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Abstract 

The recent advent of ribosome profiling – sequencing of short ribosome-bound fragments 

of mRNA – has offered an unprecedented opportunity to interrogate the sequence 

features responsible for modulating translational rates. Nevertheless, numerous analyses 30 

of the first riboprofiling dataset have produced equivocal and often incompatible results. 

Here we analyze three independent yeast riboprofiling data sets, including two with much 

higher coverage than previously available, and find that all three show substantial 

technical sequence biases that confound interpretations of ribosomal occupancy. After 

accounting for these biases, we find no effect of previously implicated factors on 35 

ribosomal pausing. Rather, we find that incorporation of proline, whose unique side-chain 

stalls peptide synthesis in vitro, also slows the ribosome in vivo. We also reanalyze a 

recent method that reported positively charged amino acids as the major determinant of 

ribosomal stalling and demonstrate that its assumptions lead to false signals of stalling in 

low-coverage data. Our results suggest that any analysis of riboprofiling data should 40 

account for sequencing biases and sparse coverage. To this end, we establish a robust 

methodology that enables analysis of ribosome profiling data without prior assumptions 

regarding which positions spanned by the ribosome cause stalling. 
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Introduction 

 Translation of messenger RNAs into polypeptides by ribosomes is a fundamental 

process common to all life, and its dysregulation has been implicated in a number of 

diseases (Scheper et al. 2007). This has prompted a wealth of research into understanding 50 

the molecular underpinnings of translational dynamics. For instance, it has long been 

known that the frequency of codon usage in coding sequences (CDSs) is biased, 

suggesting the action of natural selection on the efficiency and/or accuracy of 

translational elongation (Kanaya et al. 2011; Plotkin and Kudla 2011).  

 The physiological origins of uneven codon usage have been studied extensively 55 

both experimentally and theoretically, implicating a number of different, non-mutually 

exclusive mechanisms - though all remain controversial (Plotkin and Kudla 2011; 

Gingold and Pilpel 2011). Much attention has been focused on the relationship between 

the cellular abundance of tRNAs and the frequencies of their cognate codons. Studies 

have found a strong correlation between gene expression levels and codon usage bias 60 

(CUB), revealing that highly expressed genes tend to use codons corresponding to the 

most abundant tRNAs in bacteria (Grantham et al. 1981), fungi (Bennetzen and Hall 

1982), and metazoa (Shields et al. 1988; Stenico et al. 1994; Duret and Michiroud 1999) 

(though the abundances of charged tRNAs may be more important than total tRNA 

levels; Welch et al. 2009). As in vitro studies have shown that the rate of incorporation of 65 

amino acids varies in a codon-specific manner, with the most rapid rates of elongation 

occurring at codons with highly abundant tRNAs (Varenne et al. 1984), it has long been 

presumed that CUB reflects a general process of selection for high translational rate in 

highly expressed transcripts, preventing inefficient sequestration of ribosomes at slowly 
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translated codons (Andersson and Kurland 1990). In addition, idiosyncratic requirements 70 

at individual mRNAs, such as induced ribosomal pausing to allow co-translational 

folding or shuttling, may also play a role (Thanaraj and Argos 1996; Corsi and Schekman 

1996; Tsai et al. 2008). 

 Other factors thought to induce ribosome stalling include the presence of mRNA 

secondary structure, which must be ‘unwound’ by ribosomes, and may thus slow their 75 

rate of translation (Namy et al. 2006; Wen et al. 2008); wobble base-pairing, which can 

introduce non-optimal geometries in codon-anticodon interactions (Thomas et al. 1988; 

Kato et al. 1990); the presence of codons encoding positively charged amino acids, which 

may participate in electrostatic interactions with the negatively charged ribosomal exit 

tunnel (Lu et al. 2007; Lu and Deutsch 2008; Tuller et al. 2011; Charneski and Hurst 80 

2013); and proline, which is inefficiently incorporated into polypeptides due to the 

unique structure of its imino side-chain (Wohlgemuth et al. 2008; Muto and Ito 2008; 

Pavlov et al. 2009; Johansson et al. 2011; Doerfel et al. 2013; Ude et al. 2013; Gutierrez 

et al. 2013; Zinshetyn and Gilbert 2013). Interpretation of the relative contributions of 

these factors has been challenging, as their effects have typically been studied in 85 

conditions not normally encountered in living cells – such as within genes with low CUB 

but extremely high mRNA levels (Plotkin and Kudla 2011; Gingold and Pilpel 2011).  

However, this situation has changed radically with the recent development of 

ribosome profiling, an in vivo technique for monitoring transcriptome-wide rates of 

translation (Ingolia et al. 2009). By isolating and sequencing short fragments of mRNA 90 

bound by actively translating ribosomes, ‘riboprofiling’ provides nucleotide-resolution, 

quantitative information about the abundance and position of ribosomes on individual 
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RNAs. When normalized for gene expression levels obtained by sequencing unprotected 

mRNA, increased ribosome-protected read coverage is expected from regions where 

ribosomes spend a greater fraction of their time, thereby identifying sequences that 95 

contribute to differences in rates of elongation (Ingolia et al. 2009; Ingolia et al. 2011).     

Nevertheless, a number of recent studies that have analyzed yeast riboprofiling 

data have come to contradictory conclusions regarding the major determinants of 

translation rate, including whether non-preferred codons, RNA secondary structure, or 

particular amino acids stall translation (Tuller et al. 2010a, 2010b, 2011, Kertesz et al. 100 

2010; Siwiak and Zelenkiewicz 2010; Zur and Tuller 2012; Qian et al. 2012; Charneski 

and Hurst 2013; Wallace et al. 2013; Rouskin et al. 2014). Unfortunately, direct 

comparison of these analyses has been challenging: while all have reanalyzed the 

Saccharomyces cerevisiae data of Ingolia et al. (2009), each study has made unique 

assumptions regarding interpretation of riboprofiling data – such as the precise location 105 

of active sites in ribosome protected fragments, or the effects of sequences near 

ribosome-protected fragments.  

An additional consideration regarding the interpretation of riboprofiling data 

concerns the possibility that biases in the representation of particular nucleotides or 

sequences are introduced during library construction. For example, such biases have been 110 

well documented in the case of RNA-seq library preparation, where local base 

composition of RNAs can produce undesirable secondary structure, bias reverse 

transcription priming, and interfere with enzymatic steps such as ligation (Zheng et al. 

2011). Such effects manifest themselves as protocol-specific biases in read coverage 

along transcripts, leading to over- or under-representation of certain sequences (Hansen et 115 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2014. ; https://doi.org/10.1101/006221doi: bioRxiv preprint 

https://doi.org/10.1101/006221
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

al. 2010; Srivastava and Chen 2010; Li et al. 2010; Bullard et al. 2010; Zheng et al. 

2011). In studies of ribosome-protected fragments, such biases could confound 

identification of the actual biological factors affecting translational rate. However, the 

riboprofiling protocol itself provides a means to mitigate technical biases introduced 

during library construction: as the sequencing libraries generated from both unprotected 120 

mRNA (the ‘mRNA’ fraction) and ribosome protected mRNA fragments (the ‘Ribo’ 

fraction) differ only in the method used to isolate RNA, shared biases between the two 

are likely to represent technical artifacts (Qian et al. 2012). 

 In order to more thoroughly investigate factors that lead to increased ribosomal 

occupancy, we took advantage of two recently published yeast riboprofiling datasets that 125 

provide much higher coverage data than was previously available (Artieri and Fraser 

2014; McManus et al. 2014) and compared them to the data of Ingolia et al. (2009). We 

observed consistent biased representation of specific nucleotides across all datasets that 

could be attributed to library construction. Controlling for these artifacts identified 

codons uniquely enriched in the Ribo fractions of the high-coverage datasets, suggesting 130 

that they may be responsible for ribosomal stalling in vivo.   

 

Results 

Riboprofiling data show consistent nucleotide biases 
 135 
 In order to explore how controlling for biases in library construction may affect 

our interpretation of sequence factors affecting translational rate, we analyzed two 

recently published S. cerevisiae riboprofiling datasets (Artieri and Fraser 2014; McManus 

et al. 2014); hereafter, the ‘Artieri and Fraser’ and ‘McManus et al.’ data (Supplemental 
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Table S1). These data sets have ~28× and ~7× greater sequencing depth than was 140 

previously available (Ingolia et al. 2009), respectively. As most of the aforementioned 

analyses of ribosomal occupancy (Tuller et al. 2010a, 2010b, 2011, Kertesz et al. 2010; 

Siwiak and Zelenkiewicz 2010; Zur and Tuller 2012; Qian et al. 2012; Charneski and 

Hurst 2013; Wallace et al. 2013; Rouskin et al. 2014) used the S. cerevisiae data 

generated by Ingolia et al. (2009; ‘Ingolia et al.’ data), we also analyzed the raw reads 145 

from this study. The Ingolia et al. data include two different growth conditions: rich and 

amino acid starved media (hereafter ‘rich’ and ‘starved’; analysis of the starved data are 

in the Supplemental Material).  

Reads from all samples were mapped to the S. cerevisiae genome (see Methods). 

Expression level estimates agreed well among replicates within each dataset (ρ = 0.96 - 150 

0.99 and 0.92 – 0.99 for the Ribo and mRNA fractions, respectively) as well as between 

datasets (Spearman’s correlation coefficient ρ = 0.94 – 0.95 and 0.84 – 0.92 for the Ribo 

and mRNA fractions, respectively) (Supplemental Figs. S1 and S2). The Ribo fractions 

of all three datasets showed an enrichment of reads mapping at 28 – 29 nt, as expected 

based on the size of the ribosome-protected fragment (Ingolia et al. 2009); however the 155 

degree of enrichment varied among datasets (Supplemental Fig. S3; see Supplemental 

Material). 

