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Abstract:

DNA methylation (DNAm) plays an important role in epigenetic regulation of gene
expression, orchestrating tissue differentiation and development during all stages of
mammalian life. This epigenetic control is especially important in the human brain, with
extremely dynamic gene expression during fetal and infant life, and becomes progressively more
stable at later periods of development . We characterized the epigenetic state of the developing
and aging human frontal cortex in post-mortem tissue from 351 individuals across the lifespan
using the Illumina 450k DNA methylation microarray. The largest changes in the methylome
occur at birth at varying spatial resolutions — we identify 359,087 differentially methylated loci,
which form 23,732 significant differentially methylated regions (DMRs). There were also 298
regions of long-range changes in DNAm, termed “blocks”, associated with birth that strongly
overlap previously published colon cancer “blocks”. We then identify 55,439 DMRs associated
with development and aging, of which 61.9% significantly associate with nearby gene expression
levels. Lastly, we find enrichment of genomic loci of risk for schizophrenia and several other
common diseases among these developmental DMRs. These data, integrated with existing

genetic and transcriptomic data, create a rich genomic resource across brain development.
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Introduction

DNA methylation (DNAm) plays an important role in epigenetic regulation of gene
expression, orchestrating tissue differentiation and development during fetal life, childhood,
and adolescence, and guiding functional activity in adulthood. This epigenetic control is
especially important in the human brain, where gene expression is extremely dynamic during
fetal and infant life, and becomes progressively more stable at later periods of development
(Colantuoni et al. 2011; Numata et al. 2012). Dysregulation of these precise and coordinated
gene expression changes through epigenetic mechanisms may play a vital role in the
pathogenesis of neurodevelopmental disorders, such as schizophrenia (SZ) (Waterland and
Michels 2007; Jakovcevski and Akbarian 2012; Grayson and Guidotti 2013). Pathologically,
these epigenetic changes, acting through gene expression, could disturb the formation of
essential brain circuits, fitting into one prevailing set of hypotheses for the causes of
schizophrenia, namely the “neurodevelopmental” hypotheses (Weinberger and Levitt 2011).

DNA methylation is an attractive epigenetic mechanism to study in post-mortem human
brain tissue for better understanding neurodevelopmental disorders, for reasons beyond its
association with mRNA expression levels (Irizarry et al. 2009). Exogenous factors have been
associated with altering DNAm levels, both at specific loci and globally (averaged across all
repeat elements), including changes in diet (Heijmans et al. 2008), and exposure to cigarette
smoking (Breitling et al. 2011) and arsenic (Reichard et al. 2007). For example, although
schizophrenia usually presents in the third decade of life, the pathological changes that lead to
this disorder may precede the onset of illness by several decades. Extensive research implicates
environmental variables in the development of schizophrenia, especially acting during fetal and
perinatal life, including maternal stress and infections, obstetric complications, and maternal
nutrition during pregnancy (Weinberger and Levitt 2011), including during the Dutch famine of
1944-1945 led to a spike in the number of cases of schizophrenia two decades later (Susser and

Lin 1992). Many of these factors have previously been associated with altering DNA methylation
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levels (Cortessis et al. 2012; Relton and Davey Smith 2012). Lastly, several recent papers have
explored the role of sequence variation on site- and region-specific DNA methylation (Schilling
et al. 2000; Lienert et al. 2011). The DNA sequence itself plays a large role in the maintenance
of DNAm (Bird 2011), providing one potential mechanism, namely changes in DNAm, for the
clinical associations of single nucleotide polymorphism (SNPs) from large genome-wide
association studies (GWAS) like the Psychiatric Genetics Consortium (Sullivan et al. 2012).

