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Abstract

Next Generation Sequencing (NGS) technologies have become the standard for data
generation in studies of population genomics, as the 1000 Genomes Project (1000G).
However, these techniques are known to be problematic when applied to highly poly-
morphic genomic regions, such as the Human Leukocyte Antigen (HLA) genes. Because
accurate genotype calls and allele frequency estimations are crucial to population ge-
nomics analises, it is important to assess the reliability of NGS data. Here, we evaluate
the reliability of genotype calls and allele frequency estimates of the SNPs reported by
1000G (phase I) at five HLA genes (HLA-A, -B, -C, -DRB1, -DQB1). We take advan-
tage of the availability of HLA Sanger sequencing of 930 of the 1,092 1000G samples, and
use this as a gold standard to benchmark the 1000G data. We document that 18.6% of
SNP genotype calls in HLA genes are incorrect, and that allele frequencies are estimated
with an error higher than +0.1 at approximately 25% of the SNPs in HLA genes. We
found a bias towards overestimation of reference allele frequency for the 1000G data,
indicating mapping bias is an important cause of error in frequency estimation in this
dataset. We provide a list of sites that have poor allele frequency estimates, and dis-
cuss the outcomes of including those sites in different kinds of analyses. Since the HLA
region is the most polymorphic in the human genome, our results provide insights into

the challenges of using of NGS data at other genomic regions of high diversity.
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INTRODUCTION

Whole genome resequencing data for large numbers of human individuals, as generated by the
1000 Genomes Project (www.1000genomes.org), provide unprecedented amounts of informa-
tion about microevolutionary processes and demographic histories. Such inferences rely on
either genotypic or allelic frequency information for each variable position, which constitute
the data for downstream analyses and hypothesis testing.

The calling of SNPs and genotypes and the estimation of allele frequencies from Next Gen-
eration Sequencing (NGS) has undergone rapid development, along with likelihood-based and
Bayesian methods created to deal with challenges associated to heterogeneity in read qual-
ity and coverage (Nielsen et al. 2011). In Phase I of the 1000 Genomes Project, genotypes
were called using a combination of different approaches: first, primary call sets were inde-
pendently generated by different centers with different sequencing platforms, alignment and
variant calling methods; then, a consensus SNP call set was generated and made publicly
available (The 1000 Genomes Project Consortium 2012).

The data generated by the 1000 Genomes Project have frequently been used to make in-
ferences about evolutionary processes affecting our species, including the detection of targets
of natural selection (Hernandez et al. 2011; Ward and Kellis 2012; Andersen et al. 2012) and
understanding the genetic basis of complex phenotypes (Lappalainen et al. 2013). In addi-
tion, the detailed catalogue of genetic variation it provides across multiple human populations
has been used to understand the processes affecting specific genes.

Among the well documented targets of selection is the Major Histocompatibility Complex
(MHC) region of the human genome, which harbors the highly polymorphic classical Human
Leukocyte Antigen (HLA) class I and II loci. The interest in these loci stems from their
strong association to various autoimmune disorders (Sollid et al. 2014), susceptibility and
resistance to infection (Chapman and Hill 2012), and striking signatures of genetic variation
indicating strong balancing selection (Meyer and Thomson 2001). Such types of investigations

can naturally be extended to the analysis of the 1000 Genomes data, which provide a rich
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resource of population genetic variation within and around HLA genes.

In spite of this interest, the use of NGS data for HLA loci is hampered by a major
technical hurdle, which is the mapping of short sequence reads to genes that are both highly
polymorphic and which constitute a multi-gene family. The high polymorphism may decrease
the probability that short reads will be successfully mapped to the reference genome, in the
event that the sequenced individual carries a variant that is highly diverged from that used
in the index (Nielsen et al. 2011). In addition, the fact that many HLA genes have close
paralogues increases the chance that a read will map to two or more genomic regions, leading
it to be discarded from most sequencing analyses pipelines, and thus decreasing the amount
of usable information for genotype calling (Treangen and Salzberg 2012).

