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Abstract

Motivation:

The goal of fine-mapping in genomic regions associated with complex diseases and traits is to identify causal variants that

point to molecular mechanisms behind the associations. Recent fine-mapping methods using summary data from genome-wide

association studies rely on exhaustive search through all possible causal configurations, which is computationally expensive.

Results:

We introduce FINEMAP, a software package to efficiently explore a set of the most important causal configurations of the

region via a shotgun stochastic search algorithm. We show that FINEMAP produces accurate results in a fraction of processing

time of existing approaches and is therefore a promising tool for analyzing growing amounts of data produced in genome-wide

association studies.

Availability:

FINEMAP v1.0 is freely available for Mac OS X and Linux at http://www.christianbenner.com.

Contact: christian.benner@helsinki.fi, matti.pirinen@helsinki.fi

1 Introduction

Genome-Wide Association Studies (GWAS) have identified thousands of genomic regions associated with complex dis-

eases and traits. Any associated region may contain thousands of genetic variants with complex correlation structure.

Therefore, one of the next challenges is fine-mapping that aims to pinpoint individual variants and genes that have a

direct effect on the trait. This step is crucial for fully exploiting the potential of GWAS: to unveil molecular biology

of complex traits and, eventually, provide targets for therapeutic interventions. For a recent review on fine-mapping,

see Spain et al. (2015).

A standard approach for refining association signals is a step-wise conditional analysis, an iterative procedure that

conditions on the Single-Nucleotide Polymorphisms (SNPs) with the lowest P-value of association until no additional

SNP reaches the pre-assigned P-value threshold. While conditional analysis is informative about the number of com-

plementary sources of association signals within the region, it fails to provide probabilistic measures of causality for

individual variants. To overcome this problem, many recent fine-mapping methods have adopted a Bayesian frame-

work.

Approaches for Bayesian analysis of multi-SNP GWAS data include exhaustive search as implemented in software

BIMBAM (Servin et al., 2007), MCMC algorithms (Guan et al., 2011), variational approximations (Carbonetto et al.,
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2012) and stochastic search as implemented in software GUESS (Bottolo et al., 2010, 2013) and GUESSFM (Wallace

et al., 2015). Bayesian fine-mapping has also been conducted under a simplified assumption of a single causal variant

in the region (WTCCC et al., 2012). Common to these approaches is that they require original genotype-phenotype

data as input, which is becoming impractical or even impossible as the size of current GWAS meta-analyses rises to

several hundreds of thousands of samples (Wood et al., 2014). For this reason, fine-mapping methods have recently

been extended to use only GWAS summary data together with a SNP correlation estimate from a reference panel.

To our knowledge, the existing fine-mapping implementations using GWAS summary data are PAINTOR (Kichaev

et al., 2014, 2015), CAVIAR (Hormozdiari et al., 2014) and CAVIARBF (Chen et al., 2015).

PAINTOR is an EM-algorithm to jointly fine-map several associated regions by utilizing functional annotation

information of individual variants. As a special case of only a single region without annotation information, PAINTOR

tackles the standard fine-mapping problem. CAVIAR differs from PAINTOR by modeling the uncertainty in the ob-

served association statistics. This might be a reason why CAVIARBF, a more efficient implementation of CAVIAR,

has been reported to be more accurate than PAINTOR in prioritizing variants when no annotation information is

available (Chen et al., 2015).

Although PAINTOR, CAVIAR and CAVIARBF are very useful methods for performing fine-mapping on GWAS

summary data, we think that their implementation via an exhaustive search through all possible causal configurations

is likely to hinder their use in several settings. For example, it becomes computationally slow or even impossible to

run these methods by allowing more than three causal variants on dense genotype data with thousands of variants

per region. Thus, these methods are unlikely to make full use of unprecedented statistical power to discern complex

association patterns provided by ever increasing GWAS sample sizes and genome sequencing technologies.

