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ABSTRACT

Adaptation lies at the heart of Darwinian evolution. Accordingly, numerous studies have tried
to provide a formal framework for the description of the adaptive process. Out of these, two
complementary modelling approaches have emerged: While so-called adaptive-walk models
consider adaptation from the successive fixation of de-novo mutations only, quantitative ge-
netic models assume that adaptation proceeds exclusively from pre-existing standing genetic
variation. The latter approach, however, has focused on short-term evolution of population
means and variances rather than on the statistical properties of adaptive substitutions. Our
aim is to combine these two approaches by describing the ecological and genetic factors that
determine the genetic basis of adaptation from standing genetic variation in terms of the
effect-size distribution of individual alleles. Specifically, we consider the evolution of a quan-
titative trait to a gradually changing environment. By means of analytical approximations,
we derive the distribution of adaptive substitutions from standing genetic variation, that is,
the distribution of the phenotypic effects of those alleles from the standing variation that be-
come fixed during adaptation. Our results are checked against individual-based simulations.
We find that, compared to adaptation from de-novo mutations, (i) adaptation from standing
variation proceeds by the fixation of more alleles of small effect; (ii) populations that adapt
from standing genetic variation can traverse larger distances in phenotype space and, thus,
have a higher potential for adaptation if the rate of environmental change is fast rather than

slow.
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INTRODUCTION

One of the biggest surprises that has emerged from evolutionary research in the past few
decades is that, in contrast to what has been claimed by the neutral theory (KIMURA||1983)),
adaptive evolution at the molecular level is wide-spread. In fact, some empirical studies
concluded that up to 45% of all amino acid changes between Drosophila simulans and D.
yakuba are adaptive (SMITH and EYRE-WALKER| 2002; |ORR/|2005b). Along the same line,
WICHMAN et al.|(1999) evolved the single-stranded DNA bacteriophage ®X174 to high tem-
perature and a novel host and found that 80 — 90% of the observed nucleotide substitutions
had an adaptive effect. These and other results have led to an increased interest in providing
a formal framework for the adaptive process that goes beyond traditional population- and
quantitative-genetic approaches and considers the statistical properties of suites of substitu-
tions in terms of “individual mutations that have individual effects” (ORR|[2005a)). In general,
selection following a change in the environmental conditions may act either on de-novo muta-
tions or on alleles already present in the population, also known as standing genetic variation.
Consequently, from the numerous studies that have attempted to address this subject, two

complementary modelling approaches have emerged.

So-called adaptive-walk models (GILLESPIE |1984; KAUFFMAN and LEVIN 1987 |ORR/ 2002,
2005b) typically assume that selection is strong compared to mutation, such that the popula-
tion can be considered monomorphic all the time and all observed evolutionary change is the
result of de-novo mutations. These models have produced several robust predictions (ORR
1998, 2000; MARTIN and LENORMAND|2006a},b)), which are supported by growing empirical
evidence (COOPER et al. 2007; ROCKMAN|2012; [HIETPAS et al.| 2013} but see BELL 2009)),
and has provided a statistical framework for the fundamental event during adaptation, that
is, the substitution of a resident allele by a beneficial mutation. Specifically, the majority
of models (e.g., (GILLESPIE| 1984; (ORR||1998; MARTIN and LENORMAND|2006a)) consider the

effect-size distribution of adaptive substitutions following a sudden change in the environ-
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5o ment. Recently,  KOPP and HERMISSON| (2009b) and MATUSZEWSKI et al| (2014) extended

s this framework to gradual environmental change.

s1 In contrast, most quantitative-genetic models consider an essentially inexhaustible pool of
2 pre-existing standing genetic variants as the sole source for adaptation (LANDE|[1976). Evolv-
63 ing traits are assumed to have a polygenic basis, where many loci contribute small individual
e effects, such that the distribution of trait values approximately follows a Gaussian distribution
s (BULMER/||1980; BARTON and TURELLI |1991; |[KIRKPATRICK et al.[2002). Since the origins
s of quantitative genetics lie in the design of plant and animal breeding schemes (WRICKE and
&7 |WEBER! 1986} [TOBIN et al.|2006; |[HALLAUER et al.|2010)), the traditional focus of these mod-
s els was on predicting short-term changes in the population mean phenotype (often assuming
0 constant genetic variances and covariances), and not on the fate and effect of individual
7 alleles. The same is true for the relatively small number of models that have studied the
7 contribution of new mutations in the response to artificial selection (e.g. HILL and RASBASH
22 (1986a)) and the shape and stability of the G-matrix (i.e., the additive variance-covariance

7z matrix of genotypes; JONES et al.|[2004, 2012).

72 It is only in the past decade that population geneticists have thoroughly addressed adaptation
75 from standing genetic variation at the level of individual substitutions (ORR and BETAN-
76 |(COURT|2001; HERMISSON and PENNINGS [2005; (CHEVIN and HOSPITAL 2008). HERMISSON
7 land PENNINGS| (2005) calculated the probability of adaptation from standing genetic vari-
7 ation following a sudden change in the selection regime. They found that, for small-effect
7o alleles, the fixation probability is considerably increased relative to that from new mutations.
so  Furthermore, |[CHEVIN and HOSPITAL| (2008) showed that the selective dynamics at a focal
a1 locus are substantially affected by genetic background variation. These results where experi-
22 mentally confirmed by LANG et al.|(2011)), who followed beneficial mutations in hundreds of
&3 evolving yeast populations and showed that the selective advantage of a mutation plays only a
s limited role in determining its ultimate fate. Instead, fixation or loss is largely determined by

s variation in the genetic background — which need not to be preexisting, but could quickly be
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generated by a large number of new mutations. Still, predictions beyond these single-locus
results have been verbal at best, stating that “compared with new mutations, adaptation
from standing genetic variation is likely to lead to faster evolution [and] the fixation of more
alleles of small effect [...]” (BARRETT and SCHLUTER|2008). Thus, despite recent progress,
one of the central questions still remains unanswered: From the multitude of standing genetic
variants segregating in a population, which are the ones that ultimately become fixed and
contribute to adaptation, and how does their distribution differ from that of (fixed) de-novo

mutations?

The aim of the present article is to contribute to overcoming what has been referred to as “the
most obvious limitation” (ORR 2005b)) of adaptive-walk models and to study the ecological
and genetic factors that determine the genetic basis of adaptation from standing genetic vari-
ation. Specifically, we consider the evolution of a quantitative trait in a gradually changing
environment. We develop an analytical framework that accurately describes the distribu-
tion of adaptive substitutions from standing genetic variation and discuss its dependence on
the effective population size, the strength of selection and the rate of environmental change.
In line with | BARRETT and SCHLUTER/ (2008)), we find that, compared to adaptation from
de-novo mutations, adaptation from standing genetic variation proceeds, on average, by the
fixation of more alleles of small effect. Furthermore, when standing genetic variation is the
sole source for adaptation, faster environmental change can enable the population to remain

better adapted and to traverse larger distances in phenotype space.
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MODEL AND METHODS

Phenotype, Selection and Mutation

We consider the evolution of a diploid population of N individuals with discrete and non-
overlapping generations characterized by a single phenotypic trait z, which is under Gaussian
stabilizing selection with regard to a time-dependent optimum 2, (t):

(- zopxt))j | "

w(z,t) = exp [— 552

where 02 describes the width of the fitness landscape. Throughout this paper we choose the

linearly moving optimum,

Zopt (t) = v, (2)
where v is the rate of environmental change.

Mutations enter the population at rate % (with © = 4Nwu where u is the per-haplotype muta-
tion rate), and we assume that their phenotypic effect size a follows a Gaussian distribution
with mean 0 and variance ¢, (which we will refer to as the distribution of new mutations),

that is

pla) = 1 exp (— 0‘2). )

\/2mo2, 202,

Throughout this paper we equate genotypic with phenotypic values and, thus, neglect any
environmental variance. Note that this model is, so far, identical to the moving-optimum

model proposed by [KOPP and HERMISSON (2009b)) (see also [BURGER|2000)).
Genetic assumptions and simulation model

To study the distribution of adaptive substitutions from standing genetic variation, we con-
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ducted individual-based simulations (IBS; available upon request; see BURGER 2000; Kopp
and HERMISSON| 2009b)) that explicitly model the simultaneous evolution at multiple loci,
while making additional assumptions about the genetic architecture of the selected trait, the
life cycle of individuals and the regulation of population size. This will serve as our main

model.

Genome Individuals are characterized by a linear (continuous) genome of diploid loci,
which determine the phenotype z additively (i.e., there is no phenotypic epistasis; note,
however, that there is epistasis for fitness). Mutations occur at constant rate % = u per
haplotype. In contrast to the majority of individual-based models (e.g., JONES et al.| 2004}
Kopp and HERMISSON| 2009b; MATUSZEWSKI et al.|[2014), we do not fix the number of
loci a-priori, but instead assume that each mutation creates a unique polymorphic locus,
whose position is drawn randomly from a uniform distribution over the entire genome (where
genome length is determined by the recombination parameter r described below). Thus, each
locus consists only of a wild-type allele with phenotypic effect 0 and a mutant allele with

phenotypic effect a;, which is drawn from equation . Thus, we effectively design a bi-allelic

infinite-sites model with a continuum of alleles.

To monitor adaptive substitutions, we introduce a population-consensus genome G that keeps
track of all loci, that is, of all mutant alleles that are segregating in the population. If a
mutant allele becomes fixed in the population it is declared the new wild-type allele and its
phenotypic effect is reset to 0. The phenotypic effects of all fixed mutations are taken into
account by a variable zg,, which can be interpreted as a phenotypic baseline effect. Thus,

the phenotype z of an individual ¢ is given by

Zi = Zfx T+ Z Zﬂ.(i,l,h)&l.

he{1,2} leg

where
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1 if individual ¢ carries mutant allele a at locus [ on haplotype A

1(4,1,h) =
0 otherwise.

us Life cycle FEach generation, the following steps are performed:

146 1. Viability selection: Individuals are removed with probability 1 — w(z) (see eq. [I)).

