
Springer Nature 2021 LATEX template

GraphFM: Graph Factorization Machines for

Feature Interaction Modeling

Shu Wu1, Zekun Li2, Yunyue Su1, Zeyu Cui3, Xiaoyu Zhang4

and Liang Wang1

1Institute of Automation, Chinese Academy of Science, Beijing
100190, China.

2University of California, Santa Barbara 93106, USA.
3Alibaba Group, DAMO Institute, Beijing 695571, China.
4Institute of Information Engineering, Chinese Academy of

Science, Beijing 695571, China.

Contributing authors: shu.wu@nlpr.ia.ac.cn; zekunli@cs.ucsb.edu;
yunyue.su@ia.ac.cn; cuizeyu15@gmail.com; zhxy333@gmail.com;

liang.wang@nlpr.ia.ac.cn;

Abstract

Factorization machine (FM) is a prevalent approach to modelling
pairwise (second-order) feature interactions when dealing with high-
dimensional sparse data. However, on the one hand, FMs fail to capture
higher-order feature interactions suffering from combinatorial expan-
sion. On the other hand, taking into account interactions between
every pair of features may introduce noise and degrade the predic-
tion accuracy. To solve these problems, we propose a novel approach,
the graph factorization machine (GraphFM), which naturally represents
features in the graph structure. In particular, we design a mecha-
nism to select beneficial feature interactions and formulate them as
edges between features. Then the proposed model, which integrates
the interaction function of the FM into the feature aggregation strat-
egy of the graph neural network (GNN), can model arbitrary-order
feature interactions on graph-structured features by stacking layers.
Experimental results on several real-world datasets demonstrate the
rationality and effectiveness of our proposed approach. The code and
data are available at https://github.com/CRIPAC-DIG/GraphCTR.

1

ar
X

iv
:2

10
5.

11
86

6v
5

 [
cs

.L
G

]
 2

1
Fe

b
20

25

https://github.com/CRIPAC-DIG/GraphCTR

Springer Nature 2021 LATEX template

2 GraphFM: Graph Factorization Machines for Feature Interaction modeling

Keywords: Feature interaction, Factorization machines, Graph neural
network, Recommender system, Deep learning.

1 Introduction

Predictive analytics is a fundamental task in machine learning (ML) and data
mining (DM), which involves using input features to predict an output tar-
get, such as a real value for regression or categorical labels for classification.
This is particularly important for web applications, such as online advertising
and recommender systems [1–3]. Distinct from continuous features which can
be naturally found in images and audio, the features for web applications are
mostly sparse and categorical. To accurately perform predictive analytics on
these types of features, it is important to consider the interactions between
them. As an example, consider a scenario in which we want to predict users’
preferences for movies based on five categorical variables: (1) Language =
{English, Chinese, Japanese, ... }, (2) Genre = {action, fiction, ... }, (3) Direc-
tor = {Ang Lee, Christopher Nolan, ... }, (4) Stars = {Bruce Lee, Leonardo
DiCaprio, ... } and (5) Release Date = {1991, 1992, ... }. To capture the
impact of these feature interactions, a model might consider a 3rd-order cross
feature such as (Genre = fiction, Director = Christopher Nolan, Starring =
Leonardo DiCaprio) or (Language = Chinese, Genre = action, Starring =
Bruce Lee) as potentially indicating higher user preferences.

FM [4, 5] is a popular and effective method for modelling feature interac-
tions, that involves learning a latent vector for each one-hot encoded feature
and modelling the pairwise (second-order) interactions between them through
the inner product of their respective vectors. FM has been widely used in
the field of recommender systems and click-through rate predictions due to
its simplicity and effectiveness. However, because FM considers all feature
interactions, it has two main drawbacks.

One of the main limitations of FM is that it is not able to capture
higher-order feature interactions, which are interactions between three or more
features. While higher-order FM (HOFM) has been proposed [4, 5] as a way
to address this issue, it suffers from high complexity due to the combina-
tion expansion of higher-order interactions. This makes HOFM difficult to use
in practice. To address the limitations of FM in capturing higher-order fea-
ture interactions, several variants have been proposed that utilize deep neural
networks (DNNs) [2, 6–8]. Factorisation machine-supported neural networks
(FNNs) [6] apply DNNs on top of pretrained factorization machines to model
high-order interactions. Neural factorization machines (NFM) [2] design a bi-
interaction layer to learn pairwise feature interactions and apply DNNs to
learn higher-order interactions. Wide&Deep [7] introduces a hybrid architec-
ture containing both shallow and deep components to jointly learn low-order
and high-order feature interactions. DeepFM [8] similarly combines a shallow
component with a deep component to learn both types of interactions. While

Springer Nature 2021 LATEX template

GraphFM: Graph Factorization Machines for Feature Interaction modeling 3

these DNN-based models can effectively learn high-order feature interactions,
in an implicit, bitwise manner. Consequently, they may lack the ability to
provide persuasive rationales for their outputs.

In addition to not being able to effectively capture higher-order feature
interactions, FM is also suboptimal because it considers the interactions
between every pair of features, even if some of these interactions may not
be beneficial for prediction [9, 10]. These unhelpful feature interactions can
introduce noise and lead to overfitting, as they do not provide useful infor-
mation but make it harder to train the model. For example, in the context of
predicting movie preferences, the feature interactions between Language and
Release Date might not be relevant and, therefore, might not provide useful
information for prediction. Ignoring these irrelevant feature interactions can
improve model training. To solve this problem, the Attentional Decomposition
Machine (AFM) [11] distinguishes the importance of the factorized interaction
by reweighing each cross-feature using the attentional score [12], i.e. the influ-
ence of useless cross-features is reduced by assigning lower weights. However, it
requires a predefined maximum order, which limits the potential of the model
to find discriminative crossing features. Therefore, the Adaptive Factorization
Network (AFN) [13] used a logarithmic neural transformation layer composed
of multiple vector-wise logarithmic neurons to automatically learn the pow-
ers (i.e. the order) of features in a potentially useful combination, thereby
adaptively learning cross-features and their weights from the data.

Currently, Graph Neural Networks (GNN) [14–16] have recently emerged
as an effective class of models for capturing high-order relationships between
nodes in a graph and have achieved state-of-the-art results on a variety of
tasks such as computer vision [17], neural language processing [18, 19], and
recommender systems [20, 21]. At their core, GNNs learn node embeddings by
iteratively aggregating features from neighboring nodes, layer by layer. This
allows them to explicitly encode high-order relationships between nodes in
the embeddings. GNNs have shown great potential for modelling high-order
feature interactions for click-through rate prediction. Fi-GNN [22] proposed
connecting each pair of features and treating the multi-field features as a fully-
connected graph, using a gated graph neural network (GGNN) [23] to model
feature interactions on the graph. Graph factorizer machine (GFM) [24] utilizes
FM to aggregate second-order neighbour messages, and utilizes the superpo-
sition of multiple GFM layers to aggregate higher-order neighbour messages
to achieve multi-order interactions from neighborhoods for recommendation.
Graph-Convolved Factorization Machines (GCFM) [25] developed the graph-
convolved feature crossing (GCFC) layer to traverse all features for each input
example and leveraged the features of each sample to compute the corre-
sponding multi-feature interaction graph and propagated its influence on other
features. KD-DAGFM [26] proposes a directed acyclic graph based model, that
can be aligned with the DP [27] algorithm to improve the knowledge distillation
(KD)[28] capability. However, not all feature interactions are beneficial, and

Springer Nature 2021 LATEX template

4 GraphFM: Graph Factorization Machines for Feature Interaction modeling

GNNs rely on the assumption that neighboring nodes share similar features,
which may not always hold in the context of feature interaction modelling.