  A larger proportion of Ribo fraction reads map to the first reading frame of 

codons as compared to the second or third (Ingolia et al. 2009), suggesting that there may 

be differences among reads beginning in different reading frames. Therefore we analyzed 160 

the nucleotide content of the first 27 nucleotides (nt) of reads, corresponding to the 

minimum mapping read length, from the mRNA and Ribo fractions separately for reads 
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mapping to the first, second, or third frame of codons (Fig. 1). All datasets revealed 

substantial biases in the 5! ends of reads that were similar in both fractions and among 

replicates, suggesting that certain sequences are preferentially incorporated during the 165 

process of library construction (Fig. 2, Supplemental Figs. S4 and S5). The most 

consistent of these biases is a preference for adenine in the 5! most nucleotide, especially 

among first frame mappers. In the case of the Ribo fraction of the Ingolia et al. data, 66% 

of reads begin with adenine - two-fold greater than the adenine content within CDSs 

(32.6%). In comparison, 34% of the Artieri and Fraser and 33% of the McManus et al. 170 

Ribo fraction reads begin with adenine (Supplemental Table S2; see the Supplemental 

Material for a more thorough comparison of biases among datasets). The 3! termini of 

reads in the Artieri and Fraser and Ingolia et al. datasets also showed a general preference 

for adenine, particularly in the mRNA fractions (Fig. 2). This is likely a consequence of 

the use of poly-adenylation as a template to prime reverse transcription; the McManus et 175 

al. data were generated with an alternative approach, which appears to mitigate 3! adenine 

bias (see Supplemental Material).  

We assessed to what extent these nucleotide biases affected codon usage by 

identifying the nine consecutive in-frame codons spanned by each read (labeled positions 

0-8 beginning from the 5! end of mapping reads in Fig. 1) and determining the relative 180 

abundance of each of the 61 sense codons as compared to its expected frequency across 

all reads (see Methods). We then calculated the coefficient of variation (CV) among the 

relative abundances at each of the nine positions, producing a metric in which higher CVs 

indicate a greater deviation from expected codon frequencies (Fig. 2, Supplemental Figs. 
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S4 and S5). Both fractions of all three datasets showed strong biases in position 0, as was 185 

expected from the observed nucleotide biases.  

Interestingly, the Ribo fractions of the Artieri and Fraser and McManus et al. data 

showed strong biases at internal codon positions relative to the mRNA fraction – 

particularly in the case of first-position mapping reads – coinciding with the expected 

location of active ribosomal sites (Fig. 1), suggesting that these may reflect a biological 190 

signal of ribosome stalling. A similar pattern was observed in the Ingolia et al. data, 

though this was overshadowed by the stronger biases at 5! codons (Fig. 2). We also noted 

that 28 nt reads, corresponding to the expected length of the ribosome protected footprint, 

showed stronger internal codon biases in all three datasets as compared to other mapping 

lengths (Supplemental Figs. S6 and S7; Supplemental Material). In contrast, the less 195 

common second frame mappers showed less pronounced internal codon biases. 

Interestingly, reads mapping to the third reading frame of codons in all three datasets 

were offset by +1 codon, indicating that the ribosome was likely positioned one codon 

downstream as compared to first and second frame mappers. 

As first frame mappers are more abundant than reads mapping to the other two 200 

frames, and due to differences in 5! bias and/or offset of reads mapping to the other two 

frames, we present subsequent analyses based on reads mapping to the first reading frame 

(however, similar results were observed for second- and third-frame mappers as well and 

are presented in Supplemental Material as indicated below).   

 205 

Ribosome occupancy is strongly associated with proline residues 
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Sequences that contribute to ribosome stalling should be enriched only in the Ribo 

fraction (Stadler and Fire 2011; Ingolia et al. 2011; Qian et al. 2012), whereas technical 

artifacts are likely to appear enriched in both fractions. Therefore, we normalized Ribo 

fraction coverage by that of the mRNA fraction (hereafter ‘corrected Ribo coverage’) as 210 

outlined in Fig. 3. Unlike previous studies (Ingolia et al. 2009; Stadler and Fire 2011; 

Qian et al. 2012; Li et al. 2012; Zinshteyn and Gilbert 2013), we did not attempt to define 

specific nucleotides corresponding to active ribosomal sites as we had no a priori 

expectations as to which position(s) near ribosome protected read fragments were 

responsible for stalling. Furthermore, we note that the hypothesis that positive amino 215 

acids stall ribosomes via interactions with the exit tunnel requires that they exert their 

effect after translation, and therefore should be enriched upstream of Ribo fragments 

(Charneski and Hurst 2013). Therefore we analyzed corrected Ribo coverage in a codon 

position-specific manner from eight codons upstream of the 5! end of Ribo fraction reads 

to eight codons downstream (labeled positions -8 to +8, with position 0 corresponding to 220 

the in-frame codon to which the 5! end of the read mapped). The log2-transformed 

enrichment of each codon at each of the 17 positions was scaled by the mean value of all 

codons at the same position such that codons with positive values were enriched relative 

to mean expectations and those with negative values were depleted (Fig. 3; see Methods).  

The scaled enrichment values of all 61 sense codons at positions -8 through 8 as 225 

determined from the Artieri and Fraser data are shown in Fig. 4A, revealing that the 

strongest enrichment occurred at position 4, which corresponds to the position of the 

elevated internal biased codon representation observed in Ribo fraction reads (Fig. 2). In 

addition, as compared to positions spanned by the ribosome-protected fragment (i.e., 0 to 
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8), there is no evidence of substantial enrichment of upstream codons (-8 to -1) as would 230 

be expected if positive amino acids slow translation as they pass through the negatively 

charged ribosome exit tunnel (Lu et al. 2007, Charneski and Hurst 2013). Near identical 

results were also observed in the McManus et al. data (Supplemental Fig. S8). Therefore 

the strongest single-codon stalling effect was driven by codons in the position defined by 

previous studies as the P-site and not the A-site (position 5) (Ingolia et al. 2009; Stadler 235 

and Fire 2011; Qian et al. 2012; Li et al. 2012; Zinshteyn and Gilbert 2013). Reads that 

mapped to second and third codon frames showed qualitatively consistent patterns at 

upstream and downstream codon positions, though the degree of enrichment varied 

(Supplemental Fig. S8). This pattern disappeared completely in both datasets when the 

order of codons was randomly shuffled within each gene, preserving the relative position 240 

of mapped reads, indicating that it was not an artifact of the relationship between codon 

order and patterns of read mapping positions within transcripts (Supplemental Fig. S9).  

Unlike the other datasets, the magnitude of 5! bias observed in the Ribo fraction 

of the Ingolia et al. data was significantly stronger than that observed in the mRNA 

fraction (see above; Fig. 2), and consequently a much stronger 5! codon bias remained 245 

after normalization by the mRNA fraction, overwhelming any patterns observed at 

internal codons (Supplemental Figs. S10 and S11). Therefore, we restricted our analysis 

of factors affecting ribosomal occupancy to the two higher-coverage datasets and discuss 

the two Ingolia et al. datasets in the Supplemental Material. 

As position 4 showed the strongest degree of preference for particular codons 250 

among internal positions (Figs. 2, 4A), we analyzed patterns of codon enrichment at this 

position. We first explored whether any biochemical properties of amino acids (i.e., 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2014. ; https://doi.org/10.1101/006221doi: bioRxiv preprint 

https://doi.org/10.1101/006221
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

positive, negative, polar, or hydrophobic) were significantly enriched (Fig. 4B). No 

category showed consistent enrichment, including positively charged amino acids, which 

were recently implicated in stalling based on a reanalysis of the Ingolia et al. 255 

riboprofiling data (Charneski and Hurst 2013; see below). However, both datasets did 

show a general paucity of coverage among codons for hydrophobic amino acids.  

Among individual amino acids, both datasets showed a higher level of enrichment 

among proline codons (CCN) than for any other amino acid (Kruskal-Wallis rank sum 

test, p < 10-15) (Fig. 4B). The four proline-encoding codons were among the five most 260 

enriched codons in both datasets (the fifth, CGG, encodes arginine; see below). These 

results were reproducible among different subsets of mRNA expression levels, indicating 

that they were not driven by highly abundant genes (Supplemental Fig. S12). 

Furthermore, they are consistent with proline’s previously implicated role in translational 

pausing in vitro (Wohlgemuth et al. 2008; Pavlov et al. 2009; Johansson et al. 2011). 265 

 We also tested whether other specific factors were associated with increased 

ribosomal occupancy. Previous riboprofiling studies have suggested that mRNA 

secondary structure can slow translation (Tuller et al. 2010b, 2011). Therefore, we looked 

for evidence of increased corrected Ribo coverage upstream of regions of mRNA 

secondary structure (Ouyang et al. 2013). However, we observed that terminal adenine 270 

biases within both riboprofiling datasets had stronger correlations with measurements of 

secondary structure than any potential signal of ribosome stalling (Supplemental Fig. 

S13; Supplemental Material). In addition, G:U wobble base-pairing has been associated 

with pausing in nematodes and humans (Stadler and Fire 2011). Although we observed 

no such pattern at codon position 4, Watson-Crick pairing was enriched at position 5 275 
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(Supplemental Fig. S14). Nevertheless, the magnitude of this enrichment was relatively 

modest, indicating that it is not a major determinant of ribosomal stalling in yeast.  

 Finally, supporting previous riboprofiling-based observations made in yeast Qian 

et al. 2012; Zinshteyn and Gilbert 2013), E. coli (Li et al. 2012), and mouse (Ingolia et al. 

2011), we found no correlation between corrected Ribo coverage and non-optimality of 280 

codons at either position 4 (P-site) or at position 5 (A-site) using three separate measures 

of codon optimality (Supplemental Figs. S14 and S15; Supplemental Material). 

Interestingly, the rarest codon in S. cerevisiae, CGG (encoding arginine), showed a 

substantial level of enrichment in both datasets (Fig. 4B). However, this may not be 

related to its rarity, as similarly rare codons (CGC and CGA, also encoding arginine), 285 

showed no such enrichment.  

