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ABSTRACT

The identification and annotation of nucleotide variants, including
insertions/deletions and single nucleotide polymorphisms (SNPs), from whole
genome sequence data is important for studies of bacterial evolution,
comparative genomics, and phylogeography. The in Silico Genotyper (ISG)
represents a parallel, tested, open source tool that can perform these functions
and scales well to thousands of bacterial genomes. ISG is written in Java and
requires MUMmer (Delcher, et al., 2003), BWA (Li and Durbin, 2009), and GATK
(McKenna, et al.,, 2010) for full functionality. The source code and compiled

binaries are freely available from https:/github.com/TGenNorth/ISGPipeline

under a GNU General Public License. Benchmark comparisons demonstrate that

ISG is faster and more flexible than comparable tools.
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INTRODUCTION

The application of next generation sequencing (NGS) technologies to
microbiology has changed our view of bacterial evolution and relatedness. Large-
scale phylogeographic studies have been conducted for bacterial species
including Bacillus anthracis (Keim and Wagner, 2009). The correlation of
geographic distribution with NGS data from bacterial isolates has largely focused
on the analysis of single nucleotide polymorphisms (SNPs). Although many
groups have used SNP discovery to generate phylogenetic trees (Pandya, et al.,
2009), the methods that have been employed remain largely unpublished, tested,
and validated. Here we present the in silico genotyper (ISG), an open-source tool
that can be used for SNP and inversion/deletion (indel) discovery, annotation,

and phylogenomics.

IMPLEMENTATION
ISG is written in Java and relies on the Queue pipeline system from the Broad
Institute (http://www.broadinstitute.org/gatk/auth?package=Queue) for pipeline

execution. ISG can handle multiple types of input data, including raw reads in
either “.txt”, “.fastq”, or “.fastq.gz” format, genome assemblies in “.fasta” format,
genome annotation in “.gbk” format, binary alignment map (“.bam”) files, and/or
variant call format (“.vcf”) files (Figure 1). If single or paired reads are provided,
BWA-MEM (Li, 2013) can be used to align the reads against a reference genome
in “.fasta” format (the reference genome can either be a finished genome or a
locally generated draft genome assembly). SNPs and indels are called with the
UnifiedGenotyper method in GATK (McKenna, et al., 2010), using user-defined
thresholds for minimum depth of coverage and allele proportion variation. All
variables used by GATK can be modified by the user for specific applications. If
external genome assemblies are supplied, ISG calls SNPs using the show-snps
function in MUMmer (Delcher, et al., 2002). When a SNP is called from the raw
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reads or assembly in at least one genome, that position is queried in all other

genomes. If a position in a query genome fails to pass one of the user-defined

filters (e.g. minimum coverage depth),

an “N” is applied to that position. If a

position is not a SNP in a query genome and it passes all filters, an additional

test is conducted by GATK (callableLoci) to quantify the base quality and

coverage at that position; a position of sufficient quality, as determined by GATK,

is assumed to be the reference state. Otherwise, a ‘.’ or ‘N’ is substituted at that

position depending on sufficient coverage or quality, respectively.
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Figure 1. A workflow of the ISG pipeline
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COMPARISON WITH OTHER METHODS

Other software tools have been published in order to use SNP data to infer

phylogenies and annotate SNPs. The snpTree method (Leekitcharoenphon, et

al., 2012) was published and performs similar functions to 1SG. However,

snpTree is a web-based server, and whi

it is currently impractical for uploadin

le useful for a small number of genomes,

g raw sequence data for hundreds to
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thousands of bacterial genomes. We attempted to test the results of snpTree, but
we could not get even moderate sized datasets to complete successfully.
SPANDXx (Sarovich and Price, 2014) is a reference dependent approach that can
also produce SNP matrices from raw sequence reads. However, SPANDx cannot
process genome assemblies and is reliant on the Torque queuing system, which
limits its flexibility, and was therefore not compared with ISG. Other, reference
independent approaches, including kSNP 2 (Gardner and Hall, 2013) and CO-
Phylog (Yi and Jin, 2013), have also been published. CO-Phylog produces a
distance matrix as output, but does not perform SNP annotation; this output limits
the types of phylogenetic analyses that can be performed. kKSNP can process
either assembled genomes or raw reads, although the raw reads need to be
concatenated, which increases the initial processing time. The functionality of
kSNP is similar to ISG in terms of SNP identification and annotation, however the
method for the identification of SNPs between methods is very different. ParSNP
is a method that can rapidly compare the core genome between a large number
of genome assemblies (Treangen, et al., 2014); however, ParSNP can currently
not process raw data and requires an additional assembly step.
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Figure 2. A time comparison of ISG with other methods. Each method was run with 16
processors, when available.
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To test the speed of the different methods, 1000 Escherichia coli and Shigella
genomes were downloaded from Genbank and randomly subsampled at 100
genome intervals, from 100 to 900 genomes; the subsampled genomes were
then processed with kSNP, CO-Phylog, and ISG, all using 16 threads, when
available. Speed tests demonstrate that ISG scales linearly with an increasing
number of genomes (Figure 2). kKSNP failed at 400 genomes and the CO-Phylog
sampling was stopped at 300 genomes due to prohibitive time requirements.

To test the genotyping reproducibility of the ISG algorithm, both raw reads
and assemblies from 118 Yersinia pestis genomes (Cui, et al.,, 2012) were
downloaded from Genbank (Supplemental Table 1); an additional 15 genome
assemblies were also downloaded (Supplemental Table 1). A recent paper
analyzed assemblies from these genomes and characterized 2,298 non-
homoplastic SNPs. Although the method that identified these SNPs could not be
reproduced, ISG was run on these assemblies to determine how many of these
SNPs could be identified. Using the assemblies submitted to GenBank (n=133),
2,078 of the SNPs were called by ISG and 2,233 were called by kSNP. From
using a combination of genome assemblies (n=15) and raw reads (n=118), 1,939
of the SNPs were called by ISG, while 2,037 were called by kSNP. Although this
discrepancy between using raw reads or assemblies is likely due to the presence
of assembly errors, without the source code for the other method, a true
comparison cannot be performed. SNPs only present in the Cui et al. analysis
were manually checked in the short read alignments and were found to all be
monomorphic. ISG called an additional 9 SNPs that were manually confirmed to
be present in this dataset, but were missing from the Cui et al. analysis (Table 1);
two of these 9 SNPs were identified by kSNP from an analysis of assemblies

alone while 7 of these 9 SNPs were identified by ISG from assemblies alone.

Table 1. Details of SNPs identified with different methods and data types

Reference  SNPin Cui  SNP with kSNP SNP with ISG SNP with ISG
Chromosome  position state etal.? (assemblies)? (reads+assemblies) (assemblies)
NC_003143.1 229742 C no yes yes yes
NC_003143.1 4491401 T no no yes yes
NC_003143.1 4556781 T no no yes no
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CONCLUSION

SNP and indel discovery and annotation are important data required for
comparative genomics, phylogeography, and functional studies. Tools that can
accurately and rapidly perform these functions are required, especially as the
number of sequenced genomes rapidly increases. ISG represents an open
source, parallel, tested method for whole genome comparative genomics and

phylogenomics.
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