
Flowr: Robust and efficient pipelines using a

simple language-agnostic approach

Sahil Seth,∗,,† Samir Amin,,‡ Xingzhi Song, Xizeng Mao, Huandong Sun,,†

Andrew Futreal,,‡ and Jianhua Zhang∗,,†

E-mail: sseth@mdanderson.org; jzhang22@mdanderson.org

Abstract

Motivation: Bioinformatics analyses have become increasingly intensive comput-

ing processes, with lowering costs and increasing numbers of samples. Each laboratory

spends time creating and maintaining a set of pipelines, which may not be robust,

scalable, or efficient. Further, the existence of different computing environments across

institutions hinders both collabo-ration and the portability of analysis pipelines.

Results: Flowr is a robust and scalable framework for designing and deploying

computing pipelines in an easy-to-use fashion. It implements a scatter-gather approach

using computing clusters, simplifying the concept to the use of five simple terms (in

submission and dependency types). Most importantly, it is flexible, such that customiz-

ing existing pipelines is easy, and since it works across several computing environments

(LSF, SGE, Torque, and SLURM), it is portable.

Availability: http://docs.flowr.space

∗To whom correspondence should be addressed
†

‡Institute of Applied Cancer Science, MD Anderson Cancer Center
¶Genomic Medicine, MD Anderson Cancer Center

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2015. ; https://doi.org/10.1101/029710doi: bioRxiv preprint

sseth@mdanderson.org
jzhang22@mdanderson.org
http://docs.flowr.space
https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction

Massive advances in genomic and proteomic technologies are put-ting a high demand on

bioinformatics applications for faster and more automated data processing. Since some of

the steps are common and standard, there is value in creating pipelines that can be used

under dif-ferent environments in various projects. In addition, several of these steps can be

further broken down and parallelized to enable much faster analyses. In the past, significant

efforts were made to develop tools such as Galaxy1 and Bpipe,2 ena-bling users to easily run

modules and pipelines. Several other tools, such as COSMOS3 and BigDataScript,4 provide

a comparatively easier syntax for building pipelines. However, all these tools require users

to learn a new scripting language/syntax; thus, they present a steep learning curve. Further,

such pipelines may not be portable across clusters or frameworks. Here, we present flowr,

an open-source R package (http://github.com/sahilseth/flowr) that is language agnostic (in

terms of inputs), robust, scalable, and portable.

Features and Methods

One of the major challenges in creating a workflow management framework is providing

essential flexibility to users without compromis-ing robustness. Flowr is language agnostic

in terms of its inputs, allow-ing users to build pipelines in any language of their choice. In

essence, flowr requires users to specify a set of shell commands for each step (1B), along with

a simple configuration file (1C) that defines how to stitch the steps into a pipeline. Flowr

provides a set of R functions for creating, reading, and checking these two input files before

processing, but any other language, such as JAVA, Python, or Perl, may be used to create

these simple tab-delimited text files. In addition, the configuration file (or flow definition)

enables complete flexibility in specifying the computing resources, such as CPU, RAM,

walltime, and queue, used in each step of the pipeline. This isolates resource specification

from the actual commands, thus making the pipeline very portable across computing clusters

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2015. ; https://doi.org/10.1101/029710doi: bioRxiv preprint

http://github.com/sahilseth/flowr
https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

such as LSF, Torque, SGE, SLURM, and MOAB; this is a feature unique to flowr. Further,

flowr implements a scatter-gather approach, allowing a many-to-one, one-to-many, or many-

to-many relationship between steps (1A and 4). Several bioinformatics pipelines can be

efficiently specified using such relationships; a typical case involves processing several fastq

files into a final merged binary alignment map (BAM) file. For example, several pairs of

fastq files, each aligned indi-vidually using BWA5 (bwa aln), would be further processed as

pairs using BWA (bwa sampe) to produce sam files (one for each pair). These would then

be sorted, merged, and indexed using samtools.6 Using flowr, each step in this workflow

may have different CPU, memory, and walltime usage. This simple pipeline may take up

to a day on a desktop or several hours on a multicore server. Flowr efficiently scatters

the steps and submits them to the cluster, man-aging dependencies, in about half an hour.

The framework is robust and scalable; it creates a web of jobs (using dependencies) for

the entire pipeline, submits them to the cluster, and exits. The jobs automatically start

in the correct order, according to the dependency map created by flowr (example, 1E).

