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ABSTRACT

Background: In 2012, two large pharmacogenomic studies, the Genomics of Drug Sensitivity in
Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE), were published, each reported
gene expression data and measures of drug response for a large number of drugs and
hundreds of cell lines. In 2013, we published a comparative analysis that reported gene
expression profiles for the 471 cell lines profiled in both studies and dose response
measurements for the 15 drugs characterized in the common cell lines by both studies. While
we found good concordance in gene expression profiles, there was substantial inconsistency in
the drug responses reported by the GDSC and CCLE projects. Our paper was widely discussed
and we received extensive feedback on the comparisons that we performed. This feedback,
along with the release of new data, prompted us to revisit our initial analysis. Here we present a
new analysis using these expanded data in which we address the most significant suggestions
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for improvements on our published analysis: that drugs with different response characteristics
should have been treated differently, that targeted therapies and broad cytotoxic drugs should
have been treated differently in assessing consistency, that consistency of both molecular
profiles and drug sensitivity measurements should both be compared across cell lines to
accurately assess differences in the studies, that we missed some biomarkers that are
consistent between studies, and that the software analysis tools we provided with our analysis
should have been easier to run, particularly as the GDSC and CCLE released additional data.

Methods: For each drug, we used published sensitivity data from the GDSC and CCLE to
separately estimate drug dose-response curves. We then used two statistics, the area between
drug dose-response curves (ABC) and the Matthews correlation coefficient (MCC), to robustly
estimate the consistency of continuous and discrete drug sensitivity measures, respectively. We
also used recently released RNA-seq data together with previously published gene expression
microarray data to assess inter-platform reproducibility of cell line gene expression profiles.

Results: This re-analysis supports our previous finding that gene expression data are
significantly more consistent than drug sensitivity measurements. The use of new statistics to
assess data consistency allowed us to identify two broad effect drugs — 17-AAG and
PD-0332901 — and three targeted drugs — PLX4720, nilotinib and crizotinib — with moderate
to good consistency in drug sensitivity data between GDSC and CCLE. Not enough sensitive
cell lines were screened in both studies to robustly assess consistency for three other targeted
drugs, PHA-665752, erlotinib, and sorafenib. Concurring with our published results, we found
evidence of inconsistencies in pharmacological phenotypes for the remaining eight drugs.
Further, to discover “consistency” between studies required the use of multiple statistics and the
selection of specific measures on a case-by-case basis.

Conclusion: Our results reaffirm our initial findings of an inconsistency in drug sensitivity
measures for eight of fifteen drugs screened both in GDSC and CCLE, irrespective of which
statistical metric was used to assess correlation. Taken together, our findings suggest that the
phenotypic data on drug response in the GDSC and CCLE continue to present challenges for
robust biomarker discovery. This re-analysis provides additional support for the argument that
experimental standardization and validation of pharmacogenomic response will be necessary to
advance the broad use of large pharmacogenomic screens.
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SUMMARY BOX

In 2013 we reported inconsistency in the drug sensitivity phenotypes measured by the
Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Lines Encyclopedia
(CCLE) studies. Here we revisit that analysis and address a number of potential concerns
raised about our initial methodology:

e Different drugs should be compared based on the observed pattern of response.
To address this concern, we considered drugs falling into three classes: (1) drugs with
no observed activity in any of the cell lines; (2) drugs with sensitivity observed for only a
small subset of cell lines; and (3) drugs producing a response in a large number of cell
lines. For each class, we assessed the correlation in drug response between studies
using a variety of metrics, selecting the metric that performed best in each individual
comparison. While no metric identified any substantial consistency for the first class
(sorafenib, erlotinib, and PHA-665752), judicious choice of metric found high consistency
for three of eight highly targeted therapies in the second class (nilotinib, crizotinib, and
PLX4720), but no metric found better than moderate correlation for two of four broad
effect drugs in the third class (PD-0332901 and 17-AAG).

e Measure of consistency for targeted drugs. Beyond considering drug response
profiles, targeted drugs should be treated differently when assessing consistency. We
used six different statistics to test consistency, using both continuous and discretized
drug sensitivity data. We confirmed that Spearman rank correlation, used in our 2013
study, does not detect consistency for the three highly targeted therapies profiled by
GDSC and CCLE. Other statistics, such as Somers' Dxy or Matthews correlation
coefficient, yielded moderate to high consistency for specific drugs, but there was no
single metric that found good consistency for each of the targeted drugs.

e Consistency of molecular profiles across cell lines. In our initial published analysis,
we reported correlations based on comparing drug response “across cell lines” while
gene expression levels were compared “between cell lines.” It has been suggested it
would be more appropriate to compute correlations “across cell lines” for both molecular
and pharmacological data. Here we report a number of statistical measures of
consistency for both gene expression and drug response compared across cell lines and
confirm our initial finding that gene expression is significantly more consistent than the
reported drug phenotypes.

e Some published biomarkers are reproducible between studies. In our initial
comparative study we found that the majority of known biomarkers predictive of drugs
response are reproducible across studies. We extended the list of known biomarkers and
found that seven out of eleven are significant in GDSC and CCLE. While one can find
such anecdotal examples, they do not lead to a general process for discovering a new
biomarker in one study that can be applied to another study.

e Research reproducibility. The code we provided with our original paper was
incompatible with updated releases of the GDSC and CCLE datasets. We developed
PharmacoGx, which is a flexible, open-source software package based on the statistical
language R, and used it to derive the results reported here.
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INTRODUCTION

The goal of precision medicine is identification of the best therapy for each patient and their own
unique manifestation of a disease. This is particularly important in oncology where multiple
cytotoxic and targeted drugs are available, but their therapeutic benefits are often insufficient or
limited to a subset of cancer patients. Large-scale pharmacogenomics studies in which drug
and drug candidates are screened against panels of molecularly characterized cancer cell lines,
have been proposed as a means for identifying drugs effective against specific cancers and for
developing predictive genomic biomarkers of drug response. The Genomics of Drug Sensitivity
in Cancer project (GDSC, referred to as the Cancer Genome Project [CGP] in our initial study) *,
and the Cancer Cell Line Encyclopedia (CCLE)? have each reported results of such screens,
providing data on drug sensitivities and molecular profiles for collections of representative
cancer cell lines.

Presented with these two large studies, our hope was that we could use the data to
identify new gene expression biomarkers of drug response in one study that would predict
response in the second. To our surprise, we were unable to find such biomarkers for many
drugs, even when we limited our analysis to the drugs and cell lines screened in common by the
GDSC and CCLE. There have since been a number of published studies that have reported
difficulties in building and validating biomarkers of response using these two datasets *°.

To understand the cause of this failure, we compared the gene expression profiles and
the drug response data reported by the GDSC and CCLE "2 We found that, although the gene
expression data showed reasonable consistency between the two studies, the drug sensitivity
measurements were surprisingly inconsistent. This inconsistency can be clearly seen by plotting
drug response reported for each of fifteen drugs provided in both GDSC and CCLE for the 471
cell lines assayed by both studies "®. Since the publication of our comparative analysis, we
received a great deal of constructive feedback from the scientific community regarding multiple
aspects of the analysis we reported, including suggestions for analytical methods that might
uncover greater consistency between the studies. We were also fortunate that both GDSC and
CCLE have released new drug sensitivity and gene expression data, allowing us not only to
revisit our initial analysis, but also to extend it using these new data.

To begin, we investigated alternative statistics to assess the inter-study consistency for
drugs exhibiting different patterns of response across the collection of cell lines common to both
studies. We then considered statistical methods for highly targeted drugs expected to be
sensitive only in a subset of cell lines. We compared consistency estimates between continuous
and discrete gene expression and drug sensitivity data, and importantly, assessed how potential
discordance may affect the discovery of molecular features (biomarkers) predictive of drug
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response. We also revisited our analysis of consistency in gene expression levels between
studies and evaluated “known biomarkers” of response expected to be predictive in these
studies.

This extensive reanalysis found that by selecting specific statistical measures on a
case-by-case basis, one can identify moderate to good consistency for two broad effect and
three highly targeted therapies. However, overall our results support our initial observations that
drug sensitivity data in GDSC and CCLE are inconsistent for the majority of the drugs, even
when considering metrics yielding the highest consistency for individual drugs. Our present
analysis adds further evidence supporting the need for robust and standardized experimental
pipelines to assure generation of comparable, biologically relevant measures of drug response
as well as unbiased statistical and machine learning methods to better predict response. Failure
to do so will continue to limit the potential for use of large-scale pharmacogenomic screens in
reliable drug development and precision medicine applications.

RESULTS

The overall analysis design of our study is represented in Figure 1.

Intersection between GDSC and CCLE

To identify the largest set of cell lines and drugs profiled by both GDSC and CCLE, we used the
PharmacoGx computational platform ° that is able to store, analyze, and compare curated
pharmacogenomic datasets. We created new datasets for the new releases of the GDSC (June
2014 and July 2015 for drug sensitivity and gene expression data, respectively) and CCLE
(February 2015) projects. The improved curation of new data using PharmacoGx identified 15
drugs in common between GDSC and CCLE as well 698 cell lines, originating from 23 tissue
types (Supplementary Figure 1). This is the same number of shared drugs but the updated
datasets contains a larger number of common cell lines than the 471 reported in our previous
analysis ’.

Comparing single nucleotide polymorphism (SNP) fingerprints

To check the accuracy of cell line name matching, we compared single nucleotide
polymorphism (SNP) fingerprints using data released in both studies. We first controlled for the
quality of the SNP arrays and excluded eleven of 1,396 profiles due to low quality (see
Methods). We then compared SNP fingerprints of cell lines with identical name using > 80% as
threshold for concordance. Consistent with the results reported by the CCLE ?, the vast majority
of cell lines had highly concordant fingerprints (462 out of 470 cell lines with SNP profiles
available in both GDSC and CCLE; Supplementary File 1). Using 80% genomic identity as a
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cutoff 2'°, we found eight cell lines with same identifier but different SNP identity (Figure 2);
these were removed from our subsequent analyses to avoid discrepancies due to the use of
possibly mislabeled or contaminated cell lines.

Estimation and filtering of drug dose-response curves

We used the recent release of drug dose-response data from GDSC and CCLE to fit
dose-response curves and assess their quality. An important factor influencing the fitting of drug
dose-response curves is the range of concentration used for each cell line/drug combination. In
CCLE, all dose-response curves were measured at eight concentrations: 2.501073, 80107,
2.5010%, 80102, 2.5010", 80107, 2.5, and 8 uM. However, in GDSC response was measured at
a different set of concentrations for each drug. The minimum concentrations for different drugs
range from 3.125010” to 15.625 pM. In each case, the concentrations tested by GDSC form a
geometric sequence of nine terms with a common ratio of two between successive
concentrations. Thus, the maximum concentration tested for each drug is 256 times the
minimum concentration for that drug and ranges from 80107 to 4000 uM.

