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Abstract

The human brain displays substantial regional variability in molecular, anatomical, and
physiological organization. Yet, how this heterogeneity shapes large-scale neuronal
dynamics remains poorly understood. To address this question, we employed a biologically
informed whole-brain computational model capable of generating distinct brain states, from
awake-like to sleep-like regimes. Our model was constrained by empirical human structural
connectivity and spatial maps of cholinergic receptor gene expression, thereby embedding
regional neuromodulatory variability into a macroscopic framework. We found that
incorporating cholinergic heterogeneity had a significant impact on brain dynamics: it not
only facilitated network synchronization but also enhanced information flow between brain
regions. Furthermore, we addressed a particularly intricate dynamic regime characterized by
the coexistence of localized sleep-like activity within otherwise awake-like states. We
showed that the emergence of these slow waves was a byproduct of both regional levels of
neuronal adaptation and structural connectivity. In summary, our findings highlight the critical
role of molecular and anatomical heterogeneity in shaping global brain dynamics, suggesting
new avenues for linking microscale diversity to macroscale function.
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Introduction

From wakefulness to sleep, the brain exhibits a rich repertoire of spatiotemporal dynamics
that underlie behavior and cognition . These dynamics arise from the interplay of factors
across multiple scales, including structural connectivity, cellular physiology, and
neuromodulatory signaling, each influencing both normal cortical function and susceptibility
to pathology *. Yet, the extent to which regional heterogeneity modulates large-scale brain
dynamics remains an open question in contemporary neuroscience, particularly across
distinct brain states. Neuromodulators and neurotransmitters are well known to shape the
functional and dynamical properties of cortical circuits °, but their distribution across the
cortex is far from uniform. Instead, these molecular signals form spatially distinct hubs along
the cortical hierarchy *57. Despite this, how such molecular and regional heterogeneity gives
rise to global brain dynamics and how this relationship depends on brain state remains
poorly understood.

Computational models of the human brain have attempted to address this question by
simulating large-scale neural dynamics 2°. However, most of these models have focused on
the structural properties, largely due to the earlier lack of detailed, molecular-level data.
Recent advances in neuroimaging and transcriptomic techniques have advanced the field by
enabling the construction of more biologically realistic heterogeneous brain models ©’.
Computational models incorporating these region-specific features, such as the T1w:T2w
ratio or estimates of excitation-inhibition balance, have demonstrated improved performance
in capturing empirical functional dynamics "2,

Despite recent progress, the influence of molecular heterogeneity on global brain dynamics
remains underexplored. Acetylcholine (ACh), for example, is known to play a key role in
modulating brain states by influencing spike-frequency adaptation and cortical excitability
51314 Cortical ACh levels vary with brain state and exhibit spatial heterogeneityreflecting
non-uniform cholinergic projections "6, Notably, reduced cholinergic input correlates with
spatially localized slow wave activity during REM sleep'’, raising broader questions about
the role of cholinergic heterogeneity in generating sleep-like activity under both physiological
and pathological conditions, such as attentional lapses or following brain lesions 8%,

To address these questions, we developed a large-scale, biophysically grounded cortical
circuit model that incorporates regional heterogeneity informed by the spatial distribution of
cholinergic receptors. By simulating different brain states, we found that regional
heterogeneity significantly influences large-scale brain dynamics when compared to its
homogenous counterpart. Beyond facilitating network coordination through synchronization,
heterogeneity was shown to enhance inter-regional communication, supporting more
complex and flexible patterns of activity. Furthermore, we demonstrated that spatially
localized slow waves emerge as a byproduct of both regional variations in neuronal
adaptation and the underlying structural connectivity. In summary, our findings underscore
the critical role of both molecular and anatomical heterogeneity in shaping global brain
dynamics and provide a novel framework for linking microscale diversity to macroscale brain
function.
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Results

Inspired by empirical evidence demonstrating the modulatory effects of acetylcholine on
local neuronal circuits and ionic channels '3, we investigated here how spatial heterogeneity
in cholinergic receptor density influences large-scale brain activity. Using a biophysically
grounded whole-brain network model, our goal was to understand how regional variability in
cholinergic modulation shapes the spatiotemporal dynamics of the cortex 3. In particular, we
examined how this heterogeneity impacts asynchronous and synchronous activity patterns,
dynamics that closely resemble awake-like and sleep-like brain states, respectively.