147 2. Population regulation: If, after selection, the population size N exceeds the carrying
148 capacity K, N — K randomly chosen individuals are removed.

149 3. Reproduction: The surviving individuals are randomly assigned to mating pairs, and
150 each mating pair produces exactly 2B = 4 offspring. Note that under this scheme, the
151 effective population size N, equals 4/3 times the census size (BURGER 2000, p. 274). To
152 account for this difference, © in the analytical approximations needs to calculated on
153 the basis of this effective size, i.e., © = 4N .u. The offspring genotypes are derived from
154 the parent genotypes by taking into account segregation, recombination and mutation.

155 Recombination For each reproducing individual, the number of crossing-over events dur-
15 ing gamete formation (i.e., the number of recombination breakpoints) is drawn from a Poisson
157 distribution with (genome-wide recombination) parameter r (i.e., the total genome length is
155 7-100cM, see Supporting Information 1). The genomic position of each recombination break-
159 point is then drawn from a uniform distribution over the entire genome, and the offspring
1o haplotype is created by alternating between the maternal and paternal haplotype depending
11 on the recombination breakpoints. Free recombination (where all loci are assumed to be
162 unlinked) corresponds to r — oo. In this case, for each locus a Bernoulli-distributed random
163 number is drawn to determine whether the offspring haplotype will receive the maternal or

1« the paternal allele at that locus.
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Simulation initialization and termination Starting from a population of K wild-type
individuals with phenotype z = 0 (i.e., the population was perfectly adapted at ¢ = 0),
we allowed for the establishment of genetic variation, 03, by letting the population evolve
for 10,000 generations under stabilizing selection with a constant optimum. Increasing the
number of generations had no effect on the average 03. Following this equilibration time, the
optimum started moving under ongoing mutational input, and the simulation was stopped
once all alleles from the standing genetic variation had either been fixed or lost (i.e., when

2

05y = 0). Simulations were replicated until a total number of 5000 adaptive substitutions

from standing genetic variation was recorded.

Analytical approximations: Evolution of a focal locus in the presence of genetic

background variation

In order to obtain an analytically tractable model, we need to approximate the multi-locus
dynamics. Clearly, simple interpolation of single locus theory will fail, because when alleles
at different loci influencing the same trait segregate in the standing genetic variation, the
selective dynamics of any individual allele are critically affected by the collective evolutionary
response at other loci. In particular, any allele that brings the mean phenotype closer to the
optimum simultaneously decreases the selective advantage of other such alleles (epistasis for
fitness). Thus, if simultaneous evolution at many loci allows the population to closely follow
the optimum, large-effect alleles at any given locus are likely to remain deleterious (as their
carriers would overshoot the optimum). To account for these effects, we adopt a quantitative-
genetics approach originally developed by LANDE| (1983)) and introduce a genetic background

zp that evolves according to Lande’s equation

where

10
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0log(w)
= ——" 5b
5=k (5b)
denotes the selection gradient, which measures the change in log mean fitness per unit change
of the mean phenotype and 02 gives the genetic variance (LANDE [1976). Furthermore,

assuming that the distribution of phenotypic values from the genetic background is Gaussian

and the genetic variance remains constant, the mean background phenotype evolves according

to
zp(t) = ot — —(1—(1—7)") (6a)
with
2
o
= J 6b
7 03 + o2 (6b)

(BURGER and LYNCH)|1995)).

Given the dynamics of the genetic background, we choose one focal locus and derive the
time-dependent selection coefficient s(a,t) for an allele with phenotypic effect o (for details
see below). We then use theory for adaptation from standing genetic variation (HERMISSON
and PENNINGS|2005) and for fixation under time-inhomogeneous selection (UECKER and
HERMISSON 2011)) to estimate the fixation probability for this allele (see also Appendix 1).
As long as there is no linkage (i.e., there is free recombination between all loci), each locus
can be viewed as the focal locus (with a specific phenotypic effect «), allowing us to get an
estimate for the overall distribution of adaptive substitutions from standing genetic varia-
tion. Thus, in these approximations, our multi-locus model is effectively treated within a
single-locus framework. Note that a similar focal-locus approach has recently been used to
analyze the effect of genetic background variation on the trajectory of an allele sweeping to

fixation (CHEVIN and HOsSPITAL|2008)), and to study the probability of adaptation to novel

11
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environments (GOMULKIEWICZ et al.[[2010), with both studies stressing the fact that genetic

background variation cannot be neglected and critically affects the adaptive outcome.

Wright-Fisher simulations: A focal locus with recurrent mutations

To simulate evolution at a focal locus, we followed |[HERMISSON and PENNINGS| (2005) and
implemented a multinomial Wright-Fisher (WF') sampling approach (available upon request).
These simulations serve as an additional analysis tool that has been adjusted to the approx-
imation method and allows the adaptive process to be simulated fast and efficiently. In
addition, they go beyond the individual-based model in one aspect, as they do not make the

infinite-sites assumption but allow for recurrent mutation at the focal locus.

Genome At the focal locus, mutations with a fixed allelic effect o appear recurrently
at rate # and convert ancestral alleles into derived mutant alleles. Accordingly, despite a
genetic background with normally distributed genotypic values, there are at most two types
of (focal) alleles in the population, where each type “feels” only the mean background Zzg,

which evolves according to Lande’s equation (eq. , see above). The genetic background

2

, 1s assumed to be constant and serves as a free parameter that is independent of

variation o
0, N. and 2. Note that the evolutionary response at the focal locus is influenced by that of

the genetic background, and vice versa, meaning that the two are interdependent.

Procedure We follow the evolution of 2N, alleles at the focal locus. Each generation is
generated by multinomial sampling, where the probability of choosing an allele of a given type
(ancestral or derived) is weighted by its respective (marginal) fitness. Furthermore, the mean
phenotype of the genetic background zp evolves deterministically according to equation ({5
with constant 03. To let the population reach mutation-selection-drift equilibrium, each
simulation is started 4N, generations before the environment starts changing. Initially, the

population consists of only ancestral alleles “07; the derived allele “1” is created by mutation.

12
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an  If the derived allele reaches fixation before the environmental change (by drift), it is itself
2 declared “ancestral”; i.e., the population is set back to the initial state. After 4N, generations,
233 the optimum starts moving, such that the selection coefficient of the derived allele, which is
2 initially deleterious (i.e., s(a,t) < 0), increases and may eventually become beneficial (i.e.,
25 s(a,t) > 0), depending on the response at the genetic background. Simulations continue until
236 the derived allele is either fixed or lost. Fixation probabilities are estimated from 100,000

237 simulation runs.

23 Both simulation programs are written in C+4 and make use of the Gnu Scientific Library
20 (GALASSI et al.2009). Mathematica (Wolfram Research, Inc., Champaign, USA) was used
20 for the numerical evaluation of integrals and to create plots and graphics, making use of the

21 LevelScheme package (CAPRIO|[2005)).

22 A summary of our notation is given in Table [T}

Table 1 — A summary of notation and definitions.

a phenotypic effect of mutation

p(a) (Gaussian) distribution of new mutations
z phenotype

zZB mean genetic background phenotype

v rate of environmental change

w(z, zopt(t))  (Gaussian) fitness function

o2 width of Gaussian fitness function

a2, variance of new mutations

Jg (background) genetic variance

s(a,t) time-dependent selection coefficient for allele with phenotypic effect «
x frequency of mutant allele

Ne effective population size

(% per locus mutation rate

€] population-wide mutation rate (per trait)

Tlgy fixation probability

p(z, ) Distribution of mutant allele frequency at a single locus with phenotypic effect a
Psav Probability to adapt from standing genetic variation

PSGV Distribution of adaptive substitutions from standing genetic variation
beq equilibrium lag

13
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RESULTS

In the following, we calculate, first, the probability that a focal allele from the standing genetic
variation becomes fixed when the population adapts to a moving phenotypic optimum, and
second, the effect-size distribution of such alleles. Note that the first result will be derived
under the assumption of recurrent mutation (see “Wright-Fisher simulations”), and serves
as an intermediate step for the second result, which is based on an infinite-sites model (see

“Genetic assumptions and simulation model”).
The probability for adaptation from standing genetic variation

The probability that a focal mutant allele from the standing genetic variation contributes to
adaptation depends on the dynamics of its the selection coefficient in the presence of genetic
background variation. For an allele with effect o and a genetic background with mean zg

and variance 03, the selection coefficient can be calculated as

_wla+2(t),t)
s(a,t) = ENOR) 1

) (vt (7)

Q

Note that the genetic background variance has the effect of broadening the fitness landscape

experienced by the focal allele (the term o7 4 7).
Plugging equation into equation then yields the selection coefficient,

a? av

s(a,t)%—2<0§+03) +7<U§+0§>(1—(1—7) ). (8)

Assuming that the population is perfectly adapted at ¢t = 0 (zp = 0), the initial (deleterious)

selection coefficient is given by

14
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2

s(a,0) = —W.

Unlike in the model without genetic background variation (Kopp and HERMISSON|[2009b)),
s(a, t) does not increase linearly, but instead depends on the evolution of the phenotypic lag
0 between the optimum and the mean background phenotype. In particular, the population
will reach a dynamic equilibrium with Azg = v, where it follows the optimum with a constant

lag

v

5eq = ~ 9)

(BURGER and LyNCH|[1995). Consequently, the selection coefficient for o approaches

2 av

tligloS(Oé,t) T (02 +0§> i v (U? + 03).

