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One	
  Sentence	
  Summary:	
  	
  

We propose a computational framework to implement phase i trials (virtual/imaginary yet 

informed clinical trials) in cancer, using an experimentally calibrated mathematical model of 

melanoma combination therapy, that can readily capture observed heterogeneous clinical 

outcomes and be used to optimize future clinical trial design. 
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Abstract  

We	
   present	
   a,	
   mathematical	
   model	
   driven,	
   framework	
   to	
   implement	
   virtual	
   or	
  

imaginary	
  clinical	
  trials	
  (phase	
   i	
   trials)	
  that	
  can	
  be	
  used	
  to	
  bridge	
  the	
  gap	
  between	
  

preclinical	
   studies	
   and	
   the	
   clinic.	
   The	
   trial	
   implementation	
   process	
   includes	
   the	
  

development	
   of	
   an	
   experimentally	
   validated	
  mathematical	
   model,	
   generation	
   of	
   a	
  

cohort	
  of	
  heterogeneous	
  virtual	
  patients,	
  an	
  assessment	
  of	
  stratification	
  factors,	
  and	
  

optimization	
   of	
   treatment	
   strategy.	
   We	
   show	
   the	
   detailed	
   process	
   through	
  

application	
   to	
  melanoma	
   treatment,	
  using	
  a	
   combination	
   therapy	
  of	
   chemotherapy	
  

and	
   an	
   AKT	
   inhibitor,	
   which	
   was	
   recently	
   tested	
   in	
   a	
   phase	
   1	
   clinical	
   trial.	
   We	
  

developed	
   a	
   mathematical	
   model,	
   composed	
   of	
   ordinary	
   differential	
   equations,	
  

based	
   on	
   experimental	
   data	
   showing	
   that	
   such	
   therapies	
   differentially	
   induce	
  

autophagy	
   in	
   melanoma	
   cells.	
   Model	
   parameters	
   were	
   estimated	
   using	
   an	
  

optimization	
   algorithm	
   that	
   minimizes	
   differences	
   between	
   predicted	
   cell	
  

populations	
  and	
  experimentally	
  measured	
  cell	
  numbers.	
  The	
  calibrated	
  model	
  was	
  

validated	
   by	
   comparing	
   predicted	
   cell	
   populations	
   with	
   experimentally	
   measured	
  

melanoma	
  cell	
  populations	
   in	
   twelve	
  different	
   treatment	
  scheduling	
  conditions.	
  By	
  

using	
  this	
  validated	
  model	
  as	
  the	
  foundation	
  for	
  a	
  genetic	
  algorithm,	
  we	
  generated	
  a	
  

cohort	
   of	
   virtual	
   patients	
   that	
   mimics	
   the	
   heterogeneous	
   combination	
   therapy	
  

responses	
  observed	
   in	
  a	
  companion	
  clinical	
   trial.	
  Sensitivity	
  analysis	
  of	
   this	
  cohort	
  

defined	
   parameters	
   that	
   discriminated	
   virtual	
   patients	
   having	
   more	
   favorable	
  

versus	
   less	
   favorable	
   outcomes.	
   Finally,	
   the	
   model	
   predicts	
   optimal	
   therapeutic	
  

approaches	
  across	
  all	
  virtual	
  patients.	
    

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/015925doi: bioRxiv preprint 

https://doi.org/10.1101/015925
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 3	
  

Introduction  

Significant	
   advances	
   have	
   been	
  made	
   in	
   understanding	
  mechanisms	
   that	
   provoke	
   tumor	
  

initiation	
   and	
   progression,	
   and	
   often	
   this	
   knowledge	
   has	
   been	
   translated	
   into	
   the	
  

development	
   of	
   targeted	
   agents	
   that	
   selectively	
   disable	
   the	
   mutated,	
   activated	
   and/or	
  

overexpressed	
  oncoproteins	
  manifest	
  in	
  tumor	
  cells	
  (1).	
  Most	
  of	
  these	
  targeted	
  agents	
  have	
  

been	
  tested	
  in	
  clinical	
  trials	
  either	
  alone	
  or	
  in	
  combination	
  with	
  other	
  treatments	
  (2),	
  and	
  

though	
   some	
  are	
   clinically	
   effective	
   (e.g.,	
   small	
  molecule	
  BRAF	
   kinase	
   inhibitors	
   (3)),	
   the	
  

majority	
  are	
  not	
  (4-­‐6)	
  despite	
  the	
   fact	
   that	
  such	
  agents	
  have	
  potent	
  activity	
   in	
  preclinical	
  

cancer	
   cell	
   and	
   animal	
   model	
   studies.	
   The	
   leading	
   cause	
   of	
   failure	
   tends	
   to	
   be	
   lack	
   of	
  

efficacy,	
  in	
  part	
  due	
  to	
  lack	
  of	
  robust	
  predictive	
  models	
  that	
  consider	
  patient	
  heterogeneity,	
  

and	
  poorly	
  designed	
  clinical	
  trials	
  (6-­‐9).	
  This	
  inconsistency	
  is	
  also	
  partly	
  due	
  to	
  difficulties	
  

in	
   predicting	
   the	
   long-­‐term	
   effectiveness	
   of	
   a	
   cancer	
   therapy	
   using	
   time-­‐limited	
   in	
   vitro	
  

(typically	
  <	
  1	
  month)	
  or	
  in	
  vivo	
  (often	
  <	
  3	
  months)	
  models	
  systems.	
  	
  

We	
  reasoned	
  that	
  an	
  appropriately	
  defined	
  and	
  parameterized	
  mathematical	
  model,	
  

based	
  on	
  observations	
   in	
   cell	
   and	
  animal	
   studies	
  and	
  clinical	
   trials,	
  might	
   reveal	
   insights	
  

regarding	
  the	
  design	
  of	
  improved	
  and	
  informed	
  therapeutic	
  approaches	
  for	
  treating	
  cancer	
  

patients.	
   To	
   test	
   this	
   notion	
   we	
   used	
   a	
   mathematical	
   model	
   of	
   melanoma	
   that	
   was	
  

generated	
   based	
   on	
   data	
   from	
   in	
   vitro	
   experiments	
   and	
   a	
   distribution	
   of	
   treatment	
  

responses	
   (Fig	
   1A)	
   from	
   a	
   comparable	
   clinical	
   trial.	
   More	
   specifically,	
   the	
   recently	
  

completed	
  multi-­‐arm	
   phase	
   1	
   trial	
   of	
   the	
   MK2206	
   AKT	
   inhibitor	
   (AKTi)	
   in	
   combination	
  

with	
   standard	
   chemotherapy	
   (chemo)	
  with	
   advanced	
   solid	
   tumors,	
   including	
  melanomas	
  

(10)	
  was	
  used	
  for	
  these	
  studies.	
  To	
  investigate	
  potential	
  mechanisms	
  of	
  treatment	
  efficacy,	
  

a	
   mathematical	
   model	
   comprised	
   of	
   a	
   system	
   of	
   ordinary	
   differential	
   equations	
   was	
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developed	
   to	
   describe	
   the	
   dynamics	
   of	
   melanoma	
   cells	
   exposed	
   to	
   four	
   treatment	
  

conditions,	
   no	
   treatment,	
   chemo,	
  AKTi	
   and	
   combination	
   of	
   chemo	
   and	
  AKTi.	
   Cell	
   culture	
  

experiments	
  were	
  then	
  used	
  to	
  parameterize	
  the	
  model.	
  The	
  calibrated	
  model	
  was	
  further	
  

validated	
  using	
  results	
   from	
  an	
  extensive	
  series	
  of	
   cell	
   culture	
  experiments	
   that	
  consider	
  

twelve	
   different	
   drug	
   combinations	
   and	
   timings.	
   This	
   validated	
  model	
  was	
   then	
   used	
   to	
  

predict	
  the	
   long-­‐term	
  effects	
  of	
  the	
  twelve	
  treatments	
  on	
  melanoma	
  cells,	
  which	
  revealed	
  

that	
  all	
  treatments	
  eventually	
  fail,	
  but	
  do	
  so	
  at	
  significantly	
  different	
  rates.	
  	
  

To	
  investigate	
  the	
  long-­‐term	
  effects	
  of	
  therapy	
  in	
  a	
  more	
  clinically	
  relevant	
  setting,	
  

we	
  varied	
  model	
  parameters	
  to	
  generate	
  virtual	
  patients	
  that	
  had	
  a	
  heterogeneous	
  mix	
  of	
  

responses	
   similar	
   to	
   typical	
   clinical	
   trial	
   outcomes	
   (Fig.	
   1A	
   and	
   (10)).	
   We	
   employed	
   a	
  

heuristic	
   search	
   algorithm	
   (genetic	
   algorithm	
   (GA))	
   to	
   generate	
   a	
   diverse	
   virtual	
   patient	
  

cohort	
  consisting	
  of	
  over	
  3,000	
  patients.	
  Treatment	
  responses	
  for	
  this	
  patient	
  cohort	
  were	
  

simulated	
   and	
   optimized,	
   and	
   the	
   schedules	
   of	
   AKTi	
   therapy	
   were	
   combined	
   with	
  

chemotherapy.	
   This	
   strategy	
   allowed	
   implementation	
   of	
   a	
   “virtual	
   clinical	
   trial”	
   (phase	
   i	
  

trial),	
   where	
   the	
  model	
   guides	
   optimal	
   treatment	
   strategies	
   for	
   selected	
   patient	
   cohorts	
  

(11).	
   Similar	
   virtual	
   clinical	
   trials	
   have	
   been	
   made	
   to	
   simulate	
   clinical	
   trials	
   of	
  

cardiovascular	
   disease,	
   hypertension,	
   diabetes	
   (www.entelos.com),	
   and	
   acute	
  

inflammatory	
  diseases	
   (12).	
   	
  There	
  have	
  also	
  been	
  some	
  previous	
   studies	
   that	
   employed	
  

modeling	
  approaches	
  to	
  predict	
  outcomes	
  of	
  clinical	
  trials	
  (13,	
  14).	
  Statistical	
  approaches	
  

based	
  on	
  clinical	
  drug	
  metabolism	
  (e.g.,	
  dose-­‐concentration	
  relationships)	
  have	
  also	
  been	
  

developed	
   to	
   design	
   virtual	
   clinical	
   trials	
   (reviewed	
   in	
   (15))	
   that	
   detect	
   significant	
  

differences	
   between	
   treatments	
   (for	
   example,	
   placebo	
   vs.	
   treatment).	
   Here	
   we	
   rather	
  

sought	
   to	
   translate	
   biological	
   findings	
   coming	
   from	
   in	
   vitro	
   and	
   clinical	
   studies,	
   using	
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melanoma	
  combination	
  therapy,	
  into	
  a	
  phase	
  i	
  trial	
  -­‐	
  with	
  the	
  goal	
  that	
  this	
  approach	
  could	
  

be	
  easily	
  adapted	
  to	
  other	
  cancers. 

 

Results  

 

Responses of melanoma treated with combination therapy  

We	
   reported	
  unexpectedly	
   long-­‐term	
   responses	
   (of	
   up	
   to	
   15	
  months)	
   to	
   the	
   combination	
  

therapy	
   of	
   chemo	
   and	
   AKTi	
   in	
   two	
   BRAF-­‐wild	
   type	
   melanoma	
   patients	
   in	
   the	
   trial	
  

(NCT00848718)	
  (16).	
  Although	
   little	
  was	
  known	
  regarding	
  why	
  this	
  combination	
  therapy	
  

was	
  successful,	
  we	
  reasoned	
  this	
  reflected	
  differential	
  effects	
  on	
   inducing	
  autophagy	
   that	
  

were	
   observed	
   in	
   Figure	
   1B.	
   Autophagy	
   represents	
   a	
   cancer	
   cell-­‐intrinsic	
  mechanism	
   of	
  

resistance	
   that	
   allows	
   cells	
   to	
   survive	
   times	
   of	
   drug-­‐induced	
   stress	
   (17,	
   18)	
   or,	
   if	
  

uncontrolled,	
  can	
  deplete	
  key	
  cellular	
  components	
  and	
  provoke	
  tumor	
  cell	
  death	
  (19,	
  20).	
  

Differential	
  autophagic	
  responses	
  to	
  the	
  chemo	
  plus	
  AKTi	
  combination	
  and	
  accompanying	
  

effects	
  on	
  tumor	
  cell	
  growth	
  and	
  survival	
  were	
  manifest	
  in	
  melanoma	
  cells	
  	
  (Fig.	
  1B)	
  (16). 