Framework overview

Our whole-brain modeling framework integrates three key components: node dynamics,
network connectivity, and regional heterogeneity (Fig. 1). Each brain region (node) was
modeled using the Adaptive Exponential Mean-Field (AdEx-MF) model, which captures the
interaction between excitatory (vE) and inhibitory (Vz) neuronal populations, along with an

adaptation variable (W) 2'. W represents activity-dependent processes that modulate
neuronal excitability, such as activity-dependent K* currents '*?22, The dynamic balance
between excitation, inhibition, and adaptation allows each node to exhibit either
asynchronous (awake-like) or synchronous (sleep-like) dynamics, depending on the level of
adaptation. Specifically, increasing neuronal adaptation drives the system toward a
synchronous pattern of activity, while lower adaptation promotes irregular, desynchronized
activity (Fig. 1, top panel) 224,

To define network connectivity, we used empirical structural connectivity (SC) data derived
from human diffusion MRI tractography (Fig. 1, middle panel; see Methods) 2>%. The brain
was parcellated according to the Desikan-Killiany atlas (68 cortical regions), and
inter-regional connections were modeled as excitatory. Connection strengths (weights) and
transmission delays were based on estimates of fiber density and tract length, respectively,
obtained from diffusion tensor imaging (DTI) data 2. This preprocessed dataset was
obtained from %°.

Finally, regional heterogeneity was implemented by incorporating spatial variation in cortical
receptor density (Fig. 1, bottom panel). Specifically, we used the average expression levels
of muscarinic acetylcholine receptor subtypes M1 (CHRM1) and M2 (CHRM2), the two most
abundant muscarinic receptors in the human cortex 52%2°. Gene expression profiles were
obtained from the Allen Human Brain Atlas (AHBA) and processed using the ABAGEN
toolbox ©3°*'. These regional expression values were used to modulate the adaptation
parameter in each node, thus linking neuromodulatory heterogeneity to local excitability.
Altogether, this approach allowed us to construct a biophysically grounded, spatially
heterogeneous virtual brain model (Fig. 1).
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Fig. 1 Overview of the whole-brain network model framework. Top panel: Each brain region (node)
was modeled using the Adaptive Exponential Mean-Field (AdEx-MF) model. In this model, excitatory
(E) and inhibitory (I) neuronal populations are coupled together along with an adaptation variable (W).
By varying the adaptation strength, the model can exhibit distinct dynamical regimes: low adaptation
leads to asynchronous, awake-like activity, whereas high adaptation produces synchronous, sleep-like
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activity. Middle panel: Network connectivity was defined using empirical structural connectivity data
derived from human diffusion MRI tractography. The brain was parcellated in 68 cortical regions
according to the Desikan-Killiany atlas, and connection strength and transmission delays were
estimated from diffusion tensor imaging (DTI) data. Inter-regional connectivity was set as excitatory.
The preprocessed data was obtained from . Bottom panel: Regional heterogeneity was introduced in
the form of muscarinic acetylcholine receptor density. Gene expression levels of M1 (CHRM1) and M2
(CHRM2) receptor subtypes were highly correlated, and their average (CHRM density) was used to
modulate the local adaptation parameter (see Methods for details). Gene expression profiles were
obtained from the Allen Human Brain Atlas (AHBA) and processed using the ABAGEN toolbox 53!,

From asynchronous to synchronous dynamics in a large-scale network model

Following our framework previously described, we next investigated the whole-brain network
dynamics as a function of the adaptation level (b; Fig. 2). At low adaptation levels (<b>=12
pA, <> indicates average over all brain areas), the system exhibited weak inter-regional
correlations, as illustrated by the functional connectivity (FC) matrix, resembling the
desynchronized activity typically associated with awake-like states (Fig. 2A-D). Accordingly,
temporal fluctuations in this regime were characterized by low-amplitude, high-frequency
activity, which gave rise to irregular oscillations in the range of ~10Hz, also accompanied by
a suppression of the low-frequency content (Fig. 2B-C). Consequently, this desynchronized
state was dominated by irregular fluctuations, resulting in low correlation values across brain
regions (Fig. 2D).

As adaptation increased (<b>=24 pA), inter-regional correlations also increased, and locally
connected clusters began to emerge, giving rise to structured spatiotemporal patterns (Fig.
2A). In this intermediate regime, network firing rate decreased (from ~6Hz to ~4Hz), and the
dominant oscillatory frequency slowed down (from ~10Hz to ~6Hz), alongside a relative
increase in the low-frequency content (Fig. 2B-C). Despite the emergence of localized
synchrony, as indicated by the FC matrices, the global network remained weakly correlated
(Fig. 2D). We further discuss this intermediate regime in the following section (see
Emergence of localized sleep-like slow waves).

