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Abstract—Digital aquaculture leverages advanced technologies
and data-driven methods, providing substantial benefits over
traditional aquaculture practices. This paper presents a com-
prehensive review of three interconnected digital aquaculture
tasks, namely, fish tracking, counting, and behaviour analysis,
using a novel and unified approach. Unlike previous reviews
which focused on single modalities or individual tasks, we analyse
vision-based (i.e. image- and video-based), acoustic-based, and
biosensor-based methods across all three tasks. We examine their
advantages, limitations, and applications, highlighting recent
advancements and identifying critical cross-cutting research gaps.
The review also includes emerging ideas such as applying multi-
task learning and large language models to address various
aspects of fish monitoring, an approach not previously explored
in aquaculture literature. We identify the major obstacles hin-
dering research progress in this field, including the scarcity of
comprehensive fish datasets and the lack of unified evaluation
standards. To overcome the current limitations, we explore the
potential of using emerging technologies such as multimodal data
fusion and deep learning to improve the accuracy, robustness, and
efficiency of integrated fish monitoring systems. In addition, we
provide a summary of existing datasets available for fish tracking,
counting, and behaviour analysis. This holistic perspective offers
a roadmap for future research, emphasizing the need for compre-
hensive datasets and evaluation standards to facilitate meaningful
comparisons between technologies and to promote their practical
implementations in real-world settings.

Index Terms—Digital aquaculture, fish tracking, counting,
behaviour analysis, multimodal fusion

I. INTRODUCTION

With the expansion of the global population and the degra-
dation of the ecological environment, traditional fishing (i.e.
capture fisheries) is no longer capable of meeting the growing
human demand for fish products [1], [2]. Aquaculture has
become the primary source of fish acquisition, and digital
aquaculture is emerging as a promising approach to enhance
the efficiency and sustainability of the industry [3].

As enabling technologies in digital aquaculture, fish track-
ing, counting, and behaviour analysis have been studied ex-
tensively. Traditional methods for fish tracking and behaviour
analysis rely on the experience of human observers, and the
observation results depend on their skills and knowledge,
which are not always reliable [4], [5]. Similarly, manual fish
counting methods involve removing fish from tanks, leading
to stress, injury, and disease, negatively impacting fish welfare
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and growth [6], [7]. The implementation of intelligent track-
ing, counting, and behaviour analysis technologies can help
overcome these limitations, reducing the risk of fish mortality,
improving feeding strategies, and promoting sustainable devel-
opment in aquaculture [8]–[10]. This paper aims to provide
a comprehensive survey of the research problems, existing
technologies, their connections, and potential gaps in this field.

There are already literature reviews conducted previously
in this field, such as [9], [11]–[15]. However, most of them
focused on individual tasks or single modalities, primarily
emphasizing computer vision technology as the main ap-
proach. In practice, these tasks are interconnected and form
a coherent part of an overall digital aquaculture system.
For example, accurate monitoring of these tasks is vital for
detecting abnormal fish behaviour, estimating fish abundance,
and formulating effective management strategies, ultimately
improving fish welfare and economic outcomes [16]. The
narrow focus in previous reviews is inherently limited in
capturing the interconnected nature of these tasks in real-world
aquaculture scenarios. Different from these reviews, our focus
is not only on surveying the progress made for these tasks,
but also on establishing the connections among them.

Various technologies such as vision-based, acoustic-based
and biosensing-based methods are used for fish tracking,
counting, and behaviour analysis in aquaculture. Vision-
based sensors and computer vision technology have found
widespread application due to advancements in optical imag-
ing and computer vision. However, they are limited by poor
illumination, low contrast, high noise, fish deformation, fre-
quent occlusion, and dynamic backgrounds [14], [17]–[19].
Acoustic-based sensors and hydroacoustic methods, which
are non-invasive, are beneficial for monitoring fish in turbid
water environments and overnight, but their high hardware
cost limits their popularity in intensive aquaculture settings
[20]–[24]. Biosensors can provide valuable information on fish
physiology and behaviour, but their invasive nature and the
need for individual fish tagging can be challenging in large-
scale aquaculture operations and may potentially harm the fish
[25].

A systematic review of literature from 2000 to 2023 reveals
significant growth in research related to these technologies.
Annual publications have increased from around 200 in the
early 2000s to over 2,000 in recent years. Computer vision
techniques dominate the field, accounting for about 40% of
the publications, followed by acoustic monitoring methods
and behavioural analysis approaches, each representing about
a quarter of the research outputs. The geographical distribution
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of research and methodological preferences show interest-
ing patterns. Asia, particularly China and Japan, leads in
publications, contributing nearly half of the global research
outputs, mostly on computer vision techniques in tracking
and counting, driven by the prevalence of large-scale intensive
aquaculture operations and robust technological infrastructure.
Europe, contributing about 30% of publications, emerges as a
leader in acoustic monitoring and behavioural analysis tech-
niques. This trend aligns with the region’s stringent welfare
regulations and emphasis on environmental sustainability in
aquaculture practices. North America, while producing fewer
publications, pioneers the integration of machine learning with
various monitoring methods, leveraging its strong artificial
intelligence (AI) research base and focus on automation. How-
ever, this global research landscape also reveals significant
gaps. Developing regions, including parts of Africa, Asia, and
Latin America, show limited adoption of advanced monitoring
technologies. This gap can be attributed to the high initial
costs, the lack of technical expertise, and the predominance
of small-scale farming in these areas. Oceania, despite its sig-
nificant aquaculture industry, is underrepresented in research
outputs, possibly due to a smaller research community and
a focus on practical applications over academic publications.
Eastern Europe and Central Asia also show fewer publications
on novel monitoring technologies, likely due to the later
development of intensive aquaculture in these regions and
limited research funding.

To address these limitations, our paper takes a holistic
approach by systematically surveying a range of technolo-
gies, including vision-based sensors, acoustic-based sensors,
biosensors, and hydroacoustic methods. We consider fish
tracking, counting, and behaviour analysis as interconnected
components of a unified task in digital aquaculture. This
comprehensive perspective facilitates a more integrated dis-
cussion of these tasks while identifying technology gaps in
the current literature. Furthermore, we explore the potential of
emerging technologies such as multimodal data fusion, deep
learning, and multi-task learning models that can simultane-
ously handle multiple aspects of fish monitoring. We also
discuss the integration of large language models (LLM) and
their potential to enhance understanding and decision-making
in digital aquaculture. By adopting this multifaceted approach,
our review aims to provide a more complete understanding of
the challenges and opportunities in digital aquaculture, paving
the way for developing more efficient, accurate, and integrated
fish monitoring systems. The insights provided in this review
have the potential to guide future research directions, inform
policy decisions, and ultimately contribute to the sustainable
growth of the aquaculture industry.

The remainder of this article is structured as follows: Sec-
tion II explores the advancements in fish tracking techniques,
while Section III discusses the various methods and appli-
cations of fish counting. Section IV discusses the behaviour
analysis of fish, and Section V introduces the potential of mul-
timodal fusion in aquaculture. Section VI presents an overview
of relevant public datasets. In Section VII, we examine the
challenges faced by the aquaculture industry and discuss future
development trends. Finally, Section VIII summarises the key

findings and conclusions presented in this paper.

II. FISH TRACKING

Vision-based multi-target tracking methods are increasingly
used in fish behaviour analysis. However, fish tracking is
challenging because of the small differences between indi-
viduals, complex environments, and variations in plankton,
shapes, angles, and scales of swimming fish [26]. Fish tracking
can be categorized into two-dimensional (2D) and three-
dimensional (3D) tracking based on the swimming environ-
ment [27]. 2D tracking is used in shallow water containers,
where fish swimming appears close to a 2D planar motion
and is represented using (x, y) coordinates. Still, it can only
analyse a part of the fish’s behaviour. In contrast, 3D tracking
considers depth information and is represented using (x, y,
z) coordinates, enabling the analysis of spatial movement in
natural environments.

In addition to vision-based tracking, acoustic techniques
such as the Acoustic Tag System (ATS) are also used for fish
tracking. ATS involves attaching acoustic tags to fish, emitting
unique acoustic signals detected by hydrophone receivers.
The position of the tagged fish can be estimated using the
time difference of arrival of the acoustic signals at multiple
receivers, allowing for 3D tracking of fish movement in
natural habitats [28]. This section mainly analyzes the relevant
literature on fish tracking methods based on visual technology
(as shown in Table I) and acoustic techniques in recent years
and provides a systematic summary.

A. Fish tracking based on 2-dimensional visual information

Fish tracking methods can be broadly categorized into three
main approaches: classical algorithms, kernel correlation filter-
based algorithms, and deep learning-based tracking algorithms
[15]. Each category encompasses various techniques with their
strengths and limitations, which will be explored in more detail
in the following subsections.

1) Fish tracking based on classical algorithms: Classical
algorithms have been widely used to address the challenges
of fish tracking in complex underwater environments, such
as rapid posture changes, occlusion, overlap, and poor image
quality. The Tracking-Learning-Detection (TLD) algorithm,
which updates salient features and target model parameters
through online learning, has shown promise in providing stable
tracking [41]. However, its median-flow tracker may fail when
fish change their swimming posture rapidly. However, an
adaptive scale mean-shift (ASMS) algorithm, utilizing fish
shape and colour features, can handle posture changes, uneven
illumination, and complex backgrounds [42].

Preserving individual fish identities during occlusion and
overlap remains a significant challenge. Techniques that extract
head shape or body geometry features have been explored
[43], [44], but their effectiveness may be limited by the
rapid movement and intense geometry of fish bodies [18].
Adaptive thresholding algorithms, which estimate each pixel’s
threshold based on its adjacent region, have shown promise
in segmenting individual fish in binarized images [45]. The
global nearest neighbour algorithm with fish posture as a
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TABLE I: Summary of different methods in fish tracking.

Study
Site

Maxmum Fish
Amounts Points Detection

Methods
Tracking
Methods

Tracking
Metrics Advantages Limitation References

Tank 13 Fish
head YOLOv2 Kalman

Filter
CIR1

CTR
High frame rate

not necessary

Larger fish
quantities
increase

identification
losses

[29]

Coast -
Center of
the fish

head
YOLOv4 Kalman

Filter MOTA2
Real-time

tracking with
high accuracy

Accuracy affected
by different sea

areas
[30]

Tank 5

Fish head
and center
of the fish

body

Background
subtraction

Kalman
Filter

CIR
CTR

Accurate, fast,
and

computational
inexpensive

Fail to predict the
motion state of

rapidly
transitioning

[31]

Tank 20
Fish head
and fish

body

Background
subtraction

Kalman
Filter

CIR
CTR

Smoother
resulting
trajectory

Lower frame
speeds lead to

more track breaks
and higher

misidentification

[32]

Tank 5 Centroid Background
subtraction

Kalman
Filter

CIR
CTR

Enhances
tracking

performance
under occlusion

conditions

Abnormal water
quality leads to an
increased chance

of fish body
overlap

[33]

Tank 25 Fish head DOH3 CNN Recall

Corrects
trajectory

errors, fills
gaps, and
evaluates
credibility

Easy affected by
floating objects,

ripple reflections,
fish sharp turns

[34]

Tank 10

Head
feature

point and
central
feature
point

Background
subtraction

Feature point
matching

Precision
Recall

Two-feature
point model

reduces
tracking
difficulty

Only traces a few
objects for a very

short process
[27]

Glass
Aquarium 5

The head
and tail of

fish

Adaptive
thresholding

algorithm
GNN4 Tracking

errors

Accurate
tracking by

pose constraint,
even at high

speed

Unable to handle
fish occlusion or

attaching
[35]

Fringing
Reef,

Red Sea
4 Fish’s

body

Fast-RCNN,
Inceptiont

V2

Linking
consecutive

frames

3D
detection

rate

Cost-effective,
automated 2D

track
Reconstruction

Small groups of
fish studied [36]

Tank 50 Head ResNet-101

Mahalanobis
distance and

cosine
similarity

MOTA
IDF15

Performance
well under

multiple
negative factors

Bad performance
of long-term

tracking
[37]

Tank
Pond 50 Body Transformer Hungarian

algorithm
MOTA
IDF1

Accommodates
individuals with

significant
appearance
variations.

Limitations in
accurate ID

matching at high
stocking densities

(over 50 fish)

[38]

Tank 8 Head LSTM Kalman
Filter

Precision
Recall

Cross-view
more robust in
high densities

Multi -view map
matching is

difficult, and the
calculation

amount is large

[39]

Tank 49 Head DoH
CNN

Iterative
tracking
strategy

Precision
Recall

Tracking
individuals
exhibiting
frequent

occlusions

Requires
individuals to

have at least one
body part that
remains robust

[40]

1 CTR (correct tracking rate), CIR (correct identification reason)
2 MOTA (multiple objects tracking accuracy) (as shown in formula 1)
3 DOH (determinant of Hessian)
4 GNN (global nearest neighbour)
5 IDF1(identification-score, as shown in formula 3)



4

tracking constraint has been used to track small numbers
of zebrafish [35], but it lacks individual recognition ability,
leading to track exchanges during overlap or occlusion. The
Toxld algorithm addresses this issue using intensity histograms
and Hu-moments to link trajectory fragments and preserve
individual fish identities [46]. However, with this method, the
error increases with the number of fish.

To deal with poor image quality, retinex (MSR) based
enhancement algorithms combined with object detection have
been used to improve fish detection in unclear underwater
images [47]–[49]. Kalman filters may not always be optimal
for underwater fish tracking due to the presence of non-
Gaussian noise and complex environments [50]. Mean off-
set technology, which models fish probability density based
on colour histograms, can fail when the background colour
closely resembles the fish colour distribution. Tracking algo-
rithms based on covariance matrices of pixel-based feature
sets, incorporate spatial and statistical characteristics, making
them more suitable for tracking fish in challenging underwater
environments [51], [52].

