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Abstract

The rise of big data in modern research poses serious chal-
lenges for data management: Large and intricate datasets
from diverse instrumentation must be precisely aligned, an-
notated, and processed in a variety of ways to extract new
insights. While high levels of data integrity are expected, re-
search teams have diverse backgrounds, are geographically
dispersed, and rarely possess a primary interest in data sci-
ence. Here we describe DataJoint, an open-source toolbox
designed for manipulating and processing scientific data un-
der the relational data model. Designed for scientists who
need a flexible and expressive database language with few
basic concepts and operations, DataJoint facilitates multi-
user access, efficient queries, and distributed computing.
With implementations in both MATLAB and Python, Data-
Joint is not limited to particular file formats, acquisition
systems, or data modalities and can be quickly adapted to
new experimental designs. DataJoint and related resources
are available at http://datajoint.github.com.

Introduction

Data emerging from today’s biological experiments are not
merely “big” but increasingly multimodal and dynamic, as
projects quickly move to new technologies and experimental
paradigms [1H6]. In our field of neuroscience, a single ex-
periment may involve several signal acquisition modalities
such as imaging, multi-channel electrophysiology, genetic se-
quencing, optical stimulation, behavioral recordings, and an
array of other techniques [7}[8].

Concerted effort must be applied to maintain the integrity
and reproducibility of scientific findings by keeping data in-
telligible and uncorrupted over months and years of exper-
iments. Data shared between research groups are partic-
ularly susceptible to confusion and corruption during data
transfers and concurrent access. Data integrity must be pre-
served when it is accessed by multiple computers performing
parallel and distributed computations in scenarios such as
cluster or cloud computing, even when some jobs are inter-
rupted.

Flexible data access can greatly increase productivity dur-

ing data analysis to obtain specific cross-sections stored data
based on diverse criteria from multiple datasets as in the case
of summary statistics across multiple experiments. When
using the file system for organizing data, such analysis may
require traversing folders and files, parse their contents, and
select and assemble the necessary data for each analysis [4].
Changing experimental configurations require careful adap-
tations in the structure of associated data repositories and
tedious reconfiguration of analysis scripts.

In contrast to file systems, relational databases explicitly
maintain data integrity and offer flexible access to cross-
sections of the data [9]. A relational database preserves
consistency and referential integrity even as multiple users
and processes manipulate data concurrently or if a process
terminates unexpectedly. Unlike a file system, a database is
not an inert repository designed to simply reproduce data
in their original form: instead, it provides a way to access
specific and precise cross-sections of the data in order to
answer questions unforeseen at the time the data are de-
posited. A database system also defines and enforces real-
world constraints and relationships between data elements,
even as experimental paradigms change over time. It com-
municates and enforces these relationships because they are
inherent in the structure of the data itself. This form of
self-documentation enables new users to readily understand
the architecture of an unfamiliar data set.

Here we describe an open-source framework, DataJoint, to
help scientists organize, populate, and query large volumes
of data. In contrast to existing database systems and query
languages which are overgrown with extraneous complex-
ity [10,/11], DataJoint introduces a minimal set of opera-
tors that allow flexible, efficient, and expressive queries to
retrieve exactly the data one needs. Unlike other domain-
specific data management tools [11H17], DataJoint is general
and extensible, as it is not tied to particular file formats, ac-
quisition systems, or data modalities. At its back end, Data-
Joint is powered by the flexible and scalable open-source re-
lational database management system MySQL (or its equiv-
alents such as MariaDB). However, DataJoint users do not
need to learn SQL. They can manipulate data transparently
through two of the most popular languages for scientific data
analysis: Python and MATLAB. Data can be concurrently
accessed and manipulated by multiple users using either lan-
guage, or distributed across multiple computers for parallel
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processing.

