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Interplay between disorder and topology in Thouless pumping on a superconducting quantum
processor
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Topological phases are robust against weak perturbations, but break down when disorder becomes sufficiently
strong. However, moderate disorder can also induce topologically nontrivial phases. Thouless pumping, as a
(14+1)D counterpart of the integer quantum Hall effect, is one of the simplest manifestations of topology. Here,
we report experimental observations of the competition and interplay between Thouless pumping and disorder
on a 41-qubit superconducting quantum processor. We improve a Floquet engineering technique to realize
cycles of adiabatic pumping by simultaneously varying the on-site potentials and the hopping couplings. We
demonstrate Thouless pumping in the presence of disorder and show its breakdown as the strength of disorder
increases. Moreover, we observe two types of topological pumping that are induced by on-site potential disorder
and hopping disorder, respectively. In particular, an intrinsic topological pump that is induced by quasi-periodic
hopping disorder has never been experimentally realized before. Our highly controllable system provides a
valuable quantum simulating platform for studying various aspects of topological physics in the presence of

disorder.

Topology versus disorder provides a diverse landscape for
exploration in modern condensed matter physics, ranging
from the robustness of topological systems against weak dis-
order [1] to the classification of symmetry-protected topologi-
cal phases [2]. One of the most significant class of topological
systems is the Thouless pump [3, 4], entailing transport of the
quantized charge during an adiabatic cyclic evolution of the
underlying Hamiltonian [4, 5]. Thouless pumping, as a dy-
namical version of the integer quantum Hall effect (IQHE) [6],
bridges the quantized conductance and the topological in-
variant, known as the Chern number of the occupied energy
bands [1, 7]. Due to the universality of topological effects,
the Thouless pump is not a specific phenomenon occurring
in a certain system and is robust against perturbations [4, 5].
These properties make topological pumps a promising plat-
form for designing novel devices with unprecedented func-
tionalities [5]. Thouless pumping has been experimentally
demonstrated on different experimental platforms [8—19]. Es-
pecially, the competition and interplay between topology and
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disorder in a Thouless pump have been attracting growing at-
tention in, e.g., ultra-cold atoms [20, 21], photonic waveg-
uides [22], and mechanical metamaterials [23]. These exper-
iments not only demonstrate topological transitions with dis-
order, but also the breakdown of quantized pumps due to lo-
calization caused by disorder [24, 25].

To exploit disorder rather than to eliminate it, we ex-
perimentally investigate Thouless pumping induced by
disorder on a 41-qubit superconducting processor. Since
it is challenging to precisely control the adiabatic cyclic
evolution of a multi-qubit system with disorder, we employ
a Floquet engineering technique [26-28] to realize Thouless
pumping by simultaneously varying the on-site potentials and
hopping strengths [29]. We experimentally demonstrate bulk
topological pumping during different pumping trajectories in
the clean limit. We also observe the breakdown of quantized
pumping, when the strength of the random on-site potential
disorder increases. For a topologically trivial double-loop
pumping trajectory, we observe topological pumping induced
by the on-site disorder of a uniform random distribution.
Moreover, we experimentally demonstrate emergent topolog-
ical pumping induced by quasi-periodic hopping disorder,
which is related to the dynamic version of topological
Anderson insulators (TAI) [30-35]. Our results will inspire
further investigations of topological phases in the presence of
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FIG. 1. Device and pulse sequences. a, Optical micrograph of the 43-qubit superconducting chip. b, Schematic of Floquet engineering
for the adiabatic cyclic evolution. Pulse sequences in one pumping period are illustrated. The amplitude and the center shift of the Floquet
engineering pulse on each qubit are subject to a cyclic modulation, corresponding to the cyclic variations of hopping couplings and on-site
potentials, respectively. ¢, Schematic diagram of the Rice-Mele (RM) model with on-site potential disorder. The on-site potentials on qubits
are staggered, with a random offset of disorder strength V. The orange curved arrows, representing the couplings, stagger with one large
and one small, due to the staggered RM hopping Hamiltonian. d, Schematic diagram of the RM model in the presence of hopping disorder.
The on-site potential is strictly periodic, while the disordered hopping coupling is modulated with disorder strength W/. In the clean limit,
the on-site potentials (hopping couplings), denoted by the blue spin (orange curved arrows), are staggered with one up (large) and one down

(small) due to the staggered RM Hamiltonian.

disorder on quantum simulating platforms [36—44].

System and model

Our experiments are performed on a 1D superconducting pro-
cessor, named Chuang-tzu, consisting of 43 nearest-neighbor-
coupled and frequency-tunable transmon qubits [28]. In
our experiments, 41 qubits (Q); with j varying from 1 to
41) are used, and the system Hamiltonian is written as
Hy = Zj[(gjyj"rl&;dj"rl + H.C.) + wjﬁj], where af (@)
denotes the hard-core bosonic creation (annihilation) opera-
tor [45], n = ata is the number operator, and g; ;41 is the
nearest-neighbor (NN) hopping strength.

To experimentally demonstrate a disorder-induced pump-
ing process, we simulate the tight-binding Rice-Mele (RM)
model with on-site potential disorder or hopping disorder, of
which the Hamiltonian can be expressed as [46]:

HRM Z{J+ ()+W]}(a a]+1+HC)
41
+ 2V TAW + Vil 1)

Here, J £ [0(t) + W;] denote the NN hopping strengths
with disorder W;, £[A(t) + V;] denote the staggered on-site
potential with disorder V;, and A(t) and §(t) are periodic
with the period 7. When A(¢) = 0, the RM model reduces
to the Su-Shrieffer-Heeger (SSH) model [47] in the clean
limit. Furthermore, to realize the adiabatic cyclic evolution of
the RM Hamiltonian (1), we develop a Floquet engineering
technique to change the dynamical parameters 0(t) and
A(t) adiabatically during a closed trajectory in a §—A space
(Fig. 1b). More details are discussed in the Supplementary

Materials [29]. We realize the pumping process with the
cyclic modulations of both the amplitude and the center offset
of the sine-like waves of Floquet engineering, corresponding
to the cyclic variations of the hopping coupling and the
on-site potential, respectively, where disorder is also carefully
introduced.

Topological invariant and topological pumping

In the clean limit, the continuous RM pumping sequence
is periodic in both spatial and temporal dimensions. Under
periodic boundary conditions (PBCs), the Bloch wavefunc-
tion of the n-th energy band is defined in the k—¢ Brillouin
zone as |y (1)) = €*® |u, x(¢)), and the Chern number is
expressed as [9]

Uy = / dt Q, (k. t), )
FBZ

where Q,,(k,t) = i((@tun7k| 8kun,k> - <8kun7k| akum)) de-
notes the Berry curvature, and FBZ represents the first Bril-
louin zone. When the system is initially prepared as a Wan-
nier state, filling the n-th band, v, relates to the displacement
of the center-of-mass (CoM) per pumping cycle §x as

or = v,d, 3)

with d = 2 being the lattice constant [48].