We generated epigenome-wide DNA methylation (DNAm) from postmortem
dorsolateral prefrontal cortex (DLPFC) brain tissue from 351 non-psychiatric and medically
“normal” subjects, including 35 second trimester fetal samples, using the Illumina
HumanMethylation450 (“450k”) microarray to better characterize changes in DNAm across
development and aging. This work extends previous DNAm maps of human frontal cortex by
twenty-fold increased genomic coverage (485,000 versus 27,000 probes) in a much larger
sample size (351 versus 108 samples) (Numata et al. 2012) creating a more comprehensive
landscape of epigenetic development in the human brain. This platform improves functional
genomics analyses by more likely associating epigenetic changes with gene expression changes
via many probes in CpG island shores (Irizarry et al. 2009) and the ability to identify changes in
DNAm on the region-, rather than probe-, level (Aryee et al. 2014). which better associate with
gene expression.While previous efforts to comprehensively measure DNA methylation across
the epigenome using whole genome bisulfite sequencing have identified many important
features of brain development (Lister et al. 2013), we complement this work using a much larger
sample at more continuous ages samples, albeit at lower genome-wide coverage, to obtain
population-level spatial dynamics of DNA methylation across brain development. We have
implemented novel statistical methods to identify regional and long range changes in DNAm to
overcome some of the shortcoming of microarray data, and find extensive evidence of DNAmM
changes at birth. We then more formally define regions of developmental importance, termed

“development DMRs”, that capture continuous patterns of age which strongly associate with the
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gene expression levels of nearby genes. Lastly, these developmental DMRs are enriched for
clinical risk loci for schizophrenia and other common diseases identified by large multi-study
meta-analyses. Our results suggest large-scale changes in the human brain methylome across

development and aging with potentially functional consequences.

Results

Changes in the methylome at birth

First, we analyzed fetal (n=35) compared to non-fetal (n=316) samples (including
newborns and children) to identify changes in DNAm associated with birth, at varying spatial
scales. At the single probe level, the majority (N=359,087, or 78.5% of probes on the array) of
assayed CpGs were significantly differentially methylated (at p < 0.05), suggesting a vastly
different epigenetic landscape of the prefrontal cortex during fetal compared with postnatal life
(Figure 1A). These differentially methylated CpGs were classified into differentially methylated
regions (DMRs) based on a “bump hunting” approach (Jaffe et al. 2012), resulting in 23,732
statistically significant DMRs (Figure 1B). Lastly, we identified 298 regions of long-range
differential methylation (Figure 1C), termed “blocks” (Hansen et al. 2011), using an approach
adapted to the Illumina 450k (Aryee et al. 2014) from whole genome bisulfite sequencing
(WGBS) data first utilized in comparing colon cancer to normal tissue (Supplementary Table 1).
We found significant overlap of fetal-associated prefrontal cortex blocks with these cancer
blocks (273 of the 298; 91.6%), including consistent directionality — fetal samples were almost
exclusively hypomethylated compared to adult samples, which mirrored the hypomethylated
cancer blocks (85.0% of overlapping blocks, Supplementary Figure 1), suggesting these blocks
may represent more general developmental and/or proliferative phenomena.

These strong global effects may reflect composition changes of the underlying brain

tissue comparing fetal frontal cortex (predominantly neurons and neuronal precursors) and
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adult prefrontal cortex (mixture of neurons and glia). To address this potential issue, we utilized
the publically available sorted data from Guintivano et al. (2013) (see Methods) to assess
statistical enrichment among the resulting fetal DMR list compared to adult neuronal versus
non-neuronal differences. We identified strong significant enrichment among those DMRs
called significant between datasets (odds ratios for enrichment greater than 40, corresponding
to p< 107°°) with approximately 87% of cell-type DMRs containing fetal DMRs. These results
suggest a shifting epigenetic landscape driven by cellular composition shifts with site-specific
changes within pure cellular populations.