To properly fit drug dose-response curves, one must make multiple assumptions
regarding the cell viability measurements generated by the pharmacological platform used in a
given study. For instance, one assumes that viability ranges between 0% and 100% after data
normalization and that consecutive viability measurements remain stable or decrease
monotonically reflecting response to the drug being tested. Quality controls were implemented
to flag dose-response curves that strongly violate these assumptions (Supplementary Methods).
We identified 2315 (2.9%) and 123 (1%) dose-response curves that failed to pass in GDSC and
CCLE, respectively, as exemplified in Figure 3 (all noisy curves are provided in Supplementary
File 2). We excluded these cases to avoid erroneous curve fitting.

We used least squares optimization to fit a three-parameter sigmoid model (Methods) for
the drug dose-response curves in GDSC and CCLE (Supplementary File 3). For each fitted
curve, we computed the most widely used drug activity metrics, that are the area under the
curve (AUC) and the drug concentration required to inhibit 50% of cell viability (IC).

Consistency of drug sensitivity data

We began by computing the area between the two drug dose-response curves (ABC) to assess
consistency of cell viability data for each cell line combination screened in both GDSC and
CCLE using the common concentration range. ABC measures the difference between two
drug-dose response curves by estimating the absolute area between these curves, which
ranges from 0% (perfect consistency) to 100% (perfect inconsistency). The ABC statistic
identified highly consistent (Figure 4A,B) and highly inconsistent (Figure 4C,D) dose-response
curves between GDSC and CCLE. The mean of the ABC estimates for all drug-cell line
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combinations was 10% (Supplementary Figure 2A), with PD-0332991 yielding the highest
discrepancies (Supplementary Figure 2B).

We compared biological replicates in GDSC, which were performed independently at the
Massachusetts General Hospital (MGH) and the Wellcome Trust Sanger Institute (WTSI). These
experiments are comprised of 577 cell lines treated with AZD6482, a PI3KJ inhibitor screened in
GDSC (Supplementary File 4). We computed the ABC of these biological replicates and
observed both highly consistent and inconsistent cases (Supplementary Figure 3). We then
computed the median ABC values for each pair of drugs in GDSC and used these as a distance
metric for complete linkage hierarchical clustering. We found that the MGH- and
WTSI-administered AZD6482 experiments clustered together, suggesting that the differences
between dose-response curves of biological replicates were smaller than the differences
observed between different drugs (Supplementary Figure 4A). We performed the same
clustering analysis by computing the ABC-based distance between all the drugs in GDSC and
CCLE and observed that only three out of the fifteen common drugs clustered tightly (17-AAG,
lapatinib, and PHA-665752; Supplementary Figure 4B). Despite the small number of cell lines
exhibiting sensitivity to PHA-665752 and lapatinib, these drugs closely clustered between
GDSC and CCLE; however this was not the case for other highly targeted therapies, such as
AZDO0530, nilotinib, crizotinib and TAE684 Supplementary Figure 4B).

Although the ABC values provide a measure of the degree of consistency between
studies, it is the AUC and IC,, estimates, and their correlation with molecular features (such as
mutational status and gene expression) that are commonly used to assess drug response.
Therefore we revisited our comparative analysis of the drug sensitivity data using the expanded
data now available and the standardized methods implemented in our PharmacoGx platform.
Using the same three-parameter sigmoid model to fit drug dose-response curves in GDSC and
CCLE (see Methods), we recomputed AUC and IC,, values and observed very high correlation
between published and recomputed drug sensitivity values for each study individually
(Spearman p > 0.93; Supplementary Figure 5).

It has been suggested that some of the observed inconsistencies between the GDSC
and CCLE may be due to the nature of targeted therapies, which are expected to have selective
activity against some cell lines '"'. This is not an unreasonable assumption as the measured
response in resistant cell lines may represent random technical noise that one should not
expect to be correlated between experiments. We therefore decided to clearly discriminate
between highly targeted drugs with narrow growth inhibition effects and drugs with broader
effects. We used the full GDSC and CCLE datasets to compare the variation of the drug
sensitivity data of known targeted and cytotoxic therapies as classified in the original studies
(Supplementary Figure 6). We observed that drugs can be classified in these two categories
based on median absolute deviation (MAD) of the estimated AUC values (Youden’s optimal
cutoff > of AUC MAD > 0.13 for cytotoxic drugs). We then used this cutoff on the common
drug-cell line combinations in GDSC and CCLE to define three classes of drugs (Supplementary
Figure 7):
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e No effect: Drugs with minimal observed activity (typically active in less than 5
“non-resistant” cell lines with AUC > 0.2 or IC,, < 1 uM in either study). This class
includes sorafenib, erlotinib and PHA-665752.

e Narrow effect: Highly targeted drugs with activity observed for only a small subset of
cell lines (AUC MAD < 0.13). This group includes nilotinib, lapatinib, nutlin-3, PLX4720,
crizotinib, PD-0332991, AZD0530, and TAE684.

e Broad effect: Drugs producing a response in a large number of cell lines (AUC MAD >
0.13). This includes AZD6244, PD-0325901, 17-AAG and paclitaxel.

We then compared the AUC (Figure 5, Supplementary Figures 8 and 9 for published AUC,
recomputed AUC and AUC computed based on the common concentration range, respectively)
and IC,, (Supplementary Figures 10 and 11) values and calculated the consistency of drug
sensitivity data between studies using all common cases and only those that the data suggested
were sensitive in at least one study (Figures 6 and Supplementary Figure 12 for AUC and IC,,,
respectively, and Supplementary Tables 1-5). Given that no single metric can capture all forms
of consistency, we extended our previous study by using the Pearson correlation '3,
Spearman ™, and Somers' Dxy ' rank correlation coefficients to quantify the consistency of
continuous drug sensitivity measurements across studies (see Methods).

As expected, no consistency was observed for drugs with “no effect” (Figure 6A). For
AUC of drugs with narrow and broad effects, Somers' Dxy was the most stringent, with
consistency estimated to be < 0.4 except for two drugs (PD-0325901 and 17-AAG), which were
also the two drugs identified as the most consistent using Spearman correlation (o ~ 0.6; Figure
6A). However, these statistics did not capture potential consistency for the most highly targeted
therapies, nilotinib, crizotinib, and PLX4720, for which the Pearson correlation coefficient gave
the best evidence of concordance, as this statistics is strongly influenced by a small number of
highly sensitive cell lines (Figure 5).

We then restricted our analysis to the cell lines identified as sensitive in at least one
study and computed the same consistency measures (Figure 6B). To our surprise, eliminating
the resistant cell lines resulted in decreased consistency for most drugs, which suggests a high
level of inconsistency across sensitive cell lines, with the only exceptions of the highly targeted
drugs nilotinib and crizotinib.

To test whether discretization of drug sensitivity data into binary calls (“resistant” vs.
“sensitive”; see Methods) improves consistency across studies, we used three association
statistics, the Matthews correlation coefficient '®, Cramer's V ', and the informedness '®
statistics (Figure 6C). These statistics are designed for use with imbalanced classes, which is
particularly relevant in large pharmacogenomic datasets where, for targeted therapies, there are
often many more resistant cell lines than sensitive ones. As expected, the highly targeted
therapies, nilotinib and PLX4720 (and nutlin-3 using informedness), yielded high level of
consistency, but this was not the case for the other targeted therapies. We also found that the
drug sensitivity calls for drugs with broader inhibitory effects were also poorly correlated
between studies (Figure 6C).
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We performed the same analysis using IC,, values truncated to the maximum
concentration used for each drug in each study separately. We observed similar patterns with
nilotinib and crizotinib yielding moderate to high consistency across studies (Supplementary
Figure 12). Note that Somers' Dxy rank correlation is biased in the presence of many repeated
values in the datasets being analyzed, which is the case for truncated IC,, — pairs of cell line
with identical IC,, values in one dataset but not in the other will not be taken into account as
evidence of inconsistency — which explains the artifactual perfect consistency it suggests for
both nilotinib and crizotinib.

Consistency of gene expression across cell lines

Discovering new biomarkers predictive of drug response requires both robust pharmacological
data and molecular profiles. In our original study, we showed that the gene expression profiles
for each cell line profiled by both GDSC and CCLE were highly consistent. However, we found
that mutation profiles were only moderately consistent, a result that was later confirmed by
Hudson et al. ™.

There have been questions as to whether the measures of consistency we reported for
drug response should be compared to those we reported for gene expression. Specifically, we
reported correlations based on comparing drug response “across cell lines,” meaning that we
examined the correlation of response of each cell line to a particular drug reported by the GDSC
with the response of the same cell line to the same drug reported by the CCLE. In contrast we
reported correlation of gene expression levels “between cell lines,” meaning that we compared
the expression of all genes within each cell line in the GDSC to the expression of all genes in
the same cell line in the CCLE (see Supplementary Methods). It has been suggested that a
more valid comparison would be to compare both drug response and gene expression across
cell lines. We report the results of such an “across cell lines” analysis of gene expression here,
computed using techniques analogous to those we used to compare drug response.

We began by comparing the distribution of gene expression measurements generated
using the microarray Affymetrix HG-U219 platform in GDSC, the microarray Affymetrix
HG-U133PLUS2 platform and the new lllumina RNA-seq data in CCLE (Supplementary Figure
13). We observed similar bimodal distributions, suggesting the presence of a natural cutoff to
discriminate between lowly vs. highly expressed genes. We therefore fit a mixture of two
gaussians and identified an expression cutoff for each platform separately (Supplementary
Figure 13). We then compared the consistency of continuous and discretized gene expression
values between (i) the microarray Affymetrix HG-U133PLUS2 and lllumina RNA-seq platforms
within  CCLE (intra-lab consistency); (i) the microarray Affymetrix HG-U219 and
HG-U133PLUS2 platforms used in GDSC and CCLE, respectively (microarray, inter-lab
consistency); and (iii) the microarray Affymetrix HG-U219 and lllumina RNA-seq platforms used
in GDSC and CCLE, respectively (inter-lab consistency). Supporting our previous observations,
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we found that gene expression measurements are significantly more consistent than drug
sensitivity values when using all cell lines (Wilcoxon rank sum test p-value < 0.05; Figure 7A,;
Supplementary Figure 14A).

Similarly to the filtering we performed for drug sensitivity data, we subsequently
restricted our analysis to the cell lines showing high expression of a given gene/cell line
combination in at least one study. Again, gene expression measurements were significantly
more consistent than drug sensitivity values in this case (Wilcoxon rank sum test p-value < 0.05;
Figure 7B; Supplementary Figure 14B). When dichotomizing data into lowly/highly expressing
cell lines and resistant/sensitive cell lines, the gene expression data were still more consistent
(Figure 7C) although the difference was not always significant (Supplementary Figure 14C).

