

Population genomics of parallel hybrid zones in the mimetic butterflies, *H. melpomene* and *H. erato*

3 Nicola J. Nadeau^{1,2}, Mayté Ruiz³, Patricio Salazar^{1,4}, Brian Counterman⁵, Jose Alejandro Medina⁶,
4 Humberto Ortiz-Zuazaga^{6,7}, Anna Morrison¹, W. Owen McMillan⁸, Chris D. Jiggins^{*1}, Riccardo Papa³

5 ¹Department of Zoology, University of Cambridge, UK; ²Department of Animal and Plant Sciences,
6 University of Sheffield, UK; ³ Department of Biology and Center for Applied Tropical Ecology and
7 Conservation, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00921; ⁴Centro de
8 Investigación en Biodiversidad y Cambio Climático (BioCamb), Universidad Tecnológica Indoamérica,
9 Quito, Ecuador; ⁵Department of Biology, Mississippi State University, USA; ⁶High Performance
10 Computing Facility, University of Puerto Rico, Puerto Rico; ⁷Department of Computer Science,
11 University of Puerto Rico Rio Piedras, Puerto Rico; ⁸Smithsonian Tropical Research Institute,
12 Panama.

13 *Corresponding author: c.jiggins@zoo.cam.ac.uk; Department of Zoology, University of Cambridge,
14 Downing Street, Cambridge, CB2 3EJ, UK; tel +44 1223769021; fax +44 1223336676

15 Running title: Population genomics of parallel hybrid zones

16 Key words: Hybrid zones, convergent evolution, adaptive divergence, genome-wide association
17 mapping, RAD sequencing

18

19 **ABSTRACT**

20 Hybrid zones can be valuable tools for studying evolution and identifying genomic regions
21 responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between
22 subspecies of *Heliconius* butterflies can be very narrow and are maintained by strong selection
23 acting on colour pattern. The co-mimetic species *H. erato* and *H. melpomene* have parallel hybrid
24 zones where both species undergo a change from one colour pattern form to another. We use
25 restriction associated DNA sequencing to obtain several thousand genome wide sequence markers
26 and use these to analyse patterns of population divergence across two pairs of parallel hybrid zones
27 in Peru and Ecuador. We compare two approaches for analysis of this type of data; alignment to a
28 reference genome and *de novo* assembly, and find that alignment gives the best results for species
29 both closely (*H. melpomene*) and distantly (*H. erato*, ~15% divergent) related to the reference
30 sequence. Our results confirm that the colour pattern controlling loci account for the majority of
31 divergent regions across the genome, but we also detect other divergent regions apparently
32 unlinked to colour pattern differences. We also use association mapping to identify previously
33 unmapped colour pattern loci, in particular the *Ro* locus. Finally, we identify within our sample a new
34 cryptic population of *H. timareta* in Ecuador, which occurs at relatively low altitude and is mimetic
35 with *H. melpomene malleti*.

36 **INTRODUCTION**

37 Natural hybrid zones occur where divergent forms meet, mate and hybridise. Narrow hybrid zones
38 can be maintained by strong selection that prevents mixing or favours particular forms in particular
39 areas (Barton and Hewitt 1985). Studies of hybrid zones have provided many insights into the origins
40 of diversity and the process of speciation (Mallet et al. 1990; Kawakami and Butlin 2001; Harrison
41 1993). High-throughput sequencing technologies now provide the opportunity for hybrid zones to
42 fully meet their potential as windows into the evolutionary process, by allowing us to move beyond
43 studies of neutral variation at a handful of loci, to describing the genetic basis of phenotypic
44 differences and identifying loci under selection (Crawford and Nielsen 2013; Rieseberg and Buerkle
45 2002; Gompert et al. 2012).

46 Butterflies of the genus *Heliconius* are extremely diverse in their wing colour patterns, and combine
47 extensive intra-specific diversity with perfect inter-specific similarity in wing phenotypes. The bright
48 wing colourations that identify this group of Neotropical butterflies are used as aposematic warnings
49 to predators, and are under positive frequency dependent selection, which favours common colour
50 patterns that predators learn to avoid. This strong selection also maintains narrow hybrid zones
51 between subspecies with different patterns (Benson 1972; Mallet and Barton 1989a; Kapan 2001;
52 Langham 2004). In addition, frequency dependent selection has led to Müllerian mimicry between
53 many distinct species (Müller 1879). For instance, *H. erato* and *H. melpomene* are two distantly
54 related species that diverged around 15-20 million years ago, but have converged on common colour
55 patterns across most of the Neotropics, with parallel hybrid zones between subspecies of both
56 species (Figure 1). Current evidence suggests that the convergent colour patterns in these species
57 have most likely evolved independently (Supple et al 2013, Hines et al. 2011). It has been suggested
58 that *H. erato* is more ancient and *H. melpomene* diversified more recently to mimic the *H. erato*
59 forms (Brower 1996; Flanagan et al. 2004; Quek et al. 2010). Nevertheless, it appears that the same
60 handful of genetic loci are responsible for producing most of the colour pattern variation observed in
61 both species (Joron et al. 2006; Baxter et al. 2008; Martin et al. 2012; Reed et al. 2011). This pattern
62 of parallel adaptive evolution, with multiple instances of both species convergently evolving highly
63 similar phenotypes, makes this an excellent system in which to address questions about the
64 predictability of the evolutionary process and the extent to which particular genes are re-used when
65 evolving the same phenotypes (Nadeau and Jiggins 2010; Papa et al. 2008).

66 In this study, we use high resolution genome scans to investigate patterns of divergence across two
67 pairs of parallel hybrid zones, in Peru and Ecuador. These occur between subspecies with different
68 wing colour patterns in both *H. erato* and *H. melpomene* (Figure 1). In both regions the clines in
69 colour pattern alleles between species are highly coincident (Mallet et al. 1990; Salazar 2012). The
70 two hybrid zones in Peru have been the focus of several previous studies, while those in Ecuador
71 have been less well studied. In Peru, strong natural selection has been shown to maintain colour
72 pattern differences (Mallet and Barton 1989a) and the colour pattern controlling loci show increased
73 divergence compared to other loci in the genome (Baxter et al. 2010; Counterman et al. 2010;
74 Nadeau et al. 2012; Supple et al. 2013; S. H. Martin et al. 2013). However, we are lacking a clear
75 picture of exactly how many loci are divergent between subspecies, and the extent to which the
76 genomic architecture of divergence is the same between mimetic species.

77 Extensive genetic mapping using experimental crosses between different colour pattern forms has
78 identified the chromosomal regions responsible for colour pattern variation in these species
79 (Sheppard et al. 1985; Baxter et al. 2008; Joron et al. 2006; Papa et al. 2013). Three major clusters of
80 loci control most of the colour pattern variation observed in both species. The tightly linked *B* and *D*
81 loci in *H. melpomene* control the red forewing band and the red/orange hindwing rays and proximal
82 “dennis” patches on both wings respectively. These loci are homologous to the *D* locus in *H. erato*
83 (Baxter et al. 2008) and appear to be cis regulatory elements of the *optix* gene on chromosome 18
84 (Reed et al. 2011; Supple et al. 2013). The *Ac* and *Sd* loci, in *H. melpomene* and *H. erato* respectively,
85 control the shape of the forewing band via regulation of the *WntA* gene on chromosome 10 (Martin
86 et al. 2012). The presence of most yellow and white elements on the wing is largely controlled by
87 three tightly linked loci, *Yb*, *Sb* and *N*, on chromosome 15 in *H. melpomene* (Ferguson et al. 2010),
88 which are homologous to the *Cr* locus in *H. erato* (Joron et al. 2006). Quantitative trait locus (QTL)
89 mapping has identified other loci of minor effect, including at least 7 additional QTL in *H. erato* (Papa
90 et al. 2013), and QTL in *H. melpomene* on chromosomes 2, 7 and 13 that affect forewing band shape
91 (Baxter et al. 2008). In some cases mapping studies have been followed up by population genetic
92 studies of the mapped intervals across natural hybrid zones where many generations of crossing and
93 backcrossing have led to narrow regions of association, permitting fine scale mapping (Baxter et al.
94 2010; Counterman et al. 2010; Nadeau et al. 2012; Supple et al. 2013). High-throughput sequencing
95 technologies now provide the feasibility to generate a suitably high density of genomic markers to
96 identify the narrow QTL present in these hybrid zones without the necessity of performing
97 controlled laboratory crosses (Crawford and Nielsen 2013). In this study we aim to test this
98 approach, using this system where we already know some of the loci responsible for phenotypic
99 differences.

100 The hybrid zones that we focus on all occur across altitudinal gradients (Figure 2A). Therefore, it is
101 possible that traits other than colour pattern may be differentiated across the hybrid zones driven
102 by altitudinal selection, for example related to temperature or changes in larval host plants. Such
103 selection on additional regions of the genome could help to stabilise the hybrid zone, which, if due
104 to frequency dependent selection acting on colour pattern alone, could be unstable (Bierne et al.
105 2011; Barton and Hewitt 1985; Mallet and Barton 1989b; Mallet 2010). Therefore an important
106 question that we will address is whether there are divergent regions of the genome that are not
107 controlling colour pattern, as these could be candidates for loci controlling other aspects of
108 ecological adaptation.

109 In this study, we use restriction associated DNA (RAD) sequencing (Baird et al. 2008) to determine,
110 for the first time:

- 111 1) if association mapping in these hybrid zones can identify known and novel loci underlying
112 phenotypic variation
- 113 2) how much of the genome is differentiated and under divergent selection between
114 subspecies
- 115 3) how much of this differentiation is due to loci controlling colour pattern variation
- 116 4) if the same regions are divergent between co-mimetic species

117 We also investigate the advantages and limitations of alignment and assembly methods when only a
118 single reference genome is available. We compare two widely used approaches: *de novo* assembly of
119 restriction associated reads using the program Stacks (Catchen et al. 2011) versus alignment of
120 paired end reads to the reference *H. melpomene* genome.

121

122 RESULTS

123 Summary of the data and comparison of alignment and assembly techniques

124 We sequenced a total of 129 individuals of *H. erato* and *H. melpomene* from the four hybrid zones in
125 Peru and Ecuador, and including a small number of additional individuals from across the range of *H.*
126 *erato*. Using restriction associated DNA sequencing (RAD-seq), we obtained a total of 1,496M 150
127 base paired-end reads from the hybrid zone individuals, and an additional 115M 100 base paired-
128 end reads from the other *H. erato* populations and outgroups. We also include in our analyses data
129 from additional *H. melpomene* populations and outgroups already published in a previous study
130 (Nadeau et al. 2013).

131 Our reference genome for *H. melpomene* is highly divergent from *H. erato*. Nonetheless, for both
132 species, alignment of reads to the reference yielded more usable data when compared to *de novo*
133 assembly. The latter produced more bases in assembled contigs (Table 1), but only ~2% of contigs
134 assembled in the *H. erato* populations were present in more than 10 individuals, with the figure
135 being approximately 7% in *H. melpomene*. By comparison when the same data (plus the paired-end
136 reads) were aligned to our reference sequence, approximately 38% of aligned bases were found in
137 more than 10 individuals in *H. erato* and >50% in *H. melpomene*. We hypothesised that high levels of
138 within population variation led to homologous reads being separated into distinct contigs in the *de*
139 *novo* assembly. We could confirm that this was the case for one region of the *H. erato* genome for
140 which a high quality reference sequence is available (Supple 2013). Across 960kb at the *D* colour
141 pattern locus, we observed that in regions with high sequence divergence between subspecies, our
142 RAD-seq reads were assembled into separate contigs. Overall, we also found a higher frequency of
143 single nucleotide polymorphisms (SNPs) in the reference alignments than the *de novo* assemblies
144 (Table 1). These SNPs were defined as sites that were polymorphic within the sampled populations
145 and so are not inflated by fixed differences from the reference genome.

146 As expected, given that *H. erato* is ~15% divergent from *H. melpomene* in the aligned data, fewer *H.*
147 *erato* reads aligned to the *H. melpomene* genome as compared to those from *H. melpomene*, leading
148 to fewer confidently called bases. Nevertheless, the use of the reference *H. melpomene* genome for
149 aligning the *H. erato* reads resulted in more bases being called across multiple individuals and
150 around 10x more SNPs identified when compared to the *de novo* assembly approach. In addition,
151 the gaps between aligned RAD loci were similar across both species (Table 1), indicating that the
152 reduced number of bases is not due to fewer RAD loci aligning but to fewer confidently called bases
153 at each RAD locus. The power to detect loci under selection or responsible for phenotypic variation
154 should therefore be similar in both species. In summary, it seems that the aligned data should give
155 the most power to detect divergent regions and phenotypic associations for both species. However,
156 we performed outlier and association analyses using the output of both approaches for comparison.

157 It is also possible that the *de novo* assembly might detect divergent regions important in adaptation
158 that could not be aligned to the *H. melpomene* reference.

159 **Phylogenetics and population structure**

160 Using the reference aligned sequence data, we constructed maximum likelihood phylogenies for the
161 *H. melpomene* and *H. erato* clades, including individuals from additional populations and outgroup
162 taxa (Figure 1). This revealed remarkably similar patterns of divergence between co-occurring, co-
163 mimetic subspecies in both groups. Population divergence in *H. erato* is thought to be deeper than
164 that in *H. melpomene* (Flanagan et al. 2004 but see Cuthill and Charleston 2012), but this was not
165 evident in our tree as branch lengths were very similar between the two species. However this may
166 be due to the poorer alignments for *H. erato*, with the *H. erato* tree based only on about a third as
167 many sites as that for *H. melpomene*. These sites in *H. erato* are likely to be more conserved,
168 resulting in some compression of the tree topology.

169 The most striking finding from the phylogenetic reconstruction was that eight of the presumed *H.*
170 *melpomene* individuals from Ecuador were strongly supported as clustering within the *H. timareta*
171 clade (Figure 1). All of these individuals had a *H. melpomene malleti*-like phenotype with the
172 exception of one individual which had been characterised as a possible hybrid due to a large and
173 rounded yellow forewing band, but was otherwise *H. m. malleti*-like. This finding was surprising
174 because while populations of *H. timareta* mimetic with *H. m. malleti* have previously been described
175 in Colombia (Giraldo et al. 2008) and Northern Peru (Lamas 1997), they are all found in highland
176 areas above ~1000m. Similar populations are not known from lowland sites anywhere in the range.
177 To compare our individuals to these and other populations, we also directly sequenced part of the
178 mitochondrial COI gene that overlaps with the region sequenced in previous studies (Giraldo et al.
179 2008; Merot et al. 2013). Our phylogeny based on these sequences also robustly supported these
180 eight individuals as being *H. timareta* and placed them closer to the highland *H. timareta timareta* in
181 Ecuador than to *H. timareta florencia* in Colombia that they resemble phenotypically (SI figure 1).

182 The newly identified *H. timareta* subspecies was also clearly evident in a principle components
183 analysis (PCA) of the combined *H. melpomene*, *H. timareta* and *H. cydno* data. The first principle
184 component separated the Peruvian *H. melpomene* from *H. timareta* and *H. cydno* (which were very
185 similar on this axis, SI figure 2). The grouping of the Ecuadorian samples was consistent with the
186 phylogeny, with the same eight individuals clustering with *H. timareta*. No individuals were
187 intermediate between *H. melpomene* and *H. timareta*, indicating that the level of genetic isolation
188 between the two species is similar to elsewhere in their range. This was also confirmed by a
189 STRUCTURE analysis of the Ecuador “*H. melpomene*” population, where a model with two populations
190 had the best fit to the data (posterior probability=1). Under this model, which allowed for admixture
191 between populations, the *H. timareta* individuals all had 100% of their allelic contribution from
192 population 1, while for *H. melpomene* the maximum contribution of population 1 to any individual’s
193 genotype was 1.8% (SI Table 1). In summary, we can conclude that these are distinct species with
194 little gene flow between them.