(10)
Note that the right-hand side can be written as s(a, 0) + afeq, Where S is the equilibrium
selection gradient (Kopp and MATUSZEWSKI 2014). In this case, the largest obtainable
selection coefficient is for a = d., and evaluates to

’U2

272 (af + 03) '

(11)

Smax = 3(5eq: OO) =

The range of allelic effects o that can reach a positive selection coefficient is bounded by
Omin = 0 and apax = 2d¢q. Note that in previous adaptive-walk models (e.q., KopPP and
HERMISSON| 2009b; MATUSZEWSKI et al.|2014) there was no strict amax, since the popula-
tion followed the optimum by stochastic jumps, whereas in the present model, the genetic

background evolves deterministically and establishes a constant equilibrium lag.

Assuming that o was deleterious prior to the environmental change, its allele frequency

spectrum p(z, «) is given by equation (A5)). When genetic background variation is absent

15
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the fixation probability g, () (eq. [A7) can be calculated explicitly using

criofa) =1+ 5 [T esp (M)) erfe (S(O"Cf,’,)) - (12)

For the general case, however, Ilg, () can only be calculated numerically using equation

in equation (A7b)), yielding

2

20(cr) = 1+ [2(1 4 s(, t)) exp [— ((—m) + (1= (=) =g + 1) 7(0,?10;)) t} at. (13)

The fixation probability for an allele from the standing genetic variation with allelic effect o

and a recurrent (per locus) mutation rate 6 can then be calculated as

1 g1 1 2Nz X
1—C(a) [y 2% exp[—4N,|s(a,0)]x] (1 - m) dz  if o<a<amas

Psav(a) = (14)

0 otherwise,

Y[0,4Ne|s(c,0)]]
where C'(a) = (W)

When checked against Wright-Fisher simulations (see Methods for details), our analytical

approximation equation ([14) performs generally very well (Figs. I and - The only

2

2) and stabilizing selection

exception occurs when the background variation is high (large o
is weak (i.e., if 02 is large). In this case, equation underestimates Psgy(«) for small
a ~ 0.50,,. The reason is that, under a constant optimum (i.e., before the environmental
change), the genetic background compensates for the deleterious effect of « (i.e., zg < 0,
in violation of our assumption that zg(0) = 0), effectively reducing the selection strength

against the deleterious mutant allele. Consequently, « is, on average, present at higher

initial frequencies than predicted by equation (A5)).

Note that, if « is small compared to the genetic background variation (i.e., in the limit of

16
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20 /0, — 0) and environmental change is slow (i.e., v < 107°), Psgv(a) will approach the
201 probability of fixation from standing genetic variation for a neutral allele (i.e., & = 0), which

202 can be calculated as

1 Hyg—1
PSGV7 neutral — /0 xp(a:)dx = ’ (15)

v+ y(0)

s where p(x) is given by equation (A3)), H, denotes the n'" harmonic number, v ~ 0.577 is
204 Euler’s gamma and ¢(-) is the polygamma function (see dashed lines in Figs. |I|and [S3_1]).

s Figures [ and [S3_T| show some general trends: First, the probability for a mutant allele to

206 become fixed increases with the rate of environmental change, v, (irrespective of its effect

2

207 size a, the per locus mutation rate § and the width of the fitness landscape o

) since only
208 the positive term in equation depends (linearly) on v. Second, Psgv(«) is proportional
200 to 0 as long as 6 is small (compare § = 0.004 and 6 = 0.04 in Fig. , simply because the
300 probability that « is present in the population is linear in . Thus, Figure [1]is representative
s for the limit & — 0 which will be used below. Indeed, only if the per-locus mutation rate
32 is fairly large (0 > 0.1), does the shape of the distribution of allele frequencies become
303 important, and the increase in Psgy(«) with 6 becomes less than linear (Fig. [S3_1). Third,
s changes in the width of the fitness landscape, o2, have a dual effect: While increasing o2
25 promotes the initial frequency of the focal allele in the standing genetic variation (because
w5 stabilizing selection is weaker), the selection coefficient increases more slowly after the onset

37 of environmental change (such that the allele is less likely to be picked up by selection;

08 see eq. . Our results, however, show that the former effect always outweighs the latter

w0 (as Psgv() increases with ¢2). Finally, if the genetic background variation 03 is below
20 a threshold value (e.g., o7 < 0.005; the exact threshold should depend on # and o?) it

su only marginally affects the fixation probability of the focal allele . Once ag surpasses this

sz value, however, it critically affects Psgv () (in accordance with the results by (CHEVIN and

17


https://doi.org/10.1101/015685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015685; this version posted February 26, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

313

314

315

316

317

318

under aCC-BY-NC-ND 4.0 International license.

HosPITAL [2008)). In particular, as 03 increases Psgy(a) decreases, because most large-effect
alleles remain deleterious even if environmental change is fast. Thus, enlarged background
variation acts as if reducing the rate of environmental change v. In summary, our analytical
results are in good agreement with the WF-simulation model, and will serve as an important
first step towards deriving the distribution of adaptive substitutions from standing genetic

variation.

18
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319

320

Figure 1 — The probability for a mutant allele to adapt from standing genetic variation as a function of the rate of environmental change v. Solid lines correspond to the

analytical prediction (eq. , the grey dashed line shows the probability for a neutral allele (o = 0; eq. ., and symbols give results from Wright-Fisher
simulations. The phenotypic effect size « of the mutant allele ranges from 0.50+, (top line; black) to 3oy, (bottom line; purple) with increments of 0.50y,.
The figures in each parameter box (per locus mutation rate 6, width of fitness landscape 2) correspond to different values of the genetic background
variation 62 with 62 = 0 (no background variation; top left), o2 = 0.005 (top right), 62 = 0.01 (bottom left) and o2 = 0.05 (bottom right). Other

parameters: N = 25000, 6 = 0.004, ogn = 0.05.
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The distribution of adaptive substitutions from standing genetic variation

We now derive the distribution of adaptive substitutions from standing genetic variation
over all mutant effects a. In the previous section, we derived the fixation probability at
a focal locus (with a given effect «) by treating the genetic background variance 03 as an
independent model parameter. In the full model, this variance results from a balance of
mutation, selection and drift at all background loci. As such, it is a function of the basic
model parameters for these forces. Since we use an infinite-sites model, there is no recurrent
mutation and each allele originates from a single mutation. Consequently, the amount of
background variation 03 is accurately predicted by the Stochastic-House-of-Cards (SHC)

approximation (not shown; BURGER and LYNCH|/1995)

Oo?

2 m
ol = ——5, 16
¢ 14 Negm (16)

where mutation is parametrized by the total (per trait) mutation rate © and the mutational

2

CRS

variance o2, the width of the fitness landscape is given by o2, and the effective population

size N, is a measure for genetic drift.

To derive the probability that an allele with a given phenotypic effect o contributes to
adaptation, we first need to calculate the probability that such an allele segregates in the
population at time 0. Following HERMISSON and PENNINGS| (2005), the probability P, that
the allele is not present can be approximated by integrating over the distribution of allele

frequencies p(z, a) (eq. from 0 to ﬁ yielding

—0
9N
Py(a) ~ <
() <4Ne\s(a,0)]+1>

= o0 0108 | x| )

20
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(eq. 7 and Appendix of HERMISSON and PENNINGS 2005)). The fixation probability can then
be calculated by conditioning on segregation of the allele in the limit § — 0 (due to the

infinite-sites assumption). Using equation , this probability reads

.. Psav(a)
eegler) = lim =575
1 0-1 1 2Nz
. 1 —Cl(a) [y 2 exp[—4N,|s(a, 0)|x] (1 - @) dz a8)
e 1= exp | =01og | pie

-1
where C'(a) = (W) (see also eq. ) and with ¢(«) according to equation 1}

The limit in equation can be approximated numerically by setting 6 to a very small, but

positive value.

Multiplying by the rate of mutations with effect « (i.e., Op(«a)), the distribution of adaptive

substitutions from standing genetic variation is given by

_ Op(a)gl0)
Jom " Op(a)Hgeq (a)dox
)

= Ci(a)p(e)seg (), (19)

psav(a@)

where Cj(w) is a normalization constant (black line in Figs. 2 [3] and Fig. [). Note that
equation still depends on © through its effect on the background variance 03 (which

affects Igeg(v)). In particular, in the SHC approximation (eq. , 03 scales linearly with ©.

Furthermore, equation should be valid for any distribution of mutational effects p(«).

In the limit where the equilibrium lag is reached fast (i.e., when v is large; eq. , the
moving-optimum model reduces to a model with constant selection for any focal allele (i.e., as

in [ HERMISSON and PENNINGS|2005)). Using equations (A6|) and the fixation probability

21
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for a segregating allele can be calculated as

1 —exp|—flog |1+ _4Nes(a,0)
Hseg,SGV,éCq (Oé) ~ lim [ { 4N€|S(a’0)\+1” .

6—0 1 — Py(a) (20)

Plugging equation (20)) into equation , the distribution of adaptive substitutions from

standing genetic variation can be approximated by

PSGV.6eq (@) R Co()p()Lieg sGv 50 (@) (21)
where C5(a) is a normalization constant (red line in Figs. [2] [3).

Similarly, the fixation probability of de-novo mutations under the equilibrium lag e, can be

derived (using |11 and eq. [A2 with an initial frequency of 1/(2N)) as

Mas ot (0) = (1 ~exp l—o‘(%q_“)D | (22)

2 2
og + o0y

yielding the distribution of adaptive substitutions

PONM 5.0 (@) 2 p(@) C3 () g DN (1), (23)
where C3(a) is a normalization constant (grey curve in Figs. 2] [3).