Using DataJoint

Defining data elements

Consider a particular real-world neuroscience study compris-
ing a series of experiments that involve simultaneous in vivo
recordings of several types of physiological signals (whole-
cell membrane potential or Vy,, local-field potentials or LFP,
and calcium fluorescence signals), stimuli (visual display and
optogenetic stimulation of targeted neuronal populations),
and behaviors (locomotion, whisking, eye movements) [7].
Figure [[]A illustrates such an experiment.

To work with data from such studies, DataJoint users cre-
ate a schema (or several schemas) comprising a collection
of base relations to represent the various elements of the
experiments (Fig. B). Relations are DataJoint’s basic data
representation and can be thought of as simple tables with a
heading and a body. The heading specifies attribute names
and datatypes. The body comprises a set of tuples of at-
tribute values. Base relations are stored in the database
whereas derived relations may be constructed from base re-
lations for data queries. For detailed definitions of the Re-
lational Data Model, see Table

A base relation is created in the form of a class in MAT-
LAB or Python (Fig. [[|C) that defines the relation’s head-
ing. The heading definition comprises a description of the
relation, dependencies on other base relations, and a set of
attributes. Fach attribute has a name, an optional default
value, a datatype, and an optional description. Attributes
that comprise the primary key of the relation are separated
from the remaining attributes by the divider ---.

DataJoint provides all the functionality for accessing and
manipulating data through the base relation classes.

Defining dependencies

The database must respect dependencies between data el-
ements and prevent incomplete, orphaned, or mismatched
data. DataJoint facilitates setting, enforcing, and display-
ing data dependencies. The edges of the graph in the entity
relationship diagram (ERD) in Fig. B denote dependen-
cies directed downward: relations below are dependent on
relations above when connected. Chains of dependencies
effectively set the order in which data must be populated.
Thus the ERD serves as an effective communication tool for
the overall data organization and the sequence of steps to be
followed for data entry and processing. Each base relation
can depend on multiple other relations but the dependency
graph must be acyclic: a relation cannot depend on itself

or on other relations that depend on it directly or through
other relations.

To create a dependency, the dependent relation’s data defini-
tion must include the line -> Reference, where Reference
is the class name of the referenced base relation.

Setting a dependency has two effects:

(a) the primary key attributes of the referenced relation are
copied into the definition

b) a foreign key constraint is created to the referenced re-
g
lation.

The foreign key constraint causes the database to reject any
new tuple in the dependent relation unless there exists a
matching tuple in the referenced relation. Conversely, delet-
ing a tuple from the referenced relation will cause all match-
ing tuples in all the dependent relations to be deleted too.

For example, when Session depends on Animal (Fig. B),
Animal’s primary key attribute animal is automatically in-
cluded in Session’s heading (Fig.[I]C and D). A new session
cannot be entered for an animal that has not yet been en-
tered; and when an animal is deleted, all its sessions will be
deleted as well, along with all the dependent data below in
the hierarchy.

Importantly for data dependencies, DataJoint treats tuples
in relations as indivisible; dependencies are established be-
tween whole tuples rather than between attribute values.
DataJoint methods modify relations only by inserting or
deleting entire tuples and cannot update individual attribute
values independently.

Such discipline guarantees that any changes of attribute val-
ues will trigger recomputation of all dependent data. Of
course, users can deliberately intervene and modify val-
ues manually to bypass dependencies when necessary, pro-
vided that they have been granted update privileges by the
database administrator.

The primary keys and dependencies between base relations
allow defining a rich variety of relationships between data

elements. Three common types of relationships illustrate
this point (Figure .

e In a one-to-one relationship (Fig. A), relation Child
declares a dependency within its primary key on Parent
but does not add any new attributes to its primary
key. Thus the primary key for Child is the same as
for Parent: only one tuple in Child can exists for each
tuple in Parent.