Previous studies explored the applicability of NGS to genotype the HLA alleles of an
individual, where an allele is typically defined as the haplotype determined by a combination
of SNPs within a given HLA gene (e.g. (Erlich et al. 2011; Major et al. 2013)). To this
end, Erlich et al. (2011) proposed NGS methodologies in which different steps - from sample
preparation to haplotype level allele calling - were adapted to deal with the issues of high
polymorphism and paralogy of HLA genes. In this way, they were able to successfully validate
their methodology in a study of 270 samples that had been previously typed by sequence
specific oligonucleotide (SSO) hybridization, which they treated as a gold standard dataset.
The same gold standard dataset was used by Major et al. (2013), who also examined the
reliability of calling HLA alleles using NGS, but using the 1000 Genomes alignment data, and
showed that this publicly available dataset can be used for this purpose, after appropriate
filters (e.g. coverage) are applied.

Both Erlich et al. (2011) and Major et al. (2013) were interested in using NGS data to
determine HLA alleles. Information regarding HLA alleles is of biomedical relevance since
HLA genotypes are often an important covariate to account for in association studies, and
HLA typing is critical to hematopoietic transplantation. In this study, however, we evaluate

the quality of SNP level genotype calls from the 1000 Genomes at the HLA genes.
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The analysis of genotype and allele frequencies for SNPs contained within HLA genes
has proven of great value in biomedical and evolutionary studies, and the 1000 Genomes
dataset is a recurrently used resource in this context. Examples of the use of HLA SNP
data from the 1000 Genomes Project include: (a) In GWAS studies SNPs in HLA genes are
often associated with phenotypes of interest, and it is useful to understand the prevalence
of these variants in additional populations; (b) GWAS studies benefit from knowledge of the
haplotype structure surrounding HLA genes, which can be inferred from the dense SNP data
of the 1000 Genomes for multiple populations (e.g. Hill-Burns et al. 2011); (¢) When testing
for selection, many studies have found strong evidence associated to the HLA region, using
the 1000 Genomes as a source of polymorphism data (e.g. Leffler et al. 2013).

All the above applications of the 1000 Genomes Project SNP data in HLA genes are
dependent on the reliability of genotype calls at each SNP. However, no study to date has
provided a detailed survey of the reliability of individual genotype calls and allele frequency
estimates at the SNPs in HLA genes, in spite of their frequent usage. We address this issue,
discuss likely causes for cases of incorrect genotype calls and provide a list of reliable sites
for the HLA loci in the 1000 Genomes data. As in previous studies (Erlich et al. 2011;
Major et al. 2013), we used a dataset in which individuals had their HLA genes genotyped
using Sanger sequencing as a gold standard to benchmark the genotypes called at the 1000
Genomes Project. However, differently from these other studies, which were interested in
reconstructing the HLA haplotypes using NGS, here we have deconstructed the haplotypes
determined from Sanger sequencing data into SNPs, and compared genotypes at the SNP level
to the 1000 Genomes data. We took advantage of the recent availability of a dataset of Sanger
sequencing based HLA genotyping of HLA-A, -B, -C, -DQB1 and -DRB1 for 930 of the
samples from the 1000 Genomes Project (Gourraud et al. 2014). Our results have implications
for other studies that use SNP data from the 1000 Genomes in order to estimate allele
frequencies. Because HLA loci are the most polymorphic in the human genome, they most

likely represent the worst case scenario for mapping bias and, consequently, allele frequency
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estimation error.

METHODS

In this study we compare NGS genotype calls and allele frequency estimates reported by
the 1000 Genomes Project with those obtained in a study which used Sanger sequencing to
genotype HLA genes. For the purpose of our analysis we assembled a dataset comprising the
intersection of the 1000 Genomes and Sanger sequencing samples, resulting in 930 individ-
uals from 12 populations. Figure 1 summarizes the pre-processing of both datasets, which

preceded genotype and allele frequency comparisons.

1000 Genomes dataset (1000G)

SNP genotypes were acquired from the chromosome 6 integrated Variant Call Format (VCF)
file from version 3 of the 1000 Genomes Project Phase I data, which is available at ftp://ftp.
1000genomes.ebi.ac.uk/voll /ftp /release/20110521/ (The 1000 Genomes Project Consortium
2012). We selected only SNPs in exons encoding the antigen recognition sites (ARS), which
are exons 2 and 3 for HLA-A, -B, and -C (Bjorkman et al. 1987) and exon 2 for HLA-DQB1
and -DRB1 (Brown et al. 1993). Sites were selected based on the most inclusive coordinates
of the RefSeq database in 22 July 2014 (see File S1). Both SNP and sample selection were

carried out using VCFtools v0.1.12a (Danecek et al. 2011).