In our experiments, we engineer the continuous RM model
in the clean limit and implement topological pumping by peri-
odically modulating § and A that sketch a closed trajectory in
the d—A space within a period 7. The initial state is prepared
as a single-excitation state, having an overlap of over 0.99
with the exact Wannier state [29], by exciting one qubit
closest to the middle, i.e., Q19. During the pumping proce-
dure, we measure the population of each qubit Py = (n;),
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FIG. 2. Bulk topological pumping for different types of cycles initially with single-excitation states. a, Displacements of the CoM for four
different pumping trajectories C1—Cy as illustrated in ¢. Dashed curves represent the numerical results. b, Displacement of CoM, dz, versus
the pumping period 7', for C4 initially with a single-excitation state. When 7" = 650 ns, dz reaches the maximum 1.95(6). The dashed curve
shows the numerical results of x as a function of T, when the initial state is an exact Wannier state. ¢, Four different pumping trajectories
C1—C4 in the 6—-A plane. The trajectory Cy is set as (A, §) = (Ao cos 27wt /T, 6o sin 2wt /T'), with Ao/2m = 10 MHz, do/2m = 2.5 MHz,
and J/27 = 2 MHz. The trajectory Cs is set as (A, §) = (Ag cos 2wt /T, do| sin 27t /T'|) with the same parameters Ag, do, and T" as C4. The
trajectory C1 (C2) is designed symmetrically flipped about the A-axis with C4 (C3). The trajectory C; and C4 correspond to the Chern numbers
v = F1, respectively, and C2 and Cs lead to topologically trivial pumping. d, Instantaneous energy spectra of the bulk under open boundary
conditions. e, Experimental data of the populations of all qubits during the adiabatic cyclic evolution within four periods.

with which the CoM can be calculated as = = > j(7;).
The experimental results of the shift of the CoM after four
pumping cycles are shown in Fig. 2 for four distinct pumping
trajectories C1— C4 (Fig. 2c¢), respectively. The period is
carefully chosen as T" = 650 ns, when the mean dz achieves
its maximum 1.95(6) (Fig. 2b). Here, the slight oscillation of
dx for T' > 650 ns originates from the difference between the
single-excitation state and the exact Wannier state. Quantized
charge pumping is observed for topologically nontrivial
pumping trajectories C; and C,; around the gapless point
(A,9) = (0,0), corresponding to the Chern numbers F1, re-
spectively. Moreover, topologically trivial pumping is probed
for C, and Cs with zero Chern number. The corresponding
energy bands under open boundary conditions are shown in
Fig. 2d for C1— C4, respectively, which could be measured by
a dynamical spectroscopic technique [28]. The deviation for
t > 3T, between the experimental and numerical results in
Fig. 2a, are due to dephasing [29]. Adiabatic time evolutions
for a pumped excitation during pumping trajectories C1—Cy4
are shown in Fig. 2e. In addition, we experimentally monitor
the double-excitation pumps for different trajectories [29],

which are shown in Fig. 3. The experimental results are
similar to the single-excitation cases, as the system is in
the hard-core limit [45]. Since the pumps of excitations
initially prepared at odd and even sites have opposite winding
numbers [48], no quantized pumping is observed for the
topologically nontrivial pumping trajectory C4, when the
parity of the initial excitation sites is different (Fig. 3d).

Pumping in the presence of on-site disorder

Next, we investigate the effects of on-site potential disorder
on topological pumping. Figure 4a shows the displacement
of the CoM for a forward pump, with respect to the pumping
trajectory Coy (inset of Fig. 4c), versus the on-site disorder
strength V/2r. Here, the on-site potential disorder V; on
each qubit satisfies a uniform random distribution in the
range [—V,V]. The experimental results demonstrate that
quantized pumping persists for V/Aq < 1, but degrades as
the displacement of the CoM per pumping cycle dx decays to
zero for V' 2 3A¢. In addition, we numerically calculate the
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FIG. 3. Topological pumping for different types of cycles which initially have double-excitation states. a, Displacements of the CoM for
different pumping protocols as shown in c¢—d,f-g, where the dashed curves represent the numerical results. b, Schematic diagram of lattice
potentials with the initial excitions prepared at two nearest-neighbor sites, i.e., Q19 and QQ20. ¢ and d, Experimental data of the population of
all qubits during the adiabatic cyclic evolution within two periods for the trajectory Cs and Cy, respectively. e, Schematic diagram of lattice
potential with the initial state prepared by exciting two next-neighbor sites, i.e., Q19 and (J21. Adiabatic time evolutions of the the populations
of all qubits within two periods for the pumping trajectories C3 and C4 are shown in f and g. The evolution period for double-excitation

pumping is 500 ns.

pumping amounts of charge over one cycle, i.e.,

AQ=d /0 dt (B(6)| T () [9(2)) )

to characterize the interplay between topology and disor-
der [24, 35] (Fig. 4c—e). Here, the average current density
can be expressed as

N

iy [+ (=177 10)al, a; + Hel /N, (5)
J=1

J(t)

and [¢(t)) is the time evolved state initially with a half-filling
ground state of the system, and i = /—1. As shown in
Fig. 4c, AQ versus V has a similar behavior as the experimen-
tal results of dx. The slight reduction of AQ when V/Ag < 1
results from the use of a single-excitation initial state instead
of an exact Wannier state. The breakdown of quantized pump-
ing can be understood due to the closing band gap, leading
to the Landau-Zener transition [4, 49]. The gap closes when
V = Ag [29], which conforms to the experimental observa-
tions of . Thus, the breakdown may be due to localization of
single-particle Floquet states instead of that of instantaneous
eigenstates, for which localization occurs for any non-zero
disorder strength [24].

In addition, we demonstrate a pumping procedure follow-
ing a double-loop pumping trajectory, Cqj, to study topological
pumping that is induced by random on-site disorder. As plot-
ted in the inset of Fig. 4e, this closed pumping trajectory is
composed of an outer loop Coy (inset of Fig. 4c) and an inner
loop Cj, (inset of Fig. 4d). Since along Cyy; and Cjy, the system
evolves into a parameter plane with opposite directions, there
is no net pumped charge with zero total Chern number as

Vout + Vin = 0. However, as the on-site disorder strength V'
increases, the gapless regime appears around the origin O
along the A-axis. When 0.5 < V/Ay < 2, the inner loop
cannot encircle the whole gapless regime and no topological
pumping phenomenon occurs, while the outer loop remains
nontrivial with v, = +1. Thus, with a moderate disorder
strength, we observe nontrivial pumping induced by the
on-site disorder with dx # 0 (Fig. 4b). However, a quan-
tized disorder-induced pump can hardly be realized, since
quantized transport requires trajectory parameters to be finely
tuned to combine the effects of the trivial inner and outer
trajectories [20]. As the disorder strength increases further to
V/Ag Z 2.5, pumping becomes trivial, since no topological
pumping exists for the outer loop. The increase of dz in
the region 0 < V/Ap < 0.7 is also due to the discrepancy
between the single-excitation and Wannier initial states.