In contrast, if the environment changes very slowly, we can calculate the limit distribution of
adaptive substitutions from standing genetic variation by approximating the fixation proba-

bility by that of a neutral allele (i.e., its allele frequency x). In this case,

Hseg,v—>0 (Oé) ~ lim

with

22
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1F(0,0 + 1,4N.|s(a, 0)])
1F(0,0,4N,|s(a,0)]);

Fla) = /01 p(z, a)xdr = (24b)

where p(x, @) is given by equation (A4)) and the right-hand side is a ratio of hypergeometric

functions.

Using equation ([24a)) the distribution of substitutions from standing genetic variation reads

pSGV,v—>O<a) ~ 04(04)]7(04)Hseg,v—>0(04); (25>

where Cy(«) again denotes a normalization constant (blue line in Figs. 3] [S3_ 2]).

The accuracy of the approximation When compared to individual-based simulations,
our analytical approximation for the distribution of adaptive substitutions from standing
genetic variation (eq. [19)) performs, in general, very well as long as selection is strong, that is,
the rate of environmental change v is high and/or the width of the fitness landscape o2 is not
too large (Fig. . Under weak selection, however, equation fails to capture the fixation
of alleles with neutral or negative effects (“backward fixations”; o < 0). The reason is that

equation (A7) only considers the fixation of alleles whose selection coefficient s(a, ) becomes

2

positive in the long term. But if the rate of environmental change is slow (or o3

is very
large), most alleles get fixed or lost simply by chance, that is, genetic drift. In particular, if
genetic drift is the main driver of phenotypic evolution (i.e., N.|s(«,t)|< 1), the distribution
of adaptive substitutions is almost symmetric around 0 (see Fig. |S3_2). This distribution
is described very well by equation (25)), which assumes that the fixation probability of an
allele is proportional to its initial frequency in the standing variation. In addition, even
for cases where environmental change imposes modest directional selection, equation

still captures the shape of the distribution of adaptive substitutions reasonably well, when

centered around the empirical mean (blue line in Figs. , .

23
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Figure 2 — The distribution of adaptive substitutions from standing genetic variation. Histograms show results from individual-based simulations. The black line corresponds to the

396

397

analytical prediction (eq. , with the genetic background variation o2 determined by the SHC approximation (eq. . The red line gives the analytical prediction for the
y g g g Y g y

limiting case where the equilibrium lag deq is reached fast (eq. . The blue line is based on the analytical prediction eq. — which assumes a neutral fixation
probability — but has been shifted so that it is centered around the empirical mean. The grey curve gives the analytical prediction for substitutions from de-novo

mutations under the assumption that the phenotypic lag deq has reached its equilibrium (eq . The asterisks indicate where Nesmax > 10. Fixed parameter: o2, = 0.05.
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With a moving phenotypic optimum, the selection coefficient (eq. [8]) is initially very small.
Accordingly, there is always a phase during the adaptive process where genetic drift domi-
nates, that is, where N.|s(a,t)|< 1 for all mutant alleles. The length of this phase (i.e., the
time it takes until selection becomes the main force of evolution) depends on the interplay of
multiple parameters, notably v,02%, N, and ©. A good heuristic to determine whether evo-
lution will ultimately become dominated by selection is to calculate Nesmax (eq. [L1]), which
gives the maximal population-scaled selection coefficient. Since the selection coefficient of
most mutations will be smaller than this value, one can consider as a rule of thumb that
selection is the main driver of evolution as long as NeSyayx > 10. In this case, equation ({19))
matches the individual-based simulations very well (see asterisks in Figs. . In summary,

the accuracy of our approximation crucially depends on the efficacy of selection.

The effects of linkage on the distribution of adaptive substitutions from standing genetic
variation are discussed in Supporting Information 1. The main result is that only tight
linkage has a noticeable effect, namely to reduce the efficacy of selection and increase the

proportion of “backward” fixations (moving the distribution closer to the prediction from

eq. [25)).

Biological interpretation As shown in Figures and , adaptive substitutions from
standing genetic variation have, on average, smaller phenotypic effects than those from de-
novo mutations. There are two reasons for this result. First, in the standing genetic variation,
small-effect alleles are more frequent than large-effect alleles and might already segregate
at appreciable frequency (increasing their fixation probability). Second, substitutions from
standing variation occur in the initial phase of the adaptive process, where the phenotypic
lag is small, whereas our approximation for de-novo mutations (eq. [23) assumes that the phe-
notypic lag has reached its maximal (equilibrium) value (which need not be large, depending
on the amount of genetic background variation). The relative importance of these two effects

can be seen in Figures and : Comparing the grey shaded area (eq. ; de-novo muta-
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tions under the equilibrium lag) with the red line (eq. standing genetic variation under
the equilibrium lag) shows the effect of larger starting frequencies of small-effect mutations
from the standing genetic variation. The difference of the black (eq. standing genetic
variation) and red (eq. ; standing genetic variation under the equilibrium lag) lines show
the effects of the initially smaller lag (i.e., the effect of the dynamical selection coefficient).
Note that the first effect is always important (even if © and o2 are large and v is small, where
the red line and the grey curve almost coincide—though this is only because the approxima-
tion is bad). The second effect, however, becomes particularly important if v = 072 /(07 + 072)
is small (i.e, if the time to reach the equilibrium lag is large), such that selection coefficients
are dynamic and small-effect alleles are selected earlier than large-effect alleles, explaining

the relative lack of large-effect alleles in the distribution of adaptive substitutions.

Generally, the distribution of adaptive substitutions is unimodal and generally resembles a
log-normal distribution (Figs. [2| [3). Only if selection is very weak (i.e., when o2 is large
and/or v is small), does it contain a significant proportion of “backward fixations” (with
negative «; Fig. [3; see “Accuracy of the Approximation” ). As the rate of environmental
change v increases, the mean phenotypic effect of substitutions increases (Fig. , top row),
too, but the mode may actually decrease (Fig. , that is, the distribution becomes more
asymmetric and skewed, resembling the “almost exponential” distribution of substitutions
from de-novo mutations in the sudden change scenario (ORR/|/1998). A likely explanation
is that small-effect alleles, which are common in the standing variation, are under stronger

selection and have an increased fixation probability if v is large (see Fig. [1).

Interestingly, if the environment changes very fast the simulated distribution of adaptive
substitutions from standing genetic variation almost exactly matches the one predicted by
equation for de-novo mutations (Fig. , see also Figs. . However, this seems to be an
artefact rather than a relevant biological phenomenon. The reason is that the environment
changes so fast that the population quickly dies out. Thus, the resulting distribution of

adaptive substitutions is that for a dying population and might not necessarily reflect the
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w3 adaptive process. In an experimental setup, though, where populations evolve until they
us g0 extinct, the distribution of adaptive substitutions from standing genetic variation might

ws  truly be indistinguishable from that from de-novo mutations.

02 =50, N = 2500 © =5, N = 2500
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Figure 4 — The mean size of adaptive substitutions from standing genetic variation, measured in units of mutational
standard deviations (o) as a function of the rate of environmental change v (top row) and for various v as a
function of the population-wide mutation rate © (bottom left), the width of the fitness landscape o2 (bottom
middle) and the population size N (bottom right). Lines show the analytical prediction (the mean of the
distribution eq. eq:pDistMoveOpt), and symbols give results from individual-based simulations. Error bars
for standard errors are contained within the symbols. For v = 0.1, no simulation results are shown, as these
constitute a degenerate case (for details see “The accuracy of the approximation”). Fixed parameter:

02, = 0.05.
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- Analytical prediction

446

0.0 0.3 0.6
a

Figure 5 — The distribution of adaptive substitutions from standing genetic variation in the case of fast environmental
change. For further details see Fig. Fixed parameters: 0'3 =100, © = 10, N = 2500, v = 0.1, a,zn = 0.05.

447

ss In the following, we discuss the influence of the other model parameters (0, 02 and N) on

mo the distribution of adaptive substitutions from standing genetic variation, and in particular,

SN
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its mean a (Fig. {4)).

The effect of the rate of mutational supply © depends strongly on the rate of environmental
change v: @& decreases with © if v is small but is independent of © if v is large (Fig. [B).
Recall that © enters psgv(a) (eq. only indirectly through the background variance 03.
Accordingly, as © increases, so does 02 and, thus, v (eq. . In the limit £ — oo, the
population will follow the optimum at a constant lag d., = % Thus, if v is large (such that,
even for large 03, the lag is large relative to the mutational standard deviation o,,) increasing
© does not affect . In contrast, if v is small, increasing © (and, hence, 02) will reduce the

lag even further, such that most large-effect alleles will be deleterious. Consequently, for

small v, & decreases as © increases.

The width of the fitness landscape o2 affects different aspects of the adaptive process, but its
net effect is an increase of the mean effect size of fixed alleles as o2 increases (i.e., as stabilizing
selection gets weaker), especially if the rate of environmental change is intermediate (Fig. [4D).
The reason is that weak stabilizing selection increases the frequency of large-effect alleles in
the standing variation. In addition, weak selection also increases the phenotypic lag (eq. |§|;
see also KOPP and MATUSZEWSKI 2014), again favoring large effect alleles. Note that the
latter point holds true even though weak selection increases the background variance 03.
Finally, the effect of o2 is strongest for intermediate v, because for small v, large-effect alleles

are never favored, whereas for large v, all alleles with positive effect have a high fixation

probability.