We also explored our results in the context of the recently-published differentially CpG-
methylation regions reported by Lister et al. (2013) in WGBS data from one fetal compared to
two flow-sorted (again into NeuN+ and NeuN-) adult frontal cortices. Of the 267,799 regions
across four comparisons (NeuN+/- and hyper/hypomethylated), there were 51,211 regions with
coverage on the Illumina 450k, of which 39,697 (77.5%) were significantly methylated in the
fetal versus postnatal comparison at p < 0.05 and directionally consistent (hyper- or hypo-
methylated in the same direction across datasets). The hypermethylated DMRs within the
NeuN- sample had the greatest differences in our data, which, given the design of the 450k
(mostly unmethylated loci) and composition change (gain in NeuN- fraction) across
development, suggests an overall comparability across datasets. However, there were 5,649
significant regions (11.0%), with opposite directionality of methylation and another 5,889
regions (11.4%) not significantly different by life stage. We also identified thousands of DMRs in
our larger sample that were not identified as differentially methylated in the WGBS data, likely
due to the increase in power of our much larger number of biological samples. Biological
variability across samples even within specific age ranges can therefore be large in certain
regions of the epigenome, and these DNA methylation maps of bulk tissue and within sorted cell

types requires large samples for adequate power.


https://doi.org/10.1101/005504
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005504; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Developmental DMRs associate with nearby gene expression levels

We further explored more subtle patterns of DNAm across the lifespan and identified
55,439 significant differentially methylated regions (DMRs) associated with development and
aging (Supplementary Methods) beyond fetal versus non-fetal life stages, representing 126,866
probes on the microarray (27.8%) (Figure 2, Supplementary Table 2). While the majority of the
DMRs were driven by large fetal versus non-fetal differences, infant and child samples were
directionally consistent, oftentimes with DNAm levels intermediate between fetal and adult
samples (Supplementary Figure 2). An important observation was that among the post-natal
samples, the estimated neuronal composition (via empirical NeuN+ proportion) went down
across the lifespan, on average (p=3.22x104), reflecting the shifting composition of the young
and developing brain, as glial cells are born and migrate (Supplementary Figure 3). We similarly
see a strong enrichment of NeuN DMRs among these more developmental DMRs (p < 10199),
suggesting again that brain development epigenetically reflects shifting cellular populations
combined with changes in site-specific DNAm within cell populations.

We functionally characterized these “developmental DMRs" first by mapping each DMR
to its nearest gene. Among the 55,439 significant DMRs, more than half lie within gene bodies
(53.6%), 7.0% lie in gene promoters, and another 10.5% and 10.7% were upstream and
downstream of genes respectively. A subset of the samples had corresponding gene expression
data (N=260), publicly available from the Gene Expression Omnibus (GEO, available at
GSE30272; see Methods section) (Colantuoni et al. 2011). The correlation between DNAmM
(average level of DNAm across the region) of each DMR and its corresponding nearest gene’s
expression was assessed across the lifespan: 61.9% of DMRs (N=31,822) were significantly
correlated with neighboring gene expression (at p < 10°) (Figure 3). Statistically significant
DMRs were highly associated with gene expression (p < 10°°), and more specifically, the
strength of region-level differential methylation strongly predicts the DNAm-gene expression

association (spearman correlation = 0.31, p < 10°°), reinforcing the notion that regional DNAm
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levels in brain correlate strongly with gene expression levels as has been also observed in other
tissue and cancer methylation differences (Doi et al. 2009). Interestingly, among the 61.9% of
significant DMRs associated with gene expression, many of these DNAm-expression pairs are

positively correlated (46.4% of significant DNAm-expression pairs).

Developmental DMRs are enriched for expression quantitative trait loci (eQTLs)

We then asked whether DNA methylation mediates the effect of genetic variation on
gene expression — each sample with gene expression data also has corresponding genome-wide
single nucleotide polymorphism (SNP) data, imputed up to 6 million SNPs per sample. We
identified 204,380 significant cis eQTLs in these data (at FDR < 1%, corresponding to p <
6.9x105), with linkage-disequilibrium blocks corresponding to 5,335 unique probes and 4,193
unique genes. We then identified the single CpG with the strongest association to each gene’s
expression (within gene body +/- 10kb). We observed stronger association between gene
expression and DNA methylation among those genes (n=5,335) that were associated with a
nearby SNP (i.e. an eQTL; p = 9.18x10739), suggesting that DNA methylation levels may indeed

mediate the effect of genetic variation on gene expression.