e In a one-to-many relationship (Fig.[2]B), relation Child
declares a dependency within its primary on Parent
but also declares an additional attribute child_id in
its primary key, which allows Child to have multiple
tuples matching each tuple in Parent.
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class Session(dj.Manual):
definition = """ # an experiment recording session for the given animal
-> Animal
session :smallint # recording session number for this animal
user :varchar(16)  # experimenter’s name
session_date :date # the date on which the recording session began
session_folder="" :varchar(200) # file path to the recorded data
notes="" :varchar (2000) # free-hand session notes
timestamp=CURRENT_TIMESTAMP :timestamp # automatic timestamp
D
animal session | user session_date session_folder notes timestamp
1001 1 Jake 2015-10-29 /jake/20151029/1 success 2015-10-29 08:09:13
1001 2 Jake 2015-10-29 /jake/20151029/2 2015-10-29 14:35:48
1003 1 Shan 2015-10-30 /shan/20151030/1 2015-10-30 08:58:02
1003 2 Cathryn 2015-10-31 /cathryn/20151031 2015-10-31 15:04:13
Figure 1: An example experiment and its DataJoint schema. A. A neuroscience experiment with multiple

stimulation and acquisition modalities (counterclockwise from top left corner): fluorescence imaging of calcium signals
(Ca?*), light stimulation of optogenetic probes, visual stimulus, treadmill motion recording, local-field potential recording
(LFP), whole-cell patch membrane potential recording (V,,), video of whisker movements, video of eye movements. B.
The entity relationship diagram (ERD) of a DataJoint schema comprising base relations storing externally entered data
(green) and automatically populated data (red). C. The Python class for the base relation Session specifying the relation’s
heading. A dependency on Animal is indicated with the arrow ->. An additional primary key attribute, session, enables
multiple sessions per animal. Dependent attributes are separated from primary key attributes by —---. Each attribute has
a name, an optional default value, a datatype, and an optional comment. D. Example contents of Session. The vertical
divider separates the primary key attributes ‘animal’ and ‘session‘ from the dependent attributes.
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Relational Data Model

Relation All data are represented as relations. A relation can be visualized as a table or a shreadsheet. It consists of
a heading with attribute names and datatypes and a body comprising a set of tuples with values for each attribute.

primary key
K—~/\——\ attribute name

id | scan | scan_date operzﬁor

2014-01-01 | Edgar
2014-06-01 | Edgar
2015-01-01 George
2015-05-01 | Cathryn [ )~ tuple
2015-05-08 | Shan
2015-05-15  Shan.

()
W WWINd NN
WN=2 [N —

attribute value

We distinguish between base relations and derived relations. A base relation has a dedicated class in MATLAB or
Python and represents data stored directly in the database. Derived relations are formed from other relations by
using relational operators (See Table [2)). To create a new base relation, users create a new MATLAB or Python
class subclassing from the DataJoint Relation class and define the relation’s heading. After that, users interact with
the data by invoking these relation classes.

Schema A schema is a named collection of related base relations. A single project may store data across multiple
schemas. Conversely, many schemas can be used for data shared by multiple projects.

Query Queries retrieve the data represented by a relation into the MATLAB or Python workspace.

Primary key Every relation has a primary key: a subset of its of attributes that uniquely identify each of its tuples.
Two tuples with the same values of the primary key attributes cannot coexist in the same relation. The remaining
attributes in the relation are called dependent attributes. When one relation includes some attributes that also
belong to the primary key of another relation, they determine how tuples are grouped and related between the two
relations.

Dependencies Base relations may form dependencies by referencing one another. Every tuple in a dependent rela-
tion must have a matching tuple in the relations references by the dependency. Dependencies may cross schema
boundaries.

ERD The entity relationship diagram or ERD is a graphical representation of base relations and their dependencies.
Fig. [I]B depicts the ERD for a particular neuroscience experiment.

Table 1: Key concepts of the relational data model as used in DataJoint.
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Three common replationships defined through the dependencies and primary keys of base

relations. A. A one-to-one relationship. B. A one-to-many (hierarchical) relationship. C. A combinatorial relationship.

e In a combinatorial relationship (Fig. P|C), relation
Child declares a dependency within its primary key
on multiple relations. In this example, Child’s pri-
mary key combines the primary key attributes from
both Parentl and Parent2. This means that Child
holds tuples corresponding to any combination of tu-
ples in Parent1 and Parent?2.

