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Abstract 

 

We have generated an improved assembly and gene annotation of the pig X chromosome, and 

a first draft assembly of the pig Y chromosome, by sequencing BAC and fosmid clones, and 

incorporating information from optical mapping and fibre-FISH. The X chromosome carries 

1,014 annotated genes, 689 of which are protein-coding. Gene order closely matches that found 

in Primates (including humans) and Carnivores (including cats and dogs), which is inferred to be 

ancestral. Nevertheless, several protein-coding genes present on the human X chromosome 

were absent from the pig (e.g. the cancer/testis antigen family) or inactive (e.g. AWAT1), and 38 

pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The 

pig Y chromosome assembly focussed on two clusters of male-specific low-copy number genes, 

separated by an ampliconic region including the HSFY gene family, which together make up 

most of the short arm. Both clusters contain palindromes with high sequence identity, 

presumably maintained by gene conversion. The long arm of the chromosome is almost entirely 

repetitive, containing previously characterised sequences. Many of the ancestral X-related 

genes previously reported in at least one mammalian Y chromosome are represented either as 

active genes or partial sequences. This sequencing project has allowed us to identify genes - 

both single copy and amplified - on the pig Y, to compare the pig X and Y chromosomes for 

homologous sequences, and thereby to reveal mechanisms underlying pig X and Y 

chromosome evolution.
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Introduction 

 

The therian (marsupial and placental mammal) sex chromosomes evolved originally from a 

homologous pair of autosomes about 170-180 million years ago (Cortez et al. 2014; Livernois et 

al. 2011), and have become extensively differentiated in terms of structure and sequence 

content. The gene content and organisation of the emergent X chromosome has been subject to 

strong conservation across different mammalian species with retention of much of the ancestral 

X (Ross et al. 2005; Bellott and Page 2010). In contrast, the acquisition of a dominant male sex-

determining function and accumulation of male benefit genes (e.g. genes involved in regulating 

male germ cell differentiation) on the Y chromosome has been accompanied by (a) the genetic 

isolation of much of the Y (suppression of recombination with the emergent X), (b) subsequent 

degeneration and loss of much of the ancestral Y gene content and (c) selection for dosage 

compensation in XX females to restore equivalence of gene expression between males and 

females for loci carried on the X that have degenerated or do not have a homologue on the Y 

(Bachtrog 2013; Graves 2010). Selection has also acted to retain a strictly X-Y homologous 

pseudoautosomal region (PAR) that permits X-Y pairing during meiosis and within which there 

is obligate recombination between the sex chromosomes. The gene and sequence content of 

the PAR varies between mammalian species and this reflects processes of expansion and 

pruning of the PAR in different mammalian lineages (Otto et al. 2011). 

 

Comparisons of X chromosome sequences from several mammalian species have confirmed 

strong conservation of gene sequence and order (Chinwalla et al. 2002; Sandstedt and Tucker 

2004). Groenen et al. (2012) published the first assembly of the porcine X chromosome as part 

of the initial description of the pig genome sequence, and again this demonstrated conservation 

of synteny across the chromosome. Nonetheless, sequence gaps and ambiguities remained 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2014. ; https://doi.org/10.1101/012914doi: bioRxiv preprint 

https://doi.org/10.1101/012914
http://creativecommons.org/licenses/by/4.0/


 5 

within this first assembly, complicating genomic studies within pigs, and comparative studies 

between mammals. 

 

In contrast to the broadly conserved X chromosomes, the hemizygous nature of the Y 

chromosome and suppression of recombination, in combination with normal processes of 

genome evolution, have led to a gradual degeneration of the chromosome over time, a large 

number of rearrangements, and colonisation by sequences from the X and autosomal 

chromosomes. Newly introduced genes will either drift or degenerate, or selection may act on 

variants to fix new genetic functions on the Y, particularly where these confer a benefit to the 

male. The haploid state of the sex chromosomes in males has generally led to the accumulation 

of male gametogenesis genes on both X and Y chromosomes (Vallender and Lahn 2004). A 

further consequence of the non-recombining status of the differential region of the Y is the 

relaxation of restraint on sequence amplification, leading to generation of ampliconic regions 

containing amplified gene and sequence families (Bellott and Page 2010). 

 

The highly repetitive nature of many regions of mammalian Y chromosomes has impeded the 

generation of complete chromosome sequences; while there are tens of mammalian genomes 

sequenced, only a small fraction have a Y assembly. These few assemblies, plus several partial 

sequence assemblies have permitted the elucidation of chromosome topology and gene order 

in human and chimpanzee (Hughes et al. 2010), mouse (Soh et al. 2014), cattle (Elsik et al. 

2009), horse (Paria et al. 2011), cat and dog (Li et al. 2013a). These works clearly show the 

great divergence in gene content, order, structure and sequence between Y chromosomes from 

different mammalian species. However, little data is available on the porcine Y chromosome 

sequence, gene order and their relationship to the X, despite the recent sequencing project for 

the pig genome (Groenen et al. 2012). Much of our knowledge of Y gene order comes from 
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Quilter et al. (2002) who combined radiation hybrid mapping data with physical mapping of BAC 

clones to generate an ordered gene list. 

 

This paper presents a second-generation, much improved assembly and gene annotation of the 

porcine X chromosome. We present also a body of Y chromosome sequence, which has 

permitted a first-generation assessment of the Y chromosome short arm gene content and 

order, how this compares to other mammalian Y chromosomes, the evolutionary processes 

leading to the current Y organisation, and the structural relationships between the porcine sex 

chromosomes. 
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Results 

 

A second-generation porcine X chromosome assembly 

 

Organisation and evolution of the X chromosome  

 

The pseudoautosomal region (PAR) in pig is of a similar size to the PAR in other closely-related 

mammals (e.g. cattle). We have previously discussed its gene content, its comparison to other 

mammalian species and the delineation of the boundary region (Skinner et al. 2013). Recently 

the precise location of the PAR boundary was confirmed to be within the gene SHROOM2 (Das 

et al. 2013). The X chromosome assembly 

(http://vega.sanger.ac.uk/Sus_scrofa/Location/Chromosome?r=X-WTSI) comprises 

129,927,919bp of sequence in 5 contigs, with 13 gaps and an N50 length of 4,824,757bp. 