 

Mathematical model development 

Motivated	
  by	
  these	
  experimental	
  results,	
  we	
  formulated	
  a	
  mathematical	
  model	
  comprised	
  

of	
  three	
  phenotypic	
  compartments	
  (Fig.	
  2A(a)),	
  a	
  non-­‐autophagy	
  compartment	
  (N)	
  and	
  two	
  

autophagy	
   compartments	
   (P	
   and	
   Q).	
   We	
   divided	
   the	
   autophagy	
   compartment	
   into	
   two,	
   

physiological	
  autophagy	
  (P)	
  and	
  quiescent	
  autophagy	
  (Q)	
  compartments,	
  based	
  on	
  studies	
  	
  

showing	
   that	
   some	
   cells	
   where	
   autophagy	
   is	
   manifest	
   continue	
   to	
   maintain	
   normal	
   cell	
  

homeostasis	
  whereas	
  others	
  did	
  not	
  (21-­‐24).	
  Figure	
  2A	
  shows	
  the	
  interactions	
  between	
  the	
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N,	
   P	
   and	
   Q	
   compartments	
   within	
   the	
   four	
   different	
   environments:	
   (a)	
   no-­‐treatment,	
   (b)	
  

chemo,	
   (c)	
   AKTi,	
   and	
   (d)	
   combination	
   therapy	
   (chemo+AKTi)	
   (see	
   the	
   Materials	
   and	
  

Methods	
  section	
  for	
  a	
  detailed	
  description	
  of	
  model	
  development).	
  	
  	
  

To	
  calibrate	
  model	
  parameters,	
  two	
  melanoma	
  cell	
  lines	
  (M257	
  and	
  WM3918)	
  were	
  

treated	
  with	
  the	
   four	
  different	
  conditions	
   for	
  8	
  days	
  and	
  the	
  results	
  were	
  compared	
  with	
  

the	
  model	
  predictions.	
  Using	
  an	
  optimization	
  technique	
  to	
  minimize	
  the	
  difference	
  between	
  

predicted	
  and	
  actual	
  growth	
  curves	
  (see	
  Materials	
  and	
  Methods)	
  we	
  obtained	
  two	
  suites	
  of	
  

parameters	
  that	
  produced	
  good	
  fits	
  (R	
  ≥	
  0.8,	
  for	
  all	
  cases)	
  for	
  the	
  growth	
  of	
  each	
  cell	
   line	
  

(Fig.	
  2B).	
  Chemo	
  reduced	
  growth	
  rates	
  of	
  both	
  WM3918	
  and	
  M257	
  (Fig.2B,	
  Chemo	
  panels)	
  

and	
  continuous	
  application	
  of	
  AKTi	
  increased	
  the	
  proportion	
  of	
  the	
  non-­‐autophagy	
  (N)	
  to	
  

physiological	
   autophagy	
   (P)	
  phenotype	
   (Fig.	
  2B,	
  AKTi	
  panels,	
   increasing	
  green	
   lines).	
  The	
  

combination	
  of	
  AKTi	
  and	
  chemo	
  generally	
  induced	
  the	
  quiescent	
  autophagy	
  (Q)	
  phenotype	
  

(Fig.	
   2B,	
   combination	
   panels,	
   increase	
   of	
   red	
   lines),	
   which	
   arose	
   following	
   the	
   rapid	
  

transition	
  of	
  a	
  non-­‐autophagy	
  to	
  physiological	
  autophagy	
  phenotype	
  (Fig.	
  2B,	
  combination	
  

panels,	
   a	
   sharp	
   increase	
   in	
   the	
   green	
   line	
   <	
   day	
   1).	
   The	
   number	
   of	
   cells	
   in	
   the	
   total	
   cell	
  

population	
  treated	
  with	
  the	
  combination	
  therapy	
  continued	
  to	
  decrease	
  as	
  a	
  result	
  of	
  cell	
  

death	
  of	
  the	
  Q	
  phenotype	
  (Fig.	
  2B,	
  combination	
  panels,	
  decreasing	
  red	
  lines).	
  	
  

 

Model prediction and validation with preclinical data 

The	
   calibrated	
  model	
  was	
   used	
   to	
   predict	
   the	
   effects	
   of	
   twelve	
   treatment	
   schedules	
   that	
  

differed	
  in	
  the	
  timing	
  and	
  order	
  of	
  chemo,	
  AKTi	
  and	
  combination	
  therapy	
  across	
  a	
  16-­‐day	
  

period	
   (Fig.	
   S1,	
   Materials	
   and	
   Methods).	
   The	
   expected	
   treatment	
   responses	
   are	
  

summarized	
   in	
   Fig.	
   2C	
   (red	
   bars).	
   One	
   application	
   of	
   chemo	
   decreased	
   the	
   tumor	
   cell	
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population	
  by	
  30-­‐65%	
  (#2)	
  and	
  two	
  applications	
  reduced	
  the	
  population	
  by	
  50-­‐90%	
  (#3).	
  

One	
   application	
   of	
   AKTi	
   had	
   limited	
   impact	
   on	
   tumor	
   cell	
   growth	
   (approximately	
   20%	
  

reduction	
   from	
   #1	
   to	
   #4). Continuous	
   application	
   of	
   the	
   AKTi	
   reduced	
   the	
   tumor	
   cell	
  

population	
  size	
  by	
  40-­‐70%	
  (#5).	
  The	
  M257	
  melanoma	
  cell	
  line	
  was	
  more	
  sensitive	
  to	
  both	
  

chemo	
  and	
  AKTi	
  than	
  WM3918	
  melanoma	
  cells.	
  Combination	
  therapies	
  were	
  substantially	
  

more	
  effective	
  than	
  mono-­‐therapies.	
  In	
  general,	
  concurrent	
  therapies	
  with	
  chemo	
  and	
  AKTi	
  

(#6	
   and	
   #7)	
   were	
   more	
   successful	
   than	
   all	
   sequential	
   therapies	
   (#8-­‐#12).	
   Concurrent	
  

therapy	
  #6	
  reduced	
  the	
  tumor	
  cell	
  population	
  size	
  by	
  up	
  to	
  90%,	
  and	
  concurrent	
  therapy	
  

#7	
  nearly	
  eradicated	
  all	
  of	
  the	
  tumor	
  cells	
  (Fig.	
  2C,	
  #7,	
  nearly	
  invisible	
  red	
  bars).	
  Sequential	
  

therapy	
  decreased	
  the	
  tumor	
  cell	
  population	
  size	
  by	
  50-­‐90%	
  (Fig	
  2C	
  #8-­‐#12).	
  	
  

To	
   validate	
   these	
   predictions,	
   an	
   extensive	
   series	
   of	
   in	
   vitro	
   experiments	
   were	
  

performed	
   and	
   the	
   numbers	
   of	
   viable	
   tumor	
   cells	
   were	
   quantified	
   on	
   day	
   16	
   (Fig.	
   S1B)	
  

using	
   the	
   Matlab	
   Image	
   Analysis	
   toolbox.	
   We	
   then	
   compared	
   the	
   total	
   experimental	
  

melanoma	
  cell	
  numbers	
  with	
  those	
  predicted	
  by	
  the	
  models	
  (Fig.	
  2C,	
  blue	
  vs.	
  red	
  bars).	
  In	
  

general,	
  the	
  predictions	
  matched	
  well	
  with	
  the	
  experimental	
  results,	
  as	
  all	
  predicted	
  values	
  

(red	
   bars)	
   were	
   within	
   one	
   standard	
   error	
   deviation	
   from	
   the	
   mean	
   value	
   of	
   the	
  

experimental	
  results	
  (blue	
  bars).	
  Thus,	
   this	
  mathematical	
  model	
  accurately	
  describes	
  and	
  

predicts	
  treatment	
  outcomes	
  obtained	
  in	
  vitro.	
  

 

Long-term response of treatments 

Having	
  established	
  a	
  successfully	
  validated	
  model,	
  the	
  longer-­‐term	
  effects	
  of	
  the	
  therapies	
  

were	
   assessed.	
   Surprisingly,	
   the	
   best	
   proposed	
   strategy	
   (#7)	
   failed	
   by	
   day	
   40	
   (WM3918	
  

cells)	
   or	
   day	
   50	
   (M257	
   cells),	
   where	
   the	
   physiological	
   autophagy	
   phenotype	
   developed	
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resistance	
   to	
   the	
   therapy	
   population	
   (green	
   lines,	
   Fig.	
   S2).	
   This	
   finding	
   highlights	
   a	
   key	
  

shortcoming	
  of	
  in	
  vitro	
  experiments;	
  i.e.,	
  the	
  limited	
  timescale.	
  To	
  test	
  this	
  prediction	
  long-­‐

term	
  cell	
  culture	
  studies	
  were	
  performed.	
  	
  Perhaps	
  unsurprisingly,	
  as	
  the	
  model	
  predicted,	
  

a	
  30-­‐day	
  treatment	
  of	
  strategy	
  (#7)	
  failed	
  to	
  eradicate	
  some	
  of	
  the	
  melanoma	
  cell	
  lines	
  in	
  

colony	
  formation	
  assay	
  experiments	
  (16).	
  	
   

 

Phase	
  i	
  trial:	
  virtual	
  cohort	
  generation	
  

Under	
   the	
   assumption	
   that	
  our underlying model	
  mechanism	
   is	
   relevant	
   to	
   the	
   clinic,	
   and	
  

there	
   is	
   some	
   evidence	
   to	
   support	
   this	
   (25),	
   it	
   was	
   important	
   to	
   advance	
   such	
   analyses	
  

beyond	
  homogeneous	
  cell	
  lines	
  to	
  the	
  heterogeneous	
  patient population. More specifically, in 

order to	
   predict	
   long-­‐term	
   treatment	
   responses	
   in	
   a	
   more	
   clinically	
   relevant	
   scenario,	
  

treatments	
   for	
   model	
   parameters	
   that	
   are	
   more	
   representative	
   of	
   real	
   patients	
   were	
  

simulated.	
  The	
  same	
  treatment	
  schedules	
  as	
   in	
   the	
  clinical	
   trial	
  (10)	
  were	
  used,	
  with	
   five	
  

cycles	
   of	
   first-­‐day	
   chemo	
   in	
   a	
   21-­‐day	
   cycle,	
   and	
   two	
   different	
   treatment	
   arms	
   of	
   AKTi	
  

schedules	
  (Q3W,	
  QOD).	
  In	
  the	
  first	
  AKTi	
  schedule	
  (arm	
  1:	
  Q3W),	
  the	
  drug	
  is	
  administered	
  

on	
  the	
  first	
  day	
  of	
  the	
  21-­‐day	
  cycle	
  for	
  five	
  cycles,	
  and	
  thereafter	
  is	
  given	
  on	
  the	
  first	
  day	
  of	
  

every	
  week	
  (weekly	
  maintenance	
  therapy).	
  In	
  the	
  second	
  schedule	
  (arm	
  2:	
  QOD),	
  the	
  drug	
  

is	
   administered	
   on	
   days	
   1,	
   3,	
   5	
   and	
   7	
   of	
   the	
   21-­‐day	
   cycle,	
   and	
   is	
   then	
   given	
   weekly	
   as	
  

maintenance	
  therapy.	
  

To	
  generate	
  virtual	
  patient	
  cohorts	
  that	
  exhibit	
  the	
  diversity	
  of	
  responses	
  observed	
  

in	
  the	
  clinic,	
  adaptive	
  heuristic	
  search	
  Gentetic	
  Algorithms	
  (GA,	
  built	
  in	
  Matlab)	
  were	
  used,	
  

which	
   are	
   based	
   on	
   the	
   evolutionary	
   principle	
   of	
   natural	
   selection	
   (26,	
   27).	
   A	
   solution	
  

(𝑃 = 𝑔! ,𝑔! ,𝑑! ,𝑑!, 𝑟! , 𝑟! , 𝑏! , 𝑐! , 𝑐! ,𝑎! , 𝑐! )	
   was	
   searched	
   that	
   minimized	
   our	
   objective	
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function,	
   (𝐹 𝑃 = 𝑉 𝑃 − 𝑉! !! ),	
   using	
   the	
   difference	
   between	
   tumor	
   volume	
   with	
   a	
  

parameter	
   𝑉(𝑃)   	
  and	
   the	
   target	
   tumor	
  volume	
  (𝑉!).	
  The	
  𝑉! 	
  was	
  randomly	
  selected	
   from	
  

three	
   categories	
   (𝑉! ,𝑉! ,𝑉!)	
   based	
   on	
   response	
   criteria	
   (28),	
   where	
   subscript	
  𝐶	
  denotes	
  

complete	
   response	
   (CR;	
   tumor	
   diameter	
   <	
   1	
   mm),	
   subscript	
  𝑃	
  denotes	
   partial	
   response	
  

(PR;	
  at	
  least	
  30%	
  reduction	
  in	
  tumor	
  diameter)	
  and	
  subscript	
  𝑆	
  denotes	
  stable	
  disease	
  (SD;	
  

up	
  to	
  20%	
  increase	
  in	
  tumor	
  diameter).	
  Our	
  GA	
  found	
  1293	
  sets	
  of	
  parameters	
  in	
  the	
  case	
  

of	
  arm	
  1	
  (P1)	
  and	
  found	
  2098	
  sets	
  of	
  parameters	
  for	
  arm	
  2	
  (P2).	
  	