 

Revisiting the effects of positively charged amino acids 

 A recent reanalysis of the Ingolia et al. data concluded that positively charged 

amino acids were the primary determinant of ribosomal velocity (Charneski and Hurst 290 

2013). Their approach assumed that upon encountering a sequence feature causing 

ribosomal stalling (such as a positive amino acid), the ribosome slows, leading to an 

accumulation of Ribo fraction reads immediately downstream of the feature. By 

comparing the magnitude of this accumulation to read coverage upstream of the stalling 

sequence – where the rate of translation was presumed to be unhindered – they generated 295 

a normalized metric of stalling as shown in Fig. 5. Specifically, to test the effect of a 

codon at position 0, the occupancy of all codon positions (rpos) from 30 codons upstream 

to 30 codons downstream was divided by the mean occupancy of upstream codons -30 to 

-1 (rprec30), producing a normalized pausing value (rpos/rprec30) where a value of 1 
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represents the average rate of translation. The area under the curve (AUC) of the mean-300 

normalized occupancy values from position 0 until the position where mean occupancy 

returned to the average was used as a measure of the stalling effect, if positive (Fig. 5). 

 We sought to test if the stalling effect of positive amino acids was also detected in 

the higher coverage Artieri and Fraser and McManus et al. datasets. We first replicated 

the additive pattern of increased stalling with increasingly large clusters of positive amino 305 

acids (Figure 5 in Charneski and Hurst 2013) using the Ingolia et al data, confirming that 

the same methods were being used (Supplemental Fig. S17). However, analysis of both 

higher-coverage datasets showed no such coherent additive stalling trend (Fig. 6A-B; for 

one, two, three, four or five, and six or more positive charge clusters, the AUCs for the 

Artieri and Fraser data were 7.89, 12.83, -0.71, -1.36, and -2.75, and for the McManus et 310 

al. data were 6.46, 0.08, -0.59, 0.04, and 0.09, respectively). 

Analysis of coverage of either the corrected or uncorrected Ribo coverage showed 

no systematic pattern of enrichment among positive amino acids among upstream codons 

(position -8 to -1) in any of the three datasets (Supplemental Figs S8, S10, and S18; 

Supplemental Material). Therefore, we explored the rpos/rprec30 method in more detail by 315 

performing an important control not reported in the original analysis (Charneski and 

Hurst 2013): levels of apparent stalling in the absence of any positive amino acids, using 

the same data set (Ingolia et al. 2009) (see Materials and Methods). We found that the 

median apparent stalling effect was actually stronger in the absence of any positively 

charged residues than in any sized clusters of positive charges (Kruskal-Wallis rank sum 320 

test of distributions AUC values, p < 10-15 for all clusters except for 6 or more positive 

charges, where p = 0.02 after Bonferroni correction for multiple tests) (Fig. 6C). We 
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observed a similar pattern of stalling when averaging over all possible 61-codon windows 

in all genes (Supplemental Fig. S19), suggesting that the apparent pattern of stalling is 

unlikely to be related to the presence of positively charged amino acids.  325 

We then explored whether read coverage could affect these patterns even in the 

absence of any stalling by generating simulated data at a range of coverage levels. 

Indeed, stalling was observed in low- but not high-coverage windows (Supplemental Fig. 

S19; Supplemental Material). Since the simulated data contained no actual stalling, we 

concluded that the rpos/rprec30 method will detect stalling in any series of windows with 330 

sparse read coverage. As a further test, we downsampled the higher-coverage data to the 

level used in the original analysis, and found that overall patterns of stalling indeed 

increased (Supplemental Fig. S20).  

 

Discussion 335 

Library construction biases 

 The relative importance of various factors implicated in influencing the rate of 

translation has remained controversial despite recent advances in our ability to measure 

translation rates at the level of individual codons (Plotkin and Kudla 2011; Gingold and 

Pilpel 2011). Most of these factors were originally identified using in vitro approaches, 340 

which may not accurately represent intracellular conditions. As an in vivo method, 

riboprofiling has offered an unprecedented opportunity to study translational dynamics in 

living cells; yet a number of different studies reanalyzing the same riboprofiling data 

(Ingolia et al. 2009) have produced incompatible findings, based on differing 

assumptions and methods of analysis (Tuller et al. 2010a, 2010b, 2011, Kertesz et al. 345 
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2010; Siwiak and Zelenkiewicz 2010; Zur and Tuller 2012; Qian et al. 2012; Charneski 

and Hurst 2013; Wallace et al. 2013; Rouskin et al. 2014).  

Our approach presents a number of improvements over previous analyses of the 

biological basis of increased ribosomal occupancy using riboprofiling data: First, we have 

explicitly taken into account shared technical biases between the Ribo and mRNA 350 

fractions. Second, we made no a priori assumptions regarding which codon positions 

near the ribosome-protected fragments were responsible for rate variation, but rather 

focused on codon position 4 because it was a clear outlier in terms of enrichment in 

corrected Ribo coverage. And third, we analyzed two independently generated, high-

coverage datasets (Artieri and Fraser 2014; McManus et al. 2014) and found strong 355 

agreement between them.  

Our analysis revealed that like other next-generation sequencing methods (Hansen 

et al. 2010; Srivastava and Chen 2010; Li et al. 2010; Bullard et al. 2010; Zheng et al. 

2011), riboprofiling is subject to library construction biases that may confound any 

analysis of ribosomal occupancy. In particular, both fractions of all three datasets showed 360 

a substantial preference for adenine bases at the 5! ends of reads (and in some instances, 

the 3! ends as well) (Fig. 2; Supplemental Material). As the majority of reads from the 

Ribo fraction mapped to the first reading frame of codons, this produces skewed 

representation of reads mapping to codons that begin with these bases. In the Ingolia et 

al. data in particular, the biases at the 5! ends of reads overwhelmed those of all other 365 

positions spanned by the reads, suggesting that patterns of Ribo fraction coverage are 

strongly influenced by this library construction bias (Fig. 2; Supplemental Fig. S18; 

Supplemental Material). Also, we note that an additional caveat applicable to all yeast 
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riboprofiling datasets discussed in this manuscript is that cycloheximide was used to 

arrest translation immediately prior to RNA extraction (Ingolia et al. 2009; Zinshteyn and 370 

Gilbert 2013; Artieri and Fraser 2014; McManus et al. 2014). It is unknown whether the 

drug itself has any sequence-specificity, but if so, this could lead to artifactual signals of 

ribosome stalling.   

 

Proline codons are enriched in corrected Ribo coverage 375 

 Of the features previously implicated in modulating the rate of translation, we 

observed consistent enrichment of Ribo coverage only at proline residues (Fig. 4B): all 

four proline codons (CCN) were among the most significantly enriched at codon position 

4 in both the Artieri and Fraser and McManus et al. data. Interestingly, position 4 

corresponds to what previous studies have defined as the P-site (Ingolia et al. 2009; 380 

Zinshteyn and Gilbert 2013; Stadler and Fire 2011; Li et al. 2012), where the imino side-

chain of proline is known to act as a particularly poor substrate in the peptidyl transfer 

reaction. This is likely due to its restricted conformational flexibility, which may limit the 

rate of translational elongation (Wohlgemuth et al. 2009; Pavlov et al. 2009). Proline’s 

ribosomal pausing effect is known to play an important role in programmed stalling 385 

(Gárza-Sanchez et al. 2006; Tanner et al. 2009), and previous riboprofiling studies have 

found an enrichment of proline codons in the context of multi-amino acid motifs (PPE, 

Ingolia et al. 2011, and PG, Zinshteyn and Gilbert 2013), even in the context of cells 

untreated with cycloheximide (Ingolia et al. 2011). 

Several other amino acids showed a lower enrichment among their corresponding 390 

codons in both datasets (Fig. 4B); however, these were each encoded by just two codons, 
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making it difficult to determine if this is due to properties of the amino acid residues or 

the codons themselves.  

 

No evidence that positive amino acids stall ribosomes 395 

 Though several recent studies have suggested that positively charged amino acids 

may impede the progress of the peptide chain through the negatively charged ribosomal 

exit tunnel (Lu et al. 2007; Lu and Deutsch 2008), we observed no consistent enrichment 

for codons encoding positive amino acids in corrected Ribo coverage either within or 

upstream of the footprints in any datasets (Fig. 4B; Supplemental Fig. S18). Two 400 

previous studies found an association between riboprofiling read coverage and the 

presence of positive amino acids in yeast – both based on reanalysis of the data of Ingolia 

et al. (2009). The first (Tuller et al. 2011) noted an association between increased 

ribosomal occupancy at the 5! ends of CDSs and an increased incidence of positive amino 

acid encoding codons. However this increased frequency of positive amino acids can be 405 

explained entirely by the requirements of hydrophilic N-termini of transmembrane 

proteins (Charneski and Hurst 2014). With regard to the second study, that of Charneski 

and Hurst (2013), we could not reproduce their results using either high-coverage data set 

(Fig. 6). Furthermore, upon reanalysis of the method previously employed, we found that 

it led to false signals of stalling in low-coverage windows—indicating apparent pausing 410 

even in simulated data where no pausing was present—and produced signals of ribosome 

pausing at least as strong as those observed at positive codons in regions containing no 

positive codons at all (Fig. 6C). In addition, the strong enrichment of positive amino 

acids in the 0 position of codons due to 5! biases in read sequence in the Ingolia et al. data 
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may also have contributed to false signals of stalling (Supplemental Fig. S18; 415 

Supplemental Material). Therefore we conclude that there is no conclusive in vivo 

evidence for a stalling effect of positive amino acids.  

 

Other factors associated with ribosomal stalling    

 Multiple studies have shown that mRNA secondary structure plays an important 420 

role in regulating translational initiation (Schauder et al. 1989; Kudla at al. 2009; Shah et 

al. 2013; Goodman et al. 2013). However, its importance in affecting the rate of 

ribosomal elongation remains controversial. For instance, a recent high-throughput 

analysis of secondary structure in S. cerevisiae reported that mRNA structure is far less 

extensive in vivo than in vitro, and is poorly predicted by computational methods 425 

(Rouskin et al. 2014). Furthermore, analyses of the effects of structure using yeast 

riboprofiling data have been inconclusive (Tuller et al. 2011; Zur and Tuller 2012; 

Charneski and Hurst 2013). Because mRNA structure is influenced by base content 

(since G:C bonds are stronger than A:U bonds), biases including the enrichment of 

adenines at both termini of reads overwhelms any potential signal of increased Ribo 430 

occupancy near regions of secondary structure. Therefore, riboprofiling data may not be 

ideal for studies of the effect of mRNA structure in the absence of methodological 

developments that control for biases introduced during library construction.  