Developmental DMRs are enriched for schizophrenia genetic risk loci

Lastly, we identified significant association between genomic loci implicated in
schizophrenia risk from the latest Psychiatric Genetics Consortium (PGC) data release (Ripke et
al. 2013) and our developmentally significant DMRs. There was significant overlap (Table 1,
P=0.0019 — 0.047) in the locations of developmental DMRs (at FWER < 5%) and clinical risk
regions (starting at loci with association p < 104 through genome-wide significance 5x103),
suggesting these regions of schizophrenia risk are important for brain development potentially
through differential DNA methylation between fetal life and infanthood. These results are

consistent with prevailing hypotheses about the role of early brain development and risk for
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schizophrenia (Weinberger and Levitt 2011). In additional analyses, we note that significant
enrichments are not unique to schizophrenia — we find significant enrichment for genome-wide
significant loci (at p < 5x10°8, via Supplementary Table 2) associated with inflammatory bowel
disease (p=1.9x10-¢) and ulcerative colitis (p=1.12x104) but not Crohn’s disease (p=0.25)
(Jostins et al. 2012), and enrichment of type 2 diabetes loci that failed to reach genome-wide
significance (enrichment p < 0.05 for GWAS p-values less than 5x107) (Morris et al. 2012).
These developmental DMRs may therefore reflect regions in the epigenome that are dynamic
across other tissues — 52% of the developmental DMRs overlapped “dynamic DMRs” across 30
human cell and tissue types identified by Ziller et al. (2013) (compared to 41% of probes groups

on the Illumina 450Kk).

Discussion

In summary, we explore DNA methylation changes across the lifespan in the human
DLPFC in the largest epigenetic study of brain tissue to date, and identify widespread change in
the epigenome occurring at birth at local, regional, and long-range spatial resolutions. These
large changes in DNAm likely represent in part shifts in neuronal composition across the
lifespan, with site-specific changes within pure neuronal and non-neuronal cellular populations,
and correspond to strong changes in gene expression profiles in the majority of significant
differentially methylated regions (DMRs) associated with aging. Furthermore we find significant
enrichment of these developmental DMRs with genes associated with both genetic control of
gene expression and clinical risk for schizophrenia and other common complex genetic
disorders. These raw data are publicly available on GEO (Edgar et al. 2002) under accession
GSExxxx, and user-friendly data will be made available from our BrainCloud desktop
application (http://braincloud.jhmi.edu), both containing information to link these DNAm
samples to existing publicly available data on gene expression (GSE30272) and genetic variation

(phs000417.v1.p1) to create a rich resource of genomic data across brain development.
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Deviations from these essential DNAm developmental trajectories during critical
windows of development from conception to young adulthood may interfere with the carefully
coordinated temporal and spatial dynamics of gene expression through a combination of genetic
and epigenetic factors (Abdolmaleky et al. 2004; Mill et al. 2008; Jakovcevski and Akbarian
2012; Grayson and Guidotti 2013). These characterized patterns of DNA methylation at specific
genomic loci in the developing brain therefore has clear implications for better understanding
the role that epigenetics plays in neurodevelopmental disorders. Mechanistically, these changes
in DNAm may be the crucial link by which environmental events amplify the effects of genetic
variations in increasing liability towards illness. The development of novel treatment strategies
for these disorders is dependent upon understanding the molecular pathways that increase
liability towards illness. Furthermore, these patterns of DNA methylation at the population level
during the first three decades of life may elicit a better understanding how genetic variation

interacts with environmental factors in altering risk for illness.

Methods and Materials

Study samples

Brain specimens were donated through the Offices of the Chief Medical Examiners of the
District of Columbia and of the Commonwealth of Virginia, Northern District to the NIMH
Brain Tissue Collection at the National Institutes of Health in Bethesda, MD, according to NTH
Institutional Review Board guidelines (Protocol #90-M-0142). Audiotaped informed consent
was obtained from legal next-of-kin on every case. Details of the donation process are described
elsewhere (Deep-Soboslay et al. 2005; Lipska et al. 2006). Additional specimens, including the
35 second-trimester fetal brain tissue samples, were obtained via a Material Transfer Agreement
with the National Institute of Child Health and Human Development Brain and Tissue Bank. All

postnatal non-psychiatric control cases (N=316) were free from psychiatric and/or neurologic
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diagnoses and substance abuse according to DSM-IV. Every control case had toxicology
screening to exclude for acute drug and alcohol intoxication/use at time of death, and all fetal

tissue was also screened for possible in utero drug exposure.