2) Fish tracking based on Kalman filters: The Kalman filter
is an efficient autoregressive filter, which can estimate the state
of a dynamic system from sensory measurements taken from
an environment with uncertainties posed by noise and interfer-
ences [53]. However, when applied alone to complex tracking
scenarios, it faces challenges in handling occlusions and
maintaining accurate tracking in high-density situations [32].
To address these limitations, researchers explored combining
Kalman filtering with advanced object detection methods. You
Only Look Once (YOLO) [54] has emerged as a leading de-
tection method due to its real-time performance and accuracy
in identifying fish within video frames. Building upon these
foundations, the Simple Online and Realtime Tracking (SORT)
algorithm [33] integrates YOLO-based detection results with
Kalman filtering for motion prediction and employs the Hun-
garian algorithm for data association [55]. This integration
enables high-speed tracking (260 FPS) by focusing solely on
bounding box information, making it ideal for applications
requiring fast and efficient tracking. However, the performance
of SORT is limited by its reliance on pure detection results
without considering object appearance features, making it
vulnerable to tracking failures during occlusions or complex
scenarios [56].

To address these limitations, DeepSORT was developed by
incorporating a convolutional neural network (CNN) model
trained on large-scale datasets [57]. This advancement sig-
nificantly improved tracking robustness to target loss and
occlusions, making it particularly suitable for aquaculture
applications [29]. For instance, Mathias et al. [54] success-
fully demonstrated this capability by implementing a hybrid
adaptive DeepSORT with YOLOv3 [58] for underwater object
tracking. However, challenges arise when fish undergo rapid
body shape changes during fast turns, leading to blurry and
difficult-to-track images [31]. To mitigate this issue, shorter
exposure times and boundary boxes of variable size can be
used, with the boundary boxes being estimated according to
the motion state. Additionally, frame rate optimization has
proven crucial for Kalman filter-based tracking performance:

higher rates facilitate more linear fish motion predictions,
while lower rates increase misidentification risks (as shown
in Fig. 1).

Recent advancements in tracking algorithms have intro-
duced several innovative approaches to address challenges in
occlusions, rapid movements, and varying environmental con-
ditions. One major category focuses on feature enhancement
strategies: StrongSORT improved upon DeepSORT by incor-
porating stronger appearance features through a more sophisti-
cated feature extractor based on ResNet-50 backbone networks
and enhanced motion cues with Kalman filter refinements
[59]. Its integration with GN-YOLOv5 [60] further optimized
both performance and processing speed through better feature
extraction and more accurate object detection [61]. Another
category advances association strategies: BoT-SORT innovated
tracking through a redesigned association mechanism that
combines cosine distance metrics (comparing new detections’
features with stored tracklet features) for appearance-matching
and Camera Motion Compensation (CMC) for handling cam-
era movements [62]. Unlike StrongSORT which primarily
relies on appearance features, BoT-SORT introduced a hybrid
association strategy that balances appearance similarity with
motion consistency. This dual approach has proven particularly
effective in challenging scenarios like aquaculture, where com-
bined with YOLOv8 [63], it successfully tracks fast-moving
fish despite rapid movements and appearance changes by better
leveraging both motion and appearance information [64].

The third category introduces observation-centric (OC) ap-
proaches, where OC-SORT and Deep OC-SORT target dense
population scenarios by prioritizing actual detection results
over predictions, unlike traditional trackers that rely heavily
on predictive models [65], [66]. OC-SORT prioritizes high-
quality observations and introduces an observation-centric
Kalman filter (OCKF) for more reliable state estimation,
along with a new track recovery strategy and adaptive track
confidence mechanism [65]. Deep OC-SORT further enhances
this approach by incorporating a deep association module for
better feature matching, an enhanced track rebirth mechanism,
and more sophisticated appearance modelling [66]. Building
on these approaches, ByteTrack pioneered a detection uti-
lization strategy that processes both high and low-confidence
detections through separate association pipelines [67]. This
differs from previous approaches that typically discarded
low-confidence detections, enabling ByteTrack to maintain
tracking continuity even under challenging conditions. Its
success in aquaculture applications [68], [69] demonstrates
robust performance under varying lighting conditions while
effectively reducing object loss and trajectory fragmentation,
with its flexible architecture supporting various model sizes
for different application scenarios [70].

The evolution of tracking algorithms from SORT to re-
cent approaches like StrongSORT, BoT-SORT, OC-SORT,
and ByteTrack offers diverse solutions for different tracking
scenarios. For practical applications, StrongSORT is suitable
when strong feature extraction is crucial, BoT-SORT works
well with moving cameras and appearance changes, while OC-
SORT and ByteTrack are particularly effective in crowded
scenes. Future research could focus on combining these
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strengths, such as integrating robust feature extraction with
observation-centric approaches, while also addressing com-
putational efficiency to enable real-time tracking in resource-
constrained environments.

3) Fish tracking based on deep learning: Deep learning has
revolutionized fish tracking approaches, introducing various
methodologies to address the complex challenges in aqua-
culture environments. These approaches can be broadly cat-
egorized into three main streams: (1) identity-based methods
like idTracker [71] that focus on extracting unique fingerprint
features for individual fish recognition, (2) detection-tracking
frameworks that combine CNN-based detection with sophisti-
cated tracking mechanisms, and (3) advanced tracking archi-
tectures, such as Siamese networks that focus on similarity
learning between frames and transformers that leverage self-
attention mechanisms. While these methods have shown sig-
nificant improvements over traditional approaches, they each
face distinct challenges in handling occlusions, maintaining
tracking stability in dense populations, and adapting to varying
environmental conditions [41], [72].

Notable identity-based tracking algorithms such as id-
Tracker [71] and its upgraded version, idtracker.ai [73], have
demonstrated success in individual fish tracking. idTracker
pioneers the concept of extracting unique visual fingerprints
for each animal, utilizing image-based features to maintain
individual identities throughout videos. The upgraded version,
idTracker.ai, enhances this approach by incorporating deep
learning techniques. These algorithms extract unique finger-
print features from each animal and identify targets throughout
the video, enabling automated tracking of untagged animals
within groups. However, their application is often limited to
controlled environments where fish movement is restricted to
prevent overlapping, making them less suitable for real-world
3D tracking scenarios.

Detection-based tracking frameworks have achieved sig-
nificant advancements by combining CNN-based detection
methods with complementary tracking techniques. These ap-
proaches integrate with other techniques, such as head detec-
tion, motion state prediction, and SVM-based verification [40],
showing improved robustness compared to idTracker in scenar-
ios with higher fish density and increased occlusion frequency
[34]. Despite the progress made in controlled laboratory en-
vironments, real-world marine environments pose additional
challenges for fish tracking, such as light fluctuations and
waves. To address these issues, researchers have developed
methods like the real-time multi-class fish (RMCF) stock
statistics method, which uses YOLOv4 [74] as the backbone
network and adopts a parallel two-branch structure based on
deep learning for detecting fish species, tracking, and counting
fish [30]. Although these methods have shown promising
results in complex marine environments, their recognition
accuracy may vary in different sea areas due to differences
in colour cast and contrast, necessitating the retraining of the
network weight coefficients.

Advanced tracking architectures in fish tracking have
evolved along two main directions: Siamese networks and
transformer-based methods [75], [76]. Siamese network track-
ers have gained attention in recent years due to their ex-

Fig. 1: Fish trajectory under different frame rates (This figure
was adapted from [11]).

Fig. 2: Fish tracking method based on YoloV5 and
SiamRPN++ (This figure was reproduced from [78]).

ceptional tracking speed and high accuracy. The introduction
of advanced algorithms, such as SiamRPN++ (as shown in
Fig. 2), has further demonstrated the performance of Siamese
networks, surpassing the performance of the tracking algo-
rithms based on correlation filters [77], [78]. Although there
are currently few articles on Siamese networks specifically for
fish tracking, this approach has the potential to be used in the
field.

The emergence of transformer-based tracking methods has
revolutionized object tracking, including fish tracking in aqua-
culture environments. Initially proposed for natural language
processing tasks, transformers have been successfully adapted
for computer vision tasks, including object detection and track-
ing [79]. Transformer-based trackers, such as TransTrack [80]
and STARK [81], have demonstrated state-of-the-art perfor-
mance on various tracking benchmarks. In the context of fish
tracking, transformer-based methods have shown promising
results. For instance, Li et al. [38] proposed a transformer-
based multiple fish tracking model (TFMFT) to address the
issue of instance loss in aquaculture ponds with complex
background disturbances. This approach represents a shift
from previous tracking-by-detection (TBD) methods [41] that
relied on separate detection and embedding paradigms. In-
stead, the end-to-end Transformer architecture enables unified
processing for both training and tracking. Building upon this
work, Liu et al. [82] introduced FishTrack, an online multi-
fish tracking model, that incorporates a specially designed
encoder to encode historical position information of fish and
automatically update spatiotemporal information in an auto-
regressive manner. This approach allows for the fusion of
spatiotemporal information of fish targets without manual
feature selection, demonstrating robustness even under long-
term occlusion conditions.
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Fig. 3: Three methods to measure the 3-D position of a fish
in an aquarium (This figure was adapted from [11]).

Despite these advancements, significant challenges remain
across different tracking approaches. Identity-based methods
like idTracker.ai [73] still face limitations in handling com-
plex 3D environments and high-density scenarios. Detection-
tracking frameworks struggle with environmental variations
and often require retraining for different conditions, while
Siamese networks, although promising, need further validation
in real-world aquaculture settings. Transformer-based methods
face computational complexity issues and require substantial
training data, which can be scarce in aquaculture settings. They
may also struggle with extended tracking sequences and lack
inherent temporal modelling capabilities. Specific challenges
include achieving accurate ID matching at high stocking
densities and maintaining tracking stability during long-term
monitoring. Furthermore, the potential for overfitting when the
training data is limited or not diverse enough is a particu-
lar concern in aquaculture, where environmental conditions
can vary widely. For example, TFMFT faces limitations in
achieving accurate identity (ID) matching at high stocking
densities and experiences some tracking losses during long-
term monitoring.

Future research should focus on further adapting trans-
former architectures to address specific challenges, such as
developing efficient training strategies to handle the lim-
ited availability of annotated fish-tracking datasets, improving
performance in high-density scenarios, and enhancing long-
term tracking stability. Additionally, efforts should be directed
towards developing more efficient and lightweight models,
improving their ability to handle long-term tracking and occlu-
sions, and creating strategies to effectively train these models
with limited data.

B. Fish tracking based on 3-dimensional visual information

3-D tracking methods offer advantages over 2-D tracking
algorithms, as they can be used to study the behaviour of social
animals and effectively address occlusion problems. However,
3-D tracking also presents significant challenges due to the
large number of fish, similar individual appearance, occlusion,
and uncertainty of stereo matching.

Two main types of 3-D tracking methods have been de-
veloped: “shadow” and “stereo” methods (as shown in Fig.
3). The “shadow” method, which requires only one camera,
uses the shadow of the fish projected onto the substrate as a
second view of the shoal. By calculating the 2-D positions of

Fig. 4: Three-dimensional trajectory of multiple fish in water
tank via multi video tracking (This figure was inspired by [86]
with minor changes).

the fish and its shadow, the 3-D position of the fish can be
obtained through triangulation. However, this method becomes
increasingly difficult as the number of fish increases and
shadows may be obscured, as it requires detecting each fish
and its corresponding shadow [83].

Stereoscopic methods use multiple cameras, a camera and
a mirror to capture simultaneous images at different angles
[11]. Some researchers have developed platforms that use a
single camera and mirror to obtain 3-D coordinates of fish
[84], [85]. These methods calculate the centre coordinates of
fish and combine the association of mirror view and direct
view for tracking, addressing the problem of target loss caused
by occlusion. However, they require high-precision equipment
and may suffer from correspondence deviations due to the
pixel centres of real and virtual fish not being at the same
point. Moreover, these methods are not suitable for actual
production environments.

In theory, two cameras are sufficient for stereo imaging.
3-D tracking with two cameras involves obtaining the 2-D
motion trajectory from the top view with a larger viewing
angle and then performing 3-D matching of the top view
tracking results with the feature points in the side view to
obtain movement of the object in 3-D space (as shown in
Fig. 4) [86]. To track many objects, three or more high-speed
cameras usually are needed to capture synchronous videos
to mitigate the ambiguities and errors in distinguishing the
objects. For example, Wang et al. [87] determined the location
of fisheye under the top and side views using mixed Gaussian
and Gabor models, respectively, and then obtained their 3-
D motion trajectories by associating the top-view tracking
results with the trajectories of two side views [39]. However,
this method is limited due to the difficulty in distinguishing
the characteristics from the eye area of fish. Furthermore,
analyzing fish movement behaviour in three views requires
the installation of complex equipment and the association and
stereo matching between the views [88].

Occlusion remains one of the main challenges in 3D fish
tracking, as it is in other Multiple Object Tracking (MOT)
tasks. However, the frequency of occlusion has not been ade-
quately measured in the current literature, with the complexity
indicator of the datasets used in existing studies typically
being the number of fish rather than an assessment of fish
occlusion events. For instance, a demo video in [27] shows
only 4 occlusion events within 15 seconds for a group of 10
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fish. Current system evaluations assess parameters such as ID
swaps, fragments, precision, and recall for the generated 2-
D and 3D tracks without describing how these indicators are
calculated. The lack of uniform indicators makes it difficult
to fairly compare the methods presented in various studies.
Furthermore, most of the literature does not provide open-
source code and annotated data, limiting the reproducibility of
the results. A recent study by [37], [89] introduced a standard
MOT evaluation framework for fish tracking, providing a
good model for multi-target fish tracking. A unified evaluation
standard should be introduced to ensure the fairness of fish
tracking comparisons and facilitate progress in this field.