Consistency of gene-drug associations

The primary goal of the GDSC and CCLE studies was to identify new genomic predictors of
drug response for both targeted and cytotoxic therapies. We therefore evaluated whether the
good consistency in drug sensitivity data observed for nilotinib, PLX4720 and crizotinib, and the
moderate consistency observed for 17-AAG and PD-0332901 would translate in reproducible
biomarkers. We estimated gene—drug associations by fitting, for each gene and drug, a linear
regression model including microarray-based gene expression as predictor of drug sensitivity,
adjusted for tissue source (see Methods). Given the high correlation between the published and
recomputed AUC values in each study (Supplementary Figure 5) and their similar consistency
(Figure 6), all gene-drug associations were computed using published AUC for clarity.

We first computed the strength and significance of each gene expression in both
datasets separately. Similarly to our initial study ’, the strength of a given gene-drug association
is provided by the standardized coefficient associated to the corresponding gene expression in
the linear model and its significance is provided by the p-value of this coefficient (see Methods).
We then identified gene-drug associations that were reproducible in both datasets (same sign
and FDR < 5%) or that were dataset-specific (different sign or significant in only one dataset)
using continuous (Supplementary Figures 15 and 16 for common and all cell lines, respectively)
and discretized (Supplementary Figures 17 and 18 for common and all cell lines, respectively)
published AUC values as drug sensitivity data. We assessed the overlap of gene-drug
associations discovered in both datasets using the Jaccard index °. All jaccard indices were
low, with nilotinib yielded the largest overlap of gene-drug associations (32%), followed by
PD-0325901 and erlotinib (almost 20%), while the other drugs yielded less than 15% overlap
(Supplementary Figure 19). Our results further indicate that larger overlap exists for gene-drug
associations identified using the continuous drug sensitivity data compared with associations
using discretized drug sensitivity calls (Wilcoxon signed rank test p-value of 4x10% and 2x10°
for the common set and the full set of cell lines, respectively). We therefore focused our
analyses on the gene-drug associations identified using continuous published AUC values. The
number (and identity) of gene-drug associations computed using continuous published AUC
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values are provided in Supplementary Tables 6 and 7 (Supplementary Files 5 and 6) for
common and all cell lines, respectively.

Given that simply intersecting significant gene-drug associations identified in each
dataset separately yielded poor reproducibility for all drugs, we sought to more closely mimic the
biomarker discovery and validation process. We therefore used one dataset to discover
significant gene-drug associations and test whether this subset of markers validated in an
independent dataset. Using the discovery dataset, gene-drug associations are first ranked by
nominal p-values and their FDR is computed. An association is selected if it is part of the top
100 markers and its FDR is less than 5%. This procedure ensure to control for both significance
and number of selected biomarkers, which can vary with respect to the cell line panel used for
the analysis (larger panels enable the identification of more significant biomarkers due to
increased statistical power). A gene-drug association is validated in an independent dataset if its
nominal p-value is less than 0.05 and its “direction”, that is whether the marker is associated
with sensitivity or resistance, is identical to the one estimated during the discovery process.

We computed the proportions of validated gene-drug associations for each drug using
gene expression data in GDSC as discovery set and CCLE as validation set, and vice-versa
(Figure 8). Overall, we found that expression-based markers for PD-0325901 and nilotinib
yielded a high validation rate (> 80%) with either dataset as discovery set using the common cell
lines screened in GDSC and CCLE (Figure 8A). When using the entire cell line panels used in
each study, two more drugs -- lapatinib and erlotinib -- yielded high validation rate (Figure 8B).
17-AAG, and PLX4720 yielded validation rate between 60% and 80%, while the other drugs
yielded a validation rate around 50% or lower. For eight out of the fifteen drugs, using the entire
panel of cell lines screened in each study (Figure 8B) improved the validation rate compared to
limiting the analysis to common cell lines (Figure 8A). However validation rate decreased for five
other drugs, suggesting that using large, but different panels of cell lines may increase statistical
power but could also introduce biases in the biomarker discovery process.

We then investigated whether higher validation rates would be obtained by using more
stringent significance threshold and relaxing the constraint on the number of significant
associations in the discovery set (Supplementary Figures 20 and 21). Using common cell lines,
we found that proportion of validated gene-drug association monotonically increases with FDR
stringency for six drugs, with very high validation rate for the most stringent FDR cutoff
(validation rate > 80% for FDR < 0.1%) for 17-AAG, PD-0325901, PLX4720 and nilotinib using
either dataset as discovery set (Supplementary Figure 20). Using the entire panel of cell lines in
each study actually improved validation rate for six drugs, AZD6244, TAE684, AZD0530,
lapatinib — and erlotinib and sorafenib, for which insufficient number of sensitive cell lines were
screened in both GDSC and CCLE (Supplementary Figure 21). However, validation rate
decreased for 17-AAG, crizotinib and PLX4720, which suggest again that large, but different
panels of cell lines might introduce selection bias for some drugs.
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Known biomarkers

As recently reported by Goodspeed et al ', several known biomarkers for targeted therapies
have been shown to be predictive in both GDSC and CCLE. In our initial comparative study we
also found the following known gene-drug associations:

e BRAF mutations were significantly associated with sensitivity to MEK inhibitors
(AZD6244 and PD-0325901) and BRAFY®E inhibitor (PLX4720) with nominal p-values
< 0.01; see Supplementary Files 10-13 of our initial study.

e ERBB2 expression was significantly associated with sensitivity to lapatinib with nominal
p-value = 0.04 and 8.4010"°for GDSC and CCLE, respectively; see Supplementary Files
4 and 5 of our initial study.

e NQO1 expression was significantly associated with sensitivity to 17-AAG with nominal
p-value = 2.4010™" and 6.2010™" for GDSC and CCLE, respectively; see Supplementary
Files 4 and 5 of our initial study.

e MDM2 expression was significantly associated with sensitivity to Nutlin-3 with nominal
p-value = 7.70107® and 70102 for GDSC and CCLE, respectively; see Supplementary
Files 4 and 5 of our initial study.

e ALK expression was significantly associated with sensitivity to TAE684 with nominal
p-value = 1.6010° and 1.7010° or GDSC and CCLE, respectively; see Supplementary
Files 4 and 5 of our initial study.

We revisited our biomarker analysis using the new data released by GDSC and CCLE,
and our PharmacoGx platform to test whether additional known biomarkers can be identified. In
addition to the expression-based gene-drug association reported in Supplementary File 6, we
recomputed all gene-drug associations based on mutations (Supplementary File 7) and gene
fusions using the entire panel of cell lines in each study. We confirmed the reproducibility of the
known associations reported in our initial study, but we were not able to find reproducible
associations for EGFR mutations with response to AZD0530 and erlotinib, and HGF expression
with response to crizotinib (Table 1). The reproducibility of the vast majority of these previously
known associations attest to the relevance of the GDSC and CCLE datasets although our
results demonstrated that the noise and inconsistency in drug sensitivity data renders discovery
of new biomarkers difficult for the majority of the drugs.

DISCUSSION

Our original motivation in analyzing the GDSC and CCLE data was to develop predictive gene
expression biomarkers of drug response. When we applied a number of methods using one
study to select gene expression features and to train a classifier, and then tested it by trying to
predict reported drug response in the second study, our predictive models failed to validate for
half of the drugs tested “. Indeed, out of nine predictors yielding concordance index ?' 20.65 in
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cross-validation in the training set (GDSC), only four were validated in identical cell lines treated
with the same drugs in the validation set (CCLE) *.

As we explored the reasons for this failure, we first checked whether cell lines could
have drifted and consequently exhibited different transcriptional profiles between GDSC and
CCLE. We found that any genome-wide expression profile in one study would almost always
identify “itself” (its purported biological replica) as being most similar among the cell lines in the
other study. In a way this is not surprising. When gene expression studies were in their infancy,
there were many reports that compared the results from studies and found that they were
inconsistent and unreproducible in new studies — as demonstrated by the countless biomarkers
that fail to reproduce beyond their initial publication. As a result, scientists involved in gene
expression studies “circled the wagons” and developed both much more standardized
laboratory protocols and “best practices” for reproducible analysis, including data normalization
and batch corrections, that now mean that independent measurements from different
laboratories are far more often consistent and so can be used for signature development and
validation %2,

Unexpectedly, when we compared phenotypic measures of drug response that were
released by the GDSC and CCLE projects, we found discrepancies in growth inhibition effects
of multiple anticancer agents. What that means in practice is that, for some drugs, an
expression-based biomarker of drug response learned from one study would not likely be
predictive of the reported response in the other. And consequently neither of the studies might
be useful in predicting response in patients as many had hoped when these large
pharmacogenomic screens were published.

The feedback from the scientific community on our analysis, the availability of new data
from the GDSC and CCLE, as well as improvements in the PharmacoGx software platform we
developed to support this type of analyses °, prompted us to revisit the question of consistency
in these studies to see if we could find a principled way to identify correlated drug response
phenotypes. By testing a variety of methods of classifying the data, and choosing the metric
which gave the best consistency for each drug, we were able to find moderate to good
consistency of sensitivity data for two broad effect and three highly targeted drugs. We also
confirmed the overall lack of consistency between the studies for eight drugs, while there were
not enough sensitive cell lines that had been screened by both GDSC and CCLE to properly
assess consistency for the remaining three drugs. The summary box included with this paper
briefly describes the most significant issues that people have raised in discussing our previous
findings with us and summarizes what we have found in our reanalysis.

Some have suggested that one way to improve correlation would have have been to
compare the studies and throw out the most discordant data as noise and then compare the
remaining concordant data. While this would certainly find concordance in the remaining data,
the approach is equivalent to fitting data to a desired result, which is bad practice and certainly
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could not be extended to other data sets or to the classification of patient tumors as responsive
or nonresponsive to a particular therapy.

There is, however, merit in the suggestion that one would not expect to see correlation in
noise. And noise is precisely what one would expect to see in drug response data from cell lines
that are resistant to a particular drug or nonresponsive across the range of doses tested. As
reported here, filtering the data in each study independently to classify cell lines in a binary
fashion, and then comparing the binary classification between studies using a variety of metrics
developed to handle the intricacies of this sort of response data, also failed to find simple
correlations in the data, except for three of the highly targeted therapies, nilotinib, PLX4720 and
crizotinib. What this ultimately means is that the most and the least sensitive cell lines would not
appear to be the same when comparing the two studies.

There are many reasons for potential differences in measured phenotypes reported by
the GDSC and CCLE, including substantial differences in doses used for each drug and in the
methods used to both assay cell viability and to estimate drug response parameters. Ultimately
what our analysis suggests is that not only is there a need to carefully and appropriately
compare measurements, but also that there is a pressing need for standardization of both
laboratory and computational methods for assaying drug response.

