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ABSTRACT The joint and accurate inference of selection and demography from genetic data is considered a partic-
ularly challenging question in population genetics, since both process may lead to very similar patterns of genetic
diversity. However, additional information for disentangling these effects may be obtained by observing changes in
allele frequencies over multiple time points. Such data is common in experimental evolution studies, as well as in the
comparison of ancient and contemporary samples. Leveraging this information, however, has been computationally
challenging, particularly when considering multi-locus data sets. To overcome these issues, we introduce a novel,
discrete approximation for diffusion processes, termed mean transition time approximation, which preserves the long-term
behavior of the underlying continuous diffusion process. We then derive this approximation for the particular case of
inferring selection and demography from time series data under the classic Wright-Fisher model and demonstrate that
our approximation is well suited to describe allele trajectories through time, even when only a few states are used. We
then develop a Bayesian inference approach to jointly infer the population size and locus-specific selection coefficients
with high accuracy, and further extend this model to also infer the rates of sequencing errors and mutations. We finally
apply our approach to recent experimental data on the evolution of drug resistance in Influenza virus, identifying likely
targets of selection and finding evidence for much larger viral population sizes than previously reported.
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etecting signatures of past selective events provides insights
D into the evolutionary history of a species and elucidates
the interaction between genotype and phenotype, offering im-
portant functional information. Unfortunately, a population’s
demographic history is a major confounding factor when in-
ferring past selective events, particularly because demographic
events can mimic many of the molecular signatures of selection
(Andolfatto and Przeworski 2000; Nielsen 2005). Despite efforts
to create statistics robust to demography, all currently available
methods to detect selection are prone to mis-inference under
non-equilibrium demography.
Some of these issues can potentially be overcome by using
multi-time point data, as the trajectory of even a single allele
contains valuable information about the underlying selection
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coefficient. Owing to advances in sequencing technologies, such
multi-time point data are becoming increasingly common from
experimental evolution (Foll et al. 2014a), from longitudinal med-
ical or ecological studies (Wei et al. 1995; Renzette et al. 2013),
and through ancient samples (Wilde et al. 2014; Sverrisdéttir et al.
2014). However, computationally efficient and accurate methods
to infer demography and selection jointly from such data sets
are still limited.

A natural and common way of modeling such time series data
is in a Hidden Markov-Model (HMM) framework, which allows
efficient integration over the distribution of unobserved states of
the true population frequencies, thus allowing calculation of the
likelihood based on the observed samples. Williamson & Slatkin
(1999) (Williamson and Slatkin 1999), for instance, developed
a maximume-likelihood approach based on such an HMM to
infer the population size N from samples taken at different time
points. More recently, similar approaches have been developed
to infer population size along with the selection coefficient of a
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selected locus for which time series data is available (Bollback
et al. 2008; Malaspinas et al. 2012).

All such approaches, however, are plagued by the problem
that the number of hidden frequency states is equal to the popu-
lation size, which renders HMM applications computationally
unfeasible for large populations. Different routes have been
taken to overcome this. One approach is to model the underlying
Wright-Fisher process as a continuous diffusion process, which
is then discretized for numerical integration using a numerical
difference scheme (Bollback et al. 2008). Since, this approach
remains computationally expensive, it was later suggested to
directly model the diffusion process on a more coarse-grained
grid (Malaspinas et al. 2012). Under this approach, their genera-
tor matrix for the transition between the coarse grained states
is then approximated by fitting the first and second infinitesi-
mal moments. Unfortunately, the minimum number of states
required is still computationally prohibitive for large values of
¥ = 2Ns (Malaspinas et al. 2012). For this reason, the most re-
cent reported method resorted to simulation based Approximate
Bayesian Computation (ABC), which allowed the joint inference
of locus-specific selection coefficients for many loci (Foll et al.
2014a,b). However, this method requires first estimating the
population size under the assumption that all loci are neutral,
and thus may be biased when many loci are under selection.

Here we introduce a novel framework by approximating the
WEF-process with a coarse-grained Markov-Model that exactly
preserves the expected waiting times for transition between
states. This is achieved by exploiting the theory of Green’s func-
tion for diffusion processes. Contrary to previous approaches,
our approximation matches the WF-process closely even when
only very few states are considered, regardless of v = 2Ns. As
we show with extensive simulations and a data application from
experimental evolution, our method allows for accurate joint
inference of both population size and locus-specific selection
coefficients even in the presence of pervasive selection. Further,
it is readily extended to incorporate population size changes,
sequencing errors or the appearance of novel mutations..