We observed no effect of wobble base-pairing on corrected Ribo occupancy. On 

the contrary, whereas no particular pattern was observed at position 5, position 6 showed 435 

a general bias towards increased occupancy of the cognate (non-wobble) codon. 

Therefore, the pattern of increased occupancy at G:U wobble pairs observed in 
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nematodes and humans (Stadler and Fire 2011) does not appear to hold in yeast. 

Importantly however, the precise positioning of the wobble codon relative to the 5! end of 

Ribo fraction reads differs between nematodes and humans, indicating that this pattern 440 

may be labile over long evolutionary distances.  

 

Analysis of base-level riboprofiling data 

 Riboprofiling data represent a significant advance over previous methods of 

translational analysis by enabling measurements of ribosomal occupancy across the 445 

transcriptome, without the need to experimentally perturb translational conditions in the 

cell. While this has dramatically increased our knowledge of genome-wide translational 

regulation (Ingolia et al. 2009; Ingolia et al. 2011; Li et al. 2012; Brar et al. 2012; Stadler 

and Fire 2013; Artieri and Fraser 2014; McManus et al. 2014), inconsistent interpretation 

of nucleotide-level data has produced contradictory results and made direct comparisons 450 

between studies challenging. We conclude that mitigating technical biases in 

riboprofiling – either experimentally or computationally – will likely reveal additional 

features of mRNAs that are most relevant to translational biology. 

 
 455 
Materials and Methods 
 

Riboprofiling data 

 The S. cerevisiae riboprofiling data used in this study were obtained from Artieri 

and Fraser (2014), McManus et al. (2014), and Ingolia et al. (2009) (Gene Expression 460 

Omnibus [GEO] entries GSE50049, GSE52119, and GSE13750, respectively). In the 

case of the Artieri and Fraser data, some of these samples were sequenced by 
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multiplexing riboprofiling libraries generated from both S. cerevisiae and the closely 

related species S. paradoxus (Supplemental Table S3). Therefore we independently 

sequenced the S. cerevisiae Ribo fraction replicate 1 sample (deposited in NCBI 465 

Sequence Read Archive [SRA] entry SRS514738) and mapped the reads (see below) in 

parallel to the sample generated by sequencing the multiplexed species libraries (GEO 

sample GSM1278062). The strong congruence of estimated RPKMs between the 

individual and the multiplexed sequencing samples (rho = 0.995, p < 10-15; Supplemental 

Figure S21), as well as the biological replicates (Supplemental Fig. S1) indicated that the 470 

stringent mapping method successfully identified S. cerevisiae reads from the mixed 

sample. Supplemental Table S3 indicates the sources of the individual replicates.  

 

Riboprofiling library mapping 

 Reads from both fractions of all datasets were mapped in a strand-specific manner 475 

using the iterative method described in Ingolia (2010). We first excluded reads that 

mapped to the complete rDNA sequence of S. cerevisiae when trimmed to a length of 23 

nt from the 5! end using Bowtie version 0.12 (Langmead et al. 2009) allowing 3 

mismatches and a maximum of 20 mapping locations. Remaining reads were mapped to 

the S. cerevisiae strain S288c genome (R61-1-1, 5th June 2008) allowing no 480 

multimappers and no mismatches. Mapping reads were filtered such that no more than 30 

bp (31 bp if the 3! most base was an A), and no less than 27 bp (28 if the 3! most base 

was an A) mapped (filtering based on terminal A bases accounts for the potentially 

spurious adenines added during the poly-A polymerase mediated reverse transcription 

priming). Only protein-coding genes with 40 or more codons were analyzed, and 485 
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mapping reads were assigned to the CDS if their 5!-most base mapped at or between the 

16th codon and 16 codons before the end, in order to avoid effects of ribosomes paused 

near the start and stop codons (Ingolia et al. 2009; Ingolia et al. 2011). 

 The read mapping length distribution (Supplemental Fig. S3) was determined 

using the iterative trimming method as above on all non-rRNA mapping reads, but 490 

instead beginning with reads trimmed to 35 bp (the shortest read length generated among 

all three datasets) and trimming one nucleotide at a time until reaching 23 nt, retaining 

the longest mapping read length. Barplots were then generated by determining the 

percentage of reads mapping at each length among all mapping reads. 

 495 

Identifying technical biases in riboprofiling data 

 Mapped reads were separated into categories based on whether their 5! ends 

mapped to the first, second, or third reading frame of codons. The relative proportion of 

each base among reads was calculated for the first 27 nucleotides of each read 

(corresponding to the minimum mapping read length; for Supplemental Fig. S6 the 500 

number of nucleotides analyzed was extended accordingly). Nucleotide bias was then 

determined by scaling the proportions of each base within each reading frame by its mean 

proportion across all of the same positions within codons (i.e., all first, second, or third 

positions) in the 27 nucleotides, thereby accounting for codon-position specific 

differences in expected base compositions. The ratios were log2 transformed for the 505 

purpose of plotting. In order to determine the degree of over-representation of adenines at 

the 5! ends of reads, the proportion of adenines in the 1st nucleotide position of mapping 
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reads was compared to the proportion of adenines within the CDSs of analyzed genes 

(see also Supplemental Table 2).  

The corresponding codon bias was determined by a fraction-specific method 510 

analogous to that presented in Fig. 3: The 5′ ends of reads from each fraction were 

mapped separately and the codon-level coverage was determined, retaining only codons 

with 5! mapped reads in both fractions for analysis. Within each gene, codon-level 

coverage values for each fraction were separately scaled by the mean codon-level 

coverage of analyzed codons in order to account for coverage differences among genes. 515 

These scaled values were then log2 transformed (e.g., log2[scaled mRNA coverage] or 

log2[scaled Ribo coverage]) and then applied to the 5! mapping codon and to the eight 

consecutive codons downstream (labeled 0-8; representing the minimum number of 

codons overlapped by a short read), producing a coverage value for each codon at each 

position. In this manner, the mean log2 coverage value for each of the 61 sense codons at 520 

each position was determined. We then asked whether the codons at each position were 

over- or under-represented relative to all nine positions by scaling the log2 coverage value 

of each codon at each position by the mean log2 coverage value across all nine positions – 

producing a new value that represents the degree to which each of the 61 sense codons 

deviates from its mean representation across the length of the read. To represent the 525 

degree to which each position deviated from expected codon frequencies in a graphical 

manner, we calculated the coefficient of variation (CV) - the standard deviation 

expressed as a percentage of the mean - across 61 sense codons at each position, where 

higher CVs indicate positions with a greater deviation from expected codon proportions. 

 530 
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Determination of position-specific corrected Ribo coverage 

 In order to account for mapping biases shared between the mRNA and Ribo 

fractions in a position-specific manner, Ribo fraction occupancy was scaled by that of the 

mRNA fraction in the manner outlined in Fig. 3: The 5′ ends of reads from both fractions 

were mapped as detailed above and the codon-level coverage was determined for each 535 

fraction separately, retaining only codons with 5! mapped reads from both fractions for 

analysis. Within each gene, codon-level coverage values were scaled by the mean codon-

level coverage of analyzed codons. These scaled values were used to calculate the 

log2(Ribo/mRNA coverage) for each codon, accounting for shared biases between the 

two fractions. This log2(Ribo/mRNA coverage) was then applied from -8 to +8 codons 540 

relative to the codon overlapped by the 5′ end (representing 17 codons in total). 

Performing this analysis over all positions with data within the coding transcriptome 

produced a distribution of log2(Ribo/mRNA coverage) values for each codon at each of 

the 17 positions representing that codon’s contribution to ribosomal pausing, given its 

position relative to the ribosome-protected fragment (represented in tabular format by the 545 

mean log2[Ribo/mRNA coverage] of each codon at each position). The relative 

enrichment of each codon at each position was determined by scaling its mean 

log2(Ribo/mRNA coverage) value by the mean value of all codons at that position such 

that codons with positive log2 values were enriched relative to expectations and those 

with negative values were depleted. Note that in cases where a codon was not represented 550 

at a particular position, which only occurred when data were downsampled or divided 

into low coverage subgroups, the codon was given a log2(Ribo/mRNA coverage) value of 

0 at that position. 
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 As a negative control the analysis was re-run 100 times on datasets in which the 

genomic coordinates of the 5! ends of mapping reads were preserved, but where the order 555 

of the codons within each gene was shuffled at random. Note that the start and stop 

codons were not included in the shuffling as these were always excluded in the analysis 

by virtue of the exclusion of codons at the beginning and ends of transcripts (see above).   

 

Analysis of factors implicated in affecting rates of translation 560 

Codons were grouped into standard biochemical categories (i.e., positively 

charged, negatively charged, polar non-charged, and hydrophobic) plus an additional 

‘special’ category containing cytosine, glycine, and proline. Wobble base positions in S. 

cerevisiae were obtained from Percudani and Ottonello (1999). Positions within mRNAs 

in either single-stranded or double-stranded conformation were obtained from Ouyang et 565 

al. (2013). The three different optimality measures used were relative synonymous codon 

usage (RSCU; Sharp and Li 1987), absolute adaptiveness (Wi; dos Reis et al. 2004) and 

the normalized translational efficiency scale (nTE; Pechmann and Frydman 2013).  

 

Application of the Charneski and Hurst method 570 

 The rpos/rprec30 values for 61 codon windows centered on the first positive amino 

acid encoding codon of a cluster of positive charges were determined as indicated in 

Charneski and Hurst (2013). The number of positive amino acids in each cluster (one, 

two, three, four or five, and six or more) as well as the maximum number of codons 

spanned by a cluster were also defined as in (Charneski and Hurst 2013). Codon level 575 

coverage was calculated as the mean nucleotide coverage within a codon. To reproduce 
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the results of the original analysis, we combined the replicate data as per their method: 

calculating the nucleotide-level coverage as the average of the coverage determined in 

each replicate. Note however, that unlike the original analysis, we did not map reads to 

the mitochondrial transcriptome as it is unclear whether translational dynamics are 580 

affected by differences between the cytoplasmic and mitochondrial ribosomes and tRNA 

pools. 