In summary, when dealing with feature interactions, FM suffers intrin-
sic drawbacks. We thus propose a novel model graph factorization machine
(GraphFM), which takes advantage of the GNN to overcome the problems of
FM for feature interaction modelling. By treating features as nodes and fea-
ture interactions as the edges between them, the selected beneficial feature
interactions can be viewed as a graph. We thus devise a novel technique to
select beneficial feature interactions, which also involves inferring the graph
structure. Then, we adopt an attentional aggregation strategy to aggregate
these selected beneficial interactions to update the feature representations.
Specifically, to accommodate the polysemy of feature interactions in different
semantic spaces, we utilize a multi-head attention mechanism [16, 29]. Each
layer of our proposed model produces higher-order interactions based on the
existing layers; thus, the highest-order interactions are determined by layer
depth. Since our proposed approach selects the beneficial feature interactions
and models them in an explicit manner, it has high efficiency in analysing
high-order feature interactions and thus provides rationales for the model
outcome. Through extensive experiments conducted on the CTR benchmark
and recommender system datasets, we verify the rationality, effectiveness, and
interpretability of our proposed approach.

Overall, the main contributions of this work are threefold: (1) We analyse
the shortcomings and strengths of FM and GNN in modelling feature interac-
tions. To solve their problems and leverage strengths, we propose a novel model
GraphFM for feature interaction modelling. (2) By treating features as nodes
and their pairwise feature interactions as edges, we bridge the gap between the
GNN and FM, and make it feasible to leverage the strength of the GNN to
solve the FM problem. (3) Extensive experiments are conducted on the CTR
benchmark and recommender system datasets to evaluate the effectiveness and
interpretability of our proposed method. We show that GraphFM can provide
persuasive rationales for feature interaction modelling and prediction-making
processes.

2 Related Work

In this work, we proposed a GNN-based approach for modelling feature inter-
actions. We design a feature interaction selection mechanism, which can be
seen as learning the graph structure by viewing the feature interactions as
edges between features. In this section, we review three lines of research that
are relevant to this work: 1) techniques for learning feature interactions, 2)
GNNs, and 3) graph structure learning methods.

2.1 Feature Interaction Modelling

Modelling feature interactions is a crucial aspect of predictive analytics and
has been widely studied in the literature. FM [4] is a popular method that

Springer Nature 2021 LATEX template

GraphFM: Graph Factorization Machines for Feature Interaction modeling 5

learns pairwise feature interactions through vector inner products. Since its
introduction, several variants of FM have been proposed, including field-aware
factorization machine (FFM) [30] which takes into account field information
and introduces field-aware embeddings, and AFM [11], which considers the
weight of different second-order feature interactions. FmFM [31] modelled the
interactions of field pairs as a matrix and utilized a kernel product to capture
field interactions. However, these approaches are limited to modelling second-
order interactions, which may not be sufficient in some cases.

As deep neural networks (DNNs) have proven successful in a variety of
fields, researchers have begun using them to learn high-order feature interac-
tions due to their deeper structures and nonlinear activation functions. The
general approach is to concatenate the representations of different feature
fields and feed them into a DNN to learn the high-order feature interactions.
Factorization-machine supported Neural Networks (FNNs) [6] used pretrained
factorization machines to create field embeddings before applying a DNN,
while product-based neural networks (PNNs) [32] model both second-order and
high-order interactions through the use of a product layer between the field
embedding layer and the DNN layer. Like PNNs, neural factorization machines
(NFMs) [2] also use a separate layer to model second-order interactions, but
they use a Bi-Interaction Pooling layer instead of a product layer and follow
it with summation rather than concatenation. Other approaches to modelling
second-order and high-order interactions jointly use hybrid architectures. The
Wide&Deep [7] and DeepFM [8] involve modelling low-order interactions and
deep modelling high-order interactions. However, similar to other DNN-based
approaches, these models learn high-order feature interactions in an implicit,
bit-wise manner and may lack transparency in their feature interaction mod-
elling process and model outputs. As a result, some studies have attempted to
learn feature interactions in an explicit fashion through the use of specifically
designed networks. Deep&Cross [33] introduces a CrossNet that takes the outer
product of features at the bit level, while xDeepFM [34] uses a compressed
interaction network(CIN) to take the outer product at the vector level and
then compresses the resulting feature maps to update the feature representa-
tions. However, xDeepFM has been found to have issues with generalizability
and scalability, and it has relatively high complexity due to its consideration
of all pairwise bit-level interactions. DCNV2 [35] similarly used CIN to learn
efficient explicit and implicit feature intersections, but it additionally lever-
ages low-rank techniques to approximate feature crosses in subspaces for better
performance and latency trade-offs.

More recently, several studies have attempted to use attention mecha-
nisms to model feature interactions in a more interpretable way. HoAFM [36]
updates feature representations by attentively aggregating the representations
of co-occurring features, while AutoInt [37] uses a multi-head self-attention
mechanism to explicitly model feature interactions. InterHAt [38] is another
model that uses an attentional aggregation strategy with residual connections
to learn feature representations and model feature interactions. However, even

Springer Nature 2021 LATEX template

6 GraphFM: Graph Factorization Machines for Feature Interaction modeling

with the use of attention mechanisms to account for the weight of each pair
of feature interactions, aggregating all interactions together can still intro-
duce noise and degrade the prediction accuracy. To address these issues, some
recent studies have attempted to identify beneficial feature interactions auto-
matically. AutoFIS [39] is a two-stage algorithm that uses a gate operation to
search and model beneficial feature interactions, but there is a loss of infor-
mation between the stages, and the modelling process is not interpretable.
AFN [13] used a logarithmic neural network to adaptively learn high-order
feature interactions, and the SIGN [10] utilized mutual information to detect
beneficial feature interactions and a linear aggregation strategy to model them.
However, these approaches may not be expressive or interpretable enough.

2.2 Graph Neural Networks

A graph is a kind of data structure that reflects a set of entities (nodes) and
their relationships (edges). Graph neural networks (GNNs), as deep learning
architectures for graph-structured data, have attracted increasing attention.
The concept of GNNs was first proposed by [40], and further elaborated
in [41]. Currently, most of the prevailing GNN models follow the neighbour-
hood aggregation strategy, that is, to learn the latent node representations by
aggregating the features of neighbourhoods layer by layer. The high-order rela-
tions between nodes can be modelled explicitly by stacking layers. Gated graph
neural networks (GGNN) [23] use GRUs [42] to update node representations
based on aggregated neighborhood feature information. However based on
graph spectral theory [43], the learning process of graph convolutional networks
(GCNs) [14] can also be considered a mean-pooling neighborhood aggregation.
GraphSAGE [15] concatenates node features and introduces three mean/-
max/LSTM aggregators to pool neighborhood information. Graph attention
network (GAT) [16] incorporates an attention mechanism to measure the
weights of neighbors when aggregating neighborhood information of a node.

