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ABSTRACT

Many complex human diseases are highly sexually dimorphic, suggesting a potential
contribution of the X chromosome to disease risk. However, the X chromosome has been
neglected or incorrectly analyzed in most genome-wide association studies (GWAS). We present
tailored analytical methods and software that facilitate X-wide association studies (XWAS),
which we further applied to reanalyze data from 16 GWAS of different autoimmune and related
diseases (AID). We associated several X-linked genes with disease risk, among which (1)
ARHGEF®6 is associated with Crohn’s disease and replicated in a study of ulcerative colitis,
another inflammatory bowel disease (IBD). Indeed, ARHGEF6 interacts with a gastric bacterium
that has been implicated in IBD. (2) CENPI is associated with three different AID, which is
compelling in light of known associations with AID of autosomal genes encoding centromere
proteins, as well as established autosomal evidence of pleiotropy between autoimmune diseases.
(3) We replicated a previous association of FOXP3, a transcription factor that regulates T-cell
development and function, with vitiligo; and (4) we discovered that CLGALT1C1 exhibits sex-
specific effect on disease risk in both IBDs. These and other X-linked genes that we associated
with AID tend to be highly expressed in tissues related to immune response, participate in major
immune pathways, and display differential gene expression between males and females.
Combined, the results demonstrate the importance of the X chromosome in autoimmunity, reveal
the potential of extensive XWAS, even based on existing data, and provide the tools and
incentive to properly include the X chromosome in future studies.
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INTRODUCTION

Over the past decade, genome-wide association studies (GWAS) have contributed to our
understanding of the genetic basis of complex human disease. The role of the X chromosome (X)
in such diseases remains largely unknown because the vast majority of GWAS have omitted it
from analysis or incorrectly analyzed X-linked data [1]. As a consequence, though X constitutes
5% of the nuclear genome and underlies almost 10% of Mendelian disorders [2-4], it harbors
only 15 out of the 2,800 (0.5%) significant associations reported by GWAS of nearly 300 traits
[1,5,6]. This 0.5% of associated SNPs is less often in functional loci compared to autosomal
associated SNPs [1,5,7], which further suggests that X-linked associations might include a higher
proportion of false positives. This is possibly due to most studies analyzing X using tools that
were designed for the autosomes [1]. We hypothesize that X explains a portion of “missing
heritability” [8,9], especially for the many complex human diseases that exhibit gender disparity
in risk, age of onset, or symptoms. In fact, many of the complex human diseases most
extensively studied in GWAS are highly sexually dimorphic, including autoimmune diseases
[10-12], neurological and psychiatric disorders [13-17], cardiovascular disease [18-22], and
cancer [23-26]. Several mechanisms underlying sexual dimorphism have been suggested [12,27-
31], including the contribution of the X chromosome [27,32-35]. The hypothesis is further
motivated by the importance of X in sexually dimorphic traits in both model organisms and
human Mendelian disorders, as well as by its enrichment for sexually antagonistic alleles, which
are expected to disproportionately contribute to complex disease risk [36]. Characterizing the
role of X in complex diseases can provide insights into etiological differences between males and
females, as well as a unique biological perspective on disease etiology because X carries a set of

genes with unique functions [37-39].
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X-specific considerations that are important to account for in GWAS include, but are not limited
to: (1) correlation between X-linked genotype calling error rate and the sex composition of an
assay plate, which can lead to plate effects that correlate with sex and, hence, with any sexually
dimorphic trait; (2) X-linked variants being more likely to exhibit different effects between
males and females [40], suggesting enhanced power of sex-stratified statistical tests; (3) power of
the analyses being affected by the smaller allelic sample size (due to males carrying one allele
and X-inactivation in females), reduced diversity on X and other unique population genetic
patterns [41-47], and a lower density of X-linked SNPs on genotyping arrays; (4) quality control
(QC) criteria need to account for sex information to prevent filtering the entirety or a large
fraction of the chromosome [1], while at the same time accounting for confounding sex-specific
effects; (5) sex-specific population structure leading to differential effects of population
stratification (which could lead to false positives [48-50]) between X and the autosomes; and (6)
application of association tests designed for the autosomes potentially leading to statistical
inaccuracies. Recent advances of association test statistics for X have been made [51-57], with a

recent study discovering X-linked loci associated with height and fasting insulin level [56].

Autoimmune diseases (AID) are promising case studies for investigating the role of X in disease
because they are commonly sexually dimorphic in symptoms, prevalence (most have higher
prevalence in females) [10-12,58], age of onset, and progression [10-12,29,59-62]. While
pregnancy [12,30,31] and other environmental factors [63], as well as sex hormones [12,29-31],
can contribute to these sexually dimorphic characteristics, a role for X-linked genes has also

been suggested [27,62,64-66]. AID have been extensively studied by GWAS, where the majority
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of autosomal loci discovered have a small effect size, and the combined effect of all associated
loci only explains a fraction of heritable variation in disease risk [67-69]. In addition, few of
these GWAS have studied the contribution of X and, combined, have provided little evidence for

its role in determining disease susceptibility [1,5,6].

In this study, we first introduce X-specific analytical methods and software for carrying out X-
wide association studies (XWAS), which take into account several of the above ‘eXentricities’.
These methods apply X-specific strategies for QC, imputation, association tests, and tests of sex-
specific effects. Furthermore, motivated by the unique characteristics of genes on X, we
implemented the first gene-based test for associating X-linked genes and conducted an extensive
XWAS of a number of AID and other diseases with a potential autoimmune component [70,71].
Our discovery of X-linked risk genes illustrates the importance of X in AID etiology, shows that
X-based analysis can be used to fruitfully mine existing datasets, and provides suitable tools and
incentive for conducting such analyses. Additional XWAS can further elucidate the role of sex
chromosomes in disease etiology and in the sexual dimorphism of complex diseases, which, in

turn, will contribute to improved sex-specific diagnosis and treatment.
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RESULTS AND DISCUSSION

Datasets and analysis pipeline

We assembled for analysis 16 datasets of AID and other diseases (Table 1). To facilitate
independent analysis and replication, we removed individuals from some datasets such that no
overlapping data remained between the 16 datasets (Materials and Methods). For each dataset,
we first carried out QC that was developed expressly for the X chromosome (Materials and
Methods), and excluded the pseudoautosomal regions (PARs). We then imputed SNPs across the
X chromosome based on whole-genome and whole-exome haplotype data from the 1000
Genomes Project (Materials and Methods). Of the 16 datasets, none of the original GWAS had
imputed variants in an X-specific manner, and only the Wellcome Trust Case Control
Consortium 1 (WT1) carried out an analysis of X that is not identical to that of the autosomes

[72].

In each of the datasets, we applied three statistical tests for association of each SNP with disease
risk: FMo2, FMF.comb, and FMs.comb (Materials and Methods). The FMoz test utilizes logistic
regression as commonly applied in GWAS, where X-inactivation is accounted for by considering
hemizygous males as equivalent to female homozygotes. The other two tests employ regression
analyses separately for each sex and combine them into a single test of association using either
Fisher’s method (FMFr.comb) or Stouffer’s method (FMs.comb). The FMF.comb test accommodates the
possibility of differential effect size and direction between males and females and is not affected
by the allele coding in males (i.e. whether each allele in males is counted twice as in FMo2 or
only once; Materials and Methods). FMs.comb takes in account the potentially different sample

sizes of males and females and the direction of effect, thereby increasing power in some
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scenarios (see Supplementary Text). We employed EIGENSOFT [48] to remove individuals of
non-European descent and to correct for potential population stratification. Following this
correction, QQ (quantile-quantile) plots for each of the three tests across all SNPs, along with
genomic inflation factors, revealed no systematic bias across the datasets (Figure S1; Table S1).
We provide results for association of individual SNPs with disease risk in Supplementary Text,
Figure S2, and Table S2, and focus on the results of gene-based tests (described below) for the

remainder of our analysis.