Pumping with hopping disorder

Next, we experimentally investigate topological pumping in
the presence of hopping disorder. We choose a trivial pump-
ing trajectory Chop: (A,8) = (A cos2nt/T, & sin 27t /T),
with Aj,/2m = 5 MHz, 6, /27 = 1.25 MHz, J/27 = 1 MHz,
and T' = 1.3 ps (inset of Fig. 5a). First, we consider uniform
random hopping disorder within the range [—-W, W]. The
experimental results, shown in Fig. 5a, are similar to the ones
with on-site potential disorder as shown in Fig. 4a, where
the increase of the disorder strength leads to the decrease
of dx. However, the decay of dx obeys a distinct law from
the on-site potential disorder case [51], when the 1D system
tends to the localization phase. A non-adiabatic evolution
could cause the breakdown of quantized pumping with a
smaller disorder strength, which is verified by comparing the
charge pumped with a longer period with the transition point
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FIG. 4. Pumping with on-site disorder. a, Experimental data of the displacement of the CoM dx for 2 pumping periods against the on-site
potential disorder strength V' divided by Ay /27w = 10 MHz during the pumping trajectory Cou as plotted in the inset of ¢. On-site potential
disorder V; follows a uniform random distribution within the range [—V, V]. The red solid curve represents the mean numerical results, and
the error bars represent the standard error of the experimental (numerical) results with 30 (100) configurations of disorder. b, Experimental
data of dx versus V' during a double-loop pumping trajectory Ca as shown in the inset of e. ¢, Numerical results of the charge pumped per
cycle AQ versus V' during the outer-loop pumping trajectory Cou. d, Numerical results of AQ) versus V' during the inner-loop pumping
trajectory Cin. €, AQ for double-loop pumping Cqa, which is obtained by summing the results of outer- and inner-loop pumping. f, Bulk
energy band for double-loop pumping under open boundary conditions. Darker colors imply higher state density. g, Experimental data of the
average populations of all qubits during the adiabatic cyclic evolution for double-loop pumping over 30 independent disorder configurations.
The period of both the outer- and the inner-loop pumping is set as 500 ns.

at W/6o ~ 1[29].

Recently, it has been suggested that quasi-periodic hopping
disorder would lead to exotic topological phenomena [52].
Moreover, as the gap would reopen, applying quasi-periodic
hopping disorder may intrinsically induce topological pump-
ing, which can hardly be realized by introducing random
hopping disorder [29, 35]. Here, we consider a topologically
trivial single-loop pumping trajectory with its center being
biased away from the gapless point O (origin of A—d plane),
ie, Ca: (A,0) = (Af{cos2nt/T, s, + & sin2nt/T) with
A{/2r = 5 MHz, §./2r = 1.2 MHz, §;/2r = 1 MHz,
T = 1.4 pus, and J/2r = 1.8 MHz (inset of Fig. 5b).
Quasi-periodic hopping disorder, W; = W), cos(2raj + ),
is introduced on each even qubit, with o = (v/5 — 1)/2
being irrational and 8 € [—m, ) being an arbitrary random
phase offset. As the disorder strength W, increases, the
gapless point would appear inside the pumping loop [35],
and nontrivial pumping could be observed (see the theoretical
predictions in Fig. 5b). Though under insufficient adiabatic-
ity, we demonstrate the observation of signatures consistent
with topological pumping induced by quasi-periodic hopping

disorder, which leads to nonzero dz in the clean limit.
Theoretically, with an extremely long evolution period,
e.g., 20 pus and 80 us, as shown in Fig. 5b, non-adiabatic
effects can be suppressed. Moreover, this nontrivial pumping
phenomenon could also be viewed as a dynamical version
of TAIs [32, 33], as the numerical results of AQ in Fig. 5c
indicates the existence of TAI-like topological transitions.

Outlook

We experimentally investigated the competition and interplay
between topology and disorder in topological pumping on
a 41-qubit superconducting processor. Furthermore, we
demonstrated disorder-induced topological pumping which
was induced by either on-site random disorder or quasi-
periodic hopping disorder. In addition, we experimentally
studied the robustness and the breakdown of a Thouless pump
as the disorder strength increases. Note that these experimen-
tal results were obtained by extending the multi-qubit Floquet
engineering technique to the adiabatic evolution regime,
which would be helpful in exploring various topological
phenomena induced by disorder.
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FIG. 5. Pumping with hopping disorder. a, Experimental data for the displacement of the CoM dx for one pumping period versus the
random hopping disorder strength W during the pumping trajectory Cnop as shown in the inset. The red solid and green dashed curves plot the
numerical results of dz and AQ), respectively. b, Experimental data of dx against the quasi-periodic disorder strength W), during the pumping
trajectory Cq: (A, 8) = (Aycos2nt/T, 5. + §g sin 27t /T), with Ay/2n = 5 MHz, 6./27 = 1.2 MHgz, &, /2r = 1 MHz, T = 1.4 us,
and J/27 = 1.8 MHz. The solid blue curve denotes the numerical simulation and the dotted curve shows the topological index calculated in
the thermodynamic limit [S0]. The purple (light blue) dashed curve denotes the numerical results using similar experimental parameters but
with a longer period 20 ps (80 ps) in a larger system with 200 (800) qubits. Experimental data are averaged over 30 disorder configurations,
while the numerical simulation is calculated for 1,000 disorder configurations. ¢, Charge pumped per cycle AQ versus W), and .. The white
dashed horizontal line shows the TAI-like topological transition of pumping during Cg.

Methods

Floquet engineering for adiabatic systems

In our experiments, we employ an extended Floquet engi-
neering technique with the high-frequency expansion [53]
to realize the RM model, which is an effective approach
to modulate hopping strengths between qubits. Since the
simultaneous changes of on-site potentials and hopping
strengths are inherently necessary, we extended Floquet
engineering for adiabatic systems, by carefully introducing
two restrictions: the adiabatic condition and the Nyquist
condition. Specifically, we manipulate the Z pulse to tune the
j-th qubit frequency according to

wj(t) = @+ Aj(t) + A;(t) sin(ut + o), (6)

where @ is the average frequency, A;, u, and ¢ denote mod-
ulation amplitude, frequency, and phase, respectively, and A
is the j-th on-site potential. Experimentally, we set &/27 =
4.8 GHz, and /27 = 80 MHz for all qubits, and a schematic
of the qubit frequency is plotted in Fig. la. To realize the
high-frequency expansion, the modulation frequency should
be higher than the simulated frequency regime for fulfilling
the adiabatic condition, and the effective Hamiltonian con-
tains a series of frequency bands. The Nyquist condition re-
quires that the variation range of the difference between two
neighbor on-site potentials should be lower than half the mod-
ulation frequency p/2. This can avoid any overlap between
different frequency bands, resulting in an effective simula-
tion of the target time-evolved Hamiltonian under the rotating
wave approximation.

By introducing the superconducting quantum interfer-
ence device (SQUID) into the transmon qubit, the qubit is
frequency-tunable, and the relationship between the qubit fre-
quency w and the flux ®., entering the loop of SQUID [54],
is

w = /8E; Ec|cos(n®./®o)| — Ec, ©)

where FE;; denotes the Josephson energy when &, = 0,
E¢ is the charging energy, and ® is the flux quantum. For
weak magnetic fields, @, is linearly related to the experimen-
tal Z pulse amplitude (Zpa) V,, i.e., 7®./®g = kV, + b.
These parameters can be extracted by the single-qubit spec-
troscopy measurement experiments. However, the parame-
ters obtained in this way would be inaccurate due to the un-
avoidable crosstalk after tuning all qubits to their idle points.
Thus, we apply the multi-qubit spectroscopy measurements
in the range near the working points or the average frequency
w ~ 4.8 GHz, see Fig. 1b. Then, we fit the relationship in
Eq. (7) using this small segment of the spectroscopy data,
which exhibits a linear correlation. Although under-fitting
seems to occur, we could achieve the desired results by fixing
the known parameters insensitive to the crosstalk, such as F¢
and the sweet points of qubits. The inset of Fig. 1b shows the
optimized mapping from Zpa to the qubit frequency, which
differs from single-qubit fitting result.