195 We conducted further analyses of the genetic structure of each of the hybrid zone populations,
196 excluding the *H. timareta* individuals, again using the reference aligned data. Overall, these results
197 suggest only very low genetic differentiation between any of the parapatric subspecies. STRUCTURE
198 analyses of each population generally showed very little structure and strongest support for only a

199 single population cluster being present. The only exception was the Peruvian *H. melpomene*, where
200 two population clusters gave the highest posterior probability ($p=1$). However, these clusters did not
201 correspond to the two subspecies. The genetic diversity was partitioned such that most individuals
202 were admixed with about a quarter of their allelic variation from population 2, except for two
203 “hybrid” individuals that had pure population 2 genotypes and two other individuals (one “hybrid”
204 and one *aglaope*) that had almost pure population 1 genotypes (Figure 2B). PCA revealed very
205 similar patterns, with small groups of hybrid phenotype individuals giving the clearest clusters, which
206 in most cases were also identified by STRUCTURE (with $K=2$, Figure 2C). Three of the populations did
207 reveal some separation of the subspecies at one of the first two principle components, but with a
208 gradual change from one genomic “type” to another. The *H. melpomene* subspecies in Ecuador were
209 separated by PC1, which explained 10% of the variation in this population. The two *H. erato*
210 populations both showed some separation by subspecies at PC2, which explained 5.7% and 6.7% of
211 the variation in Peru and Ecuador respectively. We found very similar results with PCA on the *de*
212 *novo* assembled data (SI figure 3), suggesting that the underlying genetic signal in both data sets is
213 very similar. The lack of strong differentiation between subspecies was also supported by the F_{ST}
214 distributions (calculated by BayeScan), which gave very low F_{ST} values between subspecies at over
215 99% of the genome, with only a small percentage of SNPs showing high levels of differentiation
216 (Figure 2D, SI figure 3).

217 **Association mapping of loci responsible for phenotypic variation**

218 We performed association mapping to identify genetic regions responsible for the phenotypic
219 variation that segregates across each of the hybrid zones. In general, the expected associations were
220 found at the three major loci known to control colour pattern variation on chromosomes 10, 15 and
221 18 (Figures 3A/D, 4A/D and Table 2). The majority of SNPs showing significant phenotypic
222 associations fell within or tightly linked to these loci in all populations except in Peruvian *H. erato*,
223 where only 26% were tightly linked to the known loci.

224 Independent analyses were performed on both the reference alignments and *de novo* assemblies of
225 the data. In all populations, more associated SNPs were identified in the alignments than in the *de*
226 *novo* assemblies (Table 1, figure 5). We used blastn (Altschul et al. 1990) to place *de novo* contigs
227 containing associated SNPs onto the *H. melpomene* genome, and most could be confidently assigned
228 to a unique locus. There was almost no overlap in the particular SNPs detected in the differently
229 assembled and aligned data sets (Figure 5), although in many cases the SNPs detected were in
230 similar regions (Figures 3 and 4). There was some evidence for a higher false positive rate in the *de*
231 *novo* data, as a higher proportion of associations were found scattered across the genome, away
232 from the known colour pattern loci.

233 *Red colour pattern elements and the B and D loci*

234 Consistent with previous mapping studies based on crosses, red colour pattern variation in almost all
235 populations was mapped to scaffold HE670865 on chromosome 18 (Baxter et al. 2008; Counterman
236 et al. 2010; The *Heliconius* Genome Consortium 2012). The only exception was *H. melpomene* in
237 Ecuador, where SNPs in this region did not reach significance (Figure 4A). This is likely to be due to
238 the reduced sample size of this population (22) after removing the *H. timareta* individuals. Colour
239 patterns were scored both as independent elements and also using known patterns of segregation
240 to score the predicted genotype at the *B/D* locus (individuals with both red forewing and rays are

241 predicted to be heterozygotes, as both traits are dominant). The latter scoring generally gave
242 stronger associations (Figures 3 and 4), although both methods gave some significant associations
243 for at least one of the traits. In all populations the strongest associations in this region were over
244 60kb downstream of the *optix* gene that controls red colour pattern (Reed et al. 2011), but
245 overlapped with the region identified in previous analyses as likely containing the functional
246 regulatory variation (Nadeau et al. 2012; Supple et al. 2013)(Table 2, SI figure 4).

247 In the Peruvian *H. melpomene* population we also found weaker but significant associations with the
248 *B/D* genotype on other linked chromosome 18 scaffolds, particularly HE671488. However, this
249 scaffold was also associated with differences in altitude, which were stronger than the associations
250 with colour (Figure 3A, Table 3, SI figure 4). This could suggest that this *B/D* linked region is
251 responsible for ecological adaptation, although colour and altitude are strongly correlated so we do
252 not have much power in the data set to separate the two. Both the Peruvian and Ecuadorian *H.*
253 *melpomene* populations had a SNP at position 97 on an unmapped scaffold, HE670458, that was
254 highly associated with rays (Table 3). This scaffold appears to consist largely of repetitive elements
255 (BLAST hits match many other regions of the *H. melpomene* genome), suggesting that there may be
256 a copy of a repetitive element that is associated with the presence of rays in both populations. All
257 rayed individuals were heterozygous and all non-rayed individuals were homozygous at this SNP in
258 both *H. melpomene* populations, which would be consistent with the presence of a unique copy of a
259 repetitive element linked to the rayed allele. The existence of such a repetitive element is consistent
260 with previous findings that repetitive elements are present in the region of highest divergence at the
261 *B/D* locus (Nadeau et al. 2012; Papa et al. 2008).

262 Surprisingly, in the Peruvian *H. erato* population the strongest associations with red colour pattern
263 elements were not on chromosome 18, but at two scaffolds (HE670771 and HE670235) on
264 chromosome 2 (Figure 3D, Table 3, SI figure 4). In addition, two SNPs significantly associated with
265 rays and *D* genotype in the *de novo* assembled data of this population could not be confidently
266 assigned to a position in the genome: One with a fairly weak top BLAST hit to the end of
267 chromosome 10 and multiple equally strong hits elsewhere in the genome; the other had a top
268 BLAST hit to an unmapped scaffold but additional good hits to two other unmapped scaffolds and
269 chromosomes 2 and 19.

270 *Yellow colour pattern elements and the Yb, N and Cr loci*

271 In the Peruvian *H. melpomene* population the presence of the yellow hindwing bar and yellow in the
272 forewing band both mapped to chromosome 15, with positions that were consistent with previous
273 work on the *Yb* locus (Ferguson et al. 2010; Nadeau et al. 2012; The *Heliconius* Genome Consortium
274 2012)(Table 2, SI figure 4). Associations with altitude were also found at these associated SNPs but
275 were weaker than the association with colour and so may simply be due to correlations between the
276 altitude of the sampling site and colour pattern.

277 In the Peruvian *H. erato* population we did not recover the expected associations with the yellow
278 hindwing bar, which is known to be controlled by the *Cr* locus on chromosome 15 (Joron et al. 2006;
279 Counterman et al. 2010). Instead, the strongest association with this phenotype in the reference
280 aligned data was found on chromosome 17 (Table 3). Moreover, we also identified significant
281 associations with the yellow hindwing bar on chromosome 10 in both the reference aligned and *de*
282 *novo* assembled data. In particular, one SNP on chromosome 10 was detected in both data sets on

283 scaffold HE668478. These associations can be explained by the presence of *Sd* on this scaffold
284 (Martin et al. 2012) (Table 2), which is known to influence the expression of the yellow hindwing bar,
285 particularly in individuals that are heterozygous at the *Cr* locus (Mallet 1989). The *Cr* locus is not
286 thought to control any aspects of phenotypic variation in Ecuadorian *H. erato* (Salazar 2012) and
287 consistent with this expectation we did not detect any phenotypic associations in this region.

288 Significant associations with yellow in the forewing band were present in the *D* region in Ecuadorian
289 *H. erato* (Figure 4D), consistent with the fact that the *D* locus controls both yellow and red
290 colouration in the forewing band in *H. erato* (Sheppard et al. 1985, Salazar 2012, Papa et al. 2013).
291 No significant associations were found with the presence of yellow colour in the forewing band in
292 either Peruvian *H. erato* or Ecuadorian *H. melpomene*.

293 We scored the Ecuadorian *H. melpomene* individuals for their predicted genotype at the *N* locus
294 (Figure 4C), which is known to control the amount and location of red in the forewing band and the
295 length of the orange hindwing “dennis” bar (Salazar 2012). Despite the epistatic interaction between
296 the *B/D* and the *N* loci, we could still score them independently. Associations with *N* were found to
297 overlap the *Yb* region (Ferguson et al. 2010; Nadeau et al. 2012) on chromosome 15, scaffold
298 HE667780 (Table 2, SI figure 4), in both the reference aligned and *de novo* assembled data (Figure
299 4A). These are the first genetic mapping results for the *N* locus and confirm previous studies’ findings
300 based on segregation patterns that it is tightly linked to *Yb* (Sheppard et al. 1985; Mallet 1989).

301 *Forewing band shape and the Ac, Sd and Ro loci*

302 In Peruvian *H. melpomene*, the strongest associations with forewing band shape (cell spot 8 and cell
303 spot 11) were on chromosome 18, within the *B/D* region (Figure 3A). This suggests that the *B/D* locus
304 controls the shape as well as the colour of the forewing band in Peruvian *H. melpomene*. However,
305 we did also find a cluster of 8 SNPs associated with band shape on an unmapped scaffold, HE671554.
306 New mapping analyses suggest that this scaffold is on chromosome 20 (J Davey, Pers. Comm.) and
307 therefore not linked to any previously described colour pattern controlling loci (Table 3).

308 In Peruvian *H. erato*, the SNP in the *Sd* region that was associated with the yellow hindwing bar also
309 showed the expected association with forewing band shape in the *de novo* assembly but not the
310 reference alignment. This SNP was just 5kb upstream of the *WntA* gene (Table 2, Figure 3D, SI figure
311 4). Associations with forewing band shape were also found on chromosome 2 in this and the
312 Ecuadorian *H. erato* populations (Figure 3D, Figure 4D, SI figure 4), in similar regions to those
313 associated with red colour in Peruvian *H. erato* (Table 3).

314 In both species from the Ecuadorian hybrid zone, we found SNPs associated with forewing band
315 shape (cell spot 7/8/11) within introns of the *WntA* gene (Figure 4, Table 2). In Ecuadorian *H. erato*,
316 we also found two tightly linked SNPs on chromosome 13, scaffold HE670984, and three tightly
317 linked SNPs on an unmapped scaffold, HE669551, which were associated with forewing band shape
318 and also rounding of the band (Figure 4D). Rounding of the distal edge of the band in this population
319 has previously been described as being under the control of the unmapped *Ro* locus (Sheppard et al.
320 1985; Salazar 2012). More recent mapping analysis suggests that HE669551 is within 1cM of
321 HE670984 on chromosome 13 (J Davey, Pers. Comm.) so these associations are most likely due to a
322 single locus on this chromosome. This is therefore the most likely genomic location of the *Ro* locus,
323 representing the first time this locus has been mapped.

324 **F_{ST} outlier detection**

325 Outlier detection provides an alternative method for identification of loci under selection that does
326 not depend on phenotypic association. BayeScan detected less than 0.06% of SNPs as outliers in
327 each of the analyses (Table 1). In the *de novo* assembly, Peruvian hybrid zones showed a greater
328 percentage of SNPs as outliers in both *H. erato* (0.059%) and *H. melpomene* (0.040%), with no
329 outliers detected in Ecuadorian *H. erato* and only five in Ecuadorian *H. melpomene* (0.012%). The
330 overall proportion of SNPs detected in the reference aligned data was similar. However, unlike the
331 *de novo* assemblies, the proportions of outliers found in the reference alignments were more similar
332 within each species than within each locality. Reference aligned data from *H. melpomene* contained
333 approximately 0.025% outlier SNPs in both Peru and Ecuador, while reference aligned data from *H.*
334 *erato* had 0.005% outliers in Peru and 0.017% outliers in Ecuador (Table 1). This would be consistent
335 with some of the most rapidly diverging regions being lost in *H. erato* when aligned against the
336 reference *H. melpomene* genome.

337 As suggested by results from the *de novo* assemblies, there do appear to be differences in
338 population structure between the geographic regions that are consistent across both species. This is
339 also reflected in the F_{ST} distributions (from both alignment and assembly approaches), with both *H.*
340 *erato* and *H. melpomene* having higher mean and background levels of F_{ST} in Ecuador as compared to
341 Peru (Table 1, Figure 2, SI figure 3). However, within both regions *H. melpomene* has a lower mean
342 F_{ST} than *H. erato*, which would be consistent with higher dispersal distances in *H. melpomene*, as
343 previously suggested (Mallet et al. 1990). Similar outlier regions were detected by both the
344 alignment and assembly approaches (Figures 3 and 4, B and E), although only Peruvian *H.*
345 *melpomene* gave a good overlap in the specific SNPs detected (Figure 5). Some of the outlier contigs
346 detected in Peruvian *H. erato* could not be positioned on the *H. melpomene* genome with
347 confidence. In particular, one contig containing 4 outlier SNPs, had the highest BLAST homology to
348 an unmapped scaffold (score = 87.7 bits) but similar hits (~86 bits) to chromosomes 1 and 4. In
349 addition, two of the contigs containing 3 outlier SNPs appeared to be linked to the *Sd* and *D* loci but
350 were assigned with very low confidence (BLAST scores < 40 bits).

351 Overall, there was considerable overlap between the genomic regions containing outlier SNPs and
352 those showing phenotypic associations (Figures 3 and 4), and to some extent in the specific SNPs,
353 with the majority of phenotypically associated SNPs also being outliers (Figure 5). The exception to
354 this general trend was the Peruvian *H. erato* population where a large proportion of the phenotypic
355 associations were not strongly divergent between subspecies. In all populations over 50% of outlier
356 SNPs were within 1Mb of a known colour pattern locus (including the newly identified *Ro* region;
357 excluding these, 37.5% of outliers in Ecuadorian *H. erato* were within 1Mb of the *D* and *Sd* loci). The
358 strongest outliers on chromosome 10 in the Ecuadorian populations and Peruvian *H. erato* were
359 within intons of the *WntA* gene and the strongest outliers on the *B/D* scaffold were all 3' of the *optix*
360 gene (Table 2, SI figure 4).

361 In both *H. melpomene* populations there was a second strongly divergent region on chromosome 18
362 about 2Mb from the *B/D* region, which was not divergent in either of the *H. erato* populations
363 (Figure 3B, SI figure 4). This is the same region on scaffold HE671488 that showed associations with
364 colour pattern and altitude in the Peruvian *H. melpomene* population (Table 3). In the Peruvian *H.*
365 *melpomene* population, we detected two clusters of outlier divergent SNPs on chromosome 6, which

366 do not appear to be associated with colour pattern (Figure 3B, Table 3, SI figure 4). Outliers were
367 also detected on chromosome 2 in both *H. erato* populations, some of which were in similar regions
368 to those detected in the association mapping (Table 3, SI figure 4).

369

370 **DISCUSSION**

371 It has long been recognised that convergent and parallel evolution provides a natural experimental
372 system in which to study the predictability of adaptation (Stewart et al. 1987; Wood et al. 2005). This
373 approach has come to the fore with the recent integration of molecular and phenotypic studies of
374 adaptive traits (Stinchcombe and Hoekstra 2007; Nadeau and Jiggins 2010). Here, we have studied
375 parallel divergent clines in two co-mimic species of butterflies, using RAD sequencing to generate an
376 extensive data set covering 1-5% of the entire genome. Previous genomic studies of these species
377 have sampled only a few individuals of divergent wing pattern races (Nadeau et al. 2012; The
378 *Heliconius* Genome Consortium. 2012; Nadeau et al. 2013; Martin et al. 2013; Supple et al. 2013;
379 Kronforst et al. 2013), while previous hybrid zone studies have yet to integrate next-generation
380 sequencing approaches (Mallet and Barton 1989a; Salazar 2012; Baxter et al. 2010; Counterman et
381 al. 2010). Here we have shown that association mapping in the hybrid zones can be used to find
382 known loci, but also identify previously unmapped loci, such as *Ro* in *H. erato* and *N* in *H.*
383 *melpomene*. Moreover, we conducted the first genome-wide scan for divergent loci and identify
384 some that are not wing colour pattern related and so may have a role in other aspects of ecological
385 divergence. With these data, we also identify a cryptic population of *H. timareta* in Ecuador and
386 reveal parallel patterns of divergence between co-mimetic species.