We applied a gene-based test to X-linked genes in each of the 16 datasets using the FMoz,
FME.comb and FMs.comb Statistics. Gene-based tests aggregate association signals across a group of
SNPs within a locus while considering the dependence between signals due to linkage
disequilibrium (LD) to assign a level of significance for the association of the locus overall. It
thereby also reduces the multiple hypothesis-testing burden from the number of SNPs to the
number of tested loci [73-76]. This approach can increase power for the autosomes [75,77] and
enable replication based on a different set of SNPs in the associated locus. Due to some issues

discussed above (see Introduction), this increase in power can be even more pronounced for X.

For our gene-based tests, we defined genes by unique transcripts and included a flanking 15
kilobase (kb) window on each side of the transcribed region to also consider cis-regulatory
elements. We used the truncated tail strength [78] and truncated product [79] methods (Materials
and Methods) to combine signals across all SNPs in a gene, while accounting for LD. These two
methods combine signals from several of the most significant SNPs, thus improving statistical

power compared to gene-based tests that consider all SNPs or only the SNP with the strongest
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signal in the gene. This is especially important for cases in which a gene contains multiple risk
alleles or when the causal SNP is partially tagged by multiple tested SNPs [80,81]. From the first
round of discovery, we considered for replication genes with a significance of P < 10 (Tables
S3-S4). For these, we first attempted replication in a different dataset of the same disease
(including the related Crohn’s disease and ulcerative colitis), if such a dataset was available for
analysis (Table 1), and applied Bonferroni correction for the number of genes we attempted to
replicate. Otherwise, motivated by the shared pathogenicity of different AID [82-85] (which is
also supported by our following results), we attempted replication in all other datasets considered
herein (Table 1). In both cases, we attempted replication using the same test statistic that passed

the first round of discovery.

Associations of X-linked genes with autoimmune and other complex diseases

We detected 54 unique genes that passed the initial discovery criterion in one or more of the 16
datasets. Of these, 38 genes were significant based on the FMo2 test, 22 based on the FMF.comb
test, and 34 in the FMs.comb test (Tables S3-S4), with overlap between the three tests due to their
statistical dependence. For 42 of these 54 genes, we had an independent dataset for the same or
related disease with which to attempt replication. Of these 42 genes, 5 (12%) successfully
replicated, with 3 of the 5 both discovered and replicated based on more than one of the three
tests (Figure 1la-c and Table 2). These include 3 genes (FOXP3, PPP1R3F and GAGE10) in LD
for the FMoz2 test and 3 genes (PPP1R3F, GAGE12H and GAGE10) in LD for the FMs.comb test
that are associated with vitiligo. To reduce the level of LD, we repeated the gene-based testing

without the flanking region of 15 kb around each gene. All genes still successfully replicated in
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this case, though it remains unclear whether these represent independent signals or remain in LD

with the same—Iikely unobserved—causal variant(s).

Of the above four genes we associated to vitiligo risk, FOXP3 (combined P = 9.5x10°¢; Table 2)
has been previously associated with vitiligo in a candidate gene study of this same dataset [86].
Vitiligo is a common autoimmune disorder that is manifested in patches of depigmented skin due
to abnormal destruction of melanocytes. FOXP3 may be of particular interest as it is involved
with leukocyte homeostasis, which includes negative regulation of T-cell-mediated immunity
and regulation of leukocyte proliferation [87,88]. Defects in the gene are also a known cause for
an X-linked Mendelian autoimmunity-immunodeficiency syndrome (IPEX -

immunodysregulation polyendocrinopathy enteropathy X-linked syndrome) [89].

In Crohn's Disease (CD), an inflammatory bowel disorder (IBD) with inflammation in the ileum
and some regions of the colon, we discovered association of the gene ARHGEF6 and further
replicated it in the Wellcome Trust Case Control Consortium 2 (WT2) dataset for ulcerative
colitis, another IBD (combined P = 1.67x107%°). ARHGEF6 binds to a major surface protein of H.

pylori [90], a gastric bacterium that may play a role in IBD pathology [91,92].

We discovered that another gene, CENPI, was associated with three diseases (celiac disease,
vitiligo, and amyotrophic lateral sclerosis (ALS)), with an overall combined P = 2.1x10° (Table
S5). The association of CENPI remains significant when combining across all 16 datasets and
applying a conservative Bonferroni correction for the number of genes we tested (P = 2.7x107®).

CENPI encodes a member of a protein complex that generates spindle assembly checkpoint
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signals required for cell progression through mitosis [93]. CENPI is targeted by the immune
system in some patients with scleroderma [94]. Additionally, autosomal genes in the same family
of genes encoding centromere proteins have been previously associated with ALS (CENPV) [95]
and with multiple sclerosis (CENPC1) [96]. These findings combined suggest a potential

pleiotropic role of CENPI in risk of AID.

Motivated by the association of CENPI in multiple diseases, as well as previous evidence from
the autosomes of shared pathogenicity across different AID [82,83], we next sought to replicate
the 54 genes from the discovery stage in diseases other than those in which they were
discovered. We successfully replicated 17 genes, beyond the aforementioned 5 that replicated in
the same or related disease, for a total of 22 (41%) of the 54 genes (Figure la-c and Table 3). Six
of these 17 were both discovered and replicated based on more than one of the three test
statistics, and 5 of the 17 replicated in two separate datasets. We consider these results based on
replication in other diseases to provide suggestive evidence of these genes playing a general role
in autoimmunity or immune response, and we consider these genes together with the initial 5 in

subsequent analyses.

The sex-specific nature of X-linked genes implicated in autoimmune disease risk

If X-linked genes contribute to sexual dimorphism in complex diseases, then we would expect
some genes to have significantly different effect sizes between males and females. We
implemented a test of sex-differential effect size (Materials and Methods) and applied it across
all SNPs and datasets (Materials and Methods). Consideration of QQ plots and genomic inflation

factors revealed no systematic bias (Figure S3; Table S1). As with our above analyses, we

10
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combined SNP-level results to a gene-based test of sex-differentiated effect size. This test
captures a scenario whereby SNPs within the tested gene display different effects in males and
females, without assuming such differential effects to be of a similar nature across SNPs. We
followed the same discovery and replication criteria as for the previous analyses, with detailed
results provided in Figure 1d, Tables 2-3, and Table S6. Specifically, we discovered and
replicated CLGALT1C1 as exhibiting sex-differentiated effect size in risk of IBD (combined P =
4.11x107%). CIGALT1C1 (also known as Cosmc) is necessary for the synthesis of many O-
glycan proteins [97], which are components of several antigens. Defects of CIGALT1C1 may
cause Tn Syndrome, a hematological disorder [98]. We also considered replication of sex-
differentiated effects in diseases other than the disease of the discovery dataset. This analysis
found 8 additional genes, including both CENPI (combined P = 1.6x10%) and MCF2 (combined
P = 2.0x10%), which we associated with risk of AID in the above analyses (Tables 2-3). The
evidence of sex-differentiated effect of each of these genes is in the same diseases as in the
association analysis, thereby pointing to not only a significant contribution of the gene to risk of
that disease, but also to its sex-specific effect on the same disease (Figure 1d and Table 3). We
again stress that such replication in other diseases is only to be considered as suggestive
evidence, and that we consider for subsequent analyses these genes together with those that

replicated in the same disease.