  To determine whether a stalling effect was observed within regions without 

positive charges we identified all 61 codon windows that do not contain any positive 

amino acids and treated the center codon as the focal position for calculating the 585 

rpos/rprec30 values. As many such windows are immediately adjacent to one another (e.g., a 

run of 70 non-positive amino acids will contain 10 possible 61 codon windows), we 

subsampled a number positions equivalent to the number of ‘1 positive charge’ clusters 

used to draw panel 1 of Supplemental Fig. S17 at random 100 times from all possible 

windows lacking any positive amino acids, and averaged the rpos/rprec30 values over the 590 

replicate subsamples. To test whether the stalling effect of subsampled data was 

significantly different from the observed data, we performed Kruskal-Wallis rank sum 

tests (see below) on the distribution of AUC values from all of the positions analyzed in 

the actual data in comparison to the mean AUCs of the 100 randomly sampled replicates. 

In order to explore how lower read coverage influenced the appearance of 595 

ribosomal slowing in 61-codon windows, we simulated either 10, 100, or 1000 reads per 

CDS with random probability in their mapping location, and equal probability of any 

length from 27 to 30 nt. The start and stop positions of the CDSs were based on the 

definition of CDS mapping reads used in Charneski and Hurst (2013): i.e. the 5! end of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2014. ; https://doi.org/10.1101/006221doi: bioRxiv preprint 

https://doi.org/10.1101/006221
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

reads mapped between 16 nt before the start and 14 nt before the end of the annotated 600 

CDSs.  

 

Statistics 

 All statistics were performed using R version 2.14.0 (R Core Team 2013) in 

addition to custom Perl scripts. 95% confidence intervals were empirically determined 605 

from the distribution of log2(Ribo/mRNA coverage) values from the data using the ‘boot’ 

package (Davison and Hinkley 2008). Kruskal-Wallis tests were performed using 10,000 

permutations of the data as implemented in the ‘coin’ package (Hothorn et al. 2008). 

 

  610 
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Figure Legends 

Figure 1. Defining positions relative to the 5!  end of riboprofiling reads. Following 
the mapping approach of Ingolia (2010), ribosomes (large and small subunits represented 
by grey circles) protect at least 27 nt of mRNA, corresponding to a minimum of nine 800 
codons. Both nucleotides and their overlapping in-frame codons were counted from 5! to 
3! as shown (arbitrary codons are indicated in alternating blue and red for clarity). In the 
figure, the ribosome protected fragment begins in the first reading frame within a codon, 
and therefore codons are in-frame relative to nucleotides. However, for reads mapping to 
the second or third reading frames, while nucleotide counting begins at the first 805 
nucleotide, codon counting remains in-frame with the first codon, 0, corresponding to the 
one containing the first nucleotide. For reference, the orange letters indicate the codons 
that previous studies have indicated as the exit-tRNA (E-site), the peptidyl-tRNA (P-site), 
and aminoacyl-tRNA (A-site) sites, respectively (Ingolia et al. 2009; Stadler and Fire 
2011; Qian et al. 2012; Li et al. 2012; Zinshteyn and Gilbert 2013). 810 
 
Figure 2. Patterns of nucleotide and codon representation across the three datasets. 
Reads were separated into those whose 5! ends map to the first, second, or third reading 
frame within codons (frame 1, 2, or 3). The fold enrichment of each nucleotide was 
determined by dividing its number of counts at each position by the mean number of 815 
counts at positions within same reading frame across the 27 nucleotides analyzed, thereby 
accounting for differences in expected nucleotide proportions among reading frames 
within codons. Enrichment is plotted as colored lines in log2 scale: red, adenine; blue, 
cytosine; green, guanine; yellow, thymine. Each codon position overlapped by each read 
was also determined by identifying the nine consecutive codons beginning from the 5! 820 
end as indicated in Fig. 1. The grey bars indicate the coefficient of variation (CV) as a 
measure of the degree to which each position deviates from the expected background 
frequency of the 61 sense codons; codon position 4 is indicated for reference. Both 
fractions in all datasets show similar degrees of nucleotide and codon biases at the 5! ends 
of reads, though the biases in the Ingolia et al. Ribo data are generally more pronounced. 825 
The Ribo fractions show deviations from expected codons frequencies at internal read 
positions that are not shared by the mRNA fraction – in particular at codon 4 of first 
frame mappers. Third frame mappers in all datasets show a +1 codon shift in pattern. 
Note that the Ingolia et al. starved data show strong agreement with the rich data 
(Supplemental Fig. S4). 830 
 
 
Figure 3. Steps in our calculation of corrected Ribo coverage. We analyzed Ribo 
fraction reads in a position-specific manner that controlled for shared biases between the 
two fractions while making no a priori assumptions about which codon position(s) may 835 
be most important in explaining patterns of coverage. i) The 5′ ends of reads were 
mapped and codon-level coverage determined from each fraction separately. Only sites 
with data from both fractions were considered (excluded codons are indicated in grey). ii) 
To account for coverage differences among genes, codon-level coverage values were 
scaled by the mean codon-level coverage of analyzed sites within each gene. iii) These 840 
scaled values were used to calculate a log2(Ribo/mRNA) coverage ratio for each codon, 
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thereby accounting for shared biases between the two fractions. iv) As increased 
coverage at the 5′ position of ribosome protected fragments could be driven by sequence 
factors up- or downstream, the log2(Ribo/mRNA) coverage was applied to all codons 
from -8 to +8 codons relative to the 5′ end for each analyzed site (position ‘0’ shown by 845 
the green arrow). The expected position of the ribosome is indicated for reference. v) In 
this manner, the mean log2(Ribo/mRNA) value for each codon at each position was 
determined, generating a position-specific weight matrix representing each codon’s 
average occupancy at each of the 17 positions. vi) Finally, the relative enrichment of each 
codon at each position was determined by scaling its mean log2(Ribo/mRNA) coverage 850 
value by the mean value of all 61 sense codons at that position such that codons with 
positive log2 values were enriched relative to expectations and those with negative values 
were depleted (as plotted as in Fig. 4A). 
 
Figure 4. The corrected Ribo coverage reveals a strong enrichment of proline 855 
codons. A) Heatmap of the mean-scaled log2 enrichment of codon positions -8 to 8 in the 
Artieri and Fraser data (the McManus et al. data are qualitatively similar; Supplemental 
Fig. S8). All 61 sense codons are shown in alphabetical order indicated by their 
sequences on the left. Enriched codons are indicated by an increasing intensity of yellow 
color while depleted codons are blue. For reference, colored boxed to the right of each 860 
row indicate the biochemical category to which the codon belongs (color-category 
correspondences are indicated at the top of panel B). Codon position 4 is an outlier in 
terms of enrichment. B) Bar plots indicating the log2 enrichment values at position 4 of 
both the Artieri and Fraser and McManus et al. datasets. Codons are organized by amino 
acid using single-letter designations below and grouped by biochemical type as indicated 865 
at the top of the panel. Individual codons for each amino acid are in alphabetical order. 
95% confidence intervals around the scaled enrichment values are indicated at the top of 
each bar. No significant enrichment is observed among all codons belonging to a 
particular biochemical category, while a general paucity of representation is observed for 
the hydrophobic category. However, proline (P) codons are among the most highly 870 
enriched in both datasets, and are significantly more enriched than any other amino acid 
(Kruskal-Wallis rank sum test, p < 10-15).  
 
Figure 5. The rpos/rprec30 method of Charneski and Hurst. As a measure of the stalling 
effect of a codon (or group of codons beginning) at position 0, A) the occupancy of all 875 
codon positions (rpos) from 30 codons upstream (position -30) to 30 codons downstream 
(position 30) of the putative stalling codon was divided by the mean occupancy of 
upstream codons -30 to -1 (rprec30, indicated by the bracket). B) This produced a 
normalized pausing value (rpos/rprec30), where a value of 1 represents the average rate of 
translation. C) After averaging the rpos/rprec30 values among all similar groups of codons, 880 
the AUC (indicated by the shaded blue area) of the mean-normalized occupancy values 
from position 0 until the position where mean occupancy returned to the average was 
used as a measure of the stalling effect (if positive).  
 
Figure 6. No evidence of stalling at positive amino acids. We recalculated Charneski 885 
and Hurst’s (2013) Figure 5 using either A) the Artieri and Fraser or B) the McManus et 
al. data. All analysis of mapped reads was performed as in the original manuscript, where 
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clusters of increasing numbers of positive amino acid encoding codons were identified 
within the range bounded by pairs of inverted triangles. The horizontal gray line indicates 
the average rate of translation. The error bars represent ± the standard error of the mean. 890 
No additive effect is observed in either high-coverage data set, in contrast to the Ingolia 
et al. data (Supplemental Fig. S17). C) The data from Charneski and Hurst (2013) Figure 
5 (black) compared to the mean rpos/rprec30 generated from 100 random samplings of 61-
codon windows devoid of any positive amino acid encoding codons (red). The average 
stalling pattern of windows lacking any positive charges is stronger than clusters of one 895 
to three positive charges and is not significantly different from clusters of more than 
three. Therefore the observed stalling effect of positive amino acids is not greater than 
what would be expected by chance within the Ingolia et al. data.  
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Supplemental Materials 
 
Comparison of 5! and 3! biases among the three datasets 

 The most pronounced deviations from expected nucleotide frequencies were 

observed at the 5! ends of both fractions in all three datasets, though 3! biases were also 

present in some cases (see below) (Fig. 2; Supplemental Figs S4-S6). The specific 

patterns of bias observed differed in a manner likely reflecting differences in library 

construction protocols used. Both the Artieri and Fraser and Ingolia datasets performed 

circularization of the DNA products of E. coli poly-A polymerase mediated reverse 

transcription, leading to most reads containing spurious adenine nucleotides at their 3! 

ends (Artieri and Fraser 2014; Ingolia et al. 2009). Therefore, mapping was accomplished 

by iteratively trimming the 3! ends and retaining the longest mapping length within the 

acceptable range while discarding reads that mapped at either longer or shorter lengths. 

