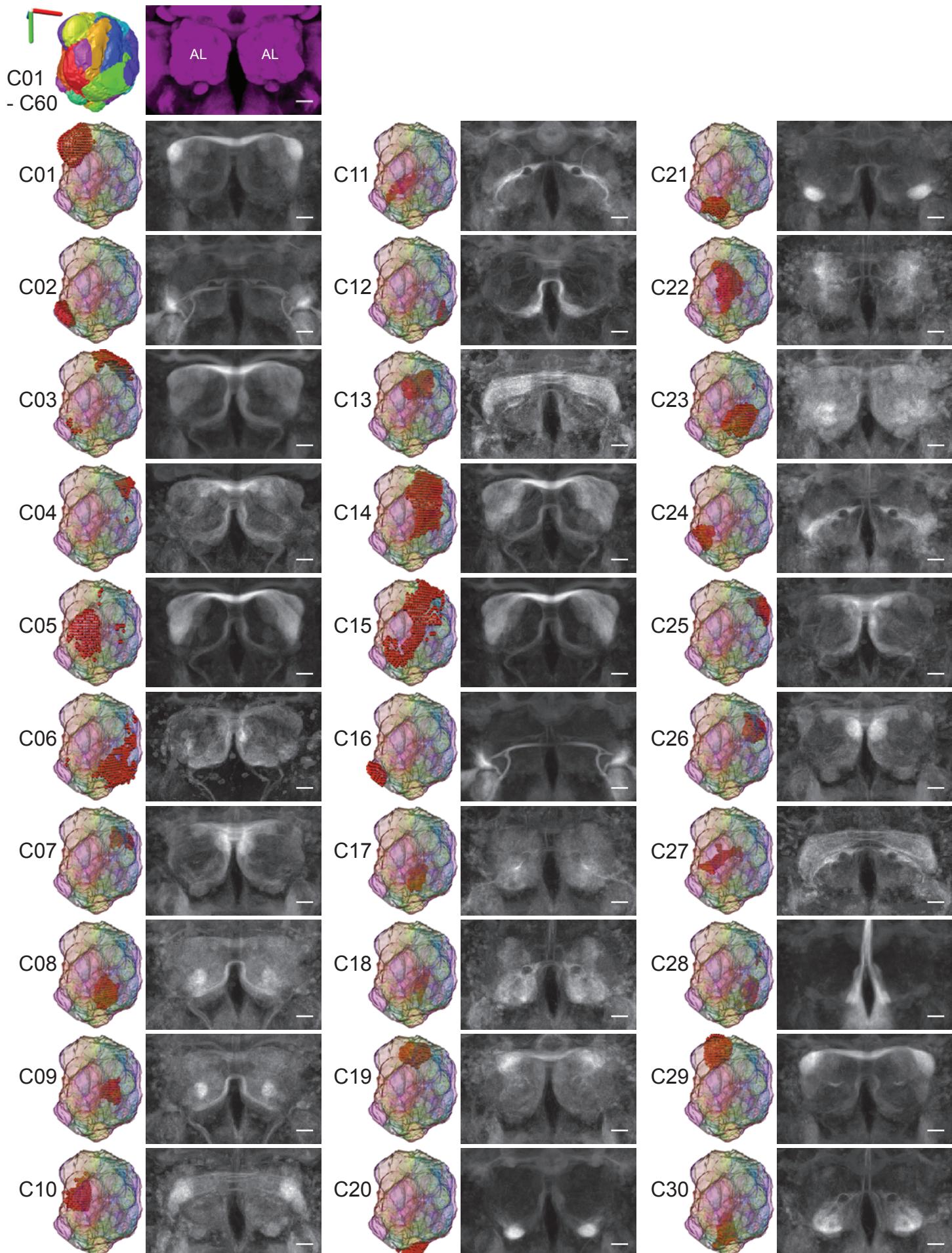
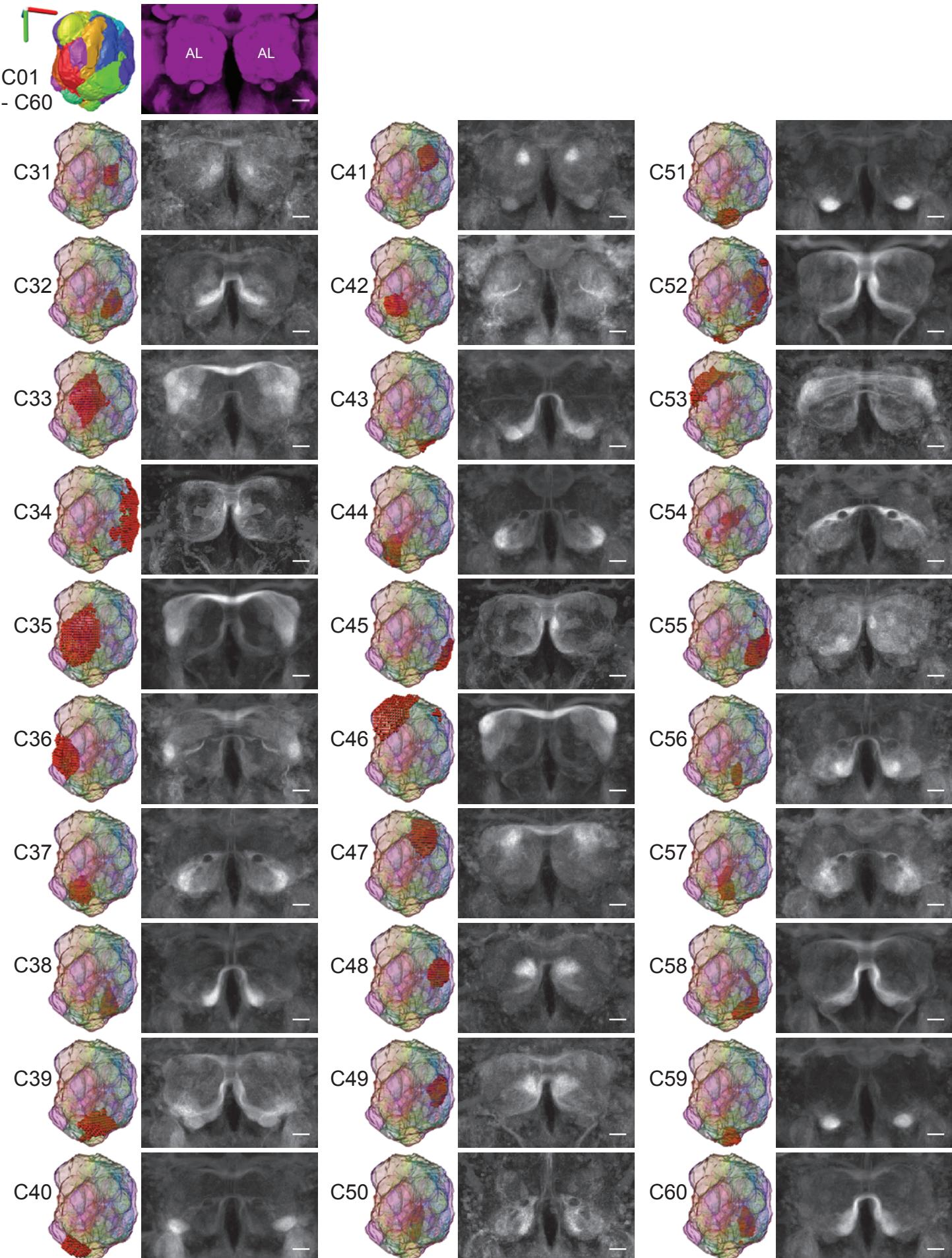



Figure 2—figure supplement 3: Second 30 subjects