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Key Points 12 

1. MOSim is capable of generating synthetic datasets for a broad spectrum of omics types, 13 

supporting bulk RNA-seq, ChIP-seq, ATAC-seq, miRNA-seq, Methyl-seq, and transcription 14 

factor data, as well as single-cell omics, including scRNA-seq, scATAC-seq, and 15 

transcription factors. 16 

2. MOSim enables the robust simulation of complex, many-to-many regulatory relationships 17 

across molecular layers, faithfully capturing intricate regulatory patterns. 18 

3. Offering extensive options for customization, MOSim’s flexible experimental design and 19 

parameterization empowers users to simulate count matrices and multilayer regulatory 20 

networks, tailoring simulations to diverse experimental scenarios and omics types. 21 
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Abstract 22 

As multi-omics sequencing technologies advance, the need for simulation tools capable of 23 

generating realistic and diverse (bulk and single-cell) multi-omics datasets for method testing 24 

and benchmarking becomes increasingly important. We present MOSim, an R package that 25 

simulates both bulk (via mosim function) and single-cell (via sc_mosim function) multi-omics 26 

data. The mosim function generates bulk transcriptomics data (RNA-seq) and additional 27 

regulatory omics layers (ATAC-seq, miRNA-seq, ChIP-seq, Methyl-seq and Transcription 28 

Factors), while sc_mosim simulates single-cell transcriptomics data (scRNA-seq) with 29 

scATAC-seq and Transcription Factors as regulatory layers. The tool supports various 30 

experimental designs, including simulation of gene co-expression patterns, biological 31 

replicates, and differential expression between conditions. 32 

MOSim enables users to generate quantification matrices for each simulated omics data type, 33 

capturing the heterogeneity and complexity of bulk and single-cell multi-omics datasets. 34 

Furthermore, MOSim provides differentially abundant features within each omics layer and 35 

elucidates the active regulatory relationships between regulatory omics and gene expression 36 

data at both bulk and single-cell levels. 37 

By leveraging MOSim, researchers will be able to generate realistic and customizable bulk and 38 

single-cell multi-omics datasets to benchmark and validate analytical methods specifically 39 

designed for the integrative analysis of diverse regulatory omics data. 40 

Introduction 41 

Rapid advancements in massive sequencing technologies have significantly facilitated the 42 

widespread adoption of multi-omic assays, enabling a comprehensive exploration of the 43 
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regulatory mechanisms governing biological systems. Consequently, numerous bioinformatics 44 

tools have emerged to assist researchers in processing multi-omics data, with a specific focus 45 

on unravelling multi-layer gene regulatory networks (GRNs) [1,2]. These GRNs serve as 46 

interpretable computational models, providing insights into the intricate regulation of gene 47 

expression through interconnected networks. Notably, GRNs encompass diverse regulatory 48 

components, including transcription factors (TF), chromatin accessibility, long non-coding 49 

RNAs, micro-RNAs, and methylation, among others [2]. Despite the experimental capacity to 50 

generate both bulk and single-cell multi-omic sequencing datasets, a significant challenge in 51 

GRN studies lies in precisely integrating these multiple omic layers. Therefore, the importance 52 

of benchmarking, tuning, and validating multi-omics integration pipelines becomes evident.  53 

Synthetic data, serving as ground truth, provides an indispensable resource for defining true 54 

positive and negative features sets, enabling rigorous benchmarking, tuning, and validation of 55 

analytical methods. Despite the paramount role of synthetic data, there are few publicly 56 

available algorithms capable of simulating multiple omic data types. To our knowledge, only 57 

three methods support comprehensive multi-omics simulation of gene expression regulation 58 

for bulk datasets. The first, the InterSIM R package [3], generates datasets for DNA 59 

methylation, gene expression, protein abundance, and their relationships. Although the method 60 

allows for customization of the number of biological replicates and the proportion of 61 

differentially expressed features, it lacks options for time series simulation and fails to report 62 

the interaction among features. The second tool, OmicsSIMLA C++ [4], can simulate 63 

genomics, transcriptomics, methylation, and proteomics data. Nevertheless, it restricts the 64 

generation of count data matrices to the transcriptomics module and does not include 65 

customizable options for time points or replicates. The third tool, the sismonr R package [5], 66 

simulates RNA-seq count data in conjunction with pre- and post-transcriptional regulatory 67 

networks, offering time-series simulation capabilities. Nonetheless, this method lacks the 68 
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flexibility to customise expression profiles and dynamics, and the only omic quantification data 69 

it generates is gene expression.  70 

Given the cell-type-specific nature of regulatory regions, it is surprising that only two methods 71 

currently support multi-omics simulation for single-cell datasets. The statistical simulator 72 

scDesign3 [6] encompasses scRNA-seq, scATAC-seq, CITE-seq and methylation. Meanwhile, 73 

scMultiSim [7] can simulate scRNA-seq and scATAC-seq datasets. While both methods 74 

accurately simulate datasets closely resembling real data, none of them provide essential 75 

customization options, such as the number of experimental groups, biological replicates, 76 

differentially expressed genes, accessible chromatin, and reporting of interaction between 77 

features. Importantly, none of these tools is designed to simulate gene regulatory relationships 78 

across omics features, which underscores the existing gaps and limitations in current multi-79 

omics simulation tools. GRouNdGAN [8] partially addresses this limitation by modeling GRNs 80 

with genes and TFs with single-cell resolution. However, it does not support other omic 81 

modalities, multiple experimental conditions, or multiple samples, further underscoring the 82 

need for more comprehensive simulation tools. 83 

Here we present MOSim, a multi-layer regulatory network simulator for both bulk (RNA-seq, 84 