Compared with the previous 10.2 build, many gaps have been filled and the order of sequences 

on the chromosome has been updated. Much of this improvement was aided by the use of 

optical mapping techniques, which helped resolve some of the more repetitive regions of the 

chromosome such as around the centromere; an example can be seen in the short arm clone 

CH242-202P13 (see Supplementary Methods for details on how the optical mapping approach 

was used here). Supplementary figure S1 shows a dot-plot alignment of the 10.2 X with our X 

assembly, highlighting the regions of the chromosome for which the sequence order has been 

corrected. 

 

We aligned the X (and available Y) chromosome sequences of nine mammalian species (Figure 

1). The previously documented high level of conservation of X chromosome synteny is more 

apparent with the new pig X, as many of the reported breakpoints from cross-species 

comparisons to the build 10.2 X were due to errors that have been resolved in the new 
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assembly. Specific lineages though, such as the rodents, have higher levels of chromosomal 

rearrangement. Li et al. (2013b) produced a genome assembly of a female Tibetan wild boar, 

and reported regions of the genome with apparent inversions with respect to the Duroc 

assembly. We compared the X inversions with our new assembly, and found that they lie 

outside the regions that have changed orientation from the 10.2 X. That is, these remain as 

potential inversions between Duroc and Tibetan wild boar. 

 

Gene content of the X 

 

Since the reference assembly of the X chromosome was high quality, the sequence underwent 

manual annotation, since the chromosome contains complex duplicated gene families such as 

olfactory receptors along with pseudogenes, which are hard to discriminate using only automatic 

pipelines. Table 1 shows the updated annotation compared to the 10.2 X build, plus comparable 

statistics for the annotation of the Y chromosome. The full gene annotation is provided in 

Supplementary Table S7 and is available through Vega browser. The majority (76%) of 

annotated loci in pig are shared with human. Again, the improved sequence assembly facilitated 

by optical mapping analysis assisted the new gene annotation, and many genes from the 

previous build that were disrupted by gaps have now been completed. The number of long non-

coding RNA loci that have been identified on the new assembly has increased from 33 to 84, 

and, although the functionality of this category of loci is still under debate (Young and Ponting 

2013), more and more evidence is coming to light suggesting that at least some of these loci 

have a functional role within the genome; for example, the lncRNA FIRRE has recently been 

identified in mouse and human and implicated in having a role in interfacing and modulating 

nuclear architecture across chromosomes (Hacisuleyman et al. 2014). Despite very low levels 

of sequence conservation between species, we find evidence for a FIRRE-like locus in the 

syntenic region of pig (OTTSUSG00000005757). 
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Some genes with updated annotation from build 10.2 stand out as being of particular biological 

interest. Comparing the human and pig X chromosomes there are 38 coding loci in pig that are 

not found in human. Twenty-two of these coding genes, plus five novel pseudogenes, are in 

olfactory gene clusters. Pigs are known to have a large OR repertoire (Nguyen et al. 2012), and 

this adds to the reported collection. Figure 2 shows the improved assembly and annotation 

around one of the olfactory region clusters on Xq. The region lay within an inversion in the 10.2 

assembly, corrected here and matching the gene order on the human X. The full list of genes 

present on the pig X chromosome, but not on the human X is provided in supplementary table 

S9. 

 

Besides the additional genes compared to human, there are also 11 protein coding genes which 

are present on the human X, which have been annotated as unitary pseudogenes (also known 

as Loss Of Function genes) on the pig X (Supplementary Table S10). These include GUCY2F 

(OTTSUSG00000005153) which in humans has been suggested as a possible candidate for 

involvement in X-linked retinitis pigmentosa (RP) (Yang et al. 1996). Pig models are now being 

developed for studying RP, taking advantage of the similarities between human and porcine 

retinal development (e.g. Ross et al. 2012; Fernandez de Castro et al. 2014). These models 

benefit from an improved understanding of the status of orthologues of disease-related genes: 

 

AWAT1 (OTTSUSG00000002936) is another unitary pseudogene. This gene is found on the X 

chromosome in a wide range of mammals, including cattle, humans and opossums (Holmes 

2010). It encodes an acyl CoA wax alcohol acyltransferase involved in sebum production, and in 

humans is expressed in sebocytes, aiding in the prevention of surface desiccation of the skin 

(Turkish et al. 2005). The gene is a member of a family including DGAT1 and DGAT2, which 

have previously been associated with backfat thickness and intramuscular fat content 
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respectively in pig breeds (Cui et al. 2011). It is likely that this pseudogenised AWAT1 in Duroc 

pigs represents a species-wide trait, as no transcripts for AWAT1 appear in the EST databases 

from any pig breeds. 

 

Other identified unitary pseudogenes include ITIH6, a trypsin inhibitor, and RAB4, a member of 

the RAS oncogene family, as well as a number of zinc finger proteins and a transmembrane 

protein. Whether some of these loci were ever functional in pig, or merely reflect conserved 

regions that became functional at some point in the human lineage, is open for debate. 

 

Other regions of difference lie in the cancer/testis (CT) antigen clusters found in humans and 

other primates but which are significantly reduced n pig. This is in line with evidence that 

enlarged primate CT antigen clusters arose due to a recent amplification in primates (Zhang and 

Su 2014), perhaps driven by a retrotransposition event. Their potential functions remain 

unknown, though they may have been involved in primate speciation. 

 

Lastly it was found that INE1 (Inactivation-escape-1) is not present in pig. This is a non-coding 

transcript with unknown function within an intron of UBE1X (Thiselton et al. 2002). It appears to 

be unique to humans, where it escapes X inactivation in females. 
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A first generation porcine Y chromosome sequence assembly 

 

Successfully assembled repetitive portions of Y chromosomes have been generated only for a 

limited number of species (see for example the human, mouse or chimpanzee Y; Hughes et al. 

2010; Soh et al. 2014). Given the highly repetitive nature of the long arm of the pig Y 

chromosome (Quilter et al. 2002; Skinner et al. 2013), we targeted the short arm, which 

contains most, if not all, of the single-copy material. 