from which gradients were derived.

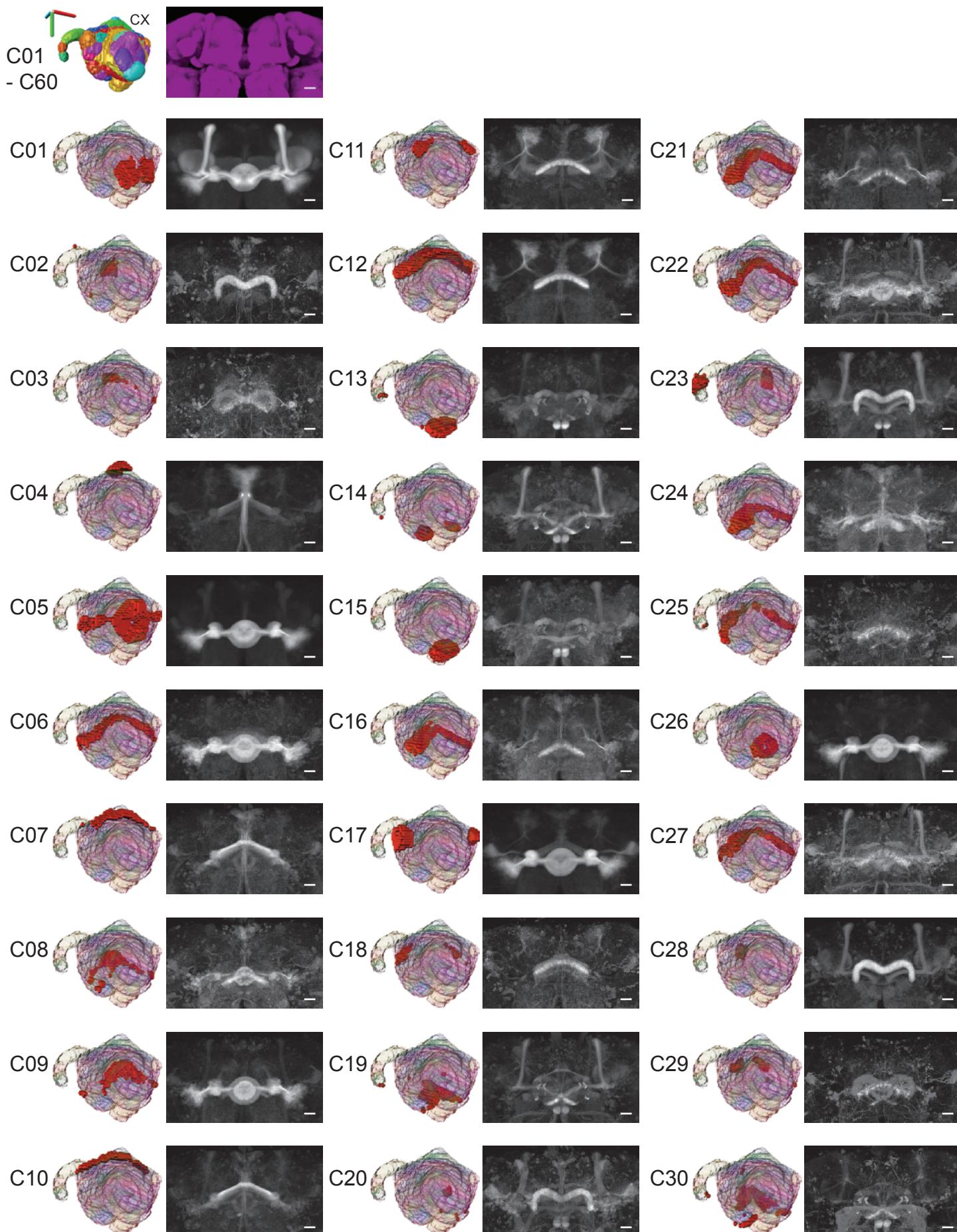
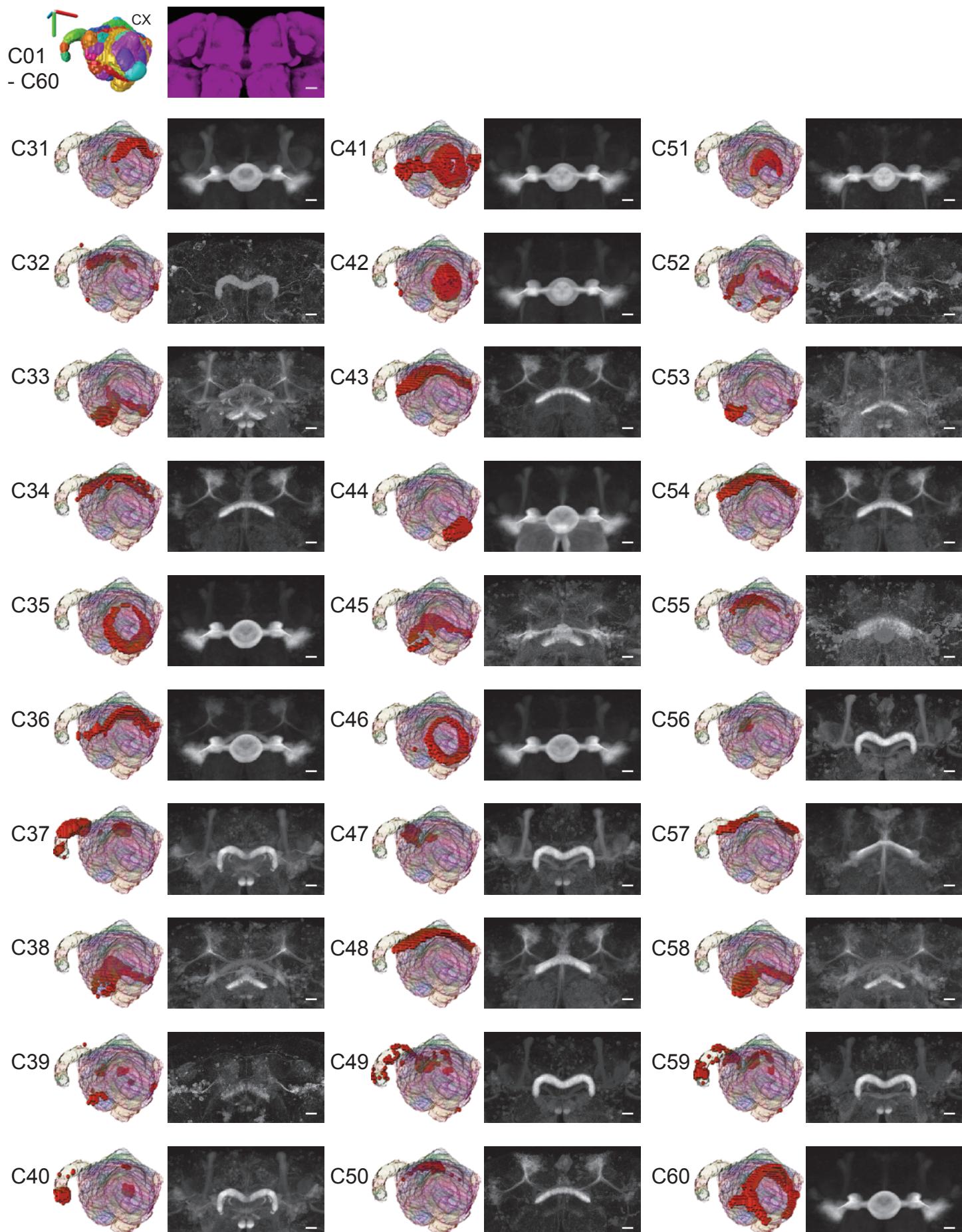