We introduce FINEMAP, a novel software package to improve the performance of GWAS summary data based

fine-mapping. The statistical model of FINEMAP is similar to CAVIAR and CAVIARBF while the important differ-

ence is the computational algorithm. FINEMAP uses a Shotgun Stochastic Search (SSS) algorithm (Hans et al., 2007)

that explores the vast space of causal configurations by concentrating efforts on the configurations with non-negligible

probability. We compare FINEMAP with the exhaustive search algorithm implemented in CAVIARBF. The compar-

isons to two other GWAS summary statistics based fine-mapping methods CAVIAR and PAINTOR are not shown in

this paper since CAVIARBF is more efficient but equally accurate as CAVIAR and more accurate than PAINTOR

without annotation information (Chen et al., 2015). In this paper we show that

• FINEMAP is thousands of times faster than CAVIARBF while still providing similar accuracy in the examples

where CAVIARBF can be applied.

• FINEMAP is more accurate than CAVIARBF when the number of causal variants in CAVIARBF needs to be

restricted for computational reasons.

Our examples are based on genotype data of the Finnish population as well as summary statistics from GWAS on

Parkinson’s disease (UKPDC and WTCCC2, 2011).

2 Methods

We are interested in fine-mapping a genomic region using GWAS summary data instead of original genotype-phenotype

data as input. The building blocks of our Bayesian approach are the likelihood function (subsection 2.1), priors

(subsection 2.2), efficient likelihood evaluation (subsection 2.3) and efficient search algorithm (section 3). At each step

we describe how our choices differ from the existing methods PAINTOR and CAVIARBF.
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Figure 1: The binary indicator vector γ determines which SNPs have non-zero causal effects ( 1 ). The underlying causal (linear)

model for a quantitative trait assumes only few SNPs with a causal effect. The Maximum Likelihood Estimate (MLE) of the causal

SNP effects λ̂ can be computed by using only the SNP correlation matrix and single-SNP z-scores. However, the MLE is not ideal

because it does not account for the sparsity assumption.

2.1 Likelihood function

For a quantitative trait, we assume the following linear model

y = Xλ+ ϵ ,

where y is a mean-centered vector of values of a quantitative trait for n individuals, X a column-standardized SNP

genotype matrix of dimension n × m and p(ϵ) = N
(
ϵ |0, σ2In

)
. The Maximum Likelihood Estimate (MLE) of the

causal SNP effects λ depends on X and y only through the SNP correlation matrix R = n−1XTX and single-SNP

z-scores ẑ =
(
nσ2

)−1/2
XTy

λ̂ =
(
XTX

)−1
XTy = n−1/2σR−1ẑ

V
[
λ̂
]
= σ2

(
XTX

)−1
= n−1σ2R−1 .

Thus, it is possible to approximate the likelihood function for λ by N
(
λ̂ |λ,V

[
λ̂
])

using a SNP correlation estimate

from a reference panel and single-SNP z-scores from a standard GWAS software, as previously done in GCTA (Yang

et al., 2011), PAINTOR and CAVIARBF. For binary traits, a similar approximation applies with z-scores originating

from logistic regression and σ2 ≈ 1/
{
ϕ(1− ϕ)

}
, where ϕ is the proportion of cases among the n individuals (Pirinen

et al., 2013).

When m is large but λ has only very few non-zero elements, the MLE alone is not ideal since it does not account

for the sparsity assumption (Figure 1). Thus, we take a Bayesian approach with a prior distribution that induces

sparsity among causal effects.

2.2 Priors for λ and γ

Let a binary indicator vector γ determine which SNPs have non-zero causal effects (γℓ = 1 if the ℓth SNP is causal

and 0, otherwise; see top panel in Figure 1). For the causal effects, we use the prior

p(λ |γ) = N
(
λ |0, s2λσ2∆γ

)
,

where s2λ is the prior variance for the causal effects in units of σ2 and ∆γ a diagonal matrix with γ on the diagonal.