387 **Comparison of de novo assembly and reference alignment of RAD data**

388 Genome-wide association studies (GWAS) are now common in studies of admixed human
389 populations (Visscher et al. 2012). Their use outside of model organisms has mostly been hampered
390 by lack of reference genomes or methods for typing sufficient numbers of markers. However, these
391 limitations are rapidly being eroded as the cost of sequencing decreases and more reference
392 genomes become available. Furthermore, we have shown that alignment of reads to a fairly
393 distantly related reference genome (~15% divergent) can generate meaningful results. In the
394 absence of a reference genome, *de novo* assembly also detects the same loci, but with somewhat
395 reduced efficacy.

396 Alignment of sequence reads to the reference genome produced data for more sites, even in the
397 more distantly related species, *H. erato*. One drawback of the STACKS pipeline that we used for *de*
398 *novo* assembly of the reads is that it does not assemble and call sequence variants in the paired end
399 reads. Hence the available sequence for analysis is almost double in the reference alignments as
400 compared to the *de novo* assembly. However, it also seems that data was lost in the *de novo*
401 assembly due to divergent alleles not being assembled together. This may have had a larger
402 influence on the *H. erato* assemblies as this species harbours greater genetic diversity than *H.*
403 *melpomene* (Hines et al. 2011) and so explain why a much lower proportion of the *de novo*
404 assembled contigs were present across multiple individuals in *H. erato* (Table 1). We also found a
405 higher proportion of variable sites in the reference alignments as compared to the *de novo*
406 assemblies. This may again be due to poor assembly of the *de novo* contigs, but it could also

407 represent genetic variability contained in the paired-end reads. It is possible that paired end reads
408 might be located in more variable regions, particularly if restriction-site associated reads were
409 biased towards more conserved regions (The *Heliconius* Genome Consortium 2012).

410 The larger number of SNPs in the reference alignments resulted in larger numbers of outlier and
411 associated SNPs being detected, most of which cluster in the expected genomic regions. Moreover,
412 there appears to be a higher false positive rate in the association mapping using the *de novo*
413 assembled data. The most likely explanation for this result is that the smaller number of SNPs
414 generated from the *de novo* assembly gave less power to correct for underlying population
415 structure. Nevertheless, many of the expected associations and outlier regions were detected in the
416 *de novo* assembled data. The results from assembly and alignment approaches are more concordant
417 in *H. melpomene* than *H. erato* particularly at the level of individual SNPs (Figure 5). This is very likely
418 due to the fact that the *H. melpomene* reference genome was used to generate the sequence
419 alignments in both species. In addition, the lower within-population diversity in *H. melpomene*, may
420 also have led to improved *de novo* assemblies in this species.

421 Overall, our results suggest that detection of loci underlying adaptive change is likely to be more
422 effective where reads can be mapped to a reference genome. The *de novo* approach could, and no
423 doubt will, be improved by developing methods that allow paired end reads to be incorporated into
424 the SNP typing pipeline (Baxter et al. 2011). This would not only allow a higher density of SNPs to be
425 detected but could also improve alignment of divergent alleles. In the mean time, one approach that
426 has been used in other studies is to *de novo* assemble RAD-seq reads to generate a consensus
427 reference that the reads are then mapped back to for SNP calling (Keller et al. 2013).

428 **Association mapping across hybrid zones is a rapid way of detecting loci underlying phenotypic
429 differences**

430 We have successfully used association mapping in hybrid zone individuals to identify virtually all of
431 the genomic regions known to control colour pattern in these populations (Reed et. al. 2011, Martin
432 et al. 2012; Nadeau et al. 2012; Supple et al. 2013). It has commonly been supposed that large
433 sample sizes will be necessary in order identify genes in wild populations. Here we have confirmed
434 recent theoretical predictions from simulated data (Crawford and Nielsen 2013), that for large effect
435 adaptive loci, even small sample sizes can be highly effective in identification of narrow genomic
436 regions underlying adaptive traits. We also confirm the prediction that in populations with low
437 background levels of divergence both divergence outlier and association mapping approaches are
438 effective in detecting regions under divergent selection. In our study, association mapping has the
439 added benefit of identifying the phenotypic effects of the selected loci. One anticipated pitfall of this
440 method was that many of the phenotypes covary across the hybrid zone. However, it appears that
441 with just 10 individuals with admixed phenotypes we can disassociate most of the variation and thus
442 find distinct genetic associations for known loci. This therefore gives us some confidence that the
443 novel associations that we have detected are real and not due to covariation with other phenotypes.

444 In Ecuador we intentionally sampled from sites at the edges of the hybrid zone where both pure and
445 hybrid individuals were present, as we anticipated that individuals from these sites would have the
446 highest levels of admixture between selected alleles. This may explain the clearer patterns observed
447 in *H. erato* in Ecuador as compared to Peru (Figures 3D and 4D). In Peruvian *H. erato* we also find
448 several genomic regions showing phenotypic associations that are not divergence outliers, which

449 may suggest that these are likely to be false positives. However, the less clear signal in Peruvian *H.*
450 *erato* could also be due to the reduced sample size in this population (27 individuals). Certainly, the
451 reduced number of Ecuadorian *H. melpomene* individuals (22) seems to have greatly reduced the
452 power of the association mapping to detect significant associations (Figure 4B). The lack of any signal
453 at the *Cr* locus in Peruvian *H. erato* is still surprising, and may be because the *Cr* associated region is
454 very narrow. Linkage disequilibrium breaks down rapidly in *H. erato* (Counterman et al. 2010) and
455 even though there are >700 SNPs in *H. erato* within the region that contains hindwing bar associated
456 SNPs in *H. melpomene*, this may not be enough to identify the loci responsible for this phenotypic
457 variation. Nevertheless, contrary to previous suggestions (Kronforst et al. 2013), the density of RAD
458 markers we have obtained was sufficient to identify many other narrow divergent genomic regions.

459 Although we have clearly demonstrated the utility of this approach for association mapping, it
460 should be noted that scoring of some phenotypes was informed by previous crossing experiments.
461 For example, the *N* locus in Ecuadorian *H. melpomene* was scored taking into account the genetic
462 background at *B/D* (Salazar 2012), and the scoring of the predicted genotype at the *B/D* locus
463 yielded stronger associations than scoring of individual colour pattern elements. Nonetheless,
464 scoring based purely on phenotypic variation did successfully identify colour pattern loci in several
465 cases (eg. *Ro*, *Ac/Sd* and *Yb*). Overall, the prospects for mapping individual phenotypic components
466 and identifying epistatic relationships without prior knowledge are considerable, especially with
467 larger sample sizes.

468 The possibility of using hybrid zones for association mapping has long been recognised (Kocher and
469 Sage 1986) but few studies have successfully applied this technique. Studies in younger hybrid zones,
470 for example *Helianthus* sunflowers, have found that linkage disequilibrium between unlinked
471 genomic regions in early generation hybrids can produce spurious associations (Rieseberg and
472 Buerkle 2002). *Heliconius* hybrid zones seem ideal in this regard because they appear to be fairly
473 ancient and close to linkage equilibrium. However, it seems likely that many other suitable systems
474 do exist for this type of approach (Lexer et al. 2006; Crawford and Nielsen 2013). An additional
475 benefit of the *Heliconius* system is that much of the phenotypic variation is controlled by major
476 effect loci, which can be detected with small sample sizes. Much larger sample sizes would be
477 required in order to detect minor effect loci (Beavis 1997). Nevertheless, adaptive phenotypes
478 appear to frequently arise from major effect loci (Orr 2005; Nadeau and Jiggins 2010) and so there
479 may be many situations in which the use of very large sample sizes is unnecessary. In addition, by
480 incorporating methods that use a probabilistic framework to infer allele frequencies in low coverage
481 sequencing data (Gompert and Buerkle 2011) it should be feasible to sequence large enough
482 samples for analysis of quantitative traits.

483 Identification of a novel colour pattern locus

484 Our association mapping results have robustly identified the *H. erato* *Ro* locus, that controls the
485 shape of the distal edge of the forewing band, as being on chromosome 13 near gene HE669551.
486 This gene has a predicted Gene Ontology (GO) molecular function of microtubule binding and is
487 similar to other insect Radial Spoke Head 3 proteins, which are components of the cilia (Avidor-Reiss
488 et al. 2004). It is therefore not an obvious candidate for control of colour pattern, so may simply be
489 linked to the causative site. Our results are contrary to the suggestion of a recently published QTL
490 study that *Ro* may be linked to *Sd* (Papa et al. 2013). However, that study also identified a major

491 unlinked QTL for forewing band shape, that could not be assigned to a *H. melpomene* chromosome
492 and so may be homologous to the locus we detected here. Furthermore, a QTL for several aspects of
493 forewing band shape and size, including the shape of the distal edge, has previously been identified
494 in *H. melpomene* on chromosome 13 (Baxter et al. 2008). This was located to a fairly broad region
495 but its positioning is consistent with our results for the *Ro* locus in *H. erato*. It therefore seems likely
496 that we have identified a new wing patterning locus that is homologous in *H. melpomene* and *H.*
497 *erato*.

498 **Ecological selection across the hybrid zones**

499 Our results support previous assertions that selection acting on colour pattern is the most important
500 factor in maintaining these hybrid zones (Mallet and Barton 1989a; Baxter et al. 2010; Counterman
501 et al. 2010; Nadeau et al. 2012; Supple et al. 2013). The most divergent genomic regions correspond
502 to colour pattern controlling loci and at least half of all divergence outliers are in these regions.
503 Nevertheless, some divergent regions do not seem to correspond to colour pattern loci, and could
504 be candidates for adaptation to other ecological factors. The best candidates appear to be the
505 regions on chromosome 2 in *H. erato* and chromosome 6 in *H. melpomene*. The regions on
506 chromosome 2 in the Peruvian *H. erato* population are also associated with colour pattern, but such
507 association could be due to the high covariation of colour pattern and sampling location in this
508 population. These regions overlap with predicted genes, including basic metabolic genes and a heat
509 shock protein (Table 3), which could be candidates for adaptation to different temperature regimes.
510 Chemosensory genes were also detected on chromosome 2, and could be candidates for divergent
511 mate preference or host plant adaptation (Briscoe et al. 2013). However, no differences in host plant
512 preference have been observed in Peru where these outliers were detected, and mating within the
513 hybrid zone appears to the random (Mallet and Barton 1989a), although marginal differences in
514 mate preference have been observed in *H. melpomene* (Merrill, Gompert, et al. 2011).

515 There appear to be multiple dispersed divergent regions on chromosome 2 in *H. erato* (SI figure 4).
516 These could be evidence of divergence hitchhiking, whereby new mutations that cause differential
517 fitness are more likely to be fixed by selection if they arise close to other loci already under divergent
518 selection. This could lead to clustering of divergently selected loci in the genome (Via 2012; Feder et
519 al. 2012). The same process could also have led to additional loci under divergent selection to arise
520 in linkage with the colour pattern loci. This could explain the second divergent and altitude
521 associated region on chromosome 18 (linked to the *B/D* locus) in *H. melpomene* (Table 3, SI figure 4).
522 One possibility is that this could be the *B/D* linked mate preference locus that has previously been
523 identified (Merrill, Van Schooten, et al. 2011), although it is not clear if the mate preference locus is
524 an additional linked locus or a pleiotropic effect of the wing colour locus itself. It is also possible that
525 these apparently distinct but linked divergent regions could simply reflect the heterogeneous nature
526 of F_{ST} resulting from strong divergent selection acting on a single locus combined with other
527 background and neutral processes (Charlesworth et al. 1997). A broad region of divergence around
528 the *B/D* locus in *H. melpomene* would fit with other suggestions that it has undergone stronger or
529 more recent selection than other colour pattern loci (Nadeau et al. 2012). The *D* region in *H. erato*
530 does not appear to be extended in the same way as in *H. melpomene* (SI figure 4), suggesting that
531 either the architecture or the selective history of this region is different between these species.

532 **Comparison of the genomic architecture of divergence between convergent species**

533 One interesting question that can be addressed with our results is the extent to which species
534 undergoing parallel divergence will show parallel patterns at the genomic level. In order to address
535 this we first need to know whether the species really have undergone parallel divergence, *i.e.* that
536 both the phenotypic start and end points have been similar. Several previous studies have suggested
537 that this is not the case and that *H. erato* diverged earlier and followed a different trajectory
538 compared to *H. melpomene* (Quek et al. 2010; Brower 1996; Flanagan et al. 2004). However, our
539 phylogenetic results are more consistent with a recent analysis suggesting that the two species do
540 appear to have undergone co-divergence in multiple populations across their range (Cuthill and
541 Charleston 2012). Our results are based on significantly more data than any of the previous analyses
542 (>5Mb in *H. melpomene* and >1Mb in *H. erato*), and should produce a better signal for phylogenetic
543 analysis as compared to AFLPs used previously (Quek et al. 2010). Although the striking similarities in
544 tree topology do seem to support the co-divergence hypothesis, alignment to a reference genome
545 means that the evolutionary rates in our data for *H. erato* and *H. melpomene* are not directly
546 comparable. In addition to the phylogenetic signal, our data also suggested similar patterns of
547 population structure between species in each of the regions, with higher background divergence
548 levels in Ecuador as compared to Peru (Figure 2, Table 1, SI figure 3). This is despite the fact that
549 average distance between sampling locations of “pure” subspecies individuals was similar for both
550 hybrid zones (~56km in Ecuador and 58-60km in Peru).

551 Although some loci show parallel divergence in both species (*B/D* in Peru; *B/D* and *Ac/Sd* in
552 Ecuador), there is surprisingly little similarity in which other loci are divergent between subspecies
553 within each species. This is contrary to the general perception that there are strong genetic parallels
554 in this system (Joron et al. 2006; Baxter et al. 2008; Supple et al. 2013; Papa et al. 2008). Some of
555 these differences were known previously, for example, that in Peru the *Sd/Ac* locus controls band
556 shape variation in *H. erato* but not in *H. melpomene* (Mallet 1989). Our results extend this further
557 through the identification of the *Ro* locus on chromosome 13 in Ecuadorian *H. erato*, which is not
558 divergent in its co-mimic *H. melpomene*, and the identification of divergent regions of chromosome
559 2 in *H. erato* and chromosome 6 in Peruvian *H. melpomene*.

560 In general, it seems that although the same colour pattern loci are present in both species (Joron et
561 al. 2006; Baxter et al. 2008; Martin et al. 2012) they are being used in different ways and
562 combinations in order to produce convergent phenotypes. This is particularly surprising given the
563 pattern of co-divergence observed in the phylogeny, which would appear to suggest that similar
564 colour patterns have arisen at a similar time and from similar ancestral forms in both species.
565 Nonetheless, the apparent pattern of co-divergence could simply reflect more recent patterns of
566 gene flow between geographically proximate populations in both species. This has recently been
567 highlighted by studies showing that patterns of divergence at colour pattern controlling loci can be
568 very different to those found at the rest of the genome (Hines et al. 2011; Pardo-Diaz et al. 2012;
569 The *Heliconius* Genome Consortium 2012; Supple et al. 2013). Therefore, the differences that we
570 observe in the use of particular loci in the two species could reflect different mimetic histories that
571 will only be resolved by studies of the evolutionary history of particular loci.

572 **Discovery of a new cryptic *H. timareta* population**

573 An unexpected finding of our study was the discovery of a previously undescribed population of *H.*
574 *timareta*, which appears phenotypically virtually indistinguishable from *H. melpomene malleti* in

575 Ecuador but is clearly genetically distinct (Figure 1, SI figures 1 and 2). *H. timareta florencia* is a
576 *malleti* like population that has previously been described in Colombia and also co-occurs with *H.*
577 *melpomene malleti*. In that population the length of the red line on the anterior edge of the ventral
578 forewing was diagnostic (Giraldo et al. 2008). This character was not diagnostic in our genotyped
579 individuals, with overlapping length distributions between the species (data not shown). We noted a
580 tendency towards *H. timareta* having a shorter line on average, but given the small sample sizes in
581 the current study, this remains to be confirmed.