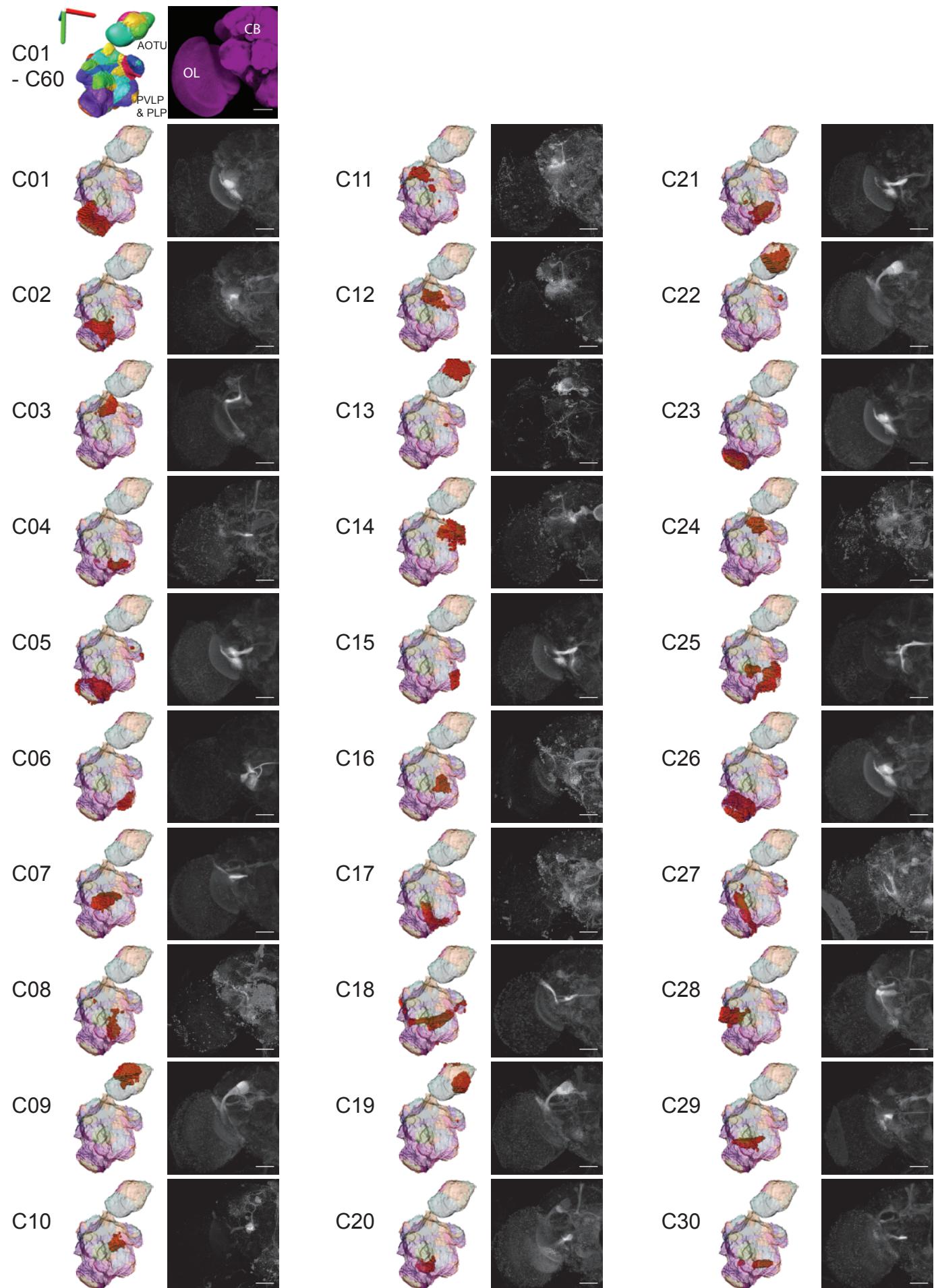




Figure 2—figure supplement 5. Second 30 subjects from the human connectome project.