In our examples for quantitative traits, we have set s2λ = 0.052 and σ2 to the observed variance of the trait. This

means that with 95% probability a causal SNP explains less than 1% of the trait variation. When available z-scores

originate from logistic regression, we have set the product s2λσ
2 = 0.052. This means that with 95% probability the

effect of a causal SNP on the odds-ratio scale is less than 1.15 for common variants (MAF = 0.5) and less than 2.0

for low-frequency variants (MAF = 0.01), where MAF is the minor allele frequency.
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To define the prior for each causal configuration, we use a general discrete distribution for the number of causal

SNPs

pk = Pr(# of causal SNPs is k), k = 1, . . . ,K ,

where K ≪ m is the maximum number of SNPs in the causal configuration. Note that we assume that the region to

be fine-mapped includes at least one causal SNP, i.e., p0 = 0. For a fixed value of k, we assume the same probability

for each configuration with k causal SNPs. Thus, a priori,

p(γ) = pk

/(
m

k

)
when

m∑
l=1

γℓ = k .

PAINTOR does not use an explicit prior on k but restricts k ≤ 3 in practice. The default prior used by CAVIARBF

assumes that each SNP is causal with probability 1/m and that k ≤ 5. This is a special case of our prior when we set

pk =

(
m

k

)(
1

m

)k (
m− 1

m

)m−k

and renormalize for K = 5 except that CAVIARBF assigns non-zero prior also for the null configuration k = 0.

2.3 Marginal likelihood for γ

We now show how the marginal likelihood for the causal configuration γ can be computed efficiently.

2.3.1 Integrating out causal effects λ

The likelihood function p(y |λ,X) of the causal SNP effects is (proportional to) a Normal density N
(
λ̂ |λ, σ2(nR)−1

)
.

This enables an analytic solution for the marginal likelihood of γ eliminating the causal effects

p(y |γ,X) =

∫
p(y |λ,X)p(λ |γ) dλ

= N
(
λ̂ |0, σ2(nR)−1 + s2λσ

2∆γ

)
= N

(
ẑ |0,R+RΣγR

)
,

where we definedΣγ ≡ ns2λ∆γ . Importantly, an evaluation of the marginal likelihood requires only single-SNP z-scores

and SNP correlations from a reference panel. This elimination of λ is similar to the one used by CAVIARBF and

differs from PAINTOR that fixes those values based on the observed z-scores. Next, we describe two implementations

to evaluate N
(
ẑ |0,R+RΣγR

)
with high computational efficiency.

2.3.2 Reducing the complexity from O
(
m3

)
to O

(
k3

)
Option 1

Let C = {1, . . . , k} and N = {k + 1, . . . ,m} be respectively the set of causal and non-causal SNPs. Consider the

quadratic form

Q = ẑT
(
R+RΣγR

)−1
ẑ = ẑT

(
Im +ΣγR

)−1
a

inside the exponential function in N
(
ẑ |0,R +RΣγR

)
, where a = R−1ẑ can be precomputed. We solve the linear

system
(
Im +ΣγR

)
b = a for b by observing that the m−k elements in b corresponding to non-causal SNPs (γℓ = 0)

are bℓ = aℓ and the remaining elements result from solving a system of k equations

(
Ik + ns2λRCC

)
bC = aC − ns2λRCNaN ,
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whereRCC is the k×k correlation matrix of the causal SNPs andRCN the k×(m−k) submatrix ofR corresponding to

the cross-covariances between the causal and non-causal SNPs. In addition, we observe that det
(
Im+ΣγR

)
is simply

det
(
Ik + ns2λRCC

)
after expanding with respect to the rows corresponding to non-causal SNPs. Computationally,

these computations require one Cholesky decomposition with complexity O
(
k3

)
and provide thus a considerable saving

compared to the naive way of decomposing the whole m×m matrix with complexity O
(
m3

)
.

This derivation differs from the one used by CAVIARBF that is similar to our option 2 below. It also differs

from PAINTOR that fixes λ based on the observed z-scores and performs once a Choleksy decomposition of the whole

m×m SNP correlation matrix that is used repeatedly in each likelihood evaluation.