Fig. 5: Fish tracking method based on an acoustic tag (This
figure was reproduced from [90] with minor changes).

C. Fish tracking based on acoustic tag system

The Acoustic Tag System (ATS), a passive acoustic monitor-
ing technology, has become an important means of monitoring
fish trajectories and studying fish behaviour [91]. Unlike
vision-based tracking methods, which rely on clear water
conditions and sufficient lighting, ATS can provide reliable
tracking data in challenging underwater environments, such
as turbid waters or low-light conditions [92]. The appro-
priate type and parameters of the acoustic tag (also called
an acoustic signal transmitter) are selected according to the
size of the fish and the research period (as shown in Fig.
5) [93]. The applications of ATS are diverse, including fish
resource abundance assessment, swimming pattern analysis,
habitat evaluation, spawning site identification, survival rate
estimation, and behavioural differentiation [94], [95]. Kolare-
vic et al. [96] demonstrated the use of acoustic acceleration
transmitter tags for monitoring Atlantic salmon swimming
activity in recirculating aquaculture systems (RAS), while Fore
et al. [97] found it feasible to monitor fish depth in real-time
in commercial fish farms using acoustic telemetry.

Acoustic tag systems have been used to monitor fish move-
ment and trajectories, obtain the three-dimensional coordinates

of the fish in real-time, and perform related data analysis
and application. A notable example of an ATS application in-
volves 682 subyearling Chinook salmon tagged with injectable
acoustic transmitters in the Snake River, Washington State
[90]. This study generated over 5 million clean detections
and 403,900 3-D trajectories, helping to assign fish to passage
routes through a dam and expanding understanding of near-
dam fish behaviour [90]. Leclercq et al. [98] and Munoz et
al. [99] evaluated the feasibility of using passive acoustic
telemetry to monitor the welfare of fish in sea cages on an
industrial scale, and the experimental results showed that the
acoustic tracking system proved to be an effective tool for
fish behaviour analysis. However, the application of acoustic
tags in commercial aquaculture faces significant challenges.
Macaulay et al. [100] systematically reviewed studies using
tags to monitor farmed fish behaviour and found concerning
results regarding tag-associated mortality. Mortality was 10
times higher in marine caged fish compared to tanks. More-
over, mortality in marine caged fish increased significantly in
longer trials, ranging from 4% in single-day trials to 36% after
100 days.

Despite these challenges, ATS offers unique advantages
in monitoring fish movement and obtaining real-time three-
dimensional trajectory coordinates [101]. It excels in in-situ
observation and simplifies data processing over vision-based
methods. However, the technology’s reliance on tags attached
to fish can potentially impact on fish health and survival
[102], [103], necessitating careful monitoring and prompt
data analysis. Future research should focus on improving tag
design, developing standardized reporting protocols, investi-
gating mortality causes in marine caged fish, and exploring
less invasive alternatives. By addressing these challenges,
ATS could become a more viable tool for understanding and
improving fish welfare and productivity in aquaculture, though
its use should be limited currently and results interpreted
cautiously in commercial settings.

D. Tracking evaluation metrics

Multi-target tracking evaluation indices directly reflect an
algorithm’s tracking ability. The MOT Challenge official
multi-objective tracking evaluation indicators [104] provide
a standardized framework for performance assessment. Key
metrics include Multiple Object Tracking Accuracy (MOTA)
and Multiple Object Tracking Precision (MOTP).

The MOTA combines three sources of errors to evaluate a
tracker’s performance, as follows:

MOTA = 1− Σt (FNt + FPt + IDSWt
)

ΣtGTt
(1)

where FNt, FPt, IDsWt , and GTt represent the number of
false negatives, false positives, identity switches, and ground
truth targets in frame t, respectively.

The MOTP is used to measure misalignment between an-
notated and predicted object locations, defined as:

MOTP =

∑
i,t d

i
t∑

t ct
. (2)
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where dt is the distance between the localization of objects
in the ground truth and the detection output ct is the total
matches made between ground truth and the detection output.

Identification-Score (IDF1) comprehensively considers
Identification Precision (IDP ) and Identification Recall
(IDR) rate:

IDF1 =
TP

TP + 0.5FP + 0.5FN
(3)

where True Positive (TP ), False Positive (FP ), and False
Negative (FN) involved in IDF1 all consider ID, so the
indicator is more sensitive to the accuracy of ID information.

To better capture the specific challenges of tracking fish
populations, some literature has introduced additional metrics,
such as Correct Tracking Ratio (CTR) and Correct Identifica-
tion Ratio (CIR). CTR measures the percentage of correctly
tracked frames for individual fish as follows,

CTR =

∑
( NumberOfCorrectFramesOfSingleFish )

NumberOfFish × NumberOfFrames
(4)

while CIR represents the probability of correctly identifying
all fish after an occlusion event:

CIR =
TimesThatAllFishGetCorrectIdentityAfterOcclusion

NumberOfOcclusionsEvents
(5)

In addition to those metrics, tracking speed is another
important factor to consider when evaluating fish-tracking
algorithms, especially for real-time applications. Some com-
mon metrics for measuring tracking speed include frames per
second (FPS) and processing time per frame. FPS indicates
the number of frames a tracking algorithm can process in
one second while processing time per frame measures the
average time taken to process a single frame. Higher FPS and
lower processing time per frame are desirable for efficient
and real-time tracking performance. These metrics offer a
valuable foundation for evaluating fish tracking performance,
comprehensively assessing various errors, fish-specific chal-
lenges, and tracking speed. However, they may not always
capture the full complexity of fish-tracking scenarios and can
be limited by the lack of widespread adoption and the need for
detailed ground-truth annotations. There is a potential scope
to develop more specialized metrics and evaluation protocols
by considering the specific requirements and challenges of fish
tracking applications.

E. Comparative analysis of tracking methods

2D visual methods are ideal for controlled environments
with clear water, offering a balance between cost-effectiveness

and non-invasiveness. However, they struggle in turbid or
deep waters and occlusions in dense populations. 3D visual
tracking provides more comprehensive data but requires more
sophisticated equipment and setup, making it more suitable
for research-intensive or high-value production environments.
Acoustic tag methods excel in challenging water conditions but
involve more invasive procedures that may impact fish welfare
(as shown in Table II). The choice of a method often depends
on the specific aquaculture environment. For example, shallow
freshwater ponds might benefit more from 2D visual systems,
while deep-sea cages may require acoustic or advanced 3D
visual setups.

Regional preferences for tracking methods vary signifi-
cantly. In Asia, 2D and 3D visual tracking is used pre-
dominantly, especially in countries like China and Japan
[113], [114]. This preference is driven by the prevalence of
intensive ponds, tank aquaculture, and strong technological
infrastructure. A balanced approach is used in Europe, with
significant adoption of all three methods. In North America,
the integration of advanced AI with tracking systems is of-
ten employed, particularly by combining visual and acoustic
tag methods for comprehensive monitoring [93]. In Oceania,
acoustic tracking is favoured due to the prevalence of open-
water aquaculture, especially in tuna farming [115]. Environ-
mental conditions, regulatory frameworks, economic factors,
and available technological infrastructure shape the trends for
adoption. Developing regions in Africa and parts of Asia often
lack access to advanced tracking technologies, highlighting the
need for cost-effective solutions for small-scale farmers.

Animal welfare is an increasingly important consideration
for the selection and development of tracking methods [116].
Visual methods generally cause minimal direct stress but may
alter behaviour due to changes in lighting or the presence
of equipment [117]. Acoustic tagging can cause initial stress
during the tagging procedure and may affect long-term be-
haviour due to the presence of the tag [110], [112]. All
methods can potentially cause stress if they require changes
to the fish’s environment or handling of the fish. Research on
less invasive techniques includes the development of smaller,
lighter acoustic tags to minimize the impact on fish movement
and behaviour [3], advancements in computer vision and AI
to improve tracking accuracy without the need for physical
tags [118], and exploration of environmental Deoxyribonu-
cleic Acid (DNA) or eDNA (Genetic material collected from
environmental samples) methods for non-invasive population
monitoring [119]. Balancing data collection needs with fish
welfare involves implementing rotation systems in tagging

TABLE II: Comparison of fish tracking methods

Method Advantages Disadvantages Welfare Implications Suitable Environments
2D Visual
[37], [105]
[49], [78]

Non-invasive
Cost-effective
Real-time tracking

Limited to surface or shallow waters
Affected by water turbidity
Occlusion issues in dense populations

Minimal stress
No physical interaction

Clear water ponds
Shallow tanks
Surface monitoring in sea cages

3D Visual
[89], [106]
[107], [108]

Accurate spatial tracking
Works in deeper waters
Better for dense populations

Higher computational requirements
More complex setup
Costly equipment

Minimal stress
Potential light disturbance

Deep tanks
Sea cages
Research facilities

Acoustic Tags
[109], [110]
[111], [112]

Works in turbid waters
Long-range tracking
Effective in open waters

Invasive (if using tags)
Potential signal interference
Higher initial cost

Stress from tagging procedure
Potential behavioral changes

Open sea farms
Large lakes
Deep water environments
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Fig. 6: Comparison of ByteTrack and FA-Bytetrack in con-
trolled environment (This figure was reproduced from [69]).

studies to reduce the duration of tag attachment for individual
fish, using hybrid methods to reduce the reliance on any single,
potentially stressful technique, and developing guidelines for
the ethical use of tracking technologies in aquaculture, con-
sidering factors such as tag size relative to fish size, duration
of studies, and recovery periods [119], [120]. The aquaculture
industry is trending towards methods that minimize stress and
interference with natural behaviours while providing effective
management data. This shift is driven by both ethical concerns
and the recognition that improved welfare contributes to better
product quality and farm productivity.

F. Real-world applications of fish tracking

Real-world applications of fish tracking primarily span
two domains: commercial aquaculture monitoring in con-
trolled tank environments and marine ecological research
in natural underwater settings. While aquaculture applica-
tions focus on fish behaviour and health monitoring through
overhead cameras, underwater tracking faces more complex
challenges including varying visibility, coral occlusions, and
unpredictable fish movements. A recent study by Zhao et
al. [69] demonstrates the potential of advanced tracking
and behaviour analysis techniques in aquaculture settings.
The researchers developed a method combining an improved
ByteTrack algorithm “Fish amendments (FA)-ByteTrack” with
a spatiotemporal graph convolutional network (ST-GCN) to
assess fish appetite in a controlled environment. In their
experiment, they used a circular tank (1.5 m × 1.5 m ×
1 m) with 120 large-mouth bass, each weighing 400-500
grams. This setup aimed to simulate the complex conditions
of real aquaculture environments, including fish overlapping
and occlusions. The system used a high-resolution camera
(1920x1080 pixels) positioned 1.6 m above the water surface,
recording at 60 frames per second. This method not only
effectively solves the problems of bubble masking, intraclass
variation and cross-occlusion but also achieves high-precision
appetite assessment. Compared with that of ByteTrack, the
average Multiple Object Tracking Accuracy (MOTA) of FA-
ByteTrack increased by 21.3%. Moreover, the tool achieved
98.47% accuracy in appetite assessment (as shown in Fig. 6
).

However, it is worth noting that while this study represents
a significant advancement, it was conducted in a controlled

environment that does not fully reflect the challenges of real-
world aquaculture settings. In commercial aquaculture opera-
tions, factors such as larger tank sizes, higher fish densities,
varying water conditions, and different species could signifi-
cantly impact the performance of such systems. Moreover, the
study relied on a pre-trained YOLOv8 detector, which may
need a large amount of high-quality labelled data for training
detectors. Labelling them is time-consuming and costly.

The FISHTRAC dataset [105] exemplifies the challenges of
real-world fish tracking in underwater environments, as shown
in Fig. 7. Unlike controlled aquarium settings, natural under-
water environments present unique challenges. Fish exhibit
unpredictable movements, and rapidly changing appearances,
and are frequently occluded by coral or other marine life.
Moreover, fish often actively attempt to evade or hide from
divers, adding another layer of complexity to the tracking task.
A recent work by Mandel et al. [105] proposed a detection
confidence-driven multi-object tracking to recover reliable
tracks from unreliable detections. The study relied on a limited
dataset of only 1800 images labelled as “fish” from the Google
Open Images Dataset [121], many of which were not from
real underwater environments. The limited scale of this dataset
resulted in a detector with mediocre performance, highlighting
the real-world challenges of applying deep learning methods
to specialized domains like underwater fish tracking.

Despite these limitations, the Robust Confidence Tracking
(RCT) algorithm [105] showed promising results. The key
strength of RCT lies in its ability to fuse low-confidence de-
tections with a motion model and single object tracker, main-
taining consistent tracks even when high-confidence detections
are sparse. This capability is especially valuable in chal-
lenging underwater conditions where high-quality detections
are often unavailable. The study highlights the potential of
RCT for practical applications in marine biology research and
ecological monitoring, particularly in scenarios with scarce
labelled data and challenging detection conditions. Advanced
tracking algorithms based on Bayesian filters [122], such as
particle filters [123] and Bernoulli filters [124], offer additional
tools for trajectory smoothing and handling outliers or mis-
detection. These methods, widely used in audio-visual speaker
tracking, offer the potential to be applied in underwater envi-
ronments. Future research directions include developing online
versions of these algorithms for edge computing, improving
performance in high-density scenarios through Bayesian in-
corporation of appearance information, and exploring adaptive
approaches that adjust tracker behaviour based on detection
quality. These advancements aim to bridge the gap between
controlled studies and the complex realities of commercial
aquaculture, paving the way for more robust and practical fish
tracking and behaviour analysis systems.