 

The strategy employed was to prepare fosmid clones from flow-sorted Y chromosomes (origin 

Duroc) and initially to use fingerprint analysis to establish a framework of clones and to identify 

those inserts belonging to highly repetitive regions. Previously identified BAC clones (origin 

Meishan, from a Large White female/Meishan male cross: Anderson et al. 2000) containing Y 

chromosome genes conserved between several mammalian species served as anchor points 

for the elaboration of more complete sequence contigs. All of these BAC clones are known to 

map to the short arm of the Y (Quilter et al. 2002). Overlaps between BAC and fosmid clones 

were identified to extend the contigs, and selected clones within each contig were used for 

physical mapping (by metaphase-, interphase- and fibre-FISH). This, combined with existing 

data from linkage and radiation hybrid mapping, allowed us to produce an ordered map of the 

genes and contigs on the short arm of the Y. Selected repeat-containing clones were also 

sequenced to sample the diversity of repetitive sequence content of the Y chromosome. The 

final contigs we are predominantly of Duroc origin, with small regions of Meishan where no 

Duroc sequence was available. Supplementary table S1 summarises the ordered clones that we 

were able to incorporate into contigs including small contigs that could not be anchored to the 

physical map. The resulting male-specific Y sequence data is available at 

http://vega.sanger.ac.uk/Sus_scrofa/Location/Chromosome?r=Y-WTSI 
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A two-pronged strategy was used to identify potential coding sequences in the body of fosmid 

sequence data. First, all fosmid sequence was subjected to gene prediction algorithms and 

potential coding sequences compared to the non-redundant protein database. Second, 

extensive BLAST analysis of known mammalian Y-linked genes and porcine X-linked 

homologues against the Y fosmid sequence dataset was used to identify porcine homologous 

sequences. The established intron/exon structure of these genes was used to drive the 

assembly of more extensive coverage of the porcine Y homologue. These sequences were 

used to identify ESTs in order to confirm expression status. Select genes were further tested by 

RT-PCR in a range of tissues. 

  

Organisation of the porcine Y chromosome 

  

Figure 3 summarises the genes identified on the Y and their order, and the distribution of 

families of mammalian repetitive sequences across the short arm. The relative order and 

orientation of genes on the differential region of the Y short arm was established using a 

combination of the assembled contig sequences and high-resolution FISH with DNA fibres 

prepared by the Molecular Combing approach. The fibre-FISH also allowed an estimation of the 

gap sizes between adjacent contigs (see supplementary figure S2 for detailed presentation of 

supporting evidence). The genes are organised into two main blocks of low copy number 

sequences. These two blocks are separated by a region containing highly amplified sequences 

including the HSFY gene family (see Skinner et al, in submission). This amplified block maps to 

cytogenetic band Yp1.2 and is estimated from FISH analysis to be about 5Mb in length. Our 

final mapped sequence comprises seven contigs in the distal block and seven contigs in the 

proximal block. The final contig sequences were analysed for repeat content with 

RepeatMasker, and the densities of repetitive content found are shown in the column to the left 

of Figure 3. Two large (~400kb) contigs were assembled based on sequence overlaps and 
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confirmed by fibre-FISH, but could not be assigned to the physical map (supplementary figure 

S3). These unplaced contigs did not contain any identifiable genes, and are included in a 

separate assembly in VEGA. 

 

Very few low-copy loci have been identified on the Y long arm. Indeed, FISH with clones 

containing male-specific repeats paints the entire long arm, indicating that it is mostly composed 

of repetitive sequences (e.g. Quilter et al. 2002). Although we attempted to sequence one of 

these clones, it was not possible to assemble a framework physical or sequence map from the 

repeats it contained, as most sequences collapsed into a single contig. The sequences we 

obtained from this clone are shown in the supplementary data and belong to previously 

published male-specific pig repeat families (Mileham et al. 1988; McGraw et al. 1988; Thomsen 

et al. 1992; Pérez-Pérez and Barragán 1998). Metaphase FISH did, however, reveal a small 

low-copy region at the q terminus (see supplementary figure S13). 

 

Gene-related content of the Y chromosome 

 

The Y chromosome sequence was run through the Otterlace/Zmap analysis pipeline which 

performs homology searches, de novo sequence analysis and gene predictions (Loveland et al. 

2012). Repeat masking proved challenging due to the paucity of known pig-specific repeats. 

Manual annotation resolved this as homology analysis is routinely run on-the-fly within the 

annotation tools, without repeat masking, to more accurately elucidate gene structures, 

especially using known Y chromosomal genes from other species as targets, and identifying the 

pig homologues where present. Many of the ancestral-X-related genes previously reported in 

other mammalian Y chromosomes are represented either as active genes or partial sequences, 

some of the latter with supporting ESTs. There is also evidence for rearrangement of a number 

of Y-linked genes which may have rendered them non-functional or modified their transcription 
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products. RT-PCR analysis for several of these loci across a range of porcine tissues was 

performed to establish their transcriptional status. A list of the gene loci we identified in this and 

previous work is given in table 1. A fuller table including genes not tested here but with EST 

support is provided as supplementary table S3. 

 

Ampliconic gene sequences 

Although our sequence contigs are limited to the low copy regions of the chromosome, the FISH 

data show regions where gene-containing clones are present in multiple copies. Examples are 

the CUL4B genes, one of which is present as a partial copy in fosmid WTSI_1061-13A2. Probes 

against this sequence bind multiple targets proximal to SRY (and likely proximal to RBMY) as 

well as additional sites towards the centromeric end of the Y short arm (see supplementary 

figure S13). This indicates that CUL4B is likely to be an ampliconic gene. The sequence 

supports gene expression from a ‘full-length’ version of the sequence centromeric to SRY, and 

RT-PCR shows expression in testis, kidney and brain. A similar situation exists for clones 

containing TSPY. 

 

Regions of X-Y Homology 

We examined all the sequenced Y clones for homology with the X. Outside the PAR, two large 

(~50kb) regions of XY homology were seen, the remaining shorter regions comprising individual 

XY homologous genes and various classes of repetitive sequences. The overview X-Y 

comparison is given in supplementary figure S4). Most gene-related sequences show homology 

to the X. 

 

We examined rates of synonymous substitution in open reading frames between the X and Y 

copies of genes conserved on Y chromosomes across mammalian species but within different 
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evolutionary strata as defined for the human X and Y (Lahn and Page 1999) (Table 3). Gene 

pairs have similar substitution rates to their orthologues in other mammals. 

 

A ~50kb region on the distal block encompassing the genes or gene fragments TRAPPC2-

OFD1Y-GPM6B has high sequence identity to the X even in intronic and intergenic regions, 

suggesting a possible X-Y transposition (supplementary figure S6). OFD1Y is expressed highly 

in testis with lower expression in kidney and brain (supplementary figure S8), but there is no 

evidence for expression of the Y copies of TRAPPC2 or GPM6B. Furthermore, GPM6B is 

missing exons 1-3. GPM6B exon 1 lies near SMCY, possibly indicating an ancient inversion or 

other rearrangement. Recurrent X to Y transpositions of this region have been suggested before 

in cattle and dog (Li et al. 2013a; Chang et al. 2013); a gene tree constructed from dog, cattle, 

pig and horse OFD1X and Y sequences shows that the pig Y copy is more similar to the OFD1X 

than to any other species Y copies (supplementary figure S7), supporting the idea that this 

region arose on pig Y via a transposition from the X. A further ~33kb region of homology within 

the PAR (WTSI-X:1,840,693-1,874,130) can also be found on Xq (WTSI-X:114,853,327-

114,886,764), and potentially represents a region of duplication and transposition from the PAR 

onto Xq. 

