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ABSTRACT
Motivation: Statistical methods development for differential expression
analysis of RNA sequencing (RNA-seq) requires software tools
to assess accuracy and error rate control. Since true differential
expression status is often unknown in experimental datasets,
artificially-constructed datasets must be utilized, either by generating
costly spike-in experiments or by simulating RNA-seq data.
Results: Polyester is an R package designed to simulate RNA-
seq data, beginning with an experimental design and ending with
collections of RNA-seq reads. Its main advantage is the ability to
simulate reads indicating isoform-level differential expression across
biological replicates for a variety of experimental designs. Data
generated by Polyester is a reasonable approximation to real RNA-
seq data and standard differential expression workflows can recover
differential expression set in the simulation by the user.
Availability and Implementation: Polyester is freely available from
Bioconductor (http://bioconductor.org/).
Contact: jtleek@gmail.com
Supplementary Information: Supplementary figures are available
online.

1 INTRODUCTION
RNA sequencing (RNA-seq) experiments have become increasingly
popular as a means to study gene expression. There are a range
of statistical methods for differential expression analysis of RNA-
seq data (Oshlack et al., 2010). The developers of statistical
methodology for RNA-seq need to test whether their tools are
performing correctly. Often, accuracy tests cannot be performed
on real datasets because true gene expression levels and expression
differences between populations are usually unknown, and spike-in
experiments are costly in terms of both time and money.

Instead, researchers often use computational simulations to
create datasets with a known signal and noise structure. Typically,
simulated expression measurements used to evaluate differential
expression tools are generated as gene counts from a statistical
model like those used in common differential expression tools
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(Robinson et al., 2010; Anders and Huber, 2010). But these
simulated scenarios do not account for variability in expression
measurements that arises during upstream steps in RNA-seq data
analysis, such as read alignment or read counting. Polyester is a
new R package for simulating RNA-seq reads. Polyester ’s main
advantage is that users can simulate sequencing reads with specified
differential expression signal for either genes or isoforms. This
allows users to investigate sources of variability at multiple points
in RNA-seq pipelines.

Existing RNA-seq simulators that generate sequencing reads are
not designed for simulating experiments with biological replicates
and specified differential expression signal. For example, the
rsem-simulate-reads utility shipped with RSEM (Li and
Dewey, 2011) requires a time-consuming first step of aligning real
sequencing reads to develop a sequencing model before reads can
be simulated, and differential expression simulation is not built-
in. Neither FluxSimulator (Griebel et al., 2012) nor BEERS (Grant
et al., 2011) have a built-in mechanism for introducing differential
expression. These simulators also do not provide methods for
defining a model for biological variability across replicates or
specifying the exact expression level of specific transcripts. TuxSim
has been used to simulate RNA-seq datasets with differential
expression (Trapnell et al., 2013), but it is not publicly available.

Polyester was created to fulfill the need for a tool to simulate
RNA-seq reads for an experiment with replicates and well-defined
differential expression. Users can easily simulate small experiments
from a few genes or a single chromosome. This can reduce
computational time in simulation studies when computationally
intensive steps such as read alignment must be performed as part of
the simulation. Polyester is open-source, cross-platform, and freely
available for download at https://github.com/alyssafrazee/polyester.

2 METHODS

2.1 Input
Polyester takes annotated transcript nucleotide sequences as input. These
can be provided as cDNA sequences in FASTA format, labeled by transcript.
Alternatively, users can simulate from a GTF file denoting exon, transcript,
and gene structure paired with full-chromosome DNA sequences. The
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flexibility of this input makes it possible to design small, manageable
simulations by simply passing Polyester a FASTA or GTF file consisting
of feature sets of different sizes. Efficient functions for reading, subsetting,
and writing FASTA files are available in the Biostrings package (Pages et al.,
????), which is a dependency of Polyester.

2.2 RNA-seq data as basis for model parameters
Several components of Polyester, described later in this section, require
parameters estimated from RNA-seq data. To get these parameter estimates,
we analyzed RNA-seq reads from 7 biological replicates in the public
GEUVADIS RNA-seq data set (AC’t Hoen et al., 2013; Lappalainen et al.,
2013). The 7 replicates were chosen by randomly selecting one replicate
from each of the 7 laboratories that sequenced samples in the study. These
replicates represented 7 people from three different HapMap populations:
CEU (Utah residents with Northern and Western European ancestry), TSI
(Tuscani living in Italy), and YRI (Yoruba living in Ibadan, Nigeria). Data
from the GEUVADIS study is available from the ArrayExpress database
(www.ebi.ac.uk/arrayexpress) under accession numbers E-GEUV-1 through
E-GEUV-6. We specifically used TopHat read alignments for these 7
replicates, under accession number E-GEUV-6. The reads were 75bp,
paired-end reads.