Models

Mean Transition Time Approximation

Let X () be a diffusion process on the state space [0,1]. This is a
continuous-time Markov process with continuous sample paths
and with infinitesimal generator

2
Lf = 20(x) 75 f +b(x) o f o)

The classical example in population genetics is the Fisher-Wright
diffusion which we discuss below. We seek to find a discrete-
state Markov process U(t) which approximates X (t). For this
purpose, we subdivide the unit interval [0, 1] into, not necessarily
equidistant, frequencies

upg=0<u <...<ug 1 <ug=1

These form the states of U(t). For two states u;, u;, consider
the transition time to first visit of #; when starting at u;:

Til sy, = inf{t : U(t) = u; for U(0) = u;}

Similarly we define the transition time for the diffusion process
X(t). We say that U(t) is a mean transition time approximation of
X(t) if

E(Til. ]| =E [T, @
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Figure 1 Mean transition time approximation of Markov pro-
cesses. Shown are the realizations of a continuous diffusion
process X (t) (black) and a discrete-state Markov process U ()
(red) starting at u; until they reach u; for the first time. If the
expected waiting time for such a transition is the same for
both process for all pairs of states u;, u;, we say that U(t) isa
mean transition time approximation of X(#).

for all pairs of states u;, u; (see Fig. 1). This condition guarantees
that the paths of X(t) and U(t) exhibit comparable long-time
behavior. In the following we show how to construct the Markov
process U(t) from the diffusion process X(t) using the theory of
Green'’s function.

We begin by recalling some notions for diffusion processes.
The natural scale of the process X(t) is given by

o) = [ vy @)
where ¢ (y) = exp(—2 [ %dz). The so-called speed measure
is defined by

1
- 4
") = ) @

The Green'’s function for an interval (1, v) C [0, 1] is given by

G(xr]/) =

Denote by Ty, or Ty_s, the time to first visit of u or v, respec-
tively, starting at x. Then TY = min(Ty—y, Tx—o) is the exit time
from the interval (11, up), given the process is at x at time t = 0.
One can show

%
E(TY) = [ Glxy)dy ®)
u
Moreover, the probability of exiting at the lower limit u is
_ ¢(@) —9(x)
B IO 1) 7

We now want to determine the instantaneous transition rates qi,j
of the discrete-state Markov process U(t). Recall the definitions

P [U(E+dt) = ug[U() = ] = 1 — gegdt + o(dt)
P [U(t +dt) = up 1 [U(t) = u] = g 14t + o(dt)

and

P [U(t +dt) = w1 |U(t) = u] = qij—1dt +o(dt)
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The sojourn time of state uy, i.e. the time interval of U(t) spent
in state 1y, is an exponential random variable with parameter
gk k- Since the expectation of this exponential variable is 1/g; x
our condition (2) enforces

1
dkk = — 3+
E(Tf))

where we write k — 1 instead of uy, etc. in order to unburden the
notation. From this we get

P(Ty k1 < Tysk1)
E(TH)

qrk+1 =

and
P(Tiskq1 > Trosk—1)

E(T)

Ak k—1 =

We can now form the tridiagonal generator matrix

0 0 0 0
q1,0 —4q10 — 41,2 41,2 0
Q f—
0 12,1 —921 — 23 423

The transition matrix of the Markov process U(t) is given by
P(t) = exptQ ®)

Application to Wright-Fisher Models

We will consider a classic Wright-Fisher Model of two alleles A
and a with fitnesses s and 1 — s, respectively, that segregate in
a population of size 2N. Time f is measured in generations of
the Wright-Fisher process. In the presence of a non-vanishing
dominance coefficient & the fitnesses of the three genotypes are
givenby waa =1+5s,wy, =1+ hs,and wy;, = 1. Under such a
model, the infinitesimal mean, which corresponds to the change
in allele frequency, is then given by

b(x) — wWaax? 4+ waax(1—x) .
Waax2 +2wAax(1 — x) + waa (1 — x)2

x(1—x)s(x +h — 2hx)

T 1+sx(x+2h—2hx) ©)

Let X(t) be a diffusion process corresponding to the fre-
quency of allele A. An excellent approximation of the Wright-
Fisher process is obtained by setting

_x(1—-w)
ax) = =55~ (10)
and (1 )
N Orx(1l—Xx
b(x) - 1+ OrX (11)
in the infinitesimal generator (1), where
0 = S(2h+uk(1 —Zh)) (12)
and
5’k=S(h+uk(1—2]’1)) (13)

when w1 < x < gy
Note that in the standard diffusion approximation the denom-
inator term in b(x) is often omitted. But as shown in (Lacerda

and Seoighe 2014), the above choice yields a much more accurate
approximation to the WF process.
From (3) and (4) we get

P(y) = exp (—2/y 2N dx) = (14 sy)*Na/oc (14)