For higher adaptation levels (<b>=36), the network dynamics were dominated by strongly
correlated fluctuations across widespread cortical regions, a dynamic regime reminiscent of
SWS and deep anesthesia (Fig. 2A) 3273 In this state, the system exhibited quasi-periodic
(~1Hz) alternations between periods of high-amplitude (~8Hz) sustained activity (Up states)
and periods of network silence (Down states or off-periods), which propagated through the
network as travelling waves (Supp. Fig. 1). As a result, low-frequency components
dominated the system, leading to a globally synchronized network state (Fig. 2D).

Another important feature of awake- and sleep-like states is their increased
structure-function coupling, i.e., the relationship between the underlying anatomical structure
and the emergent functional patterns *-*%, Our model reproduced this relationship accurately
(Fig. 2E). Specifically, for awake-like states (desynchronized activity), the FC was only
loosely constrained by the SC. Conversely, during sleep-like states (synchronized activity),
the FC patterns were more constrained by the SC. This strengthened FC-SC coupling is
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thought to reflect a reduced repertoire of dynamic brain states, which is typically higher
during wakefulness and significantly lower during sleep and unconscious states 243%%,

Regional heterogeneity facilitates large-scale synchronization

In the previous section, we demonstrated that our whole-brain network model, incorporating
regional heterogeneity constrained by the spatial distribution of cholinergic receptor density
(see Methods), can reproduce key features of both awake-like and sleep-like brain dynamics
(Fig. 2). However, a crucial question remains: how does the inclusion of regional
heterogeneity impact global brain dynamics? To address this, we compared our
heterogeneous model to its homogeneous counterpart, i.e., keeping the adaptation level
constant across brain regions, i.e., heterogeneity = 0% (<b> = b).

By comparing FC profiles across adaptation levels, we found that regional heterogeneity
facilitated network synchronization; however, only at higher adaptation values (Fig. 2D;
compare filled vs. empty circles). For adaptation current levels above 30 pA, the mean FC
(measured via Pearson correlation) was significantly higher in the heterogeneous model,
indicating that regional variability in adaptation enhances inter-regional coupling under
synchronized states. Interestingly, although the heterogeneous network exhibited stronger
overall synchronization, the structure—function coupling remained similar (Fig. 2E). That is,
the relationship between FC and SC did not significantly differ between the heterogeneous
and homogeneous models, suggesting that, despite higher synchronization, the dynamics
remained constrained by the underlying anatomical structure.

In our model, synchronous states are characterized by Up and Down dynamics, which
propagate through the network as travelling waves (Supp. Fig. 1). To further investigate the
impact of regional heterogeneity on network synchronization, we computed the Phase Lag
Index (PLI; see Methods). PLI is a metric designed to quantify phase synchronization while
minimizing the influence of zero-lag correlations *°. Thus, PLI is particularly well-suited for
detecting non-trivial phase relationships, such as those expected during traveling wave
dynamics.

PLI analysis confirmed that regional heterogeneity indeed enhances network
synchronization (Fig. 2F). For adaptation levels above <b>=20 pA, heterogeneous networks
exhibited higher synchronization compared to their homogeneous counterparts. This
difference became more pronounced at higher adaptation levels, which are associated with
stronger global synchronization. Notably, the effect of heterogeneity on synchronization
appeared to be gradual: networks with 50% heterogeneity displayed intermediate PLI values
between the fully heterogeneous and fully homogeneous cases. Altogether, these results
suggest that regional heterogeneity facilitates large-scale network coordination by enhancing
phase synchronization across brain regions.
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Fig. 2 Heterogeneous whole-brain dynamics from asynchronous to synchronous dynamics. (A)
Functional connectivity (FC; Pearson correlation) matrices as a function of adaptation levels. (B)
Representative time series for different adaptation values (b in pA units). (C) Power spectrum density
(PSD) for three representative adaptation levels illustrating awake-like (<b>=12 pA), intermediate
(<b>=24 pA), and sleep-like (<b>=36 pA) dynamics. Arrows indicate the peak frequency at ~11 Hz, ~6
Hz, and ~2 Hz, respectively. (D) Mean FC as a function of adaptation level for heterogeneous (filled
circles) and homogeneous (empty circles) networks. (E) Same as (D) for structure-function (SC-FC)
coupling (Pearson correlation between structural and functional connectivity). (F) Phase lag index as
a function of adaptation level. Red and gray lines represent heterogeneous and homogenous
networks, respectively. Light-purple indicates a partially heterogeneous network (50% heterogeneity;
see Methods for details).
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Information flow is enhanced in large-scale networks with regional
heterogeneity