  	
  

 

Phase i trial: Stratifying treatment outcomes via clinically measurable parameters 

To	
   characterize	
   this	
   virtual	
   cohort,	
   it	
   was	
   first	
   divided	
   into	
   four	
   sub-­‐cohorts	
   (C1-­‐C4,	
  Fig.	
  

3A(a))	
  according	
  to	
  the	
  clinically	
  measurable	
  variables	
  𝑐! ,	
  chemo-­‐sensitivity	
  (29,	
  30),	
  and	
  

𝑎!),	
   autophagy	
  marker	
  staining	
   (31,	
  32).	
  The	
  hope	
  being	
   that	
   this	
  division	
  might	
  stratify	
  

best	
   and	
   worst	
   responders.	
   We	
   compared	
   a	
   distribution	
   of	
   best	
   tumor	
   volume	
   change	
  

responses	
  of	
  the	
  24	
  patients	
  in	
  the	
  trial	
  with	
  that	
  of	
  500	
  virtual	
  patients	
  sampled	
  from	
  our	
  

virtual	
  cohort	
  (3391	
  virtual	
  patients)	
  (Fig.	
  3A(b)).	
  To	
  test	
  if	
  two	
  distributions	
  are	
  from	
  the	
  

same	
   continuous	
   distribution,	
   we	
   performed	
   a	
   two-­‐sample	
   Kolmogorov-­‐Smirnov	
   test	
  

(Matlab	
   statistics	
   toolbox)	
   (33).	
   The	
   test	
   determined	
   that	
   we	
   can	
   not	
   reject	
   the	
   null	
  

hypothesis	
  at	
  5%	
  significance	
  (H	
  =	
  0,	
  P	
  >	
  0.05,	
  test	
  statistic	
  =	
  0.14).	
  In	
  addition,	
  empirical	
  

cumulative	
  distribution	
  functions	
  of	
   the	
  two	
  overlap	
  each	
  other	
  (Fig.	
  3A(b)).	
  This	
   implies	
  

that	
   the	
  best	
   tumor	
  volume	
   responses	
  of	
   these	
  500	
  virtual	
   patients	
   can	
   recapitulate	
   real	
  

patients’	
   tumor	
  volume	
   response	
  well.	
   	
   To	
  validate	
   the	
   agreement	
   further,	
  we	
  used	
  Lin’s	
  

concordance	
  correlation	
  coefficient	
  (ρ)	
  (34,	
  35).	
  We	
  repeatedly	
  sampled	
  24	
  virtual	
  patients	
  

with	
  an	
  approximated	
  probability	
  density	
   function	
  of	
  best	
   tumor	
  volume	
  changes	
  of	
   real	
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patients	
  (Fig.1A)	
  1000	
  times.	
  For	
  each	
  sample,	
  we	
  calculated	
  ρ	
  of	
  two	
  measurements,	
  best	
  

tumor	
  volume	
  changes	
  of	
  both	
  real	
  patients	
  and	
  the	
  sample,	
  using	
  an	
  R	
  package	
  (epiR)(36)	
  

(Fig.	
   S3).	
   The	
   resulting	
   distribution	
   of	
   ρ	
   shows	
   that	
   the	
   two	
   measurements	
   are	
   highly	
  

concordant	
  (Fig.	
  S3,	
  ρ	
  >	
  0.8).	
  	
  

The	
  native	
  doubling	
  time	
  (i.e.,	
  without	
  any	
  treatment)	
  of	
  each	
  sub-­‐cohort	
  (C1-­‐C4)	
  in	
  

each	
  patient	
  group	
  (P1	
  and	
  P2)	
  was	
  compared	
  assuming	
  exponential	
  tumor	
  growth,	
  which	
  

is	
  reasonable	
  for	
  metastatic	
  disease,	
  and	
  the	
  exponent	
  of	
  the	
  best-­‐fit	
  curve	
  was	
  determined.	
  

Doubling	
  times	
  were	
  in	
  the	
  range	
  of	
  7	
  to	
  110	
  days	
  (Fig.	
  3A(c)	
  top	
  P1,	
  Fig.	
  3A(c)	
  bottom	
  for	
  

P2),	
   which	
   were	
   similar	
   to	
   values	
   observed	
   in	
   patients	
   with	
   cutaneous	
   melanoma	
   (37).	
  

Overall,	
   tumors	
   in	
   the	
  P2	
  group	
  grew	
  much	
   faster	
   than	
   those	
   in	
  P1	
  (mean	
  of	
  ~30	
  days	
  vs.	
  

mean	
  of	
  ~60	
  days,	
  respectively).	
   In	
  P1,	
   tumors	
   in	
  C1	
  (dark	
  blue)	
  and	
  C2	
  (dark	
  green)	
  that	
  

had	
   slightly	
   increased	
   autophagy	
   following	
   AKTi	
   treatment	
   grew	
   faster	
   than	
   those	
   in	
   C3	
  

(orange)	
  and	
  C4	
  (pink)	
  that	
  had	
  highly	
  increased	
  levels	
  of	
  autophagy	
  (50	
  days	
  vs.	
  70	
  days).	
  

In	
   contrast,	
   there	
  were	
  no	
  significant	
  differences	
   in	
   the	
  doubling	
   times	
  between	
   the	
   sub-­‐

cohorts	
  in	
  P2.	
  	
  

Phase	
   i	
   combination	
   therapy	
   was	
   simulated	
   for	
   6	
   months	
   with	
   the	
   two	
   arms	
   to	
  

predict	
   treatment	
  responses	
   in	
   the	
  virtual	
   cohorts.	
  Patients	
   in	
  P1	
   treated	
  with	
  arm	
  1	
  had	
  

diverse	
   responses	
   to	
   the	
   therapy,	
   where	
   CR,	
   PR	
   and	
   SD	
  were	
   observed	
   in	
   30	
   randomly	
  

selected	
   subjects	
   (Fig.	
   3B(a),	
   waterfall	
   plot).	
   For	
   example,	
   some	
   patients	
   in	
   C1	
   were	
  

expected	
  to	
  be	
  complete	
  responders	
  (CR,	
  dark	
  blue	
  bars	
  of	
  nearly	
  -­‐100%),	
  while	
  others	
  in	
  

the	
  same	
  cohort	
  were	
  expected	
  to	
  be	
  in	
  SD	
  (dark	
  blue	
  bars	
  of	
  40-­‐60%).	
  When	
  comparing	
  

the	
  expected	
  tumor	
  volume	
  changes	
  in	
  each	
  cohort	
  (Fig	
  3B(a),	
  middle	
  boxplot),	
  there	
  were	
  

no	
  significant	
  differences	
  in	
  outcomes	
  between	
  C1	
  and	
  C2	
  or	
  between	
  C3	
  and	
  C4.	
  However,	
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the	
  C2	
  and	
  C3	
  cohorts	
  showed	
  a	
  significant	
  difference	
  (P	
  <0.01,	
  Student’s	
  t-­‐test).	
  Thus,	
  one	
  

of	
   the	
   parameters,	
   specifically	
   the	
   physiological	
   autophagy	
   phenotype	
   (𝑎! ),	
   defines	
  

outcome.	
   The	
   histogram	
   of	
   all	
   subjects	
   in	
   each	
   cohort	
   also	
   showed	
   a	
   shift	
   in	
   treatment	
  

responses	
  from	
  the	
  cohort	
  C1-­‐2	
  (skewed	
  toward	
  responsive)	
  to	
  C3-­‐4	
  (uniformly	
  distributed	
  

tumor	
  volumes).	
  	
  

Similarly,	
   subjects	
   in	
   P2	
   treated	
   with	
   arm	
   2	
   also	
   showed	
   diverse	
   responses	
   to	
  

therapy	
   (Fig.	
   3B(b)).	
   However,	
   unlike	
   subjects	
   in	
   P1	
   (Fig.	
   3B(a)),	
   none	
   of	
   the	
   metrics	
  

determined	
  outcomes	
  of	
   subjects	
   in	
  P2,	
   as	
   the	
  mean	
   tumor	
  volume	
  responses	
   in	
   the	
   four	
  

cohorts	
   did	
   not	
   show	
   significant	
   differences	
   (Fig.	
   3B(b),	
   boxplot).	
   Accordingly,	
   the	
  

histograms	
   only	
   showed	
   a	
   slight	
   shift	
   of	
   responses	
   when	
   C1-­‐3	
   was	
   compared	
   to	
   C4	
   (Fig.	
  

3B(b)).	
  	
  

We	
  also	
  randomly	
  assigned	
  a	
   treatment	
  arm	
  (either	
  arm	
  1	
  or	
  arm	
  2)	
   to	
  all	
  virtual	
  

patients	
  in	
  both	
  P1	
  and	
  P2.	
  Tumor	
  volume	
  was	
  checked	
  at	
  the	
  beginning	
  of	
  each	
  cycle	
  (every	
  

21	
  days),	
  and	
  subjects	
  were	
  removed	
  from	
  treatment	
  if	
  the	
  tumor	
  volume	
  had	
  more	
  than	
  

doubled;	
  this	
  resulted	
  in	
  the	
  removal	
  of	
  a	
  total	
  of	
  1473	
  subjects.	
  Random	
  assignment	
  of	
  the	
  

treatment	
   arms	
  produced	
   even	
   greater	
   variations	
   in	
   expected	
  outcomes	
   (Fig.	
   3B(c)),	
   but	
  

might	
  more	
  accurately	
  reflect	
  how	
  an	
  actual	
  population	
  responds.	
  Specifically,	
  the	
  expected	
  

tumor	
   volume	
   changes	
   showed	
   a	
   large	
   variation,	
   where	
   the	
   9-­‐99%	
   bar	
   in	
   the	
   boxplot	
  

increased	
   in	
   all	
   sub-­‐cohorts,	
   and	
   in	
   both	
   arms.	
   The	
   physiological	
   autophagy	
  

phenotype  (𝑎!)	
  distinguished	
   outcomes	
   between	
   C2	
   and	
   C3	
   only	
   when	
   patients	
   were	
  

treated	
  with	
  arm	
  2	
  	
  (Fig.	
  3B(c),	
  boxplot,	
  P	
  <0.05).	
  There	
  was	
  no	
  shift	
  in	
  the	
  distribution	
  of	
  

responses	
  between	
  the	
  cohorts	
  (Fig.	
  3B(c),	
  histograms).	
   Interestingly,	
   the	
  outcomes	
  were	
  

almost	
   uniformly	
   distributed	
   in	
   patients	
   treated	
   with	
   arm	
   1,	
   while	
   the	
   distributions	
   of	
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patients	
   treated	
   with	
   arm	
   2	
   were	
   skewed	
   toward	
   smaller	
   final	
   tumor	
   volumes	
   (more	
  

responsive	
  to	
  the	
  therapy).	
  Thus,	
  the	
  physiological	
  autophagy	
  phenotype	
  defines	
  outcomes	
  

in	
  diverse	
  virtual	
  cohorts.	
  	