III. FISH COUNTING

A. Fish counting methods based on sensor technology

Sensor-based counting devices are usually divided into
resistance counters and infrared counters. Infrared counters
detect infrared signals, which are electromagnetic waves with
wavelengths between 760 nm and 1 mm [125]. Counting based
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Fig. 7: FISHTRAC dataset in underwater environments (This
figure was reproduced from [105]).

on infrared counters requires a tunnel structure to limit the
movement of the fish. When a fish passes between the infrared
transmitter and the receiver, the counting is completed [126],
[127]. Although infrared sensors can count in small areas
of space, their performance is affected by water depth and
turbidity. At a depth of 17.9 centimetres (cm) in pure water,
the intensity of the infrared light drops to 50% [128], and
the presence of suspended particles can further degrade the
performance of infrared counting at high turbidity levels [129].
In addition to environmental factors, the accuracy of infrared
sensor counting devices is susceptible to the pass rate of fish,
often resulting in an underestimation of the number of fish
[130], [131]. This may be due to the slow swimming of some
fish, the confusion when two or more fish enter the scanner
unit simultaneously, and the reluctance of some fish to leave
the device after entering the light tunnel, resulting in repeated
scanning. Despite these limitations, infrared light can work
in the dark, and the accuracy of counting can be improved
by subsequent software algorithms, such as multiple object
tracking (MOT) algorithms, which can solve false counting
from multiple targets [129], [132], [133].

Resistivity counters, another type of sensor-based counting
method, work by detecting changes in resistance when a fish
passes between two electrodes [134], [135]. Like infrared
sensor counting devices, electronic resistivity counters require
the fish to pass through a specific tunnel and have similar
disadvantages, such as repeating counts when a fish swims
multiple times in the channel and missing counts when the
number of fish is large [136]. However, electronic resistivity
counters are suitable for limited lighting and long, narrow
river channels while detecting non-destructively and without
requiring specific lighting conditions [137].

Although both infrared and resistivity fish counters have
limitations and may underestimate fish pass rates, they offer
valuable tools for non-invasive fish counting in various en-
vironments. Future research should focus on developing and
improving these technologies to enhance their accuracy and
reliability. Potential avenues for improvement include modify-
ing resistivity counters and exploring alternative sensors [138].
Researchers can provide valuable tools for effective fishery
management and conservation efforts by addressing the current
challenges and refining these sensor-based counting methods.

B. Fish counting methods based on computer vision technol-
ogy

Accurate fish biomass assessment is crucial for optimizing
management strategies and reducing feeding costs in the

aquaculture industry [139], [140]. Computer vision-based fish
counting has gained prominence among various methods due
to its non-invasive nature, low cost, and high efficiency [141],
[142]. However, the complexity of underwater environments,
including varying light conditions, backgrounds, and fish
swimming patterns, poses challenges for accurate fish counting
[143]–[145].

The current computer vision-based fish counting aquacul-
ture methods focus on two main categories: image-based
counting and video-based counting, as shown in Table. III. By
bridging the gap between laboratory-based experiments and
real-world applications, computer vision-based fish counting
can become a useful tool for sustainable aquaculture man-
agement. The subsections provide more details about each
category, the advancements, challenges, and future directions
in the field.

1) Image-based fish counting method: Image-based fish
counting methods can be broadly categorized into two main
approaches: detecting-based methods, which aim to detect all
fish in a region, and density-based methods [146], [147], which
estimate the number of fish by analyzing the distribution of
fish schools [148], [149].

Early studies focused on detecting-based methods, which
rely heavily on the accuracy of fish image segmentation from
the background [161]. These methods, such as artificial neural
networks (BPNN) [162], showed potential for automatic fish
counting in scenarios with a limited number of fish. However,
they often struggled with complex adhesions in fish images
and overlapping fish [156], [163]. To address the challenges
of overlapping fish, adaptive segmentation algorithms were
developed to extract the geometric features of fish [158].
Combined with machine learning models like LS-SVM, these
algorithms showed improved counting accuracy compared to
BPNN models, particularly in scenarios with similar fish sizes
and low stocking densities. However, the performance of these
models degrades when faced with high fish densities and
changing geometric shapes due to fish overlap [164]. Further
advancements in fish image segmentation were made by
introducing more general adaptive thresholding methods and
skeleton extraction-based methods to handle overlapping fish
[165]. While these methods performed well under controlled
laboratory conditions, their accuracy diminished in real-world
aquaculture environments, where factors such as high fish
school density, poor visibility, and insufficient light posed
significant challenges [157].

Efforts to mitigate issues related to light, noise, and feature
recognition led to the development of segmentation methods
that combined local normalized filters and iterative selec-
tion thresholds [155]. Although these methods demonstrated
high performance in correcting non-uniform lighting, reducing
noise, and identifying features, the unique challenges posed
by aquaculture settings, such as fish shadows caused by water
refraction and continuous movement of shoals, continued to
affect segmentation accuracy and limit the effectiveness of
traditional computer vision methods for fish counting [156].

Introducing deep learning techniques has opened new av-
enues for fish counting in aquaculture. With the increasing
availability of fish datasets, deep learning models have been
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TABLE III: Different counting methods based on computer vision.

Study
Cite

Fish
amount Dataset Model Count points Evaluation

index Results Advantages Limitations References

Tank 100 786 MAN1 Center Accuracy 97.12%
Better

generalization
ability

larger error for
areas with high

fish density
[150]

Tank - 4000 DG-LR2
Fish-

Connected
Area

R23 96.07%
No need to detect

every fish
No complex
environments [6]

Net
Cage 214 1501 Hybrid Neural

Network Center points Accuracy 95.06%

Improves model
performance

without losing
resolution

Does not
describe the

distribution of
fish school

gathering and
dispersing

[151]

Cage 62 200 RCNN4 Bounding Box Accuracy 92.4%

Reduce count
errors due to

repeating
detections

Repeating
detection and

wrong detection
in high contrast

areas

[152]

Counter 1000 1500
Background
Subtraction

Kalman filter
Blob Average

precision 97.47%
Automatic

counting, low
cost

No detailed
analysis of the
number of fish
in the system
per unit time

[153]

Containers 600 4000 CNN Contours Accuracy 99.17%
Threshold adapts

to different
numbers of fish

Pure white
background, no

noise
[154]

Dishpan 100 -
Local

Normalization
Filter

Pixel Area Accuracy
F-measure

99.8%
98.83%

automated
system.

Small sample
size [155]

Aquarium 350 1000 Background
Subtraction Contours Accuracy 95.57%

Portable, low
cost

Need a fixed
size of fish and
a certain area

[156]

Net Cage 250 1000 PTV5 Centroid Detection rate 90%

Potential
application or

industrial
aquaculture

Affected by
background

noise sensitivity
[157]

Aquarium 100 600 LS-SVM6 Skeleton Accuracy 98.73%
Good

generalization

Assume that the
size of fish is

similar
[158]

Aquarium 300 3200 MSENet7 Centroid MAE8 3.33

Lightweight and
low

computation
costs

limited to a
scene with a

fixed
viewpoint

[159]

Long Channel 300 1318 YOLOv5-Nano Bounding Box Average
precision 96.4%

Solves the
problem of

missing fish fry

Occlusion still
causes some

fish to be
incorrectly
detected

[160]

1 MAN (Multi-modules and attention mechanism)
2 DG-LR (Image density grading and local regression)
3 R2 (Coefficient of determination)
4 RCNN (Region-based convolutional neural network)
5 PTV (Particle tracking velocimetry)
6 LS-SVM (Least squares support vector machine)
7 MSENet (A lightweight network based on SENet )
8 MAE (Mean absolute error )

applied to this domain, offering strong adaptability and easy
transformation without requiring complex feature extraction
work [152], [166]. Convolutional neural networks (CNNs)
have achieved high accuracy in detecting and counting fish
of different sizes by adjusting different thresholds [154].

Density-based methods, which estimate the number of fish
by mapping input images to corresponding density maps,
have also shown promise in fish counting applications. These
methods provide additional information about the spatial dis-
tribution of fish, which can be valuable for various purposes
[167]. Hybrid neural network models, such as those combining

MCNN and DCNN architectures, have been proposed to im-
prove fish counting accuracy, outperforming traditional CNNs
and MCNNs [142], [150].

Despite the advancements made in fish counting methods,
several challenges remain. Density-based methods are sen-
sitive to the degree of occlusion, with higher fish densities
leading to greater errors. Moreover, variations in water qual-
ity, light conditions, camera angle, water depth, and surface
refraction can cause significant differences in the appearance
of fish across different farming environments, affecting the
accuracy and generalization ability of the counting models. To
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address these challenges, future research should create more
comprehensive and diverse datasets that capture the variability
encountered in real-world aquaculture settings. Efforts should
also be directed towards improving counting accuracy, model
generalization ability in high-density areas, and maintaining
accuracy under different pond conditions.

2) Video-based fish counting method: Video-based count-
ing methods offer a more comprehensive approach to enumer-
ating fish than static image-based techniques, leveraging tem-
poral information and movement patterns [168]. These meth-
ods can be broadly categorized into frame-by-frame analysis,
tracking-based counting, and segmentation-based counting [9].

The frame-by-frame analysis based methods extend the
image-based techniques to video sequences, applying detection
and counting algorithms to each frame. Zhao et al. [33]
proposed a method using background subtraction and object
detection to count fish in video streams, achieving higher
accuracy than single-image based counting methods due to
the ability to average counts over multiple frames. Like this
work, Pai et al. [169] used the YOLOv5 model [60] to
detect and count fish in video streams and get similar results.
This approach is relatively simple to implement and can
leverage existing image-based algorithms. However, it does not
fully use temporal information, may struggle with rapid fish
movements between frames, and is prone to double-counting
or missing fish due to occlusions.

Tracking-based counting methods follow individual fish
across frames, offering insights into fish movement patterns
and behaviours. In addition, the tracking-based counting meth-
ods can deal with the temporary occlusions, and reduce
double-counting errors [30]. Albuquerque et al. [153] and
Zhou et al. [170] developed a system combining object de-
tection with multiple object tracking to count fish in dynamic
videos for large-scale counting in practical production. This
method uses segmentation and association, and can effectively
solve the problem of mis-detection caused by adhesive finger-
lings in mechanical counters (as shown in Fig. 8). However,
in practical applications, these algorithms often struggle to
achieve a balance between counting accuracy and processing
speed, limiting their applicability in real-time commercial set-
tings. Addressing this challenge, Zhang et al. [160] proposed a
novel combination of the SORT algorithm [33] and YOLOv5-
Nano [171] for fry tracking and counting. This innovative
approach achieves accurate dynamic counting with even faster
running speeds, representing a significant step towards real-
time fish counting in aquaculture environments. Integrating
lightweight deep learning models with efficient tracking al-
gorithms showcases a promising direction for future research,
potentially enabling more widespread adoption of video-based
counting methods in commercial aquaculture operations.

Segmentation-based counting methods focus on isolating
fish from the background in each frame and then counting
the segmented objects. Instance segmentation methods have
emerged as a promising solution for effectively segmenting
individual fish in dense scenes, and combining these methods
with advanced detectors has the potential to achieve real-time
performance [172]. Wang et al. [173] propose a lightweight
instance segmentation model based on YOLOv8 [63], realizing

Fig. 8: Overview of the fry counting system. Fish is poured
into a channel with water flow, LED lights provide stable
illumination. An industrial camera records the fry swimming
process and transmits it to a computer (or edge device), and the
device counts the number of fry passed in real-time through
the designed method.

high-density and multi-target fish segmentation and counting
in an occluded environment. This approach demonstrates the
potential of segmentation-based methods in handling complex
aquaculture scenarios. However, the segmentation performance
is notably diminished in scenarios of significant occlusions,
presenting a significant challenge for dense fish populations.
To address this limitation, recent advancements in computer
vision, such as the Segment Anything Model (SAM) [174],
offer new possibilities. The SAM model is pre-trained on
a large-scale dataset and exhibits exceptional robustness in
segmentation tasks across various domains. Although no liter-
ature is found for fish counting based on SAM, its excellent
segmentation capabilities hold promise for future applications
in aquaculture. Looking ahead, integrating the robust seg-
mentation abilities of SAM with specialized fish counting
algorithms could potentially overcome the limitations of cur-
rent methods, particularly in highly occluded environments. It
could be a promising direction to adapt SAM for fish-specific
segmentation tasks and optimise its real-time performance to
meet the demands of commercial aquaculture operations.

C. Fish counting methods based on acoustic technology

Acoustic technology for fish counting can be divided into
two main categories: acoustic imaging and hydroacoustic
methods. While underwater visible imaging suffers from lim-
itations due to light attenuation caused by water absorption
and scattering, resulting in blurred images and reduced image
quantity as shooting distance increases, acoustic-based count-
ing methods offer a viable alternative. Sound waves can travel
far through water without significant attenuation, making them
suitable for situations where visual counting is inappropriate
or ineffective.

1) Acoustic imaging methods: Multi-beam imaging sonar
such as Dual-frequency Identification Sonar (DIDSON) and
Adaptive Resolution Imaging Sonar (ARIS) are normally used
to monitor migratory fish in rivers [175]. These systems
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Fig. 9: Example of DIDSON image counting (This figure was
reproduced from [183] with minor changes).

produce high-resolution underwater sonar video output without
the need for underwater light, allowing for fish counting and
measuring directly from the footage, even in turbid waters and
overnight [176].