ATAC-seq, miRNA-seq, ChIP-seq and Methyl-seq) and single-cell datasets (scRNA-seq and 85 

scATAC-seq), implemented as an R Bioconductor package. In a nutshell, MOSim generates 86 

quantification data for each omics layer, precisely controlling active regulatory relationships 87 

between regulatory omics and gene expression data for differentially expressed genes. 88 

Moreover, MOSim empowers users to customise data generation, enabling the inclusion of 89 

experimental groups, biological replicates, time series, and diverse cell types. By harnessing 90 

the capabilities of MOSim, bioinformatic tool developers will be able to generate realistic and 91 

customizable bulk and single-cell multi-omics datasets, facilitating the benchmarking and 92 
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validation of analytical methods tailored explicitly for integrating multi-omics data and 93 

inference of multi-layer GRNs. 94 

Results 95 

Overview of MOSim’s workflows 96 

MOSim is a bulk and single-cell simulation environment designed for generating multi-omic 97 

regulatory networks with precise control over regulator-gene relationships. To create a 98 

synthetic ground truth multi-omic dataset, MOSim requires as input the list of omic data types 99 

to be simulated, a single sample of seed count data for each of them, and an association file for 100 

each regulatory omic type, indicating the a priori or potential regulatory features associated 101 

with each gene (Figure 1A). While MOSim provides users with example multi-omics datasets 102 

to use as seed count data for simulation, the algorithm may also be fed with the user’s count 103 

dataset of choice, regardless of organism, disease or platform of origin. Besides simulation of 104 

RNA-seq or scRNA-seq data depending on the type of study (i.e. bulk or single-cell), currently 105 

supported omic regulatory data types include ChIP-seq, miRNA-seq, Methyl-seq, ATAC-seq 106 

and scATAC-seq. The algorithm also supports modelling Transcription Factor (TF) - target 107 

gene interactions from both bulk and single-cell RNA-seq data.  108 

Users can define various configuration parameters related to the experimental design, such as 109 

the number of experimental groups, time-points or cell types (if applicable), replicates per 110 

experimental condition, data dispersion, number of differentially expressed genes and number 111 

of regulators with activator or repressor effects. MOSim outputs simulated count matrices for 112 

each expression and regulatory data type. Moreover, it generates a record of all parameters 113 

used in data creation (MOSim simulated settings), which is indispensable for accurately testing 114 
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GRN inference bioinformatic tools (i.e. mean expression, dispersion, time profile, fold change 115 

etc.) (Figure 1A). 116 

The MOSim package includes two main functions: mosim, for bulk datasets simulation, and 117 

sc_mosim, for single-cell datasets simulation. 118 

The simulation results include three distinct outputs: (i) the simulated omic count data, 119 

represented as a matrix for each omic modality. Each matrix contains the same number of omic 120 

features as provided in the seed data and the number of samples, groups, cells, etc., specified 121 

by the user; (ii) for gene expression, a table listing the genes simulated as differentially 122 

expressed, along with their temporal profile (only for bulk; see Table 1); and (iii) a table for 123 

each omic modality detailing the regulatory relationships provided by the user, including the 124 

simulated activator or repression regulations (see Tables 2 and 3). 125 

In addition to the primary MOSim functions for simulating bulk (mosim) or single-cell 126 

(sc_mosim) multi-omic datasets, the package provides several other useful functions. These 127 

include functions for modifying seed data (omicData and sc_omicData), adjusting default omic 128 

parameters (omicSim), and retrieving simulation results and settings (omicResults, 129 

omicSettings, sc_omicResults and sc_omicSettings). 130 
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Figure 1: Schematic representation of the MOSim algorithms. A) MOSim’s simulation functionalities. B) 

Flowchart of the mosim pipeline to simulate bulk multi-omics datasets. C) Flowchart of the sc_mosim pipeline 

to simulate single-cell multi-omics datasets. 

 131 

Bulk multi-omic GRNs: the mosim functionality 132 

The mosim workflow (Figure 1B) consists of the following steps: 133 

1.  As the more extended assumption for RNA-seq data, a negative binomial (NB) 134 

distribution is applied to generate a bulk RNA-seq count matrix, obtaining the mean 135 
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and dispersion from the seed sample and the amount of variability across replicates set 136 

by the user. 137 

2. Differentially expressed genes (DEGs) are randomly selected from the seed RNA-seq 138 

sample. DEGs are labelled with one of the following time-course patterns in each 139 

experimental group: continuous induction (increasing linear pattern), continuous 140 

repression (decreasing linear pattern), transitory induction (quadratic pattern with an 141 

intermediate maximum), transitory repression (quadratic pattern with an intermediate 142 

minimum), or flat, which is also the default pattern for non-DEGs.  143 

3. Expression profiles are simulated based on the seed count values to closely reflect real 144 

data distributions. For transitory profiles, the algorithm randomly selects the time point 145 

at which the expression reaches its maximum or minimum and simulates a quadratic 146 

pattern. For continuous profiles, the algorithm randomly defines both the expression 147 

value at the first time point and the slope of change over time, simulating a linear 148 

pattern. These patterns vary depending on the coefficient values of the simulation 149 

function, particularly as the number of time points increases, and thus, although there 150 

are four theoretical temporal profiles, the simulated profiles encompass a wider range 151 

of patterns. DEGs with flat profiles or DEGs in a two-group design with no time points 152 

are modelled by introducing a fold-change in one of the experimental conditions. For 153 

designs with more than two experimental groups, the first serves as the reference and 154 

the fold-change is applied to a random selection of the remaining groups.  155 

4. After generating gene expression values for each condition, replicates are simulated 156 

using a NB distribution. 157 

5. All bulk MOSim data types (except Methyl-seq) are assumed to follow a NB 158 

distribution. Therefore, the NB is also used to simulate replicates for the remaining 159 

omics, but subjected to the simulated settings of the provided regulatory data and a 160 
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randomly chosen direction of regulation. Regulators labelled as activators adopt the 161 

same profile as their associated genes, while repressors follow the opposite pattern.   162 