This enables the user to submit several flows at once, in a highly scalable fashion, that

will be executed depending on the resources available. Further, splitting the flow into small

independent jobs enables faster processing since they fit very well in a heavily used shared

computing cluster, reserving and using minimal resources. We have extensively tested flowr

on several computing platforms, such as Torque, MOAB, and LSF. Using a very transparent

approach, each flow is submitted as an independent container, with all commands, outputs,

and logs available in a clean and structured fashion. This enables reproducibility, with the

final shell scripts having all the information required to re-create the analysis. In addition,

flowr creates a graph (1E) for each submission, providing a quick overview of the pipeline

without reading the code. An interactive website is available for designing a new pipeline.7

Flowr also provides simple functions for monitoring the progress of a currently running flow,

killing the whole flow, and in case of a failure, rerunning the flow from an intermediate step

(2). Using a language-agnostic approach, flowr ingests the actual commands to be executed

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2015. ; https://doi.org/10.1101/029710doi: bioRxiv preprint

https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

in the form of a tab-delimited file (a flowmat, 1B). Further, all the resource requirements

and information regarding dependencies are isolated in a separate file (a flow definition

[flowdef], 1C). The flowdef also contains information regarding the flow of steps (using the

previous job column), type of submission (using the submission type column), and type of

dependency on the previous jobs (using the dependency type column). Multiple commands

in a module (A1-10) can be submitted in a scatter (/parallel) or serial (/sequential) fashion

(1A). If a later step (B1-10) has multiple commands, such that the ith command of B

depends on the ith command of A, we can describe this many-to-many relationship using

a serial type dependency (1A). Further, in case of a merging step (say, C), all jobs B1-10

need to be completed, suggesting a many-to-one relationship using the dependency gather.

Lastly, many steps may be initiated when this merging completes, creating a one-to-many

relationship using a burst dependency (1A).

Discussion

To our knowledge, flowr, which is explicitly based on the scatter-gather concept of data anal-

ysis pipelines, is the first open-source pipeline framework that makes use of the dependency

feature of computing clusters. This feature enables flowr to intelligently submit a web of

inter-dependent jobs to the computing cluster and exit, in contrast to having a daemon-

type process continuously running (as in other frameworks). This minimizes overhead on

the login nodes, is robust to interruptions due to accidental killing of the process, and is

scalable, allowing users to submit analyses of multiple samples. Flowr follows the design

once principle, enabling the user to develop robust, portable pipelines that can be run on

a host of computing platforms. Further, the same pipeline can be run on a local machine,

computing cluster, or cloud-based environment. With automatic logging of each step and

the preservation of the exact commands run to produce the output, the system allows users

to generate an easy-to-use, efficient, and reproducible analysis pipeline.

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2015. ; https://doi.org/10.1101/029710doi: bioRxiv preprint

https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

serial

A submission types dependency types

burstgatherscatter serial

Define Relationships Resource Requirements

jobname submission
type

previous
job(s)

dependency
type queue memory time cpu platform

aln1 scatter none none short 2000 1:00 1 lsf
aln2 scatter none none short 2000 1:00 1 lsf

sampe scatter aln1,aln2 serial short 2000 1:00 1 lsf

fixrg scatter sampe serial short 2000 1:00 1 lsf

merge serial fixrg gather short 2000 1:00 1 lsf

Csample jobname cmd

s1 aln1 bwa aln -l 40 -k 2 -n 3 genome.fa file1_1.fastq.gz > file1_1.sai

s1 aln1 bwa aln -l 40 -k 2 -n 3 genome.fa file1_2.fastq.gz > file1_2.sai

s1 aln2 bwa aln -l 40 -k 2 -n 3 genome.fa file2_1.fastq.gz > file2_1.sai

s1 aln2 bwa aln -l 40 -k 2 -n 3 genome.fa file2_2.fastq.gz > file2_2.sai

s1 sampe bwa sampe -o 1000 genome.fa file1_1.sai file1_1.fastq.gz
file1_1.sai file1_1.fastq.gz

s1 fixrg java -jar picard.jar AddOrReplaceReadGroups

s1 merge java -jar picard.jar MarkDuplicates.jar

B

Stitch a flow (using tables 1B and 1C)
fobj = to_flow(x = flowmat, def = flowdef)

Plot (Figure 1 D)
plot_flow(fobj)

Dry run
submit_flow(fobj)

Submit to the cluster
submit_flow(fobj, execute = TRUE)

Check the status
flowr status x=~/flowr/runs/fastq_hap-2015…

Kill a flow
flowr kill x=~/flowr/runs/fastq_hap-2015…

Re-run a flow
flowr rerun x=~/flowr/runs/fastq_hap-2015… start_from=merge)