Option 2

We partition the observed z-scores into components ẑC and ẑN and permute rows and columns of the SNP correlation

matrix and covariance matrix Σγ such that

R =

 RCC RCN

RNC RNN


and Σγ = diag{σℓ} with σk+1 = · · · = σm = 0. This partitioning entails a block structure in the covariance matrix of

N
(
ẑ |0,R+RΣγR

)  RCC +RCCΣCCRCC RCN +RCCΣCCRCN

RNC +RNCΣCCRCC RNN +RNCΣCCRCN

 .

Using properties of the multivariate Normal distribution, the conditional expectation and covariance matrix of ẑN

given ẑC are readily available

E [ẑN | ẑC ] = RNCR
−1
CC ẑC

V [ẑN | ẑC ] = RNN −RNCR
−1
CCRCN

and do not dependent on Σγ . We rewrite the marginal likelihood p(y |γ,X) = N (ẑ |0,R+RΣγR) in terms of the

marginal distribution of ẑC and conditional distribution of ẑN given ẑC to obtain the following expression

N (ẑ |0,R+RΣγR) = N (ẑC |0,RCC +RCCΣCCRCC)N (ẑN |E [ẑN | ẑC ] ,V [ẑN | ẑC ])

= N (ẑC |0,RCC +RCCΣCCRCC)
N (ẑ |0,R)

N (ẑC |0,RCC)

This means that we can compute the Bayes factor for assessing the evidence against the null model by using only the

causal SNPs

BF (γ : NULL) =
N (ẑ |0,R+RΣγR)

N (ẑ |0,R)
=

N (ẑC |0,RCC +RCCΣCCRCC)

N (ẑC |0,RCC)

and that the marginal likelihood is proportional to this expression. CAVIARBF utilizes this result, although without

a mathematical derivation explicitly shown in Chen et al. (2015).
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2.4 Posterior for γ

According to the Bayesian paradigm, we want to base our inference on the posterior of causal configurations p(γ |y,X).

The unnormalized posterior can be evaluated by combining the prior with the marginal likelihood (option 1) as

p∗1(γ |y,X) =

(
m

k

)−1

pk × p(y |γ,X) ,

where k is the number of causal SNPs in configuration γ. In addition, we can compute unnormalized posterior by

using the Bayes factor (option 2)

p∗2(γ |y,X) =

(
m

k

)−1

pk × BF (γ : NULL) .

We observed that option 2 was faster than option 1 and therefore option 2 is used by default in FINEMAP. Ide-

ally, p∗(γ |y,X) were normalized over all
∑K

k=1

(
m
k

)
causal configurations. Unfortunately, this is computationally

intractable already for modest values of K > 5. However, as we show in the results section, typically a large majority

of the causal configurations have negligible posterior probability and hence a good approximation for the posterior can

be achieved by concentrating on only those with non-negligible probability. We explore the space of causal configura-

tions with a Shotgun Stochastic Search (SSS) algorithm (Hans et al., 2007) that rapidly evaluates many configurations

and is designed to discover especially those with highest posterior probability.

3 Shotgun stochastic search

We use SSS to efficiently evaluate many causal configurations and discover especially those with highest posterior

probability. SSS conducts a pre-defined number of iterations within the space of causal configurations. In each

iteration (Figure 2), the neighborhood of the current causal configuration is defined by configurations that result from

deleting, changing or adding a causal SNP from the current configuration. The next iteration starts by sampling a new

causal configuration from the neighborhood based on p∗(γ |y,X) normalized within the neighborhood. All evaluated

causal configurations and their unnormalized posterior probabilities are saved in a list Γ∗ for downstream analyses.

The aim of the algorithm is that Γ∗ contains all relevant causal configurations, that is, those with non-negligible

posterior probabilities.

The posterior probability that SNPs in configuration γ are causal is computed by normalizing over Γ∗

p(γ |y,X) = p∗(γ |y,X)
/ ∑

γ∈Γ∗

p∗(γ |y,X) .

We compute the marginal posterior probability that the ℓth SNP is causal, also called single-SNP inclusion probability,

by averaging over all evaluated configurations

p(γℓ = 1 |y,X) =
∑
γ∈Γ∗

1(γℓ = 1)p(γ |y,X) .