Examples of other types of relationships may be found in
the online resources.

Querying data

DataJoint provides a minimal yet powerful set of operators
on relations: restriction, projection, and join. These opera-
tors allow transforming relations into new derived relations.
Table [2| summarizes these operators.

The output of each relational operator is a proper relation
in its own right with its primary key, uniquely named at-
tributes, and the full range of data query methods. This
property, called algebraic closure, allows expressings highly
specific queries from existing queries intuitively and laconi-
cally.

The starting point of any relational expression are base rela-
tions represented by their classes. For example, after execut-
ing the following assignment in either Python or MATLAB,

rel = Ephys()

the variable rel will represent the contents of the base rela-
tion Ephys, which represents electrophysiological recordings:
local field potentials and spikes in our schema (Fig. B).

Restriction (represented by the logical AND operator &) se-
lects a subset of tuples based on some condition. For ex-
ample, Animal may be restricted by a structure specifying
values of attributes species and sex, in MATLAB,

r.species = ’mouse’

r.sex = ‘M’
or in Python
r = dict(species=’mouse’, sex=’M’)

to produce the relation containing all male mice,

male_mice = Animal() & r

Relations can be restricted by conditions in the form of char-
acter strings, structures or structure arrays, or other rela-
tions. For example, other relations may be restricted with
male_mice even in combination with other restrictions:

rel = Ephys() & male_mice & ’sampling_rate > 10000’

The result rel will represent all Ephys recordings from male
mice with acquisition sampling rates above 10 kHz when
sampling_rate is an attribute of Ephys.

As another example, the relation Running contains episodes
of the animals’ locomotion inferred from treadmill sensor
recordings in relation Treadmill. Then the restriction

rel = Session() & Running()
represents all sessions with at least one episode of running.

Restrictions can also take the negative form using the - (mi-
nus) operator. For example,

rel = (LFP() & Treadmill()) - Running()

contains all LFP recordings in sessions that included tread-
mill recordings but no running episodes where found.

The join operator (*) produces a relation comprising all pos-
sible combinations of matching tuples from its two argument
relations.

For example, the relation

rel = Spikes() * LFP()
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Relational algebra

Relational operators operate on existing relations to produce derived relations for answering a wide variety of specific
queries. These operators do not retrieve any data from the database until the resulting expression is used to fetch the
data. Relational operators are based on the concept of matching tuples: Two tuples are considered matching unless they
share an attribute with the same name but different values.

Restriction: A& B, A-B

The restriction A&B denotes a relation comprising all tuples from A that match any tuple in B.

id scan image
id | species | sex | date_of birth

2 1 (BLOB) . . .
1 mouse F 2015-04-01 2 P (BLOB) id | species | sex | date_of birth
D ok M| aoieoees & 2 8 BLOB = 5 ey M| 20111201

ouse 05- A 3 F | 2015-05-08

4 | mouse F 2015-05-08 3 2 (BLOB) mouse

3 3 (BLOB)

The inverse restriction A—B denotes all tuples from A that do not match any tuple in B.

N - . id scan image

id | species | sex | date_of birth N - 5
2 1 (BLOB) id  species | sex | date_of_birth

1 mouse 7 2015-04-01 2 P (BLOB)

2 | monkey | M 2011-12-01 | — | o 3 (BLOB) = 1 mouse F 2015-04-01
3 | mouse M 2015-05-08 4 | mouse F 2015-05-08
8 1 (BLOB)

4 mouse F 2015-05-08 5] 2 (BLOB)
3 & (BLOB)

Join: A * B

The join A*B is the set of all tuples that can be produced by merging matching tuples from A and B:

5 N . id scan image id | scan  species | sex  date_of_birth | image
\d | species | sex | date_of birth 2| 1 | (BLOB) 2| 1 ki F | 2011-12-01 | (BLOB)
monkey -12-

1 mouse = F | 2015-04-0f 2| 2 |BLOB) _ 2| 2 | monkey F | 2011-12-01 | (BLOB)
2 | monkey | M | 2011-12-01 ' % ' 5 | 3 | BOB)| — 2| 3 | monkey F | 2011-12-01 | (BLOB)
3 | mouse | M | 2015-05-08 3| 1 | (BLOB) 3 1 | mouse | M | 2015-05-08 | (BLOB)
4 | mouse | F | 2015-05-08 3| 2 | (BLOB) 3 2 | mouse | M | 2015-05-08 | (BLOB)

3| 3 | (BLOB) 3 3 | mouse | M | 2015-05-08 | (BLOB)

All attributes in A and B that share the same names must belong to the primary key in either relation.

Projection: A.pro(attributes)

The projection A.pro(attributes) modifies the heading of A by selecting a subset of its attributes (project), renaming
attributes (rename), computing new attributes (expand), and computing summary statistics from other relations (ag-
gregate). The primary key attributes cannot be excluded from the resulting relation but may be renamed.

id | scan | date_of birth | image animal_id scan image
2| 1 | 2011-12-01 | (BLOB) 2 1 | (BLOB)
2| 2 | 2011-12-01 | (BLOB) " RS N — 2 2 | (BLOB)
> 3 20114201  (Blop) -Pro(iid ->animal_id’, ‘image’) = 2 3 | (BLOB)
3| 1 | 2015-05-08 | (BLOB) 3 1 | (BLOB)
3| 2 | 2015-05-08 | (BLOB) 3 2 | (BLOB)
3| 3 | 2015-05-08 | (BLOB) 3 3 | (BLOB)

Please refer to the online documentation for more detailed descriptions.

Table 2: Relational operators of DataJoint


https://doi.org/10.1101/031658
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/031658; this version posted November 14, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

will contain both spiking and LFP data for the same Ephys
recordings.

Relational operators can be combined to produce highly spe-
cific expressions. For example,

rel = Spikes() * LFP() & (Animal() * Session() &
’datediff (session_date, date_of_birth)<=28’)

is similar to the previous example but the result is restricted
to cases when the animals were 28 days old or younger at
the start of the recording session. Since DataJoint passes
its restriction conditions to SQL, restrictions can call SQL
functions such as datediff here for computing the differ-
ence between the dates. Note that session_date comes
from Session whereas date_of_birth comes from Animal.
Thus the relation Animal*Session has both dates required
for calculating the age.

The projection operator allows selecting and renaming at-
tributes as well as computing new attributes, including sum-
mary statistics on other relations. Please refer to the online
documentation for additional details.

Relation objects are only symbolic representations of the
data and relational expressions are only symbolic manipu-
lations. Once the desired relation is formulated, the actual
data are retrieved from the database into a structure array
using the fetch method

data = rel.fetch()

Entering and computing data

DataJoint distinguishes between manual and automated
base relations. In the entity relationship diagram (Fig. B),
manual base relations are displayed as green nodes whereas
automated base relations are displayed in red.

Manual base relations contain data entered by the exper-
imenter or by acquisition software. They store data that
are derived from external sources and are typically at the
head of the dependency hierarchy. Users commonly edit
manual relations directly in the form of a spreadsheet using
third-party interfaces such as MySQL Workbench, Navicat,
SequelPro, HeidiSQL, and others.

Automated base relations are filled automatically from
MATLAB or Python with the help of their populate
method. For example, Figures [3] and [4 list the complete
implementation of the Power base relation, which computes
the average power of the LFP signal for various frequency
bands in our schema (Fig. [1|B).