Tissue Processing

All specimens were flash-frozen, and screened for macro- and microscopic
neuropathological abnormalities, as previously described (Lipska et al. 2006). All specimens
with significant evidence of neurological disorders, infarcts or other cerebrovascular
abnormalities were excluded from study. Brain pH was measured, and postmortem interval
(PMI, in hours) was calculated for every sample. Postmortem tissue homogenates of the
prefrontal cortex (dorsolateral prefrontal cortex, DLPFC, BA46/9) were obtained from all
subjects. Genomic DNA was extracted from 100 mg of pulverized dorsolateral prefrontal cortex
(DLPFC) tissue with the phenol-chloroform method. Bisulfite conversion of 600 ng genomic

DNA was performed with the EZ DNA methylation kit (Zymo Research).

DNA Methylation Microarray

DNA methylation was assessed using the Illumina HumanMethylation450 (“450K”)
microarray, which measures CpG methylation across >485,000 probes covering 99% of RefSeq
gene promoters (Sandoval et al. 2011). Arrays were run following the manufacturer’s protocols.
A percentage of the samples were run in duplicate across multiple processing plates to assess
technical variability related to DNA extraction and bisulfite conversion. A total of 466

microarrays were scanned on 351 unique subjects.

Data Processing and Normalization

Red and green channel intensity files were obtained for each sample in the “idat” file

format. These files were processed and normalized using the minfi Bioconductor package in R
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(Aryee et al. 2014). Red and green intensities were mapped to the M(eth) and U(nmeth)
channels, and the average intensity for these channels were used to check for low quality
samples (0 samples were dropped). Intensities from the sex chromosomes were used to predict
sex, and we dropped 5 samples that had predicted sex different from its recorded value
(indicating potential sample swaps). Then, the M and U channels were subsequently across-
sample quantile normalized using an approach developed by Touleimat and Tost (2012). Briefly,
this approach forces the distribution of type I and type II to be the same by first quantile
normalizing the type II probes across samples and then interpolating a reference distribution to
which the type I probes are normalized, stratified by region (e.g. promoter, shore, island, shelf).
We found that across-sample normalization like quantile best minimized the variability between
replicates. We retained a single array in the case of duplicates by choosing the sample that had
the closest quality profile to all other arrays.

Flow-sorted samples from Guintivano et al. (2013) were included in this quantile
normalization procedure via the FlowSorted. DLPFC.450k Bioconductor package to make the
data more comparable in cellular composition estimation and differential methylation analysis
(Jaffe and Irizarry 2014). In both datasets, probes on the sex chromosomes were dropped
(which are difficult to normalize), as were probes annotated with single nucleotide
polymorphisms (SNPs) at the target CpG or single base extension (SBE) site according to

dbSNP137 with minor allele frequency > 1%, leaving 456,655 autosomal probes for analysis.

Composition Estimation

We estimated the neuronal composition of each sample by simplifying the regression
calibration approach developed for blood data (Houseman et al. 2012) using the Guintivano et
al. (2013) flow sorted data at training data for the model. We selected 100 hyper- and hypo-
methylated probes, and used linear regression to predict the relative proportion of neuronal

cells in our heterogeneous DLPFC tissue. This statistical approach for neuronal composition

12


https://doi.org/10.1101/005504
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/005504; this version posted May 27, 2014. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

estimation was accurate in fetal brain — there were significant differences in composition
between fetal (27.3% NeuN+) and non-fetal (32.8% NeuN+) samples (p=2.33x10™"), but the
directionality of the effect was antithesis to the underlying biology - we expect these brains to be
composed almost entirely of neurons and/or neuron precursors, resulting in fetal estimates

greater than non-fetal estimates (Supplementary Figure 3).