Combining Egs. (6) and (7), we can obtain the Z
pulse waveform, applied on the j-th qubit V7, as Vi =
k%_ arccos [;t (@44 (t)+A;(;)§imE(gt+wo)+ch)2 _ Z—; Note that

A, (t) is dependent of the modulation amplitude of the nearest




qubits A;_q(t) and A;41(t). In practical operations, we es-
tablish a reference amplitude, which is a smooth function, for
a specific qubit Q. For convenience, we simply set Ay (t) =
0, and then, we perform the iterative calculation of @)y, to ob-
tain Ak+1(t), Ak+2 (t), .-+ and Ak_l(t), Ak_g(t), ceel

Using the method as introduced above, we can engineer a
time-dependent Hamiltonian with the simultaneous adjust-
ment of the on-site potentials and the hopping strengths on
our superconducting processor with only frequency-tuning
capabilities. Numerically, we calculate pumping for the
trajectory, C4, by evolving the exact RM model as shown in
Fig. 2a and the same Hamiltonian, but constructed through
Floquet engineering, as shown in Fig. 2b, respectively. The
CoM extracted from these two methods coincide very well,
see Fig. 2c.

Experimental setup

Our superconducting quantum processor consists 43 transmon
qubits arranged in a 1D array, labeled as @1, - - -, (43, and
we used U3, - - -, Q43 (relabeled as @1, - - -, Q41) for the ex-
periments.The qubits are capacitively coupled to their nearby
qubits with a mean hopping strength §/27 ~ 7.2 MHz, which
suggests that the adjustable range of the effective hopping
strengths is from —2.9 MHz to 7.2 MHz. Since the av-
erage anharmonicity is U/27 ~ —208 MHz, with a ratio
|U/g| ~ 29 > 1, our processor can be regarded as a hard-
core bosonic system [45]. The mean energy relaxation time
is 21.0 s, and the sweet points of qubits are designed to be
staggered for the convenience of arranging energy levels, with
a mean value of 5.014 GHz.

With all 41 superconducting qubits initialized at their idle
points, we prepared the localized initial state using an X
gate, as an approximation to the Wannier state. By using the
derivative removal by adiabatic gate (DRAG) theory [55],
the X gate pulse is optimized to minimize the leakage to
higher energy levels, achieving an average gate fidelity of
99.2%. Then, the parametric flux modulations are applied
on all qubits to engineer the Rice-Mele Hamiltonian, for
different pumping experiments. The schematic diagram of
the pulse sequence, for the double-excitation experiments
as an example, is shown in Fig. 3. After turning off the
parametric driving, the qubits are tuned back to their idle
points for readout. The states of all qubits can be read out
simultaneously through the transmission lines coupled to
readout resonators. All qubit probabilities are corrected to
eliminate the measurement errors.
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state obtained by evolving the exact Rice-Mele model Hamiltonian over one cycle. b, Numerical results of the time evolution of the initial
single-excitation state obtained by evolving the Rice-Mele model Hamiltonian constructed through Floquet engineering over one cycle. c,
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I. EXPERIMENTAL SETUP

Our experiments are performed on Chuang-tzu, a 1D superconducting processor, containing 43
transmon qubits, which is the same processor used in [1]. The qubits are designed to be frequency-
tunable with a mean sweet point of about 5.8 GHz, and each qubit is capacitively coupled to its
nearby qubits with a mean coupling strength of about 7.2 MHz. We use 41 qubits, i.e., Q1—Q41, in
our experiments, and all relevant information about qubit characteristics is listed in Table S1. All
qubits are initialized at their idle frequencies distributing over the range from 4.4 GHz to 5.6 GHz,
which are carefully arranged to minimize the unexpected interaction and crosstalk errors. The
anharmonicity, a; /27, of qubits is about 0.2 GHz, and the qubit working frequency is adjusted to
be 4.8 GHz. We tune all qubit frequencies and coupling strengths to the target points by applying
the automatic calibration scheme as mentioned in Ref. [1].

II. MODEL AND HAMILTONIAN
A. Pumping, polarization, and topology

One simple manifestation of topology in quantum systems is Thouless pumping, entailing
quantized transport through an adiabatic cyclic evolution of a 1D quantum system in the absence
of the net electromagnetic field [2—4]. The physics and topological nature of pumping can be
demonstrated by periodically modulating the Rice-Mele (RM) model [5] written as:

L—2 L—-1
Hyy =Y [T+ (—=1Y6)(ala; 0 + He) + > (—1YAdlay, (S1)
j=0 j=0

where a'(a) denotes the creation (annihilation) operator, the chain length L = 2N is even, =A are
staggered on-site potentials, and .J 4 § are alternating hopping strengths. When A /27 = 0 MHz,
the RM model in Eq. (S1) reduces to the celebrated Su-Shrieffer-Heeger (SSH) model [6]. Under
periodic boundary conditions (PBC), the energy spectrum of Hgy; consists of two bands, separated
by a gap except a gapless point at (A /2w, §/27) = (0 MHz, 0 MHz).

Parameter Mean Median Stdev. Units
Qubit maximum frequency wy, /27 5.83 5.768 0.289 GHz
Qubit idle frequency wj /27 5.014 4777 0.428 GHz
Qubit anharmonicity o /2w —0.208 —0.193 0.02 GHz
Readout frequency w, /27 6.68 6.684 0.052 GHz
Mean energy relaxation time 7' 21.0 20.9 6.0 s

Pure dephasing time at idle frequency 7% 0.826 0.759 0.25 us

Qubit-Qubit coupling g; j+1/2m 7.11 7.20 0.39 MHz
Qubit-resonator coupling gq,/27 36.62 38.15 35.26 MHz
Mean fidelity of single-qubit gates 99.2 99.4 1.1 %

TABLE S1. Device parameters.
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FIG. S1. Energy bands of the Rice-Mele model and the polarization P. (A) The band structure in the k-t
Brillouin zone under PBC, containing two bands separated by a gap. (B) Polarization P in a unit of the
lattice constant (d = 2) versus the Rice-Mele model parameters A and . The discontinuity is due to the
particular choice of the eigenstate phase.