The primary goal of the GDSC and CCLE studies was to link molecular features of a
large panel of cancer cell lines to their sensitivity to cytotoxic and targeted drugs. The
reproducibility of most of the known gene-drug associations provides evidence that these large
pharmacogenomic datasets are biologically relevant. When we investigated whether we could
find significant gene-drug associations discovered in one dataset that validate in the other
independent dataset, we observed over 75% validation rate for the most significant
expression-based biomarkers for eight of fifteen drugs, which is a major improvement over our
initial comparative study. However, this does not suggest that one can use these studies to find
new, reproducible gene-drug associations for the rest of the drugs -- excluding paclitaxel and
PHA-655752 for which no significant biomarkers could be identified -- as the majority of
associations can be found in only one dataset but not in both.

This study has several potential limitations. First, while the raw drug sensitivity data are
publicly available for GDSC, these data have not been released within the CCLE study. We
could not fit the drug dose-response curves using the technical triplicates but rather relied on
the published median sensitivity values. Second, we discretized drug sensitivity values by
selecting a common threshold to discriminate between highly resistant (AUC < 0.2 and IC,, = 1
MM ) and the rest of the cell lines for all the targeted agents. However, it is clear that such a
threshold could be optimized for each drug, which might have an impact on the consistency of
drug phenotypes and gene-drug associations based on binary sensitivity calls (note that the
same applies for gene expression data as well). Unfortunately the size of the current drug
sensitivity datasets is not sufficient to develop drug-specific thresholds for sensitivity values but
the release of larger pharmacogenomic studies may allow us to address this issue in the near
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future. Lastly, the current set of mutations of mutations assessed in both study is small (64
mutations), which drastically limits the search for mutation-based and other genomic aberrations
associated with drug response. Again, potential releases of whole-genome and whole-exome
sequencing will enable to better explore the genomic space of biomarkers in cancer cell lines,
and their reproducibility across studies.

CONCLUSION

As is true of many scientists working in genomics and oncology, we were excited when the
GDSC and CCLE released their initial data sets and were very hopeful that these projects would
help to accelerate drug discovery and further the development of precision medicine in
oncology. However, what we found initially, and what the reanalysis presented here further
indicates, is that there are inconsistencies between the measured phenotypic response to drugs
in these studies. Even in our reanalysis, where we used methods specific to individual drugs
and the response characteristics of the cell lines tested, we were only able to find new
biomarkers predictive of response for around half of the drugs screened in both studies.
Consequently, it is challenging to use the data from these studies to develop general purpose
classification rules for all drugs.

Our finding that gene expression measurements are significantly more consistent than
drug sensitivity data, indicate that the main barrier to biomarker development using these data is
the unreliability in the reported response phenotypes for many drugs. For studies such as these
to realize their full potential, additional work must be done to develop robust and reproducible
experimental and analytical protocols so that the same compound, tested on the same set of
cell lines by different groups, yields consistent and comparable results. Barring this, a predictive
biomarker of response developed from one study is unlikely to be able to reliably validated on
another, and consequently, is unlikely to be useful in predicting patient response.

From having worked in large-scale genomic analyses, we recognize the challenges
involved in planning and executing such studies and commend the GDSC and CCLE for their
work and for making all the data available. However, we strongly encourage the GDSC, the
CCLE, the pharmacogenomics and bioinformatics communities as a whole, to invest the
necessary time and effort to standardize drug response assays in order to achieve greater
consistency and to assure that measurements in cell lines are relevant for predicting response
in patients. Ultimately, that effort will help to assure that mammoth undertakings in drug
characterization can deliver on their promise to identify better therapies and biomarkers
predictive of response.
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METHODS

Code and software are available upon request and will be made publicly available upon
publication.

The PharmacoGx platform

The lack of standardization of cell line and drug identifiers hinders comparison of molecular and
pharmacological data between large-scale pharmacogenomic studies, such as the GDSC and
CCLE. To address this issue we developed PharmacoGx, a computational platform enabling
users to download and interrogate large pharmacogenomic datasets that were extensively
curated to ensure maximum overlap and consistency °. PharmacoGx provides (i) a new object
class, called PharmacoSet, that acts as a container for the high-throughput pharmacological
and molecular data generated in large pharmacogenomics studies (detailed structure provided
in Supplementary Methods); and (ii) a set of parallelized functions to assess the reproducibility
of pharmacological and molecular data and to identify molecular features associated with drug
effects. The PharmacoGx package is open-source and publicly available on the Comprehensive
R Archive Network (https://cran.r-project.org/web/packages/PharmacoGx/).

The GDSC (formerly CGP) dataset

Drug sensitivity data

We used the data release 5 (June 2014) with 6,734 new IC,, values for a total of 79,903 drug
dose-response curves for 139 different drugs tested on a panel of up to 672 unique cell lines.

Molecular profiles

Gene expression data were downloaded from ArrayExpress, accession number E-MTAB-3610.
This new data were generated using Affymetrix HG-U219 microarray platform. We processed
and normalized the CEL files using RMA 2* with BrainArray # chip description file based on
Ensembl gene identifiers (version 19). This resulted in a matrix of normalized expression for
17,616 unique Ensembl gene ids.

Mutation and gene fusion calls were downloaded from the GDSC website
(http://www.cancerrxgene.org/downloads/) and processed as in our initial study ’.

The CCLE dataset

Drug sensitivity data

We used the drug sensitivity data available from the CCLE website
(http://www.broadinstitute.org/ccle/home) and updated on February 2015 with a total number of
11670 dose-response curves for 24 drugs tested in a panel of up to 504 cell lines.
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Molecular profiles
Gene expression data were downloaded from the CCLE website and CGHub ¢ for the
Affymetrix HG-U133PLUS2 and lllumina HiSeq 2500 platforms, respectively. Normalization of
microarray data (1036 cell lines) was performed the same way than for GDSC. RNA-seq data
(935 cell lines) were downloaded as BAM files previously aligned using TopHat ? and the
quantification of gene expression was performed using Cufflinks 2 based on Ensembl GrCh37
human reference genome.

Mutation data were retrieved from the CCLE website and processed as in our initial
study .

Curation of drug and cell line identifiers

The lack of standardization for cell line names and drug identifiers represents a major barrier for
performing comparative analyses of large pharmacogenomics studies, such as GDSC and
CCLE. We therefore curated these datasets to maximize the overlap in cell lines and drugs by
assigning a unique identifier to each cell line and drug. Entities with the same unique identifier
were matched. Manual search was then applied to match any remaining cell lines or drugs
which were not matched based on string similarity. The cell line curation was validated by
ensuring that the cell lines with matched name had a similar SNP fingerprint (see below). The
drug curation was validated by examining the extended fingerprint of each of their SMILES
strings % and ensuring that the Tanimoto similarity % between two drugs called as the same, as
determined by this fingerprint, was above 0.95.

Cell line identity using SNP fingerprinting

To assess the identity of cell lines from GDSC and CCLE, data of low quality was first excluded
from our analysis panel (detailed procedure described in Supplementary Methods). Of the 973
CEL files from GDSC, only 66 fell below the 0.4 threshold (6.88%) for contrast QC scores,
indicating issues in resolving base calls. Additionally, five of the 1,190 CEL files from CCLE had
an absolute difference between contrast QC scores for Nsp and Sty fragments greater than 2,
thus indicating some issues with the efficacy of one enzyme set during sample preparation. CEL
files with contrast QC scores indicative of some sort of issue with the assay that would affect the
genotype call rate or birdseed accuracy were removed and genotype calling was conducted on
the remaining CEL files using Birdseed version 2. The resulting files were then filtered to keep
only the 1006 SNP fingerprints that originated from CEL files that had a common cell line
annotation between GDSC and CCLE (503 CEL files from each). Finally, pairwise
concordances of all SNP fingerprints were generated according to the method outlined by Hong
etal. *.

Drug dose-response curves

To identify artefactual drug dose-response curves due to experimental or normalization issues,
we developed simple quality controls (QC; details in Supplementary Methods). Briefly, we
checked whether normalized viability measurements range between 0% and 100% and that
consecutive measurements remain stable or decrease monotonically reflecting response to the
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drug being tested. The drug dose-response curves which did not pass these simple QC were
flagged and removed from subsequent analyses as the curve fitting would have yielded
erroneous results.

All dose-response curves were fitted to the equation

_ 1
Y T TwECy™

where y = 0 denotes death of all infected cells, y = y(0) = 1 denotes no effect of the drug dose,
EC,, is the concentration at which viability is reduced to half of the viability observed in the
presence of an arbitrarily large concentration of drug, and HS is a parameter describing the
cooperativity of binding. HS < 1 denotes negative binding cooperativity, HS = 1 denotes
noncooperative binding, and HS > 1 denotes positive binding cooperativity. The parameters of
the curves were fitted using the least squares optimization framework. Comparison of our
dose-response curve model with those used in the GDSC and CCLE publications is provided in
Supplementary Methods.

Discretization of pharmacogenomic data

Drug sensitivity data

To discretize the drug sensitivity data, we used AUC < 0.2 (IC,, 2 1 yM) and AUC < 0.4 (IC,, 2
10 pM) to identify the “resistant” cell lines for targeted and cytotoxic drugs, respectively, while
the rest of the cell lines are classified as “sensitive. These reasonable, although somewhat
arbitrary, cutoffs enabled to explore the potential of such binary drug sensitivity calls as new
drug phenotypic measures to find consistency in drug sensitivity data and gene-drug
associations.

Gene expression data

To discretize the drug sensitivity data into lowly vs. highly expressed genes, we fit a mixture of 2
gaussians of unequal variance using the full distribution of expression values of the 17,401
genes in common between GDSC and CCLE datasets. We defined the expression threshold as
the expression value for which the posterior probability of belonging to the left tail of the highly
expression distribution is 10%.

Mutation data

Similarly to the GDSC and CCLE publications, we transformed the original mutation data into
binary values that represent the absence (0) or presence (1) of any missense mutations in a
given gene in a given cell line.

Gene-drug associations

We assessed the association, across cell lines, between a molecular feature and response to a
given drug, referred to as gene-drug association, using a linear regression model adjusted for
tissue source:
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Y = Bo + BiGi + BzT

where Y denotes the drug sensitivity variable, G, and T denote the expression of gene i and the
tissue source respectively, and Bs are the regression coefficients. The strength of gene-drug
association is quantified by 8, above and beyond the relationship between drug sensitivity and
tissue source. The variables Y and G are scaled (standard deviation equals to 1) to estimate
standardized coefficients from the linear model. Significance of the gene-drug association is
estimated by the statistical significance of B, (two-sided t test). When applicable, p-values were
corrected for multiple testing using the false discovery rate (FDR) approach *'.

As we recognized that continuous drug sensitivity is not normally distributed, which
violates one of the assumption of the linear regression model described above, we also
assessed the consistency of gene-drug association using discretized (binary) drug sensitivity
calls as the response variable in a logistic regression model adjusted for tissue source, similarly
to the linear regression model.

Measure of consistency

Area between curves (ABC)

To quantify the difference between two dose-response curves, we computed the area between
curves (ABC). ABC is calculated by taking the unsigned area between the two curves over the
intersection of the concentration range tested in the two experiments of interest, and
normalizing that area by the length of the intersection interval. In the present study, we
compared the curves fitted for the same drug-cell line combinations tested both in GDSC and
CCLE. Further details are provided in Supplementary Methods.

