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Abstract 
 
The human brain displays substantial regional variability in molecular, anatomical, and 
physiological organization. Yet, how this heterogeneity shapes large-scale neuronal 
dynamics remains poorly understood. To address this question, we employed a biologically 
informed whole-brain computational model capable of generating distinct brain states, from 
awake-like to sleep-like regimes. Our model was constrained by empirical human structural 
connectivity and spatial maps of cholinergic receptor gene expression, thereby embedding 
regional neuromodulatory variability into a macroscopic framework. We found that 
incorporating cholinergic heterogeneity had a significant impact on brain dynamics: it not 
only facilitated network synchronization but also enhanced information flow between brain 
regions. Furthermore, we addressed a particularly intricate dynamic regime characterized by 
the coexistence of localized sleep-like activity within otherwise awake-like states. We 
showed that the emergence of these slow waves was a byproduct of both regional levels of 
neuronal adaptation and structural connectivity. In summary, our findings highlight the critical 
role of molecular and anatomical heterogeneity in shaping global brain dynamics, suggesting 
new avenues for linking microscale diversity to macroscale function. 
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Introduction 
 
From wakefulness to sleep, the brain exhibits a rich repertoire of spatiotemporal dynamics 
that underlie behavior and cognition 1–3. These dynamics arise from the interplay of factors 
across multiple scales, including structural connectivity, cellular physiology, and 
neuromodulatory signaling, each influencing both normal cortical function and susceptibility 
to pathology 4. Yet, the extent to which regional heterogeneity modulates large-scale brain 
dynamics remains an open question in contemporary neuroscience, particularly across 
distinct brain states. Neuromodulators and neurotransmitters are well known to shape the 
functional and dynamical properties of cortical circuits 5, but their distribution across the 
cortex is far from uniform. Instead, these molecular signals form spatially distinct hubs along 
the cortical hierarchy 4,6,7. Despite this, how such molecular and regional heterogeneity gives 
rise to global brain dynamics and how this relationship depends on brain state remains 
poorly understood. 
 
Computational models of the human brain have attempted to address this question by 
simulating large-scale neural dynamics 8,9. However, most of these models have focused on 
the structural properties, largely due to the earlier lack of detailed, molecular-level data. 
Recent advances in neuroimaging and transcriptomic techniques have advanced the field by 
enabling the construction of more biologically realistic heterogeneous brain models 6,7. 
Computational models incorporating these region-specific features, such as the T1w:T2w 
ratio or estimates of excitation-inhibition balance, have demonstrated improved performance 
in capturing empirical functional dynamics 10–12. 
 
Despite recent progress, the influence of molecular heterogeneity on global brain dynamics 
remains underexplored. Acetylcholine (ACh), for example, is known to play a key role in 
modulating brain states by influencing spike-frequency adaptation and cortical excitability 
5,13,14. Cortical ACh levels vary with brain state and exhibit spatial heterogeneityreflecting 
non-uniform cholinergic projections 15,16. Notably, reduced cholinergic input correlates with 
spatially localized slow wave activity during REM sleep17, raising broader questions about 
the role of cholinergic heterogeneity in generating sleep-like activity under both physiological 
and pathological conditions, such as attentional lapses or following brain lesions 18–20. 
 
To address these questions, we developed a large-scale, biophysically grounded cortical 
circuit model that incorporates regional heterogeneity informed by the spatial distribution of 
cholinergic receptors. By simulating different brain states, we found that regional 
heterogeneity significantly influences large-scale brain dynamics when compared to its 
homogenous counterpart. Beyond facilitating network coordination through synchronization, 
heterogeneity was shown to enhance inter-regional communication, supporting more 
complex and flexible patterns of activity. Furthermore, we demonstrated that spatially 
localized slow waves emerge as a byproduct of both regional variations in neuronal 
adaptation and the underlying structural connectivity. In summary, our findings underscore 
the critical role of both molecular and anatomical heterogeneity in shaping global brain 
dynamics and provide a novel framework for linking microscale diversity to macroscale brain 
function. 
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Results 
 
Inspired by empirical evidence demonstrating the modulatory effects of acetylcholine on 
local neuronal circuits and ionic channels 13, we investigated here how spatial heterogeneity 
in cholinergic receptor density influences large-scale brain activity. Using a biophysically 
grounded whole-brain network model, our goal was to understand how regional variability in 
cholinergic modulation shapes the spatiotemporal dynamics of the cortex 3. In particular, we 
examined how this heterogeneity impacts asynchronous and synchronous activity patterns, 
dynamics that closely resemble awake-like and sleep-like brain states, respectively. 
 