With PBC and periodic driving, we could define the Bloch wavefunction of the n-th band in
a k-t Brillouin zone as [y ,) = €** |u,, 1), due to the periodicity of the lattice in both space and
time. The band structure is plotted in Fig. STA. When A and ¢ vary adiabatically with a sufficiently
slow period 7" and the n-th band is evenly filled, we can define the Chern number as

Vn dt / dk Q,( (S2)
1BZ

where Q,,(k,t) = i((Oyun k| Oxtin k) — (Oktnk| Orunt)) is the Berry curvature, and 1BZ denotes
the first Brillouin zone. The integer Chern number characterizes quantized charge transport in the
adiabatic limit, and the pumped amount of charge over one cycle A can be expressed as

AQ =d / WO T (1), (s3)

where d = 2 is the lattice constant because of the staggered parameters. Here,
. L
! af
=+ (J+ Jal,ia; + Hee. (S4)
]:1

denotes the average current density [7, 8], and |¢)(t)) is obtained by evolving the N -particle ground

state |1(0)).
By performing a Fourier transformation (FT) on the Bloch state, we can introduce the Wannier
state localized at site j for the n-th Bloch band as

1 ..
Wy ;) = 7% ij e I [ 1) - (S5)

4



The position matrix elements of the Wannier states in the thermodynamic limit (N — oc0) can
be calculated as

. ~ . 1 —ik'(x—j ik(x—
P—JIO%AI—JWW>:N§:@MMM FE (@ — ) g, k)
kK’

=1 /dx/dkdk wh o (z,t)e F D19, Dy, 4 (2, 1)
7I8

d

27T dk) (un k| 18kun k>
d dk; Ak (1),

27r

(S6)

where A”(k, 1) is the Berry connection, and P = (w,, ;| # |w, ;) denotes the polarization [9] as
a quantum extension of the classical electric polarization. When the initial state is prepared as a
Wannier state |w, ;), the change of the polarization over one cycle is given by

:—/dt/dkatAkkt
1BZ

:—/ dt/ dk 18t unk|0kunk> i@k (un,k|8tun,k>)
1BZ

_ljn

(S7)

which can also be obtained by calculating the change of P for a parameter pair (A, ), as shown
in Fig. S1B. The change of P is connected to the number of the evolving trajectory in A-¢§ space,
winding the gapless point (0, 0).

B. Maximally localized Wannier state

Due to the gauge freedom of Bloch functions, the Wannier state defined in Eq. (S5) is non-
unique [10]. More specifically, if we replace |1, 1) to [th, ) = €¥n*) |4, 1), with o, (k) being
smooth real functions that is periodic in the momentum space, different sets of Wannier states will
be defined, having distinct shapes and spreads. By introducing the second order moment of the
position operator of |w,, o)

Q=" [(wnol & [wn) — (Wl & [wno)’] (S8)

as the localization criterion, Marzari and Vanderbilt developed an effective approach to constrain
the freedom gauge [11]. Through minimizing {2, we can obtain the maximally localized Wannier
state (MLWS).

For 1D quantum systems, MLWS can be calculated as the eigenstates of the projected position
operator in the real space, PP, with P = E |¥n.k) (¥n k| the projection operator to a filled band.

However, the usual definition of Z is vague when crossmg the boundary under PBC. Alternatively,
Z can be substituted to a unitary operator X = %%, and the task to solve MLWS is transformed
into diagonalization of

~

Xp=PXP. (S9)
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FIG. S2. The wavefunctions of maximally localized Wannier state localized at the edge (A) and the center
(B) of the Rice-Mele model with N = 20.

Note that in general Xp is not Hermitian, meaning that the eigenstates are not orthogonal except
for the thermodynamic limit.

Numerically, we calculate MLWS of the RM model for each energy band based on the experi-
mental setup. Two typical wavefunctions of MLWS localized at the edge and center individually
are shown in Fig. S2. We find that a single particle localized at site j approximates a Wannier
state of a half-filling (upper or lower) band that is determined by the parity of the site [12]. The
quantum state fidelity between a single-particle excitation and the corresponding MLWS is larger
than 0.99.

Thus, quantized transport, indicated by the Chern number, can be observed experimentally by
measuring the displacement of the center-of-mass (CoM) per period, 6 = Z(T") — z(0), during the
adiabatic evolution after preparing a single-excitation initial state [13—15]. The CoM, expressed
as

T=Y jny), (S10)
J

with n; = d} a;, can be extracted from the adiabatic evolution of the initial single-excitation state
on the superconducting processor.

C. Pumping under disorder

In addition to the topological nature of Thouless pumping, we investigate the effects of on-site
random disorder V; on the topological pumping by substituting A in Eq. (S1) to A 4V}, where V;

6
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FIG. S3. Bandgaps and transport in the Rice-Mele model with disorder. (A) Pumping trajectory Con. (B)
Minimum instantaneous gap, E;“in, versus the on-site random disorder strength V' for the trajectory Cop.
(C) Pumped amount, AQ), as a function of V for the trajectory Co,. (D) Pumping trajectory Cpop. (E)
Minimum instantaneous gap, E;nin, versus the hopping random disorder strength W for the trajectory Cpop.
(F) Pumped amount, AQ), as a function of W for the trajectory Cp,p,. All numerical simulations are averaged
over 100 different disorder configurations, and the shaded regions and the error bars show the one standard
deviation (1SD).

is uniformly distributed in the range [—V, V]. For an integrable 1D quantum system, an arbitrarily
small amount of on-site disorder leads to localization [16]. However, robustness against weak
disorder in topological quantum phenomena is expected [17]. Here, we numerically study the
topology-disorder transition, in our superconducting processor.

We now consider the trajectory C,,, (Fig. S3A),

(A,0) = (Ag cos(2nt/T), §gsin(2nt/T)), (S11)

with Ay/27m =10.0 MHz, 6y/27 =2.5 MHz, J/2m =2.0 MHz, and T" = 0.65 us. We calculate the
average of AQ for different values of V, for 7" = 0.65 us and 8.0 us. As shown in Fig. S3C, they
both satisfy the adiabatic limit. Moreover, the crossover between the topological phase and the
localized phase is related to the minimal many-body instantaneous gap [4, 7] (Fig. S3B)

By = min[Ex 4 (t) = E(1)], (S12)
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FIG. S4. The inverse participation ratio (IPR) numerically calculated for the RM model with on-site
and hopping disorder. (A) IPR of the n-th eigenstate against the on-site random disorder strength V'
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n-th eigenstate against the hopping random strength W for the trajectory Cj,p at the parameter point
(A/2m,8/2m) = (5MHz,0MHz). Both results are averaged with 100 different configurations of dis-
order.

where Ey(t) is the N-particle ground state energy at time t. We observe that topological pumping
persists with AQ/d = 1, even with weak disorder V//A, ~ 1, when the energy gap remains open
to allow for a possible adiabatic evolution of the ground state, and AQ)/d = 0 with strong disorder
satisfying V//Ay 2 3.

Moreover, we study the effect of hopping random disorder by substituting § by d + W; in
Eq. (S1) by taking W; being uniformly distributed in the range [—W, W|. The trajectory Cyop is
chosen as an equally scaled-down version of C,,, with Ay/27 = 5.0 MHz, dy/27 = 1.25 MHz,
J/2m = 1.0 MHz, and T = 1.3 us, see Fig. S3D. We observe in Fig. S3F a decreasing behavior of
AQ as the hopping disorder strength increases, which is similar to the case with on-site random
disorder. Note that the non-adiabatic effect shows that the transition point moves toward a weaker
disorder strength, by comparing the cases with periods 7' = 1.3 us and 16 us.