6. For Methyl-seq, proportions are generated instead of counts based on the binomial 163 

distribution, following the strategy described in [9]. TF expression values are extracted 164 

from the simulated RNA-seq data to simulate TF regulation. 165 

A detailed explanation of the bulk mosim algorithm implementation is provided in 166 

Supplementary File 1. 167 

Single-cell multi-omic GRNs: the sc_mosim functionality 168 

The workflow of sc_mosim (Figure 1C) consists of the following steps: 169 

1. Following the approach used by the acorde R package for defining isoform profiles 170 

across cell types in single-cell RNA-seq [10], gene expression and peak accessibility 171 

values in the seed datasets are reorganised to build synthetic features following cross-172 

cell type patterns, i.e., indicating low or high expression in a given cell type. 173 

2. Peak accessibility values are rearranged to reflect the regulatory relationship between 174 

scRNA-seq and scATAC-seq. Regulators labelled as activators share the same cross-175 

cell type profile as their associated gene, while repressors have the opposite pattern. 176 

3. Feature intensity, variability (variance of normalised counts across cells of the same 177 

cell type) and library size of the rearranged seed scRNA-seq and scATAC-seq datasets 178 

are estimated using SPARSim. A reference dataset is then simulated for each omic data 179 

type using a Gamma-Multivariate Hypergeometric model [11].  180 

4. DEGs are randomly selected from the reference scRNA-seq. DEGs and their associated 181 

differentially accessible peaks between experimental groups are generated by 182 

introducing a fold-change in the experimental conditions, using the first condition as 183 
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the reference. Additionally, random noise is added to the quantification values to 184 

introduce realistic variability between experimental groups and across features. 185 

5. Feature intensity and library size of the simulated scRNA-seq and scATAC-seq count 186 

matrices for each experimental group are estimated using SPARSim. Biological 187 

replicates are then simulated using the Gamma-Multivariate Hypergeometric model 188 

[11], with the estimated parameters and a small random variability. TF expression 189 

values are extracted from the simulated scRNA-seq data to simulate TF regulation. 190 

A detailed explanation of the single-cell sc_mosim algorithm implementation is provided in 191 

Supplementary File 1. 192 

Validation of the bulk (mosim) simulation approach 193 

To demonstrate mosim’s capabilities for bulk sequencing data, we simulated RNA-seq and 194 

ATAC-seq data with five time points, two experimental groups, and three replicates, using the 195 

STATegra [12] samples included in the MOSim R package as seed data. We set the number of 196 

DEGs to 15% and modelled the five temporal profiles previously described. MOSim returns 197 

two types of output. The omicResults function returns a list containing the simulated data 198 

matrix for each omic, with features in rows and observations in columns. The second results 199 

object, accessible via the omicSettings function, includes the mosim-generated settings for the 200 

simulated relationships between gene expression and the rest of omics, as illustrated in Tables 201 

1 and 2 containing simulation settings for RNA-seq and ATAC-seq, respectively. For instance, 202 

gene ENSMUSG00000052726 is identified as a DEG, displaying transitory repression in 203 

condition 1 and transitory induction in condition 2. The chromatin-accessible region 204 

1_140257767_140257897 is simulated as a significant activator of this gene in both conditions, 205 

thereby following the same temporal profiles as the regulated gene. 206 
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Table 1: MOSim-defined settings for RNA-seq simulation example. ID: Gene identifier; DE: Whether the 

gene is differentially expressed (TRUE) or not (FALSE); GrX: Type of gene temporal profile in experimental 

group X; Tmax.GrX: For transitory profiles, time point where the minimum or maximum is reached in the 

corresponding group X. 

 

ID DE Gr1 Gr2 Tmax.Gr1 Tmax.Gr2 

ENSMUSG00000097082 TRUE Tran.Ind. Tran.Ind. 1.872 1.311 

ENSMUSG00000020205 TRUE Tran.Ind. Cont.Ind. 2.114 NA 

ENSMUSG00000055493 TRUE Tran.Ind. Cont.Rep. 3.062 NA 

ENSMUSG00000087802 FALSE Flat Flat NA NA 

ENSMUSG00000017204 TRUE Tran.Ind. Cont.Rep. 2.610 NA 

ENSMUSG00000017221 TRUE Tran.Ind. Cont.Ind. 1.359 NA 

ENSMUSG00000052726 TRUE Tran.Ind. Tran.Ind. 3.178 1.626 

 

Table 2: MOSim-defined settings for ATAC-seq simulation example. ID: Genomic coordinates of ATAC-

seq region (chromosome, and start and end positions for chromatin-accessible regions); Gene: Regulated gene; 

Effect.GrX: Regulatory effect of the ATAC-seq region on gene expression in experimental group X; GrX : 

temporal profile of the ATAC-seq region in experimental group X. 