 

Evolution of the porcine Y chromosome 

 

Inverted and duplicated blocks of sequence 

Inversion and duplication to form palindromes has occurred around both SRY and CUL4BY 

(Figure 4), evidenced by sequence and fibre-FISH data for fosmids. The SRY gene itself is 

present in two head to head copies, validated by fibre-FISH experiments using the gene 

sequence directly as a probe. There are unlikely to be more than two SRY copies on the 

chromosome (qPCR - supplementary figure S10). In both palindromes, the ancestral arm of the 
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palindrome was the proximal copy, and the derived copy is distal. This is evidenced by a 

disrupted ancestral ERV element outside the SRY inversion, and a partially duplicated LINE 

element overlapping the CUL4BY inversion (see supplementary figure S9). The pattern of 

markers at the breakpoint regions reveals that the SRY duplication preceded the CUL4B 

duplication (see Figure 4 and supplementary figure S9). The transposable elements at both 

inversion boundaries are annotated as specific to the Sus lineage, suggesting these are 

relatively recent duplications. The copy number of SRY and CUL4B in closely-related suid 

species is therefore uncertain. The arms of the palindrome have high levels of sequence 

identity; we could not detect a difference in the SRY sequence from clones on one arm versus 

the other arm. Our sequence contigs do not cover the centres of the palindromes (about 20kb is 

missing in each), so we do not know if the arms abut - it is possible that there is a short stretch 

of unique sequence between the arms. 

 

A further palindromic region lies at the proximal end of USP9Y, covering approximately 50kb, 

including the final exons 18-43 of the gene. The breakpoints lie well within known transposable 

elements; one end within a LINE, and the other end within a SINE, and these elements likely 

facilitated the original rearrangement (supplementary figure S11). Compared to SRY and 

CUL4BY, the breakpoints are less well defined, with sequence identity decreasing over some 

tens of base pairs; this probably reflects a more ancient event than SRY and CUL4BY. 

 

Transposition within the Y chromosome 

A distinctive pattern of repetitive elements covering 5kb is found in two Y contigs with 99% 

sequence identity. This likely resulted from a transposition of sequence at end ERV elements. 

The sequence originated near SMCY, and transposed to OFD1; a cluster of ERVs can be seen 

at the distal end of OFD1Y in the distal gene block, and a further ERV cluster distal to TXLNGY 

in the proximal gene block (visible in Figure 3, higher resolution in Figure S2). The breakpoint 
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regions are clearly visible within one ERV element (ERV1-4_SSC-I-int) upon alignment (see 

supplementary figure S5), while the breakpoint at the OFD1Y distal end has been further 

disrupted by an L1 LINE element insertion. These repetitive elements are all annotated as being 

Sus lineage specific, and show evidence for recent dynamic activity of transposable elements 

on the Y chromosome. 

 

Structural rearrangements compared to other species 

We generated likely pathways of gene-only rearrangements from the ancestral Y chromosome 

to pig, using data from (Li et al. 2013a) updated with pig and cattle (Elsik et al. 2009) Y 

chromosomes (supplementary figure S12). In pig, as in other species, the USP9Y-DBY-UTY 

genes are the only cluster to retain proximity from the ancestral Y chromosome. Global 

alignments of chromosome content with other available Y chromosome assemblies are also 

shown in Figure 1. This shows the striking rate of Y-chromosomal change across mammals. 

Little of the Y sequences align, save for the genic regions, and these show gross levels of 

rearrangement. In particular, the comparison highlights some of the ancestral gene families that 

have become amplified in different lineages, e.g. HSFY in pigs and TSPY in dogs. 
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Discussion 

 

We present here an updated and substantially improved assembly of the pig X chromosome, 

and a first-generation sequence and map of the pig Y chromosome with expression analysis of 

many of the genes it contains. This sequence has also allowed us to recover information on the 

evolution of the Y chromosome, and how this relates to sex chromosome evolution in other 

mammals. 

 

An updated assembly and annotation of the porcine X chromosome 

 

The picture of mammalian X chromosomes is one of general structural stability; see Figure 1. 

Specific lineages, such as rodents, have many more X rearrangements than the others, but 

these species are characterised by a globally higher number of chromosomal rearrangements 

(Stanyon et al. 1999). Apparent inversions and translocations in the pig X, relative to the 

ancestral X, detected in previous builds are corrected here to an order more reflective of the 

inferred ancestral X chromosome. Similar findings may be seen with other mammalian X 

chromosomes as the quality of the assemblies improve. It paints a stark contrast to the dynamic 

and ever-changing mammalian Y chromosomes that we discuss below. 

 

Optical mapping assists in chromosomal assembly 

The assembly of the chromosome was assisted by the use of optical mapping technology to 

determine clone order and orientation, and to estimate gap sizes. Optical mapping has been 

used mainly for small genomes (e.g. Riley et al. 2011), and its use is growing for larger 

chromosome-level assemblies. Optical mapping assisted with the tomato genome assembly 

(Shearer et al. 2014), and the recent domestic goat (Capra hircus) genome (Dong et al. 2013) 

was assembled with a combination of short -read sequencing and automated optical mapping 
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that produced super-scaffolds 5 times longer than those generated by conventional fosmid end 

sequencing. In this case, comparing the previous 10.2 X build with our assembly shows the 

regions of the chromosome that were particularly helped by the optical mapping approach (see 

supplementary figure S1). Unsurprisingly, these are the regions enriched for repetitive content; 

the pericentric heterochromatin especially contained a number of clones in which discrepancies 

in the sequence could be resolved. 

 

Improved gene annotation of the porcine X 

The revised gene annotation increases the number of protein-coding genes identified on the pig 

X to 689, bringing the reported gene content closer to that identified in the X chromosomes of 

well-studied species (i.e. humans and mice, with 813 and 940 protein-coding genes 

respectively). The majority of X-chromosome genes are shared between species (76% of 

annotated pig genes shared with human), in accordance with Ohno’s law (Ohno 1967). We 

have highlighted some specific genes of interest in the Results section with an updated status 

from build 10.2 X. Beyond this, the improved gene annotation and ordering will be useful not just 

to the scientific community involved in mammalian sex chromosome evolution, but also to 

researchers using pigs as a model system for understanding disease. Many loci associated with 

mental retardation and brain function are found on the human X chromosome (Gécz et al. 