Similar arguments hold for N, (when the rate of mutational supply, O, is held constant).
First, increasing N, will always increase the efficacy of selection, resulting in lower initial
frequencies of mutant alleles (eq. | and decreased 03 (eq. . If the environment changes
slowly, @ increases with N,, because the equilibrium lag increases (caused by the decrease
in 03). In contrast, if the rate of environmental change is fast, a slightly decreases with N,

due to the lower starting frequency of large-effect alleles and because small-effect alleles are
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selected more efficiently (i.e., they are less prone to get lost by genetic drift; Fig. )

The potential for adaptation from standing genetic variation and the rate of

environmental change

So far, we have focussed on the distribution of adaptive substitutions for individual fixation
events. We now address what can be said about the total progress that can be made from
standing genetic variation following a moving phenotypic optimum. The overall potential for
adaptation from standing genetic variation depends on the mean number of alleles segregating

in the standing genetic variation, which can be accurately approximated as (FOLEY||1992))

2 2
IG|= 1+@10gl ‘g] (26)
U’m

(results not shown). The mean number of alleles that become fixed can then be calculated

as

Glan= 191 [ pla) (@) (27)

where the integral equals the normalization constant in equation (i.e., the proportion of
fixed alleles). Finally, using equation , the average distance travelled in phenotype space

before standing variation is exhausted is given by

2 = 2/Gpe @ = 2|g|/0a““”‘ ap(a) ey (e)dar, (28)

where @ is the mean phenotypic effect size of adaptive substitutions from standing genetic
variation, and the factor 2 in equation (28) comes from the fact that we are considering
diploids (and « denotes the phenotypic effect per haplotype). Note that, once the shift of
the optimum considerably exceeds z*, the population will inevitably go extinct without the

input of new mutations.
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Figure [0 (see also Figs.[S3_3| [S3_4] [S3_5and Figs.[S3_6] [S3_7) illustrate these predictions

and compare them to results from individual-base simulations (where, unlike in the rest of

this paper, new mutational input was turned off after the onset of the environmental change).

Both the mean number of fixations |G|g, and the mean phenotypic distance travelled z*
increase with the rate of environmental change, reflecting the fact that more and larger-effect
alleles become fixed if the environment changes fast. Only for very large v, where the rate
of environmental change exceeds the “maximal sustainable rate of environmental change”

(BURGER and LyNCH| |1995]), which for our choice for the number of offspring B = 2 equals

o2
, 2log {2 03;03
Verit = Ug o2 T o2 ; (29)
g s

do |Glax and z* decrease sharply, because the population goes extinct before fixations can be

completed (grey-dashed line in Figs. [6] [S3_6|and [S3_7). At small values of v, |G|sx matches

the “neutral” prediction (grey-dashed line in Figs.|S3_3| |S3_4]and [S3_5|). Note that these

fixations have almost no effect on z*, because their average effect is zero. At intermediate
v, equation slightly underestimates z* for parameter values leading to large background
variance o, (i.e., high © and ¢2). The likely reason is that the analytical approximation

assumes o, to be constant, while it obviously decreases in the simulations (since there are

no de-novo mutations). All these results are qualitatively consistent across different values

of o2 and © (Figs. [6] [S3_6] [S3_7).
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Figure 6 — The average distance traversed in phenotype space, z*, as a function of the rate of environmental change v,
when standing genetic variation is the sole source for adaptation. Symbols show results from individual-based
simulations (averaged over 100 replicate runs). The black line gives the analytical prediction (eq. , with

2 . . . oy .
oy taken from equation l) The grey-dashed line gives the critical rate of environmental change (eq. .
Error bars for standard errors are contained within the symbols. Fixed parameters: N = 2500, o2, = 0.05.
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s3 The relative importance of standing genetic variation and de-novo mutations

su over the course of adaptation

si5. Until now we have compared adaptation from standing genetic variation to that from de-
sis movo mutations in terms of their distribution of fixed phenotypic effects. We now turn to
si7 investigating their relative importance over the course of adaptation. For this purpose, we
sis recorded (in individual-based simulations) the contributions of both sources of variation to
s the phenotypic mean and variance. An average time series for both measures is shown in
s0 Figure[7] As expected, the initial response to selection is almost entirely based on standing

sa1 variation, but the contribution of de-novo mutations increases over time. As a quantitative
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measure for this transition, we define tpnmso (2) as the point in time where the cumulative
contribution of de-novo mutations has reached 50%. Indeed, we find that, beyond this time,
adaptation almost exclusively proceeds by the fixation of de-novo mutations (Fig. [7A). As
expected, tpnwso (2) decreases with v (Figs. , first row), while the total phenotypic
response z increases (Figs. , , second row). The reason is that faster environmental
change induces stronger directional selection and increases the phenotypic lag, such that
standing variation is depleted more quickly and de-novo mutations and contribute earlier.
Note that, as in Figure |§|, the total phenotypic response at time ¢pnw 50 (2) decreases once
v exceeds the “maximal sustainable rate of environmental change”, for the same reasons as
discussed above. Furthermore, tpxrs0 (Z) increases with both © and o2 (due to the increased
standing variation; see eq. . Interestingly, the relative contribution of original standing
genetic variation to the total genetic variance at time tpnw 50 (2) remains largely constant (at
around 20%) over large range of v and does not show any dependence on © nor o2 (Figs.
; third row). Deviations occur only if v is either very small or very large. In particular,
if v is small, standing variation is almost completely depleted before new mutations play
a significant role. Conversely, if v is very large, standing genetic variation still forms the
majority of the total genetic variance. As mentioned above, this is most likely because the
population goes extinct before fixations can be completed, that is, before the entire (standing)
adaptive potential is exhausted. All these results remain qualitatively unchanged if, instead

of tpnwmso (2), we define tpnws0 (a§> as the point in time where 50% of the current genetic

variance goes back to de-novo mutations (Figs. [S3_ 9} [S3_10).
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Figure 7 — The contributions of standing genetic variation (light grey) and de-novo mutations (dark grey) to the
cumulative phenotypic response to selection z (A) and the current genetic variance (B) over time. Plots
show average trajectories over 1000 replicate simulations. The red dot marks the point in time where 50% of
the total phenotypic response were due to de-novo mutations. The inset in (A) shows a more detailed plot of
the dynamics of Z up to this point. Fixed parameters: o2 = 50, © = 5, N = 2500, v = 0.001, ¢2, = 0.05.
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Figure 8 — First row: the point in time tpnwm,50 (2) where 50% of the phenotypic response to moving-optimum selection
have been contributed by de-novo mutations as a function of the rate of environmental change for various
values of © (left) and o2 (right). Insets show the results for large v on a log-scale. Second row: The mean
total phenotypic response at this time. Third row: The relative contribution of original standing genetic
variation to the total genetic variance at time tpnw,s0 (2). Data are means (and standard deviations) from
1000 replicate simulation runs. Fixed parameters (if not stated otherwise): ag =50, ©® =5, N = 2500,

o‘?n = 0.05.
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DISCUSSION

Global climate change has forced many populations to either go extinct or adapt to the
altered environmental condition. When studying the genetic basis of this process, most the-
oretical work has focused on adaptation from new mutations (e.g., |GILLESPIE [1984; |ORR
1998, 2000} (COLLINS et al.|2007; KorPP and HERMISSON|[2007], 2009a//b; M ATUSZEWSKI et al.
2014). Consequently, very little is known about the details of adaptation from standing ge-
netic variation (but see [ORR and BETANCOURT]|2001; HERMISSON and PENNINGS||2005)),
that is, which of the alleles segregating in a population will become fixed and contribute
to the evolutionary response. Here, we have used analytical approximations and stochastic
simulations to study the effects of standing genetic variation on the genetic basis of adap-
tation in gradually changing environments. Supporting a verbal hypothesis by BARRETT
and SCHLUTER/ (2008)), we show that, when comparing adaptation from standing genetic
variation to that from de-novo mutations, the former proceeds, on average, by the fixation of
more alleles of small effect. In both cases, however, the genetic basis of adaptation crucially
depends on the efficacy of selection, which in turn is determined by the population size,
the strength of (stabilizing) selection and the rate of environmental change. When standing
genetic variation is the sole source for adaptation, we find that fast environmental change en-
ables the population to traverse larger distances in phenotype space than slow environmental
change, in contrast to studies that consider adaptation from new mutations only (PERRON
et al.|2008; BELL and GONZALEZ|[2011}; [LINDSEY et al.[2013; BELL [2013). We now discuss

these results in greater detail.
The genetic basis of adaptation in the moving-optimum model

Introduced as a model for sustained environmental change, such as global warming (LYNCH
et al1991; LYNCH and LANDE|1993)), the moving-optimum model describes the evolution of
a quantitative trait under stabilizing selection towards a time-dependent optimum (BURGER

2000). A large number of studies have analyzed both the basic model and several modifi-
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cations, for example, models with a periodic or fluctuating optimum, or models for multi-
ple traits (SLATKIN and LANDE||1976; [CHARLESWORTH |1993; [BURGER and LyNCH| 1995}
LANDE and SHANNON][1996; KopP and HERMISSON| 2007, 2009al/b; (GOMULKIEWICZ and
HOULE|2009; ZHANG| 2012, (CHEVIN|2013; MATUSZEWSKI et al.[[2014). Following traditional
quantitative-genetic approaches, the majority of these studies assumed that the distribution
of genotypes (and phenotypes) is Gaussian with constant (time-invariant) genetic variance,
and they have mostly focussed on the evolution of the population mean phenotype and on
the conditions for population persistence (BURGER and LyNCH|1995; [LANDE and SHANNON
1996; GOMULKIEWICZ and HOULE[2009)). None of these models, however, allows to address
the fate of individual alleles (i.e., whether they become fixed or not). In a recent series of
papers on the moving-optimum model, KOPP and HERMISSON| (2007, 2009alb) studied the
genetic basis of adaptation from new mutations and derived the distribution of adaptive
substitutions (i.e, the distribution of the phenotypic effects of those mutations that arise
and become fixed in a population); this approach has recently been generalized to multiple
phenotypic traits by MATUSZEWSKI et al.| (2014). The shape of this distribution resembles
a Gamma-distribution with an intermediate mode. Thus, most substitutions are of inter-
mediate effect with only a few large-effect alleles contributing to adaptation. The reason is
that small-effect alleles — despite appearing more frequently than large-effect alleles — have
only small effects on fitness (and are, hence, often lost due to genetic drift), while large-effect
alleles might be removed because they “overshoot” the optimum (Kopp and HERMISSON
2009b). A detailed comparison and discussion of the distribution of adaptive substitutions
from de-novo mutations with (eq. 23) and without (Kopp and HERMISSON|2009b)) genetic

background variation is given in Supporting Information 2.