582 A polymorphic high altitude population of *H. timareta* (*H. timareta timareta*) also occurs in this area
583 of Ecuador, overlapping in distribution with *H. melpomene plesseni*. The polymorphism in this
584 population has been somewhat of a puzzle as none of the forms mimic other co-occurring butterflies
585 (Mallet 1999). Our finding of a new *H. timareta* population may help to explain the polymorphism in
586 *H. timareta timareta*, if it is being generated in part by gene flow from this newly identified
587 population.

588 The *H. timareta* radiation has only been recognised in the last 10 years (Giraldo et al. 2008; Jiggins
589 2008, Merot et al., 2013). The *H. timareta* individuals in our study were collected from sites at 824m
590 and 376m. They appear to be fairly common at low altitude as four out of the five individuals
591 sequenced from the site at 376m were *H. timareta*. In a large dataset compiled by Rosser et al.
592 (2012) containing 232 *H. timareta* individuals from all known populations (including *H. tristero*, now
593 thought to be a subspecies of *H. timareta*), the lowest sampling location is around 600m, with 95%
594 of individuals occurring over 800m. Therefore, the population of *H. timareta* that we have
595 discovered occurs below the usual altitudinal range of *H. timareta*. This extends the possible range
596 of this species and suggests that the overlap in distribution of *H. timareta* and *H. melpomene* is
597 greater than previously considered.

598 **Conclusions**

599 We have demonstrated that high resolution genome scans using admixed individuals from hybrid
600 zones can be used to identify loci underlying phenotypic variation. Only a small proportion of the
601 genome (about 0.025%) is strongly differentiated between subspecies and most of this can be
602 explained by divergence at loci controlling colour pattern. This is consistent with previous studies
603 based on smaller numbers of markers (Turner 1979; Baxter et al. 2010, Counterman et al. 2010,
604 Nadeau et al. 2012) and suggests that the hybrid zones are ancient or have formed in primary
605 contact, and are maintained by strong selection on colour pattern (Mallet and Barton 1989a, Mallet
606 2010). However, we also find, for the first time, some divergent loci that do not appear to be
607 associated with colour pattern, suggesting that there may be other differences between subspecies.
608 This could explain why several *Heliconius* hybrid zones occur across ecological gradients (Benson
609 1982), if they are coupled with extrinsic selection acting on other loci in the genome (Bierne et al.
610 2011). However, this needs to be confirmed with detailed phenotypic analyses of the subspecies to
611 identify whether differences are present that could be explained by ecological adaptation. In general
612 we find that, although some loci are divergent in all populations, the genomic pattern of divergence
613 between co-mimetic species is not particularly similar, suggesting that the level of parallel genetic
614 evolution between *H. erato* and *H. melpomene* is in fact quite low, despite parallel phylogenetic
615 patterns of divergence. Finally, our analysis shows that alignment to a distantly related reference
616 genome can improve analyses over a *de novo* assembly of the data.

617 **METHODS**

618 **Samples and sequencing**

619 30 *H. erato* and 30 *H. melpomene* individuals were selected from a larger sample taken from the
620 hybrid zone region in Peru. Similarly, 30 *H. erato* and 30 *H. melpomene* were also selected from a
621 larger study of a subspecies hybrid zone in Ecuador (Salazar 2012). Each set of 30 samples comprised
622 10 pure forms of each subspecies and 10 hybrids (based on colour pattern). See Figure 2 and SI table
623 2 for further details of the samples and locations.

624 RAD sequencing libraries were prepared using previously described methodologies (The *Heliconius*
625 Genome Consortium 2012; Baird et al. 2008; Baxter et al. 2011). Briefly, DNA was digested with the
626 restriction enzyme *Pst*I prior to ligation of P1 sequencing adaptors with five-base molecular
627 identifiers (see SI table 2 for MIDs used). We then pooled samples into groups of 6 before shearing,
628 ligation of P2 adaptors, amplification and fragment size selection (300-600bp). Libraries were then
629 further pooled such that 30 individuals were sequenced on each lane of an Illumina HiSeq2000
630 sequencer to obtain 150 base paired-end sequences. We obtained an average of 374M sequence
631 pairs from each lane. Following sequencing, three of the *H. erato* individuals from Peru were found
632 to have been incorrectly assigned to this species and were excluded from all further analyses.

633 In order to compare patterns of phylogenetic divergence of the focal subspecies, we also used
634 sequence data from additional subspecies and closely related species in each group. Two individuals
635 each from 6 additional *H. erato* populations and the closely related *H. himera* were also *Pst*I RAD
636 sequenced with 5 individuals pooled per lane of Illumina GAIix (100 base paired-end sequencing).
637 These sequences were obtained in the same run as a comparable set of individuals from the *H.*
638 *melpomene* clade, which have been used in previous analyses (The *Heliconius* Genome Consortium
639 2012; Nadeau et al. 2013, European Nucleotide Archive, Accession ERP000991). We also obtained
640 whole-genome shotgun sequence data from an outgroup species, *H. clysonimus*, which was
641 sequenced on a fifth of a HiSeq2000 lane, giving 53.5M 100 base read pairs for this individual.

642 **Alignment to reference genome**

643 We separated paired-end reads by MID using the RADpools script in the RADtools (v1.2.4) package
644 (Baxter et al. 2011), which also filters based on the presence of the restriction enzyme cut site, using
645 the option to allow one mismatch within the MID. Reads from each individual were then aligned to
646 the *H. melpomene* reference genome (The *Heliconius* Genome Consortium 2012) using Stampy
647 v1.0.17 (Lunter and Goodson 2011), with default parameters except substitution rate, which was set
648 to 0.03 for alignments of *H. melpomene* and 0.10 for alignments of *H. erato*.

649 We then realigned indels and called genotypes using the Genome Analysis Tool Kit (GATK) v1.6.7
650 (DePristo et al. 2011), emitting all confident sites (those with quality ≥ 30). This was first run on each
651 set of 30 (or 27) individuals from each population group. These genotype calls were used for
652 analyses of genetic variation within each of the groups, including outlier detection, association
653 mapping and analyses of subpopulation structure. In addition, genotype calling was also performed
654 on a combined dataset of all *H. melpomene* and outgroup taxa (*H. timareta*, *H. cydno* and *H. hecale*)
655 as well as a combined set of all *H. erato* and its outgroups (*H. himera* and *H. clysonimus*). These
656 genotype calls were used for the phylogenetic analyses and broader analyses of genetic structure.

657 For all downstream analyses, calls were further filtered to only accept those based on a minimum
658 depth of five reads and minimum genotype and mapping qualities (GQ and MQ) of 30 for *H.*
659 *melpomene* and 20 for *H. erato*.

660 ***De novo* assembly**

661 We quality-filtered the single-end raw sequence data and separated sequences by MID with the
662 process_radtags program within Stacks (Catchen et al. 2011). This program corrects single errors in
663 the MID or restriction site and then checks quality score using a sliding window across 15% the
664 length of the read. We discarded sequences with a raw phred score below 10, removed reads with
665 uncalled bases or low quality scores, and trimmed reads to 100 bases to eliminate potential
666 sequencing error occurring at ends of reads. Table 1 shows the mean read numbers per individual
667 obtained after filtering. For each population group, we assembled loci *de novo* using the
668 denovo_map.sh pipeline in Stacks (Catchen et al. 2011). We set the minimum depth of coverage (m)
669 to 6, allowed 4 mismatches both in creating individual stacks (M) and in secondary reads (N), and
670 removed or separated highly repetitive RadTags. Due to the high level of polymorphism in our
671 dataset, we used these parameters to minimize the exclusion of interesting loci with high variability
672 between populations. *De novo* assembly was conducted both including (for association mapping)
673 and excluding (for bayescan outlier detection) hybrid individuals in the analysis. Individuals from
674 Ecuador that were identified as being *H. timareta* were excluded.

675 **Phylogenetics and analysis of population structure**

676 Only the reference aligned data were used for phylogenetics and STRUCTURE analyses. We used
677 custom scripts to convert from vcf to Phylip format and to filter sites with a minimum of 95% of
678 individuals with confident calls. Maximum likelihood phylogenies were constructed in PhyML
679 (Guindon and Gascuel 2003) with a GTR model using the resulting 5,737,351 sites (including
680 invariant sites) for the *H. melpomene* group and 1,693,024 sites for the *H. erato* group. Approximate
681 likelihood branch supports were calculated within the program.

682 Population structure within and across each of the hybrid zones was analysed using the program
683 STRUCTURE v2.3 (Pritchard et al. 2000). We prepared input files using custom scripts, and only sites
684 with 100% of individuals present for *H. melpomene* populations or at least 75% of individuals
685 present for *H. erato* populations and with a minor allele frequency of at least 20% were retained.
686 This reduced the number of sampled sites, keeping just the most informative ones, for easier
687 handling by the program. Initial short runs (10^3 burn-in, 10^3 data collection, K=1) were used to
688 estimate the allele frequency distribution parameter λ . We then ran longer clustering runs (10^4 burn-
689 in, 10^4 data collection) with the obtained values of λ for each of the four population groups for K=1-
690 3. For *H. melpomene* in Ecuador the analysis was first run with all individuals included and then
691 excluding the individuals identified as being *H. timareta*.

692 We also performed principle components analysis of the genetic variation in each population group.
693 This was done with the “cmdscale” command in R (R Development Core Team 2011), using genetic
694 distance matrices calculated as 0.5-ibs, where ibs was the identity by sequence matrix calculated in
695 GenABEL (see below). As further confirmation that some of the *H. melpomene* individuals sampled in
696 Ecuador were in fact cryptic *H. timareta*, we also performed principle components analysis on the
697 combined *H. melpomene* and outgroup data set. We also ran principle components analysis on the

698 *de novo* assembled data for each population group, to test whether both methods were detecting
699 similar underlying patterns of genetic variation.

700 In order to compare our newly identified *H. timareta* individuals to other populations, we Sanger
701 sequenced a 745bp region of mitochondrial COI that overlapped with the regions sequenced in
702 previous studies (Giraldo et al. 2008; Mérot et al. 2013). This was PCR amplified as in Mérot et al.
703 (2013) with primers “Jerry” and “Patlep” and directly sequenced with “Patlep”. These sequences
704 were then aligned with those available on Genbank and a maximum likelihood phylogeny was
705 constructed in PhyML (Guindon and Gascuel 2003) with a GTR model and 1000 bootstrap replicates.

706 **Association mapping of loci controlling colour pattern variation**

707 We scored components of phenotypic variation that segregate across each of the hybrid zones. The
708 scored phenotypes are shown in Figure 3 (for Peru) and Figure 4 (for Ecuador) and listed in full in SI
709 Table 3. These were scored mostly as binomial (1,0) traits, but in some cases intermediates were
710 also scored (as 0.5). The width and shape of the forewing band was scored based on whether it
711 extended into each of the wing “cells”, demarcated by the major wing veins (as shown in SI figure 5).
712 In Peruvian populations, the size and shape of the forewing band was measured as two components
713 (Figure 3C/F) that extend the band distally (cell spot 8) and proximally (cell spot 11). In Ecuador,
714 three aspects of band shape were scored: cells 8 and 11, which make up the proximal spot in *H. m.*
715 *plesseni* and *H. e. notabilis*, and cell 7, which pushes the band towards the wing margin in *H. m.*
716 *malleti* and *H. e. lativitta* (Figure 4C/F). In our sample of *H. melpomene* the presence of cell spots 8
717 and 11 were perfectly correlated, whereas in *H. erato* the presence of cell spot 7 was perfectly
718 correlated with the absence of cell spot 8. In addition, individuals were also scored for their
719 predicted genotypes at major loci described previously (with predicted heterozygotes scored as 0.5)
720 (Sheppard et al. 1985; J. Mallet 1989) and the altitude at which they were collected was included as
721 a continuous phenotypic trait.

722 We performed association mapping using the R Package GenABEL v 1.7-4 (Aulchenko et al. 2007).
723 This was performed on both the *de novo* assembled and the reference aligned data with a custom
724 script used to convert both from vcf to Illumina SNP format. Individuals identified as being *H.*
725 *timareta* were excluded. Filtering was performed within the program to remove sites with >30%
726 missing data and with a minor allele frequency of <3%.

727 For each population, an analysis of the hind-wing ray phenotype using the reference mapped data
728 was first performed using three methods: a straight score test (qtscore), a score test with the first
729 three principle components of genetic variation (calculated as described above) as covariates, and
730 an EIGENSTRAT analysis (egscore, Price et al. 2006). The presence of genetic stratification and the
731 ability of these methods to correct for this was analysed by comparing the inflation factor, λ . In all
732 cases the analyses incorporating population stratification did not give a reduced value of λ and so
733 were not used for subsequent analyses. As our samples were from hybrid zones with >60% of the
734 samples having extreme values of all scored phenotypes, we would expect similar levels of
735 stratification for all phenotypes, so this test for stratification was not repeated for all phenotypes.

736 We therefore performed score tests for all scored phenotypes across all population groups.
737 Genome-wide significance was determined empirically from 1000 resampling replicates and
738 corrected for population structure using the test specific λ .

739 **BayeScan analysis to identify loci under selection**

740 We used the program BayeScan v2.1 (Foll and Gaggiotti 2008) to look for loci with outlier F_{ST} values
741 between “pure” individuals of each subspecies type (based on wing colour pattern) in each
742 population group. Exclusion of the *H. timareta* individuals meant that only three pure *H. melpomene*
743 *mallei* individuals remained. Therefore, for the purpose of this analysis of *H. melpomene* in Ecuador,
744 the two hybrid individuals closest to the *H. m. mallei* side of the hybrid zone (Figure 2), which also
745 had the most *H. m. mallei* like phenotypes, were included as *H. m. mallei*.

746 The program was run with the prior odds for the neutral model (pr_odds) set to 10 and outlier loci
747 were detected with a false discover rate (FDR) of 0.05. We ran this analysis using both the *de novo*
748 assembled and the reference aligned data. Custom scripts were used to convert these to the correct
749 input format. For both analyses, sites were only kept if at least 75% of individuals were sampled for
750 both subspecies in a given comparison.

751 **DATA ACCESS**

752 DNA sequence reads have been submitted to the European Nucleotide Archive, Accession
753 PRJEB4669. COI sequences have been deposited in EMBL-Bank, accessions HG710096 - HG710125.
754 Custom scripts and wing images are available on request from the authors.

755

756 **ACKNOWLEDGEMENTS**

757 We thank Simon Baxter, Doug Turnbull and William Cresko for their help and advice with RAD library
758 preparation and sequencing. Sequencing was performed at the University of Oregon, Genomics Core
759 Facility and The Gene Pool genomics facility in the University of Edinburgh. We would also like to
760 thank Julian Catchen for his help with Stacks. We thank the governments of Peru and Ecuador for
761 their permission to collect and export specimens. Santiago Villamarín from the Museo Ecuatoriano
762 de Ciencias Naturales provided institutional support in Ecuador. We also thank Ismael Aldás, Carlos
763 Robalino and Patricia Salazar for their assistance with fieldwork. Joanna Riley assisted with DNA
764 extractions. John Davey gave us access to his unpublished mapping results. This project was
765 supported by research grants NSF-CREST #0206200, NSF-DEB-1257839 and NSF-IOS 1305686. NJN
766 was funded by a Leverhulme Trust award to CDJ, MR was funded through the Ford Foundation
767 Postdoctoral Fellowship Program administered by the National Academies, HOZ and JAM were
768 partially supported by NIH-NIGMS INBRE award P20GM103475 and NSF-EPSCoR award 1002410.