2009). We have previously shown an association of X-linked QTLs associated with maternal 

aggression in sows towards their young with puerperal psychosis in humans (Quilter et al. 2007, 

2012); this updated map of the pig X will make detecting significant loci and understanding their 

contribution to phenotypic traits far more robust in the future. These data also have relevance to 

the animal breeding industry; many of the QTLs mapped to the X chromosome are associated 

with production traits (e.g. average daily gain), meat quality traits (e.g. back fat), carcass traits 

(e.g. percentage lean meat) and reproduction traits (e.g. teat number). 
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Apart from the olfactory receptor gene clusters, we have not found evidence for widespread 

ampliconic gene families on the pig X. This contrasts with the X chromosomes of other species; 

both human and mouse X chromosomes contain independently amplified gene families, with 

little overlap between the species (Mueller et al. 2013). Human X chromosomes contain multiple 

inverted repeats with high sequence identity, enriched for testis-expressed genes (Warburton et 

al. 2004). Mice have a greater number of X-ampliconic genes than humans, apparently driven 

by a genomic conflict between X and Y sequences; the gene Sly on mouse Yq represses gene 

expression from sex chromosomes in spermatids, and the copy number of X genes has 

increased in response to maintain expression of key genes (Ellis et al. 2011). These examples 

led to an expectation that this might be a general feature of mammalian X chromosomes, and 

that the pig X would also contain unique ampliconic testis-expressed genes, but this appears 

not to be the case. 

 

The porcine Y chromosome 

  

One of the striking aspects of the Y chromosome organisation is that the single copy male-

specific genes are found in tight clusters of contigs spanning only two or three megabases of 

sequence. This is a pattern observed in other mammalian Y chromosomes – for example 

humans (Skaletsky et al. 2003), mice (Soh et al. 2014), cattle (Elsik et al. 2009), cats and dogs 

(Li et al. 2013a). There is now considerable evidence that each lineage has preserved a small 

region of key ancestral X genes, and the remainder of the chromosome has evolved in a 

species-specific manner, often involving expansion of sequences either ancestral or newly 

acquired into ampliconic tracts. 

  

Organisation of the pig Y chromsome 
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Palindromic sequences 

A recurring feature of the Y sequences we have assembled is the presence of palindromic 

regions, each on the order of 120kb end to end. These have resulted from duplication and 

inversion of sequences, and at least three such palindromes are visible. Two have very high 

levels of sequence identity; the inverted structure may facilitate the process of gene conversion, 

by allowing the formation of stem-loop structures as seen in the palindromes on the human Y 

chromosome (e.g. Hallast et al. 2013). 

  

The first of these palindromes is in the proximal gene block, encompassing the two copies of the 

male-determining gene SRY. Multiple SRY copies are found in dog (Li et al. 2013a) and some 

rodent species (e.g. Prokop et al. 2013; Lundrigan and Tucker 1997; Murata et al. 2010), but 

there has previously been no suggestion of this being the case in the pig. Prior sequencing of 

the SRY gene and comparison across different pig breeds has given no evidence for 

polymorphisms in the recovered SRY sequence from any individual, despite there being breed-

specific differences - i.e. there are no heterozygous pigs identified (see >300 sequences 

deposited in NCBI for S. scrofa alone). This suggests that this region undergoes frequent gene 

conversion that maintains the sequence identity between the copies. While most other species 

with multiple SRY copies have identifiable sequence differences, there is also a known example 

in rabbits of a palindrome encompassing SRY, with gene conversion maintaining sequence 

identity (Geraldes et al. 2010). 

  

Close to SRY lies the second palindromic region, surrounding the CUL4B (cullin) fragments. 

The palindromic region is of similar size to the SRY region, and in fact overlaps the SRY 

palindrome. This allowed us to determine that the duplication around SRY occurred first, 

bringing with it the first two cullin exons, after which the cullin fragment was duplicated again 

(Supplementary Figure S9). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2014. ; https://doi.org/10.1101/012914doi: bioRxiv preprint 

https://doi.org/10.1101/012914
http://creativecommons.org/licenses/by/4.0/


 22 

  

The third example of this phenomenon is found in the distal gene cluster. A palindrome includes 

the latter 26 exons of the USP9Y gene, though without forming an open reading frame. Unlike 

the previous two palindromes, both breakpoint ends lie within complete transposable elements 

(TEs). These types of sequence have long been known to facilitate genomic rearrangements via 

processes including non-allelic recombination and non-homologous end joining (Stankiewicz 

and Lupski 2002; Hastings et al. 2009). In the case of USP9Y, sequence identity between 

palindrome arms is lower around the breakpoints, perhaps indicating the duplication results from 

an older event. In all three palindromes, the TEs are annotated as deriving from within the pig 

lineage – that is, these are not ancient repeat elements. This tells us that these palindromes 

have arisen relatively recently, and show the ongoing impact of repetitive content in the 

genome. However, we need data from more species to determine when the duplications 

occurred. Extant suids diverged since about 40Mya, and the copy number of the genes involved 

across these lineages remains to be identified. 

  

The palindrome structures are reminiscent of ampliconic structures found on the mouse (Soh et 

al. 2014) and human Y chromosomes ((Hughes et al. 2012). There are likely other similar 

palindromic sequences remaining to be discovered within the Y, and more examples of the 

impact of transposable elements that have promoted accelerated rearrangements will no doubt 

be found. 

  

Ampliconic sequences 

Most mapped mammalian Y chromosomes have been found to contain multi-copy gene families 

(e.g. Li et al. 2013a), and the pig is no exception. Besides the duplications due to palindromes, 

other sequences have amplified to a much greater extent. There are three gene families of note 

here. 
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The CUL4B fragments: in addition to the two fragments noted above, further cullin fragments 

are found proximal to SRY and the active cullin copy, and appear to form part of an ampliconic 

and fragmented region leading towards the centromere. Cullins are ubiquitin ligase genes, 

frequently found in multiple copies on mammalian Y chromosomes (Li et al. 2013a; Murphy et 

al. 2006), and are important for appropriate degradation of substrates during many process 

including gamete production (Sutovsky 2003). 