1+ opx
and "
= = — 1 —M 1
o) = [ 9y = -1+ o) (15)
where we have set ~
M, =4N% 1 (16)
Ok
For the speed measure we obtain
1 2N

m(y) = = (14 opy)™ 17)

a(y)py)  y(A-y)
Consider three consecutive states uy_q, uy and uy 1. For the
probability to exit at the lower state we get
P(upey1) — P(ux)
P(ugs1) — p(ug—1)
(1 + o) M — (1 + ogagg 1) M

Py =P (Tyky1 > Trsk-1) =

(T+ ogug—1)~Me — (1 + opugqq) M (18)
<1+0'k“k+1 )Mk -1

1+ou
<1+¢Tkuk+1 >Mk -1

140k ttx—1

The probability for exit at the upper state is
Ppi=TP(Tgspy1 < Trsgp-1) =1-P,

Observe that the Green’s function is calculated by

{Guuk,y) = 2P m(y) (p(y) — pux1)), w1 <y <y
Gi(ug,y) :=2Prm(y) (p(ugy1) —(y)), g <y < thjgq

Using the quantities calculated above we get for the two parts
of the Green'’s function:

RV
- My (1—y)
A )M~ (1 o)) 19)

_ 4ANP| 1+0yy ( 1+ oy )Mk—l
My y(1—y) \ \ 1+ opug_q

_ 4Npy
okMiy(1—y)
: ((1 +opy) M- (14 ‘Tk”k+1)7Mk> (20)
_4NPp 140y <1_ ( 1+ 0y >Mk>
oM y(1—y) 1+ oxttge4q

With numerical integration we can determine
k+1 U Up+1
BT =648 = [ Guwyay+ [ Grlmoy)y
J U1 J Uk

Specifically, we use the extended Simpson’s rule for the nu-
merical integration (Press 2007), which we found to give accurate
results with typically only 8 or 10 intervals.

If v+ = 2Ns is large, we get approximations for the Green
function which allow for analytic expressions of the integrals
(see Appendix). Similarly, analytical expressions can be found
in the special case s = 0 (see Appendix).

G(ug,y) =

Gy (ur, ) (14 ogy) Mt

and

Gy (u,y) (1+ ojy) Mt
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Bayesian Inference

Consider that at the times T;, t = 0, ..., T, samples of sizes M;
were taken from the population and m1; alleles A were observed
in these samples. In this section, we describe how the mean tran-
sition time approximation introduced above can be embedded
into a Bayesian inference scheme to estimate the population size
2N and the locus-specific selection coefficient jointly from time
series data.

As has been noted previously (Williamson and Slatkin 1999;
Malaspinas et al. 2012; Mathieson and McVean 2013; Lacerda and
Seoighe 2014), a natural way of modeling both the underlying
evolutionary process as well as the process of sampling is a
Hidden Markov Model (HMM). Under the assumption that the
population size between two time points T; and T is constant
at N, the transition matrix of such an HMM from state U(T}) to
state U(T}41) is calculated by

Pt = exp(AtQt)

where A; = T;;1 — T; and the generator matrix Q' is deter-
mined as explained above using N = N;. We note here that this
framework allows for instantaneous population size changes
to occur at every time t during the HMM. However, we will
henceforth only deal with situations in which the population
size is assumed to be constant across the whole sampling period.

Following previous implementations (e.g. (Williamson and
Slatkin 1999; Malaspinas et al. 2012; Mathieson and McVean 2013;
Lacerda and Seoighe 2014)), we will assume that the sampling
of alleles from the underlying population frequency is binomial,
ie.

P(my = m|U(T}) = uy) = (]:f;> ukm(l _ uk)Mf—m

However, for large sample sizes, the few states u; may be too
coarse grained to capture the region of high emission probability.
We thus propose to integrate the emission probabilities against
a smoothing kernel. we chose to implement a beta distribution
kernel, which leads to a beta-binomial emission probability that
can be evaluated analytically. Specifically, we chose to use a
beta-kernel with mean u; and variance a,% = (Upy1 —up_1)/4
Under this choice, the emission probabilities are then calculated

by

P = (1) = ) = (1) E e et )

m B(ak, Br)

where B(, -) is the Beta function and the parameters aj and By
are determined via the moment estimators for a beta distribution

R (”k(lzuk) _1> B = o (1 — uy)

Uk

With both transition and emission probability matrices at
hand, we calculate the likelihood of the full data using the stan-
dard forward recursion. To be specific, let us first define for
t=0,...,Tthe (K+1) x (M; + 1) emission probability matri-
ces

B, = P(mi =m|U(Ty) = ), k=0,...,K, m=0,..., M
Denoting my.; = (my,...,m;), we define the total probability

ag(t) = P(myy, U(T;) = uy)
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This total probability can be determined efficiently with the
forward recursion