Execution of the following commands will fill Power for all
available data.

rel = Power()
rel.populate()

The populate method always “knows” what needs to be
computed using the base relation’s dependencies. It com-
pares the contents of the base relation to those of its imme-
diate neighbors upstream in the dependency hierarchy. The
job list is defined as the join of the immediate upstream
neighbors of the populated relation minus the population
itself.

For example, Power depends on LFP and FrequencyBand.
Then the restricted join

missing = LFP() * FrequencyBand() - Power()

will express all combinations of tuples in LFP and
FrequencyBand for which Power does not yet have any en-
tries. Each tuple in missing specifies an isolated job to be
performed for Power. This logic is implemented internally
and is provided here only to help users understand what
happens under the hood of a populate call.

When rel.populate() is
cutes  rel.makeTuples(key) (in  MATLAB) or
rel._make_tuples(key) (in Python) for the primary
key value of each tuple in missing.

called, it exe-

Users specify the computation of new tuples for each item
in missing using the make-tuples callback method (Figures
or , which consists of three parts:

1. fetch the required data from other relations upstream
in the dependency hierarchy, always restricting by the
argument key,

2. use fetched data to compute attributes of the relation
that are missing in key,

3. create new tuples that combine the newly computed
attributes and key and submit them to the database
using the insert method.

Each make-tuples call runs inside an isolated transaction so
that its results do not become visible to other processes un-
til the entire call completes successfully. If an error occurs
during a make-tuples call, any partially populated data are
discarded and never become visible to downstream compu-
tations.

The populate method has several options to control its be-
havior. In particular, it has the option of using the built-in
job reservation process to enable efficient distributed exe-
cution. With job reservation enabled, users simply execute
populate on multiple computers to run the make-tuples jobs
in parallel without conflicts. Please refer to the online doc-
umentation for populate options and various techniques for
customizing the processing chains.

Sharing data and distributed computation

Through the features described above, DataJoint naturally
supports collaboration and distributed access by


https://doi.org/10.1101/031658
http://creativecommons.org/licenses/by/4.0/

17

18

19

20

21

22

bioRxiv preprint doi: https://doi.org/10.1101/031658; this version posted November 14, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

vl

example.Power (computed) # LFP power in each frequency band
-> example.LFP

-> exzample.FrequencyBand

power :float # mV"2 Hz —-- average power in the band

Vs

classdef Power < dj.Relvar & dj.AutoPopulate
methods (Access=protected)
function makeTuples(self, key)

/4 fetch required data
[lo, hi] = fetchl(example.FrequencyBand & key, ’freq_lo’, ’freq_hi’);
[signal, dt] = fetchl(example.LFP & key, ’voltage’, ’dt’);
7 compute
signal = band_pass_filter(signal, lo, hi, dt);
key.power = compute_average_power (signal, dt);
% submit
self.insert (key)

end

end

end
Figure 3: The class for the base relation Power in MATLAB.

@schema
class Power(dj.Computed) :

definition = """ # LFP power in each frequency band

-> LFP

-> FrequencyBand

power :float # mV"2 Hz -- averge power in the band
nnn

def _make_tuples(self, key):
# fetch required data
lo, hi = (FrequencyBand() & key).fetchl[’freq_lo’, ’freq_hi’]
signal, dt = (LFP() & key).fetchl[’voltage’, ’dt’]
# compute
signal = band_pass_filter(signal, lo, hi, dt)
power = compute_average_power (signal, dt)
# submit
self.insertl(dict(key, power=power))

Figure 4: The class for the base relation Power in Python.
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e setting, enforcing, and communicating dependencies
between data elements,

e keeping data definition and computation code together
in the same class for easy review and sharing,

e storing and organizing data in a popular database man-
agement system (MySQL) that can be accessed through
a variety of third-party interfaces,

e allowing safe simultaneous access to the same data
through standard transaction processing provided by
MySQL, and

e providing an automatic and transparent job reservation
process for conflict-free distributed processing.