Due to its strength in modelling relations on graph-structured data, the
GNN has been widely applied to various applications, such as neural machine
translation [44], semantic segmentation [45], image classification [46], situa-
tion recognition [17], recommendation [20, 21, 47], script event prediction [48],
and fashion analysis [49]. The Fi-GNN [22] is the first attempt to exploit the
GNN for feature interaction modelling. It first proposes connecting all the fea-
ture fields; thus, the multi-field features can be treated as a fully-connected
graph. Then the GGNN [23] is utilized to model high-order feature interac-
tions on the feature graph. KD-DAGFM [26] uses knowledge distillation and
proposes a lightweight student model, namely, directed acyclic graph FM,
for learning arbitrarily explicit high-order feature interactions from teacher
networks. Other graph-based work, like GFM [24] utilized the popular factor-
ization machine to effectively aggregate multi-order interactions in the GNN.
In addition, GCFM [25] uses the multifilter graph-convolved feature crossing
(GCFC) layer to learn the neighbor feature interactions.

Springer Nature 2021 LATEX template

GraphFM: Graph Factorization Machines for Feature Interaction modeling 7

Nevertheless, the GNN was originally designed for graph classification
tasks, and is based on the assumption that neighbors share similar features. As
a result, the GNN inherits unnecessary and unsuitable operations for feature
interaction modelling. Our proposed model GraphFM introduces the interac-
tion function of FM into the neighborhood aggregation strategy of the GNN
to effectively capture the beneficial factorized interaction.

3 Preliminaries

In this section, we first introduce the background of feature embeddings, which
are fundamental for most feature interaction models based on deep learning.
To help understand our proposed model GraphFM, which is based on FMs
and GNNs, we then describe these two lines of work.

3.1 Feature Embeddings

In many real-world predictive tasks, such as CTR prediction, input instances
consist of both sparse categorical and numerical features. Traditionally, we
represent each input instance as a sparse vector:

x = [x1,x2, ...,xn], (1)

where n is the number of feature fields and xi is the representation of the i-
th feature field (aka feature). Since categorical features are very sparse and
high-dimensional, a common way is to map them into a low-dimensional latent
space. Specifically, a categorical feature xi is mapped to dense embedding
ei ∈ Rd as:

ei = Vixi, (2)

where Vi denotes the embedding matrix of field i.
For a numerical feature xj which is a scalar xj , we also represent it in the

d-dimensional embedding space:

ej = vjxj (3)

where vj is the embedding vector for the numerical field j. Therefore, we can
obtain a feature embedding matrix consisting of these feature embeddings:

E = [e1, e2, ..., en]⊤. (4)

3.2 Factorization Machines

The factorization machine (FM) was originally proposed for collaborative
recommendation [4, 5]. It estimates the target by modelling all interactions

Springer Nature 2021 LATEX template

8 GraphFM: Graph Factorization Machines for Feature Interaction modeling

between each pair of features:

ŷFM = ⟨w,x⟩ +

n∑
i2>i1

⟨ei1 , ei2⟩, (5)

where ⟨·, ·⟩ denotes the inner product operation. Intuitively, the first term
⟨w,x⟩ is the linear regression of raw features, and the second term is the sum
of all pairwise interactions, i.e., inner products of feature embeddings.

In principle, FMs can be extended to higher-order feature combinations
[4, 5]. Let k ∈ {2, . . . ,K} denote the order or degree of feature interactions

considered and e
(k)
i denote the embedding of feature i for order k, the K-order

higher-order FM (HOFM) can be defined as

ŷHOFM = ⟨w,x⟩ +

n∑
i2>i1

⟨e(2)i1
, e

(2)
i2

⟩ +

n∑
i3>i2>i1

⟨e(3)i1
, e

(3)
i2

, e
(3)
i3

⟩

+ · · · +

n∑
iK>···>i1

⟨e(K)
i1

, . . . , e
(K)
iK

⟩,
(6)

where ⟨e(K)
i1

, . . . , e
(K)
iK

⟩ = sum(e
(K)
i1

⊙ · · · ⊙ e
(K)
iK

) (sum of element-wise prod-
ucts). Since all the feature interactions of order up to K are included, its
time complexity increases exponentially, resulting in high computational com-
plexity. Considering that not all feature interactions are beneficial, FMs have
trouble modelling higher-order feature interactions in terms of both efficiency
and effectiveness.

Although several recent studies have enhanced FMs with DNNs to model
higher-order feature interactions, like NFM [2] and DeepFM [8], they model
higher-order feature interactions in an implicit manner, and lack persuasive
rationales for model outcomes.

3.3 Graph Neural Networks

Given that a graph G = {V,E} denotes a graph, GNNs learn the representa-
tion vectors of nodes by exploring their correlations with neighboring nodes.
The modified GNNs follow a neighborhood aggregation strategy, where we
iteratively update the representation of a node by aggregating the features of
its neighbors [50]. After k iterations of aggregation, a node’s representation
encodes its interaction with neighbors within k hops. The choice of aggregation
strategy for GNNs is crucial. A number of architectures have been proposed.
In this work, we adopt the attentional aggregation strategy in [16], which will
be further elaborated upon in Section 4.

Springer Nature 2021 LATEX template

GraphFM: Graph Factorization Machines for Feature Interaction modeling 9

Average Pooling

��
(�)

1 2

3
4

��
(�)

��
(�)

��
(�)

��
(�)

��
(�)

��
(�)

��
(���)

Interaction aggregation

� = 1

Attention Net

Prediction

...
� = �

Interaction selection

Fig. 1 Overview of GraphFM. The input features are modelled as a graph, where nodes are
feature fields, and edges are interactions. At each layer of GraphFM, the edges (beneficial
interactions) are first selected by the interaction selection component. Then these selected
feature interactions are aggregated via the attention network to update the feature embed-
dings in the interaction aggregation component. The learned feature embeddings at every
layer are used for the final prediction jointly.

4 Graph Factorization Machine

4.1 Model Overview

An overview of GraphFM is shown in Fig. 1. Each input instance (multi-field
feature) is represented as a graph where the nodes are feature fields, and the
edges are interactions [10, 22]. Note that we use nodes and features, edges, and
interactions interchangeably in this paper. GraphFM updates feature repre-
sentations layer by layer. The feature embeddings described in Section 3.1 are

taken as the initial feature embeddings of GraphFM, i.e., e
(1)
i = ei, where e

(k)
i

represents the updated feature embeddings at the k-th layer. Since no edge
information is given, we need to select the edges (beneficial interactions) by
the interaction selection component first. Then, we aggregate these selected
feature interactions to update the feature embeddings in the neighborhood
aggregation component. Within each k-th layer, we are able to select and model
only the beneficial k-th order feature interactions and encode these factorized
interactions into feature representations. Finally, these learned feature embed-
ding encoded interactions of order up to K are concatenated to make the final
prediction.

There are two main components in each layer of GraphFM. Next, we will
introduce them in detail. As we focus on describing the detailed mechanism
at every single layer, we omit the layer index k if not necessary.