 

ID Gene Effect.Gr1 Effect.Gr2 Gr1 Gr2 

10_111588324_111588448 ENSMUSG00000097082 activator activator Trans.Ind. Trans.Ind. 

10_111588324_111588448 ENSMUSG00000020205 activator NA Trans.Ind. Trans.Ind. 

10_11358301_11358431 ENSMUSG00000055493 activator activator Trans.Ind. Cont.Rep. 

10_11358301_11358431 ENSMUSG00000087802 NA NA Trans.Ind. Cont.Rep. 

11_98682094_98682786 ENSMUSG00000017204 repressor activator Trans.Rep. Cont.Rep. 

11_98682094_98682786 ENSMUSG00000017221 repressor repressor Trans.Rep. Cont.Rep. 

1_140257767_140257897 ENSMUSG00000052726 activator activator Trans.Rep. Trans.Ind. 

 

 207 
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We applied the K-means method to cluster simulated gene profiles, aiming to verify that the 208 

algorithm generates the expected profiles. Features with an average expression per condition 209 

of less than one count per million were filtered out. We compared the MOSim assigned profile 210 

with the average profile of the corresponding cluster and classified a gene as correctly 211 

simulated if both profiles coincided (for example, if a gene was assigned a constant induction 212 

profile and clustered with a group exhibiting a continuous increase in expression). The optimal 213 

number of clusters was found to be k = 7 for K-means clustering, which resulted in one cluster 214 

per simulated pattern and time point of maximal or minimal expression. Figure 2A displays the 215 

K-means clustering results for the simulated RNA-seq data in group 1, revealing that most 216 

genes in the cluster faithfully follow the mean cluster profile, as expected. Overall, less than 217 

0.5% of the simulated profiles were assigned to an incorrect cluster. 218 

We further evaluated the simulated data using Principal Component Analysis (PCA). The PCA 219 

score plot (Figure 2B) indicates that the simulated data effectively recapitulated a quality time 220 

course dataset, where replicates were clustered together and consecutive time points were 221 

proximate. 222 

Following the validation of individual omic data, relationships between gene expression and 223 

regulatory omics were evaluated by measuring correlations. An interaction between a regulator 224 

and a gene is expected to yield a high absolute correlation value when the regulator exerts a 225 

modelled effect on the gene, sharing the same profile type for activation or exhibiting an 226 

opposite pattern (i.e., continuous induction vs continuous repression) for repression. When no 227 

effect is modelled between the gene and regulator, the profiles will exhibit uncorrelated patterns 228 

(e.g. transitory vs continuous). Pearson’s correlations were calculated for each interaction and 229 

separately for each group. Interactions involving transitory profiles in both the regulator and 230 

the gene may include a delayed response, where the signal maxima -or minima- occur at 231 

different time points, with Pearson’s correlation failing to capture these regulatory 232 
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relationships. To address these scenarios, we also computed a lagged correlation, limiting the 233 

sliding of time points to a maximum of two to control for false positives, and selecting the 234 

maximum value from Pearson and lagged correlations as the correct measure. In the ATAC-235 

seq example (Figure 2C), 99.4% of interactions with a modelled activator or repressor effect 236 

displayed a correlation value above 0.9, while 0% of interactions without a modelled effect 237 

reached this threshold. Correlation values varied widely for these "no effect" interactions, 238 

ranging from the expected low values to relatively high ones. The latter can often be attributed 239 

to partial overlap between non-comparable profiles, such as a transient induction profile in the 240 

gene alongside a continuous induction profile in the regulator, both sharing an increasing linear 241 

trend over the same time points. This pattern aligns with the algorithm's intended and expected 242 

behaviour. Figure 2D presents simulated temporal profiles for each experimental group, 243 

showcasing two randomly selected gene-regulator pairs. In the first pair (top plots), the 244 

regulation is activation in both groups, while in the second pair (bottom plots), the regulation 245 

is repression, also consistent across both groups.  246 
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Figure 2: A) Representation of K-means clusters for bulk RNA-seq in group 1. The coloured lines represent 

the cluster mean profiles. The temporal simulated profiles associated with each cluster are indicated in the 

figure legend: one cluster corresponds to continuous repression, one to continuous induction, and one to a flat 

profile. Additionally, there are two clusters showing a maximum peak at different intermediate time points for 

transient induction, and two clusters showing a minimum peak at different time points for transient repression. 

 ro     ro    

 ro     ro    

    

    

    

    

    

   S     

 e  l  io 

 
 
s
o
l 
 e
  
o
rr
e
l 
 i
o
 

 

 

  

   

   

 

  

  

         
           

 
 
 
  
 
  
 
 

    se 

   

 

  

  

         
          

 
 
 
  
 
  
 
 

 ro  

 ro   

 ro   

 ime

 ime 

 ime 

 ime 

 ime 

 ime 

 ime 

     se 

    

    

    

    

    

    

    

    

 
 
S
M
 
S
 
 
 
 
 
 
 
 
 
 
 
 

 
 
S
M
 
S
 
 
 
 
 
 
 
 
 
 
 
     

    

    

    

    

   

    

    

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     se 

    se 

      

 
  

 
  

 
  

 ime  oi  s

 o    e r 

 r  s        

 r  s        

 r  s  e r 

 r  s  e r 

 o          

 l  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 17, 2025. ; https://doi.org/10.1101/421834doi: bioRxiv preprint 

https://doi.org/10.1101/421834
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

B) Exploratory analysis using Principal Component Analysis on low-count filtered data with logarithmic 

transformation. The first principal component separates the samples by the experimental group, while the 

second summarises the temporal profile. X- and Y-axis labels indicate the percentage of variability explained 

by the corresponding principal component. C) Boxplot of absolute Pearson’s correlation values from 

interactions of ATAC-seq regulators with genes in Group 1. Regulation is TRUE when the regulator has been 

simulated to activate or repress gene expression. Regulation is FALSE for interactions where the regulator has 

not been simulated to affect gene expression. D) Two random examples of gene-regulator temporal profiles in 

each group. The left Y-axis shows gene expression values, while the right Y-axis shows counts for ATAC-seq 

regions. Vertical bars at each time point show the standard deviation of the 3 simulated replicates. 