In addition, we compute a single-SNP Bayes factor for assessing the evidence that the ℓth SNP is causal as

BF(γℓ = 1 : γℓ = 0) =
p(γℓ = 1 |y,X)

p(γℓ = 0 |y,X)

/
p(γℓ = 1)

p(γℓ = 0)
,
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









Figure 2: Shotgun stochastic search rapidly identifies configurations of causal SNPs with high posterior probability. In each iteration,

the neighborhood of the current causal configuration is defined by configurations that result from deleting, changing or adding a

causal SNP ( 1 ) from the current configuration. The next iteration starts by sampling a new causal configuration from the neigh-

borhood based on the scores normalized within the neighborhood. The unnormalized posterior probabilities remain fixed throughout

the algorithm and can thus be memorized ( ) to avoid recomputation when already evaluated configurations appear in another

neighborhood.

where the prior probability of the ℓth SNP being causal is

p(γℓ = 1) =
K∑

k=1

(
k

m

)
pk .

PAINTOR, CAVIAR and CAVIARBF do not perform a stochastic search but enumerate all causal configurations

with k = 1, . . . ,K. When m is large but there are only few true causal SNPs, the exhaustive search is computa-

tionally expensive and inefficient since most configurations make a negligible contribution to the single-SNP inclusion

probabilities.

3.1 Computational implementation

For 1 < k < K, the number of causal configurations to be evaluated in each iteration is:

• k for deleting,

• k(m− k) for changing,

• m− k for adding a causal SNP

Computing p∗(γ |y,X) requires a Cholesky decomposition with complexity O
(
k3

)
that is fast when K ≪ m. Impor-

tantly, each unnormalized posterior probability remains fixed throughout the algorithm. This means that we can use

a hash table (std::unordered map in C++) to avoid recomputing p∗(γ |y,X) when already-evaluated configurations

appear in another neighborhood. Inserting to and retrieving from the hash table requires constant time on average.

Hash table lookups reduce the dominant computational cost of the algorithm: exploring the vast space of causal

configurations. This renders SSS computational efficient because it traverses the space of causal configurations by

moving back and forth to configurations with high posterior probability and overlapping neighborhoods.
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4 Test data generation

We obtained real genotype data on 18834 individuals from the National FINRISK study (Vartiainen et al., 2010).

The genotype data comprise a 500 kilobase region centered on rs11591147 in PCSK9 gene on chromosome 1 with

1920 polymorphic SNPs with pairwise absolute correlations less than 0.99. To assess the computational efficiency and

fine-mapping accuracy, we considered the following scenarios:

• Scenario A

Increasing number of SNPs (m = 750, 1000, 1250, 1500) considering causal configurations with up to K = 3 or

K = 5 SNPs.

• Scenario B

Fixed number of m = 150 SNPs considering causal configurations with increasing maximum number of SNPs

(K = 1, 2, 3, 4, 5).

We generated data sets where causal SNPs had highly correlated proxies since this is a setting where an in-exhaustive

search could theoretically have problems. Five hundred data sets were generated under each combination of m and K

in scenarios A and B using the following linear model:

y =
∑
c∈C

βcgc +N
(
ϵ | 0, σ2I

)
,

where C is the set of causal SNPs, gc the vector of genotypes at the cth causal SNP, βc and fc respectively the

effect size and minor allele frequency of the cth causal SNP and σ2 = 1−
∑

c∈C 2fc(1− fc)β
2
c . The number of causal

SNPs was five in scenario A and K = 1, . . . , 5 in scenario B. In each data set, the causal SNPs were randomly

chosen among those variants that had highly correlated proxies (absolute correlation greater than 0.5) among the

other variants. The effect sizes of the causal SNPs were specified so that the statistical power at a significance level of

5 × 10−8 was approximately 0.5. Single-SNP testing using a linear model was performed to compute z-scores. Each

set of z-scores was then analyzed with CAVIARBF (default parameters) and FINEMAP (100 iterations saving the

top 50000 evaluated causal configurations). For both methods, the prior standard deviation of the causal effects was

set to 0.05 and the prior distribution of each configuration with k causal SNPs was specified as

p(γ) ∝
(

1

m

)k (
m− 1

m

)m−k

, for k = 1, . . . ,K.