HLA reference panel by Gourraud et al. (2014) (PAG2014)

Gourraud et al. (2014) typed class I HLA-A, -B and -C, and class II HLA-DRB1 and -
D@B1 genes of 1266 individuals from 14 different populations in Africa, Europe, Asia and
America. The HLA sequence-based typing was performed with specific PCR amplification
of ARS exons followed by Sanger sequencing. Data are available at the dbMHC website
(http://www.ncbinlm.nih.gov/gv/mhc/xslcgi.fegi?cmd=cellsearch) (Helmberg et al.).

Data from Gourraud et al. (2014) are available in the form of HLA allele names per indi-
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vidual. Allele naming for HLA genes follows specific rules (Marsh et al. 2010). Briefly, allele
names are composed of a letter indicating the locus, followed by 2 to 4 numeric fields separated
by colons. Each numeric field indicates specific forms of variation: the 1st field distinguishes
groups of alleles by serological type, and the following fields distinguish nonsynonymous poly-
morphisms, synonymous polymorphisms, and non-coding differences, respectively. In order
to obtain SNP genotypes and frequencies from the Sanger sequencing data, we converted all
allele names to their associated sequences for ARS encoding exons. Sequences were acquired
from the IMGT database (Robinson et al. 2013), which keeps a well curated repository of all
known HLA allele sequences.

Our analysis was restricted to ARS exons because the HLA typing method used by Gour-
raud et al. (2014) only probed genetic variation in these specific exons. As a consequence,
multiple HLA alleles are compatible with the sequencing results, since the sites that differen-
tiate them are in other exons. This results in what we refer to as an "ambiguous allele call"
for an HLA allele (e.g., the allele is identified as B*35:03 but we cannot establish whether
it is B*35:03:01 or B*35:03:02, or a group of alleles is attributed to an individual, such as
B*35:02/B*35:03/B*35:04). Ambiguous allele calls may also happen when sequencing has
low quality at bases that differentiate two alleles. In addition, there are also genotypic ambi-
guities, which occur when different pairs of alleles are compatible with the sequencing results.
For individuals that bear ambiguous alleles, we created a consensus sequence in which am-
biguous sites were reported with both possible alleles (e.g. A/T, see Figure 1). In this way,
we incorporate the uncertainty associated to the sequence-based typing into downstream
analyses.

Although we cannot rule out technical errors in the Sanger sequencing that generated
the PAG2014 data (Gourraud et al. 2014), we assume that this method provides the most
reliable estimate of HLA alleles (and hence SNP genotypes), and will serve as a standard to
estimate the reliability of genotype calls and allele frequencies for the 1000 Genomes data

(De Santis et al. 2013).
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1000 Genomes Project Gourraud et al. (2014) SAMPLE A A.l
Phase | version 3 Integrated VCF 1266 samples L-|S1 01:01:01 01:01:02
chromosome 6 5 HLA loci (allele names) S2 01:01:01/01:01:02 02:01:01
1092 samples ¢
2424425 SNPs (genotypes) Filter to keep only 1000G samples
930 samples
v
Convert HLA allele names
Filters with VCFtools v0.1.12a: to sequences
- PAG2014 samples
- SNPs at HLA ARS exons IMGT database: A*01:01:01 TTGCATCGG
930 samples; 251 SNPs Get sequences of ------- -{A*01:01:02 TAGCATCGG
(1000G) all HLA alleles A*02:01:01 TTGAATTGG
l A*01:01:01 T T GCATCGG
Generate consensus A*01:01:02 T A GCATCGG
sequence for ambiguous - ---- A%02:01:01 T T GAATTGG
fitAalieles A*01:01:01/01:01:02 TIT/AJGCATCGE

!