Sex-differentiated effects could be a consequence of the X-inactivation (XCI) status of the gene,
where at least 25% of human X loci escape XCI to varying degrees. There is no evidence that
any of the above three genes (CLGALT1C1, CENPI, and MCF2) escape XCI [33,99], and all

three have degenerate Y gametologs in males; i.e. either the gene has been lost from the Y
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chromosome (MCF2) or the homologous gene on the Y is a non-functional pseudogene
(C1GALT1C1 and CENPI). Thus, these genes are expected to show monoallelic expression in
both sexes, at least in fibroblasts in which XCI status has been derived [33,99]. Nevertheless, it is
possible that these genes show female-biased expression in other tissues as a consequence of
escaping XCI in a tissue-specific or disease-specific manner [100,101]. Additionally, the sex-
differential risk factor may arise from interaction with other genes and sex-specific

environmental factors.

We next directly tested whether any of the X-linked genes that we associated and replicated with
AID and related disorders exhibit differences in expression between males and females. We
considered a comprehensive dataset of whole blood gene expression from 881 individuals (409
males and 472 females; Materials and Methods) and assayed gene expression in males and
females separately. Considering all X genes that we analyzed, they exhibit 2.55-fold enrichment
for differential expression between males and females as compared to all genes across all
chromosomes (P=6.5x10%). Unsurprisingly, XIST, which encodes the long non-coding RNA that
induces formation of the Barr body, displays the most significant difference in gene expression
between males and females among all X-linked genes (P<<107°). Of the genes we associated
and replicated, four exhibit significant sex-differential gene expression: ITM2A (4.54x109),
EFHC2 (4.86x10°), PPP1R3F (7.06x107°), and BEND2 (4.17x10#) (Materials and Methods).
Importantly, two of these (EFHC2 and BEND?2) also passed initial discovery in the above
analysis of sex-differentiated effect sizes, though they were only replicated in datasets different

than the one in which they have been discovered (Figure 1d and Table 3). These results suggest
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that X-linked genes associated with disease risk, especially those that exhibit sex-differentiated

effect sizes, are related to sex-differential expression pattern of those genes.

Association of genes with immune-related function or Y homologs

The nature of the diseases we analyzed and the uniqueness of X led us to an a priori hypothesis
that genes of a specific biological nature contribute to X-linked AID disease risk. We tested this
hypothesis independent of the above results by testing for concurrent association of a whole gene
set with each of the individual diseases (Materials and Methods). We tested two different
hypotheses by considering 3 such gene sets: The first two sets include X genes with immune-
related function as defined by the KEGG/GO or Panther databases (Materials and Methods). The
third set includes the 19 non-pseudoautosomal X genes with functional Y homologs. Analysis of
the immune-related gene sets was motivated by the nature of the diseases. The test of the last set,
on the other hand, was motivated by the evolutionary perspective that genes with functional Y
homologs are more likely to be under functional constraint since their Y homologs have survived
the progressive degeneration of the Y chromosome over the course of the evolution of the

supercohort Theria [99]. Thus, they may be more likely to play a part in disease etiology.

The Panther immunity gene set is associated with vitiligo risk in both vitiligo studies that we
analyzed and using each of the 3 test statistics of association, as well with type 2 diabetes risk
based on the FMs.comb test statistic (Table 4). Similarly, the KEGG/GO set is associated with
vitiligo risk in the larger of the vitiligo datasets (Table 4). The set of genes with functional Y
homologs suggestively contributes to a much larger group of AID, including psoriasis, vitiligo,

celiac disease, Crohn’s Disease, and type 1 diabetes, with the first two of these being significant
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after Bonferroni correction (Table 4). See Table S7 for detailed results for all other datasets and

tests.

Relationship and biological functions of genes implicated in autoimmune disease risk

We set out to explore in three analyses the biological function of our associated disease risk
genes by considering all 22 protein-coding genes we discovered and replicated with any AID or
other complex disease tested. First, we investigated the gene expression patterns of 13 of these
genes for which we could obtain tissue-specific expression data (Materials and Methods). Three
of these genes show the highest expression in cells and organs directly involved in the immune
system (Figures 2-3): ARHGEF®6 is most highly expressed in T-cells, IL13RA1 in CD14+
monocytes, and ITM2A in the thymus (in which T-cells develop). Three of the remaining genes,
MCF2 (associated with vitiligo), NAP1L2 and TMEM35 (associated with ALS), exhibit the
highest expression levels in the pineal gland (Figure 2). The pineal gland produces and secretes
melatonin, which interacts with the immune system [102,103] and has been implicated in both

vitiligo and ALS [102,104-108], as well as suggested as a possible treatment for ALS [109].

Second, we considered co-expression of these 22 associated genes across 881 individuals
(Materials and Methods). We observed that 3.9% of all X gene pairs exhibit significantly-
positively correlated gene expression patterns. In comparison, 8% of pairs of genes from the set
of the above 22 genes exhibit significantly-positively correlated gene expression. This
significantly higher fraction relative to X genes overall (Table S8; P=1.53x107%) suggests that
genes we associated with disease risk are more likely to work in concert and perhaps interact in

the same pathways or cellular networks.
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Third, we built an “interactome” by considering this set of 22 protein-coding genes along with
genes they interact with in either protein-protein or genetic interactions (Materials and Methods).
We found that 18 of these 22 genes are included in the same interaction network (Figure 4),
which further supports that they interact with each other. In a pathway enrichment analysis of the
resulting interactome (i.e. all genes in Figure 4), several of the significantly enriched pathways
relate to immune response or specific immune-related disorders or diseases (Table 5). Another
enriched pathway is that underlying lupus, which is a systemic AID. While no dataset for lupus
was included in our study, the interactome is potentially enriched for genes in that pathway due
to pleiotropy of genes between AID. Other significantly enriched pathways include the
regulation of actin cytoskeleton, which can influence the morphology and movement of T-cells,
as well as the TGF-beta signaling and ECF-receptor interaction pathways, both of which can
mediate apoptosis [110,111]. Finally, the significantly enriched Wnt signaling pathway is
generally involved in cell development processes, such as cell-fate determination and cell
differentiation [112]. It also plays a role in T-cell and B-cell proliferation and migration, as well

as modulation of antigen presenting cells such as dendritic cells [113].

Concluding remarks

In this study, we applied an X-tailored analysis pipeline to 16 different GWAS datasets (Table
1), and thereby discovered and replicated novel associations of several genes with AID risk
(Figure 1, Tables 2-3). Multiple lines of evidence point to some of these genes having immune-
related functions, including expression in immune-related tissues (Figure 2) and enrichment of

these and interacting genes in immune-related pathways (Table 5; Figure 4). Several of the genes
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we associated with disease are involved in regulation of apoptosis, which plays a role in AID
[114-116], including vitiligo [117], psoriasis [118] and rheumatoid arthritis [119]. Our analyses
also highlight the sex-specific nature of associated X-linked disease risk genes shedding light on

the sexual dimorphism of autoimmune and immune-mediated diseases (Figure 1, Tables 2-3).