This required excluding the null configuration (k = 0) from the output of CAVIARBF.

5 Results

The main difference between FINEMAP and CAVIARBF is the search strategy to explore the space of causal con-

figurations. We compare the computational efficiency and fine-mapping accuracy of FINEMAP with CAVIARBF to

assess the impact of replacing exhaustive with stochastic search. We also illustrate FINEMAP on data from the UK

Parkinson’s Disease Consortium and the Wellcome Trust Case Control Consortium 2 by fine-mapping 4q22/SNCA

region that contains a complex association pattern with Parkinson’s disease (The UKPDC and WTCCC2, 2011).

5.1 Computational efficiency

The left panel of Figure 3 shows that FINEMAP is thousands of times faster than CAVIARBF when considering

causal configurations with up to three SNPs in Scenario A. The difference in processing time becomes even larger
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750 1000 1250 1500

1s

1min

1h

5h

Number of SNPs m

FINEMAP (K = 5)
FINEMAP (K = 3)
CAVIARBF (K = 3)

1 2 3 4 5

4ms

0.1s

1s

1min

10min
1h

8h

Maximum number of causal SNPs K

FINEMAP (m = 150)
CAVIARBF (m = 150)

Figure 3: Processing time of one locus with FINEMAP and CAVIARBF on log10 scale. Left panel: Scenario A with increasing

number of SNPs allowing K = 3 or K = 5 causal SNPs. Right panel: Scenario B with 150 SNPs considering causal configurations

with different maximum numbers of SNPs. All processing times are averaged over 500 data sets using one core of a Intel Haswell

E5-2690v3 processor running at 2.6GHz.

when the maximum number of possible causal SNPs increases (Scenario B) in the right panel of Figure 3. CAVIARBF

slows down quickly due to the exhaustive search but FINEMAP’s processing time does not increase considerably with

increasing K. Importantly, there is no need to restrict the number of causal SNPs in FINEMAP to small values

(K ≤ 5) as is necessary for CAVIARBF.

5.2 Fine-mapping accuracy

We computed the maximum absolute differences between the single-SNP inclusion probabilities in each data set

under scenario B to assess the fine-mapping accuracy of FINEMAP and CAVIARBF (Table 1). The small differ-

ences
(
max < 0.11, median < 6× 10−4

)
show that for practical purposes FINEMAP achieves similar accuracy as

CAVIARBF despite concentrating only on a small but relevant subset of all possible causal configurations (see Discus-

sion). Figure 4 shows details of those SNPs in Scenario B for which the difference between the methods is larger than

0.01. We see that by ignoring the large majority of very improbable configurations, FINEMAP slightly overestimates

the largest probabilities, that typically belong to the truly causal SNPs, and underestimates smaller probabilities, that

most often belong to the non-causal SNPs.

In addition to considering only causal configurations with up to three SNPs under scenario A, we also ran

FINEMAP with K = 5 to demonstrate the increase in fine-mapping performance in this case where the true number

of causal SNPs was five. We determined the proportion of causal SNPs that are included when selecting different

numbers of top SNPs on the basis of ranked single-SNP inclusion probabilities (Figure 5). FINEMAP and CAVIARBF

had the same performance when considering causal configurations with up to three SNPs in genomic regions with 1500

SNPs. (Similar performance was also observed for genomic regions with different numbers of SNPs.) As expected,

FINEMAP showed better fine-mapping performance when considering causal configurations with up to five SNPs.