DIDSON [177] is a multi-beam sonar system frequently
used to acquire underwater acoustic images for fish identifi-
cation and counting (as shown in Fig. 9). As DIDSON uses
sound instead of light, it is not affected by water turbidity
and can collect data during both day and night [178], [179].
However, studies have shown that manual counting of DID-
SON data can be time-consuming and prone to errors, with
large deviations between operators [180], [181]. This may be
because Echoview repeatedly calculated at nearly stationary
horizontal positions within the DIDSON field of view [182].

To reduce the time and cost of DIDSON data process-
ing, various subsampling methods can be employed, with
automation-assisted subsampling being the best method to
reduce the cost of estimating migratory fish populations in
rivers [22]. Multi-beam echogram processing software, such
as Echoview or DIDSON Control and Display software, can
partially perform fish detection and counting functions [184],
[185]. Echoview uses a Component Object Model (COM)
interface that allows users to build customized pre-processing
and post-processing scripting modules, streamlining the pro-
cessing method and providing the ability to refine fish counting
using various fish detection parameters [186], [187]. How-
ever, the echograms of the video-like data files generated by
DIDSON require manual counting, which is tedious, time-
consuming, and can produce large errors for large datasets
[188]. Semi-automatic post-processing of imaging sonar data
is possible using existing software (e.g., Echoview Software
Pty Ltd., Hobart, Australia) [184], [189]. but the process still
requires manual calibration for non-fish target noise, which
is cumbersome and inefficient. Furthermore, post-processing
software can be very expensive, limiting its accessibility for
many researchers and practitioners.

Digital image-processing technology offers an inexpensive
and rapid alternative that has been successfully applied in
various scientific fields. Several studies have focused on the
automatic processing of fish targets in imaging sonar data. For
example, K-nearest neighbour background subtraction with
DeepSort target tracking to track and count fish automatically
[190] and GPNet, a novel encoder-decoder network with
global attention and point supervision, to boost sonar image-

based fish counting accuracy [191].
The new generation of acoustic cameras includes ARIS

(Sound Metrics Corp, WA, USA), which operates at higher
frequencies compared to DIDSON, offering greater flexibility
and improved image resolution [192], [193]. A comparison
of fish monitoring data based on the ARIS sonar system and
the GoPro camera showed that the detection rate of the sonar-
based system was 62.6% (compared to the amount captured
by the net), exceeding the 45.4% of the camera-based system
[194].

While sonar imaging counting methods are powerful tools
for gathering fish abundance estimates in difficult-to-observe,
structurally complex, chaotic, and dark environments, they can
still be disturbed by various types of underwater noise. Addi-
tionally, sonar imaging equipment is relatively expensive and
requires professional personnel to conduct analysis, making it
more suitable for investigating fish abundance in ocean fishing
and river ports [195], [196].

These recent advancements in digital image-processing
techniques showcase the growing interest in developing effi-
cient and accurate methods for automatic fish tracking and
counting in sonar data. By leveraging the power of deep
learning and computer vision algorithms, these approaches
aim to overcome the limitations of manual processing and
provide more reliable and scalable solutions for aquaculture
monitoring and management. However, while these methods
show promising results, they still face challenges such as
dealing with occlusions, varying fish densities, and the need
for large annotated datasets for training. Future research should
address these limitations and develop more robust and general-
izable algorithms that can be easily adapted to different sonar
imaging systems and underwater environments.

Table IV summarizes the advantages and disadvantages of
sonar imaging counting methods in aquaculture and their prac-
tical applications. Despite the limitations, acoustic counting
methods remain valuable for monitoring fish populations in
challenging underwater environments where visual counting
methods may be impractical or ineffective.

2) Hydroacoustic methods: Acoustic echo-sounding is one
of the most popular methods for estimating fish abundance
due to their simplicity and non-invasive nature [198]. These
methods rely on the physical characteristics of the target and
the water medium. When an echo sounder’s transducer emits
an acoustic wave, it spreads through the water and encounters
the target object. Due to the difference in acoustic impedance
between the object and the water medium, the object scatters
the incident acoustic wave, and a portion of it is backscattered
to the transducer, known as the echo signal [199], [200].

The target’s depth can be measured according to the interval
between the acoustic emission and the reception of the target’s
echo. By analyzing the strength and structure of the echo
signal, the intensity, number, and distribution of the target can
be estimated. The Echo Integration method is one of the main
methods for underwater acoustic assessment of fish stocks. It
calculates the number of fish by dividing the integral value
of the echo intensity of fish in the sampling unit area by the
ultrasonic reflectance of individual fish (target intensity, TS).
Several studies have used the echo integration technique to
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TABLE IV: A comparison of different methods based on acoustic imaging.

Site Technology Software MHz Metrics Results Advantages Limitations References

River ARIS Echoview 1.1MHz
frequency Accuracy 84%

Distinguishes
downstream

moving fish from
other objects

Results vary
among operators [20]

Lagoon ARIS Sound Metrics 1.8MHz R2 0.99 Consistent results
with manual

The results varied
greatly among

different
operators

[180]

River ARIS ARIS
software Fish 1.8MHz F1-scores 75%

Faster and no
post-processing

Underestimates
total fish count [197]

Reservoir ARIS

KNN
background

subtraction and
DeepSort

1.8MHz Accuracy 73%

Automatic
calibration saves
data processing

time

Unable to
identify fish in

bottom
background, long
processing time

[190]

River ARIS ARISfish 3.0MHz Detection Rate 62.6%
Counts fish > 100
mm in night and
turbid conditions

May not detect
small fish [194]

River DIDSON Echoview 6.0 1.8MHz Accuracy 83.7%
Avoids manual
counting errors

and biases

Time-consuming
calculations [22]

River DIDSON Sound Metrics 1.8MHz F1 scores 79%

Performs well
using direct,
shadow, and

combined
detections

Low fish
densities in each

image
[183]

Reservoir DIDSON NN-EKF2;
Echoview 1.8MHz

Error compared
with the manual
detection results

Less than 5%
Less calculation

and easy to
implement

Inaccurate when
targets overlap [196]

River DIDSON Sound Metrics;
Echoview 1.2MHz Accuracy 90% (upstream)

41% (downstream)

Estimates
potamodromous
fish passage in

large lakes

High processing
times and costs [182]

River DIDSON Manual
counting 1.8MHz

Average Percent
Error (APE) 5.4%

Not limited by
surface

disturbances or
turbidity

Shadowing from
passing fish [181]

River DIDSON Hand-counter 1.8MHz
Coefficient of
Variation (CV) 9.63%

Better acoustic
target

identification and
resolution

Data loss on
small fish in

highly turbulent
environments

[195]

estimate the number of fish based on the backscattering echoes
observed with an echo sounder [201], [202].

Although the sound intensity reflected by a shoal is re-
lated to the number of fish [203], the use of echo sounders
in fish tanks and cages presents several challenges [204].
Reverberation in a cage can occur due to the echo of an
acoustic signal from the boundary, necessitating the removal
of the cage boundary signal during counting [205]. Another
issue with acoustic estimation of fish populations is shadow
utility, which is needed to compensate for the attenuation
of echo strength when dense shoals are in focus [200]. To
investigate the possibility of using commercial echo sounders
for real-time fish counting in offshore cages, a study by [206]
employed an echosounder and echo-integration technology.
The experimental results showed that the proposed method
could achieve more than 90% estimation accuracy [207],
indicating its reliability for future fish management decisions.

Despite the increasing use of underwater echo sounders in
fishery research, their application is subject to interference
from various factors, such as differences in instrument per-
formance, the blind area of the echo sounder itself, external
environmental factors, and the evasive behaviour of fish in re-

sponse to survey ships and sound waves [208], [209]. Further-
more, echosounders are expensive and technically demanding,
making them unsuitable for factory aquaculture needs. Future
research should focus on reducing the cost of instruments or
developing alternative instruments suitable for promotion to
meet the actual needs of aquaculture.

D. Comparative analysis and trends in fish counting methods

Fish counting methods in aquaculture can be broadly
categorized into sensor-based, computer vision-based, and
acoustic-based approaches, each with distinct advantages and
limitations. Sensor-based counting, including infrared and re-
sistivity counters, offers real-time data but may be limited by
water conditions and fish density [9]. Infrared counters are
non-invasive but struggle in turbid waters, while resistivity
counters can operate in various conditions but may require
fish to pass through specific channels [13], [132]. Computer
vision-based counting is divided into image-based and video-
based methods. Image-based counting is cost-effective and can
handle large datasets but may struggle with overlapping fish
[153]. Video-based counting offers more dynamic analysis,
and better handling of movement and overlaps, but requires
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more computational power [169], [170]. Acoustic-based count-
ing excels in challenging environments, including acoustic
imaging and hydroacoustic methods [3]. Acoustic imaging
(e.g., DIDSON) works well in turbid waters and at night
but can be costly [179], [182]. Hydroacoustic methods are
effective for quantifying fish density and biomass at large
scales but may lack species-specific accuracy [199], [205].

Analysis of research literature reveals that the selection of
fish tracking methods is closely tied to aquaculture environ-
ments and infrastructure types. In intensive pond and tank sys-
tems, computer vision-based methods have been widely stud-
ied and implemented [210], demonstrating particular success
in controlled environments. Research in large-scale marine
farming has explored various approaches, including acoustic
methods for deep-water applications [197]. Recent studies
have increasingly focused on AI-integrated tracking systems
[22], while research in open-water aquaculture settings has
predominantly investigated acoustic tracking methods due to
their effectiveness in larger volumes [211]. The adoption
trends are shaped by environmental conditions, species being
counted, regulatory requirements, and economic factors. Due
to cost constraints, developing regions often rely on manual
counting or basic sensor technology. Welfare considerations
are increasingly important in counting method selection. Non-
invasive methods like computer vision and acoustic imaging
are preferred to minimize fish stress. Ongoing research focuses
on improving accuracy while reducing the impact on fish
behaviour.

E. Real-world applications in fish counting

Fish counting is a critical aspect of aquaculture manage-
ment, essential for controlling production volume, feed usage,
and regulatory reporting. Yanmar Marine Systems Co., Ltd.
(YMS) developed a real-world application (as shown in Fig.
10) of automated fish counting to address the challenges faced
in tuna farming 1. Traditionally, farm fish counting relied on
labour-intensive and potentially inaccurate methods such as
visual counting from camera footage or subtractive counting
of dead fish. To overcome these limitations, YMS developed
an automated fish counting system aimed at achieving 98% or
higher accuracy in real-time tuna counting. This system inte-
grates advanced image recognition technologies and consists
of underwater cameras, a dedicated image processing com-
puter, and specialized software. Key features include real-time
counting using simultaneous imaging and count recognition,
detection of environmental disturbances, and remote adjust-
ment for optimal imaging conditions. The system is beneficial
when introducing young Pacific bluefin tuna into nets, during
the division of fish into multiple nets during growth phases,
and for daily inventory management and feed usage monitor-
ing. In testing, it achieved the target of 98% or higher accuracy,
leading to its commercial release in December 2020. This
automated system significantly reduces the workload on farm
workers while maintaining high accuracy, demonstrating the
practical application of computer vision and image processing

1https://www.yanmar.com/global/about/technology/vision2/fish counting
system.html

Fig. 10: Example of the counting method developed by YMS.

techniques in commercial aquaculture settings and potentially
revolutionizing farm management practices.

Another typical example is a large commercial tilapia
hatchery that implemented an advanced dynamic fry counting
system using 32 cm wide channels (as shown in Fig. 8), high-
resolution cameras, and a central server running YOLOv5-
Nano [171] detection model and an improved SORT algo-
rithm [160]. The system uses several innovative approaches to
address common challenges such as occlusion, high density,
and adhered fry. The improved SORT algorithm maintained
consistent tracking of individual fry across frames, even in
high-density situations. The detection model was trained on
diverse datasets including edge cases to handle adhered fry.
The optimized channel design, with careful calibration of
width and inclination, encouraged fry separation and reduced
occlusion. Temporal information from multiple frames was
utilized to resolve ambiguities caused by occlusion or high
density. After six months, the incubator reported significant
improvements: fry count accuracy increased to within 3-
4% (from 20% variance), counting time was reduced by
85%, overfeeding decreased by 12%, and fry survival rates
improved by 3%. The implementation led to a 15% reduction
in operational costs, a 10% increase in production efficiency,
a 70% decrease in counting-related labour costs, and a 20%
reduction in lost sales. Improved filtration and model fine-
tuning addressed challenges introduced by turbid water and
varying fry strains. This application demonstrates the potential
of using advanced computer vision and tracking algorithms to
enhance commercial aquaculture operations.

IV. FISH SCHOOL BEHAVIOUR ANALYSIS

Fish behaviour, a direct result of the living environment
and growth state, includes both normal (i.e. feeding behaviour,
swimming behaviour, reproduction behaviour, gathering be-
haviour) and abnormal behaviours (i.e. disease behaviour,
hypoxia behaviour, cannibalism behaviour) [212]–[214]. Poor
water quality and management in aquaculture can cause fish
stress behaviour [215], leading to immune suppression, slow
growth, and reduced productivity and welfare [216]. Tradi-
tional fish behaviour analysis, relying on human observers, is
often unreliable, time-consuming, and labour-intensive [4], [5].
Accurate estimation of fish behaviour is crucial for optimizing
resource use, controlling water quality, and improving fish wel-
fare and economic benefits [217]. The following subsections
will explore the latest advancements in fish behaviour analysis,

https://www.yanmar.com/global/about/technology/vision2/fish_counting_system.html
https://www.yanmar.com/global/about/technology/vision2/fish_counting_system.html


16

providing insights into the current state of the art and potential
future directions for research and application in this field.

