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Key Points

1. MOSim is capable of generating synthetic datasets for a broad spectrum of omics types,
supporting bulk RNA-seq, ChIP-seq, ATAC-seq, miRNA-seq, Methyl-seq, and transcription
factor data, as well as single-cell omics, including scRNA-seq, SCATAC-seq, and

transcription factors.

2. MOSim enables the robust simulation of complex, many-to-many regulatory relationships

across molecular layers, faithfully capturing intricate regulatory patterns.

3. Offering extensive options for customization, MOSim’s flexible experimental design and
parameterization empowers users to simulate count matrices and multilayer regulatory

networks, tailoring simulations to diverse experimental scenarios and omics types.
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Abstract

As multi-omics sequencing technologies advance, the need for simulation tools capable of
generating realistic and diverse (bulk and single-cell) multi-omics datasets for method testing
and benchmarking becomes increasingly important. We present MOSim, an R package that
simulates both bulk (via mosim function) and single-cell (via sc_mosim function) multi-omics
data. The mosim function generates bulk transcriptomics data (RNA-seq) and additional
regulatory omics layers (ATAC-seq, miRNA-seq, ChlP-seq, Methyl-seq and Transcription
Factors), while sc_mosim simulates single-cell transcriptomics data (SCRNA-seq) with
SCATAC-seq and Transcription Factors as regulatory layers. The tool supports various
experimental designs, including simulation of gene co-expression patterns, biological
replicates, and differential expression between conditions.

MOSim enables users to generate quantification matrices for each simulated omics data type,
capturing the heterogeneity and complexity of bulk and single-cell multi-omics datasets.
Furthermore, MOSim provides differentially abundant features within each omics layer and
elucidates the active regulatory relationships between regulatory omics and gene expression
data at both bulk and single-cell levels.

By leveraging MOSim, researchers will be able to generate realistic and customizable bulk and
single-cell multi-omics datasets to benchmark and validate analytical methods specifically

designed for the integrative analysis of diverse regulatory omics data.

Introduction

Rapid advancements in massive sequencing technologies have significantly facilitated the

widespread adoption of multi-omic assays, enabling a comprehensive exploration of the
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regulatory mechanisms governing biological systems. Consequently, numerous bioinformatics
tools have emerged to assist researchers in processing multi-omics data, with a specific focus
on unravelling multi-layer gene regulatory networks (GRNSs) [1,2]. These GRNs serve as
interpretable computational models, providing insights into the intricate regulation of gene
expression through interconnected networks. Notably, GRNs encompass diverse regulatory
components, including transcription factors (TF), chromatin accessibility, long non-coding
RNAs, micro-RNAs, and methylation, among others [2]. Despite the experimental capacity to
generate both bulk and single-cell multi-omic sequencing datasets, a significant challenge in
GRN studies lies in precisely integrating these multiple omic layers. Therefore, the importance

of benchmarking, tuning, and validating multi-omics integration pipelines becomes evident.

Synthetic data, serving as ground truth, provides an indispensable resource for defining true
positive and negative features sets, enabling rigorous benchmarking, tuning, and validation of
analytical methods. Despite the paramount role of synthetic data, there are few publicly
available algorithms capable of simulating multiple omic data types. To our knowledge, only
three methods support comprehensive multi-omics simulation of gene expression regulation
for bulk datasets. The first, the InterSIM R package [3], generates datasets for DNA
methylation, gene expression, protein abundance, and their relationships. Although the method
allows for customization of the number of biological replicates and the proportion of
differentially expressed features, it lacks options for time series simulation and fails to report
the interaction among features. The second tool, OmicsSIMLA C++ [4], can simulate
genomics, transcriptomics, methylation, and proteomics data. Nevertheless, it restricts the
generation of count data matrices to the transcriptomics module and does not include
customizable options for time points or replicates. The third tool, the sismonr R package [5],
simulates RNA-seq count data in conjunction with pre- and post-transcriptional regulatory

networks, offering time-series simulation capabilities. Nonetheless, this method lacks the
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flexibility to customise expression profiles and dynamics, and the only omic quantification data

it generates is gene expression.

Given the cell-type-specific nature of regulatory regions, it is surprising that only two methods
currently support multi-omics simulation for single-cell datasets. The statistical simulator
scDesign3 [6] encompasses SCRNA-seq, SCATAC-seq, CITE-seq and methylation. Meanwhile,
scMultiSim [7] can simulate scRNA-seq and scATAC-seq datasets. While both methods
accurately simulate datasets closely resembling real data, none of them provide essential
customization options, such as the number of experimental groups, biological replicates,
differentially expressed genes, accessible chromatin, and reporting of interaction between
features. Importantly, none of these tools is designed to simulate gene regulatory relationships
across omics features, which underscores the existing gaps and limitations in current multi-
omics simulation tools. GRouNdGAN [8] partially addresses this limitation by modeling GRNs
with genes and TFs with single-cell resolution. However, it does not support other omic
modalities, multiple experimental conditions, or multiple samples, further underscoring the

need for more comprehensive simulation tools.