769 **FIGURE LEGENDS**

770 **Figure 1.** A) Distribution in South America of the subspecies included in this study. B) Maximum
771 likelihood phylogenies with approximate likelihood branch supports. Co-mimics from outside of the
772 focal hybrid zones are connected with dotted lines. Focal hybrid zone individuals are shown in
773 colour: blue, *H. m. plesseni* and *H. e. notabilis*; purple, Ecuador hybrids; dark red, *H. m. mallei* and *H.*
774 *e. lativitta*; red, *H. m. aglaope* and *H. e. favorinus*; orange, Peru hybrids; yellow, *H. m. amaryllis* and
775 *H. e. emma*. Additional populations are in black. Country abbreviations: Ec, Ecuador; FG, French
776 Guiana; Co, Colombia; Pa, Panama.

777 **Figure 2.** Population structure at each of the hybrid zones using the reference aligned data. A)
778 Sampling locations with altitude (sample number) and pie charts of the proportion of individuals of
779 each type sampled from each site. Colours are the same as in Figure 1 except black indicates *H.*
780 *timareta* in Ecuador. B) STRUCTURE analysis with k=2 (*H. timareta* individuals excluded). Each
781 individual is shown as a horizontal bar with the allelic contribution from population 1 (grey) and
782 population 2 (black) C) Principle components analysis. D) Distribution of F_{ST} values from BayeScan.

783 **Figure 3.** Association mapping (A and D) and outlier analysis (B and E) for *H. melpomene* (A, B, C) and
784 *H. erato* (D, E, F) in Peru. Each phenotype used for the association mapping is shown in a different
785 colour as illustrated in panels C and F. For clarity, only the top 20 associated SNPs are shown for
786 each phenotype. Results from the *de novo* assembled data are shown as crosses (and in orange for
787 the outlier analysis) and positioned based on the top BLAST hit to the *H. melpomene* genome, those
788 with thinner lines were not confidently or uniquely assigned to these positions (eg. those at the end
789 of Chromosome 10 in D) . “unmapped” indicates scaffolds of the *H. melpomene* reference genome
790 that were not assigned to chromosomes in v1.1 of the genome assembly.

791 **Figure 4.** Association mapping (A and D) and outlier analysis (B and E) for *H. melpomene* (A, B, C) and
792 *H. erato* (D, E, F) in Ecuador. See Figure 3 legend for further information.

793 **Figure 5.** Venn diagrams of SNPs detected in the *de novo* assembled (orange and red) and reference
794 aligned (blue and green) data by BayeScan outlier detection (red and blue) and association mapping
795 (orange and green), for each of the four populations.

796

797

798 **TABLES**

799 **Table 1. Summary statistics from alignment and assembly approaches**

De novo assembly with Stacks - single end reads											
		n	millions of reads (mean \pm SD)	bases covered (x10 ⁶)	bases covered in ≥ 10 inds (x10 ⁶)	SNPs used in outlier analysis (x10 ³)	mean F_{ST}	Outliers	Significant Phenotypic Associations		
<i>H. erato</i>	Peru								10	2	8
	Ecuador	30	9.2 ± 2.5	149	3.3	31	0.0568	0			
<i>H. melpomene</i>	Peru	30	7.0 ± 2.4	61	4.3	57	0.0145	23			
	Ecuador	22	7.8 ± 1.4	45	3.5	43	0.0310	5			

Aligned to <i>H. melpomene</i> reference - paired end with Stampy											
		n	millions of reads (mean \pm SD)	bases covered (x10 ⁶)	bases covered in ≥ 10 inds (x10 ⁶)	SNPs used in outlier analysis (x10 ³)	mean F_{ST}	Outliers	Significant Phenotypic Associations		
<i>H. erato</i>	Peru								28	9.4	116
	Ecuador	30	11.9 ± 3.2	13	5.1	337	0.0316	56	15	9.1	105
<i>H. melpomene</i>	Peru	30	10.9 ± 3.8	28	14.4	860	0.0112	235	91	9.3	103
	Ecuador	22	10.7 ± 1.9	23	15.6	788	0.0299	179	14	9.5	114

800

801

802 **Table 2. Positions of the strongest associations and outliers identified in genomic regions known to**
803 **control colour pattern variation, in relation to known genes and functional regions.**

Colour pattern loci		B/D	Ac/Sd	Yb/N/Cr
Chromosome		chr18	chr10	chr15
Scaffold		HE670865	HE668478	HE667780
Gene		HMELO001028	HMELO18100	
		(<i>optix</i>) ¹	(<i>WntA</i>) ²	Presently unknown
-	Position	438,423-439,107	450,400-483,854	
Functional region ³		300,000-400,000	Presently unknown	600,000-1,000,000
<i>H. melpomene</i>	Peru	assoc	161,328-376,651	N/A
		outlier	263,358	676,543-697,543
	Ecuador	assoc	none	454,479-454,496
		outlier	376,651	697,118-725,562
<i>H. erato</i>	Peru	assoc	362,793-362,794	444,914
		outlier	362,794	478,952
	Ecuador	assoc	282,473-376,342	478,897
		outlier	376,250	479,220

804 For each population, positions are given for the SNPs showing the strongest phenotypic associations
805 (assoc) and the highest F_{ST} outliers (outlier): N/A, not expected or found; none, not found. ¹ from
806 Reed et al. 2011; ² from Martin et al. 2012; ³ Inferred from population genomics: the B/D region

807 appears to be similar in *H. erato* and *H. melpomene*; *Yb/N/Cr* region has been localised in *H.*
 808 *melpomene* only (Nadeau et al. 2012; Supple et al. 2013).

809

810 **Table 3. Novel genomic regions showing phenotypic associations or divergence outliers**

chrom.	Scaffold	Position	Comparison*	association (p value)‡	F_{ST} ‡	Closest Gene Distance†	GO function	putative protein
unmapped (chr13)	HE669551	4,467	<i>erato</i> Ecuador: refmap assoc (Ro, spot 7/8), refmap outlier	0.007	0.307	HMEL004352 0 (S)	microtubule binding	radial spoke head 3
chr13	HE670984	4,951- 4,959	<i>erato</i> Ecuador: refmap assoc (Ro, spot 11 , spot 7/8), refmap outlier	0.024	0.343	HMEL009926 3,915	structural constituent of ribosome, RNA binding	ribosomal protein S4
unmapped (chr20)	HE671554	82,726- 82,851	<i>melp</i> Peru: refmap assoc (spot 8)	0.017		HMEL016146 0 (A/S/I)	protein binding, zinc ion binding	MICAL-like
chr17	HE671853	190,306	<i>erato</i> Ecuador: refmap assoc (HWY)	0.001		HMEL014236 0 (I)	catalytic activity, serine-type endopeptidase activity	serine protease 30
unmapped	HE670458	97	<i>melp</i> Ecuador: refmap assoc (rays); <i>melp</i> <i>Peru</i> : refmap assoc (alt, rays , D gen)	0.001		no genes on this scaffold, in repetitive region		
chr18	HE671488	228,759- 228,922	<i>melp</i> Peru: refmap assoc (alt, D gen), refmap outlier, denovo outlier; <i>melp</i> Ecuador: refmap outlier	0.006	0.329	HMEL014920 19,171		
chr2	HE670771	179,067- 179,278	<i>erato</i> Peru: refmap assoc (alt, rays, D gen , spot 11); <i>erato</i> <i>Ecuador</i> : denovo assoc (spot 11)	0.003		HMEL008318 0 (I)	catalytic activity, protein synthase binding	fatty acid
chr2	HE670771	199,742	<i>erato</i> Peru: denovo assoc (alt, rays), denovo outlier	0.014	0.217	HMEL008322 0 (A)	odorant binding	odorant binding protein 7
chr2	HE670519	293,177- 293,603	<i>erato</i> Peru: refmap outlier, denovo assoc (spot 11), denovo outlier	0.021	0.158	HMEL007059 0 (I/A)	oxidoreductase 3- activity	dehydroecdysone 3alpha-reductase
chr2	HE670235	24,536- 24,614	<i>erato</i> Peru: refmap assoc (alt, rays, D gen , spot 11)	0.003		HMEL005708 56,981	taste receptor activity	olfactory receptor 4

chr2	HE671428	6,795	<i>erato</i> Ecuador: refmap outlier	0.143	HMEL014154	0 (S)	choline dehydrogenase activity, oxidoreductase activity, acting on CH-OH group of donors, flavin adenine dinucleotide binding	glucose dehydrogenase activity
chr2	HE671428	99,432	<i>erato</i> Ecuador: refmap outlier	0.145	HMEL014163	0 (A)		heat shock protein 70
chr6	HE671933	31,161- 31,367	<i>melp</i> Peru: denovo outlier, refmap outlier	0.175	HMEL016074	7,925	oxidoreductase activity	amine oxidoreductase
chr6	HE671934	15,458	<i>melp</i> Peru: ref map outlier	0.104	HMEL016075	4,121	oxidoreductase activity	amine oxidoreductase

811 *The position of the SNP with the strongest result in a given region, unless multiple equally
812 supported SNPs are present in which case a range is given. *Analysis in which SNP is detected: melp,
813 *H. melpomene*; erato, *H. erato*; ref map, reference aligned data; denovo, *de novo* assembled data;
814 outlier, BayeScan outlier analysis; assoc, association analysis (rays, presence of hindwing rays and
815 fore/hindwing dennis patches; Dgen, predicted *B/D* genotype; spot, presence of non-black colour in
816 that wing cell; alt, altitude;; Ro, rounding of distal edge of forewing band). The analysis giving the
817 most significant result is shown in bold. † Value for the most significant analysis is given. ‡ If a SNP is
818 within a gene (distance=0) then in parenthesis: A, non-synonymous; S, synonymous; I, within an
819 intron.

820

821 REFERENCES

822 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic Local Alignment Search Tool.
823 *Journal of Molecular Biology* **215**: 403–410. doi:10.1016/S0022-2836(05)80360-2.

824 Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. 2007. GenABEL: An R Library for Genome-wide
825 Association Analysis. *Bioinformatics* **23**: 1294–1296. doi:10.1093/bioinformatics/btm108.

826 Avidor-Reiss T, Maer AM, Koundakjian E, Polyanovsky A, Keil T, Subramaniam S, Zuker CS. 2004.
827 ‘Decoding Cilia Function: Defining Specialized Genes Required for Compartmentalized Cilia
828 Biogenesis’. *Cell* **117** (4) (May 14): 527–539. doi:10.1016/S0092-8674(04)00412-X.

829 Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA.
830 2008. Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. *PLoS ONE*
831 **3**: e3376. doi:10.1371/journal.pone.0003376.

832 Barton NH, Hewitt GM. 1985. Analysis of Hybrid Zones. *Annual Review of Ecology and Systematics*
833 **16**: 113–148. doi:10.1146/annurev.es.16.110185.000553.

834 Baxter SW, Johnston SE, Jiggins CD. 2008. Butterfly Speciation and the Distribution of Gene Effect
835 Sizes Fixed During Adaptation. *Heredity* **102**: 57–65.

836 Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, Blaxter ML. 2011. Linkage
837 Mapping and Comparative Genomics Using Next-Generation RAD Sequencing of a Non-
838 Model Organism. *PLoS ONE* **6**: e19315. doi:10.1371/journal.pone.0019315.

839 Baxter SW, Nadeau NJ, Maroja LS, Wilkinson P, Counterman BA, Dawson A, Beltran M, Perez-España
840 S, Chamberlain N, Ferguson L, et al. 2010. Genomic Hotspots for Adaptation: The Population
841 Genetics of Mullerian Mimicry in the *Heliconius melpomene* Clade. *PLoS Genetics* **6**:
842 e1000794. doi:10.1371/journal.pgen.1000794

843 Baxter SW, Papa R, Chamberlain N, Humphray SJ, Joron M, Morrison C, ffrench-Constant RH,
844 McMillan WO, Jiggins CD. 2008. Convergent Evolution in the Genetic Basis of Müllerian
845 Mimicry in *Heliconius* Butterflies. *Genetics* **180**: 1567–1577.
846 doi:10.1534/genetics.107.082982.

847 Beavis WD 1997. QTL Analyses: Power Precision and Accuracy. *Molecular Dissection of Complex
848 Traits*. (Paterson AH) 145–162. CRC Press.

849 Bierne N, Welch J, Loire E, Bonhomme F, David P. 2011. The Coupling Hypothesis: Why Genome
850 Scans May Fail to Map Local Adaptation Genes. *Molecular Ecology* **20**: 2044–2072.
851 doi:10.1111/j.1365-294X.2011.05080.x.

852 Benson, WW. 1972. Natural Selection for Müllerian Mimicry in *Heliconius erato* in Costa Rica. *Science*
853 **176**: 936–939. doi:10.1126/science.176.4037.936.

854 Benson, WW. 1982. Alternative models for infrageneric diversification in the humid tropics: tests
855 with passion vine butterflies. *Biological Diversification in the Tropics* (ed. GT Prance), pp.
856 608–640. Columbia Univ. Press, New York.

857 Briscoe AD, Macias-Muñoz A, Kozak KM, Walters JR, Yuan F, Jamie GA, Martin SH, Dasmahapatra KK,
858 Ferguson LC, Mallet J, et al. 2013. Female Behaviour Drives Expression and Evolution of
859 Gustatory Receptors in Butterflies. *PLoS Genet* **9**: e1003620.
860 doi:10.1371/journal.pgen.1003620.

861 Brower AV. 1996. Parallel Race Formation and the Evolution of Mimicry in *Heliconius* Butterflies: A
862 Phylogenetic Hypothesis from Mitochondrial DNA Sequences. *Evolution* **50**: 195–221.
863 doi:10.2307/2410794.

864 Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. 2011. Stacks: Building and
865 Genotyping Loci De Novo From Short-Read Sequences. *G3: Genes, Genomes, Genetics* **1**:
866 171–182. doi:10.1534/g3.111.000240.

867 Charlesworth B, Nordborg M, Charlesworth D. 1997. The Effects of Local Selection, Balanced
868 Polymorphism and Background Selection on Equilibrium Patterns of Genetic Diversity in
869 Subdivided Populations. *Genetical Research* **70**: 155–174.

870 Counterman BA, Araujo-Perez F, Hines HM, Baxter SW, Morrison CM, Lindstrom DP, Papa R,
871 Ferguson L, Joron M, ffrench-Constant RH, et al. 2010. Genomic Hotspots for Adaptation:

872 The Population Genetics of Müllerian Mimicry in *Heliconius erato*. *PLoS Genetics* **6**:
873 e1000796. doi:10.1371/journal.pgen.1000796.

874 Crawford JE, Nielsen R. 2013. Detecting Adaptive Trait Loci in Non-model Systems: Divergence or
875 Admixture Mapping? *Molecular Ecology* in press. doi:10.1111/mec.12562.

876 Cuthill JH, Charleston M. 2012. Phylogenetic Codivergence Supports Coevolution of Mimetic
877 *Heliconius* Butterflies. *PLoS One* **7**: e36464. doi:10.1371/journal.pone.0036464.

878 DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas
879 MA, Hanna M, et al. 2011. A Framework for Variation Discovery and Genotyping Using Next-
880 generation DNA Sequencing Data. *Nat Genet* **43**: 491–498. doi:10.1038/ng.806.

881 Feder JL, Gejji R, Yeaman S, Nosil P. 2012. Establishment of New Mutations Under Divergence and
882 Genome Hitchhiking. *Phil. Trans. Roy. Soc. B* **367**: 461–474. doi:10.1098/rstb.2011.0256.

883 Ferguson L, Lee SF, Chamberlain N, Nadeau NJ, Joron M, Baxter S, Wilkinson P, Papanicolaou A,
884 Kumar S, Kee T-J, et al. 2010. Characterization of a Hotspot for Mimicry: Assembly of a
885 Butterfly Wing Transcriptome to Genomic Sequence at the *HmYb/Sb* Locus. *Mol. Ecol.* **19**:
886 240–254. doi:10.1111/j.1365-294X.2009.04475.x.

887 Flanagan NS, Tobler, Davison AA, Pybus OG, Kapan DD, Planas S, Linares M, Heckel D, McMillan WO.
888 2004. Historical Demography of Müllerian Mimicry in the Neotropical *Heliconius* Butterflies.
889 *PNAS* **101**: 9704–9709. doi:10.1073/pnas.0306243101.