4.2 Interaction Selection

To select beneficial pairwise feature interactions, we devised an interaction
selection mechanism. This can also be viewed as inferring the graph structure,

Springer Nature 2021 LATEX template

10 GraphFM: Graph Factorization Machines for Feature Interaction modeling

which predicts the links between nodes. However, the graph structure G =
{V,E} is discrete, where an edge (vi, vj) ∈ E linking two nodes is either present
or absent. This makes the process non-differentiable; therefore, it cannot be
directly optimized with gradient-descent-based optimization techniques.

To overcome this limitation, we replace the edge set E with weighted adja-
cency P, where pij is interpreted as the probability of (vi, vj) ∈ E, which also
reflects how beneficial their interaction is. Notably, we learn different graph
structures P(k) at each k-th layer. Compared with using a fixed graph at each
layer, we have more efficiency and flexibility in enumerating the beneficial
higher-order feature interaction by this means. More specifically, by using a
fixed graph structure at each layer, we can only obtain a fixed set of feature
interactions. However, with the adaptive learned graph structure at each layer,
the model is capable of modelling any potential feature interactions.

4.2.1 Metric Function

We aim to design a metric function between each pair of feature interactions
to measure whether they are beneficial. Formally, the weight pij of an edge
(vi, vj) is computed via a metric function fs(ei, ej). Here, we adopt a neural
matrix factorization (NMF) [1] based function to estimate the edge weight.
Formally, a multi-layer perception (MLP) with one hidden layer is used to
transform the element-wise product of these feature vectors to a scalar:

fs(ei, ej) = σ(Ws
2δ(Ws

1(ei ⊙ ej) + bs
1) + bs

2), (7)

where Ws
1, Ws

2, bs
1, and bs

2 are the parameters of the MLP. δ(·) and σ(·) are
ReLU and sigmoid activation functions, respectively. It should be noted that
fs is invariant to the order of its input, i.e., fs(ei, ej) = fs(ej , ei). Therefore,
the estimated edge weights are identical for the same pair of nodes. Such
continuous modelling of the graph structure enables backpropagation of the
gradients. Since we do not have a ground-truth graph structure, the gradients
come from the errors between the model output with and the target.

Intuitively, we treat the element-wise product of each pair of feature embed-
dings as a term and estimate its weight using the MLP. One can also choose
the Euclidean distance [51] or other distance metrics.

4.2.2 Graph Sampling

From the estimated edge weighted matrix P(k) at each layer, we then sample
the beneficial feature interactions to sample the neighborhood for each feature
field. In this work, we uniformly sample a fixed-size set of neighbors. For each
feature node vi at the k-th layer, we select mk edges according to the first mk

Springer Nature 2021 LATEX template

GraphFM: Graph Factorization Machines for Feature Interaction modeling 11

elements of P(k)[i, :], which can be illustrated as follows:

for i = 1, 2, · · · , n
idxi = argtopmk

(P(k)[i, :])

P(k)[i,−idx] = 0,

(8)

where P(k)[i, :] denotes the i-th column of matrix P(k) at the k-th layer, and
P(k)[i,−idxi] contains a subset of columns of P(k) that are not indexed by idxi.
argtopmk

is an operator that selects the mk-most important nodes for query
node i. We only retain these mk feature nodes, and the others are masked.
Thus the neighborhood set of node vj is defined as:

N (k)
i =

{
vj | p(k)ij > 0, j = 1, 2, · · · , n

}
. (9)

Practically speaking, we found that our approach could achieve high perfor-
mance when k = 3, and m1 equals the number of feature fields, which means
that in the first layer, we model all pairs of feature interactions.

It is worth mentioning that we also tried to set a threshold to select the
edges in the graph, i.e., setting a minimum value for the edge probability of
cutting edges off. However, the performance is not as good as that of using
a fixed-degree graph. This is reasonable because the edge weights of different
nodes’ neighbors are at different scales. Setting a single threshold on all the
nodes will lead to the situation in which the numbers of nodes’ neighbors vary
greatly. Some nodes will have barely any adjacent nodes after cutting off, while
some may still have many.

4.3 Interaction Aggregation

Since we have selected the beneficial feature interactions, or in other words,
learned the graph structure, we perform the interaction (neighborhood)
aggregation operation to update the feature representations.

For a target feature node vi, when aggregating its beneficial interactions
with neighbors, we also measure the attention coefficients of each interac-
tion. To measure the attention coefficients, we use a learnable projection
vector a and apply a LeakeyReLU non-linear activation function. Formally,
the coefficients are computed as:

cij = LeakyReLU(a⊤(ei ⊙ ej)). (10)

This indicates the importance of the interactions between feature vi and feature
vj .

Note that we only compute cij for nodes j ∈ Ni, where Ni denotes the
neighborhood of node vi, which is also the set of features whose interactions
with vi are beneficial. To make coefficients easily comparable across different

Springer Nature 2021 LATEX template

12 GraphFM: Graph Factorization Machines for Feature Interaction modeling

feature nodes, we normalized them across all choices of j using a softmax
function:

αij =
exp(cij)∑

j′∈Ni
exp(cij′)

. (11)

Once the normalized attention coefficients are obtained, we compute the
linear combination of these feature interactions with nonlinearity as the
updated feature representations:

e
′

i = σ

∑
j∈Ni

αijpijWa(ei ⊙ ej)

 , (12)

where αij measures the attention coefficients of each feature interaction
between feature i and j, while pij represents the probability of this feature
interaction being beneficial. The attention coefficient αij is calculated by the
soft attention mechanism, while pij is calculated by the hard attention mech-
anism. By multiplying them together, we control the information of selected
feature interactions and make the parameters in the interaction selection
component trainable with gradient back-propagation.

To capture the diverse polysemy of feature interactions in different semantic
subspaces [38] and stabilize the learning process [16, 29], we extend our mech-
anism to employ multi-head attention. Specifically, H independent attention
mechanisms update Equation 12, and then these features are concatenated,
resulting in the following output feature representation:

e
′

i = ||Hh=1σ

∑
j∈Ni

αh
ijpijW

h
a(ei ⊙ ej)

 , (13)

where ∥ denotes the concatenation, αh
ij is the normalized attention coefficient

computed by the h-th attention mechanism, and Wh
a is the corresponding

linear transformation matrix. One can also choose to employ average pooling
to update the feature representations:

e
′

i = σ

 1

H

H∑
h=1

∑
j∈Ni

αh
ijpijW

h
a(ei ⊙ ej)

 . (14)

4.4 Prediction and Optimization

The output of each k-th layer, is a set of n feature representation vectors

encoding feature interactions of order up to k, namely
{
e
(k)
1 , e

(k)
2 , . . . , e

(k)
n

}
.

Since the representations obtained in different layers encode the interactions
of different orders, they have different contributions to the final prediction.
As such, we concatenate them to constitute the final representation of each

Springer Nature 2021 LATEX template

GraphFM: Graph Factorization Machines for Feature Interaction modeling 13

Table 1 Statistics of the evaluation datasets.