Here, we have studied the genetic basis of adaptation from standing genetic variation. We
find that the distribution of substitutions from standing genetic variation depends on the
distribution of standing genetic variants (i.e., distribution of alleles segregating in the popu-

lation prior to the environmental change) and the intensity of selection. The former is shaped
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primarily by the distribution of new mutations and the strength of stabilizing selection, which
removes large-effect alleles. Depending on the speed of change v, we find two regimes that are
characterized by separate distributions of standing substitutions. If the environment changes
sufficiently fast, the distribution of adaptive substitutions resembles a lognormal distribu-
tion with a strong contribution of small-effect alleles (eq. Fig. [2). The reason is that, in
the standing genetic variation, small-effect alleles are more frequent than large-effect alleles
and might already segregate at appreciable frequency (so that they are not lost by genetic
drift). With a moving optimum, they furthermore are the first to become positively selected,
hence reducing the time they are under purifying selection. Finally, epistatic interactions
between co-segregating alleles (or between a focal allele and the genetic background) also
favor alleles of small effect. Consequently, when adapting from standing genetic variation,

most substitutions are of small phenotypic effect.

The second regime occurs if the rate of environmental change v is very small. In this case,
allele-frequency dynamics are dominated by genetic drift, and the distribution of adaptive
substitutions reflects the approximately Gaussian distribution of standing genetic variants
(eq. 25} Fig. . It should be noted, however, that fixations under this regime take a very

long time, similar to that of purely neutral substitutions (i.e., on the timescale of 4)V,).

Finally, we have studied the relative importance of standing genetic variation and de-novo
mutations over the course of adaptation. As shown in Figures [7] and [§] the initial response
to selection is almost entirely based on standing variation, with de-novo mutations becoming
gradually more important. The time scale of this transition strongly depends on the rate
of environmental change, but for slow or moderately fast change, it typically occurs over at
least hundreds of generations (Figs. , and Figs. . This observation is
in contrast to results by [HILL and RASBASH (1986b)), who found that under strong artificial
(i.e., truncation) selection in small populations (N = 20), new mutations might contribute
up to one third of the total response after as little as 20 generations. Our results show

that the situation is very different for large populations under natural selection in gradually
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changing environments. The likely reason for this difference is that truncation selection
induces strong directional selection (corresponding to large v) and only extreme phenotypes
reproduce. Thus, truncation selection is much more efficient in maintaining large-effect de-
novo mutations, while eroding genetic variation more quickly (because it introduces a large
skew in the offspring distribution). However, the similarities and differences in the genetic
basis of responses to artificial versus natural selection is an interesting topic—in particular,
for the interpretation of the large amount of genetic data available from breeding programs

(STERN and ORGONZ0|[2009)—that should be addressed in future studies.

Throughout this study, we have focused on adaptation to a moving optimum, that is, a sce-
nario of gradual environmental change. An obvious question is how our results would change
under the alternative scenario of a one-time sudden shift in the optimum (as assumed in
numerous studies, e.g., |ORR/[1998; [HERMISSON and PENNINGS|2005; |[CHEVIN and HOSPI-
TAL 2008). While beyond the scope of this paper, our approach should, in principle, still be
applicable. In particular, each focal allele still experiences a gradual change in its selection
coefficient, due to the evolution of the genetic background. Unlike in the moving-optimum
model, however, the selection coefficient decreases, as the mean phenotype gradually ap-
proaches the new optimum. Hence, a suitably modified version of equation would give
the probability that a focal allele establishes in the population (i.e., escapes stochastic loss),
but in the absence of continued environmental change, establishment does not guarantee
fixation. In other words, alleles need to “race for fixation” before other competing alleles get
fixed and they become deleterious (Kopp and HERMISSON| 2007, [2009a). The dynamics of
a mutation along its trajectory should therefore be even more complex than in the moving-
optimum model, and show an even stronger dependence on the genetic background (CHEVIN

and HOSPITAL(2008).
Extinction and the rate of environmental change

Recently, several experimental studies have explored how the rate of environmental change
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affects the persistence of populations that rely on new mutations for adapting to a gradually
changing environment (PERRON et al|[2008; BELL and GONZALEZ|[2011; |LINDSEY et al.
2013). In line with theoretical predictions (BELL|2013), all studies found that “evolutionary
rescue” is contingent on a small rate of environmental change. In particular, LINDSEY et al.
(2013)) evolved replicate populations of E. coli under different rates of increase in antibiotic
concentration and found that certain genotypes were evolutionarily inaccessible under rapid
environmental change, suggesting that “rapidly deteriorating environments not only limit
mutational opportunities by lowering population size, but [...] also eliminate sets of mutations
as evolutionary options”. This is in stark contrast to our prediction that faster environmental
change can enable the population to remain better adapted and to traverse larger distances
in phenotype space when standing genetic variation is the sole source for adaptation (Fig. @
and Figs [S3_6] [S3_7} in line with recent experimental observations; H. Teotonio, private
communication). The difference between these results arises from the availability of the
“adaptive material”. While de-novo mutations first need to appear and survive stochastic loss
before becoming fixed, standing genetic variants are available right away and might already
be segregating at appreciable frequency. Thus, in both cases, the rate of environmental
change plays a critical, though antagonistic, role in determining the evolutionary options.
While fast environmental change eliminates sets of new mutations, it simultaneously helps
to preserve standing genetic variation until it can be picked-up by selection. Under slow
change, in contrast, most large-effect alleles from the standing variation, by the time they

are needed, are already eliminated by drift or stabilizing selection.

Our results also mean that, if the optimum stops moving at a given value Zopt max, popula-
tions will achieve a higher degree of adaptation (higher z*) if the final optimum is reached
fast rather than slowly (see also UECKER and HERMISSON|2014)), at least if standing genetic
variation is the sole source for adaptation. While this assumption is an obvious simplification,
it may often be approximately true in natural populations. The same holds true in exper-

imental populations, where selection is usually strong and the duration of the experiment
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short, such that de-novo mutations can frequently be neglected (see Fig. .
Testing the predictions

The predictions made by our model can in principle be tested empirically, even though suit-
able data might be sparse and experiments challenging. There is, of course, ample evidence
for adaptation from standing genetic variation. For example, DOMINGUES et al.| (2012])
showed that camouflaging pigmentation of oldfield mice (Peromyscus polionotus) that have
colonized Florida’s Gulf Coast has evolved quite rapidly from a pre-existing mutation in the
Mec1r gene; |LIMBORG et al.| (2014) investigated selection in two allochronic but sympatric
lineages of pink salmon (Oncorhynchus gorbuscha) and identified 24 divergent loci that had
arisen from different pools of standing genetic variation, and [TURCHIN et al.| (2012) showed
that height-associated alleles in humans display a clear signal for widespread selection on

standing genetic variation.

However, testing the predictions of our model requires, in addition, detailed knowledge of
the genotype-phenotype relation. Currently, there is only a small (yet increasing) number of
systems for which both a set of functionally validated beneficial mutations and their selec-
tion coefficients under different environmental conditions are available (JENSEN|[2014)). Thus,
estimating the distribution of standing substitutions will be challenging, because of the of-
ten unknown phenotypic and fitness effects of beneficial mutations and the large number of
replicate experiments needed to obtain a reliable empirical distribution. Furthermore, even if
these problems were solved, small-effect alleles might not be detectable due to statistical lim-
itations (OTTO and JONES 2000)), and in certain limiting cases where the population quickly
goes extinct (i.e., when the environment changes very fast), the distribution of adaptive sub-
stitutions from standing genetic variation might be indistinguishable to that from de-novo

substitutions (Fig. [5]).

Recent developments in laboratory systems (MORRAN et al|2009; PARTS et al.[2011), how-

ever, have created opportunities for experimental evolution studies in which population size,
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the selective regime and the duration of selection can be manipulated, and adaptation from
de-novo mutations and standing genetic variation can be recorded (BURKE[2012). Applying
these techniques in experiments in the vein of [LINDSEY et al.| (2013), but starting from a
polymorphic population, should make it possible to test the relation between the rate of
environmental change and population persistence, and to assess the probability of adapta-
tion from standing genetic variation. First experiments along these lines are currently being
carried out in populations of C. elegans, with the aim of determining the limits of adap-
tation to different rates of increase in sodium chloride concentration (H. Teotonio, private
communication). Furthermore, PENNINGS|(2012)) recently applied the HERMISSON and PEN-
NINGS| (2005)) framework to show that standing genetic variation plays an important role in
the evolution of drug-resistance in HIV, affecting up to 39% of patients (depending on treat-
ment) and explaining why resistance mutations in patients who interrupt treatment are likely
to become established within the first year. A similar approach should also be applicable
to scenarios of gradual environmental change (e.g., evolution of resistance mutations under

gradually increasing antibiotic concentrations).
Conclusion

As global climate change continues to force populations to respond to the altered environ-
mental conditions, studying adaptation to changing environments — both empirically and
theoretically — has become one of the main topics in evolutionary biology. Despite increased
efforts, however, very little is known about the genetic basis of adaptation from standing
genetic variation. Our analysis of the moving-optimum model shows that this process has,
indeed, a very different genetic basis than that of adaptation from de-novo mutations. In
particular, adaptation proceeds via the fixation many small-effect alleles (and just a few large
ones). In accordance with previous studies, the adaptive process critically depends on the
tempo of environmental change. Specifically, when populations adapt from standing genetic

variation only, the potential for adaptation increases as the environment changes faster.
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APPENDIX

Appendix 1: Theoretical Background

In this Appendix, we briefly recapitulate results from previous studies that form the basis

for our analytical derivations.