The X chromosome has received little attention in the era of GWAS, with growing attention only
during the past year [1,56,120,121]. Our results highlight the contribution of X to AID risk and
yield new avenues for follow-ups, including unraveling sexual dimorphism in disease etiology.
More generally, our study illustrates that with the right tools and methodology, new discoveries
regarding the role of X in complex disease and sexual dimorphism can be made, even by mining
existing GWAS datasets. Our findings thus underscore the potential for new results and the
importance of re-analyzing X in over 2,000 GWAS that have been conducted to date, especially
in more recent and better powered studies than the datasets we considered here. To enable such
analyses by other researchers, we have made publicly available our X chromosome analysis

toolset [122] (http://keinanlab.cb.bscb.cornell.edu), which is in part an extension of PLINK

[55].
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Materials and Methods

Datasets

We obtained 16 GWAS datasets for analysis in this study, which are summarized in Table 1.
Datasets were selected to span different autoimmune diseases, including ankylosing spondylitis,
celiac disease, Crohn's disease, multiple sclerosis, psoriasis, rheumatoid arthritis, type 1 diabetes,
ulcerative colitis, and vitiligo. We also considered datasets of ALS and type 2 diabetes due to

suggestive evidence of an autoimmune component to their etiology [70,71].

Out of these, we obtained the following datasets from dbGaP: ALS Finland [123] (phs000344),
ALS Irish [124] (phs000127), Celiac disease CIDR [125] (phs000274), MS Case Control [96]
(phs000171), Vitiligo GWAS1 [126] (phs000224), CD NIDDK [127] (phs000130), CASP [128]

(phs000019), and T2D GENEVA [129] (phs000091).

Additional datasets were obtained from the Wellcome Trust Case Control Consortium (WT): all
WT1 [72] datasets, WT2 ankylosing spondylitis (AS) [130], WT2 ulcerative colitis (UC) [131]
and WT2 multiple sclerosis (MS) [132] (Table 1). We removed overlapping control samples in
order to avoid introducing any biases into replication tests. To accomplish this, we used cases
from the WT1 hypertension (HT), bipolar (BP), and cardiovascular disease (CAD) datasets as
additional control data. These samples were randomly distributed to the four WT1 datasets,
though only BP samples were used as controls for WT1 type 2 diabetes (T2D) due to potential
shared disease etiology between T2D, CAD and HT. The WT1 National Birth Registry (NBS)
control data was also randomly distributed to the four WT1 datasets. Finally, we randomly

distributed the 58 Birth Cohort (58BC) control samples, along with any new NBS samples not
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present in the WT1 data, between WT?2 datasets.

We additionally analyzed the Vitiligo GWAS2 dataset [133], which similar to the Vitiligo
GWASLI dataset that we downloaded from dbGaP, contained case data only. Therefore, we
obtained controls from the following datasets in doGaP: PanScan [134,135] (phs000206),
National Institute on Aging Alzheimer’s study [136] (phs000168), CIDR bone fragility [137]
(phs000138), COGA [138] (phs000125), and SAGE [138-140] (phs000092). Only samples with
the “general research consent” designation in these datasets were used as controls for studying
vitiligo. These samples were randomly distributed between the Vitiligo GWASL and Vitiligo

GWAS?2 datasets.

Quality Control (QC)

Our pipeline for X-wide association studies (XWAS) begins with a number of quality control
steps, some of which are specific to the X chromosome. First, we removed samples that we
inferred to be related, had > 10% missing genotypes, and those with reported sex that did not
match the heterozygosity rates observed on chromosome X [141]. We additionally filtered
variants with >10% missingness, variants with a minor allele frequency (MAF) < 0.005, and
variants for which missingness was significantly correlated with phenotype (P<1x10%). X-
specific QC steps included filtering variants that are not in Hardy-Weinberg equilibrium in
females (P<1x10*) or that had significantly different MAF between males and females in control
individuals (P<0.05/#SNPs), as well as removal of the pseudoautosomal regions (PARs). We
also implemented and considered sex-stratified QC, namely filtering X-linked variants and

individuals via separate QC in males and females [120]. However, since we observed no
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difference in the significant results when applying it to two of the datasets (CD NIDDK, MS case
control), we considered data prior to this QC step in our analyses. Finally, following all above
QC steps, we removed variants that exhibit differential missingness between males and females

(P<107) [120,142,143]. This step follows the procedure described by Konig et al. [120] based on

a y’test.

Correction for population stratification

Sex-biased demographic events, including differential historical population structure of males
and females have been proposed for many human populations (e.g. [42,46,144-147]). Such sex-
biased history is expected to lead to differential population structure on X and the autosomes,
thus to differential population stratification. Essentially, population structure on the X captures a
1:2 male to female contribution, while on the autosomes males and females contribute equally to
the observed structure. Ideally, population structure on the X needs to be considered to
accurately correct for population stratification in an association study of X-linked loci. Hence,
we assessed and corrected for potential population stratification via either autosomal-derived or
X-derived principal components, and studied the inflation of test statistics in each case as
observed in QQ plots. This was performed by principal component analysis (PCA) using
EIGENSOFT [48], after pruning for linkage disequilibrium (LD) and removing large LD blocks

[50].

For all the datasets analyzed here, which all consist solely of individuals of European ancestry,

we found that correction for population stratification is more accurate when based on the

autosomes than on X alone due to the smaller number SNPs available to infer structure on X.

19


https://doi.org/10.1101/009464
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/009464; this version posted November 19, 2014. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

This observation holds as long as enough autosomal principal components (PCs) are considered.
We note, however, that in association studies where more data is available for X, or studies in
admixed populations, consideration of population structure on the X chromosome alone can
provide a more accurate population stratification correction for XWAS. For example, though
African Americans have on average ~80% African and ~20% European ancestry, they exhibit a
significant deviation across the X chromosome from these genome-wide estimates. Specifically,
African ancestry levels are higher on X, which is due to the sex-biased admixture in which
ancestors included relatively more African females and, correspondingly, more European males
[148]. Hence, population structure estimated genome-wide (e.g. by EIGENSOFT) may not
accurately correct for population stratification in testing X-linked loci in studies of African

Americans.

All subsequent analyses are hence based on first excluding any individuals inferred based on
EIGENSOFT [48] to be of non-European ancestry. Assessment and correction for population
stratification follow the convention of using the first ten autosomal-derived PCs as covariates
[49], which is supported by investigation of the resultant QQ plots and by population
stratification reported by the original studies. Principal component covariates were not added to
the regression model for the ALS Finland, ALS Irish, and CASP datasets as no inflated p-values

were observed in these studies [123,124,128] (Figure S1).

Imputation

Imputation was carried out with IMPUTEZ2 [149] version 2.2.2 based on 1000 Genomes Project

[150] whole-genome and whole-exome (October 2011 release) haplotype data. One of the
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features added in IMPUTE?2 is to account for the reduced effective population size (Ne) of the X
chromosome by assuming that it is 25% less than that of the autosomes, thereby improving
imputation accuracy on the X chromosome. As recommended by the authors IMPUTEZ2, Ne was
set to 20,000 and variants with MAF in Europeans < 0.005 were not imputed. Based on the
output of IMPUTEZ2, we excluded variants with an imputation quality < 0.5 and variants that did
not pass the above QC criteria (see Quality Control). Table 1 displays the number of SNPs we

considered in each dataset following imputation and these additional QC steps.