Here we present MOSim, a multi-layer regulatory network simulator for both bulk (RNA-seq,
ATAC-seq, miRNA-seq, ChlP-seq and Methyl-seq) and single-cell datasets (SCRNA-seq and
SCATAC-seq), implemented as an R Bioconductor package. In a nutshell, MOSim generates
quantification data for each omics layer, precisely controlling active regulatory relationships
between regulatory omics and gene expression data for differentially expressed genes.
Moreover, MOSim empowers users to customise data generation, enabling the inclusion of
experimental groups, biological replicates, time series, and diverse cell types. By harnessing
the capabilities of MOSim, bioinformatic tool developers will be able to generate realistic and

customizable bulk and single-cell multi-omics datasets, facilitating the benchmarking and
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93 validation of analytical methods tailored explicitly for integrating multi-omics data and

94  inference of multi-layer GRNs.

s Results

96 Overview of MOSim’s workflows

97  MOSim is a bulk and single-cell simulation environment designed for generating multi-omic

98 regulatory networks with precise control over regulator-gene relationships. To create a

99  synthetic ground truth multi-omic dataset, MOSim requires as input the list of omic data types
100 to be simulated, a single sample of seed count data for each of them, and an association file for
101  each regulatory omic type, indicating the a priori or potential regulatory features associated
102  with each gene (Figure 1A). While MOSim provides users with example multi-omics datasets
103  to use as seed count data for simulation, the algorithm may also be fed with the user’s count
104  dataset of choice, regardless of organism, disease or platform of origin. Besides simulation of
105 RNA-seq or scRNA-seq data depending on the type of study (i.e. bulk or single-cell), currently
106  supported omic regulatory data types include ChIP-seq, miRNA-seq, Methyl-seq, ATAC-seq
107 and scATAC-seq. The algorithm also supports modelling Transcription Factor (TF) - target

108  gene interactions from both bulk and single-cell RNA-seq data.

109  Users can define various configuration parameters related to the experimental design, such as
110 the number of experimental groups, time-points or cell types (if applicable), replicates per
111  experimental condition, data dispersion, number of differentially expressed genes and number
112  of regulators with activator or repressor effects. MOSim outputs simulated count matrices for
113  each expression and regulatory data type. Moreover, it generates a record of all parameters

114  used in data creation (MOSim simulated settings), which is indispensable for accurately testing
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115 GRN inference bioinformatic tools (i.e. mean expression, dispersion, time profile, fold change

116  etc.) (Figure 1A).

117  The MOSim package includes two main functions: mosim, for bulk datasets simulation, and

118  sc_mosim, for single-cell datasets simulation.

119  The simulation results include three distinct outputs: (i) the simulated omic count data,
120  represented as a matrix for each omic modality. Each matrix contains the same number of omic
121  features as provided in the seed data and the number of samples, groups, cells, etc., specified
122 by the user; (ii) for gene expression, a table listing the genes simulated as differentially
123  expressed, along with their temporal profile (only for bulk; see Table 1); and (iii) a table for
124  each omic modality detailing the regulatory relationships provided by the user, including the

125  simulated activator or repression regulations (see Tables 2 and 3).

126  In addition to the primary MOSim functions for simulating bulk (mosim) or single-cell
127  (sc_mosim) multi-omic datasets, the package provides several other useful functions. These
128 include functions for modifying seed data (omicData and sc_omicData), adjusting default omic
129  parameters (omicSim), and retrieving simulation results and settings (omicResults,

130  omicSettings, sc_omicResults and sc_omicSettings).
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Figure 1: Schematic representation of the MOSim algorithms. A) MOSim’s simulation functionalities. B)

6 Subset TF

Flowchart of the mosim pipeline to simulate bulk multi-omics datasets. C) Flowchart of the sc_mosim pipeline

to simulate single-cell multi-omics datasets.

131

132 Bulk multi-omic GRNs: the mosim functionality

133  The mosim workflow (Figure 1B) consists of the following steps:

134 1. As the more extended assumption for RNA-seq data, a negative binomial (NB)

135 distribution is applied to generate a bulk RNA-seq count matrix, obtaining the mean
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136 and dispersion from the seed sample and the amount of variability across replicates set
137 by the user.

138 2. Differentially expressed genes (DEGs) are randomly selected from the seed RNA-seq
139 sample. DEGs are labelled with one of the following time-course patterns in each
140 experimental group: continuous induction (increasing linear pattern), continuous
141 repression (decreasing linear pattern), transitory induction (quadratic pattern with an
142 intermediate maximum), transitory repression (quadratic pattern with an intermediate
143 minimum), or flat, which is also the default pattern for non-DEGs.

144 3. Expression profiles are simulated based on the seed count values to closely reflect real
145 data distributions. For transitory profiles, the algorithm randomly selects the time point
146 at which the expression reaches its maximum or minimum and simulates a quadratic
147 pattern. For continuous profiles, the algorithm randomly defines both the expression
148 value at the first time point and the slope of change over time, simulating a linear
149 pattern. These patterns vary depending on the coefficient values of the simulation
150 function, particularly as the number of time points increases, and thus, although there
151 are four theoretical temporal profiles, the simulated profiles encompass a wider range
152 of patterns. DEGs with flat profiles or DEGs in a two-group design with no time points
153 are modelled by introducing a fold-change in one of the experimental conditions. For
154 designs with more than two experimental groups, the first serves as the reference and
155 the fold-change is applied to a random selection of the remaining groups.