 247 

Validation of the single-cell (sc_mosim) simulation approach 248 

To demonstrate the utilities of sc_mosim for single-cell sequencing data, we simulated scRNA-249 

seq and scATAC-seq data with six cell types, two experimental groups, and three replicates. 250 

We used the pbmcMultiome dataset available from SeuratData [13] as seed data and the gene-251 

regulator association list provided in the MOSim R package. We set the number of DEGs to 252 

30% upregulated and 20% downregulated. Variances were set to 0.1 between replicates and 253 

0.3 between experimental groups, and we allowed for the modelling of co-expression patterns 254 

across cell types, following seven random profiles. Finally, we defined 20% activator and 10% 255 

repressor regulators in Group 1, and 10% activators and 20% repressors in Group 2.  256 

In single-cell simulations, MOSim generates two main types of output. The sc_omicResults 257 

function retrieves a list containing the simulated data matrices for each omic, experimental 258 

group and biological replicate, with features in rows and cells in columns. The second results 259 

object, extracted with the sc_omicSettings function, includes the MOSim-generated settings 260 

that associate genes and peaks (Table 3), and specify TFs with their target genes, along with 261 
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the type of regulatory relationship between them. For example, gene PTPN22 is identified as 262 

an upregulated DEG that follows the across-cell-type expression pattern 5 (Figure 3A). The 263 

chromatin-accessible region chr12-31742761-31743451 is modelled as a significant activator 264 

of this gene, following the same across-cell-type profile as the regulated gene. Conversely, the 265 

association between the gene RBP7 and chromatin-accessible region chr3-101753518-266 

101753798 exemplifies a repressor effect of the regulator omic, where gene and peak follow 267 

opposite patterns (clusters 2 and 5, respectively), with the gene downregulated when the 268 

regulator is upregulated (Table 3). 269 

Table 3: MOSim-defined settings for scRNA-seq and scATAC-seq for the simulation example. Gene_ID: 

Gene identifier; Peak_ID: Peak identifier; RegEffect: Regulatory effect of the scATAC-seq region on gene 

expression in experimental Group 2; G_cluster: gene expression profile across cell types; P_cluster: peak 

accessibility profile across cell types; G_DE: how the gene is differentially expressed; P_DE: how the peak is 

differentially accessible. G_FC: Fold Change applied to induce differential gene expression in Group 2 

compared to Group 1; P_FC: Fold Change applied to induce differential peak accessibility in Group 2 compared 

to Group 1. 

Gene_ID Peak_ID RegEffect G_cluster P_cluster G_DE P_DE G_FC P_FC 

PRXL2B chr19-46542333-46543301 Activator 1 1 Up Up 67.443 67.443 

SPSB1 chr22-39902952-39911753 Activator 7 7 Up Up 73.932 73.932 

PTPN22 chr12-31742761-31743451 Activator 5 5 Up Up 45.054 45.054 

PLEKHG5 chr2-132267871-132268833 Repressor 2 5 Down Up 0.135 57.516 

RBP7 chr3-101753518-101753798 Repressor 2 5 Down Up 0.159 88.201 

FRRS1 chr2-88765163-88766080 Repressor 2 5 Down Up 0.203 74.137 

 

 270 

To demonstrate the robustness of the single-cell MOSim framework for GRN simulation, we 271 

assessed its capacity to generate the expected across-cell-type expression profiles. Single-cell 272 

data is typically characterised by a high abundance of zeros and many cells belonging to the 273 

same cell type, leading to increased noise and outliers. Given the robustness of Spearman’s 274 

correlation distance and K-medoids clustering techniques in noisy scenarios, we used them to 275 
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extract and cluster the simulated feature profiles across cell types. The cluster average profiles 276 

were then compared to the sc_mosim simulated profiles after excluding genes with flat 277 

expression profiles. A feature was deemed correctly simulated if both profiles matched. To 278 

achieve this, we set the optimal number of clusters to K = 10 for K-medoids clustering, which 279 

resulted in one or two clusters per simulated co-expression pattern, minus flat expression. 280 

Clustering of the simulated scRNA-seq and scATAC-seq revealed that most features closely 281 

adhered to the mean cluster profiles as expected (Figure 3A), with only 3.3% of simulated 282 

profiles assigned to an incorrect cluster. 283 

We further assessed whether cells from the same cell types, experimental groups, and 284 

biological replicates clustered according to the defined simulation settings using PCA for 285 

dimensionality reduction (Figure 3B). PCA results showed robust clustering of the simulated 286 

data, capturing a high-quality single-cell dataset where PC1 separated cells by experimental 287 

group, while PCs 1 to 4 represented the cohesive clustering of cell types (Figure 3B). 288 

Additionally, while the majority of data variability was due to differences specified between 289 

groups, small variability between biological replicates was also observable (Figure 3B). 290 