Single-SNP association analysis

We considered 3 tests for associating X-linked SNPs with disease risk. The first test effectively
assumes complete and uniform X-inactivation in females and a similar effect size between males
and females. In this test, females are hence considered to have 0, 1, or 2 copies of an allele as in
an autosomal analysis. Males are considered to have 0 or 2 copies of the same allele, i.e. male
hemizygotes are considered equivalent to female homozygous states. This test is implemented in
PLINK [55] as the —xchr-model 2 option, termed FMoz in this study. We do note that the
assumptions of complete X-inactivation and equal effect sizes often do not hold (see also our
tests and results of sex-differentiated effect size and sex-differentiated gene expression). Hence,
in the second test, termed FMF comb, data from each sex (cases and controls) are analyzed
separately (with males coded as either having 0 or 2 copies of an allele as above). The female-
only and male-only measures of significance are then combined using Fisher’s method [151].
This test accommodates the possibility of differential effect size and direction between males and

females and is not affected by the allele coding in males (e.g. 0/2 copies or 0/1 copies). Finally,
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the third test, termed FMs.comb, Mirrors the second test except for using a weighted Stouffer’s
method [152] instead of Fisher’s method. While Fisher’s method combines the final p-values,
Stouffer’s method allows combining and weighing of test statistics. The male-based and female-
based test statistics are weighted by the square-root of the male or female sample size [153] and
combined while also taking into account the direction of effect in males and females.
Implementation follows the equations as provided by Willer et al. [153]. Power calculations for

these 3 test statistics for a few simulated examples are provided in the Supplementary text.

Gene-based association analysis

Based on all single-SNP association tests, we implemented an equivalent gene-based test for
each statistic by considering all SNPs across each gene. This was carried out in the general
framework of VEGAS [73], where the significance of an observed gene-based test statistic is
assessed from the distribution of test statistics that is expected given LD between SNPs in that
gene [73]. Specifically, the n observed SNP-level test statistics are summed together, where n
represents the number of SNPs in a gene. Next, simulated statistics are obtained as follows: n
statistics are randomly drawn from a multivariate normal (MVN) distribution and summed. The
MVN distribution has a mean of 0 and an n x n covariance matrix corresponding to the pairwise
LD between SNPs mapped to the gene. This procedure is repeated k times in order to obtain a
distribution of gene-based statistics. The significance is then calculated as the proportion of the k

simulations that produced statistics that were as or more extreme than the observed one.

Here, we have implemented a slight modification to this procedure: Instead of summing the

SNP-based test statistics themselves, we combined SNP-based p-values with either the truncated
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tail strength [78] or the truncated product [79] method, which have been suggested to be more
powerful in some scenarios [80,81]. The simulation procedure is carried out as above, where
simulated p-values are derived from the simulated test statistics. To increase time efficiency of

the simulation procedure, k was determined adaptively as in VEGAS [73].

We obtained a list of X-linked genes and their positions from the UCSC “knownCanonical”

transcript ID track (http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=knownGene). SNPs
were mapped to a gene if they were within 15 kb of a gene’s start or end positions. When several
genes in LD show a significant signal, we repeated analysis while removing the flanking 15 kb

on each side.

Test of sex-differential effect size

In a fourth test, we assayed the difference in the effect size between males and females at each
SNP based on statistics derived from the sex-stratified test described above. Considering the
female-only and male-only statistics, differential effect size is tested using the following t-

statistic [154]:

t= Iog(ORmale) - IOg(ORfemale)
\/SE;ale + SE ?emale - 2I’SEmaIeSE female

where OR stands for the odds ratio estimated in either the male-only or female-only test, SE is
the standard error in either test, and r the Spearman rank correlation coefficient between
10g(ORmale) and log(ORremate) across all X-linked SNPs. For the odds ratios to be comparable, the
odds ratio in males is estimated with coding as having 0 or 2 copies. Finally, we combined the

single-SNP tests in each gene into a gene-based test of sex-differential effect size along the same
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lines as described above for the association test statistics.

Tests of sex-difference and correlation of gene expression

Whole blood gene expression data for 881 samples (409 males, 472 females) from the Rotterdam
Study I11 [155] was downloaded from Gene Expression Omnibus [156] (accession GSE33828).
Expression data was available for 803 of the genes studied in our XWAS. Using a
hypergeometric test, we assayed whether the 803 X-linked genes analyzed in our study are more
often differentially expressed between males and females as compared to all genes genome-wide.
For each gene, we then tested for differential expression between males and females using the
Wilcoxon rank sum test across individuals and applied Bonferroni correction to its p-values. We
assessed whether any of the 22 protein-coding genes that were associated and replicated in any
dataset (Figure 1; Tables 2-3) showed significant sex-differential expression. Expression data is

available for 20 of these genes, and Bonferroni correction was applied based on 20 tests.

We tested for co-expression between X-linked genes using the non-parametric Spearman’s rank
correlation test between the expression of each pair of genes across the set of 881 individuals.
Enrichment of significant co-expression within the set of 20 genes as compared to all 803 genes

was tested using a hypergeometric test.

Tissue-specific gene expression
For analysis of tissue-specific gene expression, we obtained the Human GNF1H tissue-specific
expression dataset [157] via the BioGPS website [158]. After excluding fetal and cancer tissues,

we were left with expression data across 74 tissues for 504 of the genes studied in our XWAS,
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including 13 of the 22 genes that were associated and replicated in any dataset. For each gene,
we obtained a normalized z-score value for its expression in each tissue by normalizing its
expression using the average and standard deviation of the expression of that gene across all

tissues.

Network analysis

A network of interacting genes was assembled in GeneMANIA using confirmed and predicted
genetic and protein interactions [159] with a seed list of the 22 protein-coding genes that were
associated and replicated across all datasets (Figure 1; Tables 2-3). To minimize bias towards
well-studied pathways, all gene-gene, protein-protein and predicted interaction sub-networks
were given equal weight when combined into the final composite network. The resulting
composite network consisted of the 22 seed genes and the 100 genetic, protein-protein, and
predicted interactors with the highest interaction confidence scores. A list of unique genes within
this interactome was extracted as input to WebGestalt [160,161] to discover the ten most
significantly enriched pathways in the KEGG database [162]. Enrichment was assessed with the
hypergeometric test [160] and reported p-values were adjusted for multiple testing using the
Benjamini-Hochberg FDR correction as suggested for such analyses [160]. Pathways that only

included a single gene from our interactome were excluded.

Gene set tests
We additionally tested whether SNPs in a pre-compiled set of genes were collectively associated
with disease risk. To accomplish this, we modified the gene-based analysis described above to

consider multiple genes. Specifically, the simulation step now entails drawing from m different
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multivariate normal distributions, with m denoting the number of genes in the tested gene set.
Each of the m multivariate normal distributions denotes one gene and has its own covariance
matrix that corresponds to the LD between SNPs in that gene. To verify that this procedure,
previously proposed for gene-based tests, can be applied to gene sets, we compared p-values
derived from phenotypic permutations to this simulation procedure, which revealed highly
correlated significance values (Figures S4-S5). Thus, the results we report are based on the
simulation procedure, rather than from a limited number of computationally-intensive

permutations.