156 4. After generating gene expression values for each condition, replicates are simulated
157 using a NB distribution.

158 5. All bulk MOSim data types (except Methyl-seq) are assumed to follow a NB
159 distribution. Therefore, the NB is also used to simulate replicates for the remaining
160 omics, but subjected to the simulated settings of the provided regulatory data and a
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randomly chosen direction of regulation. Regulators labelled as activators adopt the
same profile as their associated genes, while repressors follow the opposite pattern.

6. For Methyl-seq, proportions are generated instead of counts based on the binomial
distribution, following the strategy described in [9]. TF expression values are extracted

from the simulated RNA-seq data to simulate TF regulation.

A detailed explanation of the bulk mosim algorithm implementation is provided in

Supplementary File 1.

Single-cell multi-omic GRNs: the sc_mosim functionality

The workflow of sc_mosim (Figure 1C) consists of the following steps:

1. Following the approach used by the acorde R package for defining isoform profiles
across cell types in single-cell RNA-seq [10], gene expression and peak accessibility
values in the seed datasets are reorganised to build synthetic features following cross-
cell type patterns, i.e., indicating low or high expression in a given cell type.

2. Peak accessibility values are rearranged to reflect the regulatory relationship between
scRNA-seq and scCATAC-seq. Regulators labelled as activators share the same cross-
cell type profile as their associated gene, while repressors have the opposite pattern.

3. Feature intensity, variability (variance of normalised counts across cells of the same
cell type) and library size of the rearranged seed SCRNA-seq and sSCATAC-seq datasets
are estimated using SPARSiIm. A reference dataset is then simulated for each omic data
type using a Gamma-Multivariate Hypergeometric model [11].

4. DEGs are randomly selected from the reference SCRNA-seq. DEGs and their associated
differentially accessible peaks between experimental groups are generated by

introducing a fold-change in the experimental conditions, using the first condition as
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184 the reference. Additionally, random noise is added to the quantification values to
185 introduce realistic variability between experimental groups and across features.

186 5. Feature intensity and library size of the simulated sSCRNA-seq and scCATAC-seq count
187 matrices for each experimental group are estimated using SPARSiIm. Biological
188 replicates are then simulated using the Gamma-Multivariate Hypergeometric model
189 [11], with the estimated parameters and a small random variability. TF expression
190 values are extracted from the simulated sScRNA-seq data to simulate TF regulation.

191 A detailed explanation of the single-cell sc_mosim algorithm implementation is provided in

192  Supplementary File 1.

193 Validation of the bulk (mosim) simulation approach

194  To demonstrate mosim’s capabilities for bulk sequencing data, we simulated RNA-seq and
195 ATAC-seq data with five time points, two experimental groups, and three replicates, using the
196  STATegra [12] samples included in the MOSim R package as seed data. We set the number of
197 DEGs to 15% and modelled the five temporal profiles previously described. MOSim returns
198  two types of output. The omicResults function returns a list containing the simulated data
199  matrix for each omic, with features in rows and observations in columns. The second results
200  object, accessible via the omicSettings function, includes the mosim-generated settings for the
201  simulated relationships between gene expression and the rest of omics, as illustrated in Tables
202  1land 2 containing simulation settings for RNA-seq and ATAC-seq, respectively. For instance,
203 gene ENSMUSG00000052726 is identified as a DEG, displaying transitory repression in
204  condition 1 and transitory induction in condition 2. The chromatin-accessible region
205 1 140257767_140257897 is simulated as a significant activator of this gene in both conditions,

206 thereby following the same temporal profiles as the regulated gene.

10
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Table 1: MOSim-defined settings for RNA-seq simulation example. ID: Gene identifier; DE: Whether the
gene is differentially expressed (TRUE) or not (FALSE); GrX: Type of gene temporal profile in experimental
group X; Tmax.GrX: For transitory profiles, time point where the minimum or maximum is reached in the

corresponding group X.

ID DE Grl Gr2 Tmax.Grl | Tmax.Gr2
ENSMUSGO0000097082 TRUE | Tran.Ind. | Tran.Ind. 1.872 1.311
ENSMUSG00000020205 TRUE | Tran.Ind. | Cont.Ind. 2.114 NA
ENSMUSG00000055493 TRUE | Tran.Ind. | Cont.Rep. 3.062 NA
ENSMUSGO0000087802 FALSE Flat Flat NA NA
ENSMUSGO0000017204 TRUE | Tran.Ind. | Cont.Rep. 2.610 NA
ENSMUSGO0000017221 TRUE | Tran.Ind. | Cont.Ind. 1.359 NA
ENSMUSG00000052726 TRUE | Tran.Ind. | Tran.Ind. 3.178 1.626

Table 2: MOSim-defined settings for ATAC-seq simulation example. ID: Genomic coordinates of ATAC-
seq region (chromosome, and start and end positions for chromatin-accessible regions); Gene: Regulated gene;
Effect.GrX: Regulatory effect of the ATAC-seq region on gene expression in experimental group X; GrX :

temporal profile of the ATAC-seq region in experimental group X.