Dataset #Instances #Fields #Features (sparse)
Criteo 45,840,617 39 998,960
Avazu 40,428,967 23 1,544,488

MovieLens-1M 739,012 7 3,529

feature [20]:

e∗i = e
(1)
i ∥· · · ∥ e(K)

i , (15)

Finally, we employ average pooling on the vectors of all features to obtain a
graph-level output and use a projection vector p to make the final prediction:

e∗ =
1

n

n∑
i=1

e∗i , (16)

ŷ = p⊤e∗. (17)

GraphFM can be applied to various prediction tasks, including regression,
classification, and ranking. In this work, we conduct experiments on CTR
prediction, a binary classification task. We thus use log loss as the loss function:

L = − 1

N

N∑
i=1

yi log σ(ŷi) + (1 − yi) log(1 − σ(ŷi)), (18)

where N is the total number of training instances, and σ denotes the sig-
moid function. yi and ŷi denote the label of instance i and the prediction of
GraphFM, respectively. The model parameters are updated using Adam[52].

5 Experiments

This section presents an empirical investigation of the performance of
GraphFM on two CTR benchmark datasets and a recommender system
dataset. The experimental settings are described, followed by comparisons
with other state-of-the-art methods. An ablation study is also conducted to
verify the importance of each component of the model and evaluate its per-
formance under different hyperparameter settings. Finally, the question of
whether GraphFM can provide interpretable explanations for its predictions
is examined.

5.1 Experimental Settings

Our experiments are conducted on three real-world datasets, two CTR bench-
mark datasets, and one recommender system dataset. Details of these datasets
are listed in Table 1. The data preparation follows the strategy in [26]. We
randomly split all the instances at 8:1:1 for training, validation, and testing.
We adopt the two most popular metrics, AUC and Logloss to measure the
probability that one prediction diverges from the ground truth.

Springer Nature 2021 LATEX template

14 GraphFM: Graph Factorization Machines for Feature Interaction modeling

5.1.1 Baselines

We compare GraphFM with four classes of state-of-the-art methods:(A) the
linear approach that only uses individual features; (B) FM-based methods
that consider second-order feature interactions; (C) DNN-based methods that
model high-order feature interactions; and (D) aggregation-based methods that
update features’ representation and model their high-order feature interactions
via an aggregation strategy.

The models associated with their respective classes are listed as follows:

• LR (A) refers to linear/logistics regression, which can only model linear
interactions.

• FM [5] (B) is the official FM implementation, which can only model second-
order interactions.

• AFM [11] (B) is an extension of FM that considers the weights of different
second-order feature interactions by using attention mechanisms.

• AFN [13] (B) learns arbitrary-order feature interactions adaptively from
data, instead of explicitly modelling all the cross features within a fixed
maximum order.

• FmFM [31] (B) uses a field matrix between two feature vectors to model
their interactions and learns the matrix separately for each field pair.

• NFM [2] (C) devises a bi-interaction layer to model second-order inter-
actions and uses a DNN to introduce nonlinearity and model high-order
interactions.

• HOFM (C) [53] is the implementation of the higher-order FM [53]. It is a
linear model.

• DeepCrossing [54] (C) utilizes a DNN with residual connections to model
non-linear feature interactions in an implicit manner.

• CrossNet [33] (C) is the core of the Deep&Cross model, which models fea-
ture interactions explicitly by taking the outer product of the concatenated
feature vector at the bit-wise level.

• xDeepFM [34] (C) takes the outer product of the stacked feature matrix
at a vector-wise level to explicitly model feature interactions. ANNs can
also be combined with DNNs, which model implicit and explicit interactions
simultaneously.

• DCNV2 [35] (C) utilizes a cross network from the DCN to learn explicit
and bounded-degree cross features.

• AutoInt [37] (D) uses a self-attention network to learn high-order feature
interactions explicitly. It can also be seen as performing the multi-head
attention mechanism [29] on a fully-connected graph.

• Fi-GNN [22] (D) models the features as a fully-connected graph and utilizes
a gated graph neural network to model feature interactions.

• InterHAt [38] (D) utilizes an attention mechanism to aggregate features,
which are then multiplied by the original features to produce higher-order
feature interactions.

Springer Nature 2021 LATEX template

GraphFM: Graph Factorization Machines for Feature Interaction modeling 15

Table 2 Performance comparison of different methods on three datasets. The four model
classes (A, B, C, D) are defined in Section 5.1.1. The last two columns are average
improvements of our proposed model GraphFM compared with corresponding base models
(“+”: increase, “-”: decrease). We highlight the best performances on each dataset. Further
analysis is provided in Section 5.2.

Model
Criteo Avazu MovieLens-1M

AUC LogLoss AUC LogLoss AUC LogLoss

LR 0.7820 0.4695 0.7560 0.3964 0.7716 0.4424

FM [4] 0.7836 0.4700 0.7706 0.3856 0.8252 0.3998
AFM[11] 0.7938 0.4584 0.7718 0.3854 0.8227 0.4048
AFN [13] 0.8079 0.4433 0.7786 0.3799 0.8771 0.4721
FmFM [31] 0.8083 0.4434 0.7746 0.3859 0.8821 0.3279

NFM [2] 0.7957 0.4562 0.7708 0.3864 0.8357 0.3883
HOFM [53] 0.8005 0.4508 0.7701 0.3854 0.8304 0.4013

DeepCrossing [54] 0.8009 0.4513 0.7643 0.3889 0.8448 0.3814
CrossNet [33] 0.7907 0.4591 0.7667 0.3868 0.7968 0.4266
xDeepFM [34] 0.8009 0.4517 0.7758 0.3829 0.8286 0.4108
DCNV2 [35] 0.8074 0.4436 0.7666 0.3865 0.8833 0.4885

AutoInt [37] 0.8084 0.4427 0.7781 0.3795 0.8823 0.3463
Fi-GNN [22] 0.8077 0.4413 0.7778 0.3811 0.8792 0.3537
InterHAt [38] 0.8076 0.4446 0.7758 0.3860 0.8769 0.3591

GraphFM (ours) 0.8091 0.4399 0.7798 0.3781 0.8902 0.3259

5.1.2 Implementation Details

We implement the method using TensorFlow [55] and Pytorch [56]. The feature
embedding size is set as 16 for all methods. For a fair comparison, we set three
layers for AutoInt, FiGNN, and GraphFM. There are two attention heads in
AutoInt and GraphFM. The implementation of the other compared baselines
follows [37] and [26]. The optimal hyper-parameters are found via a grid
search. [m1,m2,m3] are set as [39, 20, 5], [23, 10, 2], and [7, 4, 2] for the Criteo,
Avazu and MovieLens-1M datasets respectively. We use Adam [52] to optimize
all these models. The experiments were conducted over a server equipped with
8 NVIDIA Titan X GPUs.

5.2 Model Comparison

5.2.1 Evaluation of Effectiveness

The performance comparison of these methods on three datasets is presented
in Table 2, from which we have the following observations. Our proposed
GraphFM achieves the best performance among all four classes of methods on
three datasets. The performance improvement of GraphFM compared with the
three classes of methods (A, B, C) is especially significant, above the 0.01-level.

Springer Nature 2021 LATEX template

16 GraphFM: Graph Factorization Machines for Feature Interaction modeling

(a) Criteo

(b) MovieLens-1M

Fig. 2 Performance comparison of GraphFM with different components on the Criteo and
MovieLens-1M datasets. Further analysis is provided in Section 5.3.