K
a(t) = Y ai(t—1)P "B, (21)
i=0
and a;(0) = Bg/mo. Then one has
K
P(my.7]0) = ) ak(T) (22)
k=0

where we made explicit the dependence of this probability on
the parameters
0= (S,h, N(),. . ~1NT71)

If we impose priors 71(6) on the parameters then we can sim-
ulate the posterior probability 7z(8|m.7) with the usual MCMC
scheme using (22) and the Hastings ratio

Plmrlo)n(d) o0 +9) )
P(my.7|0)7(6) (0 — 0')’

h(6,0') = min (

Extension of basic model

Sequencing errors  Generally, sequencing errors are overcome
with sufficient coverage. However, in many applications of next
generation sequencing to experimental evolution, the goal of
the sequencing is not to infer individual genotypes, but rather
allele frequencies directly. Under such a setting, each sequencing
read is assumed to be from a different individual. In such cases,
sequencing errors may lead to false inference, especially when
allele frequencies are very small.

Incorporating sequencing errors into our framework is
straight forward. Under the assumption that there are only
two alleles present at the locus (achieved by, for instance, pool-
ing all non-selected alleles into one class) and symmetric error
rates € between those classes, we can approximate the probabil-
ity that mgl), the i-th allele survey at time ¢, is A in the presence
of sequencing errors as

P(ml) = A[U(T;) = ) = (1 — €)ug + (1 — )

Mutational Input ~ We allow for the production of mutant alleles
only when the process is in state 1y = 0 or ux = 1. The pro-
duction of new alleles proceeds at a rate of 2Nudt. Once a new
allele is produced, say when the system is in state 1, it must
get from state 1/2N into state u;. This happens with probability
P(T1/aN—su; > T1/2N-—0) which is calculated according to (7).
This yields the transition rate

901 = 2NpIP(T1/an—u;, > T1/2n-0)
In the case of positive selection we have
qo1 = 2Np 117_(1(1+4_S£1]\)])_MM
with M = 4N — 1. A similar logic yields
(1+s)™ —(1+s—s/2N)™™
(14s)"M— (1+sug_1)™M

|
e4Ns(17uK,1) -1

1—e%
1— 874Nu1s

~ 2Ny

gK K—1 2Np

Q

2Npu

In the selection-free case the transition probabilities are much
simpler:
i

dK,K-1 = 1 g,

_ K
qoa uy’
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Figure 2 Mean transition time approximation of Markov processes. For both small (N=100, left panel) and large (N=10,000, right
panel) population sizes as well as weak (s=0.01) and strong (s=0.3) selection, we show the allele frequency distributions after 10
generations of selection and random drift starting from a frequency of 0.2, as well as the waiting times for a transition from a fre-
quency 0.2 to 0.9. Results obtained under the discrete Wright-Fisher process are given in gray, those obtained under the diffusion
approximation considered here in black, and those under our approximation in shades of blue, with darkness increasing with

higher number of frequency states considered.

Implementation

We have implemented the proposed model and the Bayesian
inference scheme in an easy-to-use C++ program available on our
lab website. While we use standard implementations for most
aspects, we note the matrix exponentiation in Eq. 8, which is a
numerically very demanding problem. A classic algorithm for
matrix exponentiation is by diagonalization of the matrix (Moler
and Van Loan 1978). While computationally efficient, this algo-
rithm may be numerically unstable for matrices with large con-
ditions numbers, which are typically observed when 7y = 2Ns
becomes large. This was previously observed by (Malaspinas
et al. 2012), who addressed this issue using multiple precision
arithmetics. Unfortunately, such arithmetics are computationally
very demanding, leading to slow performance of their imple-
mentation.

Here, we propose to alleviate this problem using the approxi-
mation

1 2}1
exptQ =~ (I+ 27Q)

which can be calculated by successive quadration. Such ma-
trix multiplications are generally demanding, but can be im-
plemented in a computationally efficient manner for generator
matrices that are tridiagonal, as each quadration step only adds
two additional diagonals and such band matrices can be multi-
plied efficiently (see chapter 7.4 in (Dahlquist and Bjork 2008)).

Application to Influenza data

We analyzed allele frequency data from whole genome data
sets of Influenza HIN1 obtained in a a recent evolutionary ex-
periment (Foll ef al. 2014a). While we refer the reader to the

original study for a detailed description of the experimental
set-up, we summarize the key point briefly here: Influenza
A /Brisbane/59/2007 (HIN1) was serially amplified on Madin-
Darby canine kidney (MDCK) cells for 12 passages of 72 hours
each to prevent any freeze-thaw cycles. After the three initial
cycles, samples were passed either in the absence of drug, or
in the presence of increasing concentrations of oseltamivir, a
neuraminidase inhibitor for another 9 passages. At the end of
each passage, samples were collected for whole genome high
throughput population sequencing up to a median coverage of
more than 50,000x.