  

 

Phase i trial: Assessing stratification factors by sensitivity analysis  

Rather	
   than	
   focusing	
   solely	
   on	
   the	
   clinically	
   quantifiable	
   parameters,	
   the	
  nine	
   remaining	
  

model	
  parameters	
  were	
  also	
  assessed	
  to	
  identify	
  sub-­‐cohorts	
  that	
  are	
  most	
  or	
  least	
  likely	
  to	
  

benefit	
  from	
  the	
  combination	
  therapy.	
  To	
  identify	
  the	
  key	
  parameters	
  a	
  sensitivity	
  analysis	
  

of	
   the	
   effect	
   of	
   each	
   parameter	
   on	
   tumor	
   volume	
   after	
   6	
   months	
   of	
   treatment	
   was	
  

performed. After	
   dividing	
   the	
   patient	
   group	
   into	
   CR,	
   PR,	
   and	
   SD	
   (based	
   on	
   their	
   tumor	
  

volume	
   at	
   6	
   months),	
   each	
   parameter	
   value	
   from	
   each	
   group	
   was	
   compared	
   and	
   the	
  

Student’s	
   t-­‐test	
  was	
   used	
  determine	
   if	
   the	
  mean	
   values	
   of	
   a	
   parameter	
   differed	
   between	
  

two	
   groups	
   (CR	
   vs.	
   PR	
   and	
  PR	
   vs.	
   SD)	
   (Fig.	
   S4-­‐S6).	
   In	
   patients	
   in	
   P1,	
   the	
   two	
   autophagy-­‐

associated	
   phenotypes,	
   physiological	
   and	
   quiescent	
   (𝑎! , 𝑏!),	
   were	
   significantly	
   different	
  

between	
  CR	
  and	
  PR	
  and	
  between	
  PR	
  and	
  SD	
  (Fig.	
  S4).	
  Compared	
  with	
  the	
  previous	
  partition	
  

(Fig.	
   3A),	
   the	
   new	
   partitioning	
   of	
   P1	
   according	
   to	
   the	
   value	
   of	
  𝑎! 	
  and	
  𝑏! 	
  (Fig.	
   4A,)	
  

discriminated	
  the	
  expected	
  treatment	
  outcomes	
  more	
  clearly.	
  Unlike	
  the	
  previous	
  partition	
  

result	
   (Fig.	
   3B(a)),	
   each	
   sub-­‐cohort	
   (C1-­‐4)	
   now	
   showed	
   significantly	
   different	
   mean	
  

response	
   to	
   therapy	
   (Fig.	
   4A,	
   boxplot).	
   The	
   new	
   sub-­‐cohort	
   C1	
   (cyan)	
   is	
   most	
   likely	
   to	
  

benefit	
   from	
   the	
   treatment,	
   while	
   the	
   likelihood	
   decreased	
   gradually	
   in	
   C2	
   (blue),	
   C3	
  

(yellow),	
  and	
  C4	
  (red).	
  There	
  is	
  also	
  a	
  clear	
  shift	
  in	
  the	
  distribution	
  of	
  treatment	
  response	
  

from	
  C1	
  to	
  C4	
  (Fig.	
  4A,	
  waterfall	
  plot).	
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  Similarly,	
  our	
  sensitivity	
  analysis	
  on	
  P2	
  (Fig.	
  S5)	
  revealed	
  another	
  key	
  parameter	
  set	
  

(𝑔! ,𝑔! ),	
   the	
   growth	
   rates	
   of	
   both	
   the	
   non-­‐autophagy	
   and	
   physiological	
   autophagy	
  

phenotypes.	
  P2	
  was	
  divided	
  based	
  on	
  the	
  parameter	
  values	
  (C1-­‐C4)	
  (Fig.	
  4B,	
  table).	
  Unlike	
  

the	
   previous	
   partitioning	
   (Fig.	
   3B(b)),	
   these	
   parameters	
   successfully	
   segregated	
   patients	
  

according	
   to	
   the	
   expected	
   outcomes	
   (Fig.	
   4B,	
   boxplot).	
   C1	
   was	
   revealed	
   as	
   the	
   best	
  

responding	
  sub-­‐cohort,	
  where	
  almost	
  all	
  tumor	
  volumes	
  in	
  this	
  group	
  (99%)	
  were	
  reduced	
  

by	
   at	
   least	
   20%	
   (Fig.	
   4B,	
   cyan	
   boxplot).	
   The	
   next	
   best	
   responders	
  were	
   both	
   C2	
   and	
   C3,	
  

where	
  more	
   than	
  75%	
  of	
   the	
  cohorts	
  showed	
  at	
   least	
  a	
  30%	
  reduction	
   in	
   tumor	
  volume;	
  

the	
  expected	
  outcomes	
  in	
  C2	
  and	
  C3	
  significantly	
  differed	
  from	
  those	
  in	
  C1	
  (P	
  <	
  0.01).	
  The	
  

expected	
  outcomes	
  in	
  C4	
  were	
  slightly	
  worse	
  than	
  those	
  in	
  C1-­‐C3,	
  as	
  the	
  mean	
  outcome	
  was	
  

worse	
  with	
  some	
  tumors	
  from	
  C4	
  having	
  an	
  increased	
  tumor	
  size	
  of	
  up	
  to	
  ~70%	
  (Fig.	
  4B,	
  

red	
  boxplot).	
  The	
  waterfall	
  plots	
   in	
  Fig.	
  4B	
  show	
   inter-­‐patient	
  variation	
   in	
   tumor	
  volume	
  

changes	
  even	
  within	
  the	
  same	
  sub-­‐cohort	
  and	
  shifting	
  of	
  the	
  treatment	
  response	
  from	
  C1	
  to	
  

C4.	
  

	
  With	
  random	
  treatment	
  assignment	
  of	
  either	
  arm	
  1	
  or	
  arm	
  2	
  to	
  all	
  patients	
  in	
  both	
  

P1	
  and	
  P2,	
  as	
  would	
  be	
  done	
   in	
  a	
   real	
   trial,	
   our	
  analysis	
   identified	
   the	
  key	
  parameters	
  𝑔!	
  

and	
  𝑎!	
  as	
  potential	
  predictive	
  factors	
  of	
  the	
  treatment	
  outcomes	
  (Fig.	
  S6).	
  The	
  new	
  cohorts	
  

(C1*-­‐C4*,	
  Table	
  in	
  Fig.	
  4C)	
  exhibit	
  significantly	
  different	
  mean	
  responses	
  to	
  therapy	
  (Fig.	
  4C,	
  

boxplots).	
  The	
  new	
  partition	
  also	
  showed	
  a	
  tendency	
  of	
  increasing	
  tumor	
  volumes	
  from	
  C1*	
  

to	
  C4*	
   in	
  both	
  arms	
  (Fig.	
  4C,	
  boxplots	
  and	
  waterfall	
  plots),	
  and	
  defined	
  the	
  most	
  sensitive	
  

sub-­‐cohort	
  (C1*),	
  who	
  are	
  predicted	
  to	
  be	
  the	
  most	
   likely	
   to	
  benefit	
   from	
  treatment	
  using	
  

either	
   arm	
   1	
   or	
   arm	
   2.	
   In	
   summary,	
   sensitivity	
   analysis	
   allows	
   one	
   to	
   select	
   potential	
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predictive	
  factors	
  for	
  each	
  treatment	
  strategy,	
  which	
  could	
  be	
  used	
  as	
  a	
  guide	
  for	
  selecting	
  

specific	
  therapies	
  for	
  a	
  given	
  patient.  

 

Phase i trial: Optimizing AKTi treatment to minimize toxicity for each sub-cohort  

For	
  the	
  new	
  virtual	
  sub-­‐cohorts	
  (C1*-­‐C4*)	
  optimal	
  therapy	
  recommendations	
  were	
  derived	
  

using	
   implicit	
   filtering	
   (38).	
   Notably,	
   the	
   schedule	
   of	
   chemo	
   was	
   fixed,	
   as	
   it	
   was	
   in	
   the	
  

clinical	
   trial	
   (10),	
  with	
   the	
  goals	
  of	
   identifying	
   the	
  AKTi	
   schedule	
   that	
   reduced	
   the	
   initial	
  

tumor	
   volume	
   by	
   at	
   least	
   30%	
   after	
   6	
   months	
   of	
   therapy,	
   and	
   that	
   used	
   as	
   few	
   AKTi	
  

applications	
  as	
  possible	
  to	
  provide	
  an	
  effective	
  and	
  less	
  toxic	
  treatment	
  strategy.	
  Optimized	
  

schedules	
   of	
   AKTi	
   are	
   summarized	
   in	
   Table	
   1.	
   For	
   the	
   patients	
   in	
   C1*,	
   optimum	
   therapy	
  

recommended	
  1	
   day	
   of	
   AKTi	
   treatment	
   on	
   the	
   first	
   day	
   of	
   the	
   42-­‐day	
   cycle,	
   a	
   treatment	
  

holiday	
  for	
  five	
  cycles	
  and	
  then	
  from	
  day	
  168,	
  1	
  day	
  of	
  treatment	
  on	
  the	
  first	
  day	
  of	
  a	
  7-­‐day	
  

cycle	
  (weekly	
  maintenance).	
  For	
  the	
  patients	
  in	
  C2*,	
  the	
  optimal	
  schedule	
  was	
  to	
  administer	
  

AKTi	
   on	
   the	
   first	
   and	
   third	
   days	
   of	
   a	
   21-­‐day	
   cycle	
   for	
   five	
   cycles,	
   followed	
   by	
   weekly	
  

maintenance.	
  For	
  the	
  patients	
  in	
  C3*,	
  optimization	
  recommended	
  that	
  AKTi	
  be	
  taken	
  on	
  the	
  

first,	
  third,	
  and	
  fifth	
  days	
  of	
  each	
  19-­‐day	
  cycle	
  for	
  five	
  cycles,	
  followed	
  by	
  administration	
  on	
  

the	
  first	
  day	
  of	
  each	
  week	
  from	
  day	
  95.	
  The	
  optimal	
  schedule	
  for	
  cohort	
  C4*	
  is	
  to	
  administer	
  

AKTi	
   on	
   the	
   first,	
   third,	
   and	
   fifth	
   days	
   of	
   each	
   19-­‐day	
   cycle	
   for	
   five	
   cycles,	
   followed	
   by	
  

administration	
  on	
  the	
  first	
  and	
  third	
  days	
  of	
  a	
  9-­‐day	
  cycle	
  from	
  day	
  96.	
  	
  

To	
  understand	
  the	
  relative	
  impact	
  of	
  these	
  alternate	
  therapies	
  we	
  compared	
  the	
  2-­‐

year	
   survival	
   probability	
   of	
   patients	
   on	
   the	
   different	
   therapies.	
   The	
   therapies	
   included	
  

optimized	
  therapy,	
  treatment	
  arm	
  1	
  and	
  arm	
  2,	
  and	
  two	
  mono-­‐therapies	
  of	
  AKTi	
  only	
  (i.e.,	
  

AKTi	
  treatment	
  only	
  from	
  either	
  arm	
  1	
  or	
  arm	
  2),	
  and	
  chemo	
  (Fig.	
  5).	
  The	
  initial	
  number	
  of	
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tumor	
  cells	
  was	
  set	
  at	
  one	
  billion	
  and	
  the	
  melanoma	
  was	
  considered	
  fatal	
  when	
  the	
  number	
  

of	
  tumor	
  cells	
  reached	
  1013	
  cells.	
  We	
  also	
  compared	
  the	
  cumulative	
  drug	
  concentration	
  of	
  

each	
   therapy	
   to	
   determine	
   the	
   toxicity	
   of	
   the	
   treatment	
   at	
   two	
   time	
  points,	
   immediately	
  

after	
   the	
   five-­‐cycles	
   of	
   combination	
   therapy	
   of	
   AKTi	
   with	
   chemo	
   (105	
   days)	
   and	
   at	
   the	
  

completion	
   of	
   therapy	
   (2	
   years)	
   (see	
   Materials	
   and	
   Methods	
   for	
   calculations	
   of	
   plasma	
  

concentration).	
  	
  

As	
   expected,	
   the	
   probability	
   of	
   2-­‐year	
   survival	
   decreased	
   after	
   6	
   months	
   if	
   the	
  

patients	
  in	
  the	
  cohort	
  C1*	
  were	
  not	
  treated	
  with	
  any	
  therapy	
  (Fig.	
  5A,	
  black	
  line).	
  Survival	
  of	
  

the	
   chemo-­‐alone	
   C1*	
   cohort	
   had	
   only	
   minimal	
   improvement	
   (Fig.	
   5A,	
   yellow	
   line).	
   In	
  

contrast	
  if	
  the	
  C1*	
  patients	
  were	
  treated	
  with	
  any	
  type	
  of	
  AKTi,	
  their	
  probability	
  for	
  2	
  year	
  

survival	
   remained	
   over	
   0.9	
   (Fig.	
   5A,	
   red,	
   pink,	
   blue,	
   cyan	
   and	
   green	
   lines),	
   which	
   was	
  

expected	
   as	
   this	
   cohort	
   is	
   the	
  most	
   sensitive	
   (Fig.	
   4C,	
   cyan	
   boxplots,	
   tumor	
   volume	
   at	
   6	
  

months	
  <	
  -­‐60%).	
  Regarding	
  toxicity,	
  the	
  optimal	
  therapy	
  was	
  the	
  least	
  toxic	
  to	
  patients,	
  as	
  

the	
  cumulative	
  drug	
  concentration	
  was	
  minimal	
  (Fig.	
  5A,	
  green	
  bars),	
  except	
  the	
  C1*	
  chemo	
  

cohort	
  (Fig.	
  5A,	
  nearly	
  invisible	
  yellow	
  bar).	
  	