A fundamental aspect of neuronal networks is their ability to receive and transmit information
across the connectome, a process supported by both local and long-range connections %2,
While previous studies have shown that information flow is enhanced in local spiking
networks with heterogeneous neuronal properties, this effect has been less explored at the
large scale “**°. We next assessed the information flow across the connectome with regional
heterogeneity and in its homogeneous counterpart. To this end, we briefly stimulated a single
cortical area under both awake-like and sleep-like dynamic regimes and computed the
transfer entropy (TE) between the stimulated region and all other areas (Fig. 3).

We found that, regardless of brain state, awake-like or sleep-like, TE was significantly higher
in heterogeneous networks compared to their homogenous counterparts (Fig. 3). During the
awake-like regime, when the network was more excitable and exhibited asynchronous
dynamics, the mean TE (from source to all other areas) in heterogeneous networks was
significantly higher than in homogeneous ones (1.02 £ 0.09 vs. 0.84 + 0.08, respectively; Fig.
3A). Similarly, in the sleep-like regime, characterized by Up and Down dynamics, TE
remained higher in the heterogeneous condition (0.30+0.07 vs. 0.25+0.06, respectively;
Fig. 3B), suggesting that regional variability supports more efficient information flow even
under globally synchronized states. Notice that TE values were also consistently higher in
awake-like states compared to sleep-like states, in agreement with previous findings that Up
and Down dynamics are associated with a breakdown in effective connectivity and a
reduced capacity for information processing “¢*°. Together, these results suggest that
regional heterogeneity enhances information flow in large-scale brain networks.
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Fig. 3 Information flow is enhanced in heterogeneous whole-brain networks. (A) Transfer entropy (TE)
was computed from the stimulated area (source) to other brain areas during awake-like regime for
heterogeneous (<b>=10pA) and homogeneous (b=10pA) networks. Bottom left illustrates TE between
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two example region pairs, highlighted in the brain illustration above. Bottom right shows the full TE
profile from the source to all brain regions. (B) Same as in (A), but for the sleep-like regime,
comparing heterogeneous (<b>=50pA) and homogeneous (<b>=50pA) networks. Statistical
significance was evaluated using an independent two-sample t-test.

Emergence of localized sleep-like slow waves

We now return to the intermediate level of adaptation (Fig. 2, <b>=25 pA). As previously
described, this regime was characterized by the emergence of locally synchronized clusters
in the FC, while the global network remained only weakly correlated (Fig. 2A-D and 4A).
Here, we further examine the spatiotemporal features of this intermediate state and its
underlying correlates (Fig. 4).

By plotting the firing rate of each brain region over time (Fig. 4B), we observed that few brain
regions exhibited sleep-like slow waves, i.e., Up and Down dynamics, while others
maintained a persistent level of activity, typically from awake-like states (Fig. 4B). These
distinct temporal and spectral patterns, characterized by low-frequency, high-amplitude
oscillations versus high-frequency, irregular fluctuations, coexisted across different regions
within the same network (Fig. 4B-C), revealing an intricate dynamic state for intermediate
levels of adaptation.