Pearson correlation coefficient (PCC)

PCC is a measure of the linear correlation between two variables, giving a value between +1
and -1 inclusive, where 1 represents total positive correlation, 0 represents no correlation, and
-1 represents total negative correlation . PCC is sensitive to the presence of outliers, like a
few sensitive cell lines in the case of drug sensitivity data measured for highly targeted
therapies or genes rarely expressed.

Spearman rank correlation coefficient (SCC)

SCC is a nonparametric measure of statistical dependence between two variables and is is
defined as the Pearson correlation coefficient between the ranked variables ™. It assesses how
well the relationship between two variables can be described using a monotonic function. If
there are no repeated data values, a perfect Spearman correlation of +1 or —1 occurs when
each of the variables is a perfect monotone function of the other. Contrary to PCC, SCC can
capture non linear relationship between variables but is insensitive to outliers, which is frequent
for drug sensitivity data measured for highly targeted therapies or genes rarely expressed.
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Somers’ Dxy rank correlation (DXY)

DXY is a non-parametric measure of association equivalent to (C - 0.5) * 2 where C represents
the concordance index ?' that is the probability that two variables will rank a random pair of
samples the same way "°.

Matthews correlation coefficient (MCC)

MCC is used in machine learning as a measure of the quality of binary classifications '°. It takes
into account true and false positives and negatives and is generally regarded as a balanced
measure which can be used even if the classes are of very different sizes. MCC is in essence a
correlation coefficient between two binary classifications; it returns a value between -1 (perfect
opposite classification) and +1 (identical classifications), with 0 representing association no
better than random chance.

Cramer’s V (CRAMERYV)

CRAMERYV is a measure of association between two nominal variables, based on Pearson's
chi-squared statistic, giving a value between 0 (no association) and +1 (perfect association) *’.
In the case of 2x2 contingency table, such as binary drug sensitivity or gene expression
measurements, CRAMERY is equivalent to the Phi coefficient.

Informedness (INFORM)

For a 2x2 contingency table comparing two binary classifications, INFORM can be defined as
Specificity + Sensitivity - 1, which is equivalent to true positive rate - false positive rate '®. The
magnitude of INFORM gives the probability of an informed decision between the two classes,
where INFORM > 0 represents appropriate use of information, 0 represents chance-level
decision, < 0 represents perverse use of information.
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1 Tables
Drug Gene Type GDSC effect size GDSC pvalue CCLE effectsize CCLE pvalue Reproducible
17-AAG NQO1 expression 0.55 5.3E-39 1.32 8.8E-07 YES
PD-0325901 BRAF mutation 0.83 6.4E-09 0.82 8.1E-10 YES
AZD6244 BRAF mutation 0.93 6.1E-10 0.86 3.7E-10 YES
TAE684 ALK expression 0.28 2.2E-07 0.24 3.3E-02 YES
AZD0530 EGFR mutation 0.03 9.5E-01 0.51 8.2E-03 NO
AZD0530 BCR_ABL fusion 3.87 2.2E-18
Crizotinib HGF expression -0.03 6.5E-01 0.42 8.9E-03 NO
PLX4720 BRAF mutation 1.75 8.6E-46 1.38 2.2E-27 YES
Nutlin-3 MDM2 expression 0.39 2.0E-25 1.06 8.3E-04 YES
lapatinib ERBB2 expression 0.42 1.1E-12 0.70 3.9E-07 YES
Nilotinib BCR_ABL fusion 6.15 5.7E-52
PHA-665752 HGF expression 0.04 4.9E-01 0.06 7.7E-01  NO
Erlotinib EGFR mutation 0.71 1.9E-01 1.27 2.4E-12 NO
Sorafenib FLT3 mutation 1.20 1.9E-02 0.96 3.5E-05 YES

Table 1: List of known gene-drug associations with their effect size and significance in GDSC and CCLE.
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Figure 1: Analysis design. GDSC: Genomics of Drug Sensitivity in Cancer; AE: ArrayExpress; Cosmic: Cata-
logue of Somatic Mutations in Cancer; CGHub: Cancer Genomics Hub; CCLE: Cancer Cell Line Encyclopedia.
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Figure 2: SNP fingerprinting between cancer cell lines screened in GDSC and CCLE.
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Figure 3: Examples of noisy drug dose-response curves identified during the filtering process in GDSC and
CCLE. The grey area represents the common concentration range between studies.
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Figure 4: Examples of (A,B) consistent and (C,D) inconsistent drug dose-response curves in GDSC and CCLE.
The grey area represents the common concentration range between studies.
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Figure 7: Consistency of gene expression and drug sensitivity data between GDSC and CCLE using multiple
10

consistency measures.
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Figure 8: Proportion of gene-drug associations identified in a discovery set (top 100 gene-drug associations
as ranked by p-values and FDR < 5%) and validated in an independent validation dataset. In blue and red
are the gene-drug associations identified in GDSC and CCLE, respectively. Associations are identified using
gene expression data as input and (A) continuous published AUC values as output in a linear model using only
common cell lines or (B) all cell lines. The number of selected gene-drugs associations in each datasets is
provided in parentheses. The symbol ™ represents the significance of the proportion of validated gene-drug
associations, computed as the frequency of 1000 random subsets of markers of the same size having equal or

greater validation rate compared to the observed rate.
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3 Supplementary Tables

PCC.FULL SCC.FULL DXY.FULL PCC.SENS SCC.SENS DXY.SENS MCC CRAMERV INFORM
paclitaxel 0.39 0.38 0.26 0.42 0.39 0.27 0.16 0.16 0.14
17-AAG 0.55 0.56 0.39 0.50 0.52 0.36 0.15 0.15 0.33
PD-0325901 0.67 0.63 0.44 0.47 0.45 0.31 0.43 0.43 0.39
AZD6244 0.43 0.30 0.19 0.15 0.10 0.06 045 0.45 0.30
TAE684 0.46 0.41 0.28 0.02 -0.26 -0.21 0.28 0.28 0.27
AZD0530 0.51 0.43 0.27 0.08 0.27 0.23 0.39 0.39 0.24
PD-0332991 0.36 0.35 0.12 -0.06 -0.16 -0.13  0.09 0.09 0.18
Crizotinib 0.58 0.16 0.04 0.91 0.60 0.40 0.44 0.44 0.20
PLX4720 0.64 0.37 0.13 -0.01 0.02 -0.02 0.69 0.69 0.71
Nutlin-3 0.38 0.32 0.15 0.02 -0.02 0.00 042 0.42 0.95
lapatinib 0.59 0.43 0.17 0.17 0.14 0.07 0.49 0.49 0.39
Nilotinib 0.78 0.16 0.01 0.63 0.60 040 0.77 0.77 0.60
PHA-665752 0.16 -0.02 -0.10 -0.50 -0.20 -0.20 -0.02 0.02 -0.01
Erlotinib 0.34 0.46 0.16 -1.00 -0.01 0.01 -0.01
Sorafenib 0.30 0.28 -0.00 -0.91 -0.50 -0.02 0.02 -0.02
Supplementary Table 1: Consistency of AUC values as published. Values are missing when less than 3 obser-
vations were available in a given category (resistant or sensitive). PCC: Pearson Correlation Coefficient; SCC:
Spearman correlation coefficient; DXY: Somer’s Dxy index; MCC: Mathew correlation coefficient; CRAMERV:
Cramer’s V measure of association; INFORM: Informedness measure of association. FULL: Consistency com-
puted using all the common drug-cell line combinations; SENS: Consistency computed using the drug-cell line
combinations measured as sensitive in at least one study.
PCC.FULL SCC.FULL DXY.FULL PCC.SENS SCC.SENS DXY.SENS MCC CRAMERV INFORM
paclitaxel 0.39 0.39 0.27 0.30 0.34 0.23 0.14 0.14 0.14
17-AAG 0.60 0.59 0.42 0.54 0.54 0.38 0.23 0.23 0.48
PD-0325901 0.66 0.61 0.44 0.45 0.39 0.26 047 0.47 0.47
AZD6244 0.39 0.24 0.17 -0.00 -0.08 -0.06 0.29 0.29 0.27
TAE684 0.56 0.35 0.24 0.35 -0.15 -0.12 0.23 0.23 0.27
AZD0530 0.41 0.25 0.17 0.01 0.18 0.07 042 0.42 0.39
PD-0332991 0.28 0.25 0.17 0.12 0.18 0.13 0.01 0.01 0.04
Crizotinib 0.45 0.02 0.01 0.30 0.25 0.14 0.42 0.42 0.47
PLX4720 0.64 0.27 0.18 0.19 0.29 0.25 0.71 0.71 0.84
Nutlin-3 0.16 0.08 0.06 0.01 -0.09 -0.04 0.19 0.19 0.90
lapatinib 0.51 0.35 0.25 -0.08 -0.19 -0.24 0.42 0.42 0.45
Nilotinib 0.85 0.04 0.02 0.88 0.40 0.33 0.86 0.86 0.75
PHA-665752 0.04 -0.12 -0.08 -0.86 -0.80 -0.02 0.02 -0.01
Erlotinib 0.38 0.31 0.21 -0.53 -0.53 -0.38 0.06 -0.11
Sorafenib 0.36 0.26 0.18 0.89 0.50 0.29

