bioRxiv preprint doi: https://doi.org/10.1101/029710; this version posted October 22, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Flowr: Robust and efficient pipelines using a

simple language-agnostic approach

Sahil Seth,*' Samir Amin,* Xingzhi Song, Xizeng Mao, Huandong Sun,

Andrew Futreal,* and Jianhua Zhang*”T

E-mail: sseth@mdanderson.org; jzhang22@mdanderson.org

Abstract

Motivation: Bioinformatics analyses have become increasingly intensive comput-
ing processes, with lowering costs and increasing numbers of samples. Each laboratory
spends time creating and maintaining a set of pipelines, which may not be robust,
scalable, or efficient. Further, the existence of different computing environments across
institutions hinders both collabo-ration and the portability of analysis pipelines.

Results: Flowr is a robust and scalable framework for designing and deploying
computing pipelines in an easy-to-use fashion. It implements a scatter-gather approach
using computing clusters, simplifying the concept to the use of five simple terms (in
submission and dependency types). Most importantly, it is flexible, such that customiz-
ing existing pipelines is easy, and since it works across several computing environments
(LSF, SGE, Torque, and SLURM), it is portable.

Availability: http://docs.flowr.space

*To whom correspondence should be addressed
i

Hnstitute of Applied Cancer Science, MD Anderson Cancer Center
YGenomic Medicine, MD Anderson Cancer Center

sseth@mdanderson.org
jzhang22@mdanderson.org
http://docs.flowr.space
https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/029710; this version posted October 22, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Introduction

Massive advances in genomic and proteomic technologies are put-ting a high demand on
bioinformatics applications for faster and more automated data processing. Since some of
the steps are common and standard, there is value in creating pipelines that can be used
under dif-ferent environments in various projects. In addition, several of these steps can be
further broken down and parallelized to enable much faster analyses. In the past, significant
efforts were made to develop tools such as Galaxy" and Bpipe,“ ena-bling users to easily run
modules and pipelines. Several other tools, such as COSMOS® and BigDataScript, provide
a comparatively easier syntax for building pipelines. However, all these tools require users
to learn a new scripting language/syntax; thus, they present a steep learning curve. Further,
such pipelines may not be portable across clusters or frameworks. Here, we present flowr,
an open-source R package (http://github.com/sahilseth/flowr) that is language agnostic (in

terms of inputs), robust, scalable, and portable.

Features and Methods

One of the major challenges in creating a workflow management framework is providing
essential flexibility to users without compromis-ing robustness. Flowr is language agnostic
in terms of its inputs, allow-ing users to build pipelines in any language of their choice. In
essence, flowr requires users to specify a set of shell commands for each step), along with
a simple configuration file) that defines how to stitch the steps into a pipeline. Flowr
provides a set of R functions for creating, reading, and checking these two input files before
processing, but any other language, such as JAVA, Python, or Perl, may be used to create
these simple tab-delimited text files. In addition, the configuration file (or flow definition)
enables complete flexibility in specifying the computing resources, such as CPU, RAM,
walltime, and queue, used in each step of the pipeline. This isolates resource specification

from the actual commands, thus making the pipeline very portable across computing clusters

http://github.com/sahilseth/flowr
https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/029710; this version posted October 22, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

such as LSF, Torque, SGE, SLURM, and MOARB,; this is a feature unique to flowr. Further,
flowr implements a scatter-gather approach, allowing a many-to-one, one-to-many, or many-
to-many relationship between steps and . Several bioinformatics pipelines can be
efficiently specified using such relationships; a typical case involves processing several fastq
files into a final merged binary alignment map (BAM) file. For example, several pairs of
fastq files, each aligned indi-vidually using BWA® (bwa aln), would be further processed as
pairs using BWA (bwa sampe) to produce sam files (one for each pair). These would then
be sorted, merged, and indexed using samtools.® Using flowr, each step in this workflow
may have different CPU, memory, and walltime usage. This simple pipeline may take up
to a day on a desktop or several hours on a multicore server. Flowr efficiently scatters
the steps and submits them to the cluster, man-aging dependencies, in about half an hour.
The framework is robust and scalable; it creates a web of jobs (using dependencies) for
the entire pipeline, submits them to the cluster, and exits. The jobs automatically start
in the correct order, according to the dependency map created by flowr (example,)
This enables the user to submit several flows at once, in a highly scalable fashion, that
will be executed depending on the resources available. Further, splitting the flow into small
independent jobs enables faster processing since they fit very well in a heavily used shared
computing cluster, reserving and using minimal resources. We have extensively tested flowr
on several computing platforms, such as Torque, MOAB, and LSF. Using a very transparent
approach, each flow is submitted as an independent container, with all commands, outputs,
and logs available in a clean and structured fashion. This enables reproducibility, with the
final shell scripts having all the information required to re-create the analysis. In addition,
flowr creates a graph) for each submission, providing a quick overview of the pipeline
without reading the code. An interactive website is available for designing a new pipeline.”
Flowr also provides simple functions for monitoring the progress of a currently running flow,
killing the whole flow, and in case of a failure, rerunning the flow from an intermediate step