To evaluate whether simulated regulatory relationships presented stronger correlations than 291 

non-regulatory peak-gene associations, Kendall’s correlations between gene and peak profiles 292 

were computed within each simulated experimental group. A strong absolute correlation is 293 

expected for pairs when a regulatory effect was modelled, reflecting similar activation or 294 

opposite repression profiles. In contrast, non-regulatory peak-gene interactions typically 295 

display lower and more variable correlation values due to differences in absolute terms. As 296 

shown in Figure 3C, 79.5% of interactions with modelled activator or repressor effects had 297 

absolute correlation values exceeding 0.7, while “no effect” interactions displayed a broader 298 

range, centered at 0.32 absolute correlation. This range is likely due to partial overlaps, such 299 

as shared trends between cell types, which are expected outcomes of the simulation. 300 
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Figure 3: A) Representation of clustering patterns for single-cell RNA-seq across cell types for group 1; split 

into two plots to improve visualization and cluster differentiation. The coloured lines represent the cluster mean 

profiles. B) Exploratory analysis using Principal Component Analysis to visualize clustering of cells coloured 
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by cell type, experimental group and replicate. X- and Y- axis labels indicate the percentage of variability 

explained by the corresponding principal component. C) Boxplot of absolute Kendall correlation values from 

interactions of scRNA-seq genes in Group 1 with scATAC-seq regulators. Regulation is TRUE when the 

regulator has been simulated to activate or repress gene expression. Regulation is FALSE for interactions where 

the regulator has not been simulated to affect gene expression. D) Two examples of gene-regulator single-cell 

simulated profiles in each group. The left Y-axis shows gene expression values, while the right Y-axis shows 

counts for scATAC-seq regions. Vertical bars at each time point show the standard error of the mean of the 

cells for the 3 simulated replicates. 

 301 

Finally, Figure 3D illustrates simulated feature profiles across cell types for two pairs of gene-302 

regulator associations, one with an activator effect and the other with a repressor effect. The 303 

first regulation (top plots) represents activation in both groups, whereas the second regulation 304 

(bottom plots) represents repression across both groups. 305 

Simulation of multilayered Gene Regulatory Networks  306 

Finally, we illustrate how MOSim effectively simulates multilayered GRNs. Simulating GRNs 307 

is challenging due to the complex many-to-many relationships among some regulators and their 308 

target genes. For example, a TF or microRNA might regulate multiple target genes with varying 309 

regulatory relationships, while the same gene could be influenced by multiple factors. A 310 

multimodal GRN simulation algorithm must therefore produce a consistent dataset with 311 

expression patterns reflecting these different regulatory patterns. In MOSim, users can specify 312 

a desired percentage of active regulatory relationships, and the algorithm adjusts regulatory 313 

pairs and profiles to achieve this level of regulation across layers (Figures 2 and 3). 314 

To demonstrate MOSim’s capabilities in modelling multilayered regulatory interactions, we 315 

used the STATegra dataset [12] to simulate RNA-seq, miRNA-seq, and TF data. The 316 
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simulation was performed with a sequencing depth of 30 million reads, two experimental 317 

groups, three replicates per group, and six time points, forming a detailed experimental design. 318 

Additionally, we specified that 5% of genes be differentially expressed, and 40% of miRNA-319 

seq over the total number of regulators should be repressor effects.  320 

Given the complexity of visualising the simulated GRN, we selected the first 100 differentially 321 

expressed genes and plotted their corresponding GRNs for each experimental group (Figures 322 

4A and 4B). To illustrate the profiles of features in these simulated subnetworks and the 323 

efficiency of MOSim in creating consistent expression patterns across different layers, we 324 

generated heatmaps for each experimental group (Figure 4C). To facilitate visualisation and 325 

interpretation, we calculated the mean expression across replicates for each time point and 326 

experimental group, scaling the expression values across modalities, since each omic layer may 327 

have different value ranges. Figure 4C demonstrates MOSim’s capacity to simulate distinct 328 

feature profiles across layers, accurately reflecting both activator and repressor regulatory 329 

effects. 330 

 331 
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Figure 4: Representation of multi-layer regulatory networks simulated by MOSim. Genes are represented in 

green, transcription factors are in orange, and miRNAs are in yellow. Blue arrows represent activator 
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regulations, while red arrows repressor regulations. A) Gene Regulatory Network for Group 1. B) Gene 

Regulatory Network for Group 2. C) Heatmaps for the expression profiles of the genes, miRNAs and 

Transcription Factors in Gene Regulatory Networks of Groups 1 and 2. The right Y-axis shows the omic data 

type and the subnetwork they belong to (which refers to the connected subnetworks observed in A) and B) 

framed in pink and blue rectangles). 

 332 

This example demonstrates that MOSim can generate consistent, complex modules with both 333 

positive and negative regulatory relationships, spanning multiple layers and including one-to-334 

many and many-to-many interactions—providing a unique capability to simulate the 335 

complexity of gene regulation. 336 

Application of MOSim for benchmarking a GRN inference tool 337 

To demonstrate one potential application of MOSim simulations, we used MOSim-generated 338 

data to test MORE (Multi-Omics Regulation), a tool designed to infer GRNs from bulk multi-339 

omics data [14]. Specifically, we simulated RNA-seq, miRNA-seq and TF data with MOSim 340 

using the STATegra dataset [12]. The simulation was configured with a sequencing depth of 341 