We applied this test to 3 sets of genes: (1) We manually curated a set of immune-related genes
from the KEGG [162] pathways and Gene Ontology (GO) [163] biological function categories.
We first considered all genes from the two databases in 15 and 14 categories, respectively, that
are particularly relevant for autoimmune response. We subsequently removed eight genes from
this list that we found were either too general (e.g. cell cycle genes) or too specific (e.g. F8 and
F9 blood coagulation genes) to obtain a final list of 27 genes (Table S9); (2) The Panther

immune gene set was obtained by including all genes in the category of “immune system

processes” in the Panther database [164]; and (3) The XY homolog gene set was obtained from

data provided by Wilson-Sayres & Makova [99].
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FIGURE LEGENDS

Figure 1. X-linked genes associated with autoimmune disease risk. All genes that showed
evidence of association in a gene-based test and replication, including suggestive replication in
any other dataset (see main text) are presented for the a) FMs.comb b) FMF.comb €) FMo2 and d)
sex-differentiated effect size tests (Materials and Methods). X-axis denotes the different datasets,
with their names following the notation from Table 1. Y-axis displays the different gene names.
For each gene, the more significant p-value of the truncated tail strength and truncated product
methods is displayed on a —log10 scale according to the enclosed color scale. A “*” represents
the discovery dataset and “**” indicates datasets in which replication is significant after
correcting for the number of genes tested for replication. These appear in grey when the
discovery and replication are in datasets of the same disease (or across the related Crohn’s
disease and ulcerative colitis). Numerical values corresponding to this figure are presented in
Tables 2-3.

Figure 2. X-linked autoimmune disease risk genes are differentially expressed between
tissues. X-axis presents 13 of the associated X-linked genes for which gene expression data was
available for analysis. For each, a z-score is presented for the deviation of expression in each of
74 tissues (y-axis) from the average expression of that gene across all tissues (Materials and
Methods). For comparison, the last column shows average z-scores across all 504 X-linked genes
that were tested as part of the entire XWAS for which expression data was available. Several
associated genes exhibit significantly higher expression in immune-related tissues (see main text
and Figure 3).

Figure 3. Three X-linked disease risk genes show high expression in immune-related tissues
and cells. ARHGEF®6 (a), IL13RAL1 (b), and ITM2A (c) show expression greater than 4 standard
deviations above the average expression of these genes in T-cells (highest in CD4+ in purple),
CD14+ monocytes (blue), and the thymus (red), respectively. Y-axis follows the respective
tissues from Figure 2 and x-axis denotes a z-score for the deviation of expression in each tissue
from the average expression of that gene. The title of each panel includes the name of the gene
and the tissue with the highest expression for that gene.

Figure 4. Interactome of X-linked disease risk genes. All 22 X-linked protein-coding genes
that showed evidence of association and replication (Figure 1) are denoted by black diamonds
and are presented together with genes that interact with them (grey circles) (Materials and
Methods). Physical interactions refer to documented protein-protein interactions. Genetic
interactions represent genes where perturbations to one gene affect another. Predicted
interactions were obtained from orthology to interactions present in other organisms [159]. All
but four of these 22 genes share interacting partners according to these known and predicted
interactions. Results of a pathway analysis based on this interactome are presented in Table 5.
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SUPPORTING INFORMATION LEGENDS

Figure S1. QQ-plots for single marker association tests. Blue triangles denote association p-
values for the FMr.comb test, red crosses denote p-values for the FMs.comb, While the black points
denote association p-values for the FMo2 test. P-values are plotted on a log scale. Respective
genomic inflation factors are summarized in Table S1.

Figure S2. Significant SNP associations. (a) A Manhattan plot of the nominal p-values for the
FMo2 (upper), FME.comb (middle), and FMs.comb (lower) tests of association for chromosome X
SNPs in the 16 datasets. The dotted purple lines correspond to the X-chromosome-wide
significance threshold for each dataset. The significant associations are shown as red diamonds.
(b-c) Regional association plots of the association results of the FMo2 test and LD for (b) Vitiligo
GWASLI dataset and (c) WT2 UC dataset. LD structure was plotted using a revised version of the
snp.plotter software [165]. Due to the large number of SNPs in the associated region of Vitiligo
GWASL, only 1 in every 10 of the non-significantly associated SNPs is shown. We focus on
regions presented in (b) and (c) since they show the typical LD peaks around significant
association signals.

Figure S3. QQ-plots for test of sex-differentiated effect size. Similar to Figure S1, except that
p-values are for the test of differential effect size between males and females. Respective
genomic inflation factors are summarized in Table S1.

Figure S4. Simulation versus permutation derived p-values for gene-set tests for FMo..
Comparison between simulation derived (x-axis) and permutation derived (y-axis) p-values for
the gene-set association analysis using the FMoz test statistic. r represents Pearson’s correlation
coefficient and the significance of the correlation is indicated in parentheses in scientific
notation.

Figure S5. Simulation versus permutation derived p-values for gene-set tests for FMg comb.
Similar to Figure S4 except for considering the FME.comb test statistic.

Table S1. Genomic inflation factors were calculated from the observed p-values in the various
tests. No inflation factor exceeds 1.14. Together with the respective QQ-plots (Figures S1 and
S3) these results suggest little to no inflation in the observed SNP-level p-values.

Table S2. All significant associations (adjusted P < 0.05) as observed in Figure S2. P-values are
Bonferroni adjusted for the number of SNPs tested (Table 1).

Table S3. All genes with either truncated tail or truncated product P < 1x1073 for the FMF.comb
and the FMs.comb tests.

Table S4. All genes with either truncated tail or truncated product P < 1x107 for the FMo2 test.

Table S5. CENPI association p-values for the FMr.comb test across the 16 datasets.
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Table S6. All genes with either the truncated tail or truncated product P < 1x1073 for the sex
difference test.

Table S7. All p-values for all gene sets and all datasets are listed. Those with P < 0.05 are
highlighted in Table 4 in the main text.

Table S8. Pairs of X-linked genes that are significantly co-expressed. Presented are pairs of
genes that are significantly co-expressed, after multiple hypothesis correction, along with the
squared Spearman’s correlation coefficient (r?) and p-value of a Spearman’s rank correlation test
(Materials and Methods).

Table S9. List of genes in the KEGG/GO immune gene set.