. Using a language-agnostic approach, flowr ingests the actual commands to be executed

https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/029710; this version posted October 22, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

in the form of a tab-delimited file (a flowmat,) Further, all the resource requirements
and information regarding dependencies are isolated in a separate file (a flow definition
[lowdef], [JC). The flowdef also contains information regarding the flow of steps (using the
previous job column), type of submission (using the submission type column), and type of
dependency on the previous jobs (using the dependency type column). Multiple commands
in a module (A1-10) can be submitted in a scatter (/parallel) or serial (/sequential) fashion
(LA). If a later step (B1-10) has multiple commands, such that the ith command of B
depends on the ith command of A, we can describe this many-to-many relationship using
a serial type dependency (IJA). Further, in case of a merging step (say, C), all jobs B1-10
need to be completed, suggesting a many-to-one relationship using the dependency gather.
Lastly, many steps may be initiated when this merging completes, creating a one-to-many

relationship using a burst dependency (IJA).

Discussion

To our knowledge, flowr, which is explicitly based on the scatter-gather concept of data anal-
ysis pipelines, is the first open-source pipeline framework that makes use of the dependency
feature of computing clusters. This feature enables flowr to intelligently submit a web of
inter-dependent jobs to the computing cluster and exit, in contrast to having a daemon-
type process continuously running (as in other frameworks). This minimizes overhead on
the login nodes, is robust to interruptions due to accidental killing of the process, and is
scalable, allowing users to submit analyses of multiple samples. Flowr follows the design
once principle, enabling the user to develop robust, portable pipelines that can be run on
a host of computing platforms. Further, the same pipeline can be run on a local machine,
computing cluster, or cloud-based environment. With automatic logging of each step and
the preservation of the exact commands run to produce the output, the system allows users

to generate an easy-to-use, efficient, and reproducible analysis pipeline.

https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/029710; this version posted October 22, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

i] D
I - - nn - L I D
B _ scatter)\ serial) __ serial gather burst)
sample | jobname cmd C . | . .
Define Relationships Resource Requirements
s1 alnt bwa aln -1 40 -k 2 -n 3 genome.fa file1_1.fastq.gz > file1_1.sai ; L :) : ; : : ;
iob : submission ; previous : dependency H . H H \atf
s alnt bwa aln -1 40 -k 2 -n 3 genome.fa file1_2.fastq.gz > file1_2.sai Jobname type : job(s) : type queue : memory : time : cpu : plattorm
s aln2 bwa aln -1 40 -k 2 -n 3 genome.fa file2_1.fastq.gz > file2_1.sai ain scatter none none short 2000 1:00 5 Isf
s aln2 bwa aln -1 40 -k 2 -n 3 genome.fa file2_2.fastq.gz > file2_2.sai aln2 scatter none none short 2000 1:00 1 Isf
s1 sampe bwa sampe -0 132? g1egaoin2il\9éfﬂa ?E;s};f;? file1_1fastq.gz sampe scatter alnt,aln2 serial short 2000 1:00 1 Isf
s fixrg java -jar picard.jar AddOrReplaceReadGroups fixrg scatter sampe serial short 2000 (100 1 Isf
s1 merge java -jar picard.jar MarkDuplicates.jar merge serial fixrg gather short 2000 1:00 1 Isf

[D | stitch a flow (using tables 1B and 1C)

fobj = to_flow(x = flowmat, def = flowdef)) <) SN

You may check this folder for consistency.