30 million reads, two experimental groups, 20 time points per group, and one replicate per time 342 

point. Additionally, we set the percentage of differentially expressed genes to 50%, and the 343 

percentage of significant regulations to 60%. 344 

Prior to applying MORE, the RNA-seq count matrix was pre-processed. Low-count genes were 345 

filtered out with the NOISeq R package [15], using a threshold of 1 count per million. Count 346 

data was normalized with the weighted trimmed mean of M-values (TMM) normalisation in 347 

the NOISeq package and voom-transformed [16]. Differential expression analysis between 348 

groups 1 and 2 was performed with the limma R package [17], yielding  10593 DEGs (FDR < 349 

0.05). These DEGs were set as the target omic features required by MORE. The miRNA-seq 350 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 17, 2025. ; https://doi.org/10.1101/421834doi: bioRxiv preprint 

https://paperpile.com/c/rBL4SQ/hkyw
https://paperpile.com/c/rBL4SQ/XLDk4
https://paperpile.com/c/rBL4SQ/ZGIw
https://paperpile.com/c/rBL4SQ/KQEu
https://paperpile.com/c/rBL4SQ/SthZ
https://doi.org/10.1101/421834
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

and TF data were used as the regulatory omics. For GRN inference, we applied the MORE 351 

PLS1 option with auto-scaling and Jack-Knife resampling for the selection of significant 352 

regulators. 353 

MORE fitted 5573 models, one for each gene with potential regulators. The MOSim simulation 354 

provided a total of 370,566 potential regulatory interactions (gene-regulator pairs), 47% of 355 

which were simulated as significant in at least one of the groups (174,051 in group 1 and 356 

174,067 in group 2). These significant regulations served as the ground truth, or positive 357 

instances, to evaluate MORE’s performance. At a significance level of 0.05, MORE identified 358 

233,598 significant regulations in group 1 and 240,474 in group 2 that were compared to the 359 

positive instances. The analysis yielded similar error metrics for both groups, with a slightly 360 

better performance observed in miRNA-seq compared to TFs. Overall, MORE achieved a 361 

sensitivity of 85.5% and an F1-score of 62.9%. These results demonstrate MORE’s ability to 362 

detect significant regulatory interactions, while also indicating areas where the tool could be 363 

improved or where hyperparameter tuning might enhance its performance. 364 

This example highlights how MOSim can serve as a reliable ground truth framework for 365 

evaluating the performance of GRN inference tools during their development. 366 

 e   m rki   s MOSim’s s    -Seq simulations using a deep 367 

learning algorithm 368 

To further demonstrate other applications of MOSim simulations, we tested it using a 369 

Variational Autoencoder (VAE)-based tool. VAEs are capable of learning meaningful latent 370 

representations of single-cell data. Unlike standard autoencoders, VAEs impose a probabilistic 371 

structure on the latent space, enabling more robust feature extraction and better generalization 372 

across datasets. This makes VAEs particularly useful for clustering, dimensionality reduction, 373 
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and transcription factor perturbation analysis[18]. Examples of VAE models for single-cell 374 

data include scGen[19], VEGA[20], siVAE[21], scVAE[22], scDHA[23], scVI[24], 375 

manatee[25] and ScInfoVAE[26]. 376 

We tested scMOSim-generated single-cell RNA-Seq data using the VAE-based tool, single-377 

cell Decomposition using Hierarchical Autoencoder (scDHA)[23]. scDHA first removes noise 378 

using a non-negative kernel autoencoder and then projects the data into a low-dimensional 379 

space using a stacked Bayesian autoencoder. Finally, it applies iterative perturbations to reduce 380 

overfitting and create a more generalized representation. 381 

We used one replicate from a single experimental group of scRNA-Seq data simulated with 382 

scMOSim to evaluate cell clustering with scDHA. The clustering identified five of six 383 

simulated cell types, with one cluster combining cDC and Treg cells (Table 4). The Adjusted 384 

Rand Index (ARI) score was 0.949, showing high agreement between predicted and true labels. 385 

Table 4: Number of cells per cell-cluster identified using scDHA, compared with ground truth cell type groups 

simulated using scMOSim. 

 scDHA predicted clusters 

1 2 3 4 5 

 

CD16 Mono 514 0 0 0 0 

CD4 TEM 0 0 0 298 0 

cDC 0 0 198 0 0 

Memory B 0 0 0 1 370 

NK 0 468 0 0 0 

Treg 0 0 162 0 0 
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These results demonstrate scMOSim’s, and its underlying algorithm SPARSim’s[11], ability 386 

to reliably simulate single-cell RNA-Seq ground truth datasets with different cell-types 387 

sufficiently distinguishable as to be identified by a VAE algorithm such as scDHA. 388 

Discussion 389 

Multi-omic assays, facilitated by massively parallel sequencing technologies, have greatly 390 

enhanced our ability to profile regulatory mechanisms in biological systems  [1,2], leading to 391 

a deeper understanding of diseases and model organisms. However, benchmarking studies of 392 

bioinformatic tools designed to elucidate multi-layered GRNs by integrating multi-omics 393 

datasets have exposed notable discrepancies in library preparation strategies and analysis 394 

methods [27]. These discrepancies underscore the complex challenge of accurately identifying 395 

GRNs. As multi-omic sequencing continues to gain traction in the study of regulatory 396 

mechanisms, there is a pressing need for tools that support rigorous GRN inference assessment. 397 