For our analysis here we only considered the time-points
taken during drug treatment (passages 4 to 12). As in (Foll ef al.
2014a), we excluded all monomorphic sites and those with a
coverage lower than 100, resulting in a total of 1427 included
sites. For each site, we only kept the two alleles having the
highest frequencies over all passages and considered the minor
allele to be the one with the lowest frequency at the beginning
of the experiment (passage 0). We estimated N along with locus
specific selection coefficients s, the sequencing error rate € and
the per site mutation rate ;. We assumed log-uniform priors on
N, € and y such that log1o(N) U[1,5], logip(e) = U[—4, —0.3]
and log1o(¢) = U[—7, —1], and a normal prior on the selection
coefficients such that s A/(0,0.05). Since viruses are haploid,
we fixed the dominance coefficient at 1 = 0.5. We then run an
MCMC using 51 states for 25000 iterations during which each
parameter was updated in turn. The first 2000 such iterations
were discarded as burn-in phase.

Simulations  In order to evaluate the power of our method, we
simulated data for 20 or 100 unlinked loci with N of 100, 1000

An Approximate Markov Model for the Wright-Fisher Diffusion 5
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Figure 3 Likelihood surfaces for the population size N. Shown are the relative likelihood surfaces obtained via our mean transition
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number of frequency states considered (see legend). The top row is for the case of 13 generations between time points, the bottom

row for the case of 130 generations between time points.

or 10000. For each of these settings, we set either 20% or 80%
of the loci to be under selection, with an equal representation
of four selection coefficients: -0.1, -0.01, 0.01 and 0.1. All loci,
both selected and neutral, had the starting allele frequency set at
random. The change in allele frequency from one time point to
the next was calculated under the Wright Fisher model match-
ing the experimental set-up of our application. Specifically, we
simulated a total of 117 generations and took a sample of 1000
sequences every 13 generations.

Results and Discussion

Mean Transition Time Approximation

Comparisons of the long term behavior of the here introduced
mean transition time approximation of the Wright-Fisher process
with its discrete realization demonstrate the power of our ap-
proximation. In Fig. 2) we show the analytical frequency distri-
bution of alleles with an initial frequency of 0.2 after 10 gener-
ations of selection and random drift under the discrete Wright-
Fisher process for different population sizes and different selec-
tion strength. As expected from our assumptions, the distribu-
tions obtained under our approximation have identical means
and show only a slightly increased variance for large selection
coefficients and a small number of states. A more direct illus-
tration of our assumption is the comparison of the distribution
of waiting times for a specific transition. As shown in Fig. 2),
our approximation indeed captures the mean transition time
perfectly, while again exhibiting an increased variance for large
selection coefficients and small number of states.

Power to infer population sizes

While allele trajectories are affected by both selection and drift,
we aim here to disentangle these effects by integrating infor-
mation from multiple loci. We first assessed the power to infer
population sizes N accurately under ideal conditions, that is,
for 100 unlinked loci in the absence of selection. In Fig. 3 we
show the likelihood surfaces for N obtained with different num-
bers of states, for data simulated under different population
sizes. While this analysis suggest high power to infer small

6 Anna Ferrer-Admetlla et al.

population sizes accurately, it highlights the general issue of
inferring large population sizes from changes in allele frequen-
cies, accentuated when fewer states are used. The issue arises
from the fact that in large populations and over the short time
course of evolutionary experiments in general, the changes in
allele frequencies between time points are so small, that they
are compatible with almost arbitrarily large populations. While
using fewer frequency states further decreases the resolution of
detectable allele frequency changes, we note that this issue is
more general and expected to affect all methods for inferring
population sizes from such data, particularly when a small num-
ber of samples is used. The best way to overcome this issue is to
observe allele frequency changes over larger intervals. Indeed,
when taking samples every 130 generations instead of every 13,
population sizes up to N=100,000 can be estimated accurately
(Fig. 3, bottom row).

Power to infer selection

To assess the power of our framework to infer locus-specific
selection coefficients, we simulated 100 unlinked loci, of which
20% experienced selection at various strengths. As shown in
Fig. 4, both the population size as well as the strength of selec-
tion affects the power of this inference. For medium to large
population sizes, our method infers even small selections coeffi-
cients with high accuracy. However, when the population size is
small, inference of selection proves more difficult (Fig. 4). While
this is generally expected due to the much larger effect of drift
in small populations (Ns = 10 for the strongly selected alleles),
it is accentuated here by our choice to simulate initial frequen-
cies at random. Indeed, when given ideal starting frequencies
(0.1 for positively and 0.9 for negatively selected alleles), our
method identifies strongly selected alleles accurately even in
small populations (Fig. 4).