As a consequence, reads tended to map with greater length if they aligned to regions of 

the genome that happen to harbor adenines in the 3!-most end of the mapping location, as 

revealed by an increasing relationship between 3! adenine bias and read mapping length 

in some libraries (Supplemental Fig. S6). Unlike 5! bias, this cannot affect the position of 

mapped reads, but it did increase the base-level coverage of adenine residues, which 

could create spurious signal in some analyses.  

In contrast to the two other datasets, the McManus et al. data employed a 

universal miRNA linker in order to prime reverse transcription, which appears to have 

mitigated the 3! adenine bias (McManus et al. 2014) (Fig. 2, Supplemental Fig. S6). 

However, this appears to have introduced a more strongly pronounced bias against 

cytosine at the 4th nucleotide position as compared to the other datasets. We note that the 
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McManus et al. protocol also differed from the two other datasets in the manner of 

sucrose gradient mediated isolation of the 80s monosome, as well as in the specific 

details of the size-selection step subsequent to the addition of the miRNA linker. These 

may explain the more restricted mapping length distribution we observed in the 28 – 31 

nt range in the this dataset (Supplemental Fig. S3). 

 Despite differences among protocols, a preference for adenine in the first 

nucleotide position remained a consistent bias among all datasets, indicating that some 

component of the library preparation protocol common to both fractions preferentially 

selected for certain fragments. However, the ‘non-preferred’ nucleotides varied among 

datasets – cytosine and guanine in the Artieri and Fraser and McManus et al. data vs. 

guanine and thymine in the Ingolia et al. data – which could reflect changes in next-

generation sequencing protocols, reagents, and/or equipment used: The Ingolia et al. 

dataset was generated on the Illumina Genome Analyzer II instrument using reagents 

available at the time, whereas the two more recent datasets were generated using the 

Illumina HiSeq 2000 instrument. 

 

Analysis of nucleotide and codon biases based on mapping read length 

Previous studies have identified reads mapping at a length of 28 nt as being of 

particularly ‘high-quality’ as this corresponds to the fragment length that the ribosome 

should protect from nuclease digestion during library preparation (e.g., Ingolia et al. 

2009; Qian et al. 2012). We therefore reanalyzed reads as in Fig. 2, but this time as a 

function of mapping length (Supplemental Fig. S6). While mapping read length had no 

substantial effect on biases in the mRNA fractions, 28 nt mapping reads from the Ribo 
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fractions of all three datasets showed the strongest internal biases in codon representation 

(though internal enrichment of 27 nt reads were similar). Furthermore, 28 nt reads were 

enriched among first reading frame mappers in all three datasets, whereas third frame 

mappers were enriched for longer read lengths (Supplemental Fig. S7). Hence, if internal 

biases in codon representation represent a signal of ribosome stalling, reads ≤ 28 nt 

appeared to be optimal for detecting such a phenomenon.  

 

Applying the corrected Ribo coverage method to the data of Ingolia et al. 

 When the corrected Ribo coverage method was applied to the two datasets 

generated by Ingolia et al., we did not observe a consistent enrichment of proline codons 

at position 4 (the P-site), in contrast to the higher-coverage datasets (Supplemental Fig. 

S11). Furthermore, we could not attribute this difference to the lower coverage of these 

data as subsamples of first frame mappers of the Artieri and Fraser or McManus et al. 

data to the level of coverage of the Ingolia et al. rich dataset continued to produce strong 

enrichment of the four proline codons (Supplemental Fig. S11). However, we note that 

features unique to the Ingolia et al. dataset render it qualitatively different from the other 

two sets. First, stronger differences in 5! nucleotide and codon bias were observed 

between the two biological replicates of the Ingolia et al. data as compared to the other 

two sets, suggesting the presence of substantial batch effects across library preparation 

and/or sequencing (Supplemental Fig. S5). Second, in addition to these differences, the 

magnitude of 5! biases in all Ingolia et al. Ribo fractions was substantially higher than 

their corresponding mRNA fractions, indicating that the Ribo fractions harbored more 

significant 5! technical biases that could not be controlled by those observed in the 
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mRNA fraction (in comparison, the 5! biases are of comparable magnitude between 

fractions of the Artieri and Fraser and McManus et al. datasets) (Fig. 2, Supplemental 

Figs. S4-S6).  

We argue that these biases are technical and not biological in nature because they 

were highly specific to the 5! ends of Ribo reads and were not observed at adjacent 

nucleotide/codons sites, either upstream or downstream, as would be expected if, for 

instance, previously translated amino acids were hindering ribosomal progression due to 

interactions with the negatively charged exit tunnel (Lu et al. 2007) (see Supplemental 

Fig. S18). Therefore, we suggest that strong patterns of bias observed at the 5! ends of the 

Ribo reads in the Ingolia et al. data – as compared to the Artieri and Fraser or McManus 

et al. data – may have led to restricted patterns of mapping that interfered with the ability 

to detect patterns of over-represented codons at other sites. 

  

Analysis of RNA secondary structure 

Previous studies reported a correlation between ribosomal occupancy of the 

Ingolia et al. data and the presence of secondary structure in mRNAs (Tuller et al. 2011; 

Charneski and Hurst 2013). Therefore we determined whether such a relationship was 

observed in the Artieri and Fraser and McManus et al. datasets. We obtained 

experimentally determined structures for 2,839 S. cerevisiae mRNAs (Ouyang et al. 

2013) and tested whether the local secondary structure (from 10 codons upstream to 20 

codons downstream of the read) was correlated with coverage of the 5! ends in the Ribo, 

mRNA, or corrected Ribo reads (Supplemental Fig. S13; See Supplemental Methods).  
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We observed that the overall correlation between read occupancy and secondary 

structure was weak at all positions (Supplemental Fig. S13). However, the strongest 

correlations were observed at codons corresponding to the 5! and 3! ends of reads, 

coinciding with the locations of the most pronounced nucleotide biases (Fig. 2). For 

example, in the correlation with the mRNA fraction of the Artieri and Fraser data, 

secondary structure at codons corresponding to the ends of reads were negatively 

correlated with occupancy, as expected from the over-representation of adenine-rich 

codons at these positions, which do not form strong base-pairing interactions. Despite a 

preference for adenines at the 3! ends of reads, the Ribo fraction showed a slight increase 

in the correlation between secondary structure at codon position 9 and read occupancy 

(Supplemental Fig. S13); however, it remained weaker than the correlations observed in 

the mRNA fraction. The McManus et al. data showed the strongest correlations at the 5! 

ends, also consistent with terminal nucleotide biases dominating the signal. Therefore, 

our results suggest that if there is a correlation between ribosomal occupancy and the 

presence of secondary structure, it is quite weak relative to the general variation in 

ribosomal occupancy across mRNAs – so much so that the signal is overwhelmed by the 

inherent biases introduced during the library construction process (see Discussion of 

main text).  

 

The rate of translation is not correlated with codon optimality 

 We failed to find a significant negative correlation between corrected Ribo 

occupancy and any of three different measures of codon optimality at either position 4 

(Supplemental Fig. S14) or position 5 (Supplemental Fig. S15). This agreed with other 
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riboprofiling-based analyses performed in bacteria (Li et al. 2012), yeast (Qian et al. 

2012; Zinshteyn and Gilbert 2013), and mouse (Ingolia et al. 2011). In contrast, those 

studies that reported such a relationship focused primarily on the association between 

non-optimal codons and increased ribosomal occupancy at the 5! ends of genes (Tuller et 

al. 2010b; 2011), rather than a direct association between Ribo fraction occupancy and 

non-optimal codons. In addition, a recent systematic study of translation in E. coli using 

synthetically designed N-terminal codon compositions found that the preference for non-

optimal codons near start codons could be explained by their reduced secondary 

structure, enabling efficient translational initiation (Goodman et al. 2013). Therefore, our 

analysis supports the notion that the pool of tRNAs and transcriptome-wide CUB are 

adapted for efficient peptide synthesis in vivo, and that previous in vitro studies that 

found a strong relationship between CUB and translation rate may reflect circumstances 

that deviate significantly from those found in the cell (Plotkin and Kudla 2011; Qian et al. 

2012). 

 

Reanalysis of the approach of Charneski and Hurst 
 

To illustrate the read coverage dependence of the method of Charneski and Hurst 

(2013), consider a situation where data are extremely sparse, such that no more than a 

single read maps to any 61 codon window (which is the size of the analysis space 

employed in their manuscript, representing 30 codons upstream of a putative stalling 

codon, to 30 codons downstream; Supplemental Fig. S19). Three possible mapped reads 

are shown to illustrate that read mapping position strongly influences its contribution to 

the average rpos/rprec30 value. Importantly, averaging over all possible single read mapping 
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positions produces a pattern that is highly characteristic of what is interpreted as the 

typical ‘stalling’ pattern observed in several of Charneski and Hurst’s figures. This bias 

towards producing a signature of stalling can be further illustrated by generating 

randomly positioned reads within the analyzed annotation, with length randomly chosen 

between 27 and 30 nt, and with increasing levels of coverage. When averaging over all 

possible 61 codon windows, a stalling pattern very similar to those observed in the 

Charneski and Hurst analysis manifests at low read coverage, but largely disappears at 

high coverage (Supplemental Fig. S19). Tellingly, averaging over all possible codon sites 

in the analyzed data produces a pattern very similar to that observed from 100 random 

reads assigned to each gene (note that the average read depth of the data is ~260 reads per 

gene and the reads are not randomly distributed as in the simulated data). It is also worth 

noting that the biases observed in this approach also explain the consistent pattern of 

increased coverage at the left end (near the -30 position) of almost all figures in the 

Charneski and Hurst manuscript, which the authors attribute to “some residual slowing 

[…] due to slowing elements  (e.g., positive charges) that may be encoded just 

upstream…” (pg. 4). It is clear from simulated data that this pattern results from the edge 

effect of low coverage reads that partially overlap the most upstream codons of the 

window being considered. 