Framework overview 

Our whole-brain modeling framework integrates three key components: node dynamics, 
network connectivity, and regional heterogeneity (Fig. 1). Each brain region (node) was 
modeled using the Adaptive Exponential Mean-Field (AdEx-MF) model, which captures the 
interaction between excitatory ( ​) and inhibitory ( ​) neuronal populations, along with an ν

𝐸
ν

𝐼

adaptation variable ( ) 21. W represents activity-dependent processes that modulate 𝑊
neuronal excitability, such as activity-dependent K+ currents 13,22,23. The dynamic balance 
between excitation, inhibition, and adaptation allows each node to exhibit either 
asynchronous (awake-like) or synchronous (sleep-like) dynamics, depending on the level of 
adaptation. Specifically, increasing neuronal adaptation drives the system toward a 
synchronous pattern of activity, while lower adaptation promotes irregular, desynchronized 
activity (Fig. 1, top panel) 21,24. 

To define network connectivity, we used empirical structural connectivity (SC) data derived 
from human diffusion MRI tractography (Fig. 1, middle panel; see Methods) 25,26. The brain 
was parcellated according to the Desikan-Killiany atlas (68 cortical regions), and 
inter-regional connections were modeled as excitatory. Connection strengths (weights) and 
transmission delays were based on estimates of fiber density and tract length, respectively, 
obtained from diffusion tensor imaging (DTI) data 27. This preprocessed dataset was 
obtained from 25. 

Finally, regional heterogeneity was implemented by incorporating spatial variation in cortical 
receptor density (Fig. 1, bottom panel). Specifically, we used the average expression levels 
of muscarinic acetylcholine receptor subtypes M1 (CHRM1) and M2 (CHRM2), the two most 
abundant muscarinic receptors in the human cortex 6,28,29. Gene expression profiles were 
obtained from the Allen Human Brain Atlas (AHBA) and processed using the ABAGEN 
toolbox 6,30,31. These regional expression values were used to modulate the adaptation 
parameter in each node, thus linking neuromodulatory heterogeneity to local excitability. 
Altogether, this approach allowed us to construct a biophysically grounded, spatially 
heterogeneous virtual brain model (Fig. 1). 
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Fig. 1 Overview of the whole-brain network model framework. Top panel: Each brain region (node) 
was modeled using the Adaptive Exponential Mean-Field (AdEx-MF) model. In this model, excitatory 
(E​) and inhibitory (I​) neuronal populations are coupled together along with an adaptation variable (W). 
By varying the adaptation strength, the model can exhibit distinct dynamical regimes: low adaptation 
leads to asynchronous, awake-like activity, whereas high adaptation produces synchronous, sleep-like 
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activity. Middle panel: Network connectivity was defined using empirical structural connectivity data 
derived from human diffusion MRI tractography. The brain was parcellated in 68 cortical regions 
according to the Desikan-Killiany atlas, and connection strength and transmission delays were 
estimated from diffusion tensor imaging (DTI) data. Inter-regional connectivity was set as excitatory. 
The preprocessed data was obtained from 25. Bottom panel: Regional heterogeneity was introduced in 
the form of muscarinic acetylcholine receptor density. Gene expression levels of M1 (CHRM1) and M2 
(CHRM2) receptor subtypes were highly correlated, and their average (CHRM density) was used to 
modulate the local adaptation parameter (see Methods for details). Gene expression profiles were 
obtained from the Allen Human Brain Atlas (AHBA) and processed using the ABAGEN toolbox 6,31. 

 
 
From asynchronous to synchronous dynamics in a large-scale network model 
 
Following our framework previously described, we next investigated the whole-brain network 
dynamics as a function of the adaptation level (b; Fig. 2). At low adaptation levels (<b>=12 
pA, <> indicates average over all brain areas), the system exhibited weak inter-regional 
correlations, as illustrated by the functional connectivity (FC) matrix, resembling the 
desynchronized activity typically associated with awake-like states (Fig. 2A-D). Accordingly, 
temporal fluctuations in this regime were characterized by low-amplitude, high-frequency 
activity, which gave rise to irregular oscillations in the range of ~10Hz, also accompanied by 
a suppression of the low-frequency content (Fig. 2B-C). Consequently, this desynchronized 
state was dominated by irregular fluctuations, resulting in low correlation values across brain 
regions (Fig. 2D). 
 