Get genotypes of each
oy . SAMPLE ALLELE SNP1 SNP2 SNP3
individual at each site 51 2 T C c
correspondent to 1000G| | s1 A1 A ¢ c
SNPs at ARS exons 52 A' T/A ¢ c
930 samples; 251 SNPs 52 A1l T A T
(PAG2014) ;

Figure 1: Workflow for preparation of next generation sequencing dataset from the 1000 Genomes Project (1000G)
and Sanger sequencing dataset generated by Gourraud et al. (2014) (PAG2014) for comparisons of genotypes and
allele frequencies (see main text).

Genotype comparisons

We initially quantified how well the 1000G and PAG2014 data agreed with respect to genotype
calls. Genotypes at each site in each individual were compared between the 1000G data and
the PAG2014 data, here considered as a gold standard. In the case of sites with ambiguity
(e.g. T/A) in the PAG2014 data, if one of the two possible alleles matched an allele present
in the 1000G, we considered this an allele match and PAG2014 was corrected, by attributing
the allele present in the 1000G data to the ambiguous site. After correcting the ambiguous
sites in PAG2014, we only considered genotypes to be a match if both alleles in 1000G were
present in the PAG2014 data, at that site.

Throughout this paper, sites are numbered according to their position in the ARS exons

coding sequences (1-546 at the class I loci and 1-270 at the class II loci).
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Allele frequency comparisons

After correcting all possible ambiguities in PAG2014 (as described above), we calculated allele
frequencies for SNPs in both datasets. By comparing the frequency of the reference allele in
1000G to its value in PAG2014 we assessed the accuracy of allele frequency estimation. The
reference allele was defined as the allele present in the hgl9 build of the reference sequence
of the human genome. RefSeq IDs of the reference sequences used for each HLA gene are
reported on File S1.

We computed the error in 1000G frequency estimates per site i (F'E;) as:

FEz = fi,lOOOG - fi,PAG’2014

where f; 1000 and fi pag2014 are the frequency of the reference allele at site ¢ in 1000G and
PAG2014, respectively. We also computed the mean absolute error in frequency estimates

per gene as a mean of absolute F'E; for all sites within a gene (MAE):

1 n
MAE = - Z | fi.10006¢ — fi,pac2014]
i=1

where n is the number of SNPs in the gene.

Coverage in 1000G

Sequencing coverage per individual per site was calculated from the 1000 Genomes Project
phase I BAM files for the low coverage experiments using the genomeCoverageBed program
from BEDTools (Quinlan and Hall 2010). BAM files are available on ftp://ftp.1000genomes.
ebi.ac.uk/voll /ftp/phasel /data/[samplelD] /alignment /. Only low coverage BAM files were
used to estimate coverage because genotype likelihoods for the data we analyzed (1000
Genomes Project Phase I integrated VCF files) were estimated from this source. Geno-

type likelihoods were estimated from high coverage exome BAM files only for a minority of
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sites that were exclusively discovered on the exome experiments, and were not used in the

coverage analysis (See Table S1).

Testing for mapping bias

After demonstrating that there is an overestimation of reference allele frequency in the 1000G
SNPs (see Results), we hypothesized that mapping bias was the underlying cause. To test
this hypothesis we examined whether reads carrying the alternative allele at a SNP are less
likely to map to the reference genome than reads carrying the reference allele. First, for
each HLA allele present in the PAG2014 dataset, we defined windows of 51 basepairs that
were centered on each SNP (25 basepairs upstream and 25 basepairs downstream of the SNP,
including non-polymorphic sites). The set of windows centered on a specific SNP was then
separated in two groups: i) those that carry the reference allele at the central site and ii)
those that carry the alternative allele at the central site. Next, all windows were compared to
the reference genome (hgl9) sequence, and the number of mismatches was counted, excluding
the mismatch at the central SNP. If mapping bias was influencing allele frequency estimates,
we expected that, for SNP positions with overestimation of the reference allele frequency in
the 1000G, the alternative alleles would be flanked by additional alternative alleles (and thus

have a higher mismatch count against the reference sequence).

RESULTS

Genotypic mismatch frequency

We found that, on average, 18.6% of genotypes where mismatched between 1000G and
PAG2014 when individual genotypes for each site in the 5 classical HLA genes were com-
pared. HLA-B, -DQBI1 and -DRB1, which are the HLA genes with the highest levels of
nucleotide diversity (Buhler and Sanchez-Mazas 2011), also show the highest proportion of
genotype mismatches (23%, 21% and 27%, respectively). We also observed that mismatches

are specially concentrated on a few sites (Figure 2), with 18.7% of sites concentrating 50%

11
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of the mismatches over the 5 loci we analyzed.