Remarkably, we found the power to infer the population size
as well as locus-specific selection coefficients not to be negatively
affected under pervasive selection. This is illustrated by compar-
ing the posterior distributions obtained from simulations where
80% of all loci were targeted by selection (Supplementary Fig. 7)
to those shown here where only 20% were affected by selection
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Figure 4 Power to infer selection and demography jointly. Here we show the posterior distributions on the population size (first
panel) and locus-specific selection coefficients obtained for five replicate simulations for each of three different population sizes. For
each replicate we plot the posteriors of all loci simulated under selection (color) as well as five neutral loci picked at random (black).
In all simulations, starting frequencies were chose randomly for each locus.

Table 1 Power to identify loci under selection We report the average and standard deviation (in parenthesis) of the posterior proba-
bility IP(s > 0.0) obtained under various population sizes and for the cases of 20% and 80% of all loci simulated under selection.

fraction selected  log;,(N) s=-0.1 s=-0.01 s=0.0 s=0.01 s=0.1
02 2 027 (0.15) 0.42(0.24) 050 (0.26) 0.56 (0.26) 0.78 (0.18)
02 3 0.00 (0.05) 024 (0.24) 0.50 (0.30) 0.74 (0.26)  1.00 (0.00)
0.2 4 0.00 (0.00) 0.06 (0.16) 0.50(0.32) 0.92(0.17) 1.00 (0.00)
0.8 2 0.12(0.11)  0.09 (0.14) 050 (0.28) 0.72(0.15)  0.89 (0.15)
0.8 3 0.00 (0.00) 0.02(0.04) 0.50(0.38) 1.00(0.00) 0.99 (0.02)
0.8 4 0.00 (0.00)  0.00 (0.00) 0.50 (0.45) 1.00 (0.00) 1.0 (0.00)

(Fig. 4). More direct evidence is given in Table 1, where we report
the posterior probability for s > 0.0 for different combinations
of population sizes and selection coefficients and find higher
power to identify selected loci under cases of pervasive selection
than when only 20% of all loci were simulated under selection.

Application to Influenza data

We next applied our approach to publicly available sequenc-
ing data of Influenza HIN1 segment 6, obtained at multiple
timepoints throughout an evolutionary experiment in which the
virus was exposed to an antiviral drug (oseltamivir) (Foll et al.
2014a). While allele frequencies are generally estimated with
high accuracy due to the very high coverage in this experiment
(about 50,000x), sequencing error may contribute substantially
to the observed low frequency variants. In addition, many of the
observed mutations likely entered the population only during
the experiment, but their exact time of origin is blurred by both
the sequencing error as well as sampling. We thus extended our
framework to estimate the mutation rate as well as the overall
sequencing error rate jointly with the demographic and selection
parameters.

We applied our extended method to each of the 8 segments
of the Influenza genome individually, but obtained highly con-

cordant results among all segments. As shown in Fig. 5, we
infer the effective population size during the experiment to be
around 7000, a mutation rate of about 10~ and a sequencing
error rate of about 10738, While our estimates of the mutation
and error rates are consistent with published mutation rates
for Influenza (Nobusawa and Sato 2006) and RNA viruses in
general (Drake ef al. 1998) and also with the employed quality
filters on sequencing reads (Foll et al. 2014a), our estimate of the
population size is substantially larger than previous estimates
of about 225 (Foll et al. 2014a). While we found our approach to
slightly overestimate larger population sizes under the spacing
of time points relevant here, there are several arguments sup-
porting a larger population size. First, the original estimates
were obtained under the assumption of neutrality at all loci,
while our approach infers N jointly with selection. Second, the
previous estimates were obtained from a small subset of the data,
namely the 147 loci with an observed allele frequency < 1% after
down sampling to 1000 reads per locus at no less than three time-
points. In contrast, our inference is based on the raw data at the
complete set of 13,395 polymorphic loci, including those with
small frequencies particularly informative about drift. Third,
the original inference accounted for neither sequencing errors
nor mutations. In summary, our results argue for a much larger
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Figure 5 Evolution of drug-resistance in Influenza. Here we show the posterior distributions on the population size (log;,(N)),
sequencing error rate (¢€), mutation rate () and locus specific selection coefficients s; estimated independently for each of the six
segments of the Influenza genome. For the selection coefficients, black dots represent posterior medians and gray lines indicate the
99% credible intervals. Loci for which the 99% credible interval does not include s = 0.0 are shown in red and their actual position

within the segment is printed.

effective population size than previously reported.