The probability of adaptation from standing genetic variation for a single bi-

allelic locus after a sudden environmental change

HERMISSON and PENNINGS (2005)) studied the situation where the selection scheme at a
single bi-allelic locus changes following a sudden environmental change. In particular, they
derived the probability for a mutant allele to reach fixation that was neutral or deleterious
prior to the change but has become beneficial in the new environment. In the continuum

limit for allele frequencies this probability is given by

1
Pscry = /0 p(2)IL,dx, (A1)

where p(x) is the density function for the allele frequency z of the mutant allele in mutation-

selection-drift balance and II, denotes its fixation probability.

For a mutant allele present at frequency x and with selective advantage s, in the new envi-

ronment, the fixation probability is given by (KIMURA|/1957)

1 —exp[—4N,s,]

IT, R .
() 1 — exp[—4N,sp]

(A2)

There are two points to make here. First, mutational effects in the HERMISSON and PEN-
NINGS| (2005) model are directly proportional to fitness, whereas mutations in our model

affect a phenotype under selection. Second, in our framework, s, denotes the (beneficial)

20
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selection coefficient for heterozygotes.

Approximations for p(x) can be derived from standard diffusion theory (EWENSs|[2004; for
details see HERMISSON and PENNINGS 2005). If the mutant allele was neutral prior to the

change in the selection scheme

1— xl—@
= Oz ———. A3
plr) = 02 (A3
Here, C' = (v +(#))~! denotes a normalization constant where v & 0.577 is Euler’s gamma
and 1(+) is the polygamma function. Similarly, if the mutant allele was deleterious before the

environmental change (with negative selection coefficient s;) the allele-frequency distribution

is given by

(1 —exp|[(1 — 2)4N,|sq|]) 2771
r—1

pla) = C , (A4)

where C' = (1F1(0,6,4N,|s4]))~" denotes a normalization constant and | F}(a, b, c) is the hy-
pergeometric function. If the allele was sufficiently deleterious (4/N.|sq|> 10), equation (A4

can further be approximated as

p(x) = Ca’ exp[—4N,|sq|], (A5)

where C' = (W)*l again denotes a normalization constant with y[a, b] = [ t*~ " exp[—t]dt

denoting the lower incomplete gamma function.

Finally, the probability that a population successfully adapts from standing genetic variation

can be derived as

o1
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4N, sy -f
4Ne]3dl+1>

4N,sy
4ALBA+&]]'

PSGV:1_<1+

=1—exp [—Hlog [

s Fixation probabilities under time-inhomogeneous selection

os In gradually changing environments, the selection coefficient of a given (mutant) allele is
26 not fixed but changes over time (i.e., as the position of the optimum changes). |UECKER
oz land HERMISSON| (2011)) recently developed a mathematical framework based on branching-
ws process theory to describe the fixation process of a beneficial allele under temporal variation
o0 in population size and selection pressures. They showed that the probability of fixation of a

s0 mutation starting with n initial copies is given by

Mee(n) = 1 — (1 _ 1>n, (ATa)

931 Where

20 =1+ [ (N(O)/N.(0)) exp [— / ts(T)dT] dar. (ATh)

932

a3 Assuming that the population size remains constant and that the selection coefficient in-

o creases linearly in time, s(t) = sq + S,t, equation ([A7a)) becomes

1 [« 52 Sq "
e, =1—|1—|14+= 4 ) erf A
fix ( [ + 5\ 25, exp (2%) erfc (\/E)] ) , (A8)

s where erfc(-) denotes the complementary Gaussian error function.

9

w
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Figure S1__ 1 — The distribution of adaptive substitutions from standing genetic variation for free recombination (dark bins) compared to that for limited recombination (light bins).
=50, N = 2500, v = 0.001, 02, = 0.05.
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Figure S1__2 — The distribution of adaptive substitutions from standing genetic variation for free recombination (dark bins) compared to that for limited recombination (light bins).
The black line corresponds to the analytical prediction (eq. . O'g is given by equation , Fixed parameters: © = 5, N = 2500, v = 0.001, 2, = 0.05.
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Figure S1__3 — The distribution of adaptive substitutions from standing genetic variation for complete linkage (no
recombination). The black and the grey line corresponds to the analytical prediction (eq. that are
centred around the mean of the individual-based simulation. For the grey line N. has been adjusted by
a factor 0.385 to match the distribution from the individual-based simulations. Other parameters:

v =0.001, » = 0, N = 2500, o2, = 0.05.

The individual-based simulation results presented in the main text were obtained under
the assumption of free recombination. In this Supplementary Information, we relax this

assumption and study the effects of linkage (i.e., limited recombination).

We first clarify the meaning of the recombination parameter r, which determines the mean

number of crossover events per meiosis. By definition, the simulated genome corresponds

to a single chromosome of length Dg = r - 100cM, and the mean distance between two

randomly chosen sites is ;Dg. The mean distance between two adjacent polymorphic loci is
1

Dg adjacent = @Dgﬂ, where G is the mean number of polymorphic loci, which depends on ©

and o2 (eq. 26)).

The corresponding recombination rate t between two polymorphic loci is given by the inverse

of Haldane’s mapping function (SPEED|2005), that is,

v =5 (1 —exp[-2Dg]), (S1)

N | —

see Table [ST_1]
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Table S1__1 — The classical population genetic recombination rate t (eq. |S1) between two adjacent loci for different
values of 02, © and r. Other parameters: o2, = 0.05.

0 0.01 0.1 1

(5/50) 0 0.019 0.16 0.49
N
)
@" (10/50) 0 0.01 0.089 0.43

(5/100)| 0 0.017 0.15 0.49

The effect of limited recombination on the distribution of adaptive substitutions from stand-

ing genetic variation is illustrated in Figures[S1 1{and [S1_2| For » =1 (corresponding to a

genome length of 100cM and an average recombination rate v of close to 0.5, see table ,
the distribution is essentially identical to that for linkage equilibrium. As r decreases, the
distribution progressively shifts to the left, becomes more symmetric and includes more and
more alleles with negative phenotypic effect. For r = 0 (corresponding to complete linkage
or asexual reproduction), it resembles the distribution for “drift-driven” evolution (i.e., when
selection is not efficient; Fig. [S3_2). The reason is that fixation involves entire haplotypes
carrying multiple mutations, whose (positive and negative) effects largely cancel. From a
different perspective, limited recombination leads to Hill-Robertson interference between co-
segregating alleles (HILL and ROBERTSON||1966)), which in many respects corresponds to a
decrease in effective population size N, (COMERON et al.|2008)), which in turn reduces the
efficacy of selection. Note, however, that unlike in the case of a slowly changing environment
(Fig.|S3_2)) reducing N, also affects the equilibrium allele-frequency distribution p(z, «) (by
reducing the strength of selection against large-effect alleles). In line with previous simulation
results (COMERON et al[2008), we find that equation provides a very good fit, when N,

is set to 38.5% of its original value.
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Supporting Information 2: The distribution of adaptive substitutions from de-

novo mutations with and without genetic background variation

There are two ways in which the distribution of adaptive substitutions from standing genetic
variation can be compared to that from de-novo mutations. The first comparison consid-
ers a population without genetic background variation. This is the situation studied by
KorpP and HERMISSON (2009al), where an essentially monomorphic population performs an
adaptive walk following a moving optimum. The second situation is the one described by
equation , where new mutations interact with a genetic background of constant variance
(this background is presumably itself constantly replenished by new mutations). Analytical

predictions for all three distributions are compared in Figures. [S2 1], [S2 2| and [S2 3| It

can be seen that the adaptive-walk prediction (eq. 14 in [KOpPp and HERMISSON|2009b; red
line) is always shifted towards larger o compared to the distribution of adaptive substitutions
from standing genetic variation (eq. L9} black line). The predicted distribution from de-novo
mutations in the presence of genetic background variation (eq. , grey curve) shifts from
the latter to the former as v increases. The reason is that, for small v, the fixation of both
standing variants and new mutations in the presence of background variation is strongly
constrained by the equilibrium lag (eq. @ For large v, in contrast, the lag is large and adap-
tation is primarily limited by the available alleles, independent of their source and initial
frequency (mutation-limited regime sensu KoppP and HERMISSON|2009b). Note, however,
that in both limiting cases, equation is a poor predictor for the simulated substitutions
from standing variation (Fig. [5] [S3_2). Nevertheless, it remains true that adaptive substi-
tutions from new mutations are generally smaller than those from new mutations, with or

without genetic background variation.
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The red line gives the analytical prediction for the first substitution from de-novo mutations under the adaptive-walk assumption that there is no genetic
background variation (Kopp and HERMISSON|2009b| eq. 14). Note that, for some parameter combinations, the simulated distribution from standing
variation deviates from eq. . In particular, for small v, it approaches the “neutral” prediction eq. see Fig. , and for large v, it may approach the
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v=0.0001 v=0.000316 v=0.001 v=0.00316
1 [ New mutations 1 120 T T 1 1287 T T 1 12FT T T 1
10 Kopp&Hermisson 20086 | 19 ] 10b 1 10 1
—— Standing variation
2 8 1 2 2
‘o a ‘@
T 1 & &
[a] o o
4k 4
2 )
00.0 0.3 0.6
a
1op . . . e . . .
10f f 10f f
> 8 1 29 1 2
‘B ) ‘@
g9 1 B9 18
aF 4 4 4
2 1 of 1
050 0.3 3 0.0 03 3
@ @
LoE . . 1 1oE . . 1
10f f 10 f
> 8 1 2% 1 2
‘@ ju} @
g 1 &8°% ] &
a4 1 a4 1
5.0 0.3 08 0.0 0.3 05
@ (3

*asUd2I| reuoireuldiu] 07 AN-ON-AG-DDe Japun
a|ge|rene apew si 1| "Aumadiad urjuudaid ay) Aejdsip 03 asuadl| e AlxHolq pajuelb sey oym ‘Japuny/ioyine ay sl (Maiaal 1aad Ag payniad jou

sem yoiym) Juudaid siyy 1oy 1spjoy 1ybuAdod sy "STOZ ‘9g ArenigeH paisod uoisiaA sIy) :G895T0/T0TT 0T/610"10p//:sdny :10p wudaid Aixygolq


https://doi.org/10.1101/015685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015685; this version posted February 26, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

0.0316

V="

0.01

v

0.00316

v

0.05.