Dry Run Successful!
You may check this folder for consistency.
Also you may re-run submit with execute=TRUE
 ~/flowr/type1-20150520-15-18-27-5mSd32G0

Flow has been submitted. Track it from R using:
flowr::status(x="~/flowr/type1-20150520-15-18-46-sySOzZnE")
OR from terminal using:
flowr status x=~/flowr/type1-20150520-15-18-46-sySOzZnE

	total	started	completed	exit_status	status
001.aln1	16	16	16	0	completed
002.aln2	16	16	16	0	completed
003.sampe	16	16	16	0	completed
004.fixrg	16	16	16	0	completed
005.merge	1	1	1	0	processing

D

E Platform Commands
(submission/killing)

Supported name

LSF 9 bsub, bkill Yes lsf
LSF 7 bsub, bkill Yes lsf
Torque qsub, qdel Yes torque
Moab msub, canceljob Yes moab
SGE qsub, qdel Yes sge

SLURM sbatch, scancel In progress slurm
local bash Yes local

F

Figure 1: A: Among submission types, scatter submission executes jobs in parallel, while serial executes
them sequentially. Gather refers to the idea that a subsequent job needs to wait for all (n) sub-processes of
a previous step to complete, and serially dependent means that the ith sub-process of the current step needs
to wait for the ith sub-process of a previous step. Further, burst suggests that several steps begin after a
specific single step completes. We can define several complex relationships (Suppl. Table 1) using submission
and dependency types. B: Flowr takes a language-agnostic approach to developing pipelines. A flow matrix
(f mat) is used to describe the precise commands to run. C: A flow definition (f def) table provides an
easy-to-use interface to describe various details regarding a flow, including the relationships between steps
and resource requirements. Each row of the table describes one step and its relationship to previous steps,
if any. Note how initial steps have none in the previous jobs and dependency type columns. D: Using a
flow definition (f def) and a flow matrix (f mat), we can deploy a flow to a high-performance computing
cluster. In addition, flowr provides several functions to plot the flow, monitor it, or kill and re-run it in case
of issues (Suppl. 1). E: A flowchart describing processing the NGS workflow from fastq files to an aligned
BAM file. F: Flowr supports several computing platforms out of the box, and adding support for others is
quite straightforward (http://docs.flowr.space/install.html).

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2015. ; https://doi.org/10.1101/029710doi: bioRxiv preprint

docs.flowr.space/install.html
https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

Creating flow objects
function description input outpu

t
to_flowmat

list to ∳ mat named list

∳ matextract ∳ mat from ∳ ∳

as.flowmat read and check data.frame/file

to_flowdef

check a data.frame

∳ def
extract ∳ def from ∳ ∳

create a example ∳ def ∳ mat

as.flowdef read and check data.frame/file

to_flow stich a ∳ ∳ mat & ∳ def ∳ Using flow objects
function description input output

submit_flow submit a ∳
∳ & execute=FALSE dry run

∳ & execute=TRUE submit to cluster

plot_flow create a flow
chart

∳
a flow chart∳ def

kill kill all jobs of a ∳
∳

kill all jobs∳ wd

a pattern matching multi ∳ wd kill all jobs
(if force = TRUE)

rerun
rerun from a

specific starting
point

∳ wd rerun

status

a summary
status with jobs

running,
completed and

exited.

∳ wd
x=~/flowr/runs/type1-2015-09….

a status summary

a pattern matching multiple ∳ wd
x=~/flowr/runs/type1-*

individual
summaries on
each flow

a parent folder with multiple ∳ wd
x=~/flowr/runs/

one summary of
all flows in the

folder

object description

∳ flow object; flowr’s main class. Consists of jobs to
run, their resources and dependencies, ready for

execution.

∳ def
flow definition; a table with details regarding how

to bind sub modules along with resource
requirements

∳ mat flow mat; a table with details regarding exact
commands to run

∳ wd (the final) working directory; with logs and
execution details

Other functions
group function description

options

get_opts

setting and fetching default options used across flowr
and ngsflows. This makes use of the params R

pacakge.
set_opts

load_opts

fetch

fetch find files in several pre-assigned folders:
1. inside flowr package
2. inside ngslfows package
3. in $HOME/flowr, a folder created by setup()
pipes: this returns ONE (last pipeline it finds)
conf: this returns ALL conf files it finds

fetch_pipes

fetch_conf

run run

1. fetch and source the pipeline script (using
fetch_pipe).