Also available for the GEUVADIS data set is a fully processed
transcriptome assembly, created based on the RNA-seq reads from all 667
replicates in the GEUVADIS study without using a reference transcriptome.
This assembly was built using Cufflinks and processed with the Ballgown R
package (Frazee et al., ????), and is available for direct download as an R
object (Leek, 2014).

2.3 Expression models
A key feature of Polyester is that the analyst has full control over the number
of reads that are generated from each transcript in the input file, for each
replicate in the experiment. Polyester ships with a built-in model for these
read numbers, or the model can be explicitly specified by the end user.

2.3.1 Built-in negative binomial read count model The built-in
transcript read count model assumes that the number of reads to simulate
from each transcript is drawn from the negative binomial distribution, across
biological replicates. The negative binomial model for read counts has been
shown to satisfactorily capture biological and technical variability (Anders
and Huber, 2010; Robinson et al., 2010). In Polyester, differential expression
between experimental groups is defined by a multiplicative change in the
mean of the negative binomial distribution generating the read counts.

Specifically, define Yijk as the number of reads simulated from replicate
i, experimental condition j, and transcript k (i = 1, ..., nj ; j = 1, ..., J ;
and k = 1, ..., N ; where nj is the number of replicates in condition j, J
is the total number of conditions, and N is the total number of transcripts
provided). The built-in model in Polyester assumes:

Yijk ∼ Negative Binomial(mean = µjk, size = rjk)

In this negative binomial parameterization, E(Yijk) = µjk and

Var(Yijk) = µjk +
µ2
jk

rjk
, so each transcript’s expression variance across

biological replicates is quadratically related to its baseline mean expression.
The quantity 1

rjk
is commonly referred to as the dispersion parameter in this

parameterization (Robinson et al., 2010; Lawless, 1987; Ismail and Jemain,
2007). The user can provide µjk for each transcript k and experimental
group j. In particular, the user can relate transcript k’s length to µjk .
Also, this flexible parameterization reduces to the Poisson distribution as
rjk →∞. Since the Poisson distribution is suitable for capturing read count
variability across technical replicates (Bullard et al., 2010), users can create
experiments with simulated technical replicates only by making all rjk very
large. By default, rjk =

µjk

3
, which means Var(Yijk) = 4µjk . The

user can adjust rjk on a per-transcript basis as needed, to explore different
mean/variance expression models.

When J = 2, differential expression is set by providing a fold change λ
between the two conditions for each transcript. Initially, a baseline mean µk
is provided for each transcript, and µ1k and µ2k are set to µk . Then, if fold
change λ is provided, µ1k and µ2k are adjusted: if λ > 1, µ1k = λµk ,
and if λ < 1, µ2k = 1

λ
µk . The number of reads to generate from

each transcript is then drawn from the corresponding negative binomial
distribution. When J > 2, the count for each transcript, yijk , is generated
from a negative binomial distribution with overall mean µk and size rjk .
Differential expression can be set using a fold change matrix with N rows
and J columns. Each count yijk is multiplied by entry k, j of the fold
change matrix.

2.3.2 Options for adjusting read counts Users can optionally
provide multiplicative library size factors for each replicate in their
experiment, since the total number of reads (sequencing depth) is usually
unequal across replicates in RNA-seq experiments (Mortazavi et al., 2008).
All counts for a replicate will be multiplied by the library size factor.

GC (guanine-cytosine) content is known to affect expression measurements
for genomic features, and the effect varies from sample to sample (Hansen
et al., 2012; Risso et al., 2011; Benjamini and Speed, 2012). Polyester
includes an option to model this GC bias in the simulated reads: for each
biological replicate in the simulated data set, the user can choose one of 7
built-in GC content bias models, where one model was estimated from each
of the 7 GEUVADIS replicates described in Section 2.2. We calculated these
models using all transcripts from the available GEUVADIS transcriptome
assembly (also described in Section 2.2).