  

The	
   probability	
   of	
   2-­‐year	
   survival	
   of	
   patients	
   in	
   cohort	
   C2*	
   also	
   decreased	
   after	
   6	
  

months	
  if	
  patients	
  were	
  not	
  treated	
  with	
  any	
  therapy	
  (Fig.	
  5B,	
  black	
  line)	
  and	
  chemo	
  again	
  

slightly	
  increased	
  the	
  probability	
  of	
  survival	
  (Fig.	
  5B,	
  yellow	
  line).	
  Also,	
  like	
  the	
  cohort	
  C1*,	
  

the	
  probability	
  of	
  2-­‐year	
   survival	
  was	
   relatively	
  high	
   (>	
  0.9)	
  when	
  patients	
  were	
   treated	
  

with	
   any	
   of	
   the	
   AKTi	
   schedules	
   (Fig.	
   5B). The	
   combination	
   AKTi	
   with	
   chemo	
   and	
   the	
  

optimized	
   therapy	
   slightly	
   increased	
   survival	
   probability	
   (Fig.	
   5B,	
   cyan,	
   blue,	
   and	
   green	
  

lines).	
  Regarding	
  toxicity,	
  arm	
  2	
  (cyan)	
  was	
  the	
  most	
  toxic,	
  followed	
  by	
  AKTi	
  (QOD,	
  pink),	
  

the	
   optimized	
   therapy	
   (green	
   bar),	
   and	
   arm	
   1	
   (blue	
   bar),	
   at	
   both	
   days	
   105	
   and	
   720	
   (2	
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years)	
  (Fig.	
  5B	
  bar	
  graphs).	
  Interestingly,	
  the	
  most	
  optimized	
  therapy	
  is	
  substantially	
  less	
  

toxic	
  than	
  both	
  arm	
  2	
  and	
  AKTi	
  (QOD)	
  at	
  day	
  105.	
  	
  

For	
   patient	
   cohort	
   C3*,	
   the	
   survival	
   probability	
   decreased	
   rapidly	
   to	
   zero	
   by	
   6	
  

months	
  if	
  the	
  patients	
  were	
  untreated	
  (Fig.	
  5C,	
  black	
  line)	
  and	
  chemo	
  again	
  had	
  little-­‐to-­‐no.	
  

impact	
   on	
   survival	
   (Fig.	
   5C,	
   yellow	
   line).	
   The	
   AKTi	
  monotherapies	
   and	
   treatment	
   arm	
   1	
  

significantly	
   improved	
  patient	
  survival	
   (Fig.	
  5C,	
  AKTi:	
  pink	
  and	
  red	
   lines	
  and	
  arm	
  1:	
  blue	
  

line).	
  However,	
  the	
  most	
  optimized	
  therapy	
  and	
  arm	
  2	
  clearly	
  provided	
  the	
  best	
  probability	
  

for	
  survival,	
  and	
  again	
  the	
  optimized	
  therapy	
  was	
  less	
  toxic	
  than	
  arm	
  2	
  (Fig.	
  5C,	
  green	
  vs.	
  

cyan	
  bars).	
  	
  

Finally,	
   like	
   the	
   C3*	
   cohort,	
   the	
   probability	
   of	
   survival	
   of	
   C4*	
   patients	
   decreased	
  

sharply	
  if	
  they	
  were	
  untreated	
  or	
  treated	
  with	
  chemo	
  only	
  (Fig.	
  5D,	
  black	
  and	
  yellow	
  line),	
  

and	
   again	
   the	
  AKTi	
  monotherapies	
   improved	
   survival	
   (Fig.	
   5D,	
   red	
   line	
   (Q3W),	
   and	
  pink	
  

line	
  (QOD)).	
  Both	
  treatment	
  arm	
  1	
  and	
  arm	
  2	
  also	
  increased	
  the	
  probability	
  of	
  survival	
  (Fig.	
  

5D,	
   blue	
   line:	
   arm	
   1	
   and	
   cyan	
   line:	
   arm	
   2).	
   Notably,	
   the	
   optimized	
   therapy	
   significantly	
  

improved	
  the	
  probability	
  of	
  survival	
  (Fig.	
  5D,	
  green	
  line)	
  compared	
  to	
  arm	
  2	
  (P	
  <	
  0.05),	
  and	
  

was	
  also	
  less	
  toxic	
  than	
  arm	
  2	
  at	
  day	
  105	
  right	
  after	
  the	
  five	
  cycles	
  of	
  combination	
  of	
  chemo	
  

with	
  AKTi,	
  although	
  it	
  became	
  more	
  toxic	
  at	
  year	
  2	
  (Fig.	
  5D	
  bar	
  graphs).  
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Discussion  

The	
   integrated	
   approach	
   applied	
   herein	
   shows	
   that	
   treatment-­‐induced	
   autophagy	
  

phenotypes	
   is	
   certainly	
   one	
   factor	
   driving	
   the	
   long-­‐term	
  effects	
   of	
   treating	
   patients	
  with	
  

chemo	
   in	
   combination	
  with	
  AKTi.	
   The	
  mathematical	
  model	
  hypothesizes that two	
  distinct	
  

states	
  of	
  autophagy	
  exists	
  (physiological	
  and	
  quiescent	
  states),	
  and	
  indicates	
  that	
  improved	
  

patient	
  outcomes	
  are	
  associated	
  with	
  the	
  quiescent	
  autophagy	
  phenotype.	
  The	
  model	
  also	
  

predicts	
   that	
   therapy	
   drives	
   the	
   transition	
   from	
   the	
   non-­‐autophagy	
   to	
   the	
   physiological	
  

autophagy	
   phenotype,	
   which	
   provides	
   a	
   transient	
   escape	
   route	
   from	
   treatments.	
   In	
  

contrast,	
  the	
  model	
  indicates	
  that	
  a	
  persistent	
  quiescent	
  autophagy	
  state	
  is	
  detrimental	
  to	
  

overall	
  fitness	
  and	
  thus	
  this	
  represents	
  a	
  desired	
  outcome	
  of	
  therapy.	
  

Implementing	
  a	
  phase	
   i	
   trial	
  allows	
  one	
  to	
  translate	
  models	
  to	
  a	
  clinically	
  relevant	
  

setting.	
  The	
  key	
  components	
  of	
  such	
  a	
  trial	
  are	
  an	
  experimentally	
  calibrated	
  mathematical	
  

model	
  and	
  a	
  cohort	
  of	
  virtual	
  patients	
  that	
  mirror	
  responses	
  observed	
  in	
  an	
  actual	
  clinical	
  

trial.	
  When	
   developing	
  mathematical	
  models	
   to	
   facilitate	
   clinical	
   decisions,	
   an	
   important	
  

constraint	
   is	
   the	
   number	
   of	
   measurable	
   parameters	
   of	
   the	
   patient.	
   As	
   patient	
   data	
   are	
  

generally	
   limiting,	
   this	
   inevitably	
   leads	
   to	
   simpler	
  models,	
  where	
   the	
   data	
   dictate	
  model	
  

inputs	
   and	
   consequently,	
   model	
   outputs.	
   The	
   model	
   presented	
   herein	
   is	
   an	
   excellent	
  

example,	
  as	
   it	
   is	
  constructed	
  by	
   integrating	
  experimental	
   findings	
  for	
  a	
  given	
  cancer	
  (e.g.,	
  

melanoma)	
   with	
   the	
   clinical	
   reality.	
   An	
   extensive	
   cohort	
   having	
   widely	
   distributed	
  

parameters	
   is	
   another	
   key	
   element	
   of	
   the	
   phase	
   i	
   trial,	
   and	
   the	
   cohort	
   should	
   be	
  

representative	
  of	
   inter-­‐patient	
  variability,	
  which	
  drives	
   the	
  diversity	
  of	
   the	
  response	
  (i.e.,	
  

the	
   spectrum	
   of	
   the	
   response	
   and	
   resistance	
   to	
   a	
   given	
   therapy)	
   that	
   is	
   observed	
   in	
   the	
  

clinic.	
   Using	
   a	
   GA	
   and	
   employing	
   response	
   criteria	
   used	
   in	
   the	
   clinic,	
   one	
   can	
   easily	
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generate	
  a	
  relatively	
  large	
  cohort	
  of	
  diverse	
  virtual	
  patients	
  who	
  are	
  treated	
  using	
  the	
  same	
  

treatments	
   given	
   to	
   patients	
   in	
   a	
   clinical	
   trial	
   and	
   statistically	
   reproduce	
   the	
   same	
  

responses.	
  	
  	
  

	
   To	
   stratify	
   treatment	
   outcomes	
   according	
   to	
   clinically	
   measurable	
   variables,	
   the	
  

cohort	
  was	
  divided	
  based	
  on	
   chemo-­‐sensitivity	
   and	
   the	
   induction	
  of	
   autophagy	
   in	
   tumor	
  

samples.	
  The	
  rate	
  of	
  transition	
  to	
  the	
  physiological	
  autophagy	
  phenotype	
  was	
  a	
  predictive	
  

factor	
   of	
   treatment	
   outcome	
   for	
   arm	
   1,	
   where	
   higher	
   rates	
   of	
   physiological	
   autophagy	
  

resulted	
  in	
  unfavorable	
  outcomes.	
  Interestingly	
  in	
  another	
  melanoma	
  study	
  using	
  different	
  

treatments,	
   an	
   increased	
   autophagy	
   response	
   was	
   associated	
   with	
   resistance	
   to	
   BRAF	
  

inhibitors	
  (25).	
  In	
  treatment	
  arm	
  2,	
  neither	
  of	
  the	
  two	
  variables	
  selected	
  for	
  more	
  sensitive	
  

or	
   resistant	
   individuals.	
  However,	
   after	
   randomly	
  assigning	
   treatment	
  of	
   either	
   arm	
  1	
  or	
  

arm	
  2	
   to	
   each	
   virtual	
   patient,	
   the	
   autophagy	
  phenotype	
   again	
  discriminated	
   sensitive	
  vs.	
  

non-­‐sensitive	
   sub-­‐cohorts.	
   Interestingly,	
   some	
   of	
   the	
   good	
   responders	
   to	
   arm	
   2	
   became	
  

non-­‐responders	
  when	
  their	
  treatment	
  was	
  switched	
  to	
  arm	
  1	
  (Fig.	
  3B(c),	
  100%	
  dark	
  blue	
  

bars	
  on	
  the	
  far	
  left),	
  highlighting	
  the	
  importance	
  of	
  knowing	
  the	
  most	
  appropriate	
  patients	
  

to	
  be	
  assigned	
  to	
  each	
  treatment	
  arm.	
  

	
   Sensitivity	
   analysis	
   of	
   the	
   simulated	
   cohort	
   was	
   superior	
   at	
   defining	
   predictive	
  

factors	
  in	
  each	
  treatment	
  arm,	
  which	
  discriminated	
  between	
  CR,	
  PR	
  and	
  SD.	
  The	
  ability	
  of	
  

non-­‐autophagic	
   melanoma	
   cells	
   to	
   become	
   either	
   physiological	
   or	
   quiescent	
   autophagic	
  

determined	
  patient	
  outcomes	
   for	
  arm	
  1,	
  whereas	
   the	
  growth	
  rates	
  of	
  proliferating	
   tumor	
  

cells	
   (non-­‐autophagy	
   vs.	
   autophagy	
   phenotypes)	
  were	
   the	
   determinants	
   of	
   outcomes	
   for	
  

arm	
  2.	
   Further,	
  when	
   randomly	
   assigning	
   to	
   either	
   arm	
  1	
   or	
   arm	
  2	
   the	
   transition	
   to	
   the	
  

quiescent	
  autophagy	
  phenotype	
  and	
  the	
  growth	
  rate	
  of	
  non-­‐autophagy	
  cells	
  discriminated	
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outcomes.	
  Thus,	
  key	
  parameters	
  for	
  cases	
  having	
  more	
  or	
  less	
  favorable	
  outcomes	
  can	
  be	
  

defined	
   for	
   each	
   treatment	
   schedule,	
   demonstrating	
   the	
   utility	
   of	
   phase	
   i	
   trials	
   in	
   aiding	
  

patient	
  selection.	
  