Our results on selection, on the other hand, are highly concor-
dant with previous estimates. In Fig. 5 we report the posterior
distributions on the locus-specific selection coefficients for all
polymorphic sites for each of the 8 segments of the Influenza
genome. As expected, most mutations were found to be se-
lectively neutral or under slight purifying selection (observe
the slight asymmetry towards negative selection coefficients for
many loci). For a few mutations, however, we found compelling
evidence for them to be the target of positive selection (99% cred-
ible interval does not include 0). On segment NA, there were
three such mutations, of which two stand out with an estimated
selection coefficient around 0.2. One of these mutations (Y274H)
occurred at a locus at which resistance to oseltamivir has been
previously described (Collins et al. 2008). Many additional mu-
tations were found to be the target of selection through out the
genome, with many of those likely under negative selection.
These are mutations that were found at elevated frequencies at
the beginning of the experiment, yet at much lower frequencies
after a few passages. The complete list of all mutations found to
be under selection is given in Supplementary Table 2.

Conclusion

Here we present a novel, discrete approximation for diffusion
processes. This approximation, which we term mean transition
time approximation, is designed to preserve the long term behav-
ior of the continuous process it approximates, which renders it
particularly suitable to study time series data. Here we derived
this approximation for the particular case of inferring selection
and demography from such time series data under the classic
Wright-Fisher model. As shown through extensive simulations,

8 Anna Ferrer-Admetlla et al.

our approximation is well suited to describe allele trajectories
through time, even when only a few states are used. This al-
lowed us to develop a Bayesian inference approach to jointly
infer the population size and locus-specific selection coefficients
with high accuracy. We further extended this model to further
estimate the average sequencing error rate, as well as the per
generation mutation rate. We finally applied our approach to
data from a recent experiment on the evolution of drug resis-
tance in Influenza virus, identifying likely targets of selection
and finding evidence for much larger viral population sizes than
previously reported.
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Appendix

Approximation for large v = 2Ns

If v+ = 2Ns is large, we get approximations for the Green function which allow for analytic expressions of the integrals. Firstly, we can
neglect the minus one terms in the numerator and denominator of (18) and we get the approximation

P~ (LT kM Me 1 Moy (g — 1)/ (1 + oyug) M
' 1 4 ojuy M

Moy
o (5 )

(23)

which will be very small for large . The probability for exit at the upper state is P, ~ 1. Inserting the first approximating expression
or P| into (19) and using 4N / My ~ 0}/ 5y, we get

140 14+ oy \ M
G (ug,y) = K (( ky) —P¢>

oy (1 — 1
ay(1—y) + oxiy 24)
1+ oy < M0 )
~N—exp | ————— (U —
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The exponential term is dominant for y close to uy. In the integral we can thus keep the factor of the exponential constant at y = uy
since it does not vary much when y is close to 1:

1+ou Uk Mo
g = ¢/u eXP(— L (uk—y))dy
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From (20) we get the approximation
1+ oy ( ( Moy ) )
Gi(upy) = —— = (1 —exp | ———— (41 —
1 (ur, ) 7y 1) p 1+Ukuk+1( k1Y)

To get &, we integrate this approximate expression. Observe that the exponential term becomes important only when y gets close
to uy.y 1. For this reason we can safely keep the factor in front of the exponential term constant when integrating the second term:

Uk+1
& = /u G (ug,y)dy
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[ gy L R
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Numerical experiments indicate that the approximative formulae (25) and (26) are adequate when the condition
2Ns(ug 1 —ug_q) > 10 (27)

is met. In that case we set q; ;1 = 0 and
1

kk+1 = m

Note that Formula 26 gets singular for k = K — 1 since in that case 1 — 11 = 0. Using the substitution z = 1 — y, we get for that
case from (20) the approximation

&~ 1 w1+ o q(1-2) 1— ex 7MK71(7K712 iz
T 0x_1 Jo z(1—2z) P 1+ 0x_1

1+s /HH - CANs(1-h) \) dz
s(1=h) Jo P 1+s = z

R

10 Anna Ferrer-Admetlla et al.


https://doi.org/10.1101/030940
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/030940; this version posted November 8, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

The the last integral can be written as an exponential integral

in the form .
+s _.
6= irsm |

4Ns(1 —h)
1+s

(1 — UK ):|
Using the approximation

Ei(x) ~ log(x) +0.577...
where 0.577 ... is the Euler-Mascheroni constant, we finally arrive at

1+ 4Ns(1—h
& ~ 5(1—5;1) (10g( i(ﬂ )(1—uK,1)) +0.577...) (28)