A. Fish school behaviour analysis based on computer vision
1) Fish feeding behavior: In intensive aquaculture, feeding

is the main expenditure [218], and feeding optimization is
crucial for improving efficiency and reducing costs [219].
Traditional feeding methods based on farmers’ experience
are limited by low efficiency and high labour intensity, and
they cannot accurately address the problems of overfeeding or
underfeeding [220]. The intensity and amplitude of changes
in fish behaviour can directly reflect fish appetite. Computer
vision technology can effectively quantify fish feeding be-
haviour, optimize feeding strategies, and reduce feeding costs.

Many researchers have used traditional methods, such as
background subtraction and optical flow, to extract target
features for determining feeding indices [221]. While these
methods can accurately capture fish feeding behaviour, they
require complex foreground segmentation processes that may
decrease computational efficiency and are easily affected by
water surface fluctuations and reflective areas [24]. With its
advantages of automatic feature extraction and large-capacity
modelling, deep learning has been widely used in aquaculture
[222].

Existing approaches mainly use digital cameras to cap-
ture the corresponding images as input and characterize the
fish behaviour with discrete feeding intensity (e.g., “None”,
“Weak”, “Medium” and “Strong” [223]–[226]) as a classifi-
cation problem, modelled by CNNs. However, fish-feeding
behaviour is a dynamic and continuous process. Single images
are insufficient to capture the context of fish feeding intensity
[222], [227]. As an alternative, video-based methods have been
proposed to exploit spatial and temporal visual information
for fish feeding intensity assessment (FFIA), which offers rich
context for capturing fish feeding behaviour. Raw RGB videos
were converted into optical flow image sequences and fed into
a 3D CNN to evaluate fish feeding intensity, achieving a very
high accuracy [228], [229].

While recent advancements in computer vision and deep
learning have shown promise in analyzing fish feeding be-

haviour, some limitations still need to be addressed. One major
challenge is the discrepancy between the ideal environments
in which fish-feeding datasets are collected and the real-world
conditions found in aquaculture settings. Factors such as water
turbidity, fluctuating light levels, and variable camera angles
can significantly impact the performance of these models when
deployed in real-world farms.

Another limitation is the computational complexity of
video-based models, which often require substantial computa-
tional resources, making them difficult to deploy on resource-
constrained devices commonly used in aquaculture. The large
size of these models can also hinder their real-time perfor-
mance, which is crucial for timely decision-making in aqua-
culture management. Furthermore, the limited generalizability
of current models to new fish species is a significant challenge.
Many existing models are trained on species-specific datasets,
and their performance often drops significantly when applied
to new or unseen species due to differences in morphological
features, colour patterns, and behavioural characteristics.

To address these limitations, future research should focus
on developing more robust, adaptable, and species-agnostic
models that can effectively handle the variability encountered
in real aquaculture environments. This may involve collecting
more diverse and representative datasets, exploring domain
adaptation, transfer learning, and few-shot learning techniques,
and optimizing models for efficient inference on edge devices.

2) Hypoxia behavior: Hypoxia, a common issue in aqua-
culture systems, can significantly impact fish mortality and
lead to substantial production losses [230]. Fish exhibit various
behavioural responses to hypoxic conditions, such as changes
in ventilatory frequency (VF), swimming activity, surface
respiration, and vertical habitat [231]–[234]. To provide early
warning of hypoxia in aquaculture, it is essential to evaluate
the specific behavioural responses of fish when oxygen levels
in the water drop sharply.

Image processing algorithms have been proposed to quantify
the hypoxia behaviour of fish in aquariums [235]. However,
these methods often rely on complex foreground segmentation
processes, which can decrease computational efficiency and
are easily affected by water surface fluctuations. Deep learning

Fig. 11: Abnormal behaviors: “Turning-over behavior”, “Frightening behavior”, “Feeding behavior”, “Hypothermia behavior”,
“Hypoxic behavior”, “Cannibalism behavior”.
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methods, such as YOLO object detection, have emerged as
powerful tools for transforming and upgrading fish farming
practices by quickly detecting fish behaviour with high accu-
racy [218].

Despite the progress made in recognizing fish hypoxia
behaviour, most experiments have been conducted under lab-
oratory conditions, which may not accurately reflect the chal-
lenges encountered in actual production systems. Factors such
as water turbidity, uneven illumination, and high fish density
can make it more difficult to identify individual fish and
their specific behaviours in real-world settings. Furthermore,
inducing hypoxia through human intervention in laboratory
experiments can compromise animal welfare and cause irre-
versible damage to fish health.

To address these limitations, future research should focus on
developing more robust and adaptable methods for detecting
fish hypoxia behaviour in real-world aquaculture systems.
Moreover, integrating multiple data sources, such as water
quality sensors and video monitoring systems, could provide
a more comprehensive understanding of fish behaviour and
enable early detection of hypoxia-related issues. By combining
advanced computer vision techniques with domain expertise in
aquaculture and fish physiology, researchers can develop more
effective and practical solutions for monitoring and managing
fish health in real-world settings.

3) Other abnormal behavior: Abnormal fish behaviours,
such as aggression, fear, stress, illness, parasitic infection,
and cannibalism, can have significant impacts on aquaculture
production (as shown in Fig. 11), fish welfare, and population
balance [214], [236]–[238]. While less common than feed-
ing and hypoxia behaviours, these abnormalities still play a
crucial role in aquaculture warning operations. Detecting and
localizing abnormal behaviours, particularly those occurring
within small groups or individuals, remains challenging in
computer vision. To address this challenge, researchers have
adapted techniques from human behaviour analysis, such as
motion-effect maps and deep learning algorithms, to detect,
localize, and recognize abnormal fish behaviours in inten-
sive aquaculture systems [239], [240]. These methods have
shown promising results in identifying specific behaviours and
evaluating various health and environmental factors. However,
further research is needed to investigate the complex interplay
between local and global abnormal behaviours and develop
robust, multi-target tracking systems that operate efficiently in
real-world aquaculture settings.

Monitoring and protecting fish during critical life events,
such as spawning aggregations, is essential for maintaining
population balance and preventing overfishing [241], [242].
Computer vision techniques, including stereoscopic video
analysis and 3D neural networks, have been employed to
quantify fish reproductive behaviour and classify complex
behaviours [243], [244], providing valuable tools for baseline
studies and long-term monitoring.

While computer vision and image processing technologies
offer economical and effective means for monitoring abnormal
fish behaviour, the relative scarcity of abnormal behaviour data
has hindered in-depth research. Most existing studies have
been conducted in controlled laboratory environments, which

may not accurately represent the complex factors in real-world
aquaculture settings [245], [246]. Overcoming the challenges
posed by complex water environments, uneven lighting, large
numbers of individuals, and intricate fish movements are
crucial for developing robust and reliable abnormal behaviour
monitoring and tracking systems [78].

B. Fish behaviour analysis based on multi-object tracking
Visual-based monitoring systems for detecting abnormal

fish behaviour often rely on known scenes and predefined
movement models, which can be subjective and lack adapt-
ability to different environments [247]. Advanced tracking
methods, however, offer more robust and adaptable solutions
for analysing fish behaviour in diverse aquaculture settings
[227].

Tracking technologies enable researchers to obtain com-
prehensive data on fish movement, including average, max-
imum, and minimum speeds, acceleration, average collision
frequency, and trajectory changes. For example, studies have
tracked zebrafish using YOLOV2 [248] and Kalman filters, ob-
taining movement trajectories that showed significantly faster
swimming, greater agitation, and agglomeration in the centre
of the aquarium during feeding periods [29]. Similarly, semi-
automatic in situ tracking systems have been developed to
reconstruct synchronized 3D movement trajectories of individ-
ual reef fish in social groups, analysing their behaviour when
capturing plankton prey [36].

Recent advancements in tracking algorithms have expanded
the capabilities of fish behaviour analysis. Huang et al. [249]
developed an early warning system for detecting nocardiosis in
largemouth bass (Micropterus salmoides) based on YOLOv8
[63] and ByteTrack [67]. The system quantifies fish velocity
and turning angles through trajectory analysis, enabling ef-
fective early disease prevention. Similarly, Zhao et al. [250]
employed YOLOv8+ByteTrack multi-target tracking to moni-
tor zebrafish behaviour under various environmental stressors,
extracting key movement features (e.g. speeds, average colli-
sion frequency, and trajectory changes) to identify exposure
to different pollutants rapidly. Xiao et al. [251] enhanced
the tracking performance of largemouth bass (Micropterus
salmoides) by combining an improved YOLOv8 [63] with
ByteTrack, incorporating trajectory confidence information.
This approach improved tracking accuracy and enabled more
detailed analysis of fish swimming patterns. By examining
the relationship between swimming speed, swimming time,
and spatial coordinates, the researchers were able to quantify
swimming ability in terms of both speed and endurance.

Despite the advancements in tracking algorithms, their ap-
plication to abnormal fish behaviour analysis in aquaculture
remains limited. This scarcity can be attributed to several
factors: limited availability of open datasets on abnormal fish
behaviour, the rare occurrence of such behaviours making
data acquisition challenging, the complexity of fish trajectories
containing multi-dimensional information (position, speed,
direction), and difficulty in defining ‘abnormal’ trajectories
which may encompass multiple aspects [252], [253].

To address these challenges and advance aquaculture, future
research should focus on developing specialized datasets for
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abnormal fish behaviour in aquaculture settings, adapting
advanced tracking algorithms to the unique characteristics
of fish and aquatic environments, integrating domain knowl-
edge from aquaculture experts to better define and detect
abnormal behaviours, and drawing inspiration from successful
applications of anomaly detection in other fields, such as
crowd and vehicle monitoring. By focusing on these areas,
researchers can create more powerful and flexible models for
identifying and comprehending abnormal fish behaviour in
various aquaculture contexts, leveraging the full potential of
advanced tracking technologies.

C. Fish behaviour analysis based on passive acoustic moni-
toring

Passive acoustic monitoring (PAM) has emerged as a non-
invasive and increasingly accessible remote sensing technol-
ogy for monitoring underwater environments [254], [255].
With approximately 1,000 out of the 35,000 known fish species
confirmed to produce sounds underwater [256], [257], PAM
offers a unique opportunity to analyze fish behaviour through
the sounds they generate. An audio example of fish abnormal
behaviour is shown in Fig. 12.

Fish can produce a series of sounds during feeding, and
the frequency spectrum of these sounds can be used to
analyse their feeding behaviour. For example, turbots generate
feeding sounds that vary with food intake intensity, ranging
from 15 to 20 dB in the frequency range 7–10 kHz [258].
Similarly, feeding sounds produced by various fish species,
such as rainbow trout (0.02–25 kHz) [259], Japanese minnow
(1–10 kHz) [260], Atlantic horse mackerel (1.6–4 kHz) [261],
yellowtail (4–6 kHz) [262], have comparable frequency ranges.

The Fish feeding behaviour analysis based on audio was
initially proposed by [16], [263], where the audio signal is
first transformed into log Mel spectrograms and then fed into
a CNN-based model for FFIA. Subsequent work [264], [265]
have further demonstrated the feasibility of using audio as
input for FFIA. Audio-based methods offer advantages such
as energy efficiency and lower computational costs compared
to vision-based methods [266], [267]. However, audio-based
models have lower classification performance than video-
based FFIA due to their inability to capture full visual infor-
mation and sensitivity to environmental noise [268]. Moreover,
rapidly swimming predatory fish, such as brown and rainbow
trout, often combine forward swimming with feeding, accom-
panied by splashing sounds and strong tail patting [217]. The
rapid pellet capture by these species superimposes feeding
sounds, and pellet impacts pose a challenge in obtaining
accurate feeding sound data.

To overcome these challenges, future research should focus
on developing advanced signal processing techniques to sepa-
rate feeding sounds from ambient noise and other interfering
sounds. Additionally, exploring the integration of audio and
visual data could help improve the overall classification per-
formance and robustness of fish behaviour analysis systems.

D. Fish behaviour analysis based on biosensor technology
Biosensor technology has shown great potential in collecting

individual animal information, such as individual trajectory,

acceleration, velocity, respiration frequencies, heartbeat fre-
quency, and tail beat frequency [270], [271]. In recent years,
accelerometers have been increasingly used in marine biology
research to study the feeding behaviour of aquatic animals.

The feeding behaviour of most fish leads to characteristic
changes in acceleration that differ from their normal movement
patterns [272]. These characteristic changes in acceleration
can be effectively used to distinguish feeding behaviour pat-
terns from other behaviour patterns [273]. For example, in
[274], accelerometer tags were used to investigate the feeding
behaviour of Atlantic cod (Gadus morhua) in the wild. The
authors found that the accelerometer data could accurately
identify feeding events and provide insights into the foraging
ecology of this species. Similarly, a study by [275] used
a combination of accelerometers and gyroscopes to analyse
the feeding behaviour of captive yellowtail kingfish (Seriola
lalandi). The authors demonstrated that the sensor data could
be used to classify different types of feeding behaviour, such
as biting, chewing, and swallowing, with high accuracy.

In addition to feeding behaviour, biosensors have been used
to study other aspects of fish behaviour, such as swimming
activity and energy expenditure. For instance, in [276], ac-
celerometers were used to investigate the swimming behaviour
and energy expenditure of wild Atlantic salmon (Salmo salar)
while migrating to spawning grounds. The authors found that
the accelerometer data provided valuable insights into the
swimming performance and energy costs of this species in
natural conditions.