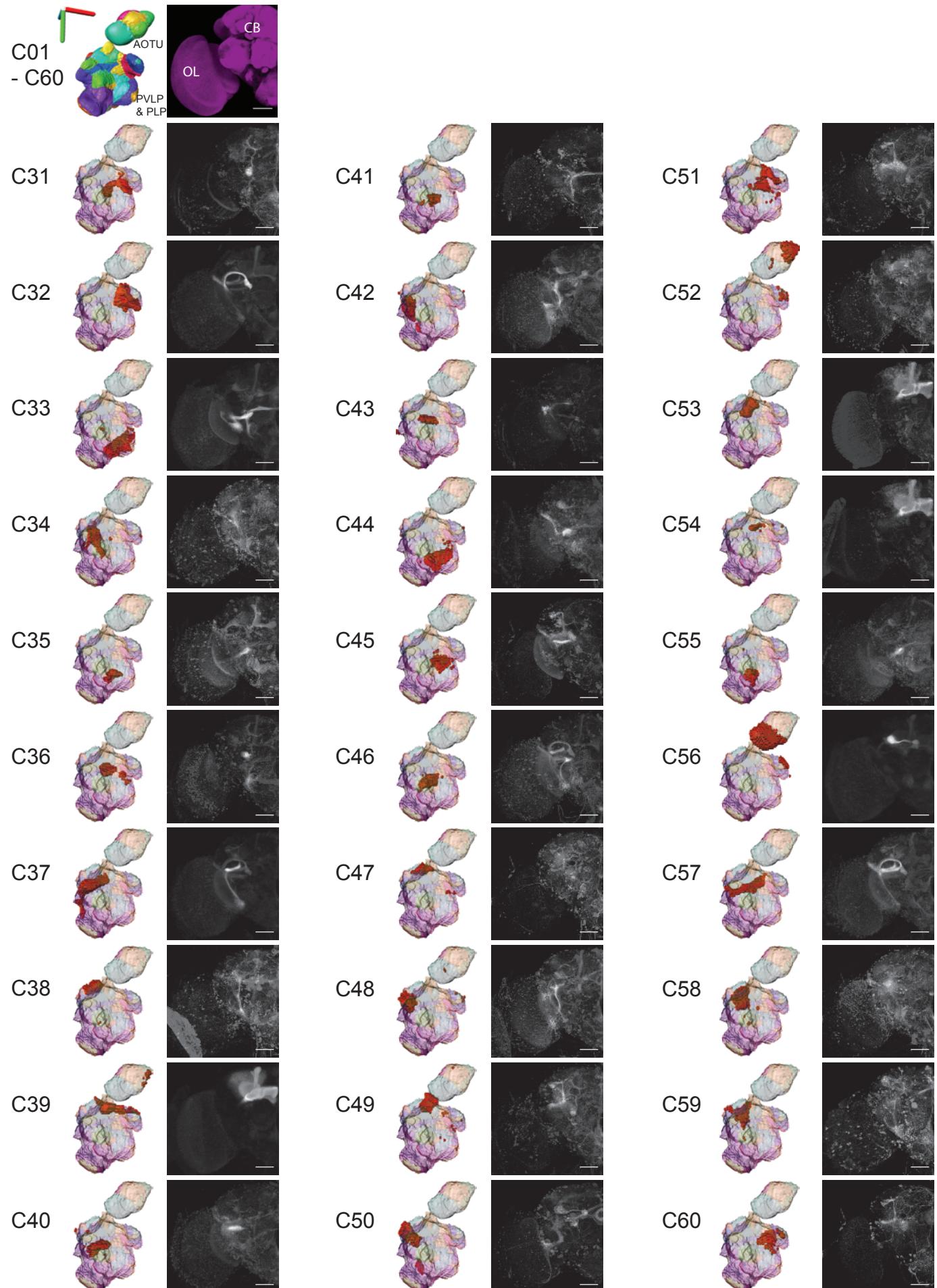


Figure 4—figure supplement 1. First 50 clusters from the mouse brain images dataset

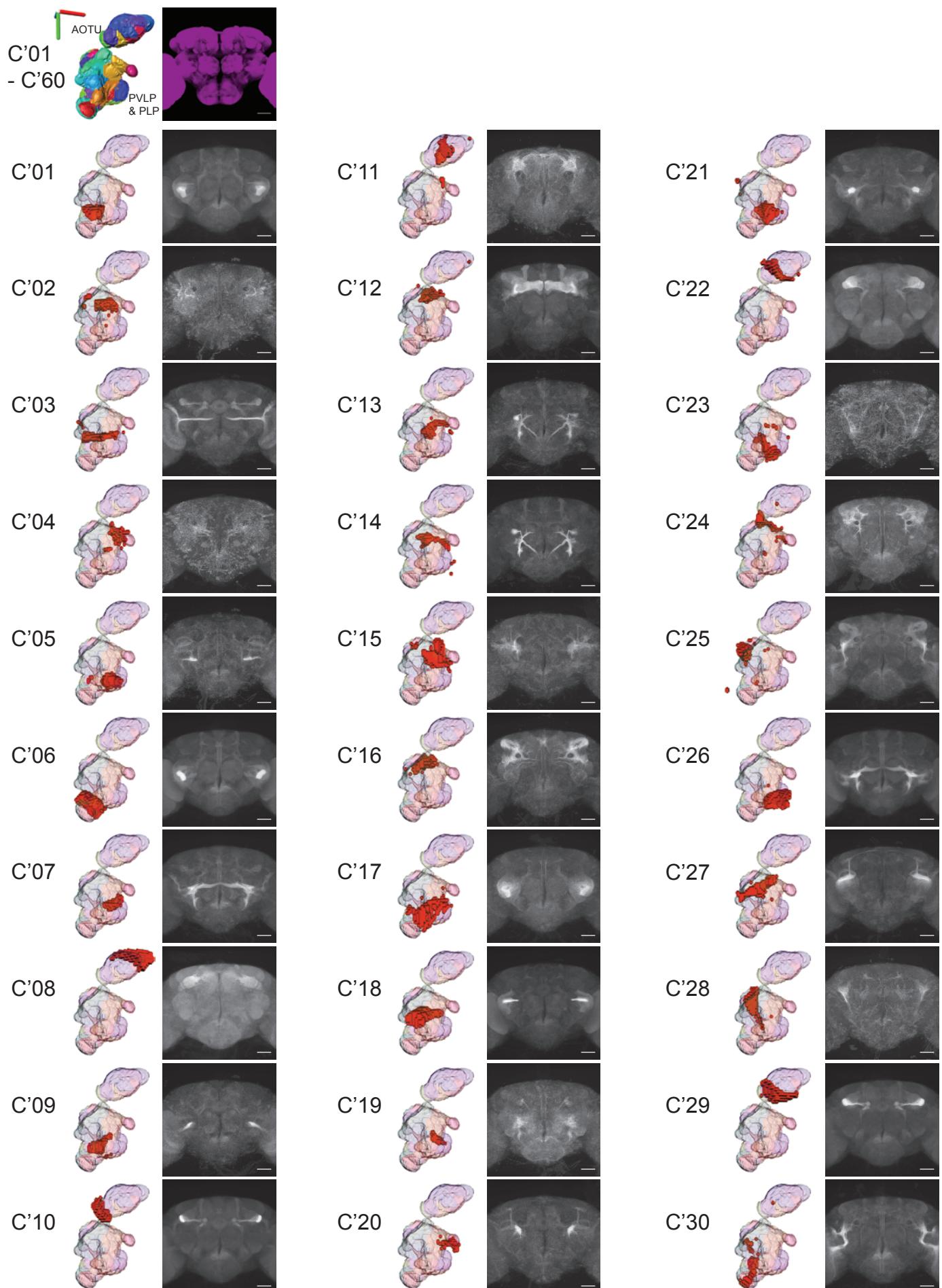