Supplementary Text. Supplementary information detailing single-SNP association analysis and
power calculations for gene-based tests.
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TABLES
# Genes
(#SNPs in # Cases (males, # Controls (males,
Dataset Disease # SNPs | genic regions) | females) females)
Amyotrophic
Lateral Sclerosis 970 (72,219)
ALS Finland [123] | (ALS) 207,947 400 (198, 202) 490 (103, 387)
Amyotrophic
Lateral Sclerosis 967 (77,043)
ALS Irish [124] (ALS) 219,300 221 (119, 102) 210 (112, 98)
Psoriasis CASP 953 (62,106)
[128] Psoriasis 184,246 1,209 (588, 621) 1,271 (585, 686)
Celiac Disease
CIDR [125] Celiac Disease 187,284 | 962 (64,836) 1,576 (447, 1129) | 504 (225, 279)
Crohn's Disease
CD NIDDK [127] (CD) 176,072 | 837 (58,874) 791 (378, 413) 922 (457, 465)
Crohn's Disease
CD WT1* [72] (CD) 150,275 | 930 (49,017) 1,592 (607, 985) 1,701 (923, 778)
Ulcerative Colitis 2,341 (1148,
UC WT2* [131] (UO) 196,781 | 963 (67,422) 1193) 1,699 (843, 856)
MS case control Multiple Sclerosis
[96] (MS) 183,954 | 842 (61,119) 943 (312, 631) 851 (290, 561)
Multiple Sclerosis
MS WT2* [132] (MS) 169,707 | 962 (58,463) 2,666 (698, 1968) | 1389 (700, 689)
Vitiligo GWAS1 958 (54,384)
[126] Vitiligo 157,676 1,391 (411, 980) 4,521 (1985, 2536)
Vitiligo GWAS2 962 (64,974)
[133] Vitiligo 187,688 415 (144, 271) 2,552 (973, 1579)
T2D GENEVA Type-2 Diabetes 2,515 (1050,
[129] (T2D) 220,752 | 971 (75,941) 1465) 2,850 (1187, 1663)
Type-2 Diabetes
T2D WT1* [72] (T2D) 152,996 | 927 (49,956) 1,811 (1051, 760) | 1,668 (710, 958)
Type-1 Diabetes
T1D WT1* [72] (T1D) 152,304 | 926 (49,718) 1,867 (954, 913) 1,714 (941, 773)
Rheumatoid
RA WT1* [72] Arthritis (RA) 146,907 | 925 (47,880) 1,772 (443, 1329) | 1,709 (920, 789)
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Ankylosing
AS WT2* [130] Spondylitis (AS) 200,042 | 966 (69,441) 1,472 (976, 496) 1,260 (665, 595)

Table 1. GWAS datasets. For each of the case-control datasets analyzed in this study, the table lists its name, the disease considered,
the number of X-linked SNPs (# SNPs), which include imputed SNPs, the number of genes tested in gene-based tests (# Genes), and
the combined number of SNPs mapped to these genes or to within 15kb of them (# SNPs in genic regions). The number of individuals
(# Cases and # Controls) represents the number of samples following QC. The number of males and females in each category is
denoted in parenthesis. All datasets consist of individuals of European ancestry.

*As control individuals overlap across these datasets, we only considered non-overlapping control subsets for each of the datasets
(Materials and Methods). The size of these subsets is indicated under # Controls.
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p-value (tail, p-value (tail, combined p-value

Discovery dataset Gene product) Replication dataset product) (tail, product)
FMo2

6.60x10°°, 8.10x10%3, 8.26x10°8,
Vitiligo GWAS1 PPP1R3F 1.39x10* Vitiligo GWAS?2 2.70x10°® 5.93x10

1.11x10%, 5.60x1073, 9.50x10%8,
Vitiligo GWAS1 FOXP3 2.76x10* Vitiligo GWAS?2 5.40x10° 2.15x10°

1.60x10°3, 2.80x1073, 5.97x10%5,
Vitiligo GWAS1 GAGE10 4.03x10* Vitiligo GWAS?2 3.80x10°3 2.20x10°°

1.70x10°3, 2.30x10°3, 5.26x10°5,
CDWT1 ARHGEF6 3.66x10* UCWT2 3.10x10 1.67x105

FME.comb

1.14x10%, 3.70x10%3, 6.61x10°,

Vitiligo GWAS1 PPP1R3F 4.96x10* Vitiligo GWAS?2 5.80x10 3.96x10°
FMs.comb

6.0x10°¢, 4.80x10%3, 5.29x107,
Vitiligo GWAS1 PPP1R3F 7.60x10° Vitiligo GWAS?2 1.30x10°® 1.69x10°®

6.34x10, 4.60x1073, 4.01x10°,
Vitiligo GWAS1 GAGE12H 6.34x10* Vitiligo GWAS?2 4.60x102 4.01x10°

1.85x10°¢, 2.90x10°®, 7.05x10°5,
Vitiligo GWAS1 GAGE10 2.66x10* Vitiligo GWAS?2 2.80x10 1.13x10°

Sex Difference

1.97x10°3, 1.39x10%?, 3.15x10%,

CDWT1 C1GALTIC1 | 2.63x10* UCWT2 1.14x10%? 4.11x10°

Table 2. Gene-based associations replicating in similar diseases. All genes with a discovery
nominal P < 1x1072 (in Discovery dataset) that also replicated in a dataset of the same or similar
disease (Replicated dataset). Results are presented for each of the 3 tests of association, as well
as for the test of sex-differential effect size, as indicated by titles in the table. For both discovery
and replication, p-values of both methods of gene-based testing (truncated tail strength and
truncated product) are presented. Combined p-values (last column) were calculated using
Fisher’s method.
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FMo2
4.51x10%, 5.70x1073, 3.57x107%,
ALS Finland NAP1L2 3.80x10° UC WT2 3.70x103 2.36x10°
1.0x102, 6.00x10°,
Vitiligo GWAS1 1.40x10? 8.22x10°®
2.10x1073, 7.90x1073, 1.99x10%,
ALS Finland ITM2A 4.10x10* Celiac Disease CIDR 1.06x102 5.80x10°
5.20x10°, 3.80x1073, 3.25x10°,
MS case control | FANCB 1.30x103 RAWT1 1.10x102 1.74x10%
2.17x104, 2.40x1073, 8.06x10°,
Vitiligo GWAS1 | CENPI 1.00x103 ALS Finland 2.00x10°3 2.82x10°
4.89x104, 3.41x102 2.00x10%,
T2D GENEVA RP4-562J12.2 1.30x10* CD NIDDK 3.93x102 5.56x10
5.60x1072, 3.15x104,
WT2 AS 4.30x102 7.32x10°%
2.64x1072, 6.70x1073, 1.71x10%3,
T2D WT1 MAGEC1 5.34x10* MS case control 8.50x10°3 6.04x10°
1.06x1073, 3.10x1073, 4.49x10°,
UC WT21 NAP1L6 5.70x10° ALS Finland 5.50x103 5.01x10°°
FME comb
8.87x10%, 1.21x1072, 1.34x10%,
CASP NLGN4X 1.66x102 Vitiligo GWAS?2 1.31x10%2 2.05x10°3
5.10x102 4.98x10%,
CIDR Celiac Disease 4.90x102 6.66x1073
2.90x10°3, 1.12x1072, 3.68x10%,
Celiac CIDR CENPI 5.23x10* ALS Finland 1.00x103 8.09x106
2.68x1072 8.13x10%,
ALS Irish 1.64x102 1.09x10*
1.55x104, 7.02x10°,
Vitiligo GWAS1 2.60x10°3 1.97x10°
1.80x1073, 9.30x2073, 2.01x104,
Vitiligo GWAS1 | BEND2 7.90x10° T2D WT1 1.29x102 1.51x10°
1.55x10%, 1.12x1072, 2.48x107,
Vitiligo GWAS1 | CENPI 2.60x1073 ALS Finland 1.00x103 3.60x10°
2.90x1073, 7.02x107,
Celiac CIDR 5.23x10* 1.97x10°
1.70x10%, 2.31x102, 5.28x1075,
Vitiligo GWAS2 | MCF2 5.76x10* MS WT2 2.50x102 1.75x10*
1.30x1073, 2.42x1072, 3.58x10%,
CDWT1 LINC00892 8.80x10° MS WT2 1.99x102 2.50x10°
2.75x1072, 1.42x102, 3.46x1073,
T2D WT1 MAGEC1 1.81x10* MS case control 1.50x102 3.75x10°
7.06x104, 3.23x102, 2.67x10%,
MS WT2 MAGEE1 2.30x108 ALS Finland 2.36x102 5.87x10*
FMs.comb
5.7x10%, 8.30x1073, 6.27x1075,
ALS Finland NAP1L2 1.15x10* UC WT2 7.1x103 1.23x10°
8.43x10%, 6.5x1073, 7.19x1075,
ALS Finland ITM2A 3.07x10* Celiac CIDR 1.13x102 4.71x10°
1.27x10%3, 1.60x1073, 2.89x107%,
ALS Finland CENPI 1.75x104 Vitiligo GWAS1 5.90x10°3 1.53x10°
2.78x1073, 3.80x1073, 1.31x10%,
ALS Finland TMEM35 3.45x10* Vitiligo GWAS1 6.20x10°3 3.01x10°
1.73x1073, 6.30x1073, 1.35x10%,
CDWT1 LINC00892 5.29x10 MS WT2 6.40x10°3 4.60x10°
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2.30x102, 4.41x10%,