However, what determines whether a region expresses sleep-like or awake-like dynamics in
this intermediate regime? To investigate this, we correlated the local adaptation levels with
the delta power (mean power below 4 Hz; Fig. 4D). As expected, these two variables were
highly positively correlated, indicating that regions with higher adaptation values were more
prone to shift into the sleep-like mode. However, adaptation was not the only factor. The
in-degree connectivity (average incoming input strength) also showed a strong negative
correlation with delta power (Fig. 3E), suggesting that regions receiving fewer excitatory
inputs were more prone to display sleep-like dynamics. Additionally, we observed a negative
correlation, though statistically not significant, between adaptation levels and in-degree
connectivity (r=-0.23; p=0.056). Together, these findings indicate that, in our model, localized
sleep-like slow waves can emerge and coexist within an otherwise awake-like state, and that
their spatial distribution is partially shaped by both regional adaptation levels and local
connectivity properties. Moreover, our results are in line with recent empirical evidence that
the level of regional cholinergic projections correlates inversely with the emergence of
localized synchronous sleep-like activity 7.
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Fig. 4 Emergence of localized sleep-like slow waves. (A) Functional connectivity (FC, Pearson
correlation) matrix at an intermediate level of adaptation (<b>=25 pA). (B) Raster plot of network firing
rates. Blue and green rectangles highlight the coexistence of two distinct dynamics: awake-like and
sleep-like, respectively. Corresponding time series are shown on the right. (C) Power spectrum
density (PSD) for the regions highlighted in (B). (D) Correlation between adaptation level and delta
power (mean PSD power in the 0-4Hz band) across regions (r=0.585, p-value=1.59e-7). (E) Same as
in (D) but showing the correlation between in-degree connectivity (average incoming input strength)
and delta power (r=-0.651, p-value=1.77e-9). Pearson correlation coefficients and two-tailed p-values
were used to assess statistical significance.
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Discussion

Cortical dynamics are shaped by anatomical connectivity, as well as molecular and cellular
composition, all of which vary across different brain regions 874°%-% However, the extent to
which this regional heterogeneity influences collective global brain dynamics has remained
less explored, particularly across different brain states. In this study, we investigated the role
of cholinergic regional heterogeneity using a whole-brain network model constrained by
empirical human connectivity and transcriptomics data. Regional cholinergic heterogeneity
was incorporated by modulating local node functional properties, thereby creating a more
detailed virtual brain landscape (Fig. 1). Our results show that regional heterogeneity not
only shapes spatiotemporal activity patterns by facilitating network synchronization but also
enhances inter-regional communication. These findings underscore the significance of
region-specific molecular profiles in shaping the dynamics of large-scale networks.

Brain states span a multidimensional space, from highly correlated (e.g., slow wave sleep) to
weakly correlated (e.g., awake, attentive states) states 2°. Transitions between these states
are strongly influenced by neuromodulatory systems, which regulate neuronal excitability
and network coordination >°°-°®, Among these, ACh plays a central role in shaping brain state
dynamics by reducing spike-frequency adaptation, thereby increasing cortical excitability and
modulating network synchrony 35963 ACh levels also fluctuate according to the brain state,
being elevated during wakefulness and REM sleep, and decreasing during slow wave sleep
606485 |mportantly, ACh release in the cortex, primarily stemming from the basal forebrain, is
not spatially uniform, suggesting that neuromodulatory influence in neuronal dynamics may
vary across brain regions 1%-17:66-68,

Here, we aimed to investigate how this regional cholinergic heterogeneity shapes large-scale
brain dynamics (Fig. 1). To this end, we employed the MF-AdEx model constrained by
human structural connectivity derived from tractography data 2?2, This model has
previously been shown to reproduce both awake-like and sleep-like brain state dynamics
2426 Regional heterogeneity was introduced by modulating adaptation strength based on the
gene expression levels of muscarinic acetylcholine receptors M1 (CHRM1) and M2
(CHRM2) . These receptor subtypes are two of the most abundant muscarinic receptors in
the human cortex and are key targets of cholinergic modulation 513:28.29.60,

Our whole-brain model, incorporating cholinergic regional heterogeneity, reproduced key
features of both awake- and sleep-like brain states (Fig. 2). During awake-like states,
network dynamics were characterized by desynchronized patterns of activity and a
suppression of low-frequency content. In contrast, sleep-like states were characterized by
highly synchronous dynamics, dominated by propagating slow wave oscillations in the form
of Up (active) and Down (silent) states (Fig. 2 and Supp). Additionally, the model also
captured the brain state-dependent relationship between structural and functional
connectivity (Fig. 2E). Specifically, during awake-like states, FC was only loosely constrained
by the SC, whereas in sleep-like states, FC became more tightly aligned with SC. This
strengthened FC-SC coupling has been observed in empirical human brain data and is
thought to reflect a reduced repertoire of accessible dynamic states, a hallmark of
unconscious states like deep sleep, compared to the broader dynamical flexibility present
during wakefulness 35376972,
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Beyond reproducing key features of brain states, what is the impact of regional
heterogeneity in large-scale brain dynamics? Previous studies have shown that introducing
spatially varying parameters such as local E:l balance, myelination gradients, or gene
expression profiles significantly improves the fit of whole-brain models to empirical data
101273 Heterogeneous models not only better replicate empirical brain activity but also
support a richer dynamical repertoire, including more realistic regional timescales,
ignition-like phenomena, and coherent spatiotemporal patterns 27476 Thus, regional
heterogeneity is essential for bridging anatomical specialization and global functional
organization in computational models of brain activity.