Discussion

The relational data model has served as the theoretical foun-
dation for the majority of mainstream database systems for
over forty years and has been shown to be the most cogent
and principled approach for representing and manipulating
data of arbitrary complexity [10]. Yet, relational organiza-
tion of data in science labs is still uncommon. This discon-
nect is partly due to SQL’s position as the only wide-spread
implementation of the relational model. SQL and its di-
alects have deviated substantially from the simplicity of the
relational data model and have overgrown with extraneous
complexity.

Object-relational mappers (ORM) are software tools that
map objects in computer memory to persistent storage such
as relational databases. Since DataJoint constructs objects
with persistently stored data, it can be classified as an ORM.
Several other object-relational mappers are available for
Python: SQLAlchemy, Django ORM, Peewee, PonyORM,
SQLObject. They take a similar approach of converting ob-
jects and idioms of the host programming language into SQL
queries for processing by the database server. We are not
aware of any ORM tools for MATLAB besides DataJoint.

DataJoint addresses other needs than ORMs: it is specif-
ically designed for providing a robust and intuitive data
model for scientific data processing chains. As such, it does
not attempt to simply mirror the features and capabilities
of SQL. Instead, DataJoint imposes constraints and con-
ventions to achieve the expressive power and simplicity of
queries by strict adherence to the relational data model.
In science, both the structure of the data and the queries
evolve frequently. A simple, sound data model is of greater
importance than in other database applications.

Some of the distinct constraints imposed by DataJoint in-
clude the following:

1. All data are represented as proper relations with a pri-
mary key and uniquely named attributes. This applies

to base and derived relations. Relational operators fol-
low consistent rules for determining the primary key of
its result. As a result, DataJoint’s operators are alge-
braically closed, allowing building complex expressions
from simpler expressions.

2. Data in base relations are updated only by inserting or
deleting entire tuples: updates of attribute values are
not supported. As discussed in the text, this limita-
tion is necessary because referential constraints (foreign
keys) enforce data dependencies only between tuples
and not between individual attribute values.

3. Dependencies between base relations are acyclic, i.e.
they cannot form loops. This restriction simplifies
data definition but, perhaps counter-intuitively, does
not prevent specifying arbitrary relationships between
data elements, including directed graphs with cyclic de-
pendencies, for example.

4. DatalJoint limits relational operators to enforce clarity.
For example, the projection operator (see Table 2| and
online documentation) does not allow projecting out the
primary key attributes. Consequently, the resulting re-
lation has the same number of tuples as the original
relation and every tuple is unique. If the user does in-
tend to derive a relation with a different primary key,
she must explicitly declare a base relation with this pri-
mary key and use it to formulate the proper query. In
practice, this is not a real limitation but a specific pre-
scription of how data must be defined and manipulated
in a uniform and explicit manner.

5. Foreign keys always link identically named attributes in
both relations. This convention simplifies the specifica-
tion of dependencies and of relational operators. For ex-
ample, a single join operator in DataJoint can perform
the same work as the multiple forms and parameteri-
zations of the JOIN operators in SQL. This convention
is particularly important in DataJoint because it allows
direct logical linking of relations separated by many in-
termediate dependencies. In a large schema, this con-
vention may lead to long composite primary keys low
in the dependency hierarchy, but these are efficiently
handled by MySQL’s storage engines.

DataJoint’s restricted relational data model represents a
conceptual shift in database interactions: In SQL queries,
users explicitly enumerate and match individual attributes.
In contrast, DataJoint users formulate dependencies and
queries at the level of entire relations. As a result, Data-
Joint’s fast, intuitive, and expressive data definition and
manipulation languages enable scientists to flexibly adapt
their data processing chains to evolving demands.
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Examples and resources

To

benefit from DataJoint, users need not appreciate the

various technical considerations underlying its capabilities.

We

encourage interested readers to review the online doc-

umentation to get up and running with DataJoint quickly.

For

tutorials, a gallery of working schemas for MATLAB and

Python, documentation, and references to scientific papers
using DataJoint, please visit http://datajoint.github.
corm.
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