Optimizing	
   the	
  AKTi	
   schedule	
   for	
   each	
   cohort	
  provided	
   the	
  most	
  benefit.	
  Notably,	
  

mathematically	
  informed	
  drug	
  scheduling	
  can	
  positively	
  impact	
  overall	
  outcome,	
  including	
  

using	
   a	
   lower	
   drug	
   dose	
   in	
   some	
   cohorts.	
   Indeed,	
   changing	
   the	
   temporal	
   protocol	
  

influenced	
  the	
  dynamics	
  of	
  the	
  system	
  significantly.	
  Interestingly,	
  another	
  melanoma	
  study	
  

showed	
   that	
   using	
   unconventional	
   (discontinuous)	
   dosing	
   schedules	
   of	
   melanoma	
   cells	
  

with	
  BRAF	
   inhibitors	
   could	
  prevent	
   resistance	
   (39).	
  This	
   idea	
   is	
  now	
  being	
  explored	
   in	
  a	
  

phase	
   II	
   clinical	
   trial	
   of	
  BRAF-­‐mutant	
  melanoma	
  patients	
   (SWOG:	
  1320). We	
  submit	
   that	
  

the	
  simulation	
  of	
  optimized	
  schedules	
  and	
  comparing	
  outcomes	
  across	
  virtual	
  patients	
  can	
  

assist	
  clinical	
  treatment	
  planning	
  to	
  improve	
  overall	
  outcomes	
  (10).	
   

The	
   underlining	
  mechanisms,	
   parameterization	
   and	
   validation	
   of	
   our	
  model	
  were	
  

based	
   on	
   data	
   from	
   a	
   preclinical	
   in	
   vitro	
   study.	
   However,	
   as	
   demonstrated	
   Leder	
   and	
  

colleagues	
   an	
   integrated	
   approach	
   can	
   be	
   also	
   achieved	
   using	
   in	
   vivo	
   preclinical	
   studies	
  

(40).	
   To	
   bridge	
   the	
   divide	
   between	
   our	
   in	
  vitro	
   study	
   and	
   the	
   clinic	
   the	
   assumption	
  was	
  

made	
   that	
   the	
   same	
   mechanisms	
   of	
   therapy	
   resistance	
   apply.	
   Although	
   there	
   are	
   a	
  

multitude	
   of	
   potential	
   resistance	
   mechanisms	
   in	
   patients,	
   we	
   consider	
   one	
   (autophagy)	
  

that	
   we	
   characterized	
   using	
   our	
   integrated	
   approach	
   of	
   mathematical	
   modeling	
   with	
   in	
  

vitro	
  experiments.	
  We	
  also	
  assume	
  that	
  the	
  variability	
  in	
  patients’	
  responses	
  to	
  treatment	
  

can	
   be	
   characterized	
   by	
   variability	
   in	
   this	
   autophagy	
   mechanism,	
   although	
   there	
   are	
  

certainly	
  more	
   sources	
   of	
   variability	
   including	
  but	
  not	
   limited	
   to	
   the	
   variation	
   in	
  patient	
  

age,	
   size	
   and	
   the	
   genetic	
   composition	
   of	
   an	
   individual	
   tumor,	
   and	
   immune	
   responses.	
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Whilst	
  it	
  would	
  certainly	
  be	
  possible	
  to	
  incorporate	
  both	
  additional	
  resistance	
  mechanisms	
  

and	
  sources	
  of	
  variability	
   into	
  our	
  model,	
  and	
  given	
  appropriate	
  experimental	
  controls	
  to	
  

calibrate	
   and	
   validate	
   our	
  model,	
   ultimately	
   the	
  methodology	
  would	
   be	
   the	
   same,	
   albeit	
  

with	
  many	
  more	
  parameters	
   to	
   generate	
   virtual	
   cohorts.	
  What	
   is	
   clear,	
   regardless	
   of	
   the	
  

model	
   complexity	
   or	
   cancer	
   system,	
   is	
   that	
   using	
   a	
   validated	
  mathematical	
  model	
   (with	
  

pre-­‐clinical	
   data)	
   to	
   generate	
   a	
   virtual	
   patient	
   cohort	
   (that	
   matches	
   the	
   distribution	
   of	
  

clinically	
  observed	
  outcomes)	
  will	
  allow	
  us	
  to	
  carry	
  out	
  phase	
   i	
   trials	
  that	
  can	
  be	
  broadly	
  

applied	
   to	
   improve	
   the	
   safety	
   and	
   efficacy	
   of	
   future	
   phase	
   I-­‐IV	
   trials,	
   as	
   well	
   as	
   patient	
  

outcomes.	
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Materials and Methods 

Mathematical modeling 

Untreated	
   melanoma	
   cells	
   proliferate	
   (rate:𝑔!),	
   and	
   following	
   treatment	
   can	
   acquire	
   either	
   a	
  

physiological	
   autophagy	
   phenotype	
   (transition	
   rate:𝑎! )	
   or	
   a	
   quiescent	
   autophagy	
   phenotype	
  

(transition	
  rate:  𝑏!).	
  Physiological	
  autophagy	
  cells	
  grow	
  (rate:	
  𝑔!)	
  and	
  can	
  revert	
  to	
  non-­‐autophagy	
  

cells	
   (returning	
   rate:𝑟!),	
   or	
   enter	
   a	
   quiescent/senescent	
   state	
   (rate:𝑞!).	
   Tumor	
   cells	
   having	
   the	
  

quiescent	
   autophagy	
   phenotype	
   do	
   not	
   divide,	
   yet	
   such	
   these	
   cells	
   can	
   either	
   reacquire	
   a	
  

physiological	
  autophagy	
  phenotype	
  (rate:	
  𝑟!)	
  or	
  a	
  non-­‐autophagy	
  phenotype	
  (rate:	
  𝑟!)	
  state.	
  Cells	
  

in	
   each	
   compartment	
   die	
   at	
   some	
   rate	
   (𝑑!,!,!).	
   To	
  model	
   increased	
   cell	
   deaths	
   on	
   days	
   6-­‐9	
   (Fig.	
  

1B(b)),	
  we	
  included	
  the	
  delayed	
  cell	
  deaths	
  of	
  quiescent/senescent	
  autophagy	
  cells	
  (𝜏).	
  

The	
  effects	
  of	
   chemo,	
  AKTi	
  and	
   their	
   combination	
   (Fig.	
  2A(b)-­‐(d))	
  were	
   incorporated	
   into	
  

the	
   model.	
   It	
   was	
   assumed	
   that	
   the	
   drug	
   reaches	
   its	
   maximum	
   concentration	
   immediately	
   after	
  

administration	
  and	
  remains	
  at	
   that	
   level	
  until	
   the	
  beginning	
  of	
   the	
   treatment	
  break.	
  Although	
  the	
  

chemotherapeutic	
   agents	
   (paclitaxel	
   and	
   carboplatin)	
   are	
  detectable	
   in	
  patients	
   for	
  24	
  hours,	
   the	
  

half-­‐life	
   in	
   serum	
   is	
   relatively	
   short,	
   in	
   the	
   range	
   of	
   5.6	
   –	
   11.1	
   hr	
   (41,	
   42);	
  we	
   assumed	
   that	
   the	
  

concentration	
  of	
  the	
  chemotherapeutic	
  agents	
  were	
  maintained	
  for	
  only	
  1	
  day	
  after	
  administration	
  

and	
   became	
   zero	
   at	
   the	
   beginning	
   of	
   the	
   treatment	
   break.	
   As	
   the	
   plasma	
   concentration	
   of	
   AKTi	
  

(MK2206)	
  is	
  known	
  to	
  be	
  constant	
  for	
  approximately	
  48	
  hr	
  (with	
  a	
  long	
  terminal	
  elimination	
  half-­‐

life	
  of	
  40-­‐100	
  hr)	
  (43),	
  we	
  assumed	
  that	
  a	
  1-­‐day	
  application	
  of	
  AKTi	
  to	
  cells	
  or	
  patients	
  corresponds	
  

to	
  a	
  2-­‐day	
  application	
  to	
  cells	
  or	
  patients	
  in	
  silico.	
  Notably,	
  drug	
  doses	
  were	
  not	
  modulated	
  in	
  this	
  

study,	
   where	
   a	
   fixed	
   dose	
   was	
   assumed	
   for	
   both	
   chemo	
   and	
   AKTi.	
   As	
   cell	
   culture	
   experiments	
  

showed	
   that	
   chemo	
   triggered	
   cell	
   death	
  with	
   negligible	
   effects	
   on	
   autophagy	
   (Fig.	
   1B(a)),	
   it	
  was	
  

assumed	
  that	
  chemo	
  only	
  augmented	
  cell	
  death.	
  Further,	
  as	
  chemo	
  is	
  effective	
  only	
  in	
  proliferating	
  

melanoma	
   populations,	
   we	
   assumed	
   that	
   the	
   therapy	
   increases	
   the	
   death	
   rate	
   of	
   the	
   two	
  

proliferating	
   phenotypes,	
   non-­‐autophagy	
   (𝑑!)	
   and	
   physiological	
   autophagy	
   cells	
   (𝑑!)(Fig.	
   2B(b),	
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black	
  arrows).	
  We	
  also	
  assumed	
  that	
   the	
   frequency	
  with	
  which	
  cells	
  became	
  quiescent/senescent	
  

(𝑞!)	
  increased	
  with	
  chemo	
  (Fig.	
  2B(b),	
  black	
  lines).	
  	
  In vitro	
  studies	
  showed	
  that	
  while	
  AKTi	
  did	
  not	
  

augment	
   cell	
   deaths	
   or	
   effectively	
   inhibit	
  melanoma	
   cell	
   growth	
   (Fig.	
   1B(a)-­‐(b)	
   and	
   (16)),	
   it	
   did	
  

induce	
   autophagy	
   (Fig.	
   1B(c)	
   and	
   (16));	
   thus,	
   we	
   assumed	
   that	
   AKTi	
   increases	
   the	
   rate	
   of	
  

transitioning	
   to	
   the	
   autophagy	
   phenotypes,	
  𝑎!	
  and	
  𝑏! 	
  (Fig.	
   2B(c),	
   black	
   arrows).	
   As	
   combination	
  

therapy	
  does	
  not	
   augment	
   cell	
  death	
   compared	
  with	
   chemo,	
  nor	
   significantly	
   increase	
  autophagy	
  

relative	
   to	
   AKTi,	
   the	
   combination	
   of	
   the	
   two	
   treatments	
   was	
   modeled	
   by	
   adding	
   the	
   effects	
   of	
  

chemo	
  and	
  AKTi	
  (Fig.	
  2B(d),	
  black	
  arrows	
  and	
  crosses).	
  	
  Finally,	
  it	
  was	
  assumed	
  that	
  no	
  cells	
  with	
  a	
  

given	
  phenotype	
  revert	
  to	
  their	
  original	
  states	
  while	
  any	
  treatment	
  is	
  being	
  applied.	
  The	
  schematic	
  

representation	
   of	
   this	
   compartment	
   model	
   (Fig.	
   2A(a)	
   to	
   (d))	
   converts	
   readily	
   into	
   a	
   system	
   of	
  

ordinary	
  differential	
  equations:	
  

  

where	
   𝑑! = 𝑑! + 𝑐!𝐶(𝑡) ,   𝑑! = 𝑑! + 𝑐!𝐶 𝑡 , 𝑞! = 𝑞! + 𝑐!𝐶 𝑡 , 𝑎! = 𝑎! + 𝑎!𝐴 𝑡 , 	
  and	
   𝑏! = 𝑏! +

𝑏!𝐴 𝑡 .	
  In	
   equation	
   (1),	
  𝐴(𝑡)	
  and	
  𝐶 𝑡   model	
   time	
   schedules	
   of	
   AKTi	
   and	
   chemo,	
   respectively.	
   To	
  

model	
  the	
  treatment	
  schedules,	
  we	
  used	
  Heaviside	
  function	
  𝐻   𝑡 − 𝜃 	
  defined	
  by	
  

𝐻 𝑡 − 𝜃 = 0                                    𝑡 < 𝜃,
1                                    𝑡 ≥ 𝜃.	
  