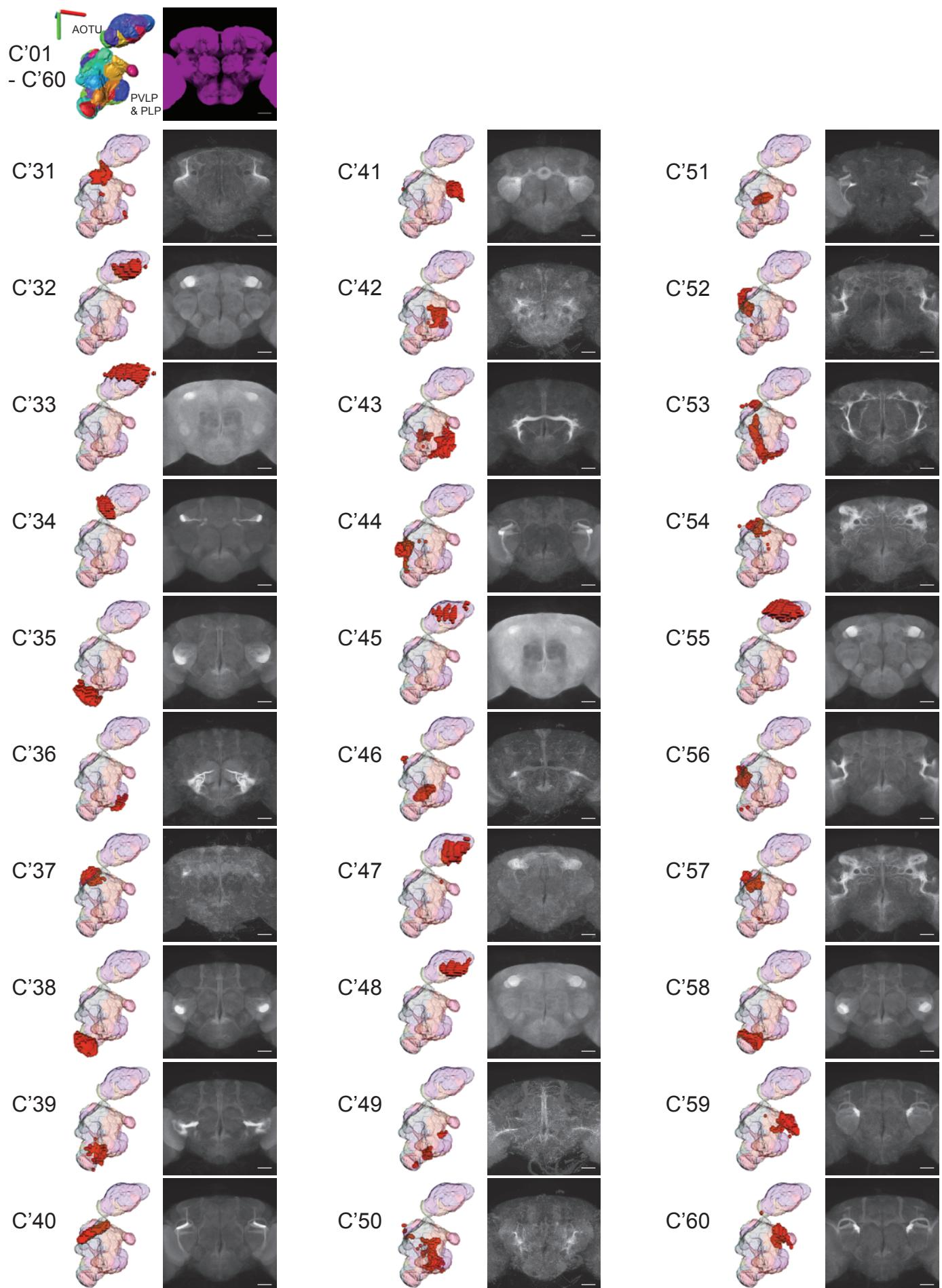
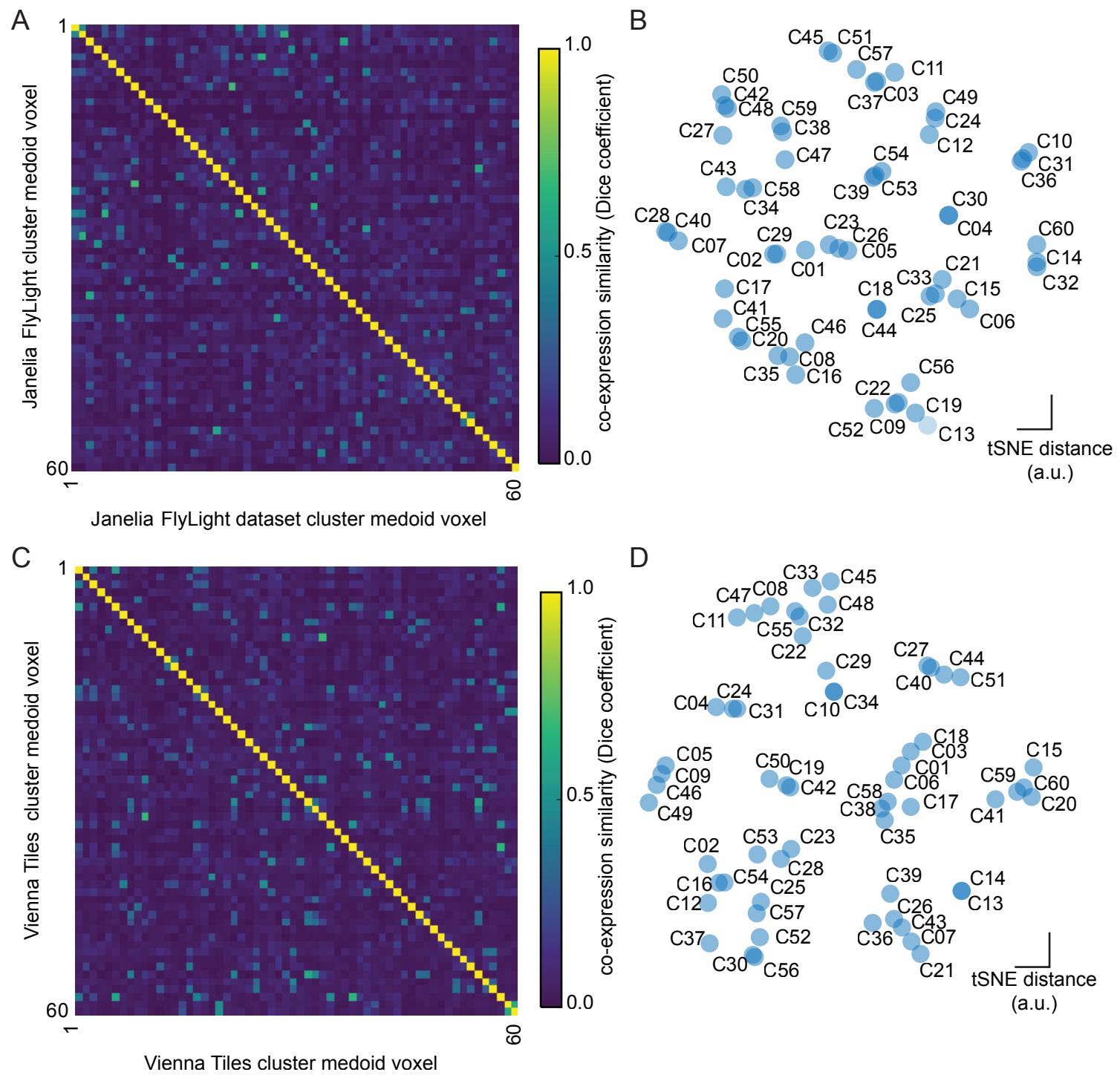
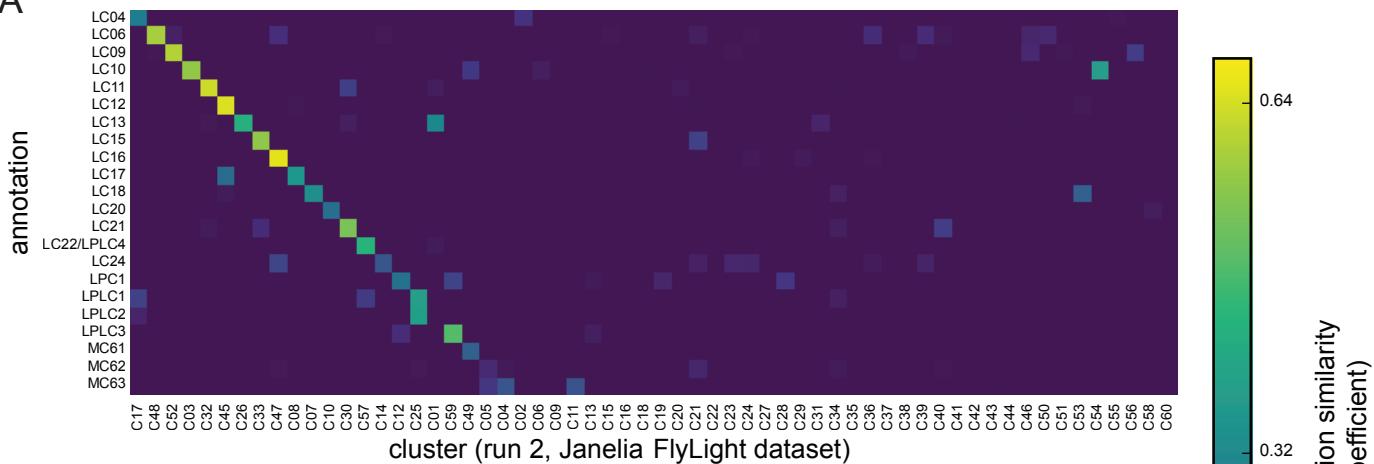