We also note that the most pronounced codon level biases observed in the Ingolia 

et al. Ribo fractions are an enrichment of positive amino acid encoding codons at the 5! 

end of reads, likely the result of the most abundant positive charge encoding codons 

being A rich (particularly among first frame mappers): lysine, AA[A/G], and arginine, 

AG[A/G] (Supplemental Fig. S18). Irrespective of the coverage sensitivity of the 
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rpos/rprec30 method, this bias could explain why the Ingolia et al. data produce an 

accumulation of reads when positive amino acid encoding codons are at and downstream 

of the focal codon. 

 

Supplemental Methods  

Analysis of mRNA secondary structure 

 We obtained the data of Ouyang et al. (2013), which includes binary designations 

for each base in 2,839 of the mRNA transcripts analyzed in this study, identifying it as 

single or double-stranded according to the transcriptome-wide measurements of Kertesz 

et al. (2010). Using the codon-specific occupancy for the 5! end of first position mapping 

reads, we determined the correlation between occupancy at codon position 0, 

corresponding to the 5! end of the read, and secondary structure from codon position -10 

to +20. Codon-level secondary structure was scored as the average structural value of the 

three nucleotides in each codon, where a single-stranded nucleotide was given a value of 

0 and a double-stranded nucleotide, 1. This correlation was determined independently 

using the mRNA and Ribo fractions in addition to the corrected Ribo coverage in order to 

determine whether biases in either fraction drove any patterns observed in the corrected 

data. 

 

Analysis of Ribo fraction codon-level biases 

 In order to generate Supplemental Fig. S18, we followed the method to generate 

corrected Ribo coverage, but without correction by the mRNA fraction: The 5′ ends of 

reads from the Ribo fraction were mapped as detailed in the methods section and the 
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codon-level coverage was determined, retaining only codons with 5! mapping data for 

analysis. Within each gene, codon-level coverage values were scaled by the mean codon-

level coverage of analyzed codons in order to account for coverage differences among 

genes. These scaled values were then log2 transformed (e.g., log2[scaled Ribo coverage]) 

and then applied from -8 to +8 codons relative to the codon overlapped by the 5′ end 

(representing 17 codons in total). Performing this analysis over all positions with data 

within the coding transcriptome produced a distribution of log2(scaled Ribo coverage) 

values for each codon at each of the 17 positions, which were then combined into 

biochemical categories. The relative enrichment of each category at each position was 

determined by scaling its mean log2(scaled Ribo coverage) value by the mean value of 

the five categories at that position such that categories with positive log2 values were 

enriched relative to expectations and those with negative values were depleted. Error bars 

were calculated as the standard error of the mean among all measurements of codons 

within a biochemical category at each position. 
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Supplemental Tables 
 
Supplemental Table S1. Number of reads in each dataset mapping to the S. 
cerevisiae annotation used in the current analysis. 
 

Sample Fraction Replicate Mapped Reads 
Artieri and Fraser  Ribo 1 26,648,753 

! !
2 17,102,202 

!
mRNA 1 10,128,586 

! !
2 21,137,349 

McManus!et!al.! Ribo 1 6,246,282 
!! !! 2 7,580,892 
!! mRNA 1 2,153,414 
!! !! 2 2,050,551 

Ingolia et al. rich Ribo 1 711,601 

! !
2 958,424 

!
mRNA 1 288,061 

! !
2 1,340,197 

Ingolia et al. starved Ribo 1 350,787 
!! !! 2 724,985 
!! mRNA 1 127,623 
    2 796,049 
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Supplemental Table S2. Proportion of adenine in the CDS as a function reading 
frame and expression level. The proportion of adenine within the CDS presented in the 
main text is calculated as the proportion among all nucleotides. As more highly expressed 
genes show greater CUB, this value will vary based on the subset of genes analyzed as 
well as the reading frame within each codon. However, the proportion of adenine varies 
within a narrow range, especially among first frame mappers. Expression quartiles were 
determined based on the mean RPKM among both replicates of the Artieri and Fraser 
data.    
 
 
Expression 

Quartile 
Reading 
Frame 

Percent 
Adenine 

1 1 33.5 

 
2 33.1 

 
3 29.3 

2 1 34.3 
  2 36.1 
  3 30.1 
3 1 33.3 

 
2 35.9 

 
3 29.4 

4 1 31.5 
  2 35 
  3 26.9 
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Supplemental Table S3. SRA sample ID numbers for Artieri and Fraser (2014) data 
used in the analysis. 
 

Sample Source SRA Sample ID 

mRNA Rep. 1 Artieri and Fraser mixed S. cerevisiae/S. paradoxus sample SRS509272 
mRNA Rep. 2 Artieri and Fraser S. cerevisiae sample SRS469853 
Ribo Rep. 1 S. cerevisiae sample generated for the present study SRS514738 
Ribo Rep. 2 Artieri and Fraser mixed S. cerevisiae/S. paradoxus sample SRS509342 

    SRS509345 
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Supplemental Figures 
 
 

 
 