Assuming	
  alternative	
   application	
  of	
   the	
  AKTi	
  over	
   a	
  period	
  of	
   time	
  at	
   each	
   cycle,	
   the	
   schedule	
  of	
  

AKTi	
   was	
  modeled	
   by	
   A(t)	
   =	
   𝐻 𝑡 − (𝑘𝑡! + 2𝑖) − 𝐻 𝑡 − 𝑘𝑡! + 2(𝑖 + 1)!!!
!!!

!!
!!! ,	
   where	
   n	
   is	
  

the	
  number	
  of	
  AKTi	
  applications	
  at	
  each	
  cycle,	
  𝑛!is	
  the	
  number	
  of	
  AKTi	
  treatment	
  cycles,	
  and	
  𝑡! 	
  is	
  

the	
   length	
  of	
   each	
  AKTi	
   treatment	
   cycle.	
   Similarly,	
   the	
   schedule	
  of	
   chemo	
  was	
  modeled	
  by	
  C(t)	
  =	
  

𝐻 𝑡 − 𝑘𝑡! − 𝐻 𝑡 − 𝑘𝑡! + 𝑡!
!!
!!! ,	
  where	
  𝑛!is	
  the	
  number	
  of	
  chemo	
  cycles,	
  𝑡!	
  is	
  the	
  length	
  of	
  

Ṅ = (gN � dN )N � (aP + bQ)N + [1�A(t)][rPP + (1� C(t)) rNQ]

Ṗ = (gP � dP )P � qPP + aPN + [1�A(t)][�rPP + (1� C(t)) rQQ]

Q̇ = �
✓
dQ +

d⌧
1 + e�(t�⌧)

◆
Q+ bQN + qPP � [(1�A(t))(1� C(t))](rN + rQ)Q

(1)

1
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each	
  chemo-­‐cycle,	
  and	
  𝑡! 	
  is	
  the	
  duration	
  of	
  chemo.	
  The	
  equation	
  (1)	
  was	
  solved	
  using	
  a	
  Matlab	
  ODE	
  

solver	
  (ode15s).	
  

	
  

Parameter estimation  

Two	
  melanoma	
  cell	
  lines	
  (M257	
  and	
  WM3918)	
  were	
  treated	
  with	
  chemo	
  on	
  the	
  first	
  four	
  days	
  (day	
  

0-­‐4)	
  and	
  with	
  AKTi	
  on	
  every	
  other	
  day	
  (days	
  0,	
  2,	
  4,	
  and	
  6).	
  We	
  measured	
  the	
  number	
  of	
  melanoma	
  

cells	
   at	
   days	
   4,	
   6	
   and	
   8.	
   We	
   assumed	
   that	
   all	
   of	
   the	
   initial	
   tumor	
   cell	
   population	
   was	
   the	
   non-­‐

autophagy	
  phenotype	
  (100%	
  of	
  non-­‐autophagy	
  cells	
  on	
  day	
  0).	
  Both	
  initial	
  cell	
  populations	
  and	
  the	
  

growth	
   rate	
   of	
   non-­‐autophagy	
   cells	
   (𝑔!)	
   are	
   estimated	
   by	
   assuming	
   an	
   exponential	
   growth	
   of	
  

untreated	
   cells	
   and	
   finding	
   both	
   the	
   initial	
   value	
   and	
   exponent	
   of	
   the	
   best-­‐fit	
   curve.	
  We	
   used	
   an	
  

optimization	
  algorithm	
  called	
  implicit	
  filtering	
  (38),	
  a	
  steepest	
  descent	
  algorithm	
  for	
  problems	
  with	
  

bound	
  constraint,	
  to	
  determine	
  the	
  best	
  remaining	
  parameter	
  set	
  𝐻	
  (except	
  𝑔!)	
  that	
  minimized	
  the	
  

difference	
  between	
  predicted	
  number	
  of	
  cells	
  (𝑁!)	
  and	
  experimental	
  result	
  (𝑁!)	
  in	
  four	
  conditions:	
  

no	
   treatment	
   (n);	
   chemo	
   (c);	
   AKTi	
   (a);	
   and	
   combination	
   (m).	
   The	
  mathematical	
   definition	
   of	
   our	
  

problem	
  is:	
  	
  

min
!∈!

𝑓 𝐻 = min
!∈!

𝑁!!(𝐻) − 𝑁!!
!

!!{!,!,!,!}

,	
  

where	
  the	
  goal	
  is	
  to	
  minimize	
  the	
  objective	
  function	
  f	
  subject	
  to	
  the	
  condition	
  that	
  𝐻 ∈ ℝ!	
  is	
  in	
  the	
  

feasible	
  region:	
  

Ω = 𝐻 ∈ ℝ!|𝐿! ≤   𝐻! ≤   𝑈! ,	
  

where	
  and	
  𝐿! 	
  and	
  𝑈! 	
  are	
   the	
  upper	
  and	
   lower	
  bound	
  on	
   the	
   jth	
  component	
  𝐻! 	
  of	
   the	
  vector	
  H.	
  The	
  

estimated	
  parameters	
  for	
  each	
  cell	
  line	
  are	
  summarized	
  in	
  Table	
  S1.	
  

 

Synopsis of 12 different schedules over 16 days tested to validate the model 

The	
  schedules	
   (Fig.	
   S1)	
   included:	
  #1,	
  no-­‐treatment;	
  #2,	
   two	
   types	
  of	
  mono-­‐therapies	
  with	
  chemo	
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only	
  (one	
  time	
  chemo	
  for	
  the	
  first	
  four	
  days,	
  days	
  0-­‐4);	
  #3,	
  two	
  chemos	
  for	
  both	
  the	
  first	
  four	
  days	
  

(days	
  0-­‐4)	
  and	
  the	
  last	
  four	
  days	
  (days	
  12-­‐16);	
  #4,	
  AKTi	
  mono-­‐therapy	
  (one	
  time	
  AKTi	
  for	
  the	
  first	
  

four	
  days	
  (days	
  0-­‐4),	
  #5:	
  AKTi	
  mono-­‐therapy,	
  alternative	
  day	
  administration	
  of	
  AKTi.	
  	
  

We	
  considered	
  both	
  concurrent	
  and	
  sequential	
  combination	
  therapies.	
  The	
  two	
  concurrent	
  

combination	
   therapy	
   schedules	
   are	
   #6	
   and	
   #7,	
  where	
   #6	
  was	
   one	
   time	
   treatment	
   of	
   concurrent	
  

therapy	
   for	
   the	
   first	
   four	
  days	
   (day	
  0-­‐4),	
  and	
  where	
  #7	
  was	
  one	
   time	
   treatment	
  of	
  chemo	
   for	
   the	
  

first	
  4	
  days	
  (days	
  0-­‐4)	
  and	
  alternative	
  administration	
  of	
  AKTi.	
  	
  

The	
  four	
  single	
  agent	
  sequential	
  therapy	
  schedules	
  (#8-­‐#12)	
  included	
  different	
  ordering	
  of	
  

chemo	
  and	
  AKTi.	
  Some	
  schedules	
  set	
  chemo	
  treatment	
  first,	
  where	
  #8	
  was	
  chemo	
  from	
  day	
  0	
  to	
  day	
  

4	
   and	
   then	
   AKTi	
   from	
   day	
   0	
   to	
   day	
   4,	
   whereas	
   #9	
   was	
   chemo	
   on	
   day	
   0-­‐4	
   and	
   then	
   alternating	
  

administration	
  of	
  AKTi.	
  The	
  other	
  schedule	
  administrated	
  AKTi	
  first,	
  where	
  #10	
  was	
  AKTi	
  first	
  for	
  

day	
  0-­‐4	
   and	
   then	
   chemo	
  day	
  0-­‐4.	
   Finally,	
   there	
  were	
   alternative	
   applications	
  of	
   chemo	
  and	
  AKTi	
  

twice,	
  where	
  #11	
  was	
  chemo	
  first	
  for	
  the	
  first	
  four	
  days,	
  followed	
  by	
  AKTi	
  treatment	
  for	
  4	
  days,	
  and	
  

where	
  #12	
  was	
  AKTi	
  for	
  the	
  first	
  four	
  days,	
  followed	
  by	
  4-­‐day	
  application	
  of	
  chemo.	
  

 

Optimization of AKTi schedules 

In	
   the	
  model	
   AKTi	
   was	
   initially	
   administered	
   with	
   chemo	
   for	
   five	
   cycles	
   and	
   then	
   administered	
  

without	
  chemo	
  (AKTi	
  maintenance),	
  as	
  in	
  the	
  clinical	
  trial.	
  For	
  each	
  AKTi	
  application,	
  we	
  assumed	
  a	
  

1-­‐day	
   application	
   time.	
   	
   The	
   scheduling	
   parameter	
   S	
   consists	
   of	
   5	
   variables,	
   number	
   of	
   1-­‐day	
  

applications	
  (Nc)	
  at	
  each	
  cycle	
  with	
  chemo,	
   length	
  of	
  treatment	
  holiday	
  at	
  each	
  cycle	
  (Lc),	
  starting	
  

day	
   of	
   AKTi	
   maintenance	
   (Ms),	
   number	
   of	
   applications	
   (Ns)	
   in	
   AKTi	
   maintenance	
   phase	
   and	
   the	
  

length	
   of	
   treatment	
   holiday	
   (Ls)	
   each	
   week	
   since	
   the	
   stating	
   day	
   As.	
   Our	
   objective	
   function	
   to	
  

identify	
   an	
   optimal	
   schedule	
   of	
   the	
   AKTi	
   is	
  𝑓! 𝑆 =    𝑉! 𝑆 − 0.7𝑉! !
!∈!! ,	
   where	
   k	
   (=1,2,3,4)	
  

denotes	
   each	
   cohort	
  C1-­‐4*and	
  V0	
   is	
   the	
   initial	
  number	
  of	
   tumor	
   cells	
   (109	
   cells).	
  We	
  employed	
   the	
  

implicit	
  filtering	
  method	
  to	
  find	
  the	
  optimal	
  S	
  for	
  each	
  cohort.	
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Toxicity treatment: cumulative drug concentration of AKTi and chemo 

The	
  plasma	
  concentration	
  of	
  AKTi	
  was	
  determined	
  by	
  solving	
  a	
  differential	
  equation	
  !"
!"
= −𝜆𝑋 𝑡 +

𝐴(𝑡),	
   where	
  𝜆	
  is	
   a	
   decay	
   rate	
   of	
   AKTi	
   and  𝐴(𝑡)	
  (defined	
   in	
   the	
   above	
   Mathematical	
   modeling	
  

section)	
  denotes	
  the	
  application	
  of	
  AKTi.	
   	
  We	
  assumed	
  that	
  the	
  decay	
  rate	
  of	
  AKTi	
  is	
  0.35	
  per	
  day	
  

based	
  on	
  pharmacokinetic	
  study	
  of	
  AKTi	
  in	
  patients	
  (43).	
  Similarly,	
  plasma	
  concentration	
  of	
  chemo	
  

was	
   obtained	
   by	
   solving	
   a	
   differential	
   equation	
  !"
!"
= −𝜇𝑌 𝑡 + 𝐶 𝑡 ,	
   where	
  𝜇  (= 0.7  per	
  day)	
  is	
   a	
  

decay	
  rate	
  of	
  chemo	
  and	
  𝐶(𝑡)	
  denotes	
  the	
  application	
  chemo	
  (see	
  Mathematical	
  modeling	
  section).	
  	
  

The	
   cumulative	
  drug	
   concentration	
   at	
   time	
  T	
   is	
   obtained	
  by	
   adding	
   the	
   areas	
  under	
   the	
   curve	
   of	
  

𝑋(𝑡)	
  (AKTi)	
  and	
  𝑌(𝑡)(chemo)	
  from	
  0	
  to	
  T.	
  

	
  

Cell culture 

Melanoma	
  cell	
   lines	
  were	
  a	
  gift	
  from	
  Dr.	
  Meenhard	
  Herlyn	
  (The	
  Wistar	
  Institute,	
  Philadelphia,	
  PA,	
  

USA)	
  and	
  were	
  grown	
  in	
  RPMI-­‐1640	
  media	
  (Corning,	
  Pittsburgh,	
  PA,	
  USA)	
  supplemented	
  with	
  5%	
  

FBS	
  (Sigma,	
  St.	
  Louis,	
  MO,	
  USA).	
  M257	
  cells	
  were	
  a	
  gift	
  from	
  Dr.	
  Antoni	
  Ribas	
  (UCLA,	
  Los	
  Angeles,	
  

CA,	
  USA).	
  