D. Localization in the Rice-Mele model with disorder

According to Anderson localization (AL), an integrable 1D system tends to be at a localized
state with relatively strong on-site disorder. To characterize the localization phenomena of the RM
model with disorder, we employ the real-space inverse participation ratio (IPR), which is defined
as

I(|¢n)) = Z | (L] )|, (S13)

where [1,,) is the n-th eigenstate, and |1;) = A} |0) denotes a particle state with an excitation at
site 7. A large IPR signifies a strong localization tendency, and Z ~ 1/L for a plane-wave state,
while Z = 1 identifies a perfect localized state at the single site.

We calculate the IPR of the system with on-site random disorder at the so-called SSH parame-



ter point, i.e., (A/2m,§/27) = (0 MHz, 2.5 MHz) of the trajectory C,,. Figure S4A clearly shows
that the system tends to be at a localized state as the disorder strength becomes large. Note that
the transition point between the topological phase and the localized phase, V. ~ 0.2 MHz, is
much smaller than the trajectory radius A/27 = 10 MHz. Although the instantaneous Hamil-
tonian eigenstates are shown in Fig. S4A to be localized with a small on-site disorder strength,
the topological transport remains robust against weak disorder. It was shown [7] that the break-
down of pumping under on-site disorder is linked to the delocalization-localization transition of
the single-particle Floquet eigenstates instead of instantaneous eigenstates.

Similar to the case with on-site random disorder, an integrable 1D system tends to be localized
under considerable hopping random disorder, but with a distinct law [18—20]. When only hopping
random disorder is involved, the localization length of the zero-energy state is infinite. Never-
theless, the state should be considered to be localized due to the fact that the mean values of the
transmission coefficient approach zero in the thermodynamic limit.

In analogy to the SSH parameter point, we compute the IPR for the trajectory Cy,, with hopping
disorder at the parameter point (A/2m,/27) = (5 MHz,0 MHz), see Fig. S4B. The numerical
results show that the IPR increases as the disorder strength increases, suggesting that instantaneous
eigenstates tend to be localized with relatively strong disorder. Similarly, the transition point
of instantaneous eigenstates is much smaller than the breakdown point of pumping. Therefore,
it is still unclear whether the behavior of A() could characterize the delocalization-localization
transition of the single-particle Floquet eigenstates, which deserves further investigations.

E. Double-loop pumping induced by on-site disorder

Connecting two elliptical loops with opposite directions, the double-loop trajectory, Cq, as
shown in Fig. S5A, is topologically trivial in the clean limit; because of the addition of two inverse
Chern numbers [8, 21]. Topological pumping would be realizable, if disorder asymmetrically
inhibits the topology of the two pumping loops.

Here, we now study a double-loop trajectory consisting of one two half outer loops C,,, and one
complete inter loop C,,,; in an inverse direction, as shown in Fig. S5A, which is expected to exhibit
similar topological transport behaviors with on-site random disorder, similar as the case discussed
in Ref. [21].

The trajectory, Cq;, can be parameterized as (A(t), d(t)) with

Ag cos 4t for 0 <t <3m/4,
A(t) = —Alsian(t—STl/éL), for 37’1/4<t§37’1/4+7’27 (814)
A()SiIlQl(t—STl/él—Tg), for 37’1/4+Tg<t§7’1+7’2,
0 sin ¢, for 0 <t <3m/4,
5(t) = —(50 COS Qg(t — 37'1/4), for 37'1/4 <t< 37'1/4 + 7o, (S15)

—dgcosQy(t —3m /4 — 1), for 3m/d+ 1 <t <T + 7,

with Ag/2m = 10 MHz, A, /27 = 5 MHz, 0y/27 = 2.5 MHz, J/27 = 2 MHz, Oy = 27/,
Qo = 27/m, and T = 27y = 275 = 1 us. We show AQ of C,, versus the on-site disorder
strength in Fig. S5B and a summation of A() for C,, and C,,; in Fig. S5C. These numerical results
demonstrate topological pumping induced by moderate on-site disorder. In addition, we directly
calculate AQ of Cq; versus the disorder strength, which matches well with the summation of AQ)
for two loops, see Fig. S5D.
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FIG. S5. Topological pumping with on-site random disorder for the double-loop trajectory, Cq;. (A) Trajec-
tory Cq1, containing an incomplete counterclockwise outer loop, and a complete clockwise inner loop. (B)
Pumped amount, AQ), versus the disorder strength V' for the inner loop. (C) AQ versus V for the complete
outer loop, corresponding to the result in Fig. S3C, and AQ versus V for the inner loop. (D) AQ versus
V for Cq with T' = 1 us and 8 us, respectively. (E) Quantized topological pumping induced by on-site
random disorder with sufficiently separated Ay and Ay, where Ay /27 = 50 MHz, and A /27 = 5 MHz.

Quantized topological pumping occurs when Ay and A; are sufficiently far apart, such that an
appropriate disorder strength V' is strong enough for the inner loop C,,1, but still too weak for the
outer loop C,,,. We numerically simulate another trajectory with identical parameters to Cq except
for Ag/2m = 50 MHz, where a quantized plateau is observed, see Fig. S5E.

F. Single-loop pumping induced by hopping disorder

In the clean limit, the trajectory with a circle outside the origin centered on the J-axis, Cy, as
shown in Fig. S6A, leads to a topologically trivial pumping phenomenon with a winding number
of 0. By introducing an appropriate hopping random disorder strength, a nonzero A() occurs,
because the gapless point (line) possibly moves inside the trajectory. However, pumping is not

10



A A 6/2m (MHz)
CSl -12/ t T
0.2 5 ﬂ
O A21 (MHz) 0
B 0.8 D 0.8 — B=0
— — 0 Bel-mn]
N N
T T
2 04 2 04-
£, £,
w w
0 04
C | E 1 0 T=50005 fogu,
1 1 T=1ldps %
$ s
2051 2051 : Q-_o
01 01 0000000000000, 5 0000007
%
0 1 2 3 4 0 1 2 3 4
W/2n (MHz) Wy/21t (MHz)

FIG. S6. Topological pumping with hopping random disorder and quasi-periodic intracell hopping disorder
for the single-loop trajectory, Cg. (A) The single-loop trajectory Cq, containing a circle centered at the
point (0, d.) on the d-axis and being outside of the origin in the A-0 plane. (B) The minimum instantaneous
gap, E;nin, versus hopping random disorder strengths 1. (C) The pumped amount, A, against W for
T = 500 ps. The calculation result of AQ) is averaged over 100 different disorder samples, and the shaded
regions and the error bars show the range of one standard deviation. (D) E;nin versus the quasi-periodic
intracell hopping disorder strength W), with the phase (3 fixed at 0 and taken from the uniform distribution
in the range [—m, 7|, respectively. (E) AQ) against W), for ' = 1.4 us and 500 ys, showing a quantized
plateau. The lattice size is L = 800 for the numerical calculation of the band gap.

quantized, precluding the adiabatic limit, due to the rapid closure of the band gap. Fortunately, an
intrinsic topologically nontrivial quantized pumping scheme, induced by quasi-periodic intracell
hopping disorder with gap reopening, has been proposed in Ref. [8].