  

The TSPY fragments: Other amplifications have been defined for TSPY, based on FISH 

mapping of clones. These again appear to be interspersed in the region leading towards the 

centromere but it not clear how these are arranged. TSPY is an ampliconic gene in many 

mammalian species, from artiodactyls to primates (Xue and Tyler-Smith 2011); the genes are 

involved spermatogenesis (Xue and Tyler-Smith 2011), and, in cattle, copy number variation of 

this gene has been linked with fertility in bulls (Hamilton et al. 2012). 

  

The HSFY family: These genes are predominantly found in a block between the proximal and 

distal gene clusters. The organisation and content of this region is complex, and we have 

investigated it in more detail in a companion paper (Skinner et al, in submission). The HSFY 

genes show evidence for a recent amplification in the Sus lineage to ~100 copies, perhaps 

independent amplification in other suid species, and further independent amplification in cattle 

(Chang et al. 2013). 

 

All of these pig ampliconic genes are involved in amplifications in other species, and the known 

functions suggest they are important in spermatogenesis. 

  

Other amplified sequences 
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Yq is dominated by repeat sequences (as demonstrated by the painting pattern of FISH using 

certain BAC and fosmid clones). These clones are composed almost entirely of sequences 

related to male-specific repeats described previously for pig (e.g. Mileham et al. 1988), and thus 

a more detailed study is needed to understand the organisation of this arm of the chromosome. 

At this time we can say only that patterns of hybridisation from FISH suggest to us that there is 

single copy sequence on Yq, including near/at the Yq terminus, but we were unable to isolate 

the sequences involved. 

 

Comparative chromosome organisation and gene order between mammals 

Previous work from primates, mouse, cat and dog has reconstructed a putative ancestral 

eutherian Y chromosome (Li et al. 2013a) based on gene order. We have incorporated our pig 

gene organisation into this, and added information available in the cow Y sequence assembly 

(Elsik et al. 2009) as shown in supplementary figure S12. One group of genes stands out from 

the comparison: USP9Y-DBY-UTY is the only ancestral cluster of genes that have retained their 

proximity to each other in all the studied species. There may be a selective disadvantage to 

disrupting this organisation, as has been proposed for other conserved syntenic blocks in 

general (Larkin et al. 2009), and for these genes in particular. Both USP9Y and DBY have been 

implicated as important in human spermatogenesis, though they may not be essential in all 

great apes (Tyler-Smith 2008). 

  

TRAPPC2P-OFD1Y-GPM6B: A potential transposition from the X chromosome 

Outside the PAR, there are regions of homologous sequence between the X and Y 

chromosomes. These can be as small as individual exons of a gene, or multi kilobase regions. 

We found most of the XY homologies could be attributed to known XY homologous genes, or to 

otherwise unannotated repetitive sequences, such as ERV families enriched on the sex 

chromosomes. The large exception was the region TRAPPC2-OFD1-GPM6B, which has been 
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subject to recurrent transposition onto the Y from the X chromosome in dog (Li et al. 2013a) and 

cattle (Chang et al. 2011) lineages. A similar transposition affecting the RAB9A–SEDL–OFD1Y 

genes has occurred in the human and chimp lineage (Hughes et al. 2010). This gene cluster is 

also at least partially present in the pig Y, with good sequence identity to the X across most of 

the region. Most discrepancies to the X sequence can be explained by recent transposable 

element activity (see Supplementary Figure S6 for X-Y alignment and content of the region). 

  

The most likely explanations for the presence of this region in pigs, cattle and dogs are (1) a 

recurrent transposition of a similar region independently in dogs, pigs and cattle, or (2) in the 

ancestor of pigs and cattle and independently in dogs. More sequence information in pig is 

needed to be able to compare the region with cattle to determine if the breakpoints are shared. 

Our analysis in pig is also complicated by an apparent further rearrangement affecting the 

region and splitting GPM6B, the first exon of GPM6B being proximal to UBE1Y.  

  

OFD1 is involved in cilia formation and the ubiquitin-proteosome degradation pathway. Ubiquitin 

degradation is an important part of gamete development, as seen in the CUL4B genes, and 

ciliopathies have been previously implicated in fertility issues (Fry et al. 2014). It is plausible that 

the testis-expressed OFD1Y has repeatedly acquired a function in sperm development in 

different mammalian lineages; certainly the X copies of OFD1 and also CUL4B have been found 

to be substantially downregulated in teratozoospermic men (Platts et al. 2007). 

  

Conclusion 

This work presents an improvement to the pig X chromosome assembly and gene annotation, 

plus the first sequence assembly for the pig Y chromosome, produced through a combination of 

fosmid sequencing, physical mapping by FISH and manual assembly. The assemblies we have 
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generated have allowed new insights into the content and evolution of the pig sex 

chromosomes, and provide an important resource for the pig genomics community. 
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Methods  

 

Comprehensive methods are given in the supplementary material 

  

Library construction and sequencing 

Phytohaemagglutinin-stimulated peripheral blood culture from a Duroc boar was used to 

prepare chromosomes for flow sorting. Flow-sorted Y chromosomes were purified, and 30-50kb 

sized fragments were cloned into the pCC1Fos vector (library WTSI_1061: 

http://www.ncbi.nlm.nih.gov/clone/library/genomic/330/). Clones for sequencing were targeted 

by minimal overlapping clones on a fingerprint contig (FPC) map. The targeted 897 clones for 

the Y chromosome were sequenced using a combination of 3 different sequencing platforms: 

Capillary, Illumina and 454. Raw sequence data is submitted to the public data repository, ENA 

http://www.ebi.ac.uk/ena/, under accession number ERP001277. Clones were assembled using 

a combination of four assembly scripts to produce de novo assemblies. All clone sequences are 

submitted to ENA. Manual alignment of clone sequences was used to build the clone map, 

expanding from clones containing known genes. These small contigs were oriented and ordered 

using fibre-FISH on single DNA-molecule fibres. Final sequence contigs were assembled based 

on this map using GAP5 (Bonfield and Whitwham 2010). 

 

Molecular combing and FISH 

Single-molecule DNA fibres were prepared by molecular combing (Michalet et al. 1997). Purified 

fosmid DNA was amplified using a GenomePlex® Whole genome Amplification (WGA) kit, and 

labelled using a WGA reamplification kit (Sigma-Aldrich) using custom-made dNTP mix as 

described before (Gribble et al. 2013). Fluorescence in-situ hybridisation followed standard 

protocols. Probes were detected with fluorescently conjugated antibodies. Slides were mounted 

with SlowFade Gold® mounting solution containing 4’,6-diamidino-2-phenylindole (Molecular 
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Probes/Invitrogen) and visualised on a Zeiss AxioImager D1 microscope. Digital image capture 

and processing were carried out using the SmartCapture software (Digital Scientific UK). 