	
  
Statistical analysis 

Matlab	
   statistics	
   toolbox	
   was	
   used	
   to	
   perform	
   the	
   Student’s	
   t-­‐test	
   where	
   no	
   significance	
   (ns)	
  

denotes	
  	
  >	
  0.05,	
  **	
  denotes	
  P	
  <	
  0.05,	
  and	
  	
  ***	
  denotes	
  P	
  <	
  0.01.	
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Figure Legends:  

 

Figure 1. Acquisition of historic clinical and biological data.  

A, typical clinical data obtained from a clinical trial. Waterfall plots of the best responses in a 

clinical trial (10). The percentage change from baseline for the best result is shown here. 

Adapted from Molife et al (10), published in the Journal of Hematology & Oncology, copyright 

2014 BioMed Central. 

B, biological data that may explain the underlying mechanisms in treatment responses. (a) 

Assessment of cell death (WM3918 cells, annexin-V) after 72 hr treatment with chemo 

(carboplatin and paclitaxel), AKTi (MK2206), and the combination of chemo and AKTi. (b) The 

measurement of cell death (WM3918) in a panel of 3D collagen-implemented spheroids. Cells 

were treated with AKTi and chemo (carboplatin and paclitaxel) for 3, 6, and 9 days. Green, 

viable cells; red, dead cells. Magnification 10x. (c) Treatment induces autophagy in cells. Left, 

fluorescence imaging of WM3918 cells treated as indicated for 72 hr and stained with acridine 

orange (AO). Orange: aggregated AO, green: diffuse AO. Right, Quantification of staining. 

Adapted from Rebecca et al (16) published in Pigment Cell & Melanoma Research, copyright 

2014. John Wiley & Sons. 
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Figure 2. Mathematical model development and validation.  

A, Mathematical model development. (a) Schematic of a compartmental model composed of 

three compartments, non-autophagy (blue), physiological autophagy (green), and quiescent 

autophagy (red). (b) Schematic that incorporates the responses to chemo. Black arrows, 

increased rates during chemo; black crosses, the removal of the interaction during therapy. (c) 

AKTi increases the transition rate from non-autophagy to both autophagy phenotypes (black 

arrows) and blocks the transition from the autophagy to the non-autophagy phenotype (black 

crosses). (d) Schematic of the combination of chemo and AKTi.  

B, Model calibration. Predicted non-autophagy (blue), physiological autophagy (green), 

quiescent autophagy (red), total population (black line), and experimental cell counts (black 

dots) on days 4, 6 and 8, under four conditions: no treatment; chemo (day 0-4, cyan bars), AKTi 

(days 0, 2, 4 and 6, pink bars) and combination therapy (chemo on days 0-4 and AKTi on days 

0, 2, 4 and 6) in cell lines WM 3918 (left) and M257 (right) melanoma cells. R-values are 

reported for each case.  

C, Validation. In a total of 12 different conditions (Fig. S1), each of the predicted total 

populations (red bars) are compared with of the each experimental results (blue bars).  
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Figure 3. Virtual cohort generation and clinical trial simulation 

A, Virtual cohort generation. (a) Graphical representation of virtual patients partitioned based on 

the cell death rate of the non-autophagy tumor population under chemo (𝑐!) and the induction of 

the autophagy from non-autophagy to physiological autophagy populations following exposure 

to  AKTi (𝑎!). Both rates were low in patients in sub-cohort C1 (dark blue dots). 𝑐! was low but 

𝑎! was high in C2 (dark green). Both rates were high in patients in C3 (orange). The tumor cells 

in patients in C4 (pink) had a higher rate of 𝑎! but a lower rate of 𝑐!. (b) Empirical cumulative 

distribution functions of patients (black line) and virtual patients (green line). The maximum 

difference between two distributions is 0.14. Inlet: Box-Whisker plots of patients (left) and 

sampled 500 virtual patients (right). x: mean, -: median, box: 25% - 75%, upper and lower 

horizontal bar (-): 91-9%.(c) Mean doubling time of untreated tumor volume in virtual patients 

from group P1 (top), P2 (bottom). Dark blue: C1; dark green, C2; orange, C3; and pink, C4.   

B, Simulation of 6-month treatments in all of the virtual patients. (a) Waterfall plots of final tumor 

volumes in 30 randomly selected patients from P1 treated with arm 1. Box whisker plot of the 

expected 6-month treatment outcomes in each sub-cohort C1-4 (x: mean, -: median, box: 25% - 

75%, upper and lower horizontal bar (-): 91-9%). **, P < 0.05; ***, P < 0.01. Histogram shows 

expected tumor volumes at the final day of treatment (day 180). (b) Waterfall plots of final tumor 

volume in 30 randomly selected patients from P2 treated with arm 2. Box whisker plot of the 

expected 6-month treatment outcomes in each sub-cohort C1-4 Histogram of expected tumor 

volumes. (c) Waterfall plots of tumor volume response in 30 randomly selected patients from 

both P1 and P2 treated with either arm 1 or arm 2 (randomly selected treatment). Box whisker 

plot of the expected 6-month treatment outcomes in each sub-cohort C1-C4. Histogram of 

expected tumor volumes (day 180). 
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Figure 4. Potential predictive factors of the therapy to virtual patients.  

A, Re-partitioning of P1 based on the rate of autophagy induction in the transition from the non-

autophagy to physiological autophagy phenotypes under AKTi (𝑎!), and the rate of transition 

from the non-autophagy to quiescent autophagy phenotypes (𝑏!). Box whisker plot of the 

expected 6-month treatment outcomes in the new sub-cohorts C1-C4 of P1 (x: mean, -: median, 

box: 25% - 75%, upper and lower horizontal bar (-): 91-9%). Cyan, C1; blue, C2; yellow, C3; and 

red, C4. **, P < 0.05; ***, P < 0.01. Waterfall plots of final tumor volumes in 40 randomly 

selected patients from P1. The vertical line indicates no change in volume (0%) after therapy.  

B, Re-partitioning of P2 based on two growth rates, those of non-autophagy (𝑔! ) and 

physiological autophagy phenotype cells (𝑔! ). Box whisker plot of the expected 6-month 

treatment outcomes in the new sub-cohorts C1-C4 of P2. Waterfall plots of final tumor volumes in 

40 randomly selected patients from P2. 

C, Re-partitioning of all virtual patients based on the growth rate of non-autophagy tumor cells 

(𝑔!) and the transition rate from non-autophagy to quiescent autophagy phenotype (𝑏!). Box 

whisker plot of the expected 6-month treatment outcomes in the new sub-cohorts C1*-C4*. 

Waterfall plots of the final tumor volumes in 40 randomly selected 40 patients treated with either 

arm 1or arm 2 (random assignment). 
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Figure 5. Treatment optimization and predicted 5-year survival analysis 

Kaplan-Meier curves in patients from cohort (A: C1
*, B: C2

*, C: C3
*, D: C4

*) when eight different 

treatments were applied for 2 years, no treatment (black), five cycles of chemo only (yellow), 

AKTi monotherapy following the Q3W schedule (red), AKTi monotherapy following the QOD 

schedule (pink), combination therapy with arm 1 (blue) or arm 2 (cyan), and the optimum 

therapy (green). Inlet bars, sum of cumulative drug (both AKTi and chemo) concentrations at 

day 105 (first bar graph, same color scheme as in the survival curves) and year 2 (second bar 

graph). 
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Table 1. Optimized AKTi schedule for sub-cohort C1-4
* (unit: day) 

	
   5	
  cycles	
  of	
  combination	
   After	
  5	
  cycles	
  of	
  combination	
  	
  
(AKTi	
  only)	
  

Treatment	
  	
   Cycle	
  length	
   Start	
  day	
   Treatment	
  	
   Cycle	
  length	
  
C1*	
   1	
   42	
   168	
   1	
   7	
  
C2*	
   1,	
  3	
   21	
   105	
   1	
   7	
  
C3*	
   1,3,5	
   19	
   95	
   1	
   7	
  
C4*	
   1,3,5	
   19	
   96	
   1,3	
   9	
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Supplementary Materials and Methods 

 

Supplementary Figure Legends 

 

Figure S1. A, graphical representation of the 12 different schedules. B, representative image of 

cells (WM3918 and M257) on day 16 treated with the schedules.	
  The	
  melanoma	
  cell	
   lines	
  were	
  

treated	
  with	
  vehicle,	
  MK-­‐2206	
  (5	
  μM),	
  Carboplatin	
  (1	
  μM),	
  Paclitaxel	
  (3	
  nM)	
  or	
  the	
  combination	
  of	
  

all	
  three	
  agents	
  for	
  16	
  days.	
  After	
  this	
  time,	
  colonies	
  were	
  fixed	
  and	
  photographed.	
  Photographs	
  are	
  

representative	
  of	
  three	
  independent	
  experiments.	
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Figure S2. The long-term effects of the therapy (#7).  

 

Figure S3. Histogram of Lin’s concordance correlation coefficients and estimated densities 

based on 1000 samplings from the virtual cohort.  
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Figure S4. Predictive factors of treatment response arm 1 to the patient cohorts P1. For each 

parameter, a Students’ t-test was performed to assess if there is a significant difference in the 

mean of each model parameter between complete responder (CR), partial responder (PR) and 

stable diseases (SD). Statistical significance is indicated where ns denotes > 0.05, ** denotes 

P<0.05 and *** denotes P < 0.01. Among 11 parameters, 𝑏! and 𝑎! discriminate CR, PR and 

SD in P1 most significantly.  
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Figure S5. Predictive factors of treatment response arm 2 to the patient cohorts P2. Parameter 

𝑔! and 𝑔! discriminated CR, PR and SD most significantly. 
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Figure S6. Predictive factors of treatment response either arm 1 or arm 2 to all patients (both P1 

and P2). Parameter  𝑔!  and 𝑏! discriminated CR, PR and SD most significantly. 
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Table S1. Estimated	
  parameters	
  (unit:	
  1/day)	
  

Name	
   Description	
   M257	
   WM	
  
3918	
  

𝑔! Growth	
  rate	
  of	
  non-­‐autophagy	
  cells	
  (𝑁)	
   0.238	
   0.198	
  

𝑎! Autophagy	
  transition	
  rate	
  N→ P 	
   0.015	
   0.01	
  

𝑏! Autophagy	
  transition	
  rate	
  	
  N→Q 	
   0.01	
   0.01	
  

𝑟! Recovery	
  rate	
  P→ N 	
   0.5	
   0.8	
  

𝑟! Recovery	
  rate	
  Q→ N 	
   0.7	
   0.5	
  

𝑔! Growth	
  rate	
  of	
  physiological	
  autophagy	
  cells	
  (P )	
   0.19	
   0.195	
  

𝑞! Transition	
  rate	
  P→Q 	
   0.05	
   0.01	
  

𝑟! Recovery	
  rate	
  Q→ P 	
   0.09	
   0.02	
  

𝑐! Increased	
  non-­‐autophagy	
  cell	
  death	
  rate	
  under	
  chemo	
   0.3	
   0.1	
  

𝑐! Increased	
  physiological	
  autophagy	
  ( )	
  cell	
  death	
  rate	
  under	
  
chemo	
  

0.6	
   0.75	
  

𝑐! Increased	
  transition	
  rate	
  P→Q 	
  under	
  chemo	
   1.8	
   1.4	
  

𝑎! Increased	
  transition	
  rate	
   	
  under	
  AKTi	
   1.6	
   2.0	
  

𝑏! Increased	
  transition	
  rate	
  𝑁 → 𝑄	
  under	
  AKTi	
   0.15	
   0.15	
  

𝑑! Cell	
  death	
  rate	
  of	
  quiescent	
  autophagy	
  (𝑄)	
   0.05	
   0.11	
  

dτ  
Delayed	
  death	
  rate	
  of	
  quiescent	
  autophagy	
  (𝑄)	
   0.15	
   0.2	
  

τ  Delayed	
  time	
  (unit:	
  day)	
   6	
   9	
  

A	
  natural	
  death	
  rate	
  (𝑑!)	
  was	
  set	
  to	
  be	
  𝑑! = 0.01. 

P

N→ P
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