The aggregation-based methods including InterHAt, AutoInt, Fi-GNN and our
GraphFM consistently outperform the other three classes of models, which
demonstrates the strength of the aggregation strategy in capturing high-order
relations. Compared with the strong aggregation-based baselines AutoInt and
Fi-GNN, GraphFM still achieves large improvements in performance, espe-
cially on the MovieLens-1M dataset. The performance improvement on the
other two datasets is also at the 0.001-level, which can be regarded as signifi-
cant for the CTR prediction task [3, 7, 8, 37, 57, 58]. This improvement can be
attributed to its combination with FM, which introduces feature interaction
operations, and the interaction selection mechanism, which selects and models
only the beneficial feature interactions. GraphFM outperforms the compared
baselines by the largest margin on the MovieLens-1M dataset, whose feature
size is the smallest among the three datasets. This is likely because the feature
embedding size is not large enough for the other two datasets.

Springer Nature 2021 LATEX template

GraphFM: Graph Factorization Machines for Feature Interaction modeling 17

5.3 Ablation Studies

To validate the effectiveness of each component in GraphFM, we conduct
ablation studies and compare several variants of it:

• GraphFM(-S): interaction selection is the first component in each layer of
GraphFM, which selects only the beneficial feature interactions and treats
them as edges. As a consequence, we can model only these beneficial inter-
actions with the next interaction aggregation component. To check the
necessity of this component, we remove these components, so that all pairs
of feature interactions are modelled as a fully-connected graph.

• GraphFM(-I): In the interaction aggregation component, we aggregate
the feature interactions instead of the neighbors’ features, as in the stan-
dard GNNs. To check its rationality, we test the performance of directly
aggregating neighborhood features instead of the feature interactions with
them.

• GraphFM(-M): In the interaction aggregation component, we use a multi-
head attention mechanism to learn the diversified polysemy of feature
interactions in different semantic subspaces. To check its rationality, we use
only one attention head when aggregating.

• GraphFM(-Ki): Before obtaining the final representation of the feature,
we concatenate and average the feature representation ek output from layer
k. To study the degree of contribution of the features learned at different
layers to the results, we use the feature representation of the k-th layer for
direct prediction, and there are K = 3 layers.

The performances of GraphFM and these four variants are shown in Fig. 2.
We observe that GraphFM outperforms all the ablative methods, which proves
the necessity of all these components in our model. The performance of
GraphFM(-M) suffers from a sharp decrease compared with that of GraphFM,
proving that it is necessary to transform and aggregate the feature interac-
tions in multiple semantic subspaces to accommodate polysemy. Note that
although we did not present the statistics here, we also tested the influence of
the number of attention heads H. The performance of using only one head, i.e.,
GraphFM(-M), is worse than that of using two, and more attention heads do
not lead to improvement in performance but introduce much greater time and
space complexity. GraphFM(-I) does not perform well either. This is reason-
able, as without the interaction between features, neighborhood aggregation
operation will only make neighboring features similar. As a consequence, no
feature interactions are guaranteed to be captured. This interaction is also the
most significant difference between GraphFM and GNN, and the resulting dif-
ference in terms of performance indicates that GraphFM is able to leverage the
strength of FM to overcome the drawbacks of GNN in modelling feature inter-
actions. GraphFM(-S) achieves slightly worse performance than GraphFM,
demonstrating that selecting and modelling only the beneficial interactions
instead of all of them can avoid noise and make it easier to train the model.

Springer Nature 2021 LATEX template

18 GraphFM: Graph Factorization Machines for Feature Interaction modeling

The GraphFM(-Ki) results show that each layer can learn features that ben-
efit the results. Although different features can have a positive effect on task
prediction, the difference in effect is not large, and the prediction results are
worse than those obtained by combining all features, demonstrating the need
to merge the features of the k-th layers.

5.4 Study of Neighborhood Sampled Size

The number of selected neighbors for each feature node is an important
hyper-parameter that controls the number of features with which each feature
interacts. We thus investigate how the neighborhood sample size affects the
model performance. As the total search space is too large, we only show the
performance of our model with K = 3,m1 = n and varying values of m2 and
m3. The results on three datasets are summarized in Fig. 3.

On the Criteo dataset, there are a total of 39 feature fields. We found that
our model achieves the best performance with m1 = 39, and m2 ×m3 = 100.
The performances vary in the range of [0.8084, 0.8091], which proves that our
model is quite robust, and not very sensitive to the size of the neighborhood
sampled. On the Avazu dataset, the model performance peaks with m1 =
23,m2 = 10,m3 = 2 or m2 = 15,m3 = 4. On the MovieLens-1M dataset, the
model performance peaks when m2 × m3 is approximately 9. We also found
a diminishing trend for sampling larger or smaller neighborhoods. In other
words, the optimal neighborhood sample size depends on the dataset size.

5.5 Visualization of the Interaction Graph

Since the features along with selected beneficial feature interactions are treated
as a graph, they can provide human readable interpretations of the prediction.
Here, we visualize heat maps of the estimated edge weights of two cherry-
pick instances on the MovieLens-1M dataset in Fig. 4. We show the measured
edge weights of each instance in the three layers, which select the order-2,
order-3, and order-4 feature interactions. The positive edge weights indicate
how beneficial feature interactions are. We set S1 = 7, S2 = 4, and S3 = 2,
which means that we only retain 7, 4, and 2 pairs of beneficial order-2, order-
3, and order-4 feature interactions respectively. Therefore, there are only 7,
4, and 2 interaction feature fields for each feature field in each row for heat
maps of order-2, order-3, and order-4, respectively. The axes represent feature
fields (Gender, Age, Occupation, Zipcode, ReleaseTime, WatchTime, Genre).
Gender, Age, Occupation and Zipcode are users’ demographic information.
Note that Zipcode indicates the users’ place of residence. textitReleaseTime
and Gender are the movie information. WatchTime (Timestamp) represents
the time when users watched the movies.

From the two instances in Fig. 4, we can obtain the following interesting
observations. We find that in the first layer, which models the second order
feature interactions, these feature fields are difficult to distinguish when select-
ing the beneficial interactions. This suggests that almost all the second-order

Springer Nature 2021 LATEX template

GraphFM: Graph Factorization Machines for Feature Interaction modeling 19

(a) Criteo

(b) Avazu

(c) MovieLens

Fig. 3 Model performance with respect to the size of the sampled neighborhood, where
the “neighborhood sample size” refers to the number of neighbors sampled at each depth
for K = 3 with m1 = n, and m2,m3 with varying values.