5.3 4q22/SNCA association with Parkinson’s disease

Using single-SNP testing, the UKPDC and WTCCC2 (2011) found evidence for an association with Parkinson’s disease

in the 4q22 region with the lowest P-value at rs356220. A conditional analysis on rs356220 revealed a second SNP

rs7687945 with P-value 3× 10−5 that in the single-SNP testing had only a modest P-value of 0.13. These two SNPs

are in low Linkage Disequilibrium (LD) (r2 = 0.168 in the original data) but the LD was sufficient enough to mask

the effect of rs7687945 in single-SNP testing. This complex pattern of association was replicated in an independent
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Table 1. Percentiles of absolute maximum differences

between FINEMAP’s and CAVIARBF’s single-SNP

inclusion probabilities in Scenario B

m = 150 | K 1 2 3 4 5a

Max 5e–7 8e–3 2e–2 1e–1 -

99th percentile 4e–7 2e–3 8e–3 4e–2 -

95th percentile 3e–7 5e–4 3e–3 1e–2 -

Median 4e–8 4e–7 2e–5 6e–4 -

aCAVIARBF could not compute single-SNP inclu-
sion probabilities due to a memory allocation failure
(std::bad alloc).

French data set (UKPDC and WTCCC2, 2011).

To test whether FINEMAP is able to pick up this complex association pattern, we extracted a 2 megabase region

centered on rs356220 with 363 directly genotyped SNPs from the original genotype data. Single-SNP testing using a

logistic model implemented in SNPTEST was performed to compute z-scores. The dataset was then analyzed with

FINEMAP using 100 iterations and prior parameter value of s2λσ
2 = 0.052. Top panel of Figure 6 shows that the

evidence that rs356220 and rs7687945 are causal is the largest among all SNPs. In addition, the causal configuration

that simultaneously contains both rs356220 and rs7687945 has the highest posterior probability (0.132). The second

most probable (0.113) causal configuration contains rs356220 and rs2301134. High correlation between rs7687945 and

rs2301134 (r2 = 0.974) explains why these two SNPs are difficult to tell apart. We conclude that FINEMAP was able

to identify the complex association pattern at the second SNP that only became identifiable after the first SNP was

included in the model. As opposed to the standard conditional analysis, FINEMAP provides posterior probabilities for

all SNPs in the region and is thus able to simultaneously identify many causal variants without a step-wise procedure.

6 Discussion

GWAS have linked thousands of genomic regions to complex diseases and traits in humans and in model organisms.

Fine-mapping causal variants in these regions is a high-dimensional variable selection problem complicated by strong

correlations between the variables. We introduced a software package FINEMAP that implements an important

solution to the problem: a stochastic search algorithm to circumvent computationally expensive exhaustive search. In

all data sets we have tested, FINEMAP achieves similar accuracy as the exhaustive search but uses only a fraction of

processing time. For example, fine-mapping a genomic region with 1500 SNPs allowing for at most 3 causal variants

completes in 1.4 seconds using FINEMAP while the exhaustive search implemented in CAVIARBF requires about 5.2

hours. Computationally efficient algorithms are a key to handle ever increasing amount of genetic variation captured

by emerging sequencing studies as well as to scale up the analyses to whole chromosomes or even to whole genomes.

FINEMAP uses a Shotgun Stochastic Search (SSS) algorithm (Hans et al., 2007). SSS has been inspired by

Markov Chain Monte Carlo (MCMC) algorithms that are widely used for Bayesian inference. For a review on MCMC,

see Andrieu et al. (2003). Standard MCMC methods, such as the Metropolis-Hastings algorithm (Metropolis et al.,

1953; Hastings, 1970) and Gibbs sampler (Geman et al., 1984), perform a sequence of steps in the parameter space

via a stochastic transition mechanism that ensures a valid approximation to the target distribution. MCMC can often

quickly reach an interesting region of the parameter space, but, at each step, it only considers one of the possible

neighboring states. This means that MCMC is often slow to explore a high-dimensional state space. To improve

on this, SSS generates a whole set of neighboring configurations at each iteration and saves them all for further use

in probability calculations. This way a large number of parameter configurations with relatively high probability is

10

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2015. ; https://doi.org/10.1101/027342doi: bioRxiv preprint 

https://doi.org/10.1101/027342
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

FINEMAP

C
A

V
IA

R
B

F =
−
0.