ID Gene Effect.Grl | Effect.Gr2 Grl Gr2
10_111588324_111588448 ENSMUSGO0000097082 activator activator Trans.Ind. | Trans.Ind.
10_111588324_111588448 ENSMUSG00000020205 activator NA Trans.Ind. | Trans.Ind.

10_11358301_11358431 ENSMUSGO0000055493 activator activator Trans.Ind. Cont.Rep.
10_11358301_11358431 ENSMUSG00000087802 NA NA Trans.Ind. Cont.Rep.
11_98682094_98682786 ENSMUSGO0000017204 repressor activator Trans.Rep. Cont.Rep.
11_98682094_ 98682786 ENSMUSGO0000017221 repressor repressor Trans.Rep. Cont.Rep.
1_140257767_140257897 ENSMUSGO0000052726 activator activator Trans.Rep. | Trans.Ind.

207
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208  We applied the K-means method to cluster simulated gene profiles, aiming to verify that the
209 algorithm generates the expected profiles. Features with an average expression per condition
210  of less than one count per million were filtered out. We compared the MOSim assigned profile
211  with the average profile of the corresponding cluster and classified a gene as correctly
212  simulated if both profiles coincided (for example, if a gene was assigned a constant induction
213  profile and clustered with a group exhibiting a continuous increase in expression). The optimal
214  number of clusters was found to be k = 7 for K-means clustering, which resulted in one cluster
215  persimulated pattern and time point of maximal or minimal expression. Figure 2A displays the
216  K-means clustering results for the simulated RNA-seq data in group 1, revealing that most
217  genes in the cluster faithfully follow the mean cluster profile, as expected. Overall, less than

218  0.5% of the simulated profiles were assigned to an incorrect cluster.

219  We further evaluated the simulated data using Principal Component Analysis (PCA). The PCA
220  score plot (Figure 2B) indicates that the simulated data effectively recapitulated a quality time
221  course dataset, where replicates were clustered together and consecutive time points were

222  proximate.

223  Following the validation of individual omic data, relationships between gene expression and
224 regulatory omics were evaluated by measuring correlations. An interaction between a regulator
225 and a gene is expected to yield a high absolute correlation value when the regulator exerts a
226  modelled effect on the gene, sharing the same profile type for activation or exhibiting an
227  opposite pattern (i.e., continuous induction vs continuous repression) for repression. When no
228  effectis modelled between the gene and regulator, the profiles will exhibit uncorrelated patterns
229  (e.g. transitory vs continuous). Pearson’s correlations were calculated for each interaction and
230  separately for each group. Interactions involving transitory profiles in both the regulator and
231 the gene may include a delayed response, where the signal maxima -or minima- occur at

232  different time points, with Pearson’s correlation failing to capture these regulatory

12
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233  relationships. To address these scenarios, we also computed a lagged correlation, limiting the
234  sliding of time points to a maximum of two to control for false positives, and selecting the
235 maximum value from Pearson and lagged correlations as the correct measure. In the ATAC-
236  seq example (Figure 2C), 99.4% of interactions with a modelled activator or repressor effect
237  displayed a correlation value above 0.9, while 0% of interactions without a modelled effect
238 reached this threshold. Correlation values varied widely for these "no effect" interactions,
239 ranging from the expected low values to relatively high ones. The latter can often be attributed
240  to partial overlap between non-comparable profiles, such as a transient induction profile in the
241  gene alongside a continuous induction profile in the regulator, both sharing an increasing linear
242  trend over the same time points. This pattern aligns with the algorithm's intended and expected
243  behaviour. Figure 2D presents simulated temporal profiles for each experimental group,
244  showcasing two randomly selected gene-regulator pairs. In the first pair (top plots), the
245  regulation is activation in both groups, while in the second pair (bottom plots), the regulation

246  isrepression, also consistent across both groups.

13
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Figure 2: A) Representation of K-means clusters for bulk RNA-seq in group 1. The coloured lines represent
the cluster mean profiles. The temporal simulated profiles associated with each cluster are indicated in the
figure legend: one cluster corresponds to continuous repression, one to continuous induction, and one to a flat
profile. Additionally, there are two clusters showing a maximum peak at different intermediate time points for
transient induction, and two clusters showing a minimum peak at different time points for transient repression.
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B) Exploratory analysis using Principal Component Analysis on low-count filtered data with logarithmic
transformation. The first principal component separates the samples by the experimental group, while the
second summarises the temporal profile. X- and Y-axis labels indicate the percentage of variability explained
by the corresponding principal component. C) Boxplot of absolute Pearson’s correlation values from
interactions of ATAC-seq regulators with genes in Group 1. Regulation is TRUE when the regulator has been
simulated to activate or repress gene expression. Regulation is FALSE for interactions where the regulator has
not been simulated to affect gene expression. D) Two random examples of gene-regulator temporal profiles in
each group. The left Y-axis shows gene expression values, while the right Y -axis shows counts for ATAC-seq

regions. Vertical bars at each time point show the standard deviation of the 3 simulated replicates.