MOSim was developed to provide a robust framework for simulating bulk and single-cell 398 

multi-omics data in a controlled setting. Using a seed dataset and a regulator-gene association 399 

matrix, MOSim generates realistic simulated count matrices for both bulk and single-cell 400 

transcriptomics data, as well as for associated regulatory omics. For bulk data, the simulation 401 

is based on the negative binomial distribution, while for single-cell data, it leverages the well-402 

established simulator SPARSim[11]. By using a seed dataset as a reference to infer 403 

distributions, MOSim generates count matrices that closely mirror real omic data, offering a 404 

more authentic representation than simulators that artificially construct count matrices without 405 

a real-data foundation [28]. 406 

Additionally, MOSim operates at the count matrix level rather than simulating read data, 407 

providing a unified framework for generating multi-omics data across different library 408 
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preparation methods (e.g., SmartSeq2, 10x Genomics). This allows users to select a preferred 409 

method as the seed dataset for MOSim, adding flexibility to the simulation process. 410 

MOSim enables a fast and effortless generation of bulk and single-cell count data matrices for 411 

multiple omic types, supporting flexible experimental designs. Importantly, the algorithm can 412 

simulate complex regulatory relationships between gene expression and other molecular 413 

components, guided by prior knowledge, such as target mRNA-microRNA associations. This 414 

flexibility in defining experimental designs, DEGs, and active regulators makes MOSim a 415 

versatile tool for a variety of different applications, including: i) validating methods aimed at 416 

modelling complex, multi-layered regulatory networks, ii) benchmarking multi-omics data 417 

integration pipelines, iii) benchmarking GRN inference tools [2], iv) evaluating differential 418 

expression and accessibility analysis tools [24], v) testing single-cell data clustering methods 419 

(Supplementary File 1) [24], vi) evaluating multi-omics visualization tools, vii) testing methods 420 

for time-series analysis in RNA-seq data [29], among others. Several tools have already been 421 

tested using MOSim simulations, including DEGRE [30], scAI [31], JISAE [32], GR-NIC [33] 422 

and scLRTD [34], highlighting MOSim’s ability to specify an association matrix for linking 423 

regulators with transcripts further allows users to tailor MOSim outputs to align with the 424 

intended integration goals of their analysis tools. 425 

The MOSim framework has some limitations. Currently, single-cell simulation is restricted to 426 

scRNA-seq and scATAC-seq, as these are presently the only two commercially available 427 

sequencing techniques that can be simultaneously performed on the same cell. As additional 428 

single-cell omics techniques become widely available, extending MOSim to other data types 429 

will be straightforward based on its bulk framework. At this point, MOSim is not prepared to 430 

simulate GRN with spatial resolution, which could be inferred from spatial multi-omics data. 431 

While these datasets are not yet widespread, they might be in the near future. We envision that 432 

the flexible MOSim simulation framework could incorporate the spatial information either as 433 
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covariates of the regulatory model or by modelling cell-to-cell communication signals as an 434 

additional regulatory layer. These possibilities are to be explored in future work. Finally, both 435 

bulk and single-cell modules are designed to simulate gene regulatory relationships based on 436 

sequencing data, limiting applicability to other omics layers like proteomics and metabolomics, 437 

which may influence gene regulation in more complex or uncertain ways. Future work will 438 

also explore extending MOSim to simulate interactions between gene expression, the 439 

proteome, and the metabolome.  440 

Conclusion 441 

The integration of multi-omics datasets for GRN identification remains a challenging task. We 442 

demonstrate that MOSim serves as an essential resource for benchmarking integration tools, 443 

filling a critical gap in the multi-omics sequencing field. 444 

Methods 445 

The MOSim algorithms are introduced in the results section and extended in Supplementary 446 

File 1. The algorithms are implemented in R and mainly use R packages dplyr [35], purrr [35], 447 

Stats [36], Iranges [37], Seurat [38], SPARSim [11], and adapted scripts from Acorde [10] and 448 

WGBSSuite [9]. 449 

 450 

MOSim algorithms assessment 451 

The performance of the MOSim bulk simulation was tested with mouse multi-omics data from 452 

the STATegra project [12], while single-cell simulation performance was evaluated using the 453 

human pbmc.multiome 10x Genomics dataset from the SeuratData R package [13]. 454 
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For the bulk data, K-means clustering [39] was applied to the simulated feature profiles to 455 

assess the correct simulation of temporal expression patterns. For single-cell data, the simulated 456 

count matrix was aggregated to obtain the average count per cell type. Spearman’ distance (1 - 457 

Spearman’s correlation [40]) and partition around medoids (K-medoids [41]) clustering were 458 

then used to cluster gene expression profiles across cell-types. In both cases, the optimal 459 

number of clusters was obtained by combining the maximisation of Silhouette’s coefficient and 460 

minimising the intra-cluster variability.  461 

In both bulk and single-cell simulations, a log transformation (𝑙𝑜𝑔(𝑥 + 1))[42] was applied to 462 

the data. PCA was used to confirm that clustering aligned with the simulation settings. Finally, 463 

to validate gene-regulator relationships, Pearson’s correlation was computed for bulk data and 464 

Kendall’s Tb correlation for single-cell data [43]. These correlations were compared with 465 

20.000 random feature pairs with no simulated regulatory effects. 466 

Availability of data and materials 467 

The package is released under the GNU Public License to the community as a package named 468 

MOSim, for Multi-Omics Simulator, at Bioconductor 469 

(https://bioconductor.org/packages/MOSim/). 470 

Bulk example data in MOSim was generated by the STATegra project [12]. Single-cell 471 

example data is available in the pbmc.multiome dataset in the SeuratData R package [13]. Code 472 

to reproduce the figures in the manuscript is available on github 473 

(https://github.com/BiostatOmics/MOSim_plots). 474 
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