As adaptation increased (<b>=24 pA), inter-regional correlations also increased, and locally 
connected clusters began to emerge, giving rise to structured spatiotemporal patterns (Fig. 
2A). In this intermediate regime, network firing rate decreased (from ~6Hz to ~4Hz), and the 
dominant oscillatory frequency slowed down (from ~10Hz to ~6Hz), alongside a relative 
increase in the low-frequency content (Fig. 2B-C). Despite the emergence of localized 
synchrony, as indicated by the FC matrices, the global network remained weakly correlated 
(Fig. 2D). We further discuss this intermediate regime in the following section (see 
Emergence of localized sleep-like slow waves). 
 
For higher adaptation levels (<b>=36), the network dynamics were dominated by strongly 
correlated fluctuations across widespread cortical regions, a dynamic regime reminiscent of 
SWS and deep anesthesia (Fig. 2A) 32–34. In this state, the system exhibited quasi-periodic 
(~1Hz) alternations between periods of high-amplitude (~8Hz) sustained activity (Up states) 
and periods of network silence (Down states or off-periods), which propagated through the 
network as travelling waves (Supp. Fig. 1). As a result, low-frequency components 
dominated the system, leading to a globally synchronized network state (Fig. 2D). 
 
Another important feature of awake- and sleep-like states is their increased 
structure-function coupling, i.e., the relationship between the underlying anatomical structure 
and the emergent functional patterns 35–38. Our model reproduced this relationship accurately 
(Fig. 2E). Specifically, for awake-like states (desynchronized activity), the FC was only 
loosely constrained by the SC. Conversely, during sleep-like states (synchronized activity), 
the FC patterns were more constrained by the SC. This strengthened FC–SC coupling is 
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thought to reflect a reduced repertoire of dynamic brain states, which is typically higher 
during wakefulness and significantly lower during sleep and unconscious states 24,35,36. 
 

Regional heterogeneity facilitates large-scale synchronization 

In the previous section, we demonstrated that our whole-brain network model, incorporating 
regional heterogeneity constrained by the spatial distribution of cholinergic receptor density 
(see Methods), can reproduce key features of both awake-like and sleep-like brain dynamics 
(Fig. 2). However, a crucial question remains: how does the inclusion of regional 
heterogeneity impact global brain dynamics? To address this, we compared our 
heterogeneous model to its homogeneous counterpart, i.e., keeping the adaptation level 
constant across brain regions, i.e., heterogeneity = 0% (<b> = b). 

By comparing FC profiles across adaptation levels, we found that regional heterogeneity 
facilitated network synchronization; however, only at higher adaptation values (Fig. 2D; 
compare filled vs. empty circles). For adaptation current levels above 30 pA, the mean FC 
(measured via Pearson correlation) was significantly higher in the heterogeneous model, 
indicating that regional variability in adaptation enhances inter-regional coupling under 
synchronized states. Interestingly, although the heterogeneous network exhibited stronger 
overall synchronization, the structure–function coupling remained similar (Fig. 2E). That is, 
the relationship between FC and SC did not significantly differ between the heterogeneous 
and homogeneous models, suggesting that, despite higher synchronization, the dynamics 
remained constrained by the underlying anatomical structure. 

In our model, synchronous states are characterized by Up and Down dynamics, which 
propagate through the network as travelling waves (Supp. Fig. 1). To further investigate the 
impact of regional heterogeneity on network synchronization, we computed the Phase Lag 
Index (PLI; see Methods). PLI is a metric designed to quantify phase synchronization while 
minimizing the influence of zero-lag correlations 39. Thus, PLI is particularly well-suited for 
detecting non-trivial phase relationships, such as those expected during traveling wave 
dynamics. 