 

X and Y gene annotation, sequence content and chromosomal evolution 

Manual annotation on the pig X and Y chromosomes was performed using the Otterlace/Zmap 

suite of annotation tools (Loveland et al. 2012) following previously established annotation 

protocols (Harrow et al. 2012; Dawson et al. 2013). The assembled chromosomes were run 

through an annotation pipeline (Searle et al. 2004), aligning EST, mRNA and protein libraries 

against the chromosomes with all annotated gene structures (transcripts) supported by at least 

one form of this transcriptional evidence. The HUGO Gene Nomenclature Committee (HGNC) 

(Seal et al. 2011) naming convention was used whenever possible for all pig genes, else 

HAVANA naming conventions 

(http://www.sanger.ac.uk/research/projects/vertebrategenome/havana) were followed. 

 

RepeatMasker (Smit et al. 1996) was used to identify repetitive elements within Y contigs. Gene 

content and structure was identified both by gene prediction program GeneMark 

(http://exon.gatech.edu/GeneMark/) and manual comparison to known Y genes using BLAST. 

Targeted resequencing was performed across specific genes to confirm their structure (primers 

given in supplementary table S4). Regions of XY homology were identified by comparing the 

repeatmasked X assembly to all sequenced repeatmasked Y clones (mapped and unmapped) 

using LASTZ (Harris 2007). Unannotated repetitive content enriched on the sex chromosomes 

was minimised by performing an X-X self alignment, and subtracting multiply-hit regions from 

the X-Y comparison. Candidate regions of 1kb or longer were further analysed using BLAST for 

similar sequences in the NCBI NT and EST databases, and the VEGA X gene annotations. 
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Evolutionary analyses between X and Y gene pairs were conducted using the Nei-Gojobori 

model (Nei and Gojobori 1986) in MEGA5 (Tamura et al. 2011). For each pair, positions 

containing gaps and missing data were eliminated. Reconstruction of ancestral Y chromosome 

organisations was performed using the Multiple Genomes Rearrangement (MGR) program 

(Bourque and Pevzner 2002) to calculate optimal rearrangement pathways between each 

species, as previously described (Skinner and Griffin 2012). 

 

Gene expression 

RT-PCR was used to confirm expression status of selected genes in five tissues (brain, liver, 

kidney, side muscle, testis), obtained from the same boar from which blood cultures were 

derived. Samples were taken from tissues stored in RNAlater (Qiagen) and homogenised in 

Trizol. Nucleic acids were extracted with phenol-chloroform and DNase treated. RNA was 

precipitated with isopropanol and stored at 1µg/µl in ddH2O at -80°C. RT–PCR was carried out 

using a OneStep RT–PCR kit (Qiagen) on 25 ng of total RNA. Primer sequences are given in 

supplementary table S5. 

 

Copy number estimation of SRY by qPCR 

Primers were designed to amplify a 1447bp region across the majority of the SRY ORF and 

UTRs (F:TAATGGCCGAAAGGAAAGG; R:TGGCTAATCACGGGAACAAC), and products were 

generated using a MyTaq Red kit (Bioline) using the profile 95°C for 3mins, 35 cycles of  

95°C/53°C/72°C for 15s/15s/2min with a final extension of 72°C for 10min. Two female Duroc 

gDNAs were spiked with dilutions of the purified SRY product to give a standard curve of 4 

copies SRY per genome to 0.25 copies per genome (assuming diploid genome size of 6Gb; 

Animal Genome Size Database; Gregory 2006). qPCR was performed using a SYPR-FAST 

qPCR kit (Kapa Biosystems) on the spiked females and on 5 male Duroc gDNAs with primers 

for SRY and the autosomal (SSC10) gene NEK7 (supplementary table S6). Annealing 
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temperature was optimised at 57°C. Cycling conditions were 95°C for 3mins, followed by 40 

cycles of  95°C/ 57°C/72°C for 10s/20s/30s. The fluorescent signal threshold crossing point (Ct) 

was normalized to the average signal from Nek7 to produce a normalised ∆Ct. The data from 

spiked female gDNA was used to construct a standard curve relating SRY signal to Nek7 signal; 

from this, an estimate of the absolute SRY copy number in the male gDNA samples was 

produced.  

 

Data access 

 

All sequence and annotation is available via the Vega genome browser 

(http://vega.sanger.ac.uk/index.html). The pseudoautosomal region of X/Y homology between 

the X and Y chromosomes is represented on the X chromosome only in Vega and Ensembl. It is 

marked as an assembly exception in both chromosomes, but the underlying genomic sequence 

and annotation is that of the X chromosome. Only the unique regions of the Y chromosome are 

stored and annotated. The complete Y chromosome is represented by filling the 'gaps' with the 

PAR regions from the X chromosome. 
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Figures 

 

 

Figure 1 - Comparative X and Y map 
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Sequenced X chromosomes from nine mammals, plus Y chromosomes from five of these, 

aligned to our pig X and Y assemblies. In each dotplot, the pig chromosome is on the horizontal 

axis, and the subject chromosome is on the vertical axis. Note the cow sequence is plotted in 

reverse orientation. High-stringency alignments are shown in blue, with less stringent 

alignments in yellow. Many lineages (e.g. human, marmoset, cat, dog) retain the ancestral X 

arrangement. Other lineages (e.g. sheep and cattle) have had small number of rearrangements, 

while others still (e.g. rodents, rabbit) have a much greater rate of chromosomal change. The Y 

chromosomes, in contrast, have a highly variable organisation, and none likely resemble the 

ancestral Y. 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2014. ; https://doi.org/10.1101/012914doi: bioRxiv preprint 

https://doi.org/10.1101/012914
http://creativecommons.org/licenses/by/4.0/


 40 

 

Figure 2 – Assembly improvement around an olfactory receptor gene cluster expansion 

Pigs have an expansion of olfactory receptors throughout the genome; two clusters lie on the 

pig X, not found in humans. The region provides an example of the sequence improvement from 

optical mapping between the 10.2 assembly (top; image from Ensembl) and the current 

assembly (centre), with a comparison to the corresponding region on the human X (bottom; both 

images from Vega). The improvement in the current assembly allowed reorientation (Ensembl 

image has been flipped for clarity), the correct positioning of the VAMP7 gene which was 

previously annotated on an unplaced scaffold and improved annotation of the genes (blue) and 

pseudogenes (pink) within the region. 
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Figure 3 – The pig Y chromosome 

The organisation of the pig Y chromosome. All identified male-specific single copy genes are on 

the short arm and split into two blocks by the ampliconic HSFY region. The genes (blue) and 

pseudogenes (grey) are shown within each block. To the left of the figure is the density of 

repetitive content based on a 10kb sliding window within the sequence contigs we obtained. 
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Figure 4 – The pig SRY region 

The Yp proximal block of genes contains two overlapping palindromes of about 120kb each. 