For each replicate, we first calculated transcript-level read counts based
on transcript length, sequencing depth, and the observed FPKM for the
transcript. By definition of FPKM, read counts can be directly calculated
using these inputs. We then centered the transcript counts around the overall
mean transcript count, and modeled the centered counts as a smooth function
of the transcript GC content using a loess smoother with span 0.3, analgous
to smoothers previously used for modeling GC content (Benjamini and
Speed, 2012).

Transcript GC content was calculated as the percentage of the annotated
hg19 nucleotides falling in the boundaries of the assembled transcript that
were G or C. The fitted loess curve defines a function that returns the average
deviation from the overall mean transcript count for a transcript with a given
GC content percentage. If there is no GC bias, the deviation would be 0. GC
bias is added to replicates in Polyester after transcript-level counts have been
specified by increasing or decreasing the count by the predicted deviation
for that transcript’s GC content. The 7 loess curves included in Polyester are
shown in Supplementary Figure 1. Users can also provide loess models from
their own data as GC bias models if desired.

2.3.3 User-defined count models As an alternative to the built-in
negative binomial model, Polyester allows users to individually specify the
number of reads to generate from each transcript, for each sample. This
gives researchers the flexibility to design their own models for biological
and technical variability, simulate complex experimental designs, such
as timecourse experiments, and explore the effects of a wide variety of
experimental parameters on differential expression results. This transcript-
by-sample read count matrix can be created within R and input directly
into Polyester’s read simulation function. This level of flexibility is not
available with Flux Simulator or BEERS, which only allow specification
of the total number of reads per replicate. While it is possible to write
custom command-line scripts that induce differential expression using these
simulators, differential expression models are built in to Polyester. This
approach offers both a built-in model for convenience and an integrated way
to define a custom model for flexibility.

2.4 The RNA Sequencing Process
2.4.1 Fragmentation After the transcripts have been specified and
each transcript’s abundance in the simulated experiment has been set
by determined by an assigned read count for each replicate, Polyester
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Fig. 1. Fragment length distributions available in Polyester. The red
curve shows the fragment length distribution for selected sequencing reads
from the GEUVADIS RNA-seq data set; the blue curve shows a normal
distribution with mean 250 and standard deviation 25. These two fragment
length models are built into the simulator; users can also supply their own.

simulates the RNA sequencing process, described in detail in (Oshlack
et al., 2010), beginning at the fragmentation step. All transcripts present
in the experiment are broken into short fragments. There are two options
for how fragment lengths are chosen: lengths can be drawn from a
normal distribution with mean µfl and standard deviation σfl. By default,
µfl = 250 nucleotides and σfl = 25, but these parameters can be
changed. Alternatively, fragment lengths can be drawn from an empirical
length distribution included with the Polyester R package. This empirical
distribution (Figure 1) was estimated from the insert sizes of the paired-
end read alignments of the 7 GEUVADIS replicates described in Section
2.2, using Picard’s CollectInsertSizeMetrics tool (BroadInstitute,
2014). The empirical density was estimated using the logspline function
in R (Kooperberg and Stone, 1992; Kooperberg, 2013). Users can also
supply their own fragment length distribution in logspline format. This
distribution may be estimated from a user’s data set or varied to measure the
effect of fragment length distribution on downstream results.

Ideally, the fragments generated from a transcript present in the
sequencing sample would be uniformly distributed across the transcript.
However, coverage across a transcript has been shown to be non-uniform
(Mortazavi et al., 2008; Lahens et al., 2014; Li and Jiang, 2012).
In Polyester, users can choose to generate fragments uniformly from
transcripts, or they can select one of two possible positional bias models.
These models were derived by Li and Jiang (2012), and they were based on
two different fragmentation protocols.

The first model is based on a cDNA fragmentation protocol, and reads
are more likely to come from the 3’ end of the transcript being sequenced.
The second model incorporates bias caused by a protocol relying on RNA
fragmentation, where the middle of each transcript is more likely to be
sequenced. Both these models were estimated from Illumina data. Since
the exact data from Li and Jiang (2012) was not made available with the
manuscript, we extracted the data from Supplementary Figure S3 of Li and
Jiang (2012) ourselves, using WebPlotDigitizer (Rohatgi, 2014), which can
estimate the coordinates of data points on a scatterplot given only an image of
that scatterplot. For reference, the figure is reproduced here (Supplementary

Figure 2), created using the probabilities included as data sets (cdnaf.rda
and rnaf.rda) in the Polyester R package.