PLI analysis confirmed that regional heterogeneity indeed enhances network 
synchronization (Fig. 2F). For adaptation levels above <b>=20 pA, heterogeneous networks 
exhibited higher synchronization compared to their homogeneous counterparts. This 
difference became more pronounced at higher adaptation levels, which are associated with 
stronger global synchronization. Notably, the effect of heterogeneity on synchronization 
appeared to be gradual: networks with 50% heterogeneity displayed intermediate PLI values 
between the fully heterogeneous and fully homogeneous cases. Altogether, these results 
suggest that regional heterogeneity facilitates large-scale network coordination by enhancing 
phase synchronization across brain regions. 
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Fig. 2 Heterogeneous whole-brain dynamics from asynchronous to synchronous dynamics. (A) 
Functional connectivity (FC; Pearson correlation) matrices as a function of adaptation levels. (B) 
Representative time series for different adaptation values (b in pA units). (C) Power spectrum density 
(PSD) for three representative adaptation levels illustrating awake-like (<b>=12 pA), intermediate 
(<b>=24 pA), and sleep-like (<b>=36 pA) dynamics. Arrows indicate the peak frequency at ~11 Hz, ~6 
Hz, and ~2 Hz, respectively. (D) Mean FC as a function of adaptation level for heterogeneous (filled 
circles) and homogeneous (empty circles) networks. (E) Same as (D) for structure-function (SC-FC) 
coupling (Pearson correlation between structural and functional connectivity). (F) Phase lag index as 
a function of adaptation level. Red and gray lines represent heterogeneous and homogenous 
networks, respectively. Light-purple indicates a partially heterogeneous network (50% heterogeneity; 
see Methods for details).  
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Information flow is enhanced in large-scale networks with regional 
heterogeneity 

A fundamental aspect of neuronal networks is their ability to receive and transmit information 
across the connectome, a process supported by both local and long-range connections 40–42. 
While previous studies have shown that information flow is enhanced in local spiking 
networks with heterogeneous neuronal properties, this effect has been less explored at the 
large scale 43–45. We next assessed the information flow across the connectome with regional 
heterogeneity and in its homogeneous counterpart. To this end, we briefly stimulated a single 
cortical area under both awake-like and sleep-like dynamic regimes and computed the 
transfer entropy (TE) between the stimulated region and all other areas (Fig. 3). 

We found that, regardless of brain state, awake-like or sleep-like, TE was significantly higher 
in heterogeneous networks compared to their homogenous counterparts (Fig. 3). During the 
awake-like regime, when the network was more excitable and exhibited asynchronous 
dynamics, the mean TE (from source to all other areas) in heterogeneous networks was 
significantly higher than in homogeneous ones (1.02 ± 0.09 vs. 0.84 ± 0.08, respectively; Fig. 
3A). Similarly, in the sleep-like regime, characterized by Up and Down dynamics, TE 
remained higher in the heterogeneous condition (0.30 ± 0.07 vs. 0.25 ± 0.06, respectively; 
Fig. 3B), suggesting that regional variability supports more efficient information flow even 
under globally synchronized states. Notice that TE values were also consistently higher in 
awake-like states compared to sleep-like states, in agreement with previous findings that Up 
and Down dynamics are associated with a breakdown in effective connectivity and a 
reduced capacity for information processing 46–50. Together, these results suggest that 
regional heterogeneity enhances information flow in large-scale brain networks. 

 

Fig. 3 Information flow is enhanced in heterogeneous whole-brain networks. (A) Transfer entropy (TE) 
was computed from the stimulated area (source) to other brain areas during awake-like regime for 
heterogeneous (<b>=10pA) and homogeneous (b=10pA) networks. Bottom left illustrates TE between 
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two example region pairs, highlighted in the brain illustration above. Bottom right shows the full TE 
profile from the source to all brain regions. (B) Same as in (A), but for the sleep-like regime, 
comparing heterogeneous (<b>=50pA) and homogeneous (<b>=50pA) networks. Statistical 
significance was evaluated using an independent two-sample t-test. 

 

Emergence of localized sleep-like slow waves 

We now return to the intermediate level of adaptation (Fig. 2, <b> = 25 pA). As previously 
described, this regime was characterized by the emergence of locally synchronized clusters 
in the FC, while the global network remained only weakly correlated (Fig. 2A-D and 4A). 
Here, we further examine the spatiotemporal features of this intermediate state and its 
underlying correlates (Fig. 4). 