Individual

LOO 0 OWOLNMNICONO!
MOONILONDO NI
A AANNN

Position

Figure 2: Genotype mismatches between the 1000G and PAG2014 datasets. Results per polymorphic site ("Po-
sition") and per individual (930 in total). Individuals are ordered by number of mismatches (individuals with less
mismatches on top). Sites are numbered according to their position in ARS exons coding sequence. Dark squares
indicate mismatches between genotypes in the two datasets.

Reference allele frequency accuracy

Accuracy of estimation of allele frequencies in 1000G was assessed comparing the observed
frequency of the reference allele in the 1000G data with that of PAG2014, for both the global
dataset (consisting of a pooled set of all individuals) and for each population separately (see

Figure S1-S5). We chose a difference of 0.1 between the frequencies on both datasets as a

12
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threshold that determines a "large frequency difference".

For the global dataset (Figure 3) we found that for HLA-A and -C' most SNPs have
similar frequency estimates for 1000G and PAG2014, with few large deviations (only 9/66 and
8/44 SNPs with absolute difference in frequencies (|F'E|) larger than 0.1, respectively). The
HLA-D@BI1 locus shows an intermediate proportion of SNPs with large deviations (10/42
SNPs with |[F'E| > 0.1), and HLA-B and HLA-DRB1 show the greatest proportion of sites
with large frequency differences between 1000G and PAG2014 (23/64 and 15/35 sites with
|FE| > 0.1). Overall, the mean absolute difference in frequency between SNPs in the 1000G
and PAG2014 data is 0.08, and it is higher at the HLA genes with the highest levels of
nucleotide diversity (HLA-B, -DQB1 and -DRB1 all deviate by +0.1).

13
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Figure 3: Reference allele frequency per site in each HLA gene in the 1000 Genomes (1000G) and Sanger
sequencing (PAG2014) datasets. Continuous line indicates the expected relationship (i.e., no difference) between
1000G and PAG2014. Dashed lines indicate a £0.1 deviation from the expected frequency (as estimated from
PAG2014 dataset). MAE (mean absolute error) defined in Methods. Numbers indicate site position in ARS exons
sequence.
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The proportion of genotype mismatches and allele frequency deviations per site are highly
correlated (Pearson correlation = 0.86, p-value < 107'%; Figure S6). However, some SNPs
with a high proportion of genotype mismatches have well estimated allele frequencies. One
example is site 465 at HLA-B, in which 44% of genotypes are mismatched, but |F'E| is only
0.007. Overall, 15 sites have more than 25% mismatched genotypes while showing |FE| < 0.1.
(See Figure S6). This is possible when the frequency of genotype errors in which the reference
allele is overrepresented is similar to the frequency of errors in which the alternative allele is

overrepresented.

Allele frequency at the Affymetrix Axiom array: Because genotyping arrays constitue
an additional frequently used resource to genotype SNPs within HLA genes, playing an
important role in GWAS studies, we have also investigated the accuracy of allele frequency
estimation from this genotyping technology. We estimated allele frequencies from Affymetrix
Axiom array data, and we found that those allele frequency estimates are as reliable as the

ones from the 1000 Genomes NGS data, at the same SNPs (see Figure S7).

Relationship between sequencing coverage and genotypic mismatches

To investigate whether low sequencing coverage could explain genotype mismatches and
deviations from expected allele frequencies, we compared sequencing coverage between mis-
matched and matched genotypes (Figure 4a) and assessed the relationship between coverage

and frequency deviation (Figure 4b).
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Figure 4: (a) Distribution of coverage (x-axis) at matched and mismatched genotypes; y-axis is the square root of
the relative frequency (Mann-Whitney one-tailed test p-value < 1071); (b) Relationship between mean coverage
(x-axis) and absolute frequency difference (|F'E|, y-axis) between 1000G and PAG2014 (r = -0.11, p-value =
0.09). All polymorphic sites from HLA-A, -B, -C, -DRB1 and -DQBI genes are included in both a and b.