2.4.2 Sequencing Polyester simulates unstranded RNA-seq reads in a
manner compatible with the Illumina paired-end protocol (Sengupta et al.,
2011). In this protocol, read sequences are read off of double-stranded cDNA
created from mRNA fragments, separated from other types of RNA using
poly-A selection. To mimic this process in Polyester, each fragment selected
from an original input transcript is reverse-complemented with probability
0.5: this means the read (for single-end experiments) or mate 1 of the read
(for paired-end experiments) is equally likely to have originated from the
transcript sequence itself and from the cDNA strand matched to the transcript
fragment during sequencing.

Reads are then generated based on these fragments. A single-end read
consists of the first R nucleotides of the fragment. For paired-end reads,
these first R nucleotides become mate 1, and the last R nucleotides
are read off and reverse-complemented to become mate 2. The reverse
complementing happens because if mate 1 came from the actual transcript,
mate 2 will be read from the complementary cDNA, and if mate 1 came
from the complementary cDNA, mate 2 will come from the transcript itself
(Illumina, 2011). By default, R = 100 and can be adjusted by the user.

Users can choose from a variety of sequencing error models. The simplest
one is a uniform error model, where each nucleotide in a read has the same
probability pe of being sequenced incorrectly, and every possible sequencing
error is equally likely (for example, if there is an error at a nucleotide which
was supposed to be a T, the incorrect base is equally likely to be a G, C, A, or
N). In the uniform error model, pe = 0.005 by default and can be adjusted.

Several empirical error models are also available in Polyester. These
models are based on two dataset-specific models that ship with the GemSim
software (McElroy et al., 2012). Separate models are available for a single-
end read, mate 1 of a pair, and mate 2 of a pair, from two different sequencing
protocols: Illumina Sequencing Kit v4 and TruSeq SBS Kit v5-GA (both
from data sequenced on an Illumina Genome Analyzer IIx). These empirical
error models include estimated probabilities of making each of the 4 possible
sequencing errors at each position in the read. In general, empirical error
probabilities increase toward the end of the read, and mate 2 has higher
error probabilities than mate 1 of a pair, and the TruSeq SBS Kit v5-GA
error probabilities were lower than the Illumina Sequencing Kit v4 error
probabilities (Figure 2; Supplementary Figures 3-7).

Polyester can also handle custom error models: users can estimate an error
model from their own sequencing data with the GemErr utility in GemSim.
Detailed instructions on how to do this in a way compatible with Polyester
are available in the package vignette.

After generating sequencing reads and simulating sequencing error, reads
are written to disk in FASTA format. The read identifier in the FASTA files
specifies the transcript of origin for each read, facilitating assessment of
downstream alignment accuracy. Other pertinent simulation information is
also automatically written to disk for use in downstream analysis: for each
transcript, the transcript name, differential expression status, and fold change
is recorded. For each replicate, the file name, group identifier j, and library
size factor is recorded.

3 RESULTS
3.1 Comparison with Real Data
To show that reads generated with Polyester exhibit realistic
properties, we performed a small simulation experiment based
on data from the 7 GEUVADIS RNA-seq replicates described in
Section 2.2. For the experiment, we randomly selected 10 annotated
genes with at least one highly-expressed isoform. We relied on the
data-driven Cufflinks assembly to determine isoform expression: an
annotated gene was considered to have highly-expressed isoforms
if at least one of its annotated isoforms overlapped an assembled
transcript with an average per-base coverage of at least 20 reads.

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 12, 2014. ; https://doi.org/10.1101/006015doi: bioRxiv preprint 

https://doi.org/10.1101/006015
http://creativecommons.org/licenses/by/4.0/


Frazee et al

0 20 40 60 80 100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Read Position

Er
ro

r P
ro

ba
bi

lit
y

A

●

●

●

●

C
G
T
N

0 20 40 60 80 100
0.

00
0

0.
00

2
0.