By plotting the firing rate of each brain region over time (Fig. 4B), we observed that few brain 
regions exhibited sleep-like slow waves, i.e., Up and Down dynamics, while others 
maintained a persistent level of activity, typically from awake-like states (Fig. 4B). These 
distinct temporal and spectral patterns, characterized by low-frequency, high-amplitude 
oscillations versus high-frequency, irregular fluctuations, coexisted across different regions 
within the same network (Fig. 4B-C), revealing an intricate dynamic state for intermediate 
levels of adaptation. 

However, what determines whether a region expresses sleep-like or awake-like dynamics in 
this intermediate regime? To investigate this, we correlated the local adaptation levels with 
the delta power (mean power below 4 Hz; Fig. 4D). As expected, these two variables were 
highly positively correlated, indicating that regions with higher adaptation values were more 
prone to shift into the sleep-like mode. However, adaptation was not the only factor. The 
in-degree connectivity (average incoming input strength) also showed a strong negative 
correlation with delta power (Fig. 3E), suggesting that regions receiving fewer excitatory 
inputs were more prone to display sleep-like dynamics. Additionally, we observed a negative 
correlation, though statistically not significant, between adaptation levels and in-degree 
connectivity (r=-0.23; p=0.056). Together, these findings indicate that, in our model, localized 
sleep-like slow waves can emerge and coexist within an otherwise awake-like state, and that 
their spatial distribution is partially shaped by both regional adaptation levels and local 
connectivity properties. Moreover, our results are in line with recent empirical evidence that 
the level of regional cholinergic projections correlates inversely with the emergence of 
localized synchronous sleep-like activity 17. 
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Fig. 4  Emergence of localized sleep-like slow waves. (A) Functional connectivity (FC, Pearson 
correlation) matrix at an intermediate level of adaptation (<b>=25 pA). (B) Raster plot of network firing 
rates. Blue and green rectangles highlight the coexistence of two distinct dynamics: awake-like and 
sleep-like, respectively. Corresponding time series are shown on the right. (C) Power spectrum 
density (PSD) for the regions highlighted in (B). (D) Correlation between adaptation level and delta 
power (mean PSD power in the 0-4Hz band) across regions (r=0.585, p-value=1.59e-7). (E) Same as 
in (D) but showing the correlation between in-degree connectivity (average incoming input strength) 
and delta power (r=-0.651, p-value=1.77e-9). Pearson correlation coefficients and two-tailed p-values 
were used to assess statistical significance.  
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Discussion 
 
Cortical dynamics are shaped by anatomical connectivity, as well as molecular and cellular 
composition, all of which vary across different brain regions 6,7,40,51–54. However, the extent to 
which this regional heterogeneity influences collective global brain dynamics has remained 
less explored, particularly across different brain states. In this study, we investigated the role 
of cholinergic regional heterogeneity using a whole-brain network model constrained by 
empirical human connectivity and transcriptomics data. Regional cholinergic heterogeneity 
was incorporated by modulating local node functional properties, thereby creating a more 
detailed virtual brain landscape (Fig. 1). Our results show that regional heterogeneity not 
only shapes spatiotemporal activity patterns by facilitating network synchronization but also 
enhances inter-regional communication. These findings underscore the significance of 
region-specific molecular profiles in shaping the dynamics of large-scale networks. 
 
Brain states span a multidimensional space, from highly correlated (e.g., slow wave sleep) to 
weakly correlated (e.g., awake, attentive states) states 2,3. Transitions between these states 
are strongly influenced by neuromodulatory systems, which regulate neuronal excitability 
and network coordination 5,55–58. Among these, ACh plays a central role in shaping brain state 
dynamics by reducing spike-frequency adaptation, thereby increasing cortical excitability and 
modulating network synchrony 5,13,59–63. ACh levels also fluctuate according to the brain state, 
being elevated during wakefulness and REM sleep, and decreasing during slow wave sleep 
60,64,65. Importantly,  ACh release in the cortex, primarily stemming from the basal forebrain, is 
not spatially uniform, suggesting that neuromodulatory influence in neuronal dynamics may 
vary across brain regions 15–17,66–68. 
 