Vitiligo GWAS1 2.89x102 1.85x10*

2.62x104, 5.60x1073, 2.12x10%,

UC WT2 GPR34 1.62x10* MS WT2 1.10x102 2.54x10°%

1.19x1073, 4.00x1073, 6.31x10°,

UC WT2 NAP1L6 4.29x10* ALS Finland 1.06x102 6.05x10°

3.03x1073, 4.42x10%2, 1.32x10%3,

MS case control RP11-265P11.2 8.55x10* T2D WT1 4.68x102 4.45x10

2.12x1073, 2.40x1073, 6.71x1075,

T2D GENEVA SNORAZ35 4.54x10* AS WT2 6.70x10° 4.17x10%°

6.35x1073, 6.20x1073, 4.39x10%,

T2D GENEVA IL13RA1L 8.59x10 AS WT2 7.20x103 8.04x10°%

2.63x1072, 1.00x10%2, 2.43x1073,

T2D WT1 MAGEC1 6.80x10°° MS case control 1.54x102 1.55x10%
Sex difference

6.5x10, 3.08x1072, 2.37x10%,

ALS Finland MAGEE2 1.94x103 Vitiligo GWAS1 1.64x102 3.61x10*

1.41x10%3, 8.60x1073, 1.49x10%,

ALS Finland NDP 9.34x10* CDWT1 1.33x102 1.53x10*

2.34x10%, 4.52x1072, 1.32x10%,

CASP NLGN4X 1.65x102 Vitiligo GWAS1 4.33x102 5.89x10

4.4x1073, 2.03x102 9.22x104,

Celiac CIDR CENPI 2.08x10* ALS Finland 1.78x102 5.00x10°

9.80x1073, 4.88x10,

ALS Irish 4.40x10°3 1.36x10°

3.99x1073, 4.60x10%2, 1.76x1073,

Vitiligo GWAS1 | BEND2 1.28x10* MS case control 5.20x107? 8.60x10°

7.00x104, 2.38x1072, 2.00x10%,

Vitiligo GWAS2 | MCF2 1.93x103 MS WT2 2.12x102 4.54x10*

6.09x104, 1.58x102, 1.21x10%,

T2D GENEVA EFHC2 1.12x103 RAWT1 1.40x103 2.42x10°%

8.69x1073, 2.39x102 1.97x1073,

RAWT1 MIR320D2 5.68x10* ALS Irish 2.64x1072 1.82x10*

Table 3. Gene-based associations replicating in other diseases. All genes with a discovery
nominal P < 1x10° that also replicated in a dataset of a different disease (see main text). The
table mirrors Table 2, with the only difference being whether replication is in the same disease
(Table 2) or a different one (this table). Cases in which the same association is replicated in
multiple datasets span several rows.
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Dataset | Statistic | P-value
XY homologs gene set

Psoriasis CASP FME.comb 0.0088
Celiac disease CIDR FME.comb 0.0467
Vitiligo GWAS1 FME.comb 0.0063
Vitiligo GWAS1 FMoz 0.0329
Vitiligo GWAS2 FME.comb 0.0346
CD NIDDK FMoz 0.017
CD WT1 FMoz 0.0234
T1D WT1 FMs.comb 0.0302
Panther immune gene set

Vitiligo GWAS1 FMoz 0.0154
Vitiligo GWAS1 FME.comb 0.0387
Vitiligo GWAS1 FMs.comb 0.0081
Vitiligo GWAS2 FMoz 0.0142
Vitiligo GWAS2 FME.comb 0.0448
Vitiligo GWAS2 FMs.comb 0.0127
T2D GENEVA FMs.comb 0.0073
KEGG/GO immune gene set

Vitiligo GWAS1 FME.comb 0.002
Vitiligo GWAS1 FMs.comb 1.64x10*

Table 4. Gene set associations. Three curated gene sets were tested for association with disease
risk. Displayed are datasets for which P < 0.05 for association with the gene set indicated in
header rows (XY homologs, Panther, KEGG/GO; Materials and Methods). Bold p-values
indicate significant associations after multiple testing correction. P-values are the minimum
between that based on the truncated tail strength method and the one based on the truncated
product method. Results for all datasets and tests are presented in Table S7.
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Pathway Genes P-value
PAK1, RHOA, PAK3, CDC42, ARHGEF6, SOS1, ARHGEF7,

Regulation of actin cytoskeleton | PAK2, RDX, GIT1, GNA13, TIAM1, ROCK2, FGD1 5.55x10**

T-cell receptor signaling PAK1, RHOA, PAK3, CDC42, SOS1, PAK2, IL4, NFATC2,

pathway NFATC1, ICOS, NFAT5 2.75x1013
PAK1, RHOA, PAK3, EPHB2, CDC42, NFATC2, NFATC1,

Axon guidance NFAT5, ROCK2 4.97x10*
SMAD3, SMAD2, RHOA, FZD4, LRP5, NFATC2, NFATC1,

Wnt signaling NFAT5, ROCK2 4.74x10°°
H2AFZ, H2AFJ, HIST1H2AH, HIST2H2AB, HIST1H2AJ,

Systemic lupus erythematosus HIST3H2A, HIST1H2AD 4.34x108
PAK1, RHOA, CDC42, SOS1, GNB1, TIAM1, DOCK2,

Chemokine signaling ROCK2 4.52x1077

Focal adhesion PAK1, PARVB, RHOA, PAK3, CDC42, SOS1, PAK2, ROCK2 | 6.28x10”7

TGF-beta signaling SMAD3, SMAD2, RHOA, TGFBR2, ROCK2, BMPR1B 7.87x107’
SMAD3, SMAD2, RHOA, MDM2, CDC42, FZD4, SOS1,

Pathways in cancer RUNX1, TGFBR2 1.74x10°°

Pancreatic cancer SMAD3, SMAD2, CDC42, ARHGEF6, TGFBR2 6.17X10°

Table 5. Gene-enrichment analysis of the interactome. Genes we discovered and replicated as associated with any disease tested,
and their interacting genes (Figure 4) were enriched for several immune related pathways. We display the ten most significantly
enriched pathways. Genes within each pathway that were also within our query set are listed. Displayed p-values are adjusted for

multiple testing (Materials and Methods).
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