Springer Nature 2021 LATEX template

20 GraphFM: Graph Factorization Machines for Feature Interaction modeling

(a) label=1, pred=0.9736 (b) label=1, pred=0.0330

Fig. 4 Heat maps of the estimated edge weights of correctly predicted instances (a) and
incorrectly predicted instances (b) on the MovieLens-1M dataset, where positive edge weights
indicate beneficial feature interactions. The axes represent feature fields (Gender, Age, Occu-
pation, Zipcode, ReleaseTime, WatchTime, Genre).

feature interactions are useful, which is why we sample all of them in the first
layer, i.e., m1 = n, except that the diagonal elements have the smallest values,
which suggests that our designed interaction selection mechanism can clas-
sify the redundant self-interacting feature interactions, even though we keep
and model all pairs of feature interactions. The selected feature interactions of
order-3 and order-4 mostly do not overlap in the correctly predicted instance

Springer Nature 2021 LATEX template

GraphFM: Graph Factorization Machines for Feature Interaction modeling 21

(a). In instance (a), our model selects relevant feature fields (Gender, Age,
ReleaseTime, and WatchTime) for Genre in order-3 but selects the other two
feature fields (Occupation and Gender) in order-4. However, in the wrongly
predicted instances (b), the feature interactions of order-3 and order-4 mostly
do not overlap.

This proves that our model can indeed select meaningful feature combina-
tions and model feature interactions of increasing orders with multiple layers
in most cases, rather than selecting the redundant feature combinations of the
same feature fields. We can also find some meaningful feature combinations in
common cases. For example, Gender is usually relevant to the feature fields
Age, occupation, and WatchTime, while Age is usually relevant to the feature
fields Gender, WatchTime, and Genre. This provides some rationale for the
model prediction.

6 Conclusion and Future Work

In this work, we disclose the relationship between FMs and GNNs, and seam-
lessly combine them to propose a novel model GraphFM for feature interaction
learning. The proposed model leverages the strengths of FMs and GNNs and
solves their respective drawbacks. At each layer of GraphFM, we select the
beneficial feature interactions and treat them as edges in a graph. Then, we
utilize a neighborhood/interaction aggregation operation to encode the inter-
actions into feature representations. By design, the highest order of feature
interaction increases at each layer and is determined by layer depth; thus,
the feature interactions of order up to the highest can be learned. GraphFM
models high-order feature interactions in an explicit manner, and can gener-
ate human readable explanations of outcomes. The experimental results show
that GraphFM outperforms the state-of-the-art baselines by a large margin. In
addition, we conduct extensive experiments to analyse how the highest order
of feature interactions and the number of modelled feature interactions influ-
ence model performance, which can help us gain deeper insight into feature
interaction modelling. In the future, we aim to investigate whether the pro-
posed method can also benefit graph representation learning, and graph/node
classification tasks.

Acknowledgements. We would like to thank the anonymous reviewers for
their valuable comments and suggestions, allowing us to improve the quality
of this paper. This work is sponsored by the National Science Foundation of
China (62141608).

References

[1] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural col-
laborative filtering. In: WWW (2017). International World Wide Web
Conferences Steering Committee

Springer Nature 2021 LATEX template

22 GraphFM: Graph Factorization Machines for Feature Interaction modeling

[2] He, X., Chua, T.-S.: Neural factorization machines for sparse predictive
analytics. In: SIGIR (2017)

[3] Zhang, S., Zheng, N., Wang, D.-L.: A novel attention-based global
and local information fusion neural network for group recommendation.
Machine Intelligence Research 19(4), 331–346 (2022)

[4] Rendle, S.: Factorization machines. In: ICDM (2010)

[5] Rendle, S.: Factorization machines with libfm. ACM TIST (2012)

[6] Zhang, W., Du, T., Wang, J.: Deep learning over multi-field categor-
ical data: A case study on user response prediction. arXiv preprint
arXiv:1601.02376 (2016)

[7] Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye,
H., Anderson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide & deep
learning for recommender systems. In: Proceedings of the 1st Workshop
on Deep Learning for Recommender Systems (2016). ACM

[8] Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: Deepfm: a factorization-machine
based neural network for ctr prediction. In: IJCAI (2017)

[9] Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understand-
ing deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530 (2016)

[10] Su, Y., Zhang, R., Erfani, S., Xu, Z.: Detecting beneficial feature interac-
tions for recommender systems via graph neural networks. arXiv e-prints,
2008 (2020)

[11] Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., Chua, T.-S.: Attentional
factorization machines: Learning the weight of feature interactions via
attention networks. arXiv preprint arXiv:1708.04617 (2017)

[12] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

[13] Cheng, W., Shen, Y., Huang, L.: Adaptive factorization network: Learn-
ing adaptive-order feature interactions. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, pp. 3609–3616 (2020)

[14] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convo-
lutional networks. In: ICLR (2017)

[15] Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning
on large graphs. In: NIPS (2017)

Springer Nature 2021 LATEX template

GraphFM: Graph Factorization Machines for Feature Interaction modeling 23

[16] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio,
Y.: Graph attention networks. In: ICLR (2018)

[17] Li, R., Tapaswi, M., Liao, R., Jia, J., Urtasun, R., Fidler, S.: Situation
recognition with graph neural networks. In: ICCV (2017)

[18] Marcheggiani, D., Titov, I.: Encoding sentences with graph convolutional
networks for semantic role labeling. arXiv preprint arXiv:1703.04826
(2017)

[19] Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text
classification. In: AAAI (2019)

[20] Wang, X., He, X., Wang, M., Feng, F., Chua, T.-S.: Neural graph
collaborative filtering. In: SIGIR (2019)

[21] Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based
recommendation with graph neural networks. In: AAAI (2019)

[22] Li, Z., Cui, Z., Wu, S., Zhang, X., Wang, L.: Fi-gnn: Modeling fea-
ture interactions via graph neural networks for ctr prediction. In: CIKM
(2019). ACM

[23] Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence
neural networks. arXiv preprint arXiv:1511.05493 (2015)

[24] Xi, D., Zhuang, F., Zhu, Y., Zhao, P., Zhang, X., He, Q.: Graph fac-
torization machines for cross-domain recommendation. arXiv preprint
arXiv:2007.05911 (2020)

[25] Zheng, Y., Wei, P., Chen, Z., Cao, Y., Lin, L.: Graph-convolved factoriza-
tion machines for personalized recommendation. IEEE Transactions on
Knowledge and Data Engineering (2021)

[26] Tian, Z., Bai, T., Zhang, Z., Xu, Z., Lin, K., Wen, J.-R., Zhao, W.X.:
Directed acyclic graph factorization machines for ctr prediction via knowl-
edge distillation. In: Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining, pp. 715–723 (2023)

[27] Dudzik, A.J., Veličković, P.: Graph neural networks are dynamic pro-
grammers. Advances in Neural Information Processing Systems 35,
20635–20647 (2022)

[28] Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531 (2015)

[29] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: Advances

Springer Nature 2021 LATEX template

24 GraphFM: Graph Factorization Machines for Feature Interaction modeling

in Neural Information Processing Systems, pp. 5998–6008 (2017)

[30] Juan, Y., Zhuang, Y., Chin, W.-S., Lin, C.-J.: Field-aware factorization
machines for ctr prediction. In: RecSys (2016). ACM

[31] Sun, Y., Pan, J., Zhang, A., Flores, A.: Fm2: Field-matrixed factor-
ization machines for recommender systems. In: Proceedings of the Web
Conference 2021, pp. 2828–2837 (2021)

[32] Qu, Y., Cai, H., Ren, K., Zhang, W., Yu, Y., Wen, Y., Wang, J.: Product-
based neural networks for user response prediction. In: ICDM (2016)

[33] Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click
predictions. In: ADKDD (2017)