247

248 Validation of the single-cell (sc_mosim) simulation approach

249  Todemonstrate the utilities of sc_mosim for single-cell sequencing data, we simulated SCRNA-
250 seq and scATAC-seq data with six cell types, two experimental groups, and three replicates.
251  We used the ppmcMultiome dataset available from SeuratData [13] as seed data and the gene-
252  regulator association list provided in the MOSim R package. We set the number of DEGs to
253  30% upregulated and 20% downregulated. Variances were set to 0.1 between replicates and
254 0.3 between experimental groups, and we allowed for the modelling of co-expression patterns
255  across cell types, following seven random profiles. Finally, we defined 20% activator and 10%

256  repressor regulators in Group 1, and 10% activators and 20% repressors in Group 2.

257  In single-cell simulations, MOSim generates two main types of output. The sc_omicResults
258  function retrieves a list containing the simulated data matrices for each omic, experimental
259  group and biological replicate, with features in rows and cells in columns. The second results
260  object, extracted with the sc_omicSettings function, includes the MOSim-generated settings

261 that associate genes and peaks (Table 3), and specify TFs with their target genes, along with
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262  the type of regulatory relationship between them. For example, gene PTPN22 is identified as
263  an upregulated DEG that follows the across-cell-type expression pattern 5 (Figure 3A). The
264  chromatin-accessible region chr12-31742761-31743451 is modelled as a significant activator
265  of this gene, following the same across-cell-type profile as the regulated gene. Conversely, the
266  association between the gene RBP7 and chromatin-accessible region chr3-101753518-
267 101753798 exemplifies a repressor effect of the regulator omic, where gene and peak follow
268  opposite patterns (clusters 2 and 5, respectively), with the gene downregulated when the

269  regulator is upregulated (Table 3).

Table 3: MOSim-defined settings for sScRNA-seq and scATAC-seq for the simulation example. Gene_ID:
Gene identifier; Peak_ID: Peak identifier; RegEffect: Regulatory effect of the sSCATAC-seq region on gene
expression in experimental Group 2; G_cluster: gene expression profile across cell types; P_cluster: peak
accessibility profile across cell types; G_DE: how the gene is differentially expressed; P_DE: how the peak is
differentially accessible. G_FC: Fold Change applied to induce differential gene expression in Group 2

compared to Group 1; P_FC: Fold Change applied to induce differential peak accessibility in Group 2 compared

to Group 1.

Gene_ID Peak_ID RegEffect | G_cluster | P_cluster |G_DE|P_DE| G_FC P_FC
PRXL2B chr19-46542333-46543301 Activator 1 1 Up Up | 67.443|67.443
SPSB1 chr22-39902952-39911753 Activator 7 7 Up Up |73.932|73.932
PTPN22 chr12-31742761-31743451 Activator 5 5 Up Up | 45.054 | 45.054

PLEKHG5 chr2-132267871-132268833 Repressor 2 5 Down| Up | ©.135 | 57.516

RBP7 chr3-101753518-101753798 Repressor 2 5 Down| Up 0.159 | 88.201
FRRS1 chr2-88765163-88766080 Repressor 2 5 Down| Up 0.203 | 74.137

270

271  To demonstrate the robustness of the single-cell MOSim framework for GRN simulation, we
272  assessed its capacity to generate the expected across-cell-type expression profiles. Single-cell
273  data is typically characterised by a high abundance of zeros and many cells belonging to the
274  same cell type, leading to increased noise and outliers. Given the robustness of Spearman’s

275  correlation distance and K-medoids clustering techniques in noisy scenarios, we used them to
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276  extract and cluster the simulated feature profiles across cell types. The cluster average profiles
277  were then compared to the sc_mosim simulated profiles after excluding genes with flat
278  expression profiles. A feature was deemed correctly simulated if both profiles matched. To
279  achieve this, we set the optimal number of clusters to K = 10 for K-medoids clustering, which
280  resulted in one or two clusters per simulated co-expression pattern, minus flat expression.
281  Clustering of the simulated scRNA-seq and scATAC-seq revealed that most features closely
282 adhered to the mean cluster profiles as expected (Figure 3A), with only 3.3% of simulated

283  profiles assigned to an incorrect cluster.

284  We further assessed whether cells from the same cell types, experimental groups, and
285  biological replicates clustered according to the defined simulation settings using PCA for
286  dimensionality reduction (Figure 3B). PCA results showed robust clustering of the simulated
287  data, capturing a high-quality single-cell dataset where PC1 separated cells by experimental
288  group, while PCs 1 to 4 represented the cohesive clustering of cell types (Figure 3B).
289  Additionally, while the majority of data variability was due to differences specified between

290 groups, small variability between biological replicates was also observable (Figure 3B).