890 Foll M, Gaggiotti O. 2008. A Genome-Scan Method to Identify Selected Loci Appropriate for Both
891 Dominant and Codominant Markers: A Bayesian Perspective. *Genetics* **180**: 977–993.
892 doi:10.1534/genetics.108.092221.

893 Giraldo N, Salazar C, Jiggins C, Bermingham E, and Linares M. 2008. Two Sisters in the Same Dress:
894 *Heliconius* Cryptic Species. *BMC Evolutionary Biology* **8**: 324. doi:10.1186/1471-2148-8-324.

895 Gompert Z, Buerkle CA. 2011. A Hierarchical Bayesian Model for Next-Generation Population
896 Genomics. *Genetics* **187**: 903–917. doi: 10.1534/genetics.110.124693.

897 Gompert, Z, Lucas LK, Nice CC, Fordyce JA, Forister ML, Buerkle AC. 2012. Genomic regions with a
898 history of divergent selection affect fitness of hybrids between two butterfly species.
899 *Evolution* **66**: 2167–2181. doi:10.1111/j.1558-5646.2012.01587.x.

900 Guindon S, Gascuel O. 2003. A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies
901 by Maximum Likelihood. *Systematic Biology* **52**: 696–704. doi:10.1080/10635150390235520.

902 Harrison RG. 1993. *Hybrid Zones and the Evolutionary Process*. Oxford University Press.

903 Hines HM, Counterman BA, Papa R, Albuquerque de Moura P, Cardoso MZ, Linares M, Mallet J, Reed
904 RD, Jiggins CD, Kronforst MR, et al. 2011. Wing Patterning Gene Redefines the Mimetic
905 History of *Heliconius* Butterflies. *PNAS* **108**: 19666–19671. doi:10.1073/pnas.1110096108.

906 Jiggins, CD. 2008. Ecological Speciation in Mimetic Butterflies. *BioScience* **58**: 541–548.

907 Joron M, Papa R, Beltrán M, Chamberlain N, Mavárez J, Baxter S, Abanto M, Bermingham E,
908 Humphray SJ, Rogers J, et al. 2006. A Conserved Supergene Locus Controls Colour Pattern
909 Diversity in *Heliconius* Butterflies. *PLoS Biology* **4**: e303. doi:10.1371/journal.pbio.0040303.

910 Kapan DD. 2001. Three-butterfly System Provides a Field Test of Mullerian Mimicry. *Nature* **409**:
911 338–340. doi:10.1038/35053066.

912 Kawakami T, Butlin RK. 2001. Hybrid Zones. *eLS*. John Wiley & Sons, Ltd.
913 <http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0001752.pub2/abstract>.

914 Keller I, Wagner CE, Greuter L, Mwaiko S, Selz OM, Sivasundar A, Wittwer S, Seehausen O. 2013.
915 Population Genomic Signatures of Divergent Adaptation, Gene Flow and Hybrid Speciation in
916 the Rapid Radiation of Lake Victoria Cichlid Fishes. *Molecular Ecology* **22**: 2848–2863.
917 doi:10.1111/mec.12083.

918 Kocher TD, Sage RD. 1986. Further Genetic Analyses of a Hybrid Zone Between Leopard Frogs (*Rana*
919 *Pipiens* Complex) in Central Texas. *Evolution* **40**: 21–33. doi:10.2307/2408600.

920 Kronforst MR, Hansen MEB, Crawford NG, Gallant JR, Zhang W, Kulathinal RJ, Kapan DD, Mullen SP.
921 2013. Hybridization Reveals the Evolving Genomic Architecture of Speciation. *Cell Reports*.
922 doi:10.1016/j.celrep.2013.09.042.

923 Lamas G. 1997. Comentarios Taxonomicos y Nomenclaturales Sobre Heliconiini Neotropicales, Con
924 Designacion de Lectotipos y Descripcion de Cuatro Subespecies Nuevas (Lepidoptera:
925 Nymphalidae: Heliconiinae). *Rev. Per. Ent.* **40**: 111–125.

926 Langham GM. 2004. Specialized Avian Predators Repeatedly Attack Novel Color Morphs of
927 Heliconius Butterflies. *Evolution* **58**: 2783–2787. doi:10.1111/j.0014-3820.2004.tb01629.x.

928 Lexer C, Buerkle CA, Joseph JA, Heinze B, Fay MF. 2006. Admixture in European *Populus* Hybrid
929 Zones Makes Feasible the Mapping of Loci That Contribute to Reproductive Isolation and
930 Trait Differences. *Heredity* **98**: 74–84. doi:10.1038/sj.hdy.6800898.

931 Lunter G, Goodson M. 2011. Stampy: A Statistical Algorithm for Sensitive and Fast Mapping of
932 Illumina Sequence Reads. *Genome Research* **21**: 936–939. doi:10.1101/gr.111120.110.

933 Mallet J. 1989. The Genetics of Warning Colour in Peruvian Hybrid Zones of *Heliconius erato* and *H.*
934 *melpomene*. *Proc. Roy. Soc. B* **236**: 163–185.

935 Mallet J. 1999. Causes and Consequences of a Lack of Coevolution in Müllerian Mimicry.
936 *Evolutionary Ecology* **13**: 777–806. doi:10.1023/A:1011060330515.

937 Mallet J. 2010. Shift Happens! Shifting Balance and the Evolution of Diversity in Warning Colour and
938 Mimicry. *Ecological Entomology* **35**: 90–104. doi:10.1111/j.1365-2311.2009.01137.x.

939 Mallet J, Barton N. 1989a. Strong Natural Selection in a Warning-Color Hybrid Zone. *Evolution* **43**:
940 421–431. doi:10.2307/2409217.

941 Mallet J, Barton N. 1989b. Inference from Clines Stabilized by Frequency-dependent Selection.
942 *Genetics* **122**: 967–976.

943 Mallet J, Barton N, Lamas G, Santisteban J, Muedas M, and Eeley H. 1990. Estimates of Selection and
944 Gene Flow from Measures of Cline Width and Linkage Disequilibrium in *Heliconius* Hybrid
945 Zones. *Genetics* **124**: 921–936.

946 Martin A, Papa R, Nadeau NJ, Hill RI, Counterman BA, Halder G, Jiggins CD, Kronforst MR, Long AD,
947 McMillan WO, et al. 2012. Diversification of Complex Butterfly Wing Patterns by Repeated
948 Regulatory Evolution of a Wnt Ligand. *PNAS* **109**: 12632–12637.
949 doi:10.1073/pnas.1204800109.

950 Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR, Simpson F, Blaxter M, Manica A,
951 James Mallet, Jiggins CD. 2013. Genome-wide Evidence for Speciation with Gene Flow in
952 *Heliconius* Butterflies. *Genome Research* doi:10.1101/gr.159426.113.

953 Merot C, Mavárez J, Evin A, Dasmahapatra KK, Mallet J, Lamas G, and Joron M. 2013. Genetic
954 Differentiation Without Mimicry Shift in a Pair of Hybridizing *Heliconius* Species
955 (Lepidoptera: Nymphalidae). *Biological Journal of the Linnean Society* doi:10.1111/bij.12091.

956 Merrill RM, Gompert Z, Dembeck LM, Kronforst MR, McMillan WO, Jiggins CD. 2011. Mate
957 Preference Across the Speciation Continuum in a Clade of Mimetic Butterflies. *Evolution* **65**:
958 1489–1500. doi:10.1111/j.1558-5646.2010.01216.x.

959 Merrill RM, Schooten BV, Scott JA, and Jiggins CD. 2011. Pervasive Genetic Associations Between
960 Traits Causing Reproductive Isolation in *Heliconius* Butterflies. *Proc. Roy Soc B* **278**: 511–518.
961 doi:10.1098/rspb.2010.1493.

962 Müller F. 1879. *Ituna* and *Thyridia*; a Remarkable Case of Mimicry in Butterflies. *Trans. Entomol. Soc.*
963 *Lond.* 1879: xx–xxix.

964 Nadeau NJ, Jiggins CD. 2010. A Golden Age for Evolutionary Genetics? Genomic Studies of
965 Adaptation in Natural Populations. *Trends in Genetics* **26**: 484–492. doi:10.1016/j.tig.2010.08.004.

966 Nadeau NJ., Martin SH, Kozak KM, Salazar C, Dasmahapatra KK, Davey JW, Baxter SW, Blaxter ML,
967 Mallet J, Jiggins CD. 2013. Genome-wide Patterns of Divergence and Gene Flow Across a
968 Butterfly Radiation. *Molecular Ecology* **22**: 814–826. doi:10.1111/j.1365-294X.2012.05730.x.

969 Nadeau NJ, Whibley A, Jones RT, Davey JW, Dasmahapatra KK, Baxter SW, Quail MA, Joron M,
970 ffrench-Constant RH, Blaxter, M, et al. 2012. Genomic Islands of Divergence in Hybridizing
971 *Heliconius* Butterflies Identified by Large-scale Targeted Sequencing. *Phil. Trans. Roy. Soc. B*
972 **367**: 343–353. doi:10.1098/rstb.2011.0198.

973 Orr HA. 2005. The Genetic Theory of Adaptation: a Brief History. *Nat Rev Genet* **6**: 119–127.

974 Papa R, Kapan DD, Counterman BA, Maldonado K, Lindstrom DP, Reed RD, Nijhout HF, Hrbek T,
975 McMillan WO. 2013. Multi-Allelic Major Effect Genes Interact with Minor Effect QTLs to
976 Control Adaptive Color Pattern Variation in *Heliconius erato*. *PLoS ONE* **8**: e57033.
977 doi:10.1371/journal.pone.0057033.

978 Papa R, Martin A, and Reed RD. 2008. Genomic Hotspots of Adaptation in Butterfly Wing Pattern
979 Evolution. *Current Opinion in Genetics & Development* **18**: 559–564.
980 doi:10.1016/j.gde.2008.11.007.

981 Papa R, Morrison CM, Walters JR, Counterman BA, Chen R, Halder G, Ferguson L, Chamberlain N,
982 ffrench-Constant R, Kapan DD et al. 2008. Highly Conserved Gene Order and Numerous
983 Novel Repetitive Elements in Genomic Regions Linked to Wing Pattern Variation in
984 *Heliconius* Butterflies. *BMC Genomics* **9**: 345. doi:10.1186/1471-2164-9-345.

985 Pardo-Diaz C, Salazar C, Baxter SW, Merot C, Figueiredo-Ready W, Joron M, McMillan WO, Jiggins
986 CD. 2012. Adaptive Introgression Across Species Boundaries in *Heliconius* Butterflies. *PLoS
987 Genet* **8**: e1002752. doi:10.1371/journal.pgen.1002752.

988 Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. 2006. Principal Components
989 Analysis Corrects for Stratification in Genome-wide Association Studies. *Nature Genetics* **38**:
990 904–909. doi:10.1038/ng1847.

991 Pritchard JK, Stephens M, Donnelly P. 2000. Inference of Population Structure Using Multilocus
992 Genotype Data. *Genetics* **155**: 945–959.

993 Quek S-P, Counterman BA, Albuquerque de Moura P, Cardoso MZ, Marshall C, McMillan WO,
994 Kronforst MR. 2010. Dissecting Comimetic Radiations in *Heliconius* Reveals Divergent
995 Histories of Convergent Butterflies. *PNAS* **107**: 7365–7370. doi:10.1073/pnas.0911572107.

996 R Development Core Team. 2011. *R: A Language and Environment for Statistical Computing*
997 (version 2.14). Vienna, Austria: R Foundation for Statistical Computing. <http://www.R-project.org/>.

998 Reed RD, Papa R, Martin A, Hines HM, Counterman BA, Pardo-Diaz C, Jiggins CD, Chamberlain NI,
1000 Kronforst MR, Chen R, et al. 2011. Optix Drives the Repeated Convergent Evolution of
1001 Butterfly Wing Pattern Mimicry. *Science* **333**: 1137–1141. doi:10.1126/science.1208227.

1002 Rieseberg L, Buerkle CA. 2002. Genetic Mapping in Hybrid Zones. *The American Naturalist* **159**: S36–
1003 S50. doi:10.1086/338371.

1004 Rosser N, Phillimore AB, Huertas B, Willmott KR, Mallet J. 2012. Testing Historical Explanations for
1005 Gradients in Species Richness in Heliconiine Butterflies of Tropical America. *Biological
1006 Journal of the Linnean Society* **105**: 479–497. doi:10.1111/j.1095-8312.2011.01814.x.

1007 Salazar PA. 2012. Hybridization and the Genetics of Wing Colour-pattern Diversity in *Heliconius*
1008 Butterflies. PhD, Cambridge, UK: University of Cambridge.

1009 Sheppard PM, Turner JRG, Brown KS, Benson WW, Singer MC. 1985. Genetics and the Evolution of
1010 Müllerian Mimicry in *Heliconius* Butterflies. *Phil. Trans. Roy. Soc. B* **308**: 433–610.
1011 doi:10.2307/2398716.

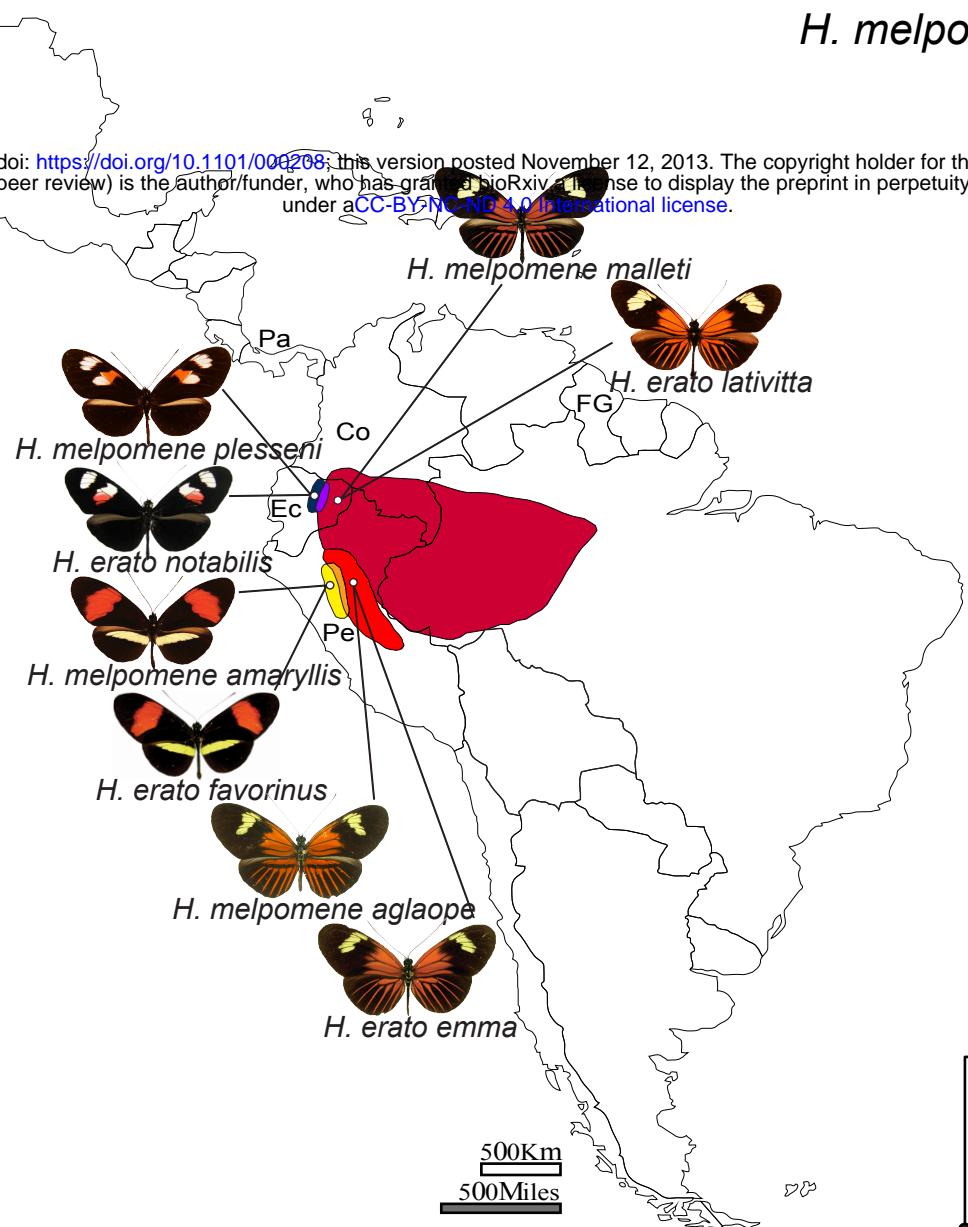
1012 Stewart C-B, Schilling JW, Wilson AC. 1987. Adaptive Evolution in the Stomach Lysozymes of Foregut
1013 Fermenters. *Nature* **330**: 401–404. doi:10.1038/330401a0.