Given the parameterized path, Cy, parameterized with (A, ) = (Ag cos ¢, 0. + g sin ¢), with
Ao/2m = 5MHz, §/27 = 1.0 MHz, 6. /27 = 1.2 MHz, and J /27 = 1.8 MHz, we calculate E"™
and A(Q against random hopping disorder W; € [—W, W], and quasi-periodic intracell hopping
disorder

Wi_g), = W cos(2mak + ), (S16)

where @ = (v/5 — 1)/2 is an irrational number. Although AQ becomes nonzero with an in-
termediate random disorder strength W/2r 2> 2 MHz, the minimum gap closes, resulting in a
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FIG. S7. Pumping for the trajectory, Cy, with quasi-periodic intracell hopping disorder for different periods.
The dashed line in the Chern number obtained by numerical results. The quantized plateau appears when the
disorder strength, W), /2, varies between around 1.6 MHz and 2.9 MHz, indicated by two dashed-dotted
lines.

non-quantized pumping with large sample-to-sample fluctuations, see Figs. S6B and S6C. In com-
parison, the gap can reopen with quasi-periodic hopping disorder, and one quantized plateau is
observed at 1.5 MHz < W,/2r < 3 MHz, see Fig. S6D and S6E. The spectra under different
quasiperiodic disorder is shown in Fig. S8, which can be also observed by dynamical spectrum
technique [1]. The increase of AQ with a short period 7" = 1.4 us provides an opportunity for
an experimental demonstration of Thouless pumping induced by quasi-periodic disorder, as a dy-
namical analog of topological Anderson insulator (TAI) in Ref. [8]. To exactly obtain the range of
disorder, where the plateau appears, we plot AQ) for different disorder strengths and periods, see
Fig. S7. The numerical results indicate that the quantized plateau can be observed, when 1.6 MHz
< W,/2m < 2.9 MHz, in the adiabatic limit. Although the maximum of A() decreases with the
descent of period, the peak between the parameter region indicated by the Chern number, i.e., the
dashed line in Fig. S7, retains.
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III. FLOQUET ENGINEERING FOR ADIABATIC SYSTEMS

Floquet engineering has been applied in superconducting quantum circuits as an effective
method to modulate the hopping strength of a time-independent quantum many-body system
[1, 22]. In our 1D 41-qubit superconducting processor, the effective Hamiltonian of two nearest-
neighboring qubits can be described as

H = —w;j(t)67/2 — wip1(t)67,1 /2 + gjj1(6F 67, + Heel), (S17)
where w;(t) denotes the j-th qubit frequency, 65 are Pauli matrices with 6 = (6% +i67)/2,

gj.j+1 1s the coupling strength between the j-th and (j + 1)-th qubits. With the method introduced
in Ref. [1], the effective hopping strength can be modulated as

A A
9551 = gig+do (77] : ZJH jH), (S18)

when we apply a microwave to manipulate the qubit frequency as
w;(t) = w + Ajsin(ut + ¢o), (519)
where A; and 1 denote the modulation amplitude and the frequency, respectively, @ is the average

qubit frequency, ¢, is a common initial phase, .J;(x) is the s-order Bessel function, and n; ~ 1 is
the scale factor corresponding to the experimental calibration.

A. Adiabatic condition

In the Rice-Mele model Hamiltonian (S1), the simultaneous adiabatic changes of the on-site
and hopping terms result in a two-qubit Hamiltonian:

H' = Nty + Aja (6 + 05 () (@laj 0 + azal ). (S20)
Then the Hamiltonian in the interaction picture can be expressed as
. t
H} = j,j—l—l(t) exp {1/ dt A(t)} CAL;-CALJ‘_H + H.C., (321)
0

where A(t) = Aj(t) — Aj4(t). Intuitively, if 6;(¢) and A;(¢) vary slowly enough, we could
generalize Eq. (S19) to

wi(t) = @+ Aj(t) + A;(t) sin(pit + o), (S22)
where
1 0siiq(t
4,00 = L ity 3y (2221, (523
J 9j.5+1

More specifically, if we denote the cut-off frequency of §;(¢) and A;(t) as 65 and Af, the adiabatic
condition will be expressed as
5, A° < . (524)
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s = =+1.
B. Nyquist condition

When the qubit frequency is adjusted to be as in Eq. (S22), the unitary transformation in the
interaction picture is written as

nin~ I[ eXp{ (wt+ /0 at [An(t)— A’f) Cos(ut—i-(po)])ﬁj}, (525)

and the effective Hamiltonian can be obtained as

d -

Hy =UHOA0](0) + | 50

G| oo

At A (t
=0j.j+1€XP / } exp {i i) cos(ut + wo)} exp { Ain(t) cos(ut + 900)} a; a1+ Hee.
0 2 n

min g <Aju<t)> 7 <_Aj+u1(t)> immwtten) a4 He,

§=—00 Mm+n=s
— A.(t
i ))a a1+ He..

A (t
exp is(ut + = +900)}J< ]H()M

2

t
=9j.j+1 eXP{ /d
0 m,n=—0o0

! At A ()
=4jj+1€xXp /d } Z Z m+nJ ( p )) J (_%) el(m+n)(ut+(’00)dj+&j+1"‘H.C-
0
t
=0j,j+1€Xp / dt A }
0

Compared with Eqgs. (S21), Eq. (S26) indicates that the Hamiltonian is composed of bands of
frequencies, i.e., A(t)+su. According to the rotating wave approximation (RWA), high-frequency
oscillatory terms are neglected, and low-frequency terms contribute predominantly. The necessary

S§=—00

(S26)
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FIG. S10. Experimental and numerical time evolution for topological pumping with different dephasing
time 75. The dark dots are experimental data, the blue, black and red curves are numerical simulations
without dephasing, with 75 = 5.5 us and 15 = 0.826 us, respectively.

and sufficient condition for frequency band components to have no overlap with each other in the
frequency domain is

> 2mtax |A(1)], (S27)

as shown in Figs. SOA and S9B. Inequality (S27) is called the Nyquist condition, named after
the Nyquist’s sampling theorem [23]. When both Eqgs. (S24) and (S27) are satisfied, Eq. (526)
approximates to Eq. (S21).

IV. ADDITIONAL EXPERIMENTAL DATA
A. Effects of decoherence

The effects of decoherence, due to the interactions with the environment, are unavoidable in
practical quantum simulations. In general, the influence on qubits can be classified into the energy
relaxation effect, characterized by 7', and the dephasing effect, identified by 7;,. As previously
reported [24, 25], the effective dephasing time of a system with interactions is longer than the
individually calibrated dephasing time 75, due to the fact that eigenenergies of interacting systems
depend weakly on each qubit flux.