Also you may re-run submit with execute=TRUE

Plot (Figure 1 D) ~/flowr/typel-20150520-15-18-27-5m5d32G0
plot_flow(fobj)

Flow has been submitted. Track it from R using:

flowr: :status(x="~/flowr/typel-20150520-15-18-46-syS0zZnE")

Dry run_ . OR from terminal using:

submit_flow(fobj) flowr status x=~/flowr/typel-20150520-15-18-46-syS0zZnE
Su bm|t to the cluster | |totallstarted| completed| exit_statuslstatus |
. . _ [goomoccmmes [om==g |ocemme 8 | omcommmas e 8 gemmmmmmes |
submit_flow(fobj, execute = TRUE) 1001.alnl | 16l 161 161 0l completed |
1002.aln2 | 16l 161 161 Olcompleted |
Check the status 1003.sampe | 161 161 161 0lcompleted |
— - 1004.fixrg | 161 161 161 Qlcompleted |
flowr status x=~/flowr/runs/fastq_hap-2015... 1005.merge | 11 11 11 e

Kill a flow
flowr kill x=~/flowr/runs/fastq_hap-2015...

Re-run a flow
flowr rerun x=~/flowr/runs/fastq_hap-2015... start_from=merge)

Commands
F Platform (submission/killing) Supported | name
LSF9 bsub., bkill Yes Isf
LSF7 bsub. bkill Yes Isf
Toraue asub, adel Yes toraue
Moab msub, canceliob Yes moab
SGE asub. adel Yes sae
SLURM sbatch, scancel In proaress | slurm
local bash Yes local

Figure 1: A: Among submission types, scatter submission executes jobs in parallel, while serial executes
them sequentially. Gather refers to the idea that a subsequent job needs to wait for all (n) sub-processes of
a previous step to complete, and serially dependent means that the ith sub-process of the current step needs
to wait for the ith sub-process of a previous step. Further, burst suggests that several steps begin after a
specific single step completes. We can define several complex relationships (Suppl. Table 1) using submission
and dependency types. B: Flowr takes a language-agnostic approach to developing pipelines. A flow matrix
(f mat) is used to describe the precise commands to run. C: A flow definition (f def) table provides an
easy-to-use interface to describe various details regarding a flow, including the relationships between steps
and resource requirements. Each row of the table describes one step and its relationship to previous steps,
if any. Note how initial steps have none in the previous jobs and dependency type columns. D: Using a
flow definition (f def) and a flow matrix (f mat), we can deploy a flow to a high-performance computing
cluster. In addition, flowr provides several functions to plot the flow, monitor it, or kill and re-run it in case
of issues (Suppl. 1). E: A flowchart describing procegsing the NGS workflow from fastq files to an aligned
BAM file. F: Flowr supports several computing platforms out of the box, and adding support for others is
quite straightforward (http://docs.flowr.space/install.html).

docs.flowr.space/install.html
https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/029710; this version posted October 22, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

description

flow object; flowr’'s main class. Consists of jobs to

55 run, their resources and dependencies, ready for
execution.

flow definition; a table with details regarding how

to bind sub modules along with resource
requirements

¢ def

$mat
$uwd

Creating flow objects

| function _description __input __outpu|

flow mat; a table with details regarding exact
commands to run

(the final) working directory; with logs and
execution details

list to Fmat named list
to_flowmat
extract ¢ mat from ¢ ¢ $mat
as.flowmat read and check data.frameffile
check a data.frame
to flowdef extract ¢ def from ¢ ¢
create a example §def $mat § et
as.flowdef read and check data.frame/file
to_flow sticha ¢ $mot & ¢ def ¢

Other functions
get_opts

setting and fetching default options used across flowr

options set_opts and ngsflows. This makes use of the params R
pacakge.
load_opts
fetch find files in several pre-assigned folders:
1. inside flowr package
) 2. inside ngslfows package
fetch fetch_pipes 3 i sHOME/flowr, a folder created by setup()
pipes: this returns ONE (last pipeline it finds)
conf: this returns ALL conf files it finds
fetch_conf
1. fetch and source the pipeline script (using
fetch_pipe).
run run 2. passes all arguments the the function to create a ¢
mat

3. stitch a #and submit it to the cluster

Using flow objects

|_function _ description _____input _____output __

¢ & execute=FALSE dry run
submit_flow submit a ¢
¢ & execute=TRUE submit to cluster
. . create a flow ¢ f h
flowr linux helper script plot_flow chart foef aflow chart
Usage: flowr function [arguments] 9;
kil all jobs
status Detailed status of a flow(s). kill all jobs of a ¢ fud
rerun rerun a previously failed flow Kill all iobs
Kill Kill the flow a pattern matching multi ¢wd !