Here, we aimed to investigate how this regional cholinergic heterogeneity shapes large-scale 
brain dynamics (Fig. 1). To this end, we employed the MF-AdEx model constrained by 
human structural connectivity derived from tractography data 21,25,26. This model has 
previously been shown to reproduce both awake-like and sleep-like brain state dynamics 
24,26. Regional heterogeneity was introduced by modulating adaptation strength based on the 
gene expression levels of muscarinic acetylcholine receptors M1 (CHRM1) and M2 
(CHRM2) 6. These receptor subtypes are two of the most abundant muscarinic receptors in 
the human cortex and are key targets of cholinergic modulation 5,13,28,29,60. 
 
Our whole-brain model, incorporating cholinergic regional heterogeneity, reproduced key 
features of both awake- and sleep-like brain states (Fig. 2). During awake-like states, 
network dynamics were characterized by desynchronized patterns of activity and a 
suppression of low-frequency content. In contrast, sleep-like states were characterized by 
highly synchronous dynamics, dominated by propagating slow wave oscillations in the form 
of Up (active) and Down (silent) states (Fig. 2 and Supp). Additionally, the model also 
captured the brain state-dependent relationship between structural and functional 
connectivity (Fig. 2E). Specifically, during awake-like states, FC was only loosely constrained 
by the SC, whereas in sleep-like states, FC became more tightly aligned with SC. This 
strengthened FC–SC coupling has been observed in empirical human brain data and is 
thought to reflect a reduced repertoire of accessible dynamic states, a hallmark of 
unconscious states like deep sleep, compared to the broader dynamical flexibility present 
during wakefulness 35–37,69–72. 
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Beyond reproducing key features of brain states, what is the impact of regional 
heterogeneity in large-scale brain dynamics? Previous studies have shown that introducing 
spatially varying parameters such as local E:I balance, myelination gradients, or gene 
expression profiles significantly improves the fit of whole-brain models to empirical data 
10–12,73. Heterogeneous models not only better replicate empirical brain activity but also 
support a richer dynamical repertoire, including more realistic regional timescales, 
ignition-like phenomena, and coherent spatiotemporal patterns 11,12,74–76. Thus, regional 
heterogeneity is essential for bridging anatomical specialization and global functional 
organization in computational models of brain activity.  
 
Here, at the whole-brain level, we found that regional heterogeneity facilitates large-scale 
synchronization when compared to its homogeneous counterpart (Fig. 2D). Using the mean 
FC as a proxy of network state dynamics, we found that, as a function of adaptation levels, 
heterogeneous networks tend to exhibit higher synchrony. Additionally, the phase lag index, 
which captures non-zero-lag correlations, confirmed that heterogeneous networks tend to 
synchronize more easily (Fig. 2F). Although this effect has been previously reported in 
systems of heterogeneous oscillators 77 or spiking neurons 45, our results extend this concept 
to a biologically realistic whole-brain network model. These findings suggest that regional 
variability contributes to the emergence of coherent brain-wide activity, an essential feature 
of the brain implicated in a diversity of physiological and cognitive processes 3,78–84. 
 
Another fundamental effect of regional heterogeneity observed in our model was its 
influence on inter-regional communication. Previous work shows that during awake-like 
states, information transfer is facilitated, while during sleep-like states, most probably due to 
off-periods, information processing is hindered 46,47,49,50,72,85–90. Our model was able to 
reproduce these empirical observations. Specifically, we showed that information transfer 
was greater during awake-like states compared to sleep-like states (Fig. 3). More 
importantly, we showed that regional heterogeneity significantly enhanced information flow 
when compared to homogeneous networks. This finding highlights the functional relevance 
of regional variability in supporting effective and flexible brain-wide communication. 
Moreover, these results align with previous research showing that heterogeneity improves 
the brain's capacity for information transmission and processing 11,43–45,91,92.  
 
Finally, we explored a special case: the coexistence of sleep-like slow waves within an 
otherwise awake brain. This complex phenomenon, where two distinct dynamic states 
coexist, has been previously reported under both physiological and pathological conditions. 
For example, in sleep-deprived awake rats, local slow waves have been observed within the 
awake brain and linked to impaired task performance 93. In humans, similar localized slow 
waves have also been observed during wakefulness, associated with attentional lapses 
under physiological conditions 18. Moreover, in both animals and humans, local slow waves 
have also been observed during physiological REM sleep 17,20,94–96. During pathological 
conditions, these localized slow waves have also been observed around brain lesions and 
epileptogenic zones 19,97–101. Thus, understanding the correlates of these local slow waves is 
crucial to understanding both physiological and pathological brain processes. 
 