Supplementary Table 2: Consistency of AUC values as recomputed within PharmacoGx. Values are missing
when less than 3 observations were available in a given category (resistant or sensitive). PCC: Pearson Cor-
relation Coefficient; SCC: Spearman correlation coefficient; DXY: Somer’s Dxy index; MCC: Mathew correlation
coefficietn; CRAMERV: Cramer’s V measure of association; INFORM: Informedness measure of association.
FULL: Consistency computed using all the common drug-cell line combinations; SENS: Consistency computed

using the drug-cell line combinations measured as sensitive in at least one study.
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PCC.FULL SCC.FULL DXY.FULL PCC.SENS SCC.SENS DXY.SENS MCC CRAMERV INFORM
paclitaxel 0.43 0.43 0.30 0.26 0.35 0.23 0.26 0.26 0.32
17-AAG 0.54 0.52 0.36 0.38 0.35 0.24 0.36 0.36 0.46
PD-0325901 0.68 0.61 0.44 0.48 0.40 0.26 0.41 0.41 0.41
AZD6244 0.37 0.24 0.16 -0.04 -0.13 -0.09 0.27 0.27 0.26
TAE684 0.48 0.31 0.22 0.27 -0.15 -0.14 0.17 0.17 0.20
AZD0530 0.43 0.21 0.15 0.00 0.07 0.00 0.32 0.32 0.35
PD-0332991 0.15 0.12 0.07 -0.04 0.17 0.12 -0.04 0.04 -0.10
Crizotinib 0.41 0.14 0.09 0.13 -0.12 -0.07 0.44 0.44 0.35
PLX4720 0.59 0.19 0.13 0.24 0.23 0.16  0.59 0.59 0.74
Nutlin-3 0.10 0.06 0.04 0.07 -0.10 -0.08 0.19 0.19 0.90
lapatinib 0.52 0.36 0.24 -0.05 -0.13 -0.17 0.17 0.17 0.26
Nilotinib 0.84 0.00 -0.01 -0.92 -0.50 1.00 1.00 1.00
PHA-665752 0.02 -0.13 -0.08 -0.99 -0.50 -0.02 0.02 -0.01
Erlotinib 0.29 0.29 0.19 -0.61 -0.31 -0.24 0.06 -0.11
Sorafenib 0.31 0.11 0.07 1.00 1.00 0.57 0.57 0.98
Supplementary Table 3: Consistency of AUC* (STAR) values as recomputed within PharmacoGx. Values are
missing when less than 3 observation where available in a given category (resistant or sensitive). PCC: Pearson
Correlation Coefficient; SCC: Spearman correlation coefficient; DXY: Somer’s Dxy index; MCC: Mathew correla-
tion coefficient; CRAMERV: Cramer’s V measure of association; INFORM: Informedness measure of association.
FULL: Consistency computed using all the common drug-cell line combinations; SENS: Consistency computed
using the drug-cell line combinations measured as sensitive in at least one study.
PCC.FULL SCC.FULL DXY.FULL PCC.SENS SCC.SENS DXY.SENS MCC CRAMERV INFORM
paclitaxel 0.01 0.10 0.03 -0.15 -0.03 -0.06 0.00 0.00 0.00
17-AAG 0.50 0.58 0.44 0.42 0.50 0.36 0.36 0.36 0.51
PD-0325901 0.62 0.58 0.14 0.41 0.37 0.14 045 0.45 0.50
AZD6244 0.47 0.38 0.10 -0.18 -0.12 -0.12 0.37 0.37 0.28
TAE684 0.47 0.29 0.22 0.22 -0.12 -0.10 0.29 0.29 0.34
AZD0530 0.52 0.34 0.05 -0.30 -0.09 -0.07 0.26 0.26 0.30
PD-0332991 0.36 0.11 -0.61 0.04 0.22 -0.17 0.21 0.21 0.42
Crizotinib 0.65 0.37 0.83 0.23 0.40 0.33 0.66 0.66 0.66
PLX4720 0.64 0.49 0.26 -0.16 -0.12 -0.08 0.46 0.46 0.39
Nutlin-3 0.41 0.38 -0.48 -1.00 -0.00 0.00 -0.00
lapatinib 0.62 0.29 0.44 0.34 0.56 0.33 0.56 0.56 0.49
Nilotinib 0.76 0.30 0.98 0.62 0.40 0.45 0.70 0.70 0.50
PHA-665752 -0.03 -0.04 -1.00 -0.01 0.01 -0.01
Erlotinib -0.05 0.04 -0.46 -1.00 -0.87 -0.02 0.02 -0.01
Sorafenib 0.14 0.24 0.13 0.07 0.26 0.00

Supplementary Table 4: Consistency of ICs5q values as published. Values are missing when less than 3 obser-
vations were available in a given category (resistant or sensitive). PCC: Pearson Correlation coefficient; SCC:
Spearman correlation coefficient; DXY: Somer’s Dxy index; MCC: Mathew correlation coefficient; CRAMERV:
Cramer’s V measure of association; INFORM: Informedness measure of association. FULL: Consistency com-
puted using all the common drug-cell line combinations; SENS: Consistency computed using the drug-cell line

combinations measured as sensitive in at least one study.
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PCC.FULL SCC.FULL DXY.FULL PCC.SENS SCC.SENS DXY.SENS MCC CRAMERV INFORM
paclitaxel 0.31 0.37 0.25 0.18 0.29 0.17 0.13 0.13 0.16
17-AAG 0.53 0.58 0.46 0.43 0.50 0.37 0.38 0.38 0.51
PD-0325901 0.63 0.55 0.32 0.26 0.26 0.15 048 0.48 0.49
AZD6244 0.47 0.44 0.31 -0.26 -0.16 -0.15 0.44 0.44 0.36
TAEG84 0.51 0.28 0.19 0.37 -0.13 -0.12  0.27 0.27 0.35
AZD0530 0.51 0.41 0.26 -0.34 -0.10 0.00 0.33 0.33 0.47
PD-0332991 0.29 0.08 -0.63 0.06 0.25 -0.24 0.24 0.24 0.58
Crizotinib 0.68 0.26 0.23 0.56 0.80 0.70 0.70 0.98
PLX4720 0.70 0.41 0.03 0.00 0.24 0.12 0.58 0.58 0.69
Nutlin-3 0.46 0.42 -0.48 1.00
lapatinib 0.37 0.28 0.42 -0.31 0.00 0.00 0.39 0.39 0.48
Nilotinib 0.92 0.31 0.88 0.63 0.86 0.86 0.75
PHA-665752 0.13 0.17 -0.10 0.39
Erlotinib -0.04 0.25 0.20 -0.95 -1.00 0.02 -0.03
Sorafenib 0.46 0.30 -0.18 0.39

Supplementary Table 5: Consistency of IC5y values as recomputed within PharmacoGx. Values are missing
when less than 3 observations were available in a given category (resistant or sensitive). PCC: Pearson Cor-
relation Coefficient; SCC: Spearman correlation coefficient; DXY: Somer’s Dxy index; MCC: Mathew correlation
coefficient; CRAMERV: Cramer’s V measure of association; INFORM: Informedness measure of association.
FULL: Consistency computed using all the common drug-cell line combinations; SENS: Consistency computed
using the drug-cell line combinations measured as sensitive in at least one study.
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#GDSC #CCLE 9%GDSC % CCLE % Both

paclitaxel 1 10 9 91 0
17-AAG 62 221 20 71 9
PD-0325901 481 881 29 53 18
AZD6244 11 409 3 97 0
TAE684 0 150 0 100 0
AZDO0530 8 56 12 86 2
PD-0332991 26 8 76 24 0
Crizotinib 59 23 64 25 11
PLX4720 24 174 11 79 10
Nutlin-3 33 15 60 27 13
lapatinib 76 128 34 57 10
Nilotinib 289 311 33 36 32
PHA-665752 51 12 81 19 0
Erlotinib 171 9 95 5 0
Sorafenib 47 0 100 0 0

Supplementary Table 6: Table reporting the total number of expression-based gene-drug associations identified
using continuous published AUC and only the cell lines in common between GDSC and CCLE. The propor-
tion of associations that are dataset-specific or reproducible across GDSC and CCLE are provided in the last
three columns. The column '% Both’ reports the overlap of gene-drug associations between the two studies, as
computed using the Jaccard index.

#GDSC #CCLE 9% GDSC % CCLE % Both

paclitaxel 0 1989 0 100 0
17-AAG 2889 603 74 15 11
PD-0325901 2864 775 58 16 27
AZD6244 622 1374 27 59 15
TAE684 111 322 23 68 9
AZDO0530 33 339 9 88 3
PD-0332991 1040 3 100 0 0
Crizotinib 219 150 57 39 4
PLX4720 147 288 29 57 14
Nutlin-3 531 11 96 2 2
lapatinib 345 1354 17 66 17
Nilotinib 411 615 31 47 22
PHA-665752 23 0 100 0 0
Erlotinib 242 784 19 63 18
Sorafenib 37 256 12 83 5

Supplementary Table 7: Table reporting the total number of expression-based gene-drug associations identified
using continuous published AUC and all cell lines in GDSC and CCLE. The proportion of associations that are
dataset-specific or reproducible across GDSC and CCLE are provided in the last three columns. The column
"% Both’ reports the overlap of gene-drug associations between the two studies, as computed using the Jaccard
index
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4 Supplementary Figures
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Supplementary Figure 1: Intersection between GDSC and CCLE. Overlap of (A) drugs, (B) cell lines and (C)
tissue types.
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Supplementary Figure 2: (A) Histogram of ABC estimates for all common drug dose-response curves between
GDSC and CCLE. (B) Boxes represent the median and inter quartile range of ABC for drug-cell line combinations
screened in GDSC and CCLE.
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Supplementary Figure 3: Examples of (A,B) consistent and (C,D) inconsistent replicated experiments screening
AZD6482 in GDSC. The grey area represents the common concentration range between studies.
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Supplementary Figure 4: (A) Dendrogram of the clustering of all drugs in GDSC based on their mean ABC values.
(B) Dendogram of the clustering of all drugs in CCLE and GDSC based on their mean ABC values, overlapped
drugs are shown with the same colour.
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Supplementary Figure 5: Comparison between published and recomputed drug sensitivity values between GDSC
and CCLE. (A) AUC in GDSC; (B) AUC in CCLE; (C) IC5o in GDSC; (D) IC5¢ in CCLE. SCC stands for Spearman
correlation coefficient.
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Supplementary Figure 6: Comparison of median absolute deviation (MAD) of published AUC values between
cytotoxic and targeted drugs using all cell lines in (A) GDSC and (B) CCLE.
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Supplementary Figure 8: Comparison of AUC values between GDSC and CCLE, as recomputed within Pharma-
coGx. For cytotoxic drugs (paclitaxel), cell lines with AUC < 0.4 were considered as resistant, while for targeted
therapies cell lines with AUC < 0.2 were considered resistant (grey dashed lines). In case of perfect consistency,
all points would lie on the grey diagonal.
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Supplementary Figure 9: Comparison of AUC* values between GDSC and CCLE, as recomputed within Pharma-
coGx. For cytotoxic drugs (paclitaxel), cell lines with AUC* < 0.4 were considered as resistant, while for targeted
therapies cell lines with AUC* < 0.2 were considered resistant (grey dashed lines). In case of perfect consistency,
all points would lie on the grey diagonal.
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Supplementary Figure 10: Consistency of 1G5, values between GDSC and CCLE, as published. For cytotoxic
drugs (paclitaxel), cell lines with IC5¢ < 10uM were considered as resistant, while for targeted therapies cell lines
with IC59 < 1uM were considered resistant (grey dashed lines). In case of perfect consistency, all points would
lie on the grey diagonal.
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Supplementary Figure 11: Consistency of IC5y values between GDSC and CCLE, as recomputed within Phar-
macoGx. For cytotoxic drugs (paclitaxel), cell lines with IC59 < 10uM were considered as resistant, while for
targeted therapies cell lines with IC5y, < 1uM were considered resistant (grey dashed lines). In case of perfect
consistency, all points would lie on the grey diagonal.
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Supplementary Figure 12: Consistency of IC5g values between GDSC and CCLE, as published and recomputed
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Supplementary Figure 13: Distribution of gene expression values and corresponding cutoffs for the microarray
Affymetrix HG-U219 platform in GDSC (cutoff = 4), the microarray Affymetrix HG-U133PLUS2 platform in CCLE