The Wright-Fisher process in the absence of selection

In the absence of selection (s = 0), the expressions for the generator matrix can be explicitly evaluated since b(x) = 0 (see Eq. 11). We
have ¢(x) = x and m(y) = 2N /x(1 — x). From this we get

p, — _Mkt1 T Uk P, — Mk T M1 (29)

s
Uyl — Ug—1 Uyl — Ug—1

The two parts of the Green function are given by

1—uy_ Up_
G (ug,y) = 4NP| (Tkyl _ %)

and

Gi(uy) =4y (1 - 12t )

These integrate to

_ 1—uy_
£ =4NP, (Mk—l log uikl + (1 —up_q)log %ﬁkl) (30)
and 1
u —u
& = 4NPD; (ukﬂ log %kl + (1 — tgy1) log 1_7’:}:1> (31)
As above we determine the transitions rates by
P, P

Ak k-1 = m, Tk k+1 = m
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each replicate we plot the posteriors of all loci simulated under selection (color) as well as five neutral loci picked at random (black).
In all simulations, starting frequencies were chose randomly for each locus. In contrast to the results shown in the main text, 80% of
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Table 2 Sites found to be under selection in Influenza

Segment Position Ancestral? Derived Protein Changeb s¢
PB2 185 AGG AAG R61K -0.08 (-0.18, -0.02)
PB2 282 TCG TCA 594 -0.05 (-0.10, -0.02)
PB2 912 GAA GAG E304 -0.08 (-0.18, -0.01)
PB2 1225 CGT AGT R408S 0.08 (0.01, 0.16)
PB2 1629 GAG GAA E543 -0.09 (-0.18, -0.03)
PB2 1890 AGA AGG R630 -0.07 (-0.19, -0.02)
PB2 2299 - - - 0.06 ( 0.01, 0.12)
PB2 2300 - - - 0.05 ( 0.02, 0.11)
PB2 2304 - - - 0.07 (0.02, 0.13)
PB1 33 AAA AAG K11 0.12 (0.07, 0.18)
PB1 529 GGT AGT G176S -0.12 (-0.22, -0.04)
PB1 1365 AAT AAC N455 0.07 (0.01, 0.15)
PB1 2034 AGT AGC S678 -0.06 (-0.12, -0.03)
PA 90 ACT ACA T30 -0.08 (-0.17, -0.01)
PA 174 GGT GGG G58 -0.14 (-0.23, -0.07)
PA 178 CTA GTA L59V -0.03 (-0.05, -0.01)
PA 1614 GAG GAA E538 0.09 (0.03, 0.16)
PA 2193 - - - 0.06 ( 0.02, 0.13)
PA 2194 - - - 0.07 (0.04, 0.12)
PA 2196 - - - 0.07 ( 0.03, 0.13)
HA 48 CCG TCG P6S* 0.17 (0.12, 0.25)
HA 639 AAT GAT N203D -0.11 (-0.19, -0.06)
HA 640 AAT ACT N203T -0.13 (-0.21, -0.07)
HA 1023 GCC ACC A331T -0.09 (-0.19, -0.02)
HA 1196 ACC ACT T388 -0.10 (-0.18, -0.02)
HA 1395 AAT GAT N455D 0.21 (0.15, 0.29)
HA 1601 CTA CTG 1523 -0.09 (-0.18, -0.02)
HA 1760 - - - 0.02 (0.01, 0.06)
NP 25 CTC ATC L8I -0.05 (-0.11, -0.02)
NP 390 ATG ATA M130I -0.12 (-0.21, -0.06)
NP 1104 AAC AAT N368 -0.11 (-0.21, -0.05)
NA 143 ACA ATA T471 0.09 (0.04, 0.16)
NA 582 GGA GGG G194* 0.23 ( 0.16, 0.30)
NA 823 TAC CAC Y274H 0.20 ( 0.14, 0.27)
NA 978 TTG TTC L326F -0.05 (-0.12, -0.01)
NA 1427 - - - -0.13 (-0.22, -0.05)
M1/2 92 GAG TAG E22stop* -0.06 (-0.14, -0.01)
M1/2 147 GTC GCC V41A 0.13 (0.08, 0.18)
M1/2 848 TGT TGG C274W -0.07 (-0.16, -0.02)
NS1/2 201 AGG AGA R67 0.08 ( 0.03, 0.15)
NS1/2 329 AAA AGA K109R 0.07 (0.01, 0.14)
NS1/2 373 GAC AAC D124N -0.09 (-0.18, -0.02)
NS1/2 820 - - - 0.13 ( 0.08, 0.20)

* Ancestral codon refers to the allele with the highest frequency at the beginning of the experiment (passage 0). Dashes indicate mutations in non-coding regions
b Protein changes are reported in standard nomenclature but comparing the derived codon to the ancestral codon (not the published reference).
¢ Reported is the posterior median of the locus-specific selection coefficient, along with the 99% credible interval.
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