2
m

0.001

v

0.000316

Fixed parameters: © = 5, N = 2500, o
v

[ New mutations.
Kopp&Hermisson 2009b
—— Standing variation

0.0001

v

further details see Fig

2 — Comparison of the analytical predictions for the distribution of adaptive substitutions from standing genetic variation and de-novo mutations. For

[«
—
Il
o
S
(=
e}
Il
[}
3

Figure S2

995
996

59


https://doi.org/10.1101/015685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015685; this version posted February 26, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

5 — — —
=
%)
= = S . g
S 2
=
= =) 3 5
2 0t 2 S X
S
Q | o o | o
g —d e 3 e R et 3
S g8 % 9 g
= Aisuea Aisuea Astea
el
&
=}
S
Bel - f 2 2 T 2
= 2
M ﬂ 3 5]
> > | ) ) L )
o S X 2
2
=
=
) L =3 =3 L =3
°0 e Tt e i g e
00 § 8 9 M T g
= Aisuag Aisueg Aiswag
B
el
IS
k7
g g1 o o | <
g - S S S
= S
pm 2 3 3
g Tt o . o
E l
B .
.5
7 S s ORI = SO
2o g g D R
w I fise@ fisteg Kisueq
o
.w2m —— —— ——
S b
g
ko l=) — | o o | o
R = S 2 <
o N (=}
S ﬂ s s
=}
8= ST S S T S
.
.MO
i
s I L o o L o
b4 " " " © " " " I° N N N =
[} < © ol ° A © o =) <A © o =l
.16 ol N - N - ~ -
el Aisue@ fisueg Aisteq
o
< &
=g — — —
= o
S
©
=2 = " . N
2 o T 5 s r S
5 g =
2 8 =
e [} 3 Sl
= = - - o
o T o s r 1o
o .5
i< :
.nl.a b =3 = b =
1] N N N S N N N I° N N N s
2 St S s
= g% % % g
Aistlea Aistleaq Aisuea
=
S .00 — — —
S o R
© 8
o) g
=i = | ss o o o
o Q [gés c = <
) S |g€%
=i S |£22
[=J S |EEs s 5
2% M|=2a o b | flo
Hd > D _ o lo o
x
mh
=
d & L Ererswee - B SOOI
O & g e TR T
| Aisueg Aisueg Aiswag
[5e)
— _Ss _ s
_ 0T=z© 05=z0 001=32
o
n
o]
-
=
o0
o
<
~ [ee]
(=) =
()] o


https://doi.org/10.1101/015685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015685; this version posted February 26, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

wo  Supporting Information 3: Supporting Figures

61


https://doi.org/10.1101/015685
http://creativecommons.org/licenses/by-nc-nd/4.0/

¢9

1000

1001

6 = 0.004

6 =0.04

0.4

0:

Figure S3__1 — The probability for a mutant allele to adapt from standing genetic variation as a function of the rate of environmental change v. Solid lines correspond

to the analytical prediction (eq. , the grey dashed line shows the probability for a neutral allele (o = 0; eq. , and symbols give results from
Wright-Fisher simulations. The phenotypic effect size « of the mutant allele ranges from 0.50,, (top line; black) to 3oy, (bottom line; purple) with
increments of 0.50.,. The figures in each parameter box (per locus mutation rate 6, width of fitness landscape 02) correspond to different values of the
genetic background variation ag with ag = 0 (no background variation; top left), 03 = 0.005 (top right), U; = 0.01 (bottom left) and crg = 0.05 (bottom

right). Other parameters: Ne = 25000, 02, = 0.05.
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Figure S3__3 — The average number of fixed adaptive substitutions from standing genetic variation, |G|gx, as a function
of the rate of environmental change v, when standing genetic variation is the sole source for adaptation.
Symbols show results from individual-based simulations (averaged over 100 replicate runs). The black

line gives the analytical prediction (eq. [27) and the grey line corresponds to the average number of

2
g

equation (16). Error bars for standard errors are contained within the symbols. Fixed parameters:
N = 1000, o7, = 0.05.
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Figure S3__4 — The average number of fixed adaptive substitutions from standing genetic variation, |G|gx, as a function
of the rate of environmental change v, when standing genetic variation is the sole source for adaptation.
Symbols show results from individual-based simulations (averaged over 100 replicate runs). The black

line gives the analytical prediction (eq. [27) and the grey line corresponds to the average number of

2
g

equation (16). Error bars for standard errors are contained within the symbols. Fixed parameters:
N = 2500, o7, = 0.05.

neutral fixations (|G|ax,v—0= |g|ff°oo p(a)Igeg,v—0(a)da.). In both cases, o was taken from
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Figure S3__5 — The average number of fixed adaptive substitutions from standing genetic variation, |G|gx, as a function

|Gl fix

of the rate of environmental change v, when standing genetic variation is the sole source for adaptation.
Symbols show results from individual-based simulations (averaged over 100 replicate runs). The black
line gives the analytical prediction (eq. [27) and the grey line corresponds to the average number of

neutral fixations (|G|ax,v—0= |g|ff°oo p(a)Igeg,v—0()de.). In both cases, o'g

equation (16). Error bars for standard errors are contained within the symbols. Fixed parameters:
N = 5000, o7, = 0.05.

was taken from

©=2.5

8F T T T = T T T T T T T T

14F -
120 -
10

= prediction

6F = neutral .

@® BS

|G| fix
|G fix

N B O 00

|G| fix
|G fix

|G| fix
|G fix

6001

1074 .
\Y; \%

66


https://doi.org/10.1101/015685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015685; this version posted February 26, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

1010

1011

a2=10

=50

N

[

=100

2__
s

o

under aCC-BY-NC-ND 4.0 International license.

Figure S3__6 — The average distance traversed in phenotype space, z*, as a function of the rate of environmental change

v, when standing genetic variation is the sole source for adaptation. Symbols show results from
individual-based simulations (averaged over 100 replicate runs). The black line gives the analytical
prediction (eq. , with ¢2 taken from equation . The grey-dashed line gives the critical rate of
environmental change (eq.[29)). Error bars for standard errors are contained within the symbols. Fixed
parameters: N = 1000, o2, = 0.05.
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Figure S3__7 — The average distance traversed in phenotype space, z*, as a function of the rate of environmental change

v, when standing genetic variation is the sole source for adaptation. Symbols show results from
individual-based simulations (averaged over 100 replicate runs). The black line gives the analytical
prediction (eq. , with ¢2 taken from equation . The grey-dashed line gives the critical rate of
environmental change (eq.[29)). Error bars for standard errors are contained within the symbols. Fixed
parameters: N = 5000, o2, = 0.05.
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Figure S3__8 — First row: the point in time tpnm, 50 (2) where 50% of the phenotypic response to moving-optimum
selection have been contributed by de-novo mutations as a function of the rate of environmental change
for various values of © (left) and o2 (right). Insets show the results for large v on a log-scale. Second
row: The mean total phenotypic response at this time. Third row: The relative contribution of original
standing genetic variation to the total genetic variance at time tpnwm,50 (2). Data are means and
standard errors from 1000 replicate simulation runs. Fixed parameters (if not stated otherwise):

02 =50,0 =5, N = 1000, 02, = 0.05.
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Figure S3__9 - First row: the point in time tpnw, 50 (ag) where 50% of the genetic variance is composed of de-novo

mutations as a function of the rate of environmental change for various values of © (left) and o2 (right).
Insets show the results for large v on a log-scale. Second row: The mean total phenotypic response from
standing genetic variation at this time. Third row: The relative contribution of original standing genetic

variation to the total genetic variance at time tpNm, 50 ( ) Data are means and standard errors from

1000 replicate simulation runs. Fixed parameters (if not stated otherwise): Us =50, © =5, N = 1000,
2
oy, = 0.05.
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Figure S3__10 — First row: the point in time tpxwm,50 (crg) where 50% of the genetic variance is composed of de-novo
mutations as a function of the rate of environmental change for various values of © (left) and o2
(right). Insets show the results for large v on a log-scale. Second row: The mean total phenotypic
response from standing genetic variation at this time. Third row: The relative contribution of original
standing genetic variation to the total genetic variance at time ¢tpNw, 50 (O’g). Data are means and
standard errors from 1000 replicate simulation runs. Fixed parameters (if not stated otherwise):
02 =50, © =5, N = 2500, 02, = 0.05.
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