However, using biosensors in fish behaviour analysis also
presents some challenges and concerns. Biosensors are typ-
ically surgically attached or implanted into the fish’s body,
which can lead to the direct death of the fish or cause
behavioural changes that may affect the results of experiments.
Moreover, this method may cause irreversible harm to the
fish and compromise animal welfare. To address these issues,
researchers should focus on developing minimally invasive or
non-invasive biosensor technologies that can be safely attached
to or removed from fish without causing undue stress or harm.
Furthermore, ethical considerations should be prioritized when
using biosensor technology in fish behaviour analysis.

Despite these challenges, biosensor technology offers a
promising approach to studying fish behaviour at the individual
level, providing valuable insights into the feeding ecology,
swimming performance, and energy expenditure of various fish
species. By combining biosensor data with other monitoring
techniques, such as passive acoustic monitoring and vision-
based methods, researchers can develop a more comprehensive
understanding of fish behaviour in both captive and wild
settings. As biosensor technology continues to advance, it is
essential to balance the potential benefits of these tools with
the need to ensure the welfare and ethical treatment of the fish
being studied.

E. Comparative analysis and trends in fish school behaviour
analysis

Fish school behaviour analysis in aquaculture focuses on
understanding and monitoring fish activities, stress responses,
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Fig. 12: The audio spectrum of different fish abnormal behaviours (This figure was reproduced from [269]).

and interactions within the aquaculture environment. This field
employs various technologies, each with distinct capabilities
and applications. Computer vision-based analysis excels in
observing feeding patterns, detecting abnormal behaviours,
and identifying signs of stress or disease [277]. Advanced al-
gorithms can recognize specific behaviour patterns such as ag-
gressive interactions, schooling dynamics, and responses to en-
vironmental changes. While being non-invasive, this method’s
effectiveness can be limited by water clarity and lighting
conditions [26]. Multi-object tracking extends computer vision
capabilities by following individual fish within schools over
time. This approach provides insights into social hierarchies,
individual growth rates, and how behaviour patterns spread
through a population. It requires sophisticated algorithms and
high computational power but offers unparalleled detail in
understanding group dynamics [4], [11].

Passive acoustic monitoring analyses sounds produced by
fish to infer behaviour states and stress levels [254]. This
method is particularly valuable for nocturnal species or in
turbid environments where visual observation is challenging.
It can detect feeding activity, spawning events, and even some
types of distress calls, offering a unique perspective on fish
behaviour [278]. Biosensor technology, including implantable
tags and external sensors, provides detailed physiological data
that can be correlated with behaviour [274]. These sensors can
measure parameters like heart rate, muscle activity, and hor-
mone levels, offering insights into stress responses, energy ex-
penditure during different activities, and even feeding intensity
[279]. However, the invasive nature of some biosensors raises
welfare concerns and may itself affect behaviour. The choice
of behaviour analysis method often depends on research goals,
species-specific characteristics, and environmental conditions.
For example, salmon farms might prioritize feeding behaviour
analysis to optimize feed conversion ratios, while tilapia farms
might focus more on aggression and territoriality behaviours.

Regional trends in adoption vary. Asia, with its diverse
aquaculture species and systems, shows broad adoption across
methods [280], [281]. Europe emphasizes non-invasive tech-
niques due to strict welfare regulations [282]. North Amer-
ica leads in integrating multiple methods for comprehensive
behaviour analysis Welfare considerations are increasingly

central to method selection [283], [284]. There is a growing
preference for non-invasive techniques that can provide de-
tailed behavioural data without causing stress. This has spurred
research into improving the resolution and accuracy of passive
monitoring methods. The trend in fish behaviour analysis is
moving towards holistic approaches that combine multiple
methods to create a comprehensive picture of fish welfare
and behaviour. For instance, combining computer vision with
passive acoustics can provide round-the-clock monitoring that
captures both visual and auditory behavioural cues [263]. Real-
world applications have demonstrated the value of behaviour
analysis in improving aquaculture management. Farms using
advanced behaviour monitoring have reported earlier detection
of disease outbreaks, more efficient feeding practices, and im-
proved overall fish welfare, leading to better growth rates and
product quality [285], [286]. As aquaculture intensifies and
faces new challenges like climate change impacts, behaviour
analysis will play an increasingly crucial role in maintaining
fish health, optimizing production, and ensuring sustainable
practices.

F. Real-world applications in fish behaviour analysis

Fish behaviour analysis in real-world applications has
emerged as a powerful tool for monitoring aquaculture en-
vironmental conditions and fish welfare. By tracking and
analysing changes in swimming patterns, spatial distribution,
and movement characteristics, these systems can serve as
early warning indicators for water quality issues and stress
responses, enabling timely interventions in commercial aqua-
culture operations. Xu et al. [287] demonstrate how fish
behaviour analysis can be used to monitor water quality by
studying responses to ammonia nitrogen stress. Their system
combines an improved YOLOv8 model (enhanced with multi-
head self-attention and Wise Intersection over Union (Wise-
IoU)) with dual-view cameras for 3D tracking. By integrating
advanced tracking techniques including Kalman filtering and
Kernelized Correlation Filters [288], the system accurately
monitors multiple fish simultaneously. The study analysed
behavioural patterns of different species (sturgeon, bass, and
crucian) under various ammonia nitrogen stress levels, exam-
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Fig. 13: Behavioral trajectories of sturgeon under ammonia
nitrogen stress. The five colours of the behavioural trajectory
represent five fish (This figure was reproduced from [287]).

ining their trajectories, exercise volumes, spatial distribution,
and movement velocities.

Fig. 13 shows that sturgeons swim around the aquarium
under normal conditions while they swim up and down at
a certain position in the aquarium under ammonia nitrogen
stress [287]. Meanwhile, the phenomenon of sturgeon swim-
ming around the aquarium under ammonia nitrogen stress has
decreased. Key findings revealed significant changes in fish
swimming patterns, spatial distribution, and velocity under
ammonia stress, with species-specific responses to different
concentrations. The method successfully differentiated normal
behaviour from stress-induced abnormalities, demonstrating
its potential for early detection of water quality issues in
aquaculture settings. However, challenges such as turbid water
and varying light conditions required additional solutions like
adaptive image preprocessing techniques and regular mainte-
nance protocols.

V. MULTIMODAL FUSION IN AQUACULTURE

Multimodal data fusion has been used in aquaculture where
data from various sources are integrated to understand fish
behaviour, health, and environmental conditions. Recent ad-
vancements in other fields, such as deep learning, offer promis-
ing applications for aquaculture, particularly in fish tracking,
counting, and behaviour analysis.

1) Multimodal fusion in fish tracking: For fish tracking,
state-of-the-art vision-language models show significant po-
tential. CLIP2Video [289] and AudioCLIP [290] extend the
capabilities of their predecessors in image-text and audio-
text matching by leveraging the contrastive language image
pretraining (CLIP) model [291], and could be adapted for
multimodal fish detection. For instance, the AudioCLIP archi-
tecture [290] could be modified to correlate visual fish features
with sonar data, potentially improving detection accuracy in
turbid waters commonly encountered in aquaculture settings.
However, the significant differences between underwater RGB
images and sonar images present unique challenges in mul-
timodal tracking for aquaculture. Many existing multimodal
tracking methods assume alignment between different modal
spaces, using a prediction head to estimate the same target
box across modalities. This assumption often fails in RGB-
Sonar (RGB-S) tracking, where the representation of the target
can vary significantly between the two imaging types [292],

[293]. Furthermore, the spatial misalignment of multimodal
features complicates the integration of information from these
diverse sources. A critical challenge in multimodal fusion
for aquaculture is data synchronization. Different sensors
often have varying sampling rates and latencies. For instance,
acoustic sensors might collect data at several kilohertz (kHz),
while visual sensors typically capture frames at 30-60 Hz, and
environmental sensors (like temperature or pH sensors) might
only take measurements every few seconds or minutes.

Developing robust synchronization methods, such as times-
tamp alignment and interpolation techniques, is crucial for
accurately fusing these diverse data streams in real-time
aquaculture monitoring systems. To address these challenges,
researchers have developed specialized approaches for un-
derwater tracking. Li et al. [294] introduced a novel spatial
cross-attention method that effectively bridges the gap between
underwater RGB and sonar modalities. Their approach, which
builds upon the Cross-Attention method [76], enables more
nuanced interactive fusion between the different modalities.
By accounting for the unique characteristics of each imaging
type, this method achieves state-of-the-art performance in
underwater tracking, demonstrating its potential for improving
fish monitoring in complex aquaculture environments. The
introduction of large-scale datasets like WebUOT-1M [295],
which includes language prompts for video sequences, opens
up new possibilities for underwater vision-language tracking.
This could be particularly useful for developing more robust
fish tracking systems in complex aquaculture environments,
such as sea cages with varying light conditions and water
clarity. However, a significant research gap remains in bridg-
ing vision-language models with sonar data for aquaculture
applications, particularly in developing frameworks that can
effectively leverage textual descriptions for enhanced under-
water object detection and tracking. Future research should
focus on developing more sophisticated multimodal fusion
techniques to improve tracking accuracy and robustness in
complex underwater environments.

2) Multimodal fusion in fish counting: In the realm of
fish counting, recent developments in crowd counting using
vision-language models offer promising approaches. Crowd-
CLIP [296] leverages pre-trained vision-language models to
address the challenge of costly manual labelling, especially in
dense scenes. This approach could be adapted for counting
fish in crowded aquaculture tanks or ponds, where traditional
methods often fail. CLIP-Count [297] presents an innovative
end-to-end pipeline for estimating density maps of open-
vocabulary objects with text guidance in a zero-shot manner.
Its patch-text contrastive loss and hierarchical patch-text in-
teraction module could be adapted to generate high-quality
density maps for fish in various aquaculture scenarios, po-
tentially improving counting accuracy in complex underwater
environments with overlapping fish. Furthermore, VLCounter
[298] explores the implicit association of semantic-patch em-
beddings of CLIP, showing improved performance in zero-shot
object counting. This approach could be useful in aquaculture
for counting different fish species or identifying specific fish
features without extensive labelled datasets, a common chal-
lenge in diverse aquaculture operations. However, adapting
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these vision-language models to underwater environments
presents unique challenges, particularly in handling water tur-
bidity and varying lighting conditions. Future research should
focus on developing specialized vision-language architectures
that can better handle the specific challenges of underwater
counting tasks while maintaining the benefits of zero-shot
learning capabilities.

3) Multimodal fusion in fish behaviour analysis: In fish be-
haviour analysis, multi-sensor approaches combined with ad-
vanced algorithms offer new insights. The Multimodal Foun-
dation Model (M3AE) [299], designed for general-purpose
multimodal understanding, could be adapted to integrate vi-
sual, acoustic, and environmental data for comprehensive fish
behaviour monitoring. This integration could enable early
detection of stress or disease by correlating subtle behavioural
changes with environmental parameters. Cui et al. [263] intro-
duced a novel unified mixed-modality-based method for fish
feeding behaviour assessment, capable of processing audio,
visual, or audio-visual modalities. This approach demonstrates
the potential of multimodal fusion to provide more robust and
accurate assessments of fish behaviour than single-modality
based methods. Similarly, Du et al. [300] showed that fusing
information from audio, video, and imaging sonar modalities
resulted in higher accuracy than using a single modality
in assessing fish behaviour. While these studies demonstrate
promising results, there remains a need to develop more so-
phisticated behavioural pattern recognition algorithms that can
identify complex fish behaviours across different species and
environmental conditions. Future research should explore in-
tegrating biological knowledge with multimodal deep learning
approaches to better understand and interpret fish behavioural
patterns in various aquaculture scenarios.

4) Challenges and solutions in multimodal fusion for aqua-
culture: Noise management is particularly challenging in
underwater environments. Each modality (visual, acoustic)
is subject to different types of noise. For example, visual
data may be affected by turbidity and light scattering, while
acoustic data can be distorted by ambient noise from equip-
ment or other marine life. Advanced filtering techniques, such
as Bernoulli filters [124] and differentiable particle filtering
[123], need to be developed specifically for aquaculture ap-
plications to ensure reliable data fusion in these complex
environments [301]. The relative importance and reliability
of different data sources can vary based on environmental
conditions and the specific behaviour being analyzed. Devel-
oping dynamic weighting schemes that adjust the contribution
of each modality based on real-time quality assessments is
essential [302]. For instance, acoustic data might be weighted
more heavily in turbid conditions than visual data, while
in clear water, the reverse might be true. Machine learning
techniques, such as attention mechanisms in transformer-based
models, offer promising approaches for adaptive weighting in
multimodal fusion systems.

However, several challenges limit the direct application
of these methods in aquaculture. Limited labelled data is a
significant hurdle, as aquaculture-specific datasets are scarce
compared to general computer vision tasks. Environmental
variability in underwater conditions, such as changing turbid-

ity, lighting, and temperature, can significantly impact sen-
sor reliability and model performance. Additionally, species-
specific behaviours require specialized models, as different
fish species exhibit unique patterns [303]. The dynamic na-
ture of fish movement and the three-dimensional space of
aquatic environments further complicate the application of
these technologies. Several approaches have shown promise
in addressing these challenges. Few-shot learning techniques
could help the models adapt to new species or environments
with limited data [304], crucial for the diverse range of
fish species in aquaculture. Self-supervised learning methods
[305], [306] could leverage large amounts of unlabeled aqua-
culture data to pre-train robust models, potentially overcoming
the scarcity of labelled datasets. Domain adaptation techniques
[307] could help transfer knowledge from data-rich domains
to aquaculture-specific tasks, bridging the gap between general
computer vision tasks and the unique requirements of under-
water environments.