In our model, we reproduced this phenomenon, generating localized slow-wave activity 
within an overall awake-like dynamic state (Fig. 4). These localized slow waves were 
partially driven by regional heterogeneity in adaptation levels. Indeed, a recent study in 
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animal models has also reported the occurrence of local slow waves during REM sleep, 
where their emergence has been associated with regional differences in cholinergic 
innervation 17. However, in our model, adaptation alone was not sufficient to fully explain the 
emergence of localized slow waves. The pattern of structural connectivity also played a key 
role, as it influenced the level of excitation each region received. This interplay is coherent 
with theoretical studies, where the level of adaptation and excitability are two key 
components of slow oscillations' emergence and maintenance 102,103. Together, these results 
suggest that localized slow wave activity arises from a complex interplay between molecular 
and structural features of the brain. While we did not simulate pathological conditions, our 
framework could be extended to investigate how brain lesions and alterations in 
neurotransmitter levels might influence the generation of local slow waves after brain lesions 
19,104–106, thus offering translational potential for developing personalized models of brain 
function and dysfunction. 

In summary, our computational model highlights the significant impact of cholinergic 
heterogeneity on large-scale cortical dynamics. It introduces a novel framework for 
incorporating molecular-level variability into biophysically grounded whole-brain simulations. 
Although our approach relied on post-mortem transcriptomic data 6, future research could 
integrate other modalities such as receptor density maps obtained through positron emission 
tomography, especially since the relationship between these two data modalities is not yet 
clearly understood 107. Furthermore, exploring time-dependent neuromodulatory influences, 
such as how behavior-dependent fluctuations related to acetylcholine, or any other 
neurotransmitter associated with neuronal excitability, could be linked to the emergence of 
localized sleep-like activity, represents a promising and important direction for future work.
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Methods 
 
Mean-Field Model 
 
The dynamics of each node were simulated according to a mean-field (MF) description of 
networks of Adaptive Exponential Integrate and Fire neurons (AdEx), as previously 
described 21,24,26,108–110. Briefly, this model captures the interaction among excitatory (E) and 
inhibitory (I) neuronal populations. Also, excitatory populations are equipped with firing rate 
adaptation (W) dynamics. The dynamics equations read: 
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with , where is the leakage conductance and the membrane capacitance.  τ
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excitatory populations and was used as a proxy of spatial cholinergic heterogeneity; see the 
Regional Heterogeneity section below. 
 
The previous equations describe the population dynamics of a single cortical region 
composed of excitatory and inhibitory populations. To describe large-scale networks of 
interconnected brain regions, each represented by the MF model, we can extend the TF to 
incorporate both inter-regional interaction and external noise. Thus, the TF can be rewritten 
as simply as: 
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K represents the node index,  is the global coupling factor that scales all the 𝐺 = 0. 3
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Structural Connectivity 
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The structure connectivity (SC) was derived from human tractography data from the Berlin 
empirical data processing pipeline 25. A cortical parcellation of 68 brain regions was used, 
according to the Desikan-Killiany atlas. Connection strengths (weights) and transmission 
delays were based on estimates of fiber density and tract length, respectively, obtained from 
diffusion tensor imaging (DTI) data 27. The preprocessed data was obtained from 25, and was 
the same used in a previous study 26. 
 
Regional Heterogeneity 
 
Regional heterogeneity was implemented by incorporating spatial variation in cortical 
cholinergic receptor density to modulate the level of neuronal adaptation in the MF-AdEx 
model. Gene expression data were obtained from the Allen Human Brain Atlas (AHBA) and 
were processed according to the ABAGEN toolbox using robust sigmoid normalization and 
RNA-sequencing-based probe selection, following established protocols for minimizing 
inter-donor variability and preserving spatial fidelity 6,11,30,31. Departing from our knowledge on 
the role of cholinergic modulation in cortical circuits 13, we focused on muscarinic receptor 
genes. Specifically, muscarinic acetylcholine receptor subtypes M1 (CHRM1) and M2 
(CHRM2), the two most abundant muscarinic receptors in the human cortex 6,28,29. Because 
AHBA data contain more samples from the left hemisphere, we extracted expression values 
from the left cortex and mirrored them to the right hemisphere, consistent with previous 
modeling approaches 11. 
 