Sites with mismatched genotypes have on average lower sequencing coverage than sites
with matched genotypes (Figure 4a; Mann-Whitney one-tailed test p-value < 1071¢). This is
the expected relationship if low sequencing coverage explains genotype mismatches between
datasets. However, the difference in sequencing coverage between sites with matched and
mismatched genotypes is small (mean coverage in matching genotypes is 1.95, and 1.75 in
non-matching genotypes, a difference of 6,2%), and has likely achieved very high significance
only due to the large number of observations. Similarly, correlation between allele frequency
deviation and sequencing coverage is weak and not significant (Figure 4b; r = -0.11, p-value
= 0.09), although the direction of correlation is in agreement with what would be expected if
lower coverage explained larger deviations in frequency estimation. We therefore investigated

other factors that may account for errors in genotype calling.

Direction of frequency deviation

Most of the deviations in allele frequency estimates are in the direction of an overestimation

of reference allele frequencies in the 1000 Genomes data (Figure 3). This information is
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summarized in figure 5 which shows the location and magnitude of deviations between the

1000 Genomes and PAG2014 data.
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Figure 5: Difference in reference allele frequency between 1000G and PAG2014, measured by F'E (see Methods),
at each polymorphic site, in each population. Shades of red indicate overestimation of reference allele frequency
and shades of blue indicate underestimation of reference allele frequency in 1000G. Full population names are
given in Table S2.

The overall shift in the direction of overestimating reference alleles is summarized in Table
1, which shows the number of SNPs with more than 0.1 frequency difference in at least two
populations, for each locus. For HLA-A, -B and -D@BI most sites with large frequency
differences between 1000G and PAG2014 are skewed in the direction of overestimating the
reference allele (p-value = 0.057 for HLA-A and p-value < 10~* for HLA-B and -DQBI,

binomial test for null hypothesis of equal numbers of deviations in direction of REF or ALT),
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whereas HLA-C and HLA-DRB1 show no evidence for an excess of large deviations in the

direction of reference alleles.

Table 1: Number of sites with overestimation of reference (REF) or alternative (ALT) allele frequency in each
HLA locus (|FE| > 0.1 in 2 or more populations). Genomic coordinates of those sites are given in Table S3.

A B C DQEBlI DRBI
REF 11 30 6 22 11
ALT 3 2 3 2 11

Testing for mapping bias

We hypothesized that the observed reference allele bias was caused by a lower efficiency in
the mapping of reads containing the alternative allele. This is expected under the assumption
that the reads carrying the alternative allele on average have more differences with respect
to the reference genome (used by the 1000 Genomes Consortium as the index to align NGS
reads) than reads carrying the reference allele. In this scenario, some sites would have a
stronger bias than others if the alternative alleles in those sites are flanked by additional
alternative alleles.

To test this hypothesis, we aligned sequences of all alleles present in PAG2014 to the ref-
erence genome, and defined windows of 51 base pairs around each SNP. We then quantified
the number of differences with respect to the reference genome for windows surrounding 1)
reference (REF) and ii) alternative (ALT) alleles. If reference allele mapping bias is driving
errors in frequency estimation, it is expected that sites with an overestimation of reference
allele frequency would present the following pattern: windows carrying the reference allele
(REF) with fewer differences to the reference genome than sequences centered on the alter-
native allele (ALT). For sites with well estimated frequencies, on the other hand, we did not
expect such a difference between REF and ALT windows.

To illustrate this effect, Figure 6 shows the results for the two most extreme cases of
frequency deviation shown in Figure 5: site 244 of HLA-DQB1 and site 132 of HLA-B (0.56
and 0.52 absolute increase in reference allele frequency in the 1000 Genomes data with respect

to PAG2014). In both cases, ALT windows bear more differences to the reference sequence
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than REF windows.
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Figure 6: Number of differences to the reference genome at 1860 51bp windows centered at sites HLA-B 132
and HLA-DQBI1 244 with reference (REF) or alternative (ALT) allele at those sites. Windows were defined from
all HLA alleles present in the 930 samples from the PAG2014 dataset.