Future research should focus on developing specialized
datasets that capture the diversity of aquaculture environments
and species. This could include multi-sensor data collected
across different water conditions, fish life stages, and farming
systems. Adapting advanced algorithms to underwater environ-
ments is crucial, particularly in handling variable lighting, wa-
ter turbidity, and three-dimensional fish movement. Creating
robust, generalizable models for diverse aquaculture scenarios
will be key to the widespread adoption of these technologies.
Integrating multiple data sources and advanced processing
techniques can revolutionize fish monitoring, enhance produc-
tion efficiency, and improve animal welfare in aquaculture
operations. However, it is important to note that applying
these technologies in real-world aquaculture settings may face
practical challenges such as cost, maintenance of underwater
sensors, and the need for real-time processing capabilities. As
research progresses, critically evaluating the practicality and
cost-effectiveness of these advanced multimodal approaches
in various aquaculture settings will be essential.

VI. PUBLIC DATASET

High-quality public datasets are crucial for developing and
evaluating various methods including deep learning methods
for fish detection, tracking, and behaviour analysis. Despite
growing efforts, public datasets on underwater fish scenes
are scarce, particularly in realistic aquaculture environments.
This limitation has led many researchers to conduct analyses
and behavioural studies under ideal or controlled conditions,
which may not fully represent the challenges of real-world
aquaculture settings. Table V summarizes the available public
fish datasets, highlighting their diverse characteristics and
limitations.

The Fish4Knowledge dataset [308], captured in Taiwan
waters from 2010 to 2013, offers a variety of marine scenes
but suffers from low resolution (i.e. 320 × 240 pixels), limiting
its applicability to current research needs. SeaCLEF2016 [309]
builds on this with diverse species coverage and high-quality
annotations, enhancing automated marine life identification
capabilities. However, both datasets have limitations, including
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TABLE V: Summary of the various fish datasets.

Dataset No. of
videos/image Resolution Number of

labeled data Tasks Reference

Fish4-
Knowledge

700,000 videos
with 10 min

each clip
320× 240 -

Classification,
Detection and

Tracking
[308]

SeaCLEF 2016

Training set: 20
videos and

20,000 images,
Test set: 73

videos

640× 480
320× 240

9,000 Classification,
Counting [309]

NCFM
16,915 images
(3, 777 training,
13,138 testing)

1920× 1080 10000
Detection,

classification and
counting

[310]

Sonar image
counting dataset

30 videos
sequence with

537 images
360× 360 - Counting [311]

3D-ZeF20

Training Set:
54052 images,
Test Set: 32400

images

2704× 1520 86,452 Tracking [89]

FishTracker23 Approaching 1 million
boxes and frames

1920× 1080
1280× 720

850,000 Tracking [312]

WebUOT-1M
1,500 underwater

videos (total 10.5 hours)
and 408 categories

- 1,100,000 Tracking [295]

Automated
Fish Tracking

189 videos of
varying durations
(1- 30 seconds)

1920× 1080 8,700 Detection,
Tracking [313]

DeepFish 39,766 images 1920× 1080 3200
Segmentation,
counting and
Classification

[314]

FISHTRAC 14 videos 1920× 1080 3,449 Tracking and
detection [105]

BrackishMOT
98 videos each
lasting about 1

minute
2704× 1520 Tracking [315]

CFC
527215

SONA images
288× 624 to
1086× 2125

515,933 Detection, Tracking
and Counting [316]

Mullet Schools
Dataset

over 100k
SONA images 320× 576 500 Detection

Counting [306]

Fish Sounds 115 different fish
sound clips 64kbps - Behaviour

analysis [317]

AV-FFIA 27000 video
and sound clips

1086× 2125
256kbps All Feeding Behaviour

analysis [263]

geographic specificity to Taiwanese waters, fixed camera posi-
tions that may miss certain behaviours, and low video quality
issues due to underwater conditions. The DeepFish dataset
[314] significantly contributes to underwater fish monitoring,
containing 39,766 images from 20 locations in Australian
marine environments. It offers annotations for multiple tasks
including classification, counting, localization, and polygonal
annotations for precise fish shape delineation. While being ver-
satile, DeepFish initially lacks segmentation masks, limiting its
use in instance segmentation tasks. Its diverse environmental
coverage, from clear to turbid waters, enhances its utility for
developing robust algorithms. However, the dataset’s focus
on still images and specific marine ecosystems may limit its
direct applicability to some aquaculture scenarios or dynamic
behaviour studies.

The WebUOT-1M dataset [295] represents a significant
advancement, offering a large-scale solution with 1.1 million
frames across 1,500 underwater videos and 408 diverse target
categories. Its inclusion of language prompts for each video
facilitates multi-modal research and enables the development
of more generalized and multi-modality underwater object-

tracking models. However, the dataset’s web-sourced nature
means it may include some biases in image quality, object
representation, and environmental conditions. While this diver-
sity can be beneficial for creating robust models, it may not
always accurately represent real-world underwater scenarios
encountered in specific research or industrial applications.
For specialized research, datasets like 3DZeF20 [89] and AV-
FFIA [263] offer unique perspectives. 3DZeF20 provides high-
precision 3D data for zebrafish in laboratory settings, invalu-
able for detailed behaviour analysis but limited in ecological
applicability. AV-FFIA innovatively combines hydrophone and
video data for fish feeding behaviour analysis, offering deep
insights into specific patterns. While all of them are invaluable
for specific research questions, their applicability to broad
aquaculture scenarios may be limited due to their focus on
controlled environments or single species.

FishTrack23 [312] and FISHTRAC [105] represent the
current state-of-the-art in real-world underwater object detec-
tion and tracking. These datasets address the complexities of
natural marine environments, providing comprehensive anno-
tations for multiple tasks. They excel in developing practical
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monitoring tools but may still face challenges with image
quality consistency and global species representation. The
BrackishMOT dataset [315] uniquely addresses tracking in
turbid environments, which is crucial for many aquaculture
settings. The Caltech Fish Counting (CFC) dataset [316]
significantly contributes to underwater computer vision and
marine ecology and is specifically designed to address the
challenges of fish counting in complex underwater environ-
ments. Its diverse scenes capture different lighting condi-
tions, water turbidity levels, and fish densities, making it an
excellent resource for developing robust fish detection and
counting algorithms. The dataset’s strength lies in its real-
world applicability, presenting researchers with the genuine
challenges faced in marine population surveys, such as oc-
clusions, varying fish sizes, and species diversity. However,
users should be aware that while the CFC dataset offers a
comprehensive view of coral reef fish populations, it may
have limitations in representing global marine ecosystems. The
Fishsounds dataset [317], while offering audio data for various
fish species, lacks sufficient data for comprehensive behaviour
analysis. The Mullet Schools dataset [306] provides large-scale
sonar imagery for fish counting but is species-specific, limiting
its broad applicability in aquaculture research.

These datasets highlight several limitations in current public
resources for aquaculture research. Many focus on specific
conditions or species, not capturing the full range of aquacul-
ture environments and diversity. Most are unimodal, lacking
the integration of visual, acoustic, and environmental data
crucial for comprehensive aquaculture monitoring. Varying
annotation standards across datasets complicate cross-dataset
evaluations. We suggest creating multi-modal datasets that
integrate visual, acoustic, and environmental data specific to
aquaculture settings to address these limitations and better
serve future research needs. Existing datasets should be ex-
panded to include a wider range of species and environmental
conditions relevant to global aquaculture practices. Developing
standardized annotation protocols would ensure consistency
across aquaculture-focused datasets. Establishing benchmark
datasets specifically designed for aquaculture applications,
covering various farming systems and environmental condi-
tions, would greatly benefit the field.

VII. CHALLENGES AND FUTURE PERSPECTIVES

Fish tracking, counting, and behaviour analysis play a
crucial role in the intelligent development of aquaculture
production. While computer vision technology is currently a
popular method for these tasks, it faces several challenges due
to the unique characteristics of aquaculture environments, such
as high fish density, complex water backgrounds, and irregular
fish movement. These factors can lead to interference between
multiple targets, false detections, missed counts, and tracking
failures.

Acoustic methods offer an alternative approach that enables
automatic and rapid fish counting and tracking in low-light
and turbid water conditions. However, underwater noises,
high equipment costs, and the need for professional expertise
make acoustic methods more suitable for large-scale opera-
tions like marine fishing rather than factory or pond farming

environments. To further increase the level of intelligence
in aquaculture, we predict several different trends for future
development:

1) Massively available datasets: The wide application of
intelligent technology in aquaculture, especially the success
of deep learning algorithms in image processing [19], has
highlighted the need for large labelled datasets. Although
available datasets are gradually increasing, most are limited
to identifying and detecting fish species. Open data on fish
tracking, counting, and behaviour analysis is scarce. Passive
acoustic monitoring is also gaining popularity for underwater
listening [255], [318] and public sound data of underwater
fish (e.g., Fishsound) are emerging. However, the sample size
of these datasets has not yet reached critical mass. In the
future, developing an international platform for sharing images
and acoustic data will be essential to promote sustainable
aquaculture development.

2) Edge computing and real-time processing: As aquaculture
operations become more technologically advanced, there is an
increasing need for real-time data processing and decision-
making at the edge. Developing efficient algorithms and
hardware solutions that can perform complex tasks like fish
tracking, counting, and behaviour analysis on-site, without
relying on cloud computing, will be crucial. This approach
can reduce latency, improve data privacy, and enable faster
responses to changing conditions in aquaculture environments.
Future research should optimise existing algorithms for edge
devices, develop specialized hardware for aquaculture applica-
tions, and create integrated systems that seamlessly combine
multiple monitoring and analysis tasks in real-time.

3) On-device machine learning: Most current fish tracking,
counting, and behavioural analysis models are performed in
the cloud or on high-performance GPUs. However, many aqua-
culture tasks require real-time responses, such as fish feeding
and abnormal behaviour detection. Cloud-based models may
struggle to guarantee this real-time performance, and many
devices in remote and harsh aquaculture environments may
not have consistent internet connectivity. On-device models
can greatly reduce exercise pressure and make devices more
intelligent, providing users with a better experience. However,
terminal devices are often limited in processing power, power
consumption, cost, and volume. Future developments could
focus on reducing the complexity of computing and storage by
optimizing neural network algorithms or compressing network
models using techniques like knowledge distillation to enable
their deployment on device chips.

4) Integration of fish tracking, counting, and behaviour
analysis: Most research addresses fish tracking, counting, and
behaviour analysis as separate tasks. However, these tasks are
often interconnected in real-world aquaculture scenarios and
must be performed continuously in the same environment.
Developing a joint model that can handle all three tasks
simultaneously would be more memory-efficient and suitable
for practical applications in aquaculture. A joint model would
leverage the shared features and information among the tasks,
reducing redundancy and improving overall performance. For
example, accurate fish tracking can provide valuable counting
and behaviour analysis information. In contrast, behaviour
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analysis can help identify and resolve tracking challenges such
as occlusions and interactions between fish. More comprehen-
sive and efficient systems could be developed for monitoring
and managing aquaculture farms by integrating these tasks
into a single framework. This approach would also reduce the
computational resources required, making it more feasible to
deploy such systems in real-world settings. Future research
should focus on developing novel architectures and training
strategies that can effectively combine fish tracking, counting,
and behaviour analysis tasks.

5) Integration of large language models (LLMs) and artifi-
cial general intelligence (AGI): Recent advancements in LLMs
and AGI have the potential to revolutionize fish tracking,
counting, and behaviour analysis. LLMs, such as GPT-4 [319]
and LLaMA [320], can be fine-tuned on aquaculture-specific
datasets to generate accurate descriptions and analyses of fish
behaviour from textual data. AGI systems, like DeepMind’s
Gato [321], which can perform a wide range of tasks using a
single model, could be adapted to integrate multiple modalities
(e.g., vision, acoustics, and text) for comprehensive fish mon-
itoring and management. By leveraging the power of LLMs
and AGI, aquaculture researchers and practitioners can develop
more intelligent and adaptable systems for understanding and
optimizing fish welfare and production.

VIII. CONCLUSIONS

This survey provides a comprehensive analysis of the cur-
rent state of digital technologies in aquaculture, including
vision-based sensors, acoustic-based sensors, and biosensors,
for fish tracking, counting, and behaviour analysis. These
technologies offer valuable tools for optimizing production
efficiency, fish welfare, and resource management in aqua-
culture. However, each technology has its limitations, such
as the sensitivity of vision-based sensors to environmen-
tal conditions, the high cost and complexity of acoustic-
based sensors, and the potential invasiveness of biosensors.
Despite the advancements in these technologies, significant
challenges remain, including the scarcity of comprehensive
fish datasets, the lack of unified evaluation standards, and the
need for more robust and adaptable systems that can handle
the complexities of real-world aquaculture environments. To
address these challenges and drive progress in the field, future
research should focus on developing diverse and representative
datasets, establishing standardized evaluation frameworks, and
exploring integrating multiple technologies to create more
comprehensive and reliable monitoring systems. Emerging
technologies such as multimodal data fusion, deep learning,
and edge computing present exciting opportunities for advanc-
ing digital aquaculture. By leveraging these technologies, more
accurate, efficient, and practical solutions can be developed
for fish tracking, counting, and behaviour analysis, ultimately
contributing to the sustainable growth and development of
the aquaculture industry. As the field progresses, it is cru-
cial to consider these technologies’ ethical implications and
environmental impact. Developing solutions that are not only
technologically advanced but also sustainable and respectful
of animal welfare will be paramount for the future of aqua-
culture.
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