00
4

0.
00

6

Read Position

Er
ro

r P
ro

ba
bi

lit
y

C

●

●

●

●

A
G
T
N

0 20 40 60 80 100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Read Position

Er
ro

r P
ro

ba
bi

lit
y

G

●

●

●

●

A
C
T
N

0 20 40 60 80 100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

Read Position

Er
ro

r P
ro

ba
bi

lit
y

T

●

●

●

●

A
C
G
N

Fig. 2. Example error model available in Polyester. Empirical error model
derived from TruSeq SBS Kit v5-GA chemistry, using Illumina Genome
Analyzer IIx, for mate 1 of a paired-end read. Separate panels are shown for
each possible true reference nucleotide. Each panel illustrates the probability
(y-axis) of mis-sequencing that reference nucleotide in a given read position
(x-axis) as any of the 3 other nucleotides, or as an ”N” (indicating an
”unknown” nucleotide in the read). As expected, error probabilities increase
toward the end of the read. Other error models, including the model for mate
2 of the read on this protocol, are illustrated in Supplementary Figures 3-7.
If these error models are not suitable, custom error models can be estimated
from any set of aligned sequencing reads.

The 10 genes that were randomly selected had 15 transcripts
between them: two had 3 isoforms, one had 2 isoforms, and the rest
had 1 isoform. For the 10 genes, we counted the number of reads
overlapping them using the summarizeOverlaps function in the
Bioconductor package GenomicAlignments (Lawrence et al., 2013).
Counts were calculated from the TopHat-aligned reads from the
GEUVADIS study for the 7 replicates described in Section 2.2. We
then separated gene counts into isoform-level counts: we calculated
per-isoform FPKM values for each of the 15 annotated transcripts
using Cufflinks (Trapnell et al., 2010) in its abundance-estimation-
only mode, and used the FPKM ratio between isoforms of the same
gene to generate isoform-level counts to simulate based on the gene
counts we had already obtained.

We then used these isoform-level counts as input to Polyester,
simulating a 7-replicate experiment with the specified number of
reads being generated from each of the 15 selected annotated
transcripts. Two experiments were simulated: one with all default
options (no GC or positional bias, normal fragment length
distribution with mean 250 and standard deviation 25, and uniform
error model with 0.5% error probability) and one with all default
options except for the positional bias model, for which we specified
the rnaf bias model (Figure ??, red line).

The simulated reads were aligned to the hg19 genome with
TopHat, and the coverage track for each experiment, for each
simulated replicate was compared to the coverage track from
the GEUVADIS replicate that generated the simulated replicate’s

read count. For most of the transcripts, coverage tracks for both
experiments looked reasonably similar to the observed coverage
track in the GEUVADIS data set (see Figure 3 for a representative
example).

The simulated coverage tracks were smoother than the coverage
track from the GEUVADIS data set, but major trends in the coverage
patterns within exons were captured by the simulated reads. There
are annotated transcripts for which reads generated by Polyester do
not adequately capture the observed coverage in the GEUVADIS
data set (Supplementary Figure 8), especially when positional bias is
added. This seems to mainly occur in cases where only a very small
part of a large exon appears to be expressed in the data set (as is the
case in Supplementary Figure 8). The coverage for most of the other
transcripts was similar to the real data for most genes and replicates
(Frazee, 2014). Reads simulated with rnaf bias sometimes had
poor coverage for genes consisting of transcripts with many small
exons.

For these 15 simulated transcripts, FPKM estimates were
positively correlated between each simulated data set and the
GEUVADIS data set for each replicate. To get data for this
comparison, we used Cufflinks’s abundance-estimation-only mode
to get expression estimates for the 15 isoforms based on the
simulated reads’ alignments, in the same way we calculated
expression for the GEUVADIS replicates. We calculated correlation
between FPKM estimates of the 15 transcripts for the GEUVADIS
data set and for each of the simulated data sets, using correlation
instead of absolute FPKM because normalization for number of
mapped reads put the sets of FPKMs on different scales.

For the simulation without positional bias, the correlation was
extremely high: the minimum correlation across the 7 replicates
studied was 0.98. However, the FPKM estimates were less
correlated when RNA-fragmentation-related positional bias was
induced: all correlations were positive, but weak (Supplementary
Figure 9). These results generally indicate that realistic coverage
profiles can be obtained with Polyester but that adding positional
bias may cause problems when transcripts have unusual structure.
The correlation in FPKM estimates between the simulated data
sets and the GEUVADIS samples suggests that Polyester captures
transcript level variation in gene expression data.