These results support the hypothesis that these sites with poorly estimated allele frequen-
cies have their alternative alleles residing in haplotypes with substantially more differences
with respect to the reference genome than haplotypes centered on the reference allele, thus
accounting for the observed bias.

To gain a broader perspective of this issue we classified SNPs from the HLA loci with
reference allele bias (HLA-A, -B, and -D@QB1) into three categories: i) sites where the ref-
erence allele frequency was overestimated, i.e. FE > 0.1 (“overestimated”), ii) sites where
the reference allele frequency was underestimated, i.e. F'E < —0.1 (“underestimated”) and
iii) sites where allele frequencies were well estimated ( |F'E| < 0.01, here refered to as “well
estimated”). We compared these three categories of sites with respect to the number of differ-
ences relative to the reference genome in REF and ALT windows (Figure 7). We found that
the overestimated group has significant excess of differences at alternative allele bearing hap-
lotypes. In this group of SNPs, ALT windows have on average 4.4 other differences relative to

the reference genome, while those centered on the reference allele (REF) have 1.9 differences
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(excess of differences on windows centered on the alternative allele was tested with a one
tailed Mann-Whitney test; p-value < 10716). Sites with well estimated or underestimated
reference allele frequency, on the other hand, do not show a similar excess of differences
in the haplotypes bearing the alternative allele, although the difference between REF and
ALT windows is statistically significant due to the large sample size (well estimated: ALT
mean—1.7; REF mean—1.8; one tailed Mann-Whitney test p-value < 107!; underestimated:

ALT mean = 1.9 ; REF mean = 1.2; one tailed Mann-Whitney p-value < 1071°).

[
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Figure 7: Number of differences to the reference genome at 51bp windows centered at each SNP in the HLA-A,
-B and -DQBI genes. Windows around each SNP were defined from the set of 1860 alleles present in the 930
samples from the PAG2014 dataset. Next, the set of windows was divided in three groups: those centered on SNPs
with overestimated, well estimated and underestimated reference allele frequencies (red, yellow and blue boxplots,
respectively). Then, each group was divided in two: windows in which the central site contains the reference allele
(REF, dark boxplots) and windows centered on an alternative allele (ALT, light colored boxplots). Upper and
lower hinges correspond to the 25th and 75th percentiles, horizontal lines represent the median, whiskers are 1.5
times the interquartile range, and outliers are represented by dots.

20


https://doi.org/10.1101/013151
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/013151; this version posted December 23, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Impact of biases in frequency estimation to population genetic statistics

Our analysis was able to identify a subset of SNPs in the HLA genes for which genotype
calls and allele frequency estimates from the 1000G showed a high error rate with respect to
the PAG2014 dataset. To evaluate the impact of the errors introduced by including these
sites in population genetic analyses, we compared the distribution of sample heterozygosity
between the sites with low and high error rates. Heterozygosity is defined as H = 2p(1 — p)
for biallelic loci, as is the case for the 1000 Genomes Phase I SNPs;, since tri- or quad-allelic
SNPs were not reported on Phase 1.

The removal of sites with poor frequency estimates (|FE| > 0.1 in at least two popu-
lations) results in a marked change in the distribution of H, with a significant drop in the
frequency of sites with large H and a shift in the distribution towards lower values (Figure
8). Note that the values in the Figure 8a are for H values estimated from the PAG2014
data, implying that the high values of H among "excluded" sites are not due to the devia-
tions in allele frequencies generated by NGS errors, but is the true heterozygosity at those
sites. These results therefore document that because sites with high heterozygosity tend to
have greater deviations from the "true" frequency (i.e., based on the PAG2014 dataset), the

removal of poorly estimated sites results in a reduction in H values.
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Figure 8: Heterozygosity of SNPs at HLA genes estimated from the PAG2014 dataset. Orange bars show
distribution of heterozygosity at sites with a high error rate in frequency estimation (|FE| > 0.1 in two or more
populations). Blue bars show the distribution of heterozygosity after exclusion of SNPs with high error rate.