291  To evaluate whether simulated regulatory relationships presented stronger correlations than
292  non-regulatory peak-gene associations, Kendall’s correlations between gene and peak profiles
293  were computed within each simulated experimental group. A strong absolute correlation is
294  expected for pairs when a regulatory effect was modelled, reflecting similar activation or
295  opposite repression profiles. In contrast, non-regulatory peak-gene interactions typically
296  display lower and more variable correlation values due to differences in absolute terms. As
297  shown in Figure 3C, 79.5% of interactions with modelled activator or repressor effects had
298  absolute correlation values exceeding 0.7, while “no effect” interactions displayed a broader
299 range, centered at 0.32 absolute correlation. This range is likely due to partial overlaps, such

300 as shared trends between cell types, which are expected outcomes of the simulation.
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Figure 3: A) Representation of clustering patterns for single-cell RNA-seq across cell types for group 1; split
into two plots to improve visualization and cluster differentiation. The coloured lines represent the cluster mean
profiles. B) Exploratory analysis using Principal Component Analysis to visualize clustering of cells coloured
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by cell type, experimental group and replicate. X- and Y- axis labels indicate the percentage of variability
explained by the corresponding principal component. C) Boxplot of absolute Kendall correlation values from
interactions of scRNA-seq genes in Group 1 with sSCATAC-seq regulators. Regulation is TRUE when the
regulator has been simulated to activate or repress gene expression. Regulation is FALSE for interactions where
the regulator has not been simulated to affect gene expression. D) Two examples of gene-regulator single-cell
simulated profiles in each group. The left Y-axis shows gene expression values, while the right Y -axis shows
counts for sSCATAC-seq regions. Vertical bars at each time point show the standard error of the mean of the

cells for the 3 simulated replicates.

301

302  Finally, Figure 3D illustrates simulated feature profiles across cell types for two pairs of gene-
303 regulator associations, one with an activator effect and the other with a repressor effect. The
304  first regulation (top plots) represents activation in both groups, whereas the second regulation

305 (bottom plots) represents repression across both groups.

306 Simulation of multilayered Gene Regulatory Networks

307  Finally, we illustrate how MOSim effectively simulates multilayered GRNs. Simulating GRNs
308 ischallenging due to the complex many-to-many relationships among some regulators and their
309 target genes. For example, a TF or microRNA might regulate multiple target genes with varying
310 regulatory relationships, while the same gene could be influenced by multiple factors. A
311  multimodal GRN simulation algorithm must therefore produce a consistent dataset with
312  expression patterns reflecting these different regulatory patterns. In MOSim, users can specify
313  a desired percentage of active regulatory relationships, and the algorithm adjusts regulatory

314  pairs and profiles to achieve this level of regulation across layers (Figures 2 and 3).

315 To demonstrate MOSim’s capabilities in modelling multilayered regulatory interactions, we

316 used the STATegra dataset [12] to simulate RNA-seq, miRNA-seq, and TF data. The
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317  simulation was performed with a sequencing depth of 30 million reads, two experimental
318  groups, three replicates per group, and six time points, forming a detailed experimental design.
319  Additionally, we specified that 5% of genes be differentially expressed, and 40% of miRNA-

320  seq over the total number of regulators should be repressor effects.

321  Given the complexity of visualising the simulated GRN, we selected the first 100 differentially
322 expressed genes and plotted their corresponding GRNs for each experimental group (Figures
323 4A and 4B). To illustrate the profiles of features in these simulated subnetworks and the
324  efficiency of MOSim in creating consistent expression patterns across different layers, we
325 generated heatmaps for each experimental group (Figure 4C). To facilitate visualisation and
326  interpretation, we calculated the mean expression across replicates for each time point and
327  experimental group, scaling the expression values across modalities, since each omic layer may
328  have different value ranges. Figure 4C demonstrates MOSim’s capacity to simulate distinct
329 feature profiles across layers, accurately reflecting both activator and repressor regulatory

330 effects.

331
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Figure 4: Representation of multi-layer regulatory networks simulated by MOSim. Genes are represented in

green, transcription factors are in orange, and miRNAs are in yellow. Blue arrows represent activator
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regulations, while red arrows repressor regulations. A) Gene Regulatory Network for Group 1. B) Gene
Regulatory Network for Group 2. C) Heatmaps for the expression profiles of the genes, miRNAs and
Transcription Factors in Gene Regulatory Networks of Groups 1 and 2. The right Y -axis shows the omic data
type and the subnetwork they belong to (which refers to the connected subnetworks observed in A) and B)

framed in pink and blue rectangles).

332

333  This example demonstrates that MOSim can generate consistent, complex modules with both
334  positive and negative regulatory relationships, spanning multiple layers and including one-to-
335 many and many-to-many interactions—providing a unique capability to simulate the

336  complexity of gene regulation.

337 Application of MOSim for benchmarking a GRN inference tool

338  To demonstrate one potential application of MOSim simulations, we used MOSim-generated
339 data to test MORE (Multi-Omics Regulation), a tool designed to infer GRNs from bulk multi-
340  omics data [14]. Specifically, we simulated RNA-seq, miRNA-seq and TF data with MOSim
341  using the STATegra dataset [12]. The simulation was configured with a sequencing depth of
342 30 million reads, two experimental groups, 20 time points per group, and one replicate per time
343  point. Additionally, we set the percentage of differentially expressed genes to 50%, and the

344  percentage of significant regulations to 60%.