[34] Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xdeepfm: Com-
bining explicit and implicit feature interactions for recommender systems.
In: SIGKDD (2018)

[35] Wang, R., Shivanna, R., Cheng, D., Jain, S., Lin, D., Hong, L., Chi, E.:
Dcn v2: Improved deep & cross network and practical lessons for web-
scale learning to rank systems. In: Proceedings of the Web Conference
2021, pp. 1785–1797 (2021)

[36] Tao, Z., Wang, X., He, X., Huang, X., Chua, T.-S.: Hoafm: A high-order
attentive factorization machine for ctr prediction. Information Processing
& Management, 102076 (2019)

[37] Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., Tang, J.:
Autoint: Automatic feature interaction learning via self-attentive neural
networks. In: CIKM (2019)

[38] Li, Z., Cheng, W., Chen, Y., Chen, H., Wang, W.: Interpretable click-
through rate prediction through hierarchical attention. In: Proceedings of
the 13th International Conference on Web Search and Data Mining, pp.
313–321 (2020)

[39] Liu, B., Zhu, C., Li, G., Zhang, W., Lai, J., Tang, R., He, X., Li, Z.,
Yu, Y.: Autofis: Automatic feature interaction selection in factorization
models for click-through rate prediction. In: Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 2636–2645 (2020)

[40] Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph
domains. In: IJCNN (2005)

[41] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.:

Springer Nature 2021 LATEX template

GraphFM: Graph Factorization Machines for Feature Interaction modeling 25

The graph neural network model. IEEE Transactions on Neural Networks
(2009)

[42] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares,
F., Schwenk, H., Bengio, Y.: Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078 (2014)

[43] Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013)

[44] Beck, D., Haffari, G., Cohn, T.: Graph-to-sequence learning using gated
graph neural networks. arXiv preprint arXiv:1806.09835 (2018)

[45] Qi, X., Liao, R., Jia, J., Fidler, S., Urtasun, R.: 3d graph neural networks
for rgbd semantic segmentation. In: ICCV (2017)

[46] Marino, K., Salakhutdinov, R., Gupta, A.: The more you know: Using
knowledge graphs for image classification. In: CVPR (2017)

[47] Chen, L., Wu, L., Hong, R., Zhang, K., Wang, M.: Revisiting graph based
collaborative filtering: A linear residual graph convolutional network
approach. arXiv preprint arXiv:2001.10167 (2020)

[48] Li, Z., Ding, X., Liu, T.: Constructing narrative event evolutionary graph
for script event prediction. arXiv preprint arXiv:1805.05081 (2018)

[49] Cui, Z., Li, Z., Wu, S., Zhang, X.-Y., Wang, L.: Dressing as a whole:
Outfit compatibility learning based on node-wise graph neural networks.
In: WWW, pp. 307–317 (2019)

[50] Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826 (2018)

[51] Kazi, A., Cosmo, L., Navab, N., Bronstein, M.: Differentiable graph mod-
ule (dgm) graph convolutional networks. arXiv preprint arXiv:2002.04999
(2020)

[52] Kingma, D., Ba, J.: Adam: A method for stochastic optimization.
Computer Science (2014)

[53] Blondel, M., Fujino, A., Ueda, N., Ishihata, M.: Higher-order factorization
machines. In: NIPS (2016)

[54] Shan, Y., Hoens, T.R., Jiao, J., Wang, H., Yu, D., Mao, J.: Deep crossing:
Web-scale modeling without manually crafted combinatorial features. In:
SIGKDD (2016)

Springer Nature 2021 LATEX template

26 GraphFM: Graph Factorization Machines for Feature Interaction modeling

[55] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for
large-scale machine learning. In: OSDI (2016)

[56] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imper-
ative style, high-performance deep learning library. Advances in neural
information processing systems 32 (2019)

[57] Wu, S., Yu, F., Yu, X., Liu, Q., Wang, L., Tan, T., Shao, J., Huang, F.:
Tfnet: Multi-semantic feature interaction for ctr prediction. In: Proceed-
ings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 1885–1888 (2020)

[58] Xu, Y., Zhu, Y., Yu, F., Liu, Q., Wu, S.: Disentangled self-attentive
neural networks for click-through rate prediction. In: Proceedings of
the 30th ACM International Conference on Information & Knowledge
Management, pp. 3553–3557 (2021)

Shu Wu received his B.S. degree from Hunan University,
China, in 2004, his M.S. degree from Xiamen University,
China, in 2007, and his Ph.D.degree from the University of
Sherbrooke, Quebec, Canada. He is an Associate Professor
at the NLPR, CASIA.
His research interests include data mining and pattern
recognition.
E-mail: shu.wu@nlpr.ia.ac.cn
ORCID iD: 0000-0003-2164-3577

Zekun Li is a Ph.D. at the University of California, Santa
Barbara. He obtained a master’s degree from the University
of Chinese Academy of Sciences, Beijing, China, in 2021,
and the B.Eng degree from Shandong University, China,
was obtained in 2018.
His research interests include data mining, recommender
systems, and natural language processing.
E-mail: zekunli@cs.ucsb.edu

Springer Nature 2021 LATEX template

GraphFM: Graph Factorization Machines for Feature Interaction modeling 27

Yunyue Su is with the Institute of Automation, Chinese
Academy of Sciences. She received her B.S degree from
the Computer Network Information Center, University of
Chinese Academy of Sciences, China, in 2023.
Her research interests include data mining, machine learn-
ing, and recommender systems.
E-mail: yunyue.su@ia.ac.cn

Zeyu Cui is with the Alibaba Group, DAMO Institute.
He obtained his Ph.D. degree from the School of Artificial
Intelligence, University of the Chinese Academy of Sciences,
Beijing, China. He received the B.S degree from North
China Electric Power University, China, in 2016.
His research interests include data mining, machine learn-
ing, and recommender systems.
E-mail: cuizeyu15@gmail.com

Xiaoyu Zhang received a Ph.D. degree in pattern recogni-
tion and intelligent systems from the Institute of Automa-
tion, Chinese Academy of Sciences, Beijing, China, in 2010.
He is currently a Professor with the Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China.
His research interests include artificial intelligence, data
mining, computer vision, etc.
E-mail: zhxy333@gmail.com
ORCID iD: 0000-0001-5224-8647

Liang Wang received a Ph.D. degree from the National
Laboratory of Pattern Recognition (NLPR), Institute of
Automation, Chinese Academy of Sciences, Beijing, China,
in 2004. He is currently a Professor at NLPR, CASIA.
His major research interests include computer vision, pat-
tern recognition, machine learning, and data mining.
E-mail: liang.wang@nlpr.ia.ac.cn

	Introduction
	Related Work
	Feature Interaction Modelling
	Graph Neural Networks

	Preliminaries
	Feature Embeddings
	Factorization Machines
	Graph Neural Networks

	Graph Factorization Machine
	Model Overview
	Interaction Selection
	Metric Function
	Graph Sampling

	Interaction Aggregation
	Prediction and Optimization

	Experiments
	Experimental Settings
	Baselines
	Implementation Details

	Model Comparison
	Evaluation of Effectiveness

	Ablation Studies
	Study of Neighborhood Sampled Size
	Visualization of the Interaction Graph

	Conclusion and Future Work
	Acknowledgements