Here, at the whole-brain level, we found that regional heterogeneity facilitates large-scale
synchronization when compared to its homogeneous counterpart (Fig. 2D). Using the mean
FC as a proxy of network state dynamics, we found that, as a function of adaptation levels,
heterogeneous networks tend to exhibit higher synchrony. Additionally, the phase lag index,
which captures non-zero-lag correlations, confirmed that heterogeneous networks tend to
synchronize more easily (Fig. 2F). Although this effect has been previously reported in
systems of heterogeneous oscillators ’” or spiking neurons #°, our results extend this concept
to a biologically realistic whole-brain network model. These findings suggest that regional
variability contributes to the emergence of coherent brain-wide activity, an essential feature
of the brain implicated in a diversity of physiological and cognitive processes 788,

Another fundamental effect of regional heterogeneity observed in our model was its
influence on inter-regional communication. Previous work shows that during awake-like
states, information transfer is facilitated, while during sleep-like states, most probably due to
off-periods, information processing is hindered 64749507285 Qur model was able to
reproduce these empirical observations. Specifically, we showed that information transfer
was greater during awake-like states compared to sleep-like states (Fig. 3). More
importantly, we showed that regional heterogeneity significantly enhanced information flow
when compared to homogeneous networks. This finding highlights the functional relevance
of regional variability in supporting effective and flexible brain-wide communication.
Moreover, these results align with previous research showing that heterogeneity improves
the brain's capacity for information transmission and processing 43459192,

Finally, we explored a special case: the coexistence of sleep-like slow waves within an
otherwise awake brain. This complex phenomenon, where two distinct dynamic states
coexist, has been previously reported under both physiological and pathological conditions.
For example, in sleep-deprived awake rats, local slow waves have been observed within the
awake brain and linked to impaired task performance *. In humans, similar localized slow
waves have also been observed during wakefulness, associated with attentional lapses
under physiological conditions '®. Moreover, in both animals and humans, local slow waves
have also been observed during physiological REM sleep '2°%-€_ During pathological
conditions, these localized slow waves have also been observed around brain lesions and
epileptogenic zones '®*9-'". Thus, understanding the correlates of these local slow waves is
crucial to understanding both physiological and pathological brain processes.

In our model, we reproduced this phenomenon, generating localized slow-wave activity
within an overall awake-like dynamic state (Fig. 4). These localized slow waves were
partially driven by regional heterogeneity in adaptation levels. Indeed, a recent study in
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animal models has also reported the occurrence of local slow waves during REM sleep,
where their emergence has been associated with regional differences in cholinergic
innervation . However, in our model, adaptation alone was not sufficient to fully explain the
emergence of localized slow waves. The pattern of structural connectivity also played a key
role, as it influenced the level of excitation each region received. This interplay is coherent
with theoretical studies, where the level of adaptation and excitability are two key
components of slow oscillations' emergence and maintenance '°2'%, Together, these results
suggest that localized slow wave activity arises from a complex interplay between molecular
and structural features of the brain. While we did not simulate pathological conditions, our
framework could be extended to investigate how brain lesions and alterations in
neurotransmitter levels might influence the generation of local slow waves after brain lesions
19104106 ~ thus offering translational potential for developing personalized models of brain
function and dysfunction.

In summary, our computational model highlights the significant impact of cholinergic
heterogeneity on large-scale cortical dynamics. It introduces a novel framework for
incorporating molecular-level variability into biophysically grounded whole-brain simulations.
Although our approach relied on post-mortem transcriptomic data 6, future research could
integrate other modalities such as receptor density maps obtained through positron emission
tomography, especially since the relationship between these two data modalities is not yet
clearly understood '%’. Furthermore, exploring time-dependent neuromodulatory influences,
such as how behavior-dependent fluctuations related to acetylcholine, or any other
neurotransmitter associated with neuronal excitability, could be linked to the emergence of
localized sleep-like activity, represents a promising and important direction for future work.
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Methods