(cutoff = 5) and the new lllumina RNA-seq data in CCLE (cutoff = 1).
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Supplementary Figure 14: Statistical test for difference in consistency for gene expression and drug sensitivity
data. Each cell in the matrix represents the p-value (coded by colour) for a given pairwise comparison for con-
sistency values. For instance, consistency of gene expression data is statistically significantly higher than con-
sistency of drug sensitivity data. GE.CCLE.ARRAY.RNASEQ: Consistency between gene expression data gen-
erated using Affymetrix HG-U133PLUS2 microarray and lllumina RNA-seq platforms within CCLE; GE.ARRAYS:
Consistency between gene expression data generated using Affymetrix HG-U133A and HG-U133PLUS2 mi-
croarray platforms in GDSC and CCLE, respectively; GE.ARRAY.RNASEQ: Consistency between gene ex-
pression data generated using Affymetrix HG-U133PA microarray and lllumina RNA-seq platforms in GDSC
and CCLE, respectively; AUC.PUBLISHED: Consistency of AUC values as published in GDSC and CCLE;
AUC.PUBLISHED: Consistency of AUC values as published in GDSC and CCLE; AUC.RECOMPUTED: Consis-
tency of AUC values in GDSC and CCLE as recomputed using our PharmacoGx tool; AUC.STAR: Consistency of
AUC values in GDSC and CCLE as recomputed from the common concentration range using our PharmacoGx
tool; 1C50.PUBLISHED: Consistency of IC5q values as published in GDSC and CCLE; IC50.RECOMPUTED:
Consistency of IC5g values in GDSC and CCLE as recomputed using our PharmacoGx tool.
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Supplementary Figure 15: Scatterplot representing the effect size of the significant gene-drug associations
(FDR < 5%) identified using continuous AUC and the common cell lines screened both in GDSC and CCLE.
Gene-drug associations are identified using gene expression data and continuous published AUC as input and
output of a linear model, respectively. In case of perfect consistency, all points would lie on the grey diagonal.
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Supplementary Figure 16: Scatterplot representing the effect size of the significant gene-drug associations
(FDR < 5%) identified using continuous AUC and all cell lines screened in each study. Gene-drug associa-
tions are identified using gene expression data and continuous published AUC as input and output of a linear
model, respectively. In case of perfect consistency, all points would lie on the grey diagonal.
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Supplementary Figure 17: Scatterplot representing the effect size of the significant gene-drug associations
(FDR < 5%) identified using discretized AUC and the common cell lines screened both in GDSC and CCLE.
Gene-drug associations are identified using gene expression data and discretized published AUC as input and
output of a linear model, respectively. Note that the small number of cell lines classified as "sensitive" did not
allow for finding enough significant gene-drug associations for the majority of the drugs. This is due to the lack of
convergence of the logistic regression model when 3 or less cell lines are in one category.

31


https://doi.org/10.1101/026153
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/026153; this version posted September 11, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

paclitaxel 17-AAG PD-0325901 AZD6244
o A < 4
o
L
o
-+ - N A
4. " ¥
2 o 3 3 ' 3 ]
aQ oS a °1 a °1 a °1
[0} (6] [0} . (6]
P &
3 :
- T ot o
0 T 1
S 1
(\Il 4
(\‘1 4 <
T T T T T T T T T T T T T ' T T T T T
-05 0.0 0.5 -2 -1 0 1 2 2 4 0 1 2 —4 -2 0 2 4
CCLE CCLE CCLE CCLE
TAE684 AZD0530 PD-0332991 Crizotinib
@ w ]
o o ” A
o o
- — 1 w0 | -4
S
3 3 2 o 3
a ° o °1 a S o °1
5} 1] 5} 5}
0
- - S - |
5 |
(\‘l 4 o
[} I
o | @
! T T T T T T T T T T T T ! T T T T T T T T T T T T
3 -2 -1 0 1 2 3 -2 -1 0 1 2 -15 -05 00 05 10 15 2 A 0 1 2
CCLE CCLE CCLE CCLE
PLX4720 Nutlin-3 lapatinib Nilotinib
o ]
o ~ 4 N
o =
e @ | - - -
- };;3, o
8 : 9o 2 8
a °1 QO o a ° a °1
[0} (6] [0} (6]
7 © -
T " T
o
I o o
T " 9
©® |
I
— T r T T T ; T T T . T T r T ; . T T T T
3 2 -1 0 1 2 3 10 -05 00 05 1.0 2 1 0 1 2 2 A 0 1 2
CCLE CCLE CCLE CCLE
PHA-665752 Erlotinib Sorafenib
o o
-7 © 4 -7
o
0 | w |
o o
Iy o Iy m Both significant
2 31 8 o 8 3 GDSC significant
©° © ©° CCLE significant
[} " [}
S S
1 o 1
v
e | | 2|
Th T T T T L T T T T T T Th T T T T
-0  -05 00 0.5 1.0 - 2 -1 0 1 2 3 -0 -05 00 0.5 1.0
CCLE CCLE CCLE

Supplementary Figure 18: Scatterplot representing the effect size of the significant gene-drug associations
(FDR < 5%) identified using discretized AUC and all cell lines screened in each study. Gene-drug associa-
tions are identified using gene expression data and discretized published AUC as input and output of a linear
model, respectively. Note that the small number of cell lines classified as "sensitive" did not allow for finding
enough significant gene-drug associations for PHA-665752 and sorafenib. This is due to the lack of convergence
of the logistic regression model when 3 or less cell lines are in one category.
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Supplementary Figure 19: Barplot representing the overlap, as estimated by the Jaccard index, between
expression-based gene-drug associations found in GDSC and CCLE. 'Continuous Common’ refers to the as-
sociations identified using continuous published AUC values on the common cell lines in GDSC and CCLE;
"Continuous AllI’ refers to the associations identified using continuous published AUC values on the entire panel
of cell lines screened in each study; ‘Binary Common’ refers to the associations identified using the discretized
(binary) published AUC values on the common cell lines in GDSC and CCLE; 'Binary All’ refers to the associa-
tions identified using the discretized (binary) published AUC values on the entire panels of cell lines screened in
each study

33


https://doi.org/10.1101/026153
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/026153,; this version posted September 11, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

100

80

40 4

Validation rate

20

80

60

40

Validation rate

20

o

100

80

6

3

4

Validation rate
&
|

20

3

o

100 5

60 -

40

Validation rate

20

* x
*
*
*
* *
* *
*
*
I* I

paclitaxel

* *
/I \8_B__ __

50% 20% 10% 5% 1% 0.1%
FDR

TAE684

*
. *
*
* I I
afll
50% 20% 10% 5% 1% 0.1%

FDR
PLX4720

50% 20% 10% 5% 1% 0.1%
FDR

PHA-665752

50% 20% 10% 5% 1% 0.1%
FDR

Validation rate Validation rate Validation rate

Validation rate

100

80

60

4

S
L

2

S
L

0

100 4

80

60 4

40

2

S

0

100

80

60

4

S

2

3

0

100 4

80

60 4

40

20 4

0

17-AAG

*
*
*
* *
* *
*
*
*
50% 20% 10% 5% 1% 0.1%

FDR
AZD0530

B
* * * .
* .,
50% 20% 10% 5% 1% 0.1%
FDR
Nutlin-3

*
. *
x
% * *

* *

I *
* I I
50% 20% 10% 5% 1% 0.1%

FDR
Erlotinib

* X x i * *

.l .I ll ll 0=

50% 20% 10% 5% 1% 0.1%
FDR

Validation rate Validation rate Validation rate

Validation rate

100

80

60

4

]
L

20

3
L

100 4

80

60

40

20

*
*
*
* *
* *
* *
**II

0

100

80

60

4

]
L

20

3
L

0

100 4

80

60

40

20

0

PD-0325901

50% 20% 10% 5% 1% 0.1%
FDR

PD-0332991

*
*
* *
T Iii I
50% 20% 10% 5% 1% 0.1%
FDR

lapatinib

*
* * *
* x * *
I* I
50% 20% 10% 5% 1% 0.1%
FDR

Sorafenib

*
* *I * * *
50% 20% 10% 5% 1% 0.1%
FDR

Validation rate Validation rate

Validation rate

100

80

4

S

2

S
L

o

80

61

3

4

S

2

S
L

*
* * * o, %
* *
*
* I

o

100

80

60

2

S
L

50% 20% 10%

AZD6244

*
*
* *
* *
*
* *
I* I

50% 20% 10%

5% 1%
FDR

0.1%

Crizotinib

*

5% 1%
FDR

Nilotinib

0.1%

*
* *
* %
* x
* x
*I|I

50% 20% 10%

5% 1%
FDR

0.1%

= GDSC
= CCLE

FDR: False Discovery Rate
* The validation ratio is significani

Supplementary Figure 20: Proportion of validated biomarkers with decreasing FDR using common cell lines
screened both in GDSC and CCLE. Gene-drug associations are identified using gene expression data and con-
tinuous published AUC as input and output of a linear mode, respectively. The symbol ™’ represents the signifi-
cance of the proportion of validated gene-drug associations, computed as the frequency of 1000 random subsets
of markers of the same size having equal or greater validation rate compared to the observed rate.
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Supplementary Figure 21: Proportion of validated biomarkers with decreasing FDR using all cell lines in each
study. Gene-drug associations are identified using gene expression data and continuous published AUC as input
and output of a linear mode, respectively. The symbol " represents the significance of the proportion of validated
gene-drug associations, computed as the frequency of 1000 random subsets of markers of the same size having
equal or greater validation rate compared to the observed rate.
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5 Supplementary Files

Supplementary File 1. SNP fingerprints of all the cell lines profiled with SNP arrays in GDSC and CCLE.
Supplementary File 2. All the noisy curves identified in GDSC and CCLE.

Supplementary File 3. All drug dose-response curves in common between GDSC and CCLE.
Supplementary File 4. All drug dose-response curves for replicated experiments using AZD6482 in GDSC.

Supplementary File 5. Spreadsheets reporting the statistics (effect size and significance) for all expression-
based gene-drug associations for each drug using the common cell lines screened both in GDSC and
CCLE. Gene-drug associations were estimated using each gene expression as input and continuous pub-
lished AUC as output in a linear regression model adjusted for tissue source.

Supplementary File 6. Spreadsheets reporting the statistics (effect size and significance) for all expression-
based gene-drug associations for each drug using the entire panel of cell lines in GDSC and CCLE. Gene-
drug associations were estimated using each gene expression as input and continuous published AUC as
output in a linear regression model adjusted for tissue source.

Supplementary File 7. Spreadsheets reporting the statistics (effect size and significance) for all mutation-based
gene-drug associations for each drug using the entire panel of cell lines in GDSC and CCLE. Gene-drug
associations were estimated using each presence indicator of mutations as input and continuous published
AUC as output in a linear regression model adjusted for tissue source.
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6 Supplementary Methods

PharmacoGx: Structure of the PharmacoSet class

@ annotation:

$ name: Acronym of the pharmacogenomic dataset.