2. passes all arguments the the function to create a ∳
mat

3. stitch a ∳ and submit it to the cluster

Usage: flowr function [arguments]

 status Detailed status of a flow(s).
 rerun rerun a previously failed flow
 kill Kill the flow

Please use 'flowr -h function' to obtain
further information about the usage.

Examples:
flowr run x=sleep_pipe platform=lsf
flowr status x=~/flowr/runs/sleep_pipe

flowr linux helper script

Figure 2: A cheat sheet describing various functions in flowr package

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2015. ; https://doi.org/10.1101/029710doi: bioRxiv preprint

https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

Description

no overhead flowr exits after job submission; preventing any overhead on login nodes

language agnostic one may use any language to build a pipeline (tsv input files)

transparent shell scripts, logs and triggers are available for users and developers; to be plugged
into their own working style

robust ability to monitor, kill and more importantly, rerun flows

visualization instantly visualize the workflow, aids in designing

lightweight minimal dependencies, and one line installation from official R repository

easy monitoring single flow and project level summaries (very useful in batch submission of multiple
samples)

GUI GUI tool to aid in designing workflows, using Rstudio Shiny

explicit commands all final commands are explicitly defined, easier to catch and fix errors

support for complex realationships extensive control over splitting steps and defining their dependencies

detailed resource definition extensive control over resource requirements for each step including CPU, memory
and walltime

manage parameters ability to manage parameters such as paths to tools and their parameters
Figure 3: Briefly, there are several advantages of using flowr, comparing with existing workflow frameworks.
Several of these stem from flowrs ability to use computing platforms dependency option.

Submission (A) Dependency (B) Submission (B) Relationship valid

serial serial serial 1-to-1 Y

serial gather serial 1-to-1 Y

serial burst scatter 1-to-many Y

scatter gather serial many-to-1 Y

scatter gather scatter many-to-1 Y

scatter serial scatter many-to-many Y

scatter burst scatter NA N

serial serial scatter NA N

Figure 4: Flowr supports a functional scatter-gather approach for defining pipelines, supporting various
(job) submission approaches. If a step has multiple sub-processes, a scatter approach would execute them
in parallel, while serial would execute them sequentially (Figure 1B). Additionally we can define complex
relationships using submission and dependency types. For example gather refers to the idea that a subsequent
job needs to wait for all (n) sub-processes of a previous step to complete. Several relationships can be defined
between previous (A) and subsequent jobs (B), mapping dependencies at the sub-process level. For example
in many-to-many but steps (A B) have multiple sub-processing running independently in scatter mode and
subprocesses in B are serially dependent means that ith subprocess of the B needs wait for the ith sub-process
of a A to start.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2015. ; https://doi.org/10.1101/029710doi: bioRxiv preprint

https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgement

We thank Tapsi Seth, and members of the Verhaak, Futreal and Draetta laborato-ries for

their valuable inputs We are grateful to members of the MD Anderson Research Computing

team (Roger Moye, Sally Boyd, and Daniel Jackson) for their continued support. In addition,

we thank Ann Sutton of the MD Anderson editorial staff, for help in editing this document.

References

(1) Goecks, J.; Nekrutenko, A.; Taylor, J.; $author.lastName, a. f. Genome Biology 2010,

11, R86.

(2) Sadedin, S. P.; Pope, B.; Oshlack, A. Bioinformatics 2012, 28, 1525–1526.

(3) Gafni, E.; Luquette, L. J.; Lancaster, A. K.; Hawkins, J. B.; Jung, J.-Y.; Souilmi, Y.;

Wall, D. P.; Tonellato, P. J. Bioinformatics 2014, btu385.

(4) Cingolani, P.; Sladek, R.; Blanchette, M. Bioinformatics 2014, btu595.

(5) Li, H.; Durbin, R. Bioinformatics 2009, 25, 1754–1760.

(6) Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.;

Abecasis, G.; Durbin, R.; Subgroup, . G. P. D. P. Bioinformatics 2009, 25, 2078–2079.

(7) Seth, S. A shiny based application to aid in creation of flowr pipelines. http://sseth.

shinyapps.io/flow_creator.

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 22, 2015. ; https://doi.org/10.1101/029710doi: bioRxiv preprint

http://sseth.shinyapps.io/flow_creator
http://sseth.shinyapps.io/flow_creator
https://doi.org/10.1101/029710
http://creativecommons.org/licenses/by-nc-nd/4.0/