Mean-Field Model

The dynamics of each node were simulated according to a mean-field (MF) description of
networks of Adaptive Exponential Integrate and Fire neurons (AdEx), as previously
described 212426198110 Briefly, this model captures the interaction among excitatory (E) and
inhibitory (1) neuronal populations. Also, excitatory populations are equipped with firing rate

adaptation (W) dynamics. The dynamics equations read:
2

6\)u 1 d Fu
T=-=F, —v)+ 3¢ For
. 0¢,, F('-F) v ; oF, oF ,
= -V -V C —Lc — 2c
ot N}\ + ( A )\)( n n) + a\}u nu + a\)u Aun )\n'
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i} 1 WV E I Ly

=— +bv +
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where v, is the mean firing rate of the population p = {E, I}. CM is the covariance between

population A and 7, Wu is the mean adaptation, bu is the adaptation level (strength), and a is

the subthreshold adaptation, and T is the MF characteristic time constant.
Fll = Fu(VE' v, Wu) is the transfer function (TF), which characterizes the dependence of the

output firing rate on the excitatory (v,) and inhibitory (v ) inputs. According to 198 it can be
written as a function of its mean subthreshold membrane voltage W, its standard deviation

o, and its time correlation time decay T, as:

1 Veff—u
F=v =-——-Erfc—t—|
out T \/EO'V

where ( , 0, T ) are obtained by solving a set of equations, as described in 21,108 V:Z is a

phenomenological spike threshold voltage taken as a second-order polynomial:

eff Ny X%
Vi By O Ty) = Py + 2z . Px( dx, )+
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1,9
c

m

N
with TV = . , Where gLis the leakage conductance and Cmthe membrane capacitance.
The constant values are defined as in 2* M, =— 60 mV, o, = 0.004 mV, TI[X = 0.5,

SuV = 0.001 mV, 80V = 0.006 mV, and og = 1. Accordingly, the fitted polynomials PE’I, for E
and | types of neurons are: PO =— 0.0498, — 0.0514, PW = 0.00506, 0. 004,

p_, == 0.025— 0.0083, p_, = 0.0014, 0.0002, PHZV =— 0.00041, — 0.0005,

P, = 0.0105, 0.0014, P, =—0.036, — 0.0146, P = 0.0074, 0.0045,
oV TV uVoV

PWTV: 0.0012, 0.0028, P, == 0.0407, — 0.0153, for (E, ), respectively. w, is a

function that represents the average membrane potential of a given population, described

by:
HG,EE T “G,lEi+g EW

WeptHe,T9,

W, = vEKEuEQE, and the same applies to the / population. Q is the conductance weight, u is

the synaptic time decay, and K = Np is a constant defined by the number of neurons (

M, =

N = 104) and the probability of connection (p = 0.05). All parameters were obtained from

and are set to: T = 20ms, EL{EI} = (— 64,— 65)mV, N{El} = (8000, 2000), p = 5%,
bI = 0OpA, a{EII} = (0, 0)pA, T, = 500ms, 9,= 10nS, Cm = 200pF, Q{E'I} = (1.5,5)nS,
v = 0.315Hz, K., = (400,0), E, = (0,—80). b, sets the adaptation level of the

excitatory populations and was used as a proxy of spatial cholinergic heterogeneity; see the
Regional Heterogeneity section below.

The previous equations describe the population dynamics of a single cortical region
composed of excitatory and inhibitory populations. To describe large-scale networks of
interconnected brain regions, each represented by the MF model, we can extend the TF to
incorporate both inter-regional interaction and external noise. Thus, the TF can be rewritten
as simply as:

’

IN
Fu = Fu(vE + V.,V Wu)’

with,
IN '
v, (k) =woU (1) + G% Cvplr £ = D)

K represents the node index, G = 0.3 is the global coupling factor that scales all the
connection weights, Ck], is the connectivity matrix strength between j and k, Dk’j is the matrix
delay of axonal propagation, computed as ||j — k”/"c’ where ||j — k|| is the distance
between nodes j and k and v = 5mm/ms is the propagation speed, w=71e-4pA is the noise
scaling factor, and OUk(t) is the noise defined by an Ornstein-Uhlenbeck process with

Ty = 5ms.

Structural Connectivity
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The structure connectivity (SC) was derived from human tractography data from the Berlin
empirical data processing pipeline ?°. A cortical parcellation of 68 brain regions was used,
according to the Desikan-Killiany atlas. Connection strengths (weights) and transmission
delays were based on estimates of fiber density and tract length, respectively, obtained from
diffusion tensor imaging (DTI) data . The preprocessed data was obtained from ?°, and was
the same used in a previous study %°.