$ dateCreated: When the object was created.

$ sessionInfo: Software environment used to create the object.
$ call: Set of parameters used to create the object.

@ datasetType: Either 'sensitivity’, ‘perturbation’, or ’both’
@ cell: data frame annotating all cell lines investigated in the study.
@ drug: data frame annotating all the drugs investigated in the study.
@ sensitivity:
$ n: Number of experiments for each cell line treated with a given drug
$ info: Metadata for each pharmacological experiment.
$ raw: All cell viability measurements at each drug concentration from the drug dose-response curves.
$ phenotype: Drug sensitivity values summarizing each dose-response curve (IC5y, AUC, etc.)

@ perturbation:

$ n: Number of experiments for each cell line perturbed by a given drug, for each molecular data type
$ info: 'The metadata for the perturbation experiments is available for each molecular type by calling
the appropriate info function’

@ molecularProfiles: List of ExpressionSet objects containing the molecular profiles of the cell lines,
such as mutations, gene expressions, or copy number variations.
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SNP fingerprinting

The full pipeline to generate and compare cell line SNP fingerprints is provided below.

QUALITY CONTROL l::> GENOTYPING '::> PAIR-WISE CONCORDANCE

- Genotype Calling Calculate pair-wise
apt-probeset-genotype concordance scores

( Raw CEL Files )

v
SNP Array 6.0 QC
apt-probeset-qc

Issues with call quality
CQC*<0.4

i i Match Mismatch
SNP Fingerprints CS* > 0.8 A CS* <08

¥ ; <@

Intersect based
on common cell
line name

\4 v

[ Issues with enzymes j

ICQCsy - CACnel > 2.0 Matching |( Mismatching

SNP SNP
fingerprints ) fingerprints

Remove low
quality data
1

* CQC = Contrast Quality Control * CS = Concordance Score

Affymetrix Power Tools (APT)

Quality control metrics were performed using the apt-probeset-qc program from the Affymetrix Power Tools (Ver-
sion 1.16.1) suite of tools. Poor quality data was identified using the following criteria outlined via the Affymetrix
White Pages: (i) Contrast QC (CQC) sample values less than 0.4; (ii) the proportion of samples for a dataset that
falls below 0.4 is greater than 10%; (iii) the mean CQC of all samples in a dataset is less than 1.7; and (iv) the
absolute difference between the CQC of Nsp and Sty fragments is greater than 2 18,19. All raw CEL files that
failed these metrics were removed from subsequent analysis. The apt-probeset-genotype program was used to
call genotypes for the raw CEL files using the birdseed-v2 algorithm and default parameters 20. All remaining
files were then intersected based on common cancer cell line names.

Pair-wise Concordance of SNP Fingerprints

Pairwise concordance scores between all unique SNP fingerprints were calculated using the formula given by
Hong et al. [4]:

N v j

1 1 ifG =G
Concij:—an: I Gl_“ G’?
’ N = 0, ifG} #Gy,

where N is the total number of SNPs being compared (909,623 SNPs) and G is the genotype for SNP £ in
sample ¢ or sample j. A concordance score greater than 0.80 was used to indicate consistent genetic identity.
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Filtering of drug dose-response curves

Our quality control approach is based on the assumption that the observed difference A; ;1 between the cell
viability measures in the presence of the i 4+ 1°¢ and i*" highest drug concentration values tested should be
less than a small positive threshold ¢ in some large fraction iA of the cases (1). Unfortunately, setting e small
enough to identify all noisy cases in this manner also causes many non-noisy cases to be misidentified as noisy.
Consider, for instance, a non-noisy dose response curve that monotonically increases its viability from 99% to
100% over 6 successive drug concentrations, then sees that viability fall monotonically to 20% over the next two
concentrations. Consequently, we also required the sum of the A, ; to be less than e (2) and the sum of the
A; ;Vi, j to be less than 2¢ (3).
Ai,i+1 =D;1 —D;
[{Adi41]Adi41 < €}
>
| At

ZAi,i+1 <e€
Z Z A,‘,J‘ < 2¢

p

Joi<J
o
o_
>
3
© 3
>
S
O_
T T T T T T T T T T T
10* 10° 10°

Concentration (nM)

Fitting of drug dose-response curves
All dose-response curves were fitted to the equation

1
Y= ——"% 59
L+ (g6)H8
where y = 0 denotes death of all treated cells, y = y(0) = 1 denotes no effect of the drug dose, ECs5 is
the concentration at which viability is reduced to half of the viability observed in the presence of an arbitrarily
large concentration of drug, and HS is a parameter describing the cooperativity of binding. HS < 1 denotes
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negative binding cooperativity, HS = 1 denotes noncooperative binding, and HS > 1 denotes positive binding
cooperativity.

The dose-response data in the GDSC and CCLE datasets, as well as the work of Fallahi et al. , clearly
demonstrate that most drugs are not able to kill all cancerous cells, even at extremely high concentration. We
therefore posit a "fractional kill" scenario in which heterogeneous cell lines contain some cells that are resistant
to a given drug as well as some that are sensitive to the drug, and only sensitive cells can be killed by the drug.
To account for this, we add a third parameter E to the model, representing the fraction of resistant cells in the cell
line. The dose-response equation now becomes

X
y:E+1*E1+(ECFO)HS

This is the basic mathematical structure that was posited to underlie the dose-response data observed in the
study. Consequently, median cellular viability data from all datasets was fit by means of least-squares regression
to equations of this type. To ensure robustness of the curve-fitting algorithms, bounds were placed on the values
of each of these parameters. Drugs were assumed not to increase the fitness of malignant cells, so E was
constrained to lie in the interval [0, 1]. Drugs were also assumed to be effective in concentration regimes similar
to those seen in extant drugs, so ECs, was assumed to lie in [1pM, 1M]. Finally, we follow Fallahi et al. [2] in
allowing HS to lie anywhere in [0, 4].

Barretina et al. [1] fit dose-response data to one of three models. In most cases, their model of choice was
identical to our own, with the addition of a maximum viability parameter E,. Their dose response equation then
became

E()_Eoo
1+ (Eé’so)HS

The inclusion of this parameter makes comparison of dose-response curves problematic. With its inclusion, the
viability of the cell line in the absence of any drug becomes

EO - Eoo
Tl () Foot B0 = b = o
As a result, the viability measures of different drug-cell line combinations are normalized differently, and direct
comparison of viability predictions from different dose-response curves is no longer appropriate. The IC5, values
they reported, however, were simply the concentrations at which their fitted curves reached viability reduction of
50% of cellular viability. The end result was a reported IC5, value that assumed normalization of viability data to
the negative control associated with a curve fitted assuming normalization of viability data to a reference level that
was most consistent with the observed data. The IC5 values published in the paper’s supplementary information
thus represented viability reduction by a fraction that varied from cell line to cell line.

y(0) = E.

In GDSC [3], the following five-parameter model was used:

By — B
1+ (5&;)™%)°

0

However, since the E, parameter is fixed by controls, their curve can be represented as

1—FEy
(B (1 + (52 75)°
This parameter accounts for the presence of an antagonistic binding of the drug, and introduces asymmetry into
the theoretical log dose-response curve. The extra parameter, known as the "Schild slope", allows the dose-
response curve to be non-monotonic.

While this parameter is well-founded biologically, we chose not to use it in our own dose-response curves. As
only medians of technical replicates are available for CCLE, using a 4-parameter model would have increased
our susceptibility to overfitting noise in the sparse dose-response curves. Furthermore, we only rarely observed
the non-monotonicity that necessitates the inclusion of a Schild slope parameter in a very small fraction of dose-
response curves. For these reasons, we ultimately chose to use our simpler 3-parameter model to compare the
dose-response curves from the GDSC and CCLE datasets.

40


https://doi.org/10.1101/026153
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/026153; this version posted September 11, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Area between the drug dose-response curves (ABC)

The ABC is a function of two dose-response curves from CCLE and GDSC which come from the same drug-cell
line combination. It is calculated by taking the unsigned area between the two curves over the intersection of the
concentration range tested in the CCLE curve and that tested in the GDSC curve, and normalizing that area by
the length of the intersection interval.

Q
-

viapiity

0.4

0.2

-2 -1 0 1 2
log10(concentration)

0.0

Consistency across vs. between cell lines

We assessed the concordance of the gene expression, mutation and drug sensitivity of CGP and CCLE studies
across and between cell lines, as illustrated in the figure below. When data are compared across cell lines, we
assess whether, for a given gene expression or drug, the cell line data were concordant (a gene is expressed
at a similar level or similar response to a drug is observed in the same set of cell lines for instance; panel
A). When data are compared between cell lines, we assessed whether, for a given cell line, the genomic and
pharmacological profiles were concordant in the two studies (a given cell line harbours similar gene expression
patterns or pharmacological responses for instance; panel B).

A Across cell lines B Between cell lines
Cell line X Cell line X Drug X Gene X
CGP CCLE CGP CCLE CGP CCLE CGP CCLE
drug4 drug4 geneq geneq celly celly celly celly
drugp drugp genep genep cellp cellp celly celly
drugg drugg < [geneg geneg cellg cellg c | cellg cellg
S S
drugy drugy E geney geney celly celly E celly celly
@) 3 (@) 5]
2 o f 2 o f
=] S (=] S
S5 8 2 25 8 2
. . . . . . . .
Q 8 . . (G S| . Q % . . (C] S| .
' ' 17} ' ' ' ' 17} ' '
] . ' 8 ' ' O ' ' 8 ' '
. . 14 . . . . 14 . .
Q Q
3 3
drug,, drug, gene,, gene,| cell, cell, cell, cell,
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7 Acronyms

ABC

AE

AUC

AUC* or STAR
CCLE
CGHub
CGP
CMAP
COSMIC
CRAMERV
DXY
GDSC

ICs0
INFORM
MCC

PCC

QC

RMA

SCC

SNP

under aCC-BY-NC-ND 4.0 International license.

Area between the curves

ArrayExpress by the European Bioinformatics Institute

Area under the dose response curve

Area under the dose response curve calculated by considering only the common concentration range betwe
The Cancer Cell Line Encyclopedia initiated by the Broad Institute of MIT and Harvard

The Cancer Genomics Hub from the University of California Santa Cruz and the US National Cancer Institu
The Cancer Genome Project by the Wellcome Trust Sanger Institute

Connectivity Map by the Broad Institute

Catalogue of Somatic Mutations in Cancer by the Wellcome Trust Sanger Institute

Carmer’s V

Somers’ Dxy rank correlation

The Cancer Genome Project initiated by the Wellcome Trust Sanger Institute

Concentration at which the drug inhibited 50% of the maximum cellular growth

Informedness

Matthews correlation coefficient

Pearson product-moment correlation coefficient

Quality control

Robust multi-array normalization

Spearman rank correlation coefficient

Single nucleotide polymorphism
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