Figure 4—Figure supplement 2: Second 30 subjects from the human region center in China Hesch dataset

A

B

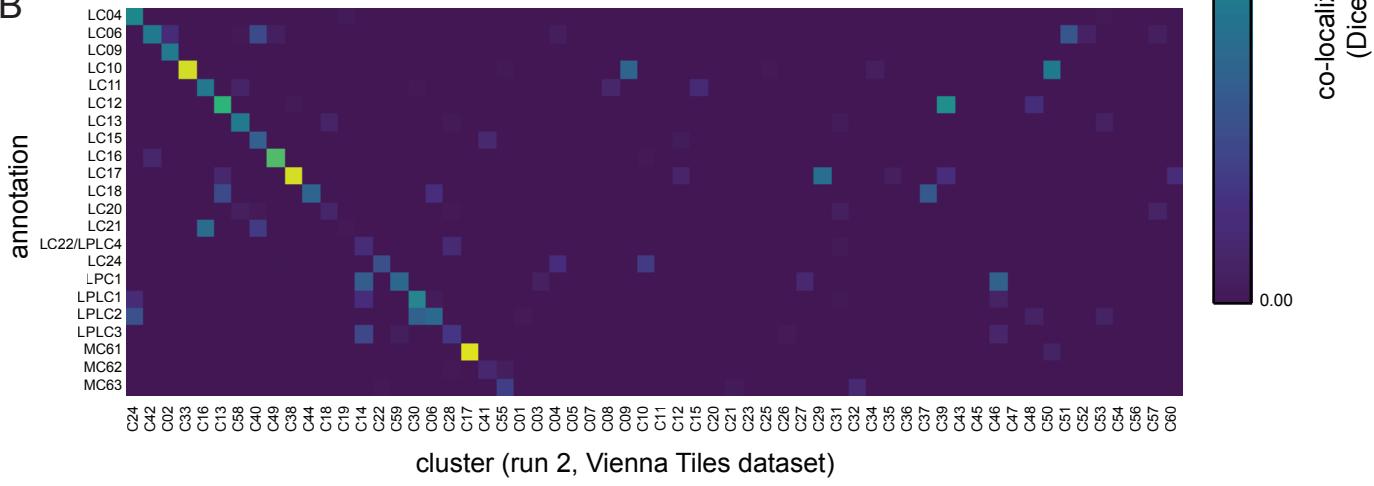


Figure 8+table 1. Table with Visual Projection Neuron (VPN) type, Clusters, Driver lines, Flycircuit IDs.