The effect of heterozygosity on allele frequency estimation bias

We found an overall positive correlation between SNP heterozygosity and the magnitude
of error in allele frequency estimates (Figure 9a; Pearson’s correlation = 0.32; p-value =
1.938 x 1077). This result provides further evidence that sites with higher heterozygosity
tend to have poorer estimates for allele frequencies in the 1000G. Also, heterozygosity is
even more strongly correlated to the deviation in frequency, considering the direction of the
deviation (Figure 9b; Pearson’s correlation = 0.59; p-value < 107!6). Together, these results
show that HLA SNPs with higher heterozygosities not only have more errors in frequency

estimation but also a stronger bias towards overestimation of reference allele frequency.

22


https://doi.org/10.1101/013151
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/013151; this version posted December 23, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

0.44

0.24

IFE|
FE

0.04

-
19

- . .. B . . che "t ..
L O . KO . L, P -0.24
e e et R

v
004 Lioe oa.

T T T T T T T T T T T
0.0 0.1 0.2 03 0.4 0.5 0.0 01 0.2 0.3 04 05
H H

C)) (b)

Figure 9: Relationship between SNP heterozygosity (H) and (a) absolute value of deviation (|F'E|; Pearson’s
correlation = 0.32; p-value = 1.938%10~7) or (b) magnitude and direction of deviation (F'E; Pearson’s correlation
= 0.59; p-value < 10716),

DISCUSSION

The 1000 Genomes Project data were generated by various sequencing centers, which relied
on different sequencing platforms, read lengths, aligners and variant and genotype calling
algorithms (The 1000 Genomes Project Consortium 2012), creating challenges to an overall
assessment of data reliability. In this study, we specifically examine the performance of NGS
based genotype calls and allele frequency estimates for the highly polymorphic and intensely
studied classical HLA genes. We took advantage of the possibility of comparing downstream
genotype calls from the 1000 Genomes and HLA typing based on Sanger sequencing for the
same set of samples to assess data quality and test hypothesis about possible biases.

We show that the 1000 Genomes SNPs called in the HLA genes have many differences at
the genotype level, when compared to results obtained using Sanger sequencing. However,
considerably high genotype mismatching is possible with only modest deviations in allele
frequencies, and we conclude that for the 1000 Genomes data allele frequency estimates for
SNPs at HLA genes are considerably more reliable than the individual genotype calls.

The errors in frequency estimates in the 1000 Genomes NGS data are biased towards an
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overestimation of the reference allele frequency, a pattern consistent with read mapping bias.
Mapping bias is well known for NGS, and highly polymorphic regions such as HLA genes
are particularly susceptible to its effects (Nielsen et al. 2011). In our study, HLA-A, -B,
and D@BI1 show evidence of reference allele mapping bias. The HLA-DRBI locus, on the
other hand, did not present reference allele frequency overestimation, a finding that can be
explained by the existence of multiple copies of this gene (both pseudogenes and functional
copies), which may result in biases/errors that make reference allele bias comparatively less
visible (Degner et al. 2009). The HLA-C locus also shows a weaker reference allele bias, a
pattern that may be explained by its lower degree of polymorphism which leads to a decrease
in the number of mismatches of reads with respect to the reference genome, thus decreasing
the mapping bias.

We provide a list of unreliable SNPs within the HLA genes, defined by us as those with
an absolute difference in frequency larger than 0.1 (|F'E| > 0.1) in two or more populations
(Table S3). We show that these unreliable SNPs on average have higher heterozygosities in
our gold standard dataset. As a consequence, although filtering out those unreliable sites
improves the overall accuracy in allele frequency estimation, it leads to an underestimation of
the mean heterozygosity of SNPs in HLA genes, a bias that should be taken into account in
downstream analyses. Analyses that require genotype calls at the individual level, including
haplotype-based analyses, should be performed with caution when using the data from the
1000 Genomes at HLA genes.

Our results have implications to studies that use SNP data from the 1000 Genomes in
other genomic regions with high variability. Because HLA loci are the most polymorphic in
the human genome, they represent a worst case scenario for mapping bias and subsequent
allele frequency estimation errors. We found a significant correlation between SNP heterozy-
gosity and the absolute difference in frequency between 1000 Genomes data and our gold
standard. This suggests that in genome-wide studies, SNPs with high heterozygosities, and

contained within regions with additional SNPs, have an increased chance of presenting poor

24


https://doi.org/10.1101/013151
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/013151; this version posted December 23, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

frequency estimates.
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