Statistical Analyses for Differential Methylation

For the fetal versus non-fetal DLPFC analyses, single CpG analysis was performed using
a t-test at every probe. Regional analysis to find differentially methylated regions (DMRs) and
“block finding” were performed using the minfi R package (Hansen and Aryee 2013) using the
bumphunterEngine and blockFinder functions, respectively, each with 1000 permutations and a
cutoff of 0.1 (corresponding to a minimum 10% change in DNAm associated with birth). These
analyses were all univariate given the very strong fetal effect. The NeuN+ versus NeuN- DMRs
in the Guintivano et al. (2013) dataset were found using the same “bumphunting” procedure.

The developmental DMRs that allowed age to be modeled continuously were found using
a modified version of the “bumphunting” algorithm (Jaffe et al. 2012). We fit a linear spline at
every base, with knots at birth, then 1, 10, 20, and 50 years of age — there was also an offset at
birth because there were no samples in the third trimester. We then ran surrogate variable
analysis (SVA) (Leek and Storey 2007) to model potential plate/”batch” effects. At each probe
we computed an F-statistic comparing a statistical model containing the age spline plus
estimated surrogate variables compared to a model containing just the surrogate variables. We
then smoothed these f-statistics and thresholded within predefined probe groups using a single-
CpG F-statistic p-value < 102° to identify DMRs. Statistical significance was assessed using the
linear regression bootstrap which permutes the residuals around a regression fit 1000 times

(Jaffe et al. 2012), and controlled for a family-wise error rate of 5%.
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Statistical Analyses for Gene Expression Correlation

Raw gene expression two-color microarray intensity data (available at GSE30272) were
loess-normalized as previously described (Colantuoni et al. 2011) and matched to samples that
had DNAm data (n=260). Surrogate variable analysis (SVA) was used with the age spline model
described above to protect age effects and reduce observed technical processing plate and tissue
quality effects in the data. At each developmental DMR, the average DNAm across that DMR in
each sample was compared to the expression of the nearest gene, with matching based on gene
symbol in the gene expression microarray annotation. If multiple expression probes existed for
the gene, the probe most absolutely correlated with DNAm was retained. Pearson correlation

was used to assess the relationship between DNAm and gene expression.

Genotype data and eQTL analysis

DNA for genotyping was obtained from the cerebella of samples in the collection and
performed with either the Illumina Human Hap 650v3 or 1M Duo V3 BeadArrays as previously
described (Colantuoni et al. 2011). Genotypes were called using BeadExpress software. SNPs
were removed if the call rate was <98% (mean call rate for this study >99%), if not in HWE
(p<0.001) in Caucasian or African American samples, or not polymorphic (MAF<0.01). The
total number of observed SNPs remaining in the analysis was 625,439 (96.2%). We then
performed genome-wide imputation using the 1000 Genomes reference panel, Shapelt for pre-
phasing of haplotypes (Delaneau et al. 2013) and Impute2 software package (Howie et al. 2009).
After removing imputing SNPs with MAF < 5% and missingness > 10% within each dataset,
there were 6,045,752 SNPs. We identified cis expression quantitative trait loci (eQTLs) using the
MatrixEQTL R package (Shabalin 2012), adjusting for race, sex, and surrogate variables after
dropping gene expression probes mapping to genes that were not present in the RefSeq database

(by gene symbol), and retained eQTLs significant at FDR < 5%.
y gene sy ) Q g 5
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We then assessed the enrichment of significant DNAm-expression pairs being eQTLs
based on identifying the most associated DNAm probe within 50kb of the gene body mapped to
each probe, and computing Pearson correlation for each DNAm-expression pair (one statistic
per probe). We then used the Wilcoxon rank test comparing test statistics for those probes that

were eQTLs compared to probes that were not eQTLs.