1014 Stinchcombe JR, Hoekstra HE. 2007. Combining Population Genomics and Quantitative Genetics:
1015 Finding the Genes Underlying Ecologically Important Traits. *Heredity* **100**: 158–170.

1016 Supple MA, Hines HM, Dasmahapatra KK, Lewis JJ, Nielsen DM, Lavoie C, Ray DA, Salazar C, McMillan
1017 WO, Counterman BA. 2013. Genomic Architecture of Adaptive Color Pattern Divergence and
1018 Convergence in *Heliconius* Butterflies. *Genome Research* **23**: 1248–1257
1019 doi:10.1101/gr.150615.112.

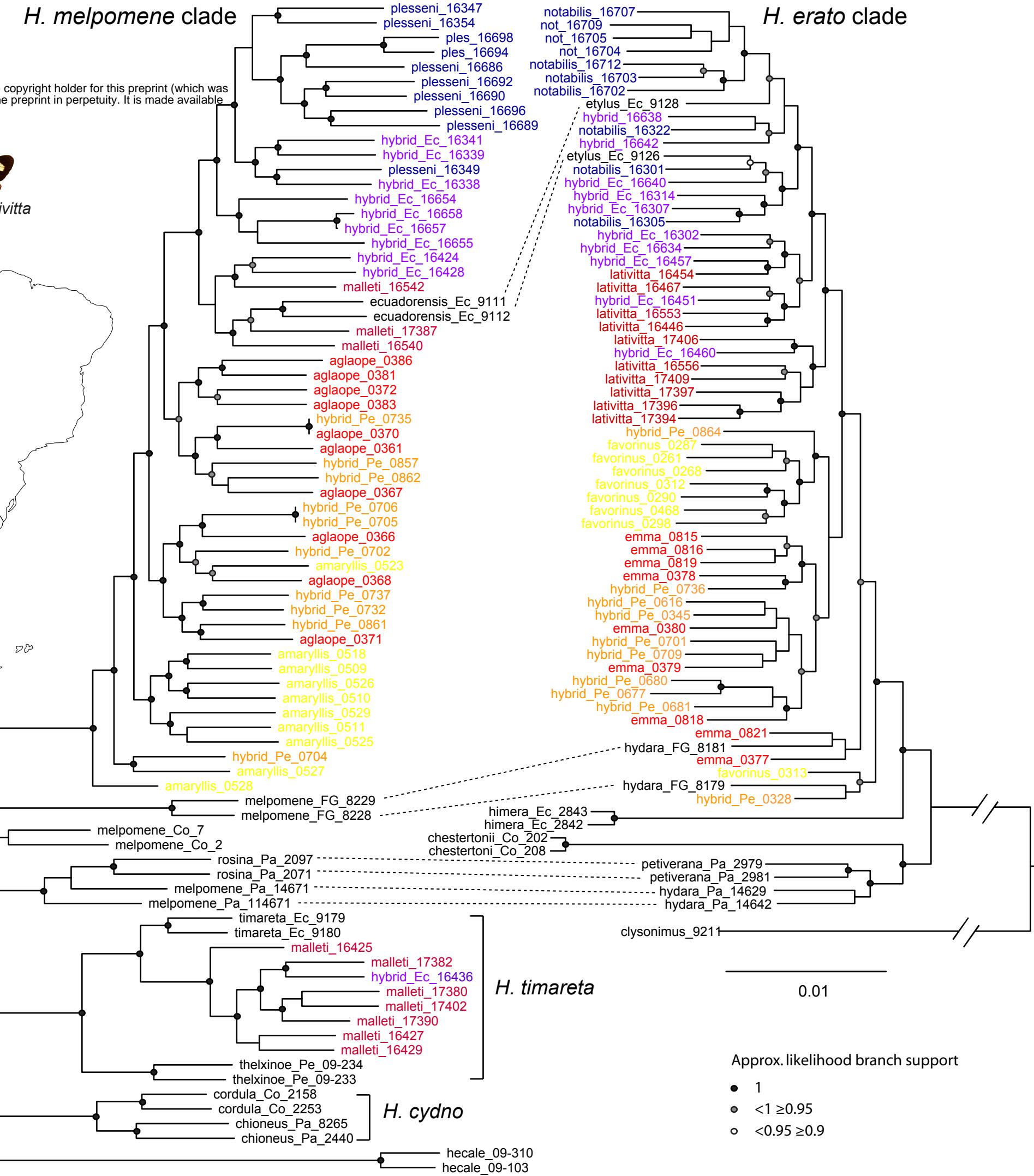
1020 The *Heliconius* Genome Consortium. 2012. Butterfly Genome Reveals Promiscuous Exchange of
1021 Mimicry Adaptations Among Species. *Nature* **487**: 94–98. doi:10.1038/nature11041.

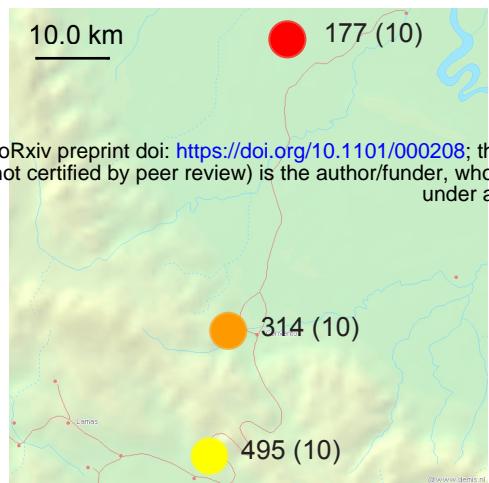
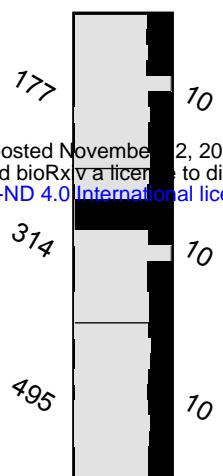
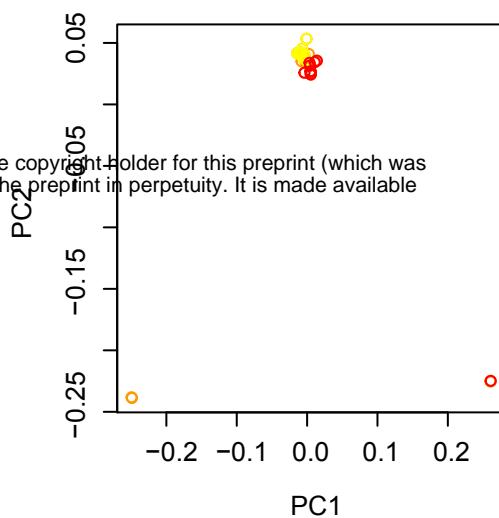
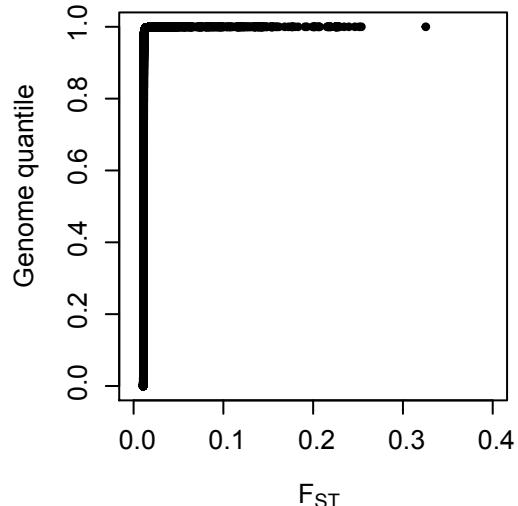
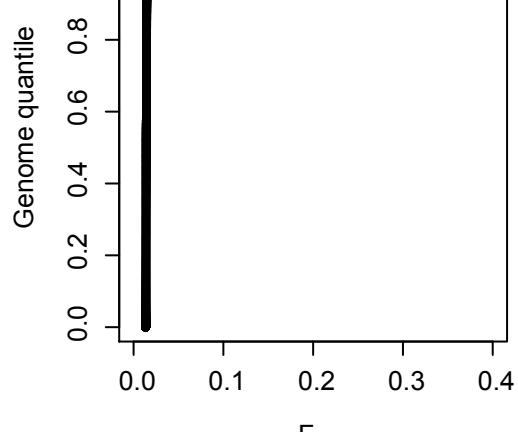
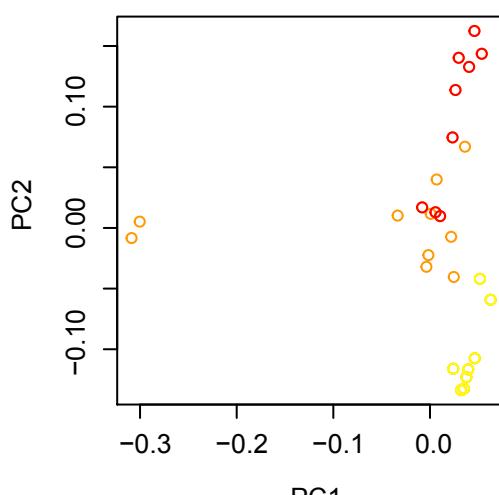
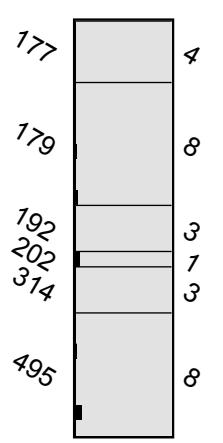
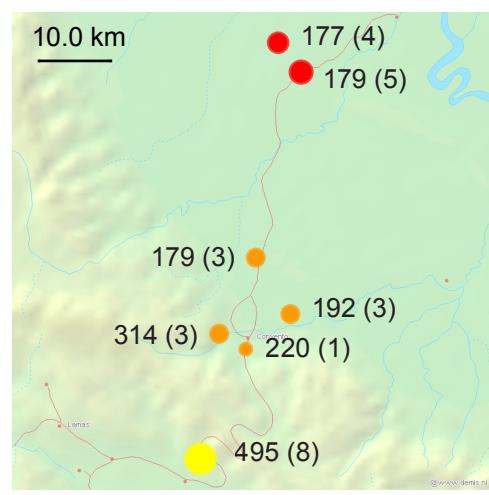
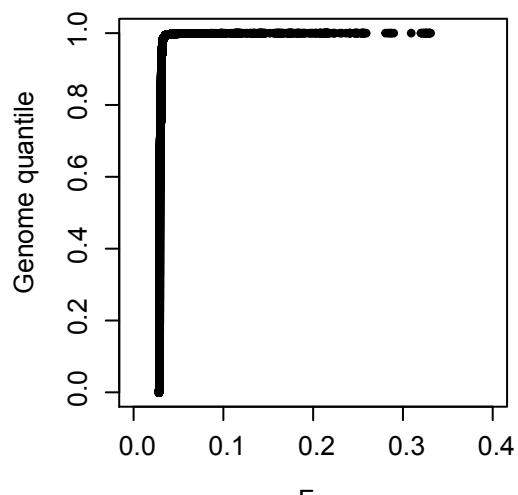
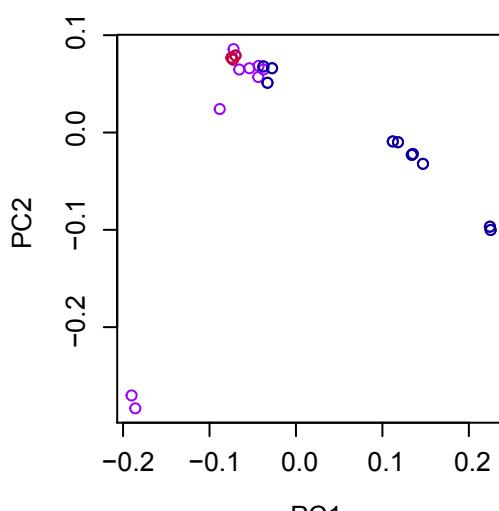
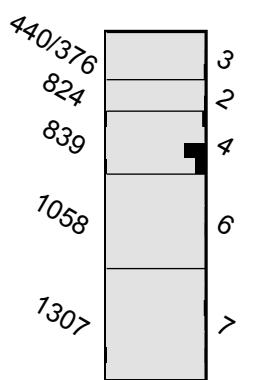
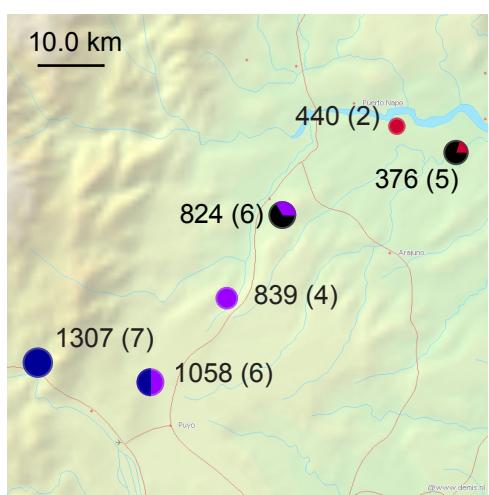
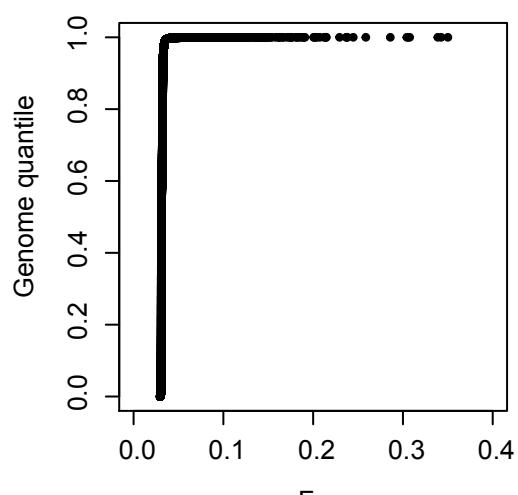
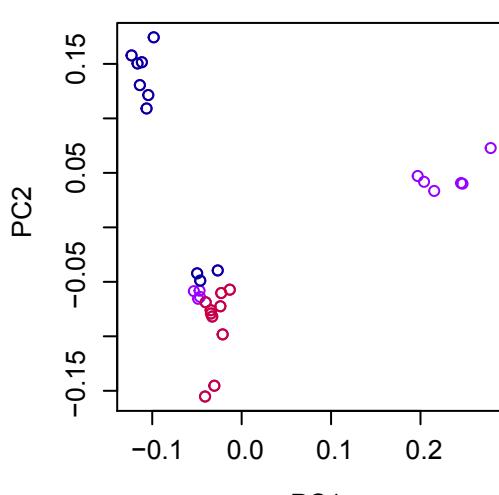
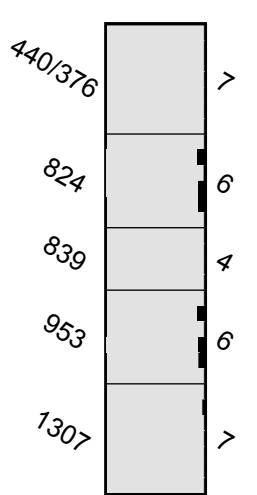
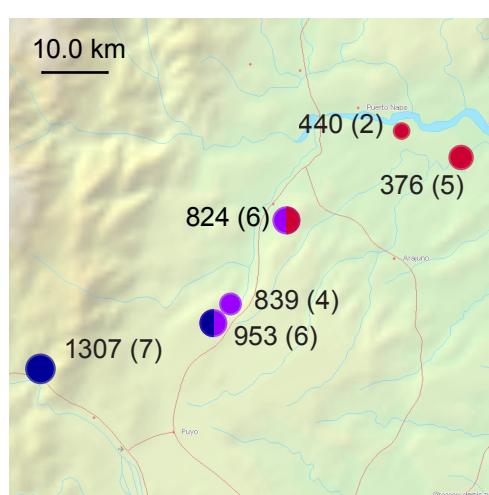
1022 Turner JR, Johnson MS, Eanes WF. 1979. Contrasted Modes of Evolution in the Same Genome:
1023 Allozymes and Adaptive Change in *Heliconius*. *Proceedings of the National Academy of
1024 Sciences* **76**: 1924–1928.