3.2 Use case: Assessing the accuracy of a differential
expression method

To demonstrate a use case for polyester, we simulated two small
differential expression experiments and attempted to discover the
simulated differential expression using limma (Smyth, 2005).

The first experiment used the default size parameter in
Polyester, which means the variance of the distribution from which
each transcript’s count is drawn is equal to 4 times the mean of
that distribution. In other words, the mean and variance of the
transcript counts are linearly related. We refer to this experiment
as “low variance.” The second experiment set the size parameter
to 1 for all transcripts, regardless of the mean count, which means
each transcript’s mean and variance are quadratically related. This
experiment was the “high variance” experiment.

In both scenarios, the main wrapper function in Polyester
was used to simulate classic two-group experiments. Reads were
simulated from transcripts on human chromosome 22 (hg19 build,
N = 926). µk was set to length(transcriptk)/5, which corresponds
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Fig. 3. Coverage comparison to GEUVADIS data set. We counted the number of reads estimated to have originated from each of these annotated transcripts
from gene CD83 (bottom half of figure) in the GEUVADIS RNA-seq data set, then simulated that same number of reads from each transcript using Polyester
and processed those simulated reads. This figure shows the coverage track (y-axis, indicating number of reads with alignments overlapping the specified
genomic position) for sample NA06985 (black), reads simulated without positional bias (blue), and read simulated using the rnaf bias model (pink). While
the simulated coverage tracks look a bit cleaner than the track from the GEUVADIS data set, many of the major within-exon coverage patterns are captured
in the simulation, especially with the uniform model. For example, both simulations capture the peak at the beginning of the rightmost exon. Note: the gray
dotted line indicates that part of a long intron at that location was not illustrated in this plot.

to approximately 20x coverage for reads of length 100. We
randomly chose 75 transcripts to have λ = 3 and 75 to have
λ = 1/3; the rest had λ = 1. For nj = 7 replicates in each
group j, we simulated paired-end reads from 250-base fragments
(σfl = 25), with a uniform error probability and the default error
rate of 0.005. Simulated reads were aligned to hg19 with TopHat
2.0.13 (Trapnell et al., 2009), and Cufflinks 2.2.1 (Trapnell et al.,
2010) was used to obtain expression estimates for the 926 transcripts
from which transcripts were simulated. Expression was measured
using FPKM (fragments per kilobase per million mapped reads).
We then ran transcript-level differential expression tests using limma
(Smyth, 2005). Specifically, for each transcript k, the following
linear model was fit:

log2(FPKMk + 1) = αk + βkXj + γkWj

where FPKMk is the expression measurement for transcript k,
Xj is 0 or 1 depending on which group sample j was assigned to,
and Wj is a library-size adjustment, defined as the 75th percentile
over all k of the log2(FPKMk + 1) values for replicate j (Paulson
et al., 2013). We fit these linear models for each transcript, and
for each βk, we calculated moderated t-statistics and associated
p-values using the shrinkage methodology in limma’s eBayes
function. We calculated ROC curves based on these p-values and
our knowledge of the true differential expression status of each
transcript. Sensitivity and specificity of the limma differential
expression analysis were high for the small-variance scenario, but

were diminished in the large-variance scenario, as expected (Figure
4).

Since expression fold changes can be explicitly specified in
Polyester, we can also investigate whether those fold changes are
preserved throughout this RNA-seq data analysis pipeline (Figure
5). In general, the coefficient distributions for transcripts not
specified to be differentially expressed were centered around zero,
as expected, since models were fit on the log scale. The coefficient
distributions should have been centered around log2(3) = 1.58 for
the overexpressed transcripts (expression level three times higher
in the first group), and around log2(1/3) = −1.58 for the
underexpressed transcripts (expression level three times higher in
the second group). The overexpressed distributions had means 1.39
and 1.44 in the high- and low-variance scenarios, respectively, and
the underexpressed distributions had means -1.57 and -1.60 in the
high- and low-variance scenarios, respectively. Coefficient estimates
were much more variable in the scenario with higher expression
variance (Figure 5). These numbers are similar to the the specified
value of 1.58, indicating that the RNA-seq pipeline used to analyze
these data sets satisfactorily captured the existence and magnitude
of the differential expression set in the experiment simulated with
Polyester.