Numerically, we calculate the topological pumping for the trajectory C, introduced in the main
text, with consideration of dephasing for a 12-qubit chain, using the Lindblad master equation. For
simplicity, we assume that all qubits have a uniform dephasing time to estimate the effective 75
quantitatively. The direct comparison of numerical and experimental results is shown in Fig. S10.
We find that there is a good match between the experimental time evolution and the one obtained
by numerical calculation when 75 is chosen as 5.5 us. A deviation occurs when the evolution time
beyond 37", due to the effect of short dephasing time. Moreover, we calibrated the states with a
conserved particle number for the single-excitation or double-excitation initial states to mitigate
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FIG. S11. Thouless Pumping with two-photon excitation. (A1-A4) Experimental results of the time evolu-
tions of the two-excitation states after initially exciting different qubits pairs for the trajectory in A. (B1-B4)
Experimental results of the time evolutions of the two-excitation states by exciting different qubits pairs for
the trajectory in B.

the influence of energy relaxation. Overall, we conclude that our device can be approximately
regarded as a closed quantum system when the experimental time within 1500 ns.

B. Pumping of double excitations

We also perform double-excitation experiments in the clean limit for two different trajectories.
The trajectory as shown in Fig. S11A is (Agsin(27t/T"), 09 cos(27t/T)), with Ag/2m = 10 MHz,
do/2m 2.5 MHz, and T 500 ns, and the second trajectory as plotted in Fig. S11B is
(Ag cos(2mt/T), 60| sin(27t/T)|) with the same parameters.

Since the initial excitations, prepared at odd and even sites, have opposite winding numbers in
the RM model (S1), AQ) depends on both the trajectory and the parity combination of sites. In
addition to the non-zero winding number, the condition that parity of the excited sites is the same,
is required for topological nontrivial pumping. By exciting different qubits pairs, we obtain distant
patterns of QWs as shown in Figs. SI1A1-A4, and S11B1-B4. Experimental results reveal that
pumping of two-photon behaves like the transportation of two single-photons without interaction
due to the fact that our system satisfies the hard-core limit [26].

C. Pumping under on-site and hopping random disorder

The experimental results of the single-photon excitation probabilities for the trajectory C,,
versus the on-site random disorder V' are plotted in Figs. S12. The displacement of the CoM
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per cycle, dx, remains about two sites with weak disorder strength 0 MHz < V/27 < 8 MHz.
The displacement of the CoM per cycle, dx, decreases to about 0 MHz with a strong disorder
strength V/2r > 28 MHz. Intuitively, the propagation with a considerably strong disorder is
almost localized at the initial site, due to localization.

The experimental results of the single-photon excitation probabilities for the trajectory Cop
versus the hopping random disorder strength W are shown in Figs. S14. Similar to pumping with
on-site random disorder, dx persists about 2 even with a weak disorder strength and drops with a
relatively strong disorder strength, as discussed in the Sec. II C. More specifically, 6z ~ 2 when
0MHz < W/2r < 0.8 MHz, and dz ~ 0 when W/27 = 2.8 MHz.

Therefore, we experimentally observe a competition between topology and disorder in Thouless
pumping. With both on-site and hopping disorder, the quantized charge transport (or change of
polarization), indicated by the Chern number, is robust against disorder, for weak disorder, and
breaks down when the disorder strength becomes relatively strong.

D. Pumping induced by on-site random disorder

By engineering the RM model Hamiltonian parameterized with (A, §) as shown in Egs. (S14)
and (S15), we can study pumping for the double-loop trajectory Cq;. First, we show dz versus
the periods of two individual loop, 71 and 7, to determine the appropriate evolving time. The
numerical results, as plotted in Fig. S13, indicate that dx is almost 0 when 77 = 7 = 500 ns,
meaning the absence of topological pumping. Then, we show dx versus the on-site random dis-
order strength V. The results shown in Fig. S15 demonstrate topological transport occurs with a
moderate disorder strength in the range 5 MHz < V/27 < 20 MHz, indicating that topological
pumping can be induced by on-site random disorder, and dx drops to zero again when the disorder
strength increases up to V/27 2> 25 MHz.

E. Pumping induced by quasi-periodic hopping disorder

Quantized pumping is absent in the presence of random hopping disorder for the trajectory Cy,
as plotted in Fig. S6A. However, topological pumping may occur when applying quasi-periodic
hopping disorder as discussed in Sec. II F. We show dx versus the quasi-periodic intracell hopping
disorder strength W, in Fig. S16. Although dx ~ 0.4 is still nonzero even in the clean limit due to
the non-adiabatic effect, the rising of dx is captured as W, increases. In addition, éx > 0.9 is ob-
served when 1.2 MHz < W, /27 < 2.7 MHz, implying the existence of Thouless pumping induced
by quasi-periodic disorder. In our experiments, the experimental scanning range of W, /27 is set
up to 3 MHz due to the limitation of Floquet engineering in our device.
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FIG. S12. Experimental data of time evolutions of excitation probabilities and CoMs of pumping with on-
site random disorder strengths ranging from V /27w = 0 MHz to 36 MHz. Topological pumping is robust
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FIG. S14. Experimental data of time evolutions of excitation probabilities and CoMs of pumping versus
the hopping disorder strength ranging from W/27 = 0 MHz to 3.6 MHz. Similar as pumping with on-
site random disorder, the quantized transport is robust against weak disorder and breaks down with strong

disorder.
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FIG. S15. Experimental data of time evolutions of excitation probabilities and CoMs of pumping for the
double-loop trajectory Cq versus the on-site random disorder strength V. The pumped amount AQ) ap-
proximates O in the clean limit, but quantum transport is observed with a moderate disorder strength and
disappears again when disorder is strong enough.
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FIG. S16. Experimental data of time evolutions of excitation probabilities and CoMs of pumping for single-
loop trajectory Cy versus the disorder strength W,,. As the disorder strength increases, CoM moves as the
delay increase, which implies the existence of topological pumping induced by the quasi-periodic hopping
disorder [8].
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Experimental Data Table for Fig. S12

V /27 (MHz) ox standard error
0 1.9563 0

4 1.8107 0.0337
8 1.6136 0.0461
12 1.3985 0.1025
16 1.2552 0.135
20 0.3771 0.1591
24 0.347 0.1388
28 0.117 0.1215
32 0.2668 0.1077
36 0.2116 0.1018

Experimental Data Table for Fig. S14

W /2w (MHz) ox standard error
0 1.9618 0.0
04 2.0358 0.0638
0.8 1.8591 0.1424
1.2 1.3807 0.205
1.6 1.0548 0.1720
2.0 1.0032 0.1651
2.4 0.5021 0.0871
2.8 0.3550 0.1803
3.2 0.1889 0.2364
3.6 0.3014 0.2462
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Experimental Data Table for Fig. S15

V /27 (MHz) ox standard error
0 0.0406 0.0

2 0.2924 0.04995
4 0.4992 0.0575
6 0.5061 0.0814
8 0.6636 0.0907
10 0.7923 0.1037
12 0.7073 0.0683
14 0.8553 0.087
16 0.7256 0.1049
18 0.8147 0.1044
20 0.6323 0.0967
22 0.5447 0.1505
24 0.1554 0.1144
26 0.1501 0.1072
28 0.0888 0.1227

Experimental Data Table for Fig. S16

W,/2m (MHz) ox standard error
0.0 0.3632 0.0

0.3 0.5683 0.0737
0.6 0.5936 0.115
09 0.8392 0.1007
1.2 0.9743 0.1674
1.5 0.9062 0.1531
1.8 0.9075 0.1585
2.1 0.9852 0.1538
24 0.8888 0.1569
2.7 0.91 0.0935
3.0 0.8095 0.1171
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