1

=
0.

1

Causal

Non−causal

Difference between

single−SNP inclusion

probabilities

Figure 4: Single-SNP inclusion probabilities of all SNPs in Scenario B with absolute difference larger than 0.01 between FINEMAP

and CAVIARBF.

quickly explored.

FINEMAP is accurate when the set of causal configurations explored captures a large majority of the total

posterior probability. Our results show that this is the case in all data sets we have tested: the maximal error in

any single-SNP inclusion probability is smaller than 0.11 across all 2000 data sets of Scenario B. Using exhaustive

search, we observed in genomic regions with 750 SNPs of which five were truly causal that on average only the top 123

(median = 14) causal configurations out of all possible 70.3× 106 already cover 95% of the total posterior probability.

(Similar results were also observed for genomic regions with different numbers of SNPs.) This explains why an efficient

stochastic search can achieve accurate results in a tiny fraction of the processing time of an exhaustive search. Our

data sets were generated by requiring that the causal SNPs had highly correlated proxies (absolute correlation greater

than 0.5) among the other variants. The high accuracy of FINEMAP throughout these tests makes us believe that

FINEMAP is accurate in typical GWAS data with complex correlation structure among the SNPs.

Although we have not encountered any data set where FINEMAP would not have performed well, theoretically,

it remains possible that an in-exhaustive search could miss some relevant causal configurations. A simple way to

assess possible problems is to run many searches in parallel and compare and combine their outcomes. Another way

is parallel tempering (Geyer, 1991) where several searches are run in parallel in different ”temperatures”. Intuitively,

increasing temperature flattens the likelihood function and hence a search in a higher temperature moves around more

freely than one in a colder temperature. Such an approach, together with complex global transition mechanisms to

escape from local modes, was introduced in an evolutionary stochastic search algorithm by Bottolo et al. (2010) that

was later tailored for genetic analyses of multiple SNPs and multivariate phenotypes in the software package GUESS

(Bottolo et al., 2013). These two papers could give ideas how FINEMAP could be further modified if trapping into

local modes of the search space were encountered in real data analyses of GWAS regions.

The accuracy of FINEMAP depends on the quality of the SNP correlation estimate. For some populations,

sequencing of many thousands of individuals have either already been carried out or will complete soon. This allows

reliable fine-mapping in individual populations down to low-frequency variants with minor allele frequencies above
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Figure 5: Fine-mapping accuracy of FINEMAP and CAVIARBF on data with five causal SNPs, allowing either K = 3 or K = 5 causal
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inclusion probabilities. Proportions are averaged over 500 data sets with 1500 SNPs. Case K = 5 is computationally intractable for

CAVIARBF.

0.5%. A more challenging problem is large meta-analyses that combine individuals from varying ancestries. Assuming

that the causal variants are included in the data and have the same effect sizes across the ancestral backgrounds,

FINEMAP can be run with the sample size weighted SNP correlation matrix. If these assumptions are not met, then

a hierarchical model allowing separate SNP correlation structures in each ancestry would perform better (Kichaev

et al., 2015).

The output from FINEMAP is a list of possible causal configurations together with their posterior probabilities

and Bayes factors similar to CAVIARBF. These probabilities contain all the information from the model needed for

downstream analyses. Examples of useful derived quantities are the single-SNP inclusion probabilities, single-SNP

Bayes factors, credible sets of causal variants (WTCCC et al., 2012) and a regional Bayes factor against the null model

(Chen et al., 2015). We believe that FINEMAP, or related future applications of shotgun stochastic search to GWAS

summary data, provide new opportunities to reveal valuable information that could otherwise remain undetected due

to computational limitations of the existing fine-mapping methods.
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Figure 6: Fine-mapping of 4q22/SNCA region associated with Parkinson’s disease. Associated SNPs rs356220 and rs7687945 are

highlighted by and their configuration by Test . Dashed lines correspond respectively to a single-SNP Bayes factor of 100 and

P-value of 5× 10−8. Squared correlations are shown with respect to rs356220.
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