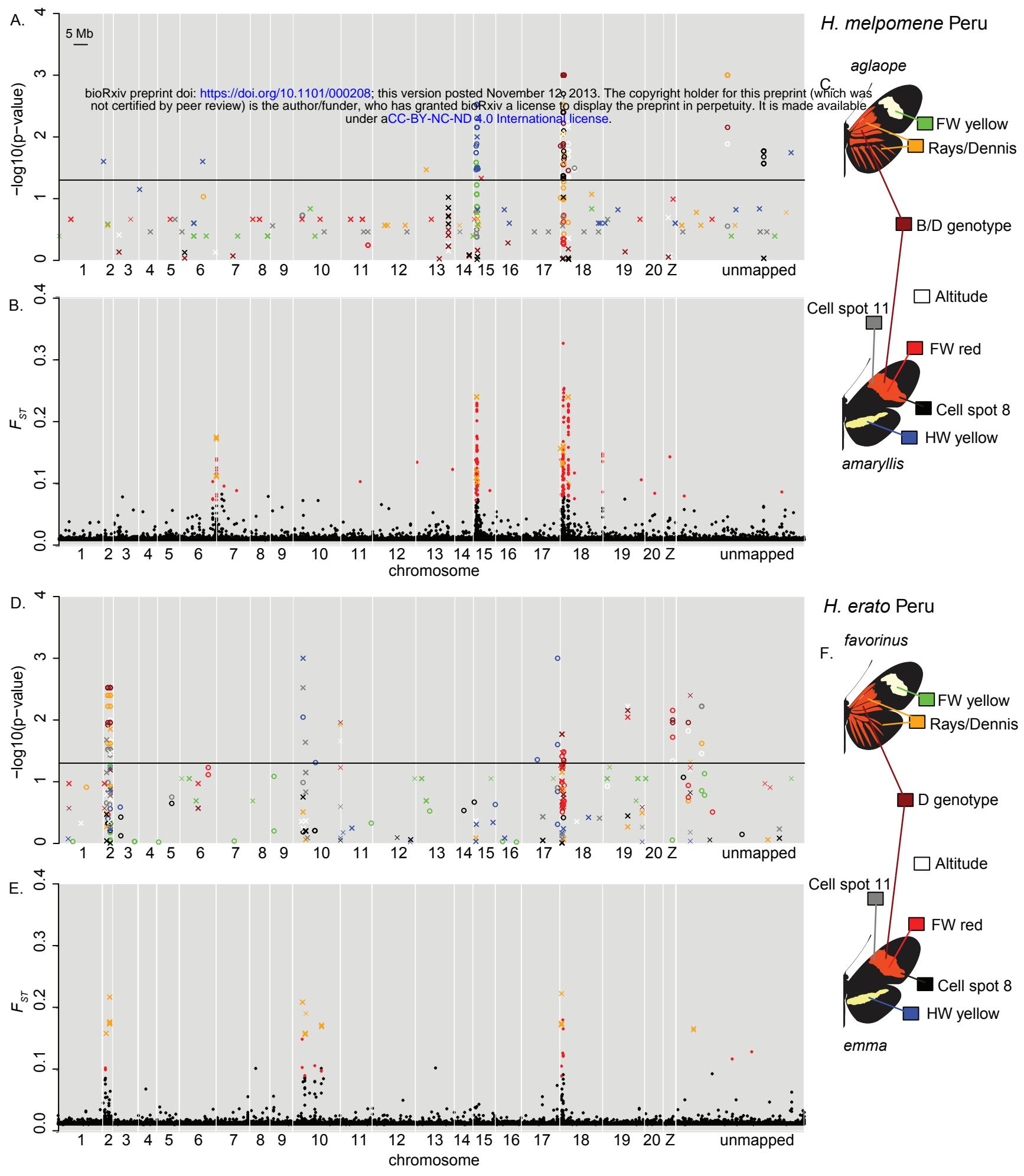

1025 Via S. 2012. Divergence Hitchhiking and the Spread of Genomic Isolation During Ecological
1026 Speciation-with-gene-flow. *Phil. Trans. Roy. Soc. B* **367**: 451–460.
1027 doi:10.1098/rstb.2011.0260.

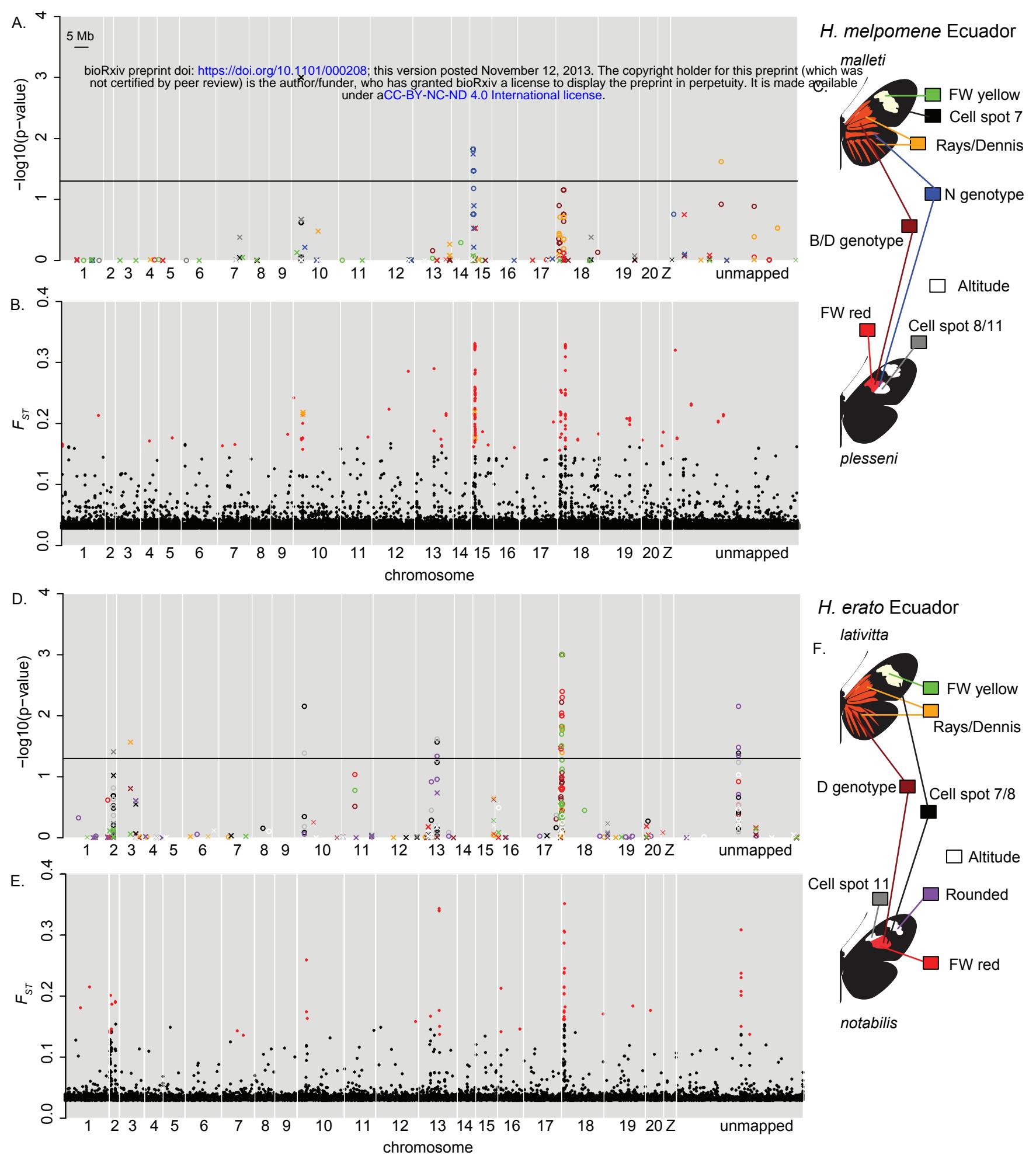
1028 Visscher PM, Brown MA, McCarthy MI, Yang J. 2012. Five Years of GWAS Discovery. *The American
1029 Journal of Human Genetics* **90**: 7–24. doi:10.1016/j.ajhg.2011.11.029.

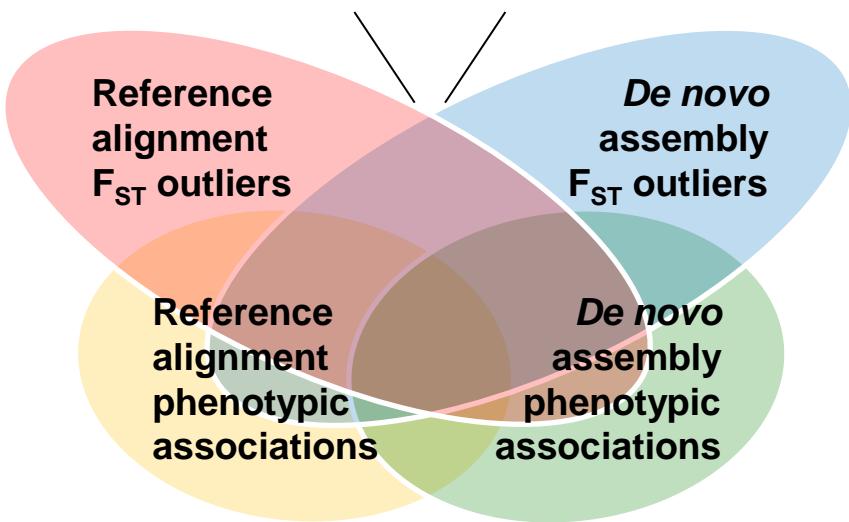
1030 Wood TE, Burke TM, Rieseberg LH. 2005. Parallel Genotypic Adaptation: When Evolution Repeats
1031 Itself. *Genetica* **123**: 157–170. doi:10.1007/s10709-003-2738-9.

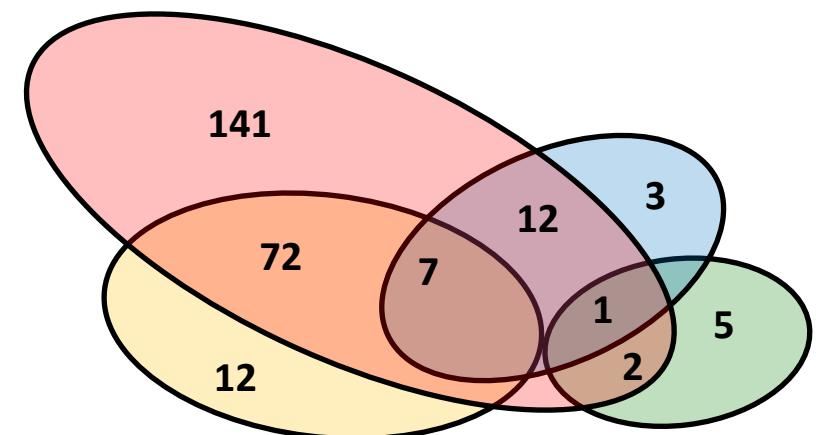

1032

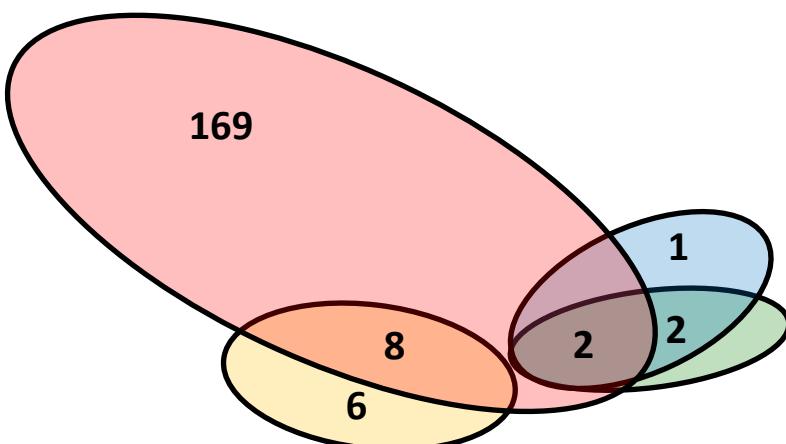
















A.

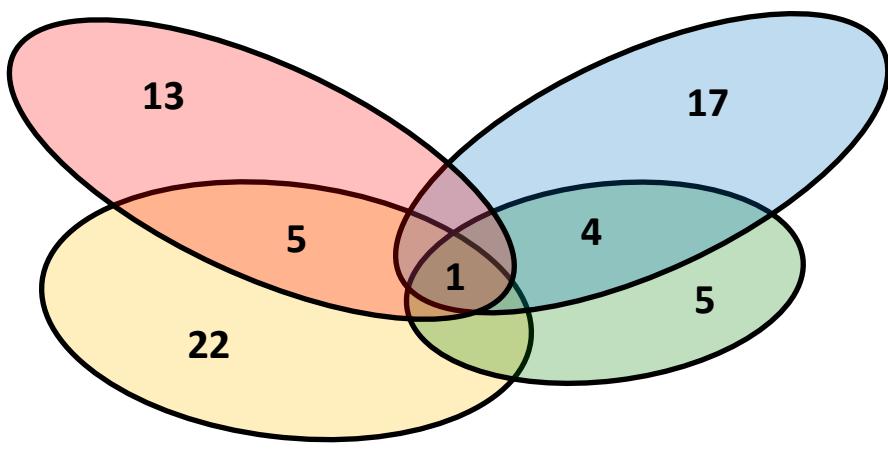


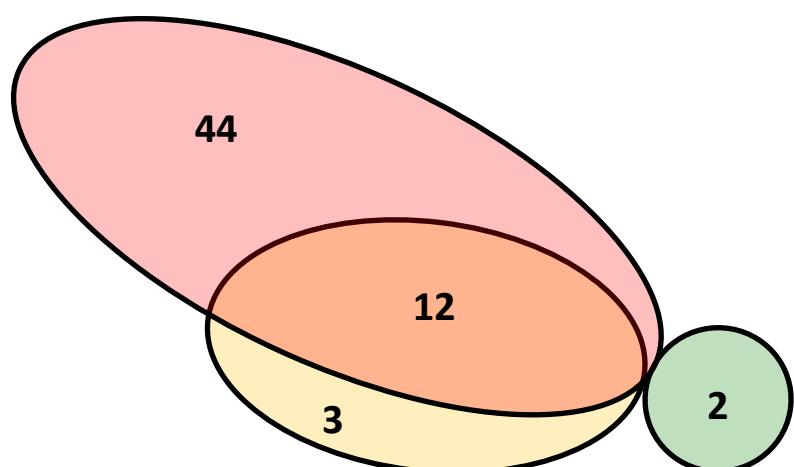

B.


H. melpomene clade


A.***H. melpomene* Peru****B. Structure
K=2****C. PCA****D. Cumulative Distribution of between-subspecies F_{ST}** ***H. erato* Peru*****H. melpomene* Ecuador*****H. erato* Ecuador**




H. melpomene Peru


H. melpomene Ecuador

H. erato Peru

H. erato Ecuador