For this differential experiment, where about 639,000 reads per
sample were simulated, read generation took 1-2 minutes per
biological replicate in the experiment and 4.4G memory was used
on a single cluster node with one core.
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Fig. 5. Coefficient distributions from differential expression models. Distributions from the high-variance scenario are shown in panel (a) and from the
low-variance scenario are shown in panel (b). These distributions of estimated log fold changes between the two simulation groups tend to be centered around
the values specified at the beginning of the simulation, and there is more variability in the coefficient estimates for high-variance scenario, as expected.
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Fig. 4. ROC curves for transcript-level differential expression calls
from Polyester data sets. For varying significance (p- or q-value) cutoffs,
sensitivity and specificity from the simulation experiments. Differential
expression was more difficult to detect under conditions where expression
levels were highly variable between replicates, as expected.

These examples illustrate some of the many possible ways
Polyester can be used to explore the effects of analysis choices on
downstream differential expression results.

4 DISCUSSION
In this paper, we propose a lightweight, flexible RNA-seq read
simulator allowing users to set differential expression levels at the

isoform level. A full experiment with biological replicates can be
simulated with one command, and time-consuming alignment is not
required beforehand.

The sequencing process is complex, and some subtleties and
potential biases present in that process are not yet implemented in
Polyester but could be in the future. For example, adding random
hexamer priming bias (Hansen et al., 2010), implementing PCR
amplification bias (Fang and Cui, 2011) or other biases that depend
on the specific nucleotides being sequenced, simulating quality
scores for base calls, and adding the ability to simulate indels are
all possibilities for future improvements. However, our comparisons
with real data suggest that the Polyester model sufficiently mimicks
real sequencing data to be practically useful.

5 SOFTWARE
Polyester is available from Bioconductor: http://bioconductor.
org/packages/release/bioc/html/polyester.html.
The development version is available on GitHub: https:
//github.com/alyssafrazee/polyester. Community
contributions and bug reports are welcomed in the development
version. Code for the analysis shown in this paper is available at
https://github.com/alyssafrazee/polyester_code.
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AC’t Hoen, P., Friedländer, M. R., Almlöf, J., Sammeth, M., Pulyakhina, I., Anvar,

S. Y., Laros, J. F., Buermans, H. P., Karlberg, O., Brännvall, M., et al. (2013).
Reproducibility of high-throughput mRNA and small RNA sequencing across
laboratories. Nature Biotechnology.

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 12, 2014. ; https://doi.org/10.1101/006015doi: bioRxiv preprint 

https://doi.org/10.1101/006015
http://creativecommons.org/licenses/by/4.0/


Polyester

Anders, S. and Huber, W. (2010). Differential expression analysis for sequence count
data. Genome Biology, 11(10), R106.

Benjamini, Y. and Speed, T. P. (2012). Summarizing and correcting the GC content
bias in high-throughput sequencing. Nucleic Acids Research, page gks001.

BroadInstitute (2014). Picard. http://broadinstitute.github.io/
picard/. Accessed: 2014-09-22.

Bullard, J. H., Purdom, E., Hansen, K. D., and Dudoit, S. (2010). Evaluation
of statistical methods for normalization and differential expression in mRNA-seq
experiments. BMC Bioinformatics, 11(1), 94.

Fang, Z. and Cui, X. (2011). Design and validation issues in RNA-seq experiments.
Briefings in Bioinformatics, page bbr004.

Frazee, A. (2014). Coverage Plots. figshare doi:
http://dx.doi.org/10.6084/m9.figshare.1225636.

Frazee, A. C., Pertea, G., Jaffe, A. E., Langmead, B., Salzberg, S. L., and Leek,
J. T. (????). Flexible isoform-level differential expression analysis with Ballgown.
biorXiv doi: http://dx.doi.org/10.1101/003665.

Grant, G. R., Farkas, M. H., Pizarro, A. D., Lahens, N. F., Schug, J., Brunk,
B. P., Stoeckert, C. J., Hogenesch, J. B., and Pierce, E. A. (2011). Comparative
analysis of RNA-seq alignment algorithms and the RNA-seq unified mapper (RUM).
Bioinformatics, 27(18), 2518–2528.

Griebel, T., Zacher, B., Ribeca, P., Raineri, E., Lacroix, V., Guigó, R., and Sammeth,
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