These surround the duplicated sequences CUL4BY exons 1-2 and SRY. A) FISH results from Y 

fosmid clones and probes for the SRY gene are shown with the BAC and fosmid clone 

sequences found mapping to the region. The inversion boundaries are both identifiable; the 

CUL4BY inversion runs from the last 3kb of 43B21 to within 72J17; the SRY inversion begins 

also within 72J17 and runs to 13A15. A schematic view is also shown of the regions 

surrounding B) the SRY and C) the CUL4B duplications. The SRY duplication disrupts and ERV 

element, revealing the proximal copy to be ancestral. The CUL4B duplication copies part of a 

LINE element, again revealing the proximal copy to be ancestral. The sequence alignments 

across the inversion breakpoints are shown in more detail for D) SRY and E) CUL4B. The order 
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of events was therefore a duplication of SRY including the first two exons of CUL4B, followed by 

duplication of the region around the CUL4B copy. See also Figure S1 for broader context of the 

region. 
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Tables 

 

Table 1 - Comparison of gene content between porcine build 10.2 X, our updated build of the X 

(X-17), and the new Y annotation (Y-12). The number of identified coding genes has been 

substantially increased, and brings the porcine X closer in gene content to other well-sequenced 

mammalian X chromosomes (e.g. human and mouse). 

 10.2X X-17 (WTSI-
X) 

Y-12 
(WTSI-Y) 

Total Number of Genes 632 1031 196 
Total Number of Protein Coding 422 687 75 
   Known Protein Coding 211 435 18 
   Novel Protein Coding 210 244 57 
   Putative Protein Coding 1 8 0 
Non-coding genes    
   LincRNA 20 62 11 
   Antisense 11 22 0 
   Sense intronic 0 1 1 
Pseudogenes    
   Processed Pseudogenes 140 196 29 
   Unprocessed Pseudogenes 2 21 72 
   Unitary Pseudogenes 3 11 0 
   Transcribed Unprocessed Pseudogenes 1 3 3 
   Transcribed processed Pseudogenes 0 0 0 

 

Table 2 - Genes on pig Yp with expression status and supporting evidence. A more 

comprehensive table may be found in the supplementary data (table S3). *ZFY: we have 

resequenced and have no evidence for the frameshift in the accessioned version of the 

transcript. Our cDNA data agree with the Y fosmid sequences, suggesting that the Y ORF is 

intact. 

Gene (alias) Status in our sequence Expression Reference 

KDM6A (UTY) Incomplete in build. ORF 

covering just over 50% wrt X. 

Ubiquitous Quilter et al. 2002 

DDX3Y (DBY) Complete Ubiquitous Quilter et al. 2002 
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ZRSR2 5’ end incomplete and 

inverted wrt main body of 

exonic material 

n/a   

AP1S2 Single exon fragment n/a   

USP9Y 

(DFFRY) 

Complete Ubiquitous Quilter et al. 2002 

USP9Y 

(DFFRY) 

Partial copy: not processed n/a   

EIF1AY Complete Ubiquitous Quilter et al. 2002 

RPL5L Partial copy: processed n/a   

MBTPS2 Partial gene fragment n/a   

EIF2S3Y complete Ubiquitous Quilter et al. 2002 

ZFY* Complete Ubiquitous? Quilter et al. 2002 

SEPHS1 Processed complete ORF n/a   

HMGB1 Processed complete ORF n/a   

AMELY Complete Tooth development Hu et al. 1996 

TMS4BY Complete Multiple tissues in EST 

database 

  

TRAPPC2Y Partial, processed 

pseudogene 

Intestine, prostate in 

putative Y-derived ESTs 

This study 

OFD1Y Complete Here: testis, kidney, brain 

EST support: intestine, 

spleen, adrenal, adipose 

This study 
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GPM6B Not processed. Disrupted - 

two fragments 

n/a   

KDM5D 

(SMCY) 

Exons present, but no good 

evidence of complete ORF 

Spliced transcript 

detected 

Quilter et al. 2002 

BTG1 Processed. No ORF. n/a   

BCOR (ANOP2 

MAA2 

MCOPS2) 

Not processed. Missing 5’ 

end. Internal exon matches 

also close to TXLNGY 

n/a   

TXLNGY Complete Not restricted: liver, brain, 

kidney, testis 

This study 

UBA1Y 

(UBE1Y) 

Potential for large ORF Ubiquitous Quilter et al. 2002 

CUL4BY Potential for ORF. cDNA 

completed. 

Testis, kidney, brain. High 

in testis, low in other two 

tissues 

This study 

SRY Complete ORF Testis   

RBMY   Testis ESTs only   

HSFY Multicopy Testis, low kidney Skinner et al, in 

submission 

TSPY No perfect match to current Y 

clones, but not autosomal or 

X 

Probable Y expressed 

locus;  not in fosmids 

characterised 
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Table 3 - synonymous substitution rates (KS) across Y gene coding regions. Genes from more 

ancient evolutionary strata as defined in the human X (Lahn and Page 1999) have higher 

number of synonymous substitutions per synonymous site. The low KS of the ZFX/Y genes is 

consistent with previous description of ongoing gene conversion in other mammalian species 

(e.g. Slattery et al. 2000; Pamilo and Bianchi 1993). 

 

Gene pair Aligned length KS KA KA/KS Stratum 

RBMX/Y 1185 0.826 0.112 0.136 1 

UBA1X/Y 3177 0.686 0.066 0.096 2 

EIF1AX/Y 435 0.568 0.006 0.011 3 

ZFX/Y 2406 0.157 0.016 0.102 3 

DBX/Y 1989 0.478 0.020 0.042 3 

AMELX/Y 570 0.046 0.009 0.196 4 

OFD1X/Y 3003 0.090 0.039 0.433 X-transposed 
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