345  Priorto applying MORE, the RNA-seq count matrix was pre-processed. Low-count genes were
346  filtered out with the NOISeq R package [15], using a threshold of 1 count per million. Count
347  data was normalized with the weighted trimmed mean of M-values (TMM) normalisation in
348 the NOISeq package and voom-transformed [16]. Differential expression analysis between
349  groups 1 and 2 was performed with the limma R package [17], yielding 10593 DEGs (FDR <

350 0.05). These DEGs were set as the target omic features required by MORE. The miRNA-seq

22


https://paperpile.com/c/rBL4SQ/hkyw
https://paperpile.com/c/rBL4SQ/XLDk4
https://paperpile.com/c/rBL4SQ/ZGIw
https://paperpile.com/c/rBL4SQ/KQEu
https://paperpile.com/c/rBL4SQ/SthZ
https://doi.org/10.1101/421834
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/421834; this version posted February 17, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

351 and TF data were used as the regulatory omics. For GRN inference, we applied the MORE
352  PLS1 option with auto-scaling and Jack-Knife resampling for the selection of significant

353  regulators.

354  MORE fitted 5573 models, one for each gene with potential regulators. The MOSim simulation
355 provided a total of 370,566 potential regulatory interactions (gene-regulator pairs), 47% of
356  which were simulated as significant in at least one of the groups (174,051 in group 1 and
357 174,067 in group 2). These significant regulations served as the ground truth, or positive
358 instances, to evaluate MORE’s performance. At a significance level of 0.05, MORE identified
359 233,598 significant regulations in group 1 and 240,474 in group 2 that were compared to the
360 positive instances. The analysis yielded similar error metrics for both groups, with a slightly
361  Dbetter performance observed in miRNA-seq compared to TFs. Overall, MORE achieved a
362  sensitivity of 85.5% and an F1-score of 62.9%. These results demonstrate MORE’s ability to
363  detect significant regulatory interactions, while also indicating areas where the tool could be

364  improved or where hyperparameter tuning might enhance its performance.

365 This example highlights how MOSIm can serve as a reliable ground truth framework for

366  evaluating the performance of GRN inference tools during their development.

367 Benchmarking scMOSim’s scRNA-Seq simulations using a deep

368 learning algorithm

369 To further demonstrate other applications of MOSim simulations, we tested it using a
370  Variational Autoencoder (VAE)-based tool. VAEs are capable of learning meaningful latent
371  representations of single-cell data. Unlike standard autoencoders, VAES impose a probabilistic
372  structure on the latent space, enabling more robust feature extraction and better generalization

373  across datasets. This makes VAEs particularly useful for clustering, dimensionality reduction,
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374  and transcription factor perturbation analysis[18]. Examples of VAE models for single-cell
375 data include scGen[19], VEGA[20], siVAE[21], scVAE[22], scDHA[23], scVI[24],

376  manatee[25] and ScinfoVAE[26].

377  We tested scMOSim-generated single-cell RNA-Seq data using the VAE-based tool, single-
378  cell Decomposition using Hierarchical Autoencoder (scDHA)[23]. scDHA first removes noise
379 using a non-negative kernel autoencoder and then projects the data into a low-dimensional
380  space using a stacked Bayesian autoencoder. Finally, it applies iterative perturbations to reduce

381  overfitting and create a more generalized representation.

382  We used one replicate from a single experimental group of scRNA-Seq data simulated with
383 scMOSim to evaluate cell clustering with scDHA. The clustering identified five of six
384  simulated cell types, with one cluster combining cDC and Treg cells (Table 4). The Adjusted

385 Rand Index (ARI) score was 0.949, showing high agreement between predicted and true labels.

Table 4: Number of cells per cell-cluster identified using scDHA, compared with ground truth cell type groups

simulated using scMOSim.
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386  These results demonstrate scMOSim’s, and its underlying algorithm SPARSim’s[11], ability
387 to reliably simulate single-cell RNA-Seq ground truth datasets with different cell-types

388  sufficiently distinguishable as to be identified by a VAE algorithm such as scDHA.

389 DIScussion

390 Multi-omic assays, facilitated by massively parallel sequencing technologies, have greatly
391  enhanced our ability to profile regulatory mechanisms in biological systems [1,2], leading to
392  adeeper understanding of diseases and model organisms. However, benchmarking studies of
393  bioinformatic tools designed to elucidate multi-layered GRNs by integrating multi-omics
394  datasets have exposed notable discrepancies in library preparation strategies and analysis
395 methods [27]. These discrepancies underscore the complex challenge of accurately identifying
396 GRNs. As multi-omic sequencing continues to gain traction in the study of regulatory

397  mechanisms, there is a pressing need for tools that support rigorous GRN inference assessment.

398 MOSim was developed to provide a robust framework for simulating bulk and single-cell
399  multi-omics data in a controlled setting. Using a seed dataset and a regulator-gene association
400 matrix, MOSim generates realistic simulated count matrices for both bulk and single-cell
401 transcriptomics data, as well as for associated regulatory omics. For bulk data, the simulation
402  is based on the negative binomial distribution, while for single-cell data, it leverages the well-
403  established simulator SPARSIm[11]. By using a seed dataset as a reference to infer
404  distributions, MOSim generates count matrices that closely mirror real omic data, offering a
405  more authentic representation than simulators that artificially construct count matrices without

406  areal-data foundation [28].