Supplemental Figure S1. Inter-replicate correlation of expression level estimates for 
the analyzed datasets. Only genes with Reads Per Kilobase per Million mapped reads 
(RPKM) > 0 are plotted. mRNA fractions are plotted in the row above, while Ribo 
fractions are indicated below. Spearman‘s ρ and associated p values are indicated in each 
panel. The lower ρ values in the Ingolia et al. data likely reflect the lower number of 
mapping reads in that dataset (Table S1). Note that in the original Ingolia et al. (2009) 
analysis, correlations were calculated using only genes with ≥ 128 mapping reads, which 
improves correlation coefficients.  
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Supplemental Figure S2. Correlation of expression levels between the datasets used 
in the study. The mean RPKM of the two replicates generated in each study is plotted 
along with Spearman correlation coefficients, ρ, and associated p values. The slightly 
lower coefficient of correlation for the mRNA data may reflect use of different methods 
to extract mRNA from the raw lysate (Ingolia et al. 2009; Artieri and Fraser 2014; 
McManus et al. 2014). 
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Supplemental Figure S3. Read mapping length distribution for each of the analyzed 
datasets. Variation in the length distribution of the mRNA fraction (red) is likely driven 
by the size and precision of the fragment excised from the denaturing SDS-PAGE gel 
during library construction (Ingolia 2010). In contrast, enrichment of ~28 nt fragments is 
expected in the Ribo fraction (blue) as this is the length of mRNA occupied by a 
translating ribosome (Ingolia et al. 2009). Biological replicates are plotted next to one 
another where replicate 1 is plotted without hashes and replicate 2 is hashed, resulting in 
a darker shade. The distribution of the McManus et al. data is more compact and excludes 
short-length reads to a greater degree than other datasets. This is possibly due to their 
unique use of universal miRNA linkers followed by a modified size-selection protocol 
(see above) (McManus et al. 2014). 
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Supplemental Figure S4. Reproduction of Fig. 2 showing that the Ingolia et al. 
starved data are qualitatively similar to the rich data.  
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Supplemental Figure S5. Comparison of patterns of bias across replicates for first 
codon position mappers. Patterns of bias were consistent across replicates of both 
fractions of the Artieri and Fraser and McManus et al. data (top). In the Ingolia et al. data 
(bottom), 5! biases were much more pronounced in the first as compared to the second 
replicate (note the difference in scale for the CV in background normalized codon 
representation used in replicate 1). In addition to differences between replicates in the 
Ingolia et al. data, patterns of 5! bias among the Ribo fractions were of greater magnitude 
relative to the mRNA fractions as compared to the higher-coverage datasets.   
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Supplemental Figure S6. Reanalysis of patterns of nucleotide and codon bias among 
reads binned by mapping length. The grey bars are plotted for the 9 codon positions (0-
8) corresponding to 27 nt as in Fig. 2, with the fourth codon position indicated for 
reference. Five prime patterns of bias are similar within fractions across mapping lengths. 
However, 3! codon bias decreases with read length in the Artieri and Fraser and Ingolia et 
al. data due to biases in adenine content overlapping codon position 8 as a result of the 
use of poly-A polymerase to prime reverse transcription (see above). Significantly, in all 
three datasets, the strongest degree of internal codon bias in the Ribo fraction is observed 
among 28 nt mapping reads (with 27 nt reads often showing a similar pattern). This may 
be related to the general enrichment of first frame mapping reads among 28 nt mappers 
(Supplemental Fig. S7).  
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Supplemental Figure S7. Ribo fraction reads mapping at different lengths show 
differential enrichment among first, second and third frame mappers. All three 
fractions show an enrichment of 28-29 nt mapping reads among first frame mappers, 
which make up the majority of reads. Third frame mappers tend to be enriched for 29-30 
nt mapping reads. Few reads map to the second reading frame in any dataset. The first, 
second, and third reading frames are shown in red, blue and yellow, respectively. 
Biological replicates are plotted next to one another where replicate 1 is plotted without 
hashes and replicate 2 is hashed, resulting in a darker shade. 
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Supplemental Figure S8. Patterns of corrected codon enrichment at positions -8 to 8 
for first, second, and third reading frame mapping reads for the Artieri and Fraser 
and McManus et al. data. All three frames continue to show substantial bias at codon 
position 0, corresponding to the 5! end of the read, indicating that despite controlling for 
shared biases between fractions, substantial fraction-specific 5! end biases remain. 
However, first position mappers of both datasets show a clear pattern of internal 
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enrichment at position 4, previously defined as corresponding to the ribosomal P-site. 
Second frame mappers show a weaker pattern of enrichment corresponding to the same 
codons, but it is distributed among positions 4 and 5, suggesting that precise location of a 
potentially active ribosomal site is less clearly defined in relation to the 5! end among 
reads mapping in this frame. Similarly, reads mapping to the third frame also show a 
qualitatively similar pattern of codon enrichment to first frame reads, but the most highly 
enriched codon position is 5. This supports our observation that codon positions of third 
frame mappers tend to be offset by +1 codon (see main text; Fig. 2). Third frame 
mapping reads also show stronger patterns of bias among codon positions 1 and 2, which 
are qualitatively consistent among the two datasets. 
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Supplemental Figure S9. Figure 4A redrawn from the mean of 100 permutations of 
the codon positions within transcripts while maintaining read mapping positions. 
Permutations are shown using either the Artieri and Fraser or McManus et al. data. All 
patterns observed in the actual data disappeared. The remaining very weak 
enrichment/depletion represents the underlying bias in the dataset that would be observed 
regardless of the biological factors influencing ribosomal occupancy.  
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Supplemental Figure S10. Patterns of corrected codon enrichment at positions -8 to 
8 for first, second, and third reading frame mapping reads for the Ingolia et al. data. 
Patterns of enrichment in the Ingolia et al. data (rich, above; starved, below) differ 
substantially from those observed in the higher coverage datasets. For instance, first 
frame mappers show overwhelming codon bias at position 0 (codons beginning with A or 
C are universally enriched, while those beginning with G and T are depleted) whereas no 
upstream, nor downstream positions show strong biases as was the case for position 4 in 
the Artieri and Fraser and McManus et al. data. Second and third frame mapping reads 
also show relatively high bias at position 0 relative to other codon positions; however, 
their magnitude appears to be much smaller, likely due to noise introduced by the small 
overall number of reads mapping in these frames (Supplemental Fig. S7). 
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Supplemental Figure S11. Bar plots indicating the log2 enrichment values at position 
4 of first frame mappers. A) combined replicates of the Ingolia et al. datasets and B) 
Artieri and Fraser and McManus et al. datasets downsampled to the same number of 
reads as used to generate the Ingolia et al. rich panel. Codons are organized by amino 
acid using single-letter designations below and grouped by biochemical type as indicated 
at the top of the panel. Individual codons for each amino acid are in alphabetical order. 
95% confidence intervals around the scaled enrichment values are indicated at the top of 
each bar. Though the Ingolia et al. data showed enrichment/depletion at similar codons to 
the higher coverage datasets, we did not observe the pronounced enrichment of proline 
(P) codons. However, this was not explained by the reduced coverage of the Ingolia et al. 
data, as subsamples of the Artieri and Fraser and McManus et al. data still showed a clear 
enrichment of all proline encoding codons (see discussion above). 
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Supplemental Figure S12. Patterns of codon enrichment at position 4 are consistent 
across expression levels. Genes were divided into expression quartiles based on the 
inter-replicate mean RPKM estimated from the mRNA fraction of the Artieri and Fraser 
data. Fewer codons are covered by reads in low expression genes leading to larger 95% 
confidence intervals, yet all proline codons remain enriched at all four quartiles. Results 
are qualitatively similar in the McManus et al. dataset (not shown).  
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Supplemental Figure S13. Spearman’s correlation coefficients between mRNA 
secondary structure and 5!  mapping codon coverage. Correlations are shown for the 
mRNA and Ribo fractions, as well as the corrected Ribo coverage (Ribo/mRNA). The 
presence of secondary structure at each codon from 10 codons upstream to 20 codons 
downstream was independently correlated with occupancy at the 5! mapping codon 
(position 0). The grey shading indicates the 9 codons completely overlapped by each 
read. The overall correlation between read occupancy and secondary structure was weak 
at all positions in both datasets. However, it was clear that terminal nucleotide biases, 
particularly 5! over-representation of adenine, which is disfavored in terms of forming 
secondary structure, overwhelmed other signals. In the Artieri and Fraser data, terminal 
adenine biases at both ends contributed to the positive correlations at positions 0 and 9 in 
the corrected Ribo coverage panel. The McManus et al. data lacked the 3! adenine bias 
contributing to an increased positive correlation only at the 5! end of reads. This was 
unlikely to be caused by secondary structure hindering ribosome progression since the 5! 
ends of reads represent the trailing edge of the ribosome footprint; secondary structure 
would be more likely to exert an effect at the leading edge. 
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Supplemental Figure S14. Comparison of enrichment between Watson-Crick 
(I:C/G:C, white) and wobble pairing (I:U/G:U, grey) codon-pairs. Amino acids using 
inosine (I, left) or guanine (G, right) wobble pairing are indicated. The significance of a 
Kruskal-Wallis rank sum test of the difference between enrichment of Watson-Crick and 
wobble codons is shown above each amino acid if p < 0.05 after Bonferroni correction 
for multiple tests (*, p < 0.05; **, p < 0.01; ***, p < 0.001). At position 4 (Pos. 4, top) 
there appeared to be an inconsistent general increase in enrichment of wobble pairing 
geometry, particularly in the case of the McManus et al data. However, at position 5 (Pos. 
5, bottom) in all cases where there was a significant difference in the enrichment, 
Watson-Crick pairing was favored. Therefore, there did not appear to be a consistent 
favoring of either geometry. Furthermore, the relative enrichment differences between 
pairing geometries appeared to be overwhelmed by variation at individual codons 
themselves, irrespective of whether they use Watson-Crick or wobble pairing (e.g., Fig. 
4A). 
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Supplemental Figure S15. No significant correlation among three different measures 
of codon optimality and log2 corrected Ribo enrichment at codon position 4 (P-site). 
Spearman correlation coefficents and associated p-values are shown in each box. A 
negative correlation would be expected if non-optimal codons slow ribosomes. RSCU, 
relative synonymous codon usage (Sharp and Li 1987); Wi, absolute adaptiveness (dos 
Reis et al. 2004); nTE, normalized translational efficiency scale (Pechman and Frydman 
2013).  
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Supplemental Figure S16. No significant correlation among three different measures 
of codon optimality and log2 corrected Ribo enrichment at codon position 5 (A-site). 
Spearman correlation coefficents and associated p-values are shown in each box. A 
negative correlation would be expected if non-optimal codons slow ribosomes. RSCU, 
relative synonymous codon usage (Sharp and Li 1987); Wi, absolute adaptiveness (dos 
Reis et al. 2004); nTE, normalized translational efficiency scale (Pechman and Frydman 
2013). Note that the correlation between relative enrichment and Wi for the McManus 
data (p = 0.042) is no longer significant after correction for multiple tests. 
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Supplemental Figure S17. Reproduction of the additive stalling effect observed in 
Figure 5 of Charneski and Hurst (2013) confirming that the same analysis method 
was used in the present study. 
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Supplemental Figure S18. Positive amino acids are not enriched among upstream 
codons in the uncorrected Ribo fractions in any of the datasets, as would be 
expected if ribosomes were slowed as these codons passed through the exit tunnel. 
Enrichment was determined at the level of biochemical class using the Ribo fraction 
alone without correcting by the mRNA fraction (see Supplemental Methods). Reads from 
all read lengths and reading frames were used as in the analysis of Charneski and Hurst 
(2013). Error bars indicate the standard error of the mean. Biochemical classes are 
indicated above. Positive amino acids were not enriched in positions -8 to -1 in any 
dataset. However, the strongest levels of enrichment in both Ingolia et al. datasets are 
among positive amino acid encoding codons at position 0, which could lead to 
enrichment at and downstream of the focal codon used by Charneski and Hurst (Fig. 5; 
see above). The McManus et al. dataset also showed enrichment among positive amino 
acids at position 0; however, this is not as strong as the enrichment of special codons at 
position 4, of which proline is a member. 
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Supplemental Figure S19. The rpos/rprec30 method of Charneski and Hurst (2013) is 
biased towards producing false signals of stalling when read coverage within 
windows is sparse. (A) When only a single read overlaps the 61 codon window of 
investigation, its position (indicated by the red bar) influences its contribution to the 
overall mean rpos/rprec30 value. Note that codon level coverage was calculated as the 
average coverage of its three nucleotides, allowing codons overlapping the ends of reads 
to have fractional coverage. Averaging over all possible 28 nt single read positions 
produced a characteristic ‘saddle’ pattern of stalling in the absence of any such an effect. 
Note that codon positions 8 to 30 are greyed out as windows containing single reads 
spanning them will produce rprec30 values of 0 leaving their rpos/rprec30 values undefined. 
(B) Generating randomly positioned reads of length randomly chosen between 27 and 30 
nt and averaging over all possible 61 codon windows produced signals of strong stalling 
that only disappeared at high coverage. Each gene was assigned the indicated number of 
reads. The observed data also showed an overall mean pattern of stalling when averaging 
over all available positions. Note that the observed data have a mean coverage of ~260 
reads per gene; however, this coverage is not evenly distributed as in the simulated data, 
and therefore does not show a pattern intermediate between that of 100 and 1000 reads 
per gene. 
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Supplemental Figure S20. Downsampling the Artieri and Fraser or the McManus et 
al. data increases the ‘stalling’ effect detected. Mapped reads from both replicates of 
the two datasets were randomly sampled down to the mean number of reads mapping 
among replicates of the Ingolia et al. rich data. The average rpos/rprec30 was determined by 
over all 61 codon windows. In order to compare the same data directly, only sites that had 
mapping reads in both the original data and the subsampled data were used for plotting 
(black, original data; red, subsampled data). The average stalling pattern increases 
substantially in both datasets, highlighting the sensitivity of the method to sparse 
coverage.  
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Supplemental Figure S21. Our mapping approach identified S. cerevisiae reads in 
the multiplexed high-coverage data of Artieri and Fraser (2014). The high correlation 
between expression levels (in RPKM) of S. cerevisiae genes in the S. cerevisiae + S. 
paradoxus multiplexed Ribo fraction sample and the S. cerevisiae only sample indicated 
that our mapping method robustly identified S. cerevisiae-specific reads. Only a small 
number of genes (< 10) show signs of higher expression in the multiplexed sample, 
indicating misallocation of reads. This could not have been a source of bias in our 
analysis given the high-concordance between replicates of the data, where the first 
replicate was not multiplexed, whereas the second was (Supplemental Fig. S5; 
Supplemental Table S2). 
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