Please use 'flowr -h function' to obtain

(if force = TRUE)

rerun from a

further information about the usage. rerun specific starting Fud rerun
point
Examples: Fud
_) _ a status summary
::owr r:ntx—slee}aﬂ_plpjz plat/folrm—lsf. a summary x=~/flowr/runs/type1-2015-09....
owr status x=~/flowr/runs/sleep_pipe S o
status with jobs | pattern matching multiple ¢wd individual
status running, A . summaries on
completed and x=~/flowr/runs/typel- each flow
exited.

a parent folder with multiple ¢wd
x=~/flowr/runs/

one summary of
all flows in the

Figure 2: A cheat sheet describing various functions in flowr package

https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/029710; this version posted October 22, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Description
no overhead flowr exits after job submission; preventing any overhead on login nodes
language agnostic one may use any language to build a pipeline (tsv input files)

shell scripts, logs and triggers are available for users and developers; to be plugged
into their own working style

extensive control over resource requirements for each step including CPU, memory
and walltime

Figure 3: Briefly, there are several advantages of using flowr, comparing with existing workflow frameworks.
Several of these stem from flowrs ability to use computing platforms dependency option.

Submission (A) | Dependency (B) | Submission (B) | Relationship | valid
serial serial serial 1-to-1 Y
serial gather serial 1-to-1 Y
serial burst scatter 1-to-many Y
scatter gather serial many-to-1 Y
scatter gather scatter many-to-1 Y
scatter serial scatter many-to-many | Y
scatter burst scatter NA N
serial serial scatter NA N

Figure 4: Flowr supports a functional scatter-gather approach for defining pipelines, supporting various
(job) submission approaches. If a step has multiple sub-processes, a scatter approach would execute them
in parallel, while serial would execute them sequentially (Figure 1B). Additionally we can define complex
relationships using submission and dependency types. For example gather refers to the idea that a subsequent
job needs to wait for all (n) sub-processes of a previous step to complete. Several relationships can be defined
between previous (A) and subsequent jobs (B), mapping dependencies at the sub-process level. For example
in many-to-many but steps (A B) have multiple sub-processing running independently in scatter mode and
subprocesses in B are serially dependent means that ith subprocess of the B needs wait for the ith sub-process
of a A to start.

https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/029710; this version posted October 22, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Acknowledgement

We thank Tapsi Seth, and members of the Verhaak, Futreal and Draetta laborato-ries for
their valuable inputs We are grateful to members of the MD Anderson Research Computing
team (Roger Moye, Sally Boyd, and Daniel Jackson) for their continued support. In addition,

we thank Ann Sutton of the MD Anderson editorial staff, for help in editing this document.

References

(1) Goecks, J.; Nekrutenko, A.; Taylor, J.; $author.lastName, a. f. Genome Biology 2010,
11, RS6.

(2) Sadedin, S. P.; Pope, B.; Oshlack, A. Bioinformatics 2012, 28, 1525-1526.

(3) Gafni, E.; Luquette, L. J.; Lancaster, A. K.; Hawkins, J. B.; Jung, J.-Y.; Souilmi, Y ;
Wall, D. P.; Tonellato, P. J. Bioinformatics 2014, btu385.

(4) Cingolani, P.; Sladek, R.; Blanchette, M. Bioinformatics 2014, btu595.
(5) Li, H.; Durbin, R. Bioinformatics 2009, 25, 1754-1760.

(6) Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G
Abecasis, G.; Durbin, R.; Subgroup, . G. P. D. P. Bioinformatics 2009, 25, 2078-2079.

(7) Seth, S. A shiny based application to aid in creation of flowr pipelines. http://sseth.

shinyapps.io/flow_creator.

http://sseth.shinyapps.io/flow_creator
http://sseth.shinyapps.io/flow_creator
https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