407  Additionally, MOSIim operates at the count matrix level rather than simulating read data,

408 providing a unified framework for generating multi-omics data across different library
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409  preparation methods (e.g., SmartSeq2, 10x Genomics). This allows users to select a preferred

410 method as the seed dataset for MOSim, adding flexibility to the simulation process.

411  MOSim enables a fast and effortless generation of bulk and single-cell count data matrices for
412 multiple omic types, supporting flexible experimental designs. Importantly, the algorithm can
413  simulate complex regulatory relationships between gene expression and other molecular
414  components, guided by prior knowledge, such as target mMRNA-microRNA associations. This
415  flexibility in defining experimental designs, DEGs, and active regulators makes MOSim a
416  versatile tool for a variety of different applications, including: i) validating methods aimed at
417  modelling complex, multi-layered regulatory networks, ii) benchmarking multi-omics data
418 integration pipelines, iii) benchmarking GRN inference tools [2], iv) evaluating differential
419  expression and accessibility analysis tools [24], v) testing single-cell data clustering methods
420  (Supplementary File 1) [24], vi) evaluating multi-omics visualization tools, vii) testing methods
421  for time-series analysis in RNA-seq data [29], among others. Several tools have already been
422  tested using MOSim simulations, including DEGRE [30], scAl [31], JISAE [32], GR-NIC [33]
423  and scLRTD [34], highlighting MOSim’s ability to specify an association matrix for linking
424 regulators with transcripts further allows users to tailor MOSim outputs to align with the

425  intended integration goals of their analysis tools.

426  The MOSim framework has some limitations. Currently, single-cell simulation is restricted to
427 scRNA-seq and scATAC-seq, as these are presently the only two commercially available
428  sequencing techniques that can be simultaneously performed on the same cell. As additional
429  single-cell omics techniques become widely available, extending MOSim to other data types
430  will be straightforward based on its bulk framework. At this point, MOSim is not prepared to
431  simulate GRN with spatial resolution, which could be inferred from spatial multi-omics data.
432  While these datasets are not yet widespread, they might be in the near future. We envision that

433  the flexible MOSim simulation framework could incorporate the spatial information either as
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434  covariates of the regulatory model or by modelling cell-to-cell communication signals as an
435  additional regulatory layer. These possibilities are to be explored in future work. Finally, both
436  bulk and single-cell modules are designed to simulate gene regulatory relationships based on
437  sequencing data, limiting applicability to other omics layers like proteomics and metabolomics,
438  which may influence gene regulation in more complex or uncertain ways. Future work will
439 also explore extending MOSim to simulate interactions between gene expression, the

440  proteome, and the metabolome.

221 Conclusion

442  The integration of multi-omics datasets for GRN identification remains a challenging task. We
443  demonstrate that MOSim serves as an essential resource for benchmarking integration tools,

444 filling a critical gap in the multi-omics sequencing field.

225 Methods

446  The MOSim algorithms are introduced in the results section and extended in Supplementary
447  File 1. The algorithms are implemented in R and mainly use R packages dplyr [35], purrr [35],
448  Stats [36], Iranges [37], Seurat [38], SPARSIm [11], and adapted scripts from Acorde [10] and
449  WGBSSuite [9].

450

451  MOSim algorithms assessment

452  The performance of the MOSim bulk simulation was tested with mouse multi-omics data from
453  the STATegra project [12], while single-cell simulation performance was evaluated using the

454 human pbmc.multiome 10x Genomics dataset from the SeuratData R package [13].
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455  For the bulk data, K-means clustering [39] was applied to the simulated feature profiles to
456  assess the correct simulation of temporal expression patterns. For single-cell data, the simulated
457  count matrix was aggregated to obtain the average count per cell type. Spearman’ distance (1 -
458  Spearman’s correlation [40]) and partition around medoids (K-medoids [41]) clustering were
459  then used to cluster gene expression profiles across cell-types. In both cases, the optimal
460  number of clusters was obtained by combining the maximisation of Silhouette’s coefficient and
461  minimising the intra-cluster variability.

462  In both bulk and single-cell simulations, a log transformation (log (x + 1))[42] was applied to
463  the data. PCA was used to confirm that clustering aligned with the simulation settings. Finally,
464  to validate gene-regulator relationships, Pearson’s correlation was computed for bulk data and
465  Kendall’s Ty correlation for single-cell data [43]. These correlations were compared with

466  20.000 random feature pairs with no simulated regulatory effects.

s67  Availability of data and materials

468  The package is released under the GNU Public License to the community as a package named
469  MOSim, for Multi-Omics Simulator, at Bioconductor

470  (https://bioconductor.org/packages/MOSim/).

471  Bulk example data in MOSim was generated by the STATegra project [12]. Single-cell
472  example data is available in the ppbmc.multiome dataset in the SeuratData R package [13]. Code
473 to reproduce the figures in the manuscript is available on github

474  (https://github.com/BiostatOmics/MOSim plots).
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