Regional Heterogeneity

Regional heterogeneity was implemented by incorporating spatial variation in cortical
cholinergic receptor density to modulate the level of neuronal adaptation in the MF-AdEXx
model. Gene expression data were obtained from the Allen Human Brain Atlas (AHBA) and
were processed according to the ABAGEN toolbox using robust sigmoid normalization and
RNA-sequencing-based probe selection, following established protocols for minimizing
inter-donor variability and preserving spatial fidelity 533!, Departing from our knowledge on
the role of cholinergic modulation in cortical circuits '3, we focused on muscarinic receptor
genes. Specifically, muscarinic acetylcholine receptor subtypes M1 (CHRM1) and M2
(CHRM2), the two most abundant muscarinic receptors in the human cortex 5%2°, Because
AHBA data contain more samples from the left hemisphere, we extracted expression values
from the left cortex and mirrored them to the right hemisphere, consistent with previous
modeling approaches ™.

In our implementation, we used transcriptomic data from the cholinergic muscarinic
receptors CHRM1 and CHRM2. As their density were highly correlated across regions (see
Fig. 1 bottom panel), we worked with the normalized arithmetic mean, which we refer to as
simple CHRM density. To ensure equivalence with a homogeneous network, we centered
this distribution around its median, thus centering it around one (1.03+0.20, mean and
standard deviation given). The resulting CHRM density vector, containing 68 values (one per
cortical region), was then used to modulate the adaptation parameter bE as:

b= C + b +h (P, ~ D)

C = 10pA is the baseline adaptation level, b is a free variable that represents the adaptation.

P yry TEPTESENtS the CHRM density, and hf is the heterogeneity factor, i.e., if hf = 1the

network is fully heterogeneous, while hf = 0 represents a fully homogeneous network.

Simulations

The model was run using The Virtual Brain (TVB) platform, where the MF-AdEx model is
already implemented '"""2, Numerical integration was performed using the stochastic Heun
method with a time step of 1 ms. For spontaneous activity simulations, each run lasted 22 s,
with the first 2 s discarded to eliminate transients. For stimulation protocols, a brief excitatory
input was applied to the firing rate of the excitatory population in a single region, the superior
parietal lobule. The stimulus had a duration of 30 ms and an amplitude of 3Hz. Each
stimulation trial (50 trials) consisted of a new simulation lasting 6.03 s, with the first 2 s again
discarded. The stimulus was applied at 4s, allowing for a 2s pre-stimulus and 2 s
post-stimulus window for analysis.
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Data Analysis

Functional connectivity (FC) and structure-function coupling (SC-FC) were estimated using
the Pearson correlation. Power spectrum density was computed using Welch’s method.
Phase Lag Index (PLI) was computed as described in *°: PLI = |< sign[Ad(t)] >|. Where
Ad denotes the instantaneous phase difference between two signals. The instantaneous
phase was estimated by the Hilbert transform. PLI measures the phase synchronization
among signals while minimizing the influence of zero-lag correlations. PLI values range from
0 and 1, where 0 indicates no consistent phase lag, and 1 reflects perfect phase locking with
a consistent non-zero phase difference "'*. Transfer entropy (TE) between two signals X(t)
and Y(¢t), TE,  was defined as: TE, , = H(Yt|Y T) - H(Yt|Y Xt_u_T), where H()

denotes the entropy and T = 5ms is the time delay. In short, TEX_W measures the reduction

t—1:t— t—1:t—7

in uncertainty about the future of Y(t) given its own past and the history of a second variable
X(t) 4115, We used the TE implementation available at:

https://github.com/notsebastiano/transfer_entropy. TE was computed from the source area
to all other areas in a window of 400 ms after the stimulus (see above).

Code and Data Availability
The MF-AdEx code used in this study is freely available through The Virtual Brain (TVB)

platform (https://www.thevirtualbrain.org/). The transcriptomic data utilized are publicly
accessible via the Allen Institute for Brain Science at https://human.brain-map.org/.
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Sleep-like travelling waves

6
@
o 5 &
< @
E —
O 4 5
= N
o
&) 3

Supplementary Fig. Cortical travelling slow waves. Top, Raster plot of cortical areas illustrating Up
and Down dynamics and wave propagation. Bottom, lllustration of a travelling wave during one Up
state. Each row is separated by 20 ms.
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