VPN type	Synonyms	Best enhancers identified for neuron type from Janelia Best enhancers identified for neuron type from Vienna tiles (MT) GAL4 library	FlyCircuit (w - Single cell examples for neuron type	Clusters corresponding to optic glomerulus or tract associated with a VPN			
				C (Janelia, Fly light, run 1)	C (Vienna tiles, Fly light, run 1)	C (Janelia Fly light, run 2)	C" (Vienna Tiles, Fly light, run 2)
LC04	I Col A (Strausfeld and Hausen, 1977)	GMR26G09, GMR47H03	VT042758, VT046005	Cha-F-000138, Cha-F-200257, Gad1-F-300256	C33, C21, C15, C25	C26, C39	C"02, C"17
LC06	S4 (Fischbach and Llyy-Hüner	GMR41C07, GMR22A07	VT006549, VT008855	Cha-F-000039, Gad1-F-400244, Gad1-F-200326	C57	C27	C"48
LC09	S4 (Fischbach and Llyy-Hüner	GMR71C02, GMR14A11	VT014209, VT005102, VT027704	Cha-F-000028, Gad1-F-700145, Gad1-F-200274	C32, C14	C59, C60	C"52, C"56, C"35
LC10	S3 (Fischbach and Llyy-Hüner	GMR22D06, GMR35D04	VT021760, VT043920	Gad1-F-100080, Cha-F-300390, fu-F-800100	C22, C09, C19	C32, C55, C48, C29	C"33, C"34, C"50
LC11	LC1N (Mu et al., 2012)	GMR23D02, GMR87B04, GMR51F09, GMR22H02	VT004968, VT008647, VT004967	Cha-F-000153, Cha-F-200132, Gad1-F-300060	C07, C45	C18	C"32, C"30
LC12		GMR29B10, GMR35D04, GMR19G01	VT062247, VT040919	Cha-F-000124, Cha-F-000015, VGlut-F-000056, VGlut-F-400347	C26, C05	C06	C"45
LC13		GMR50C10, GMR14A11	VT057283, VT025771	Cha-F-000256, Cha-F-100003, Gad1-F-100040	C46	C51	C"26, C"01
LC14	DC neurons (Hassan et al., 2000)	GMR21H0, GMR12F01, GMR58H11	VT037804	Cha-F-400228, Cha-F-400231, Gad1-F-300016	x	C03	C"34
LC15		GMR42H06, GMR24A02	VT014207, VT047878, VT012320	Cha-F-000361, Cha-F-100351	C28	C44	C"33, C"21
LC16		GMR32D04, GMR25G03	VT061079, VT025771	Gad1-F-100202, Cha-F-000316, fu-F-000032, VGlut-F-000603	C37, C03	C40, C"27	C"47
LC17		GMR21B04, GMR65C12	VT034259, VT033301	Cha-F-100017, Cha-F-000004, Gad1-F-000025	C23, C26, C01	C35, C"38, C58	C"38, C"28, C"35, C"11, C"39, C"60, C"12
LC18		GMR92B11	VT008183	5-HT1B-F-500016, Cha-F-000333, fu-F-200061, Gad1-F-300054	C29, C02	C01	C"07, C"53
LC20		GMR17A04, GMR71G09	VT025718	VGlut-F-200584, VGlut-F-700163, Gad1-F-200101	C43	x	x
LC21		GMR35F11, GMR25A07	VT104960	Gad1-F-400102, Cha-F-300208	C40, C28, C07	C18	C"30, C"40
LC22/LPLC4		GMR24A05	VT058688	LC22; Gad1-F-900222, Cha-F-600134, VGlut-F-500700	C16	C42, C"19	C"57
LC24		GMR20G09	VT038216	LPLC4; Gad1-F-200058, Cha-F-200302, Cha-F-2002028	C37	C40	C"47
LPC1	LPL2CN (Mu et al., 2012)	GMR36B06, GMR12G03	VT007767	Cha-F-000283, Cha-F-200073, Cha-F-400116	C18, C44, C25	C07	C"10
LPC2		GMR75G12, GMR12E04	VT007194, VT049479	Cha-F-000300, Cha-F-100287, Cha-F-300111	C44	C21	C"25
LPC3		GMR9C11, GMR49A05	VT044492, VT062624	Cha-F-100027, Cha-F-300004, Gad1-F-200089, fu-F-500009	C35, C55, C20, C30	C46, C05, C09	C"59, C"13, C"19
LPC1		GMR37G12, GMR77A06, GMR81A05, GMR20A09 (subset)	VT046005	VGlut-F-700361, Cha-F-000272, fu-F-000101	C04, C30, C20	C05	C"12, C"59, C"19
MC61	LC10c (Otsuna & Ito, 2006)	GMR53B08	VT002072, VT021203	Gad1-F-400023, Cha-F-300285, Cha-F-200026,	C56	C34, C"40	C"49
MC62		GMR78G04, GMR85C01	VT062624	none identified	C48	C56	C"05
MC63		GMR72C11	VT022290, VT008183, VT017001	Cha-F-200103	C42, C48	C"25, C"56	C"04, C"11, C"05
Lat		GMR16G04, GMR13E10, GMR85G07, GMR39F04	VT045604, VT014963, VT033613	TH-F-200107, Thh-F-100019, TH-F-100004, Cha-F-300333	C50, C42	C30, C32, C56, C57	C"55