In our implementation, we used transcriptomic data from the cholinergic muscarinic 
receptors CHRM1 and CHRM2. As their density were highly correlated across regions (see 
Fig. 1 bottom panel), we worked with the normalized arithmetic mean, which we refer to as 
simple CHRM density. To ensure equivalence with a homogeneous network, we centered 
this distribution around its median, thus centering it around one (1.03±0.20, mean and 
standard deviation given). The resulting CHRM density vector, containing 68 values (one per 
cortical region), was then used to modulate the adaptation parameter  as: 𝑏

𝐸

. 𝑏
𝐸

=  𝐶 + 𝑏(1 + ℎ
𝑓
(ρ

𝐶𝐻𝑅𝑀
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 is the baseline adaptation level,  is a free variable that represents the adaptation. 𝐶 = 10𝑝𝐴 𝑏
 represents the CHRM density, and  is the heterogeneity factor, i.e., if  the ρ

𝐶𝐻𝑅𝑀
ℎ

𝑓
ℎ

𝑓
= 1

network is fully heterogeneous, while   represents a fully homogeneous network. ℎ
𝑓

= 0

 
Simulations 
 
The model was run using The Virtual Brain (TVB) platform, where the MF-AdEx model is 
already implemented 111,112. Numerical integration was performed using the stochastic Heun 
method with a time step of 1 ms. For spontaneous activity simulations, each run lasted 22 s, 
with the first 2 s discarded to eliminate transients. For stimulation protocols, a brief excitatory 
input was applied to the firing rate of the excitatory population in a single region, the superior 
parietal lobule. The stimulus had a duration of 30 ms and an amplitude of 3 Hz. Each 
stimulation trial (50 trials) consisted of a new simulation lasting 6.03 s, with the first 2 s again 
discarded. The stimulus was applied at 4 s, allowing for a 2 s pre-stimulus and 2 s 
post-stimulus window for analysis. 
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Data Analysis 
 
Functional connectivity (FC) and structure-function coupling (SC-FC) were estimated using 
the Pearson correlation. Power spectrum density was computed using Welch’s method. 
Phase Lag Index (PLI) was computed as described in 39: . Where 𝑃𝐿𝐼 = < 𝑠𝑖𝑔𝑛[∆ϕ(𝑡)] >| |

 denotes the instantaneous phase difference between two signals. The instantaneous ∆ϕ
phase was estimated by the Hilbert transform. PLI measures the phase synchronization 
among signals while minimizing the influence of zero-lag correlations. PLI values range from 
0 and 1, where 0 indicates no consistent phase lag, and 1 reflects perfect phase locking with 
a consistent non-zero phase difference 113. Transfer entropy (TE) between two signals  𝑋(𝑡)
and ,  was defined as:  , where  𝑌(𝑡) 𝑇𝐸

𝑋→𝑌
𝑇𝐸

𝑋→𝑌
= 𝐻(𝑌

𝑡
|𝑌

𝑡−1:𝑡−τ
) − 𝐻(𝑌

𝑡
|𝑌

𝑡−1:𝑡−τ
, 𝑋

𝑡−1:𝑡−τ
) 𝐻()

denotes the entropy and  is the time delay. In short,  measures the reduction τ = 5𝑚𝑠 𝑇𝐸
𝑋→𝑌

in uncertainty about the future of   given its own past and the history of a second variable 𝑌(𝑡)
 114,115. We used the TE implementation available at: 𝑋(𝑡)

https://github.com/notsebastiano/transfer_entropy. TE was computed from the source area 
to all other areas in a window of 400 ms after the stimulus (see above). 
 
Code and Data Availability 
 
The MF-AdEx code used in this study is freely available through The Virtual Brain (TVB) 
platform (https://www.thevirtualbrain.org/). The transcriptomic data utilized are publicly 
accessible via the Allen Institute for Brain Science at https://human.brain-map.org/.  
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Supplementary Fig. Cortical travelling slow waves. Top, Raster plot of cortical areas illustrating Up 
and Down dynamics and wave propagation. Bottom, Illustration of a travelling wave during one Up 
state. Each row is separated by 20 ms. 
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