Enrichment for schizophrenia genetic risk

We obtained linkage disequilibrium-clumped results from the latest Psychiatric
Genomics Consortium (PGC) genome-wide association study for schizophrenia, which
combined datasets used in the PGC1 with data from Sweden (Ripke et al. 2013), which defined
genetic regions associated with schizophrenia risk. Enrichment was assessed using the design of
the Illumina 450k as background, rather than relying of gene-based models. Using the probe
groups from the Illumina 450k, we created 2x2 tables at different p-value thresholds in the SZ
GWAS that assessed whether each probe group was in a developmental DMR and/or in a SZ risk
region, and quantified this enrichment using a chi-squared test, and report the p-values for
enrichment in Table 1. Similar enrichments were calculated for significant loci for IBD, Crohn’s,
and UC available in Supplementary Table 2 (LD range provided in first column) of Jostins et al.
(2012). Linkage disequilibrium blocks were constructed for all marginally significant T2D loci

(p<1x104) from http://diagram-consortium.org/downloads.html (Stage 1 GWAS Summary

Statistics table) using SNAP (Johnson et al. 2008), and collapsed into non-overlapping blocks,

retaining the smallest p-value for each LD block.

Data Access: Data, in both raw and processed forms, will be deposited in the Gene Expression
Omnibus (GEO).

Disclosure Declaration: The authors have declared that no conflicting interests exist.
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Figure Legends

Figure 1: fetal versus non-fetal differentially methylated loci at three spatial resolutions.
Examples of significant (A) differentially methylated probes representing local changes, (B)
differentially methylated regions (DMRs) representing regional differences and (C) methylation
blocks representing long range changes, are shown comparing fetal versus non-fetal samples.
Proportion methylation is shown on the y-axis of each respective top-most panel. Gene
annotation panels in (B) and (C) are based on Ensembl annotation — dark blue represents exons
and light blue represents introns. Ensembl transcripts annotate genes in (B) and Entrez Gene
IDs annotate genes in (C). The third panel in (C) depicts the average difference in DNAmM
between groups at each probe group and the final panel shows the overlap between cancer
hypomethylation blocks from Hansen et al. (2011). Blue = fetal samples; red = non-fetal

samples.

Figure 2: methylation plots for four example differentially methylated regions (DMRs) for
development. Panel A: PRRT1, Panel B: DNMT3A, Panel C: SLC26A10, Panel D: WNT5A. Top
two-thirds of panels depict individual methylation levels at each probe by genomic position,
with colored lines reflecting the average methylation curve for samples binned by age group as
shown in the legend. Tick marks show the location of CpG dinucleotides and green bars indicate
annotated CpG islands. The bottom panel shows the location of Ensembl annotated genes (dark
blue: exons annotated by Ensembl transcripts, light blue: introns, + and - represent the
direction of the gene). Vertical lines represent boundaries of the DMR, which can span the entire

probe group.

Figure 3: correlation between DNA methylation (DNAm) and gene expression for (A) PRRT1

and (B) AAKT. Gene expression on the log. scale, representing the fold change between each
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sample and a pool of many samples from across the lifespan, is plotted against the average
DNAm for each sample within the significant DMR. Color indicates sample age, and the Pearson

correlation with corresponding p-value is shown in the top legend.

Tables

Table 1: Enrichment of schizophrenia and diabetes genetic risk regions

Schizophrenia Type 2 Diabetes
devDMR devDMR

GWAS | # gwas | enrichment | # gwas | enrichment
Cutoff sig p-value sig p-value
p<ie-04 867 0.047 381 0.003
p<5e-05 541 0.016 302 0.029
p<1ie-05 199 0.0019 210 0.00066
p<5e-06 131 0.034 65 0.0016
p<1e-06 62 0.0028 37 0.0029
p<5e-07 41 0.002 34 0.0075
p<ie-07 16 0.0095 17 0.52
p<5e-08 12 0.011 16 0.45
p<1e-08 6 0.068 13 0.39
p<5e-09 6 0.068 13 0.39
p<1e-09 5 0.068 10 1
p<5e-10 4 0.068 10 1
